Характеристики тда 2030: Микросхема усилитель TDA2030. Подробное описание

Содержание

⚡️Схема усилителя TDA2030 построенна блок схема стереоусилителя

На чтение 7 мин. Опубликовано Обновлено

Дешево и “сердито”‘ Таков девиз этой статьи на нашем сайте. В ней рассказывается о стереоусилителе мощностью 2 х 15 Вт. Дешевизна обеспечивается использованием таких комплектующих, которые можно приобрести на рынке по весьма приемлемой цене.

“Сердитость” гарантируется подробным описанием усилителя. В результате получается малогабаритный прибор с весьма приятным звучанием и универсальным применением.

Блок-схема стереоусилителя приведена на рис.1.

Рассмотрим блок схему усилителя: с помощью коммутатора входов к усилителю можно подключать сигналы от разных источников. Вопрос о количестве входов зависит лишь от числа положений используемого переключателя.

Нужная чувствительность входов легко устанавливается при помощи дополнительных делителей на резисторах.

Благодаря этому к усилителю можно подключить кассетный или бобинный магнитофон, FM-тюнер, CD-плейер, DVD-плеер, телевизор, а также выход звуковой карты компьютера. При желании заднюю панель усилителя можно до отказа напичкать входными контактами с технической точки зрения препятствий этому нет. Руководствуясь чувством меры, которое никогда не повредит, ограничимся тремя стереовходами.

Вторым элементом усилителя является каскад регулировки громкости и тембра на интегральной микросхеме типа TDA1524, содержащий также регулировку баланса. Эта ИМС создает очень удобный режим регулировки, поскольку все регулировки осуществляются постоянными уровнями. Такое решение имеет два больших преимущества.

С одной стороны, сам каскад (микросхему) и потенциометры регулировки можно расположить практически на любом расстоянии друг от друга, поскольку по проводам связи протекает только постоянный ток. С другой стороны, этот способ обеспечивает также простое дистанционное управление усилителем.

На рис 1 оно соответствует каскаду с названием “ИК-приемник дистанционного управления изображенному пунктирными линиями. Оконечные каскады усилителя создаются двумя УМЗЧ на интегральной схеме типа TDA2030A с однополярным питанием. Блок питания обеспечивает УМЗЧ напряжением 30 В, а предварительные каскады стабилизированным напряжением 12 В.

Блок питания. Схема блока питания приведена на рис.2 Оконечные каскады питаются напряжением около 30 В и при полной мощности обоих каскадов потребляют ток 2,5 А. Потребление тока микросхемой TDA1524 составляет примерно 100 мА, но, с учетом дистанционного управления, нужно рассчитывать на 200 мА (с достаточным запасом).

Принимая во внимание КПД, нашим целям будет соответствовать сетевой трансформатор мощностью 85 ВА со вторичными обмотками 24 В/3,4 А и 14 В/0,3 А. Можно постараться подобрать подходящий промышленный или изготовить его своими силами.

Для этого в табл.1 приведены обмоточные данные для трех видов сердечников. Усилитель помещается в корпус сравнительно малого размера, поэтому важно иметь малое поле рассеивания сетевого трансформатора.

Добиться этого легче всего, если взять значение индукции сердечника немного меньшим допустимого в обычном “нормальном” случае. Моточные данные в таблице уже рассчитаны для такой индукции, составляющей 80% типовой. В силу увеличения числа витков обмотки они поместятся в окне сердечника только при тщательной намотке виток к витку. Изготовленный трансформатор непременно следует пропитать лаком. Пропитка служит не только для защиты обмоток, но одновременно уменьшает механический шум (гудение) трансформатора.

Выпрямительные мосты блока питания, конденсаторы и интегральная схема стабилизатора 12 В устанавливаются на односторонней печатной плате размерами 160×70 мм. Чертеж платы показан на рис.3, схема размещения деталей на ней на рис.4.

Конденсаторы С1 С5 используются 2200 мкФх35 В. В случае, если напряжение сети систематически превышает номинальное (220 В), лучше взять конденсаторы 2200 мкФх50В. Печатная плата разложена так, чтобы каждый из двух типов конденсаторов можно было припаять к плате.

Работа блока питания легко контролируется. С начала проверяем его на холостом ходу Выходные напряжения должны быть 12 В и примерно 35 В К клеммам “+30 В” и “Корпус” подсоединяем проволочный резистор (эквивалент нагрузки) сопротивлением около 30 Ом с допустимой мощностью как минимум 30 Вт. При этом выходное напряжение должно снизиться до 31 В. Выход 12 В нагружаем так, чтобы обеспечить ток около 200 мА. При нормальном функционировании напряжение по-прежнему должно быть 12 В.

Оконечный каскад. Оконечные каскады (УМЗЧ) нашего прибора изготовлены на интегральных схемах TDA2030A, которые в настоящее время широко распространены и весьма недороги ИМС содержит низкочастотный оконечный усилитель класса АВ с малыми искажениями, в котором имеется защита от короткого замыкания и перегрева.

Основные параметры интегральной схемы приведены в табл. 2.

Цоколевка ИМС, чертеж корпуса и его основные размеры приведены на рис.5.

Схема усилителя TDA2030

Схема оконечного каскада изображена на рис.6. Как видно из рисунка, ИМС работают от однополярного источника. Естественно, у этого режима есть как достоинства, так и недостатки. Достоинством является простота трансформатора блока питания. Другое преимущество состоит в наличии выходных конденсаторов (С7 и С14), через которые сигналы подаются на громкоговорители. Они защищают громкоговорители в случае неисправности оконечных каскадов.

При симметричном двухполярном питании УМЗЧ выходные конденсаторы отсутствуют, и броски напряжения питания в этом случае могут в течение нескольких секунд вывести из строя громкоговорители. Кроме того, переходные конденсаторы хорошего качества не пропускают на громкоговорители имеющееся в большинстве случаев на выходах УМЗЧ постоянное напряжение смещения (десятки милливольт).

В то же время, последовательно соединенный с выходом УМЗЧ конденсатор негативно влияет на воспроизведение низких частот (обрезает их), образуя с импедансом громкоговорителя фильтр высоких частот. Для предотвращения этого следует выбрать максимально возможную (в разумных пределах) емкость выходных конденсаторов.

Допустимое напряжение этого конденсатора не меньше полного напряжения питания. Напряжения смещения на входах УМЗЧ, необходимые при питании от одного источника, обеспечиваются резистивными делителями R1-R2 и R7-R8. Перед установкой их на плату целесообразно измерить сопротивления этих резисторов и взять одинаковые. В принципе, важны не абсолютные значения сопротивлений, а их одинаковость.

Конденсаторы С2 и С9 подавляют помехи в цепях смещения. Эти конденсаторы обязательно должны быть малошумящими в целях обеспечения желаемого отношения сигнал/шум. Входные импедансы УМЗЧ устанавливаются резисторами R3 и R9. Усиление интегральной схемы TDA2030A можно регулировать с помощью цепи обратной связи R4-C3-R5 (R10-C10-R11). В данном усилителе сопротивления R5 и R11 выбраны равными 20 кОм.

Тогда усиление по напряжению составляет 12 дБ. Максимальная выходная мощность (при данном коэффициенте гармоник и неизменном напряжении питания) определяется импедансом нагрузки (громкоговорителя). Чем меньше импеданс громкоговорителя, тем больше выходная мощность. Разумеется, это справедливо с определенными оговорками, ведь в случае очень малого импеданса возникает ограничение выходного тока за счет срабатывания защиты.

В нашем случае предлагается импеданс нагрузки 4 Ом. При использовании такого громкоговорителя получается максимальная выходная мощность. Естественно, можно подключать и громкоговоритель сопротивлением 8 Ом, если устраивает меньшая выходная мощность.

Оконечный каскад усилителя можно разместить на печатной плате размерами 60×103 мм (рис.7) Расположение деталей на плате показано на рис.8. Плата выполняется из двустороннего стеклотекстолита. Фольга на стороне деталей служит “корпусом”. Поскольку печатная плата изготавливается не фотохимическим способом (вручную), целесообразно перед травлением полностью покрыть эту сторону платы защитной краской, а затем после травления “прозенковать” отверстия незаземленных выводов сверлом диаметром 3 мм.

После травления обе стороны печатной платы залуживаются тонким равномерным слоем припоя. При монтаже ИМС устанавливаются на плату в последнюю очередь Вывод 3 (заземление) ИМС перед пайкой следует “горизонтально” согнуть маленькими плоскогубцами, чтобы припаять его к фольге без остаточного механического напряжения.

Этот вывод целесообразно припаять в первую очередь, а после него остальные На рис 8 значком “х” обозначены заземляемые выводы деталей. В точках подключения соединительных проводников на плате припаиваются монтажные лепестки или малогабаритные трубчатые заклепки. Интегральные схемы УМЗЧ обязательно нужно привинтить к радиатору достаточно большого размера, смазав силиконовой пастой, способствующей хорошей теплопроводности.

Звуковой усилитель на TDA 2030, TDA2040, TDA2050 – схема


Блок оконечных усилителей низкой частоты. УНЧ, часть 5.

Медленно, но верно, продвигаясь к окончанию постройки звукового усилителя, публикую очередную статью из цикла «Самодельный усилитель и колонки для компьютера, плеера или мобильного телефона».

В статье описана конструкция блока оконечного стерео усилителя низкой частоты мощностью 2х10 Ватт и даны некоторые советы по организации охлаждения микросхем.


Самые интересные ролики на Youtube


Другие статьи посвящённые постройке этого УНЧ.

Как рассчитать и намотать силовой низкочастотный трансформатор для блока питания УНЧ? FAQ.

Самодельный усилитель и колонки для компьютера, плеера или мобильного телефона из доступных деталей. УНЧ, часть 1.

Техническое задание и сборочный чертёж для самодельного усилителя. УНЧ, часть 2.

Блок питания для усилителя низкой частоты из доступных деталей. УНЧ, часть 3.

Блок электронной регулировки громкости, стереобазы и тембра. УНЧ, часть 4.

Простые технологии обработки пластмассы и металла. УНЧ, часть 6.

Финальная сборка, наладка и испытание. УНЧ, часть 7.


Выбор микросхемы для УНЧ.

Выбирая тип микросхемы для УНЧ, я просмотрел даташиты на несколько современных микросхем – усилителей мощности, но либо стоимость оказывалась внебюджетной, либо уровень искажений подозрительно высоким, либо питание однополярное.

Исходя из поговорки «Лучшее – враг хорошего», вернулся к старой проверенной линейке микросхем: TDA2030, TDA2040, TDA2050.

Микросхемы TDA2030A удалось купить на местном радиорынке всего по 0,38$.

Микросхема TDA2030A (К174УН19).

Микросхема TDA2030A представляет собой мощный операционный усилитель с низким уровнем гармонических искажений (THD Total Harmonic Distortion) менее 0,08%.

Микросхема имеет встроенную тепловую защиту, которая срабатывает при температуре кристалла 150ºС, и защиту от коротких замыканий, которая может защитить микросхему в течение 10 секунд при перегрузке.

Микросхему можно питать от двухполярного источника питания, что не создаёт дополнительных трудностей с пульсацией напряжения питания и щелчками при включении.

Советский аналог этой микросхемы К174УН19.


Предельные эксплутационные данные.

Напряжение питания – ±6… ±22 В*,

Максимальное входное напряжение – ±15 В,

Максимальные выходной ток – 3,5 А,

Максимальная температура кристалла – 150ºС,

Максимальная мощность, рассеиваемая микросхемой, при температуре корпуса ≤ 90ºС – 20 Вт.

——————————

* Предельное допустимое напряжение для К174УН19 — ±6… ±18 В


Электрическая схема включения микросхемы TDA2030.

Оконечные усилители собраны по типовой схеме. На чертеже изображён один из каналов оконечного усилителя.

C1, C8 – 100mkF

C2, C4, C7 – 0,22mkF

C3 – 1mkF

C5 – 47mkF

C6* – 15… 82pF

R1, R5 – 22k

R2 – 1Ω

R3 – 1k

R6 – 680R

R7* – 2k

FU1, FU2 – 1A

VD1, VD2 – КД208

Назначение элементов схемы.

С3 – разделительный. R5, R6, C5 – цепь отрицательной обратной связи по переменному току, которая определяет коэффициент усиления, где R5 и R6 делитель напряжения, а C5 – разделительный. Уменьшение номинала R6 увеличивает коэффициент усиления, а увеличение наоборот.

VD1, VD2 – защищают выходной каскад от пробоя при работе на индуктивную нагрузку.

C1, C2, C7, C8 – блокировочные.

R2, C4 – цепь, предотвращающая самовозбуждение.

R7*, C6* – эта цепочка устанавливается в случае самовозбуждения (опционально).

R3 – балластный резистор, ограничивающий мощность подводимую у телефонам (наушникам).

FU1, FU2 – предохранители, защищающие блок питания от перегрузки при замыкании в цепи нагрузки или выходе микросхемы из строя.


Печатная плата.

Печатная Плата (ПП) спроектирована исходя из имеющихся радиоэлементов и корпуса.

Рациональнее было бы разместить блок питания и оконечные усилители на одной печатной плате, но сделать это не позволила конструкция корпуса, а именно то обстоятельство, что большую часть корпуса занял силовой трансформатор.


Для увеличения сечения дорожек и уменьшения расхода хлорного железа, площадь дорожек была увеличена с использованием инструмента «Полигон».


На картинке фрагмент печатной платы, выполненной из стеклотекстолита сечением 1мм, по описанной здесь технологии.

Для повышения надёжности и ремонтопригодности, в отверстиях, предназначенных для установки плавких вставок, развальцованы медные пустотелые заклёпки (пистоны) поз.1.

Для соединения с другими блоками усилителя, в соответствующие отверстия платы заклёпаны медные штырьки поз.2.


This movie requires Flash Player 9

На интерактивной картинке видно, как собиралась эта печатная плата. Добавил этот ролик, так как, как раз во время сборки экспериментировал с цейтраферной съёмкой. Чтобы «управлять» картинкой, потяните изображение мышкой.


В качестве предохранителей я использовал отрезки отдельных жил провода МГТФ (провод во фторопластовой изоляции) диаметром 0,07мм. Такие импровизированные плавкие вставки заменяют предохранители номиналом около 1-го Ампера.


При установке микросхемы TDA2030 на радиатор, нужно иметь в виду, что корпус этого чипа соединён с минусом источника питания. Если на один радиатор устанавливаются сразу две микросхемы, то нужно предусмотреть и установку изоляционных прокладок. Последние можно выполнить из любого материала обеспечивающего зазор в 0,03… 0,05мм между сопрягаемыми поверхностями. Например, можно использовать марлю, бинт или канву, пропитанную термопроводящей пастой КПТ-8.


Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика).


На этой картинке изображен разрез соединения микросхемы с радиатором охлаждения.

  1. Винт М2,5.
  2. Шайба стальная М2,5.
  3. Шайба изоляционная М2,5.
  4. Корпус микросхемы.
  5. Прокладка – отрезок трубки (кембрика).
  6. Прокладка – х/б канва, пропитанная пастой КПТ-8.
  7. Радиатор охлаждения.

Несколько советов по выбору радиатора охлаждения.

Расчёт радиатора пассивного охлаждения сопряжён со сложными вычислениями и измерениями. Результаты зависят от множества переменных, а значения некоторых из них радиолюбителю могут быть неизвестны.

Однако есть несколько простых правил, которые позволяют обеспечить надёжное охлаждение любых компонентов электронной аппаратуры.


  1. Нужно обеспечить хороший контакт полупроводникового элемента с радиатором. Для этого желательно хорошо выровнять контактируемую поверхность радиатора и применить теплопроводную пасту КПТ-8 или любую другую. Когда нет ничего подходящего, можно использовать силиконовую смазку.
  2. При использовании изоляционных прокладок между микросхемой и радиатором, использование теплопроводной пасты обязательно.
  3. Лучше всего выбирать радиаторы чёрного цвета с матовой поверхностью.
  4. Снижение температуры на 10ºС увеличивает ресурс микросхемы вдвое.
  5. Не стоит поднимать температуру радиатора выше 60… 65ºС, а температуру корпуса микросхемы выше 80… 85ºС.

Ориентировочно, необходимую площадь радиатора можно определить при помощи калькулятора, скачав последний из «Дополнительных материалов» к этой статье. Для данного УНЧ, необходимая площадь радиатора – 310см² и более.


Испытание блока оконечного усилителя.

Это схема подключения оконечного УНЧ при тестировании. Проверять каналы УНЧ лучше по-очереди. Коммутировать питание можно установкой или удалением соответствующих предохранителей.

Нагрузкой могут служить 10-ти Ваттные резисторы типа ПЭВ сопротивлением 4Ω.

Вначале нужно подать питание на микросхему и убедиться в том, что она не греется. Если микросхема греется из-за возбуждения на ультразвуковых частотах, то нужно установить цепочку C6*, R7*.

Возбуждаться микросхема может так же, если между блокировочными ёмкостями и микросхемой слишком длинные дорожки ПП или проводники.

Затем, подав на микросхему сигнал и доведя его уровень до ограничения на выходе, нужно проследить за динамикой повышения температуры. Если температура радиатора не превышает 60… 65ºС, а температура корпуса микросхемы – 80… 85ºС, то можно считать, что тепловой режим в норме.

Если на радиаторе установлены сразу две микросхемы, то после того, как каждая из них будет проверена, нужно включить обе микросхемы и снова проверить тепловой режим при максимальной выходной мощности усилителя.

Дополнительные материалы к статье.

Скачать чертёж печатной платы в формате LAY (58КБ).

Скачать калькулятор приблизительного расчёта площади радиатора охлаждения микросхем в формате EXL (3КБ).

Портативная программа Sprint Layout 6.0 для рисования, редактирования и вывода на печать печатных плат. Интерфейс русский. (4,4МБ).

Даташит на микросхему TDA2030


7 Январь, 2011 (23:39) в Аудиотехника, Сделай сам

Усилитель звука на микросхеме TDA2030A своими руками

На чтение 2 мин.


Понадобится для сборки

  • Микросхема TDA2030A.
  • Конденсаторы 0,1 мкФ — 3 штуки.
  • Конденсаторы 2200 мкФ 25 В — 2 штуки.
  • Резистор 2.2 Ом.
  • Резисторы 22 кОм — 2 штуки.
  • Резистор 680ом.
  • Конденсатор 22 мкФ 25 В.
  • Конденсатор 4,7 мкФ пленочный.
  • Корпус, выключатель, провода, радиатор, разъемы для тюльпанов.


Сборка простого усилителя на TDA2030

Моя цель была создать усилитель, не тратя на него больших денег. Все детали кроме корпуса я нашел в различных старых платах, не нужных естественно.

Собирать усилитель на TDA2030 можно разными методами и решениями, в данном случае я буду использовать навесной монтаж. Так как множество выводов соединены с землей, я рекомендую сделать разветвляющийся провод.

Далее приступаем к пайке соединений.

Отсчет выводов микросхемы ведется слева на право, при этом маркировка и выводы направленные на вас.

После того, как вы собрали схему — проверяем ее. Подключим динамик и на небольшой громкости проверим усилитель.

Если все работает, приступаем к следующему этапу.

У меня имелся готовый корпус. Радиатор лучше вывести наружу для более лучшего охлаждения его поверхности. Иначе в корпусе может случиться перегрев.

Прикрепите радиатор, разъемы, выведите провода питания, установите на — питания выключатель.

Усилитель имеет следующие характеристики:

  • Напряжения питания — от ±4.5 до ±25 В.
  • Выходная мощность — 18 Вт.
  • Номинальный частотный диапазон — 20-80.000 Гц.

Почти все подобные микросхемы очень сильно греются и поэтому без радиатора долго не проработают.

Окончательный вид:

Это поистине невероятной простоты схема, которую под силу собрать даже начинающим радиолюбителям. При всем при этом обладает достойными характеристиками для своего минимального размера.

Собирайте свой усилитель и будет вас счастье друзья.

Возможности TDA2030 « схемопедия


Микросхема усилителя НЧ TDA2030A фирмы ST Microelectronics пользуется заслуженной популярностью среди радиолюбителей. Она обладает высокими электрическими характеристиками и низкой стоимостью, что позволяет при минимальных затратах собирать на ней высококачественные УНЧ мощностью до 18 Вт. Однако не все знают о ее «скрытых достоинствах»: оказывается, на этой ИМС можно собрать ряд других полезных устройств. Микросхема TDA2030A представляет собой 18 Вт Hi-Fi усилитель мощности класса АВ или драйвер для УНЧ мощностью до 35 Вт (с мощными внешними транзисторами). Она обеспечивает большой выходной ток, имеет малые гармонические и интермодуляционные искажения, широкую полосу частот усиливаемого сигнала, очень малый уровень собственных шумов, встроенную защиту от короткого замыкания выхода, автоматическую систему ограничения рассеиваемой мощности, удерживающую рабочую точку выходных транзисторов ИМС в безопасной области. Встроенная термозащита обеспечивает выключение ИМС при нагреве кристалла выше 145°С. Микросхема выполнена в корпусе Pentawatt и имеет 5 выводов. Вначале вкратце рассмотрим несколько схем стандартного применения ИМС – усилителей НЧ. Типовая схема включения TDA2030A показана на рис.1.

Микросхема включена по схеме неинвертирующего усилителя. Коэффициент усиления определяется соотношением сопротивлений резисторов R2 и R3, образующих цепь ООС. Вычисляется он по формуле Gv=1+R3/R2 и может быть легко изменен подбором сопротивления одного из резисторов. Обычно это делают с помощью резистора R2. Как видно из формулы, уменьшение сопротивления этого резистора вызовет увеличение коэффициента усиления (чувствительности) УНЧ. Емкость конденсатора С2 выбирают исходя из того, чтобы его емкостное сопротивление Хс=1 /2?fС на низшей рабочей частоте было меньше R2 по крайней мере в 5 раз. В данном случае на частоте 40 Гц Хс2=1/6,28*40*47*10-6=85 Ом. Входное сопротивление определяется резистором R1. В качестве VD1, VD2 можно применить любые кремниевые диоды с током IПР0,5… 1 А и UОБР более 100 В, например КД209, КД226, 1N4007. Схема включения ИМС в случае использования однополярного источника питания показана на рис.2.

Делитель R1R2 и резистор R3 образуют цепь смещения для получения на выходе ИМС (вывод 4) напряжения, равного половине питающего. Это необходимо для симметричного усиления обеих полуволн входного сигнала. Параметры этой схемы при Vs=+36 В соответствуют параметрам схемы, показанной на рис.1, при питании от источника ±18 В. Пример использования микросхемы в качестве драйвера для УНЧ с мощными внешними транзисторами показан на рис.3.

При Vs=±18 В на нагрузке 4 Ом усилитель развивает мощность 35 Вт. В цепи питания ИМС включены резисторы R3 и R4, падение напряжения на которых является открывающим для транзисторов VT1 и VT2 соответственно. При малой выходной мощности (входном напряжении) ток, потребляемый ИМС, невелик, и падения напряжения на резисторах R3 и R4 недостаточно для открывания транзисторов VT1 и VT2. Работают внутренние транзисторы микросхемы. По мере роста входного напряжения увеличивается выходная мощность и потребляемый ИМС ток. При достижении им величины 0,3…0,4 А падение напряжения на резисторах R3 и R4 составит 0,45…0,6 В. Начнут открываться транзисторы VT1 и VT2, при этом они окажутся включенными параллельно внутренним транзисторам ИМС. Возрастет ток, отдаваемый в нагрузку, и соответственно увеличится выходная мощность. В качестве VT1 и VT2 можно применить любую пару комплементарных транзисторов соответствующей мощности, например КТ818, КТ819. Мостовая схема включения ИМС показана на рис.4.

Сигнал с выхода ИМС DA1 подается через делитель R6R8 на инвертирующий вход DA2, что обеспечивает работу микросхем в противофазе. При этом возрастает напряжение на нагрузке, и, как следствие, увеличивается выходная мощность. При Vs=±16 В на нагрузке 4 Ом выходная мощность достигает 32 Вт. Для любителей двух-, трехполосных УНЧ данная ИМС – идеальный вариант, ведь непосредственно на ней можно собирать активные ФНЧ и ФВЧ. Схема трехполосного УНЧ показана на рис.5.

Низкочастотный канал (НЧ) выполнен по схеме с мощными выходными транзисторами. На входе ИМС DA1 включен ФНЧ R3C4, R4C5, причем первое звено ФНЧ R3C4 включено в цепь ООС усилителя. Такое схемное решение позволяет простыми средствами (без увеличения числа звеньев) получать достаточно высокую крутизну спада АЧХ фильтра. Среднечастотный (СЧ) и высокочастотный (ВЧ) каналы усилителя собраны по типовой схеме на ИМС DA2 и DA3 соответственно. На входе СЧ канала включены ФВЧ C12R13, C13R14 и ФНЧ R11C14, R12C15, которые вместе обеспечивают полосу пропускания 300…5000 Гц. Фильтр ВЧ канала собран на элементах C20R19, C21R20. Частоту среза каждого звена ФНЧ или ФВЧ можно вычислить по формуле fСР=160/RC, где частота f выражена в герцах, R – в килоомах, С – в микрофарадах. Приведенные примеры не исчерпывают возможностей применения ИMC TDA2030A в качестве усилителей НЧ. Так, например, вместо двухполярного питания микросхемы (рис.3,4) можно использовать однополярное питание. Для этого минус источника питания следует заземлить, на неинвертирующий (вывод 1) вход подать смещение, как показано на рис.2 (элементы R1-R3 и С2). Наконец, на выходе ИМС между выводом 4 и нагрузкой необходимо включить электролитический конденсатор, а блокировочные конденсаторы по цепи -Vs из схемы исключить.

Рассмотрим другие возможные варианты использования этой микросхемы. ИМС TDA2030A представляет собой не что иное, как операционный усилитель с мощным выходным каскадом и весьма неплохими характеристиками. Основываясь на этом, были спроектированы и опробованы несколько схем нестандартного ее включения. Часть схем была опробована «в живую», на макетной плате, часть – смоделирована в программе Electronic Workbench. Мощный повторитель сигнала.

Сигнал на выходе устройства рис.6 повторяет по форме и амплитуде входной, но имеет большую мощность, т.е. схема может работать на низкоомную нагрузку. Повторитель может быть использован, например, для умощнения источников питания, увеличения выходной мощности низкочастотных генераторов (чтобы можно было непосредственно испытывать головки громкоговорителей или акустические системы). Полоса рабочих частот повторителя линейна от постоянного тока до 0,5… 1 МГц, что более чем достаточно для генератора НЧ.

Умощнение источников питания.

Микросхема включена как повторитель сигнала, выходное напряжение (вывод 4) равно входному (вывод 1), а выходной ток может достигать значения 3,5 А. Благодаря встроенной защите схема не боится коротких замыканий в нагрузке. Стабильность выходного напряжения определяется стабильностью опорного, т.е. стабилитрона VD1 рис.7 и интегрального стабилизатора DA1 рис.8. Естественно, по схемам, показанным на рис.7 и рис.8, можно собрать стабилизаторы и на другое напряжение, нужно лишь учитывать, что суммарная (полная) мощность, рассеиваемая микросхемой, не должна превышать 20 Вт. Например, нужно построить стабилизатор на 12 В и ток 3 А. В наличии есть готовый источник питания (трансформатор, выпрямитель и фильтрующий конденсатор), который выдает UИП= 22 В при необходимом токе нагрузки. Тогда на микросхеме происходит падение напряжения UИМС= UИП – UВЫХ = 22 В -12 В = 10В, и при токе нагрузки 3 А рассеиваемая мощность достигнет величины РРАС= UИМС*IН = 10В*3А = 30 Вт, что превышает максимально допустимое значение для TDA2030A. Максимально допустимое падение напряжения на ИМС может быть рассчитано по формуле:

UИМС= РРАС. МАХ / IН. В нашем примере UИМС= 20 Вт / 3 А = 6,6 В, следовательно максимальное напряжение выпрямителя должно составлять UИП = UВЫХ+UИМС = 12В + 6,6 В =18,6 В. В трансформаторе количество витков вторичной обмотки придется уменьшить. Сопротивление балластного резистора R1 в схеме, показанной на рис.7, можно посчитать по формуле:

R1 = ( UИП – UСТ)/IСТ, где UСТ и IСТ – соответственно напряжение и ток стабилизации стабилитрона. Пределы тока стабилизации можно узнать из справочника, на практике для маломощных стабилитронов его выбирают в пределах 7…15 мА (обычно 10 мА). Если ток в вышеприведенной формуле выразить в миллиамперах, то величину сопротивления получим в килоомах.

Простой лабораторный блок питания.

Электрическая схема блока питания показана на рис.9. Изменяя напряжение на входе ИМС с помощью потенциометра R1, получают плавно регулируемое выходное напряжение. Максимальный ток, отдаваемый микросхемой, зависит от выходного напряжения и ограничен все той же максимальной рассеиваемой мощностью на ИМС. Рассчитать его можно по формуле:

IМАХ = РРАС.МАХ / UИМС

Например, если на выходе выставлено напряжение UВЫХ = 6 В, на микросхеме происходит падение напряжения UИМС = UИП – UВЫХ = 36 В – 6 В = 30 В, следовательно, максимальный ток составит IМАХ = 20 Вт / 30 В = 0,66 А. При UВЫХ = 30 В максимальный ток может достигать максимума в 3,5 А, так как падение напряжения на ИМС незначительно (6 В).

Стабилизированный лабораторный блок питания.

Электрическая схема блока питания показана на рис.10. Источник стабилизированного опорного напряжения – микросхема DA1 – питается от параметрического стабилизатора на 15 В, собранного на стабилитроне VD1 и резисторе R1. Если ИМС DA1 питать непосредственно от источника +36 В, она может выйти из строя (максимальное входное напряжение для ИМС 7805 составляет 35 В). ИМС DA2 включена по схеме неинвертирующего усилителя, коэффициент усиления которого определяется как 1+R4/R2 и равен 6. Следовательно, выходное напряжение при регулировке потенциометром R3 может принимать значение практически от нуля до 5 В * 6=30 В. Что касается максимального выходного тока, для этой схемы справедливо все вышесказанное для простого лабораторного блока питания (рис.9). Если предполагается меньшее регулируемое выходное напряжение (например, от 0 до 20 В при UИП = 24 В), элементы VD1, С1 из схемы можно исключить, а вместо R1 установить перемычку. При необходимости максимальное выходное напряжение можно изменить подбором сопротивления резистора R2 или R4.

Регулируемый источник тока.

Электрическая схема стабилизатора показана на рис.11. На инвертирующем входе ИМС DA2 (вывод 2), благодаря наличию ООС через сопротивление нагрузки, поддерживается напряжение UBX. Под действием этого напряжения через нагрузку протекает ток IН = UBX / R4. Как видно из формулы, ток нагрузки не зависит от сопротивления нагрузки (разумеется, до определенных пределов, обусловленных конечным напряжением питания ИМС). Следовательно, изменяя UBX от нуля до 5 В с помощью потенциометра R1, при фиксированном значении сопротивления R4=10 Ом, можно регулировать ток через нагрузку в пределах 0…0,5 А. Данное устройство может быть использовано для зарядки аккумуляторов и гальванических элементов. Зарядный ток стабилен на протяжении всего цикла зарядки и не зависит от степени разряженности аккумулятора или от нестабильности питающей сети. Максимальный зарядный ток, выставляемый с помощью потенциометра R1, можно изменить, увеличивая или уменьшая сопротивление резистора R4. Например, при R4=20 Ом он имеет значение 250 мА, а при R4=2 Ом достигает 2,5 А (см. формулу выше). Для данной схемы справедливы ограничения по максимальному выходному току, как для схем стабилизаторов напряжения. Еще одно применение мощного стабилизатора тока – измерение малых сопротивлений с помощью вольтметра по линейной шкале. Действительно, если выставить значение тока, например, 1 А, то, подключив к схеме резистор сопротивлением 3 Ом, по закону Ома получим падение напряжения на нем U=l*R=l А*3 Ом=3 В, а подключив, скажем, резистор сопротивлением 7,5 Ом, получим падение напряжения 7,5 В. Конечно, на таком токе можно измерять только мощные низкоомные резисторы (3 В на 1 А – это 3 Вт, 7,5 В*1 А=7,5 Вт), однако можно уменьшить измеряемый ток и использовать вольтметр с меньшим пределом измерения.

Мощный генератор прямоугольных импульсов.

Схемы мощного генератора прямоугольных импульсов показаны на рис.12 (с двухполярным питанием) и рис.13 (с однополярным питанием). Схемы могут быть использованы, например, в устройствах охранной сигнализации. Микросхема включена как триггер Шмитта, а вся схема представляет собой классический релаксационный RC-генератор. Рассмотрим работу схемы, показанной на рис. 12. Допустим, в момент включения питания выходной сигнал ИМС переходит на уровень положительного насыщения (UВЫХ = +UИП). Конденсатор С1 начинает заряжаться через резистор R3 с постоянной времени Cl R3. Когда напряжение на С1 достигнет половины напряжения положительного источника питания (+UИП/2), ИМС DA1 переключится в состояние отрицательного насыщения (UВЫХ = -UИП). Конденсатор С1 начнет разряжаться через резистор R3 с той же постоянной времени Cl R3 до напряжения (-UИП / 2), когда ИМС снова переключится в состояние положительного насыщения. Цикл будет повторяться с периодом 2,2C1R3, независимо от напряжения источника питания. Частоту следования импульсов можно посчитать по формуле:

f=l/2,2*R3Cl. Если сопротивление выразить в килоомах, а емкость в микрофарадах, то частоту получим в килогерцах.

Мощный низкочастотный генератор синусоидальных колебаний.

Электрическая схема мощного низкочастотного генератора синусоидальных колебаний показана на рис.14. Генератор собран по схеме моста Вина, образованного элементами DA1 и С1, R2, С2, R4, обеспечивающими необходимый фазовый сдвиг в цепи ПОС. Коэффициент усиления по напряжению ИМС при одинаковых значениях Cl, C2 и R2, R4 должен быть точно равен 3. При меньшем значении Ку колебания затухают, при большем – резко возрастают искажения выходного сигнала. Коэффициент усиления по напряжению определяется сопротивлением нитей накала ламп ELI, EL2 и резисторов Rl, R3 и равен Ky = R3 / Rl + REL1,2. Лампы ELI, EL2 работают в качестве элементов с переменным сопротивлением в цепи ООС. При увеличении выходного напряжения сопротивление нитей накала ламп за счет нагревания увеличивается, что вызывает уменьшение коэффициента усиления DA1. Таким образом, стабилизируется амплитуда выходного сигнала генератора, и сводятся к минимуму искажения формы синусоидального сигнала. Минимума искажений при максимально возможной амплитуде выходного сигнала добиваются с помощью подстроечного резистора R1. Для исключения влияния нагрузки на частоту и амплитуду выходного сигнала на выходе генератора включена цепь R5C3, Частота генерируемых колебаний может быть определена по формуле:

f=1/2piRC. Генератор может быть использован, например, при ремонте и проверке головок громкоговорителей или акустических систем.

В заключение необходимо отметить, что микросхему нужно установить на радиатор с площадью охлаждаемой поверхности не менее 200 см2. При разводке проводников печатной платы для усилителей НЧ необходимо проследить, чтобы «земляные» шины для входного сигнала, а также источника питания и выходного сигнала подводились с разных сторон (проводники к этим клеммам не должны быть продолжением друг друга, а соединяться вместе в виде «звезды»). Это необходимо для минимизации фона переменного тока и устранения возможного самовозбуждения усилителя при выходной мощности, близкой к максимальной.

По материалам журнала «Радіоаматор»

TDA2030A схема усилителя – FROLOV TECHNOLOGY

Приведённая на рисунке TDA2030A схема усилителя мощности, с давних пор, пользуется большой популярностью у людей занимающихся построением звуковой аппаратуры. Обладая небольшими габаритами и отличными HI-FI характеристиками, микросхема способна работать с нагрузкой сопротивлением от 4 до 8 Ом, и обеспечить мощность выходного сигнала до 18 Ватт. Питание усилителя может быть однополярным, но в этом случае, при включении, происходит громкий щелчок в акустической системе из-за переходных процессов, такой вариант мы рассматривать не будем. Схема имеющая двухполярное питание, лишена этого недостатка, запуск усилителя на TDA2030A происходит абсолютно бесшумно и не требует развязки выходных цепей с помощью разделительного конденсатора большой ёмкости.

Принципиальная схема :

В этой схеме усилителя на TDA2030A, могут применяться металлоплёночные резисторы мощностью от 0,125 до 0,25 Ватт, кроме резистора R4, который имеет мощность рассеивания 2 Ватта. Конденсаторы устанавливаются любые, с граничным напряжением не менее 25 Вольт, С1 и С2 желательно брать высококачественные, для наилучшего звучания. Защитные диоды VD1, VD2 — любые кремневые с прямым током 0,5-1 Ампер, например — 1N4005 или КД226. Коэффициент усиления схемы на TDA2030A можно менять в небольших пределах, с помощью подбора сопротивления резистора R2, чем меньше его номинал — тем больше коэффициент усиления, но увлекаться этим не стоит, с ростом усиления, значительно увеличиваются собственные шумы и возрастают искажения выходного сигнала.

Обратите внимание, на схеме выше, указано максимальное напряжение питания усилителя TDA2030A ± 22 Вольта, питать устройство таким напряжением можно только в случае применения стабилизированного источника. Если схема будет работать от простого, двухполярного блока, то напряжение должно быть в пределах ± 18 Вольт, для предотвращения пробоя TDA2030A даже при кратковременных повышениях сетевого напряжения. Радиатор охлаждения усилителя можно использовать с минимальной площадью от 200 квадратных сантиметров, или использовать готовую систему охлаждения процессора от старого компьютера. Качество звука данной схемы очень хорошее, при условии использования высококачественной акустической системы и желательно цифрового источника сигнала. Успехов Вам !

Мини стерео усилитель 15 ватт на микросхеме TDA2030

Этот компактный мини стерео усилитель построен на основе двух микросхем TDA2030. При добавлении к данной схеме любого предусилителя и источника питания, можно получить идеальный усилитель для дома.

Описание конструкции мини стерео усилителя на 15 ватт

Схема построена по типовой модели, содержащейся в datasheet на TDA2030. Подходит для подключения выходных громкоговорителей с сопротивлением 8 Ом или 4 Ом. Преимущество описанной конструкции является то, что она не требует симметричной связи, как у большинства стерео усилителей. Устройство характеризуется хорошими параметрами, простотой и надежной эксплуатацией.

Резисторы R 1a (100k), 2а (100k) и 3a (100k) служат для поляризации начальной стадии работы, конденсатор С2а (22uF) — поляризационный фильтр. Емкость C1a (1uF) предотвращает поступление напряжения постоянного тока к усилителю и наружнему оборудованию.

Элементы 4а (4.7k), 5а (150k) и С3а (2.2uF) работают в отрицательной обратной связи и предназначены для формирования спектральных характеристик. Резистор 6а (1R) с конденсатором C5a (100 нФ) работают в системе, которая формирует выходные характеристики. Конденсатор C6a (1000мкФ) предотвращает протекание постоянного тока через динамик.

Диоды D1a (1N4007) и D2a (1N4007) предназначены, чтобы предотвратить появление серьезной напряженности, которая может возникнуть в катушке громкоговорителя. Емкости C7a (100мкФ) и C8a (100nF) — фильтр напряжения.

Второй канал имеет тот же дизайн и работу и ее элементы обозначены буквой «б».

Сборка усилителя совсем не сложная. Ниже в архиве имеется печатная плата к данной схеме. Если в устройстве используются динамики не на 8 Ом, а на 4 Ом, то емкости C6 должны иметь значение 2200 мкф. Обе микросхемы TDA2030 должна быть установлены на радиаторы. Питается схема от нерегулируемого постоянного источника питания в диапазоне около 12 — 30 В.

Следующая статья описывает схему мощного стереоусилителя построенного на микросхеме TDA7297.

Скачать рисунок печатной платы усилителя (72,7 KiB, скачано: 825)

Источник: www.mirley.firlej.org

TDA2030 — — RadioLibrary

. TDA2030. 24.

.1. TDA2030

.2. TDA2030

.3. TDA2030

.4. TDA2030

.5. TDA2030

24. ,. .

TDA2030

C1 1
C2 22
C3, C4 0,1
C5, C6 100
C7 0,22
C8 1 / (2π * F * R1)
R1 22
R2 680
R3 22
R4 1
R5 3 * R2

TDA2030,. ,. .

, 150, . TDA2030. ,.

TDA2030. .

TDA2030 TDA2006.

Принципиальная схема усилителя сабвуфера с использованием IC TDA2030

Если сабвуфер в вашей музыкальной системе не воспроизводит достаточно низких частот, вы можете использовать эту простую самодельную схему для усиления низких частот.В этом проекте мы собираемся разработать схему усилителя сабвуфера с использованием микросхемы TDA2030 и нескольких дешевых компонентов. Усилитель TDA2030 может выдавать выходную мощность 14 Вт, и ее можно увеличить до 30 Вт, используя другой TDA2030. Также проверьте наши предыдущие схемы аудиоусилителей:

Необходимые компоненты:

  1. Штырь аудиоразъема — 1
  2. TDA2030 IC — 1
  3. Резисторы — 100 кОм (3), 4,7 кОм (1), 10 Ом (1)
  4. Конденсатор — 100 мФ (1), 0. 1 мф (2), 2,2 мс (2), 22 мс (1)
  5. Диод — In4007 (1)
  6. Динамик (1)
  7. Аккумулятор — 12 В (я использовал SMPS)
  8. Переменный резистор 22 кОм-1 (для регулировки громкости при необходимости)

Характеристики и контакты усилителя TDA2030:

TDA2030 может работать в диапазоне напряжений от 9 В до 24 В с полным гармоническим искажением 0,08. Он способен обеспечивать выходную мощность 18 Вт. Ниже представлены вид сверху и схема контактов TDA2030 из его таблицы данных:

Принципиальная схема

и ее работа:

Выше представлена ​​принципиальная схема усилителя на базе TDA2030. Мы подключили конденсатор 2,2 мкФ последовательно к неинвертирующему выводу TDA2030, здесь он действует как фильтр верхних частот . Так что он разрешает только высокочастотный звуковой сигнал. Между контактами 2 и 4 есть резистор (R4), который мы назвали резистором обратной связи . Этот резистор обратной связи используется для получения коэффициента усиления. Если резистор обратной связи неправильный, усилитель сабвуфера не будет работать должным образом.

На принципиальной схеме резистор (R1) и конденсатор (C2) соединены последовательно с контактом 2 TDA 2030 для подавления шумов в аудиосигнале.Контакт 3 заземлен, то есть подключен к отрицательной клемме источника питания. Выход TDA2030 подключен к последовательному конденсатору емкостью 2200 мкФ, чтобы обеспечить усиленный сигнал на динамик. Вывод 5 имеет резистор 100 кОм, который функционирует как смещение делителя напряжения. Эта схема сабвуфера обеспечивает выходную мощность 12 Вт. Мы можем использовать динамик от 4 до 6 Ом. Будет лучше, если мы будем использовать радиатор, чтобы убрать высокую температуру в TDA 2030. При необходимости вы также можете добавить охлаждающий вентилятор для лучшей работы.

Для регулировки громкости мы используем переменный резистор на 22 кОм. Подключите провод аудиосигнала к любому концу переменного резистора, а центральный контакт подключите к входному сигналу C1 конденсатора. И подключите землю к другому концу переменного резистора. Изменяя переменный резистор, мы можем изменить громкость сабвуфера td2030. Диод IN4007 используется для предотвращения смены полярности ИС, чтобы избежать возгорания, а два конденсатора C7 и C6 используются для устранения шумов, присутствующих в источнике питания.Резисторы R6 и C5 также помогают избежать нежелательных шумов в динамике (размытие звуков). Я использовал 12v smps в качестве источника питания для всей схемы.

Для подключения аудиоразъема 3,5 мм , припаяйте один провод к заземляющему контакту стереоразъема и один провод к левому или правому контакту. На рисунке ниже синий провод — это земля, а желтый провод — звуковой сигнал. Затем подключите аудиоразъем к мобильному устройству или ноутбуку, чтобы наслаждаться музыкой.

Вот как мы можем легко построить схему усилителя сабвуфера , используя TDA2030 . Ниже приведена демонстрация Video для этой схемы усилителя.

TDA2030A (STMicroelectronics) — усилитель Hi-Fi 18 Вт и драйвер 35 Вт

TDA2030A

УСИЛИТЕЛЬ Hi-Fi 18 Вт И ДРАЙВЕР 35 Вт

Март 1995

PENTAWATT

НОМЕРА ДЛЯ ЗАКАЗА: TDA2030AH

TDA2030AV

ОПИСАНИЕ

TDA2030A — это монолитная ИС в Пентаватте

Корпус

предназначен для использования в качестве усилителя низких частот класса
AB.

с V

S макс.

= 44В особенно подходит для более

надежных приложений без регулируемого источника питания и
для схем драйверов мощностью 35 Вт с использованием недорогих дополнительных компонентов —
парных пар.
TDA2030A обеспечивает высокий выходной ток, а
имеет очень низкие гармонические и перекрестные искажения.
Кроме того, устройство включает в себя систему защиты от короткого замыкания
, содержащую устройство для
, автоматически ограничивающее рассеиваемую мощность, чтобы
удерживал рабочую точку выходных транзисторов
в пределах их безопасной рабочей зоны. Также имеется обычная система теплового отключения
.

ТИПОВОЕ ПРИМЕНЕНИЕ

1/15

ИСПЫТАТЕЛЬНАЯ ЦЕПЬ

КОНТАКТНОЕ СОЕДИНЕНИЕ (вид сверху)

ТЕПЛОВЫЕ ХАРАКТЕРИСТИКИ

Символ

Параметр

Значение

Блок

R

-е (j-кейс)

Терморезистивный распределительный шкаф

Макс

3

с / ш

TDA2030A

15/2

АБСОЛЮТНЫЕ МАКСИМАЛЬНЫЕ РЕЙТИНГИ

Символ

Параметр

Значение

Блок

В

с

Напряжение питания

22

В

В

и

Входное напряжение

В

с

В

и

Дифференциальное входное напряжение

15

В

Я

или

Пиковый выходной ток (внутреннее ограничение)

3. 5

А

Суммарное рассеивание мощности при Т

футляр

= 90

С

20

Вт

т

stg

, Т

Дж

Температура хранения и перехода

40 до + 150

С

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

(См. Испытательную схему, В

S

=

16В, Т

окр.

= 25

или

C, если не указано иное)

Символ

Параметр

Условия испытаний

Мин.

Тип.

Макс.

Блок

В

с

Напряжение питания

6

22

В

Я

д

Ток утечки в покое

50

80

мА

Я

б

Входной ток смещения

В

S

=

22 В

0,2

2

А

В

ос

Входное напряжение смещения

В

S

=

22 В

2

20

мВ

Я

ос

Входной ток смещения

20

200

нА

О

Выходная мощность

д = 0. 5%, G

v

= 26 дБ

f = от 40 до 15000 Гц

R

л

= 4

R

л

= 8

В

S

=

19В

R

л

= 8

15
10
13

18
12
16

Вт

BW

Полоса пропускания мощности

или

= 15 Вт

R

л

= 4

100

кГц

SR

Скорость нарастания

8

В /

сек

G

v

Усиление напряжения разомкнутого контура

f = 1 кГц

80

дБ

G

v

Коэффициент усиления напряжения замкнутого контура

f = 1 кГц

25.5

26

26,5

дБ

д

Общее гармоническое искажение

или

= от 0,1 до 14 Вт

R

л

= 4

f = от 40 до 15 000 Гц

f = 1 кГц

или

= от 0,1 до 9 Вт, f = от 40 до 15 000 Гц

R

л

= 8

0,08
0,03

0,5

%
%

%

д

2

Интермодуляция CCIF второго порядка
Искажения

О

= 4W, f

2

f

1

= 1 кГц,

R

л

= 4

0. 03

%

д

3

Интермодуляция CCIF третьего порядка
Искажения

f

1

= 14 кГц, f

2

= 15 кГц

2f

1

f

2

= 13 кГц

0,08

%

e

N

Входное шумовое напряжение

B = кривая A
B = от 22 Гц до 22 кГц

2
3

10

В

В

C5200 A1943 TDA2030 Усилитель DIY Самодельный

В этом видео я показываю, как сделать сверхбасовый 100-ваттный моно мощный усилитель класса AB с использованием транзисторов C5200 A1943 TDA2030.Комбинация усилителей C5200 A1943 широко используется для получения высокого усиления. Я продемонстрировал схему с источником питания постоянного тока 18 вольт на 2,5 ампера, но вы можете использовать напряжение от 12 до 18 вольт постоянного тока. Я использовал динамики с сопротивлением 4 Ом и мощностью 80+, которые обеспечивали более качественный звук.

Принципиальная схема

Ниже приведена принципиальная схема усилителей C5200 и A1943 с комбинацией микросхемы TDA2030.

Ниже приведена принципиальная схема регулировки громкости низких и высоких частот.

Изображения в разработке

используется в усилителе C5200 A1943 TDA2030

Шаг №1

Возьмите достаточно большой радиатор и воткните на него все транзисторы. Между транзисторами и радиатором необходимо использовать изоляцию (MICA). Поскольку выводы коллектора C5200 и A1943 внутренне связаны с задней пластиной транзисторов для отвода тепла. Коллекторные контакты обоих транзисторов будут иметь положительный и отрицательный ток, что вызовет короткое замыкание, если вы избегаете изоляции

.
Шаг № 2

Соедините плюс и минус двух диодов 1N4148 вместе и припаяйте соединение.Положительная сторона перейдет к базе правого транзистора C5200, а другой конец отрицательной стороны перейдет к базе левого транзистора A1943. Припаяйте один конец резистора 330 Ом / 1 Вт к выводу 3 TDA2030, а другой конец припаяйте к центральному стыку обоих диодов 1N4148.

Шаг № 3

Соедините вывод 3 эмиттеров обоих транзисторов C5200 и A1943 вместе с помощью куска провода. Присоедините один конец резистора 33 кОм к выводу 2 TDA2030, а другой конец припаяйте к стыку обоих эмиттеров.

Шаг № 4

Припаяйте один конец конденсатора 100 нФ (104 Дж) к выводу 4 микросхемы TDA2030. Не подключайте этот конденсатор к выводу 5, как показано на следующем рисунке. Я исправил это позже. Припаяйте один конец резистора 680 Ом к выводу 2 микросхемы TDA2030.

Шаг № 5

Подключите резистор 2,2 Ом к конденсатору 104 Дж. Присоедините положительный полюс конденсатора 22 мкФ к резистору 680 Ом. Припаяйте 22k к выводу 1 микросхемы TDA2030. Припаяйте отрицательный вывод конденсатора 1 мкФ к выводу 1 микросхемы TDA2030.Подключите резистор 5,6 кОм к плюсу конденсатора 1 мкФ.

Шаг № 6

Ниже приводится схема общего назначения Volume-Bass-Treble, которую можно подключить почти ко всем усилителям. Чтобы увидеть строительство этого проекта [Щелкните здесь].

Шаг № 7

Поместите радиатор с компонентами на кусок твердого картона. Я использовал две 2-полюсные клеммные колодки для входа и выхода звука. Оба соединены вместе для заземления.

Шаг № 8

Теперь пришло время соединить все четыре незакрепленных контакта, чтобы соединить их с землей.Итак, припаяйте резистор 2,2 Ом, отрицательную сторону конденсатора 22 мкФ, резистор 22 кОм и резистор 5,6 кОм к земле.

Шаг № 9

Подключите красный провод к центральному контакту 2 микросхемы C5200 и контакту 5 микросхемы TDA2030. Также подключите желтый кусок провода к центральному контакту 2 микросхемы A1943 и контакту 3 микросхемы TDA2030. Прикрепите одну 3-полюсную клеммную колодку к плате для двойного источника питания 18-0-18 В. Подключите кусок красного провода к центральному контакту 2 коллектора C5200, а другой конец — к левому каналу 3-полюсной клеммной колодки.Теперь подключите еще один кусок желтого провода к центральному контакту 2 коллектора A1943, а другой конец — к правому каналу 3-полюсного клеммного блока. Подключите центральную точку 3-полюсной клеммной колодки к земле.

Шаг № 10

Подключите другую точку правой 2-контактной клеммы динамика к разъему Emitters для выхода динамика. Подключите контакт 3 регулятора громкости к земле. Также подключите контакт 1 контроллера низких частот с помощью зеленого провода к концу 2-полюсной клеммной колодки. Также подключите центральный контакт регулятора громкости зеленым проводом к плюсу конденсатора 1 мкФ.

Шаг № 11

Вставьте 3 провода двойного источника питания в 3-полюсную клеммную колодку. Красный провод должен быть на +18 В, черный — на общий, а желтый — на -18 В постоянного тока. Также вставьте 3 провод аудиоразъема в левую 2-полюсную клемму блока. Grou, d к земле и два других провода к другой точке.

Шаг № 12

Вставьте два провода динамика в правую 2-полюсную клеммную колодку. Отрицательный вывод динамика на массу и положительный на другой вывод.

Шаг № 13

На данном этапе все подключения завершены.Теперь вставьте контакт аудиоразъема в мобильный телефон и включите питание. Слушайте музыку и наслаждайтесь. Большое спасибо за посещение сайта.

Список компонентов

используется в усилителе C5200 A1943 TDA2030

  • 2SC5200 Транзистор x 1
  • 2SA1943 Транзистор x 1
  • TDA2030 IC x 1
  • Конденсатор 1 мкФ / 50 В x 1
  • Конденсатор 22 мкФ / 50 В x 1
  • 104J (100 нФ) Конденсатор x 5
      0 Diode x 5
    1. Резистор 2,2 Ом x 1
    2. 3 Резистор 330 Ом / 1 Вт x 1
    3. Резистор 680 Ом x 1
    4. Резистор 1 кОм x 1
    5. 2.Резистор 2 кОм x 1
    6. Резистор 5,6 кОм x 1
    7. Резистор 22 кОм x 1
    8. Резистор 33 кОм x 1
    9. 2-полюсный клеммный блок x 2
    10. 3-полюсный клеммный блок x 1
    11. Потенциометр 50 кОм x 3
    12. Радиатор x 1
    13. Источник питания от 12 В до 18 В
    14. Динамики 4 Ом

(были посещены 4952 раза, сегодня 4 посещения)

Схема усилителя мощностью 120 Вт с использованием микросхемы TDA 2030

Можно создать впечатляющую схему усилителя мощностью 120 Вт каскадированием пары микросхем TDA 2030 в конфигурации с мостовой связанной нагрузкой (BTL) и через несколько повышающих ток транзисторов.

Преимущество топологии усилителя BTL

Основная цель конфигурации BTL — обеспечить двухстороннюю работу нагрузки, что, в свою очередь, помогает увеличить уровень эффективности системы в два раза. Это эквивалентно полной мостовой сети, которую мы обычно находим в инверторах.

Image Courtsey: Elektor Electronics

Полную принципиальную схему предлагаемой схемы 120-ваттного усилителя BTL с использованием двух микросхем TDA 2030 можно увидеть на приведенной выше схеме.

Работа схемы

IC1 и IC2 — это две микросхемы TDA2030, смонтированные в мостовой конфигурации с привязанной нагрузкой, что означает, что эти две микросхемы теперь работают в тандеме в ответ на высокие и низкие амплитуды входной частоты и управляют громкоговорителем в мощный двухтактный режим.

Например, когда выход IC1 может выдавать высокий выходной сигнал на динамики, IC2 одновременно будет выдавать низкий выходной сигнал и наоборот, обеспечивая необходимое двухтактное действие на громкоговоритель.Это означает, что громкоговоритель будет попеременно работать с максимальным положительным и отрицательным уровнями питания, в результате чего громкоговоритель будет работать с двойным уровнем эффективности по сравнению с обычными усилителями, которые не основаны на BTL.

BJT T1 — T4 включены для повышения уровня тока усилителя до указанных 120 Вт RMS, поскольку только IC1, IC2 не смогут этого сделать.

Выходные BJT NPN / PNP также дополняют топологию BTL и помогают микросхемам достичь заданного количества мощности на громкоговорителях.

Различные резисторы и конденсаторы вокруг динамика вводятся для подавления и фильтрации конечного результата на динамике, а также для получения чистого звука без искажений в динамике.

Двойной источник питания для усилителя

Источник питания для этого 120-ваттного усилителя BTL, использующего микросхемы TDA2030, получен от трансформатора 12-0-12 В / 7 ампер. выход которого выпрямляется с помощью мостового выпрямителя и фильтруется с помощью указанного конденсатора C8 — C11.

Источник питания выдает двойной выход +/- 20 В / 7 А, который в обязательном порядке требуется для большинства схем усилителей на основе BTL.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *