Диод зенера что это
Само название этого прибора “стабилитрон” созвучно слову стабильность или постоянство чего — либо или в чем — либо. В жизни человека очень важна стабильность, стабильность в зарплате, цены в магазине и прочее. В электронике стабильность напряжения питания очень важный, основной параметр, который при настройке или ремонте электронного оборудования проверяют в первую очередь. Напряжение в электрической сети может меняться в зависимости от общей нагрузки, качества электроснабжающих сетей, и еще многих других факторов, но напряжение питания электронных устройств, при этом, должно оставаться неизменным с определенной заданной величиной.
И так, что же такое стабилитрон.
Википедия, тебе даст такое определение:
«Полупроводнико́вый стабилитро́н, или диод Зенера — это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки. «
Все правильно, но слишком заумно.
Я попробую сказать проще
Стабилитрон — это такой полупроводниковый прибор, который стабилизирует напряжение.
Считаю, что на первых порах этого определения достаточно, (а как он стабилизирует напряжение, я расскажу ниже)
Принцип работы стабилитрона
Уважаемый читатель на этом рисунке изображен принцип работы стабилитрона.
Представь, что в некую емкость заливают воду, уровень воды в емкости, должен быть строго определенным, для того чтобы емкость не переполнилась в ней сделана переливная труба по которой вода превышающая заданный уровень будет выливаться из емкости.
Теперь от “сантехники” перейдем к электронике.
Обозначение стабилитрона на принципиальной схеме такое – же, как и у диода, отличие “черточка” катода изображается как буква Г.
Обозначение стабилитрона на схеме
Стабилитрон работает только в цепи постоянного тока, и пропускает напряжение в прямом направлении анод – катод так же — как и диод. В отличи от диода у стабилитрона есть одна особенность, если подать ток в обратном направлении катод – анод, ток через стабилитрон течь не будет, но ток в обратном направлении не будет течь только до тех пор, пока напряжение не превысит заданное значение.
Что является заданным значением напряжения для стабилитрона?
Стабилитрон имеет свои параметры – это напряжение стабилизации и ток. Параметр напряжение — указывает при какой величине напряжения стабилитрон будет пропускать ток в обратном направлении, параметром ток – задана сила тока, при которой стабилитрон может работать не повреждаясь.
Стабилитроны изготавливают для стабилизации напряжения различной величины, например, стабилитрон с обозначением V6.8 будет стабилизировать напряжение в пределах 6.8 Вольта.
Таблица рабочих параметров стабилитронов.
В таблице указаны основные параметры – это напряжение стабилизации и ток стабилизации. Есть и другие параметры, но они тебе пока не нужны. Главное понять суть работы стабилитрона и научиться выбирать нужный тебе для твоих схем и для ремонта радиоэлектроники.
Рассмотрим принципиальную схему объясняющую принцип работы стабилитрона.
Возьмем стабилитрон параметром — напряжение стабилизации 12Вольт. Для того чтобы через стабилитрон начал поступать ток в обратном направлении от катода к аноду, входное напряжение должно быть выше напряжения стабилизации стабилитрона (с запасом). Например — если стабилитрон рассчитан на напряжение стабилизации 12Вольт входное напряжение должно быть не меньше 15Вольт. Балластный резистор Rб ограничивает ток который будет проходить через стабилитрон до номинального. Как видишь, при напряжении, превышающем ток стабилизации стабилитрона, оный начинает сбрасывать лишнее напряжение через себя на минус. Иными словами, стабилитрон, выполняет роль переливной трубы, чем больше напор воды или величина электрического тока, тем сильнее открывается стабилитрон и наоборот при уменьшении напряжения, стабилитрон начинает закрываться, уменьшая прохождения тока через себя.
Эти изменения могут происходить как плавно, так и с огромной скоростью в малых интервалах времени, что позволяет добиться высокого коэффициента стабилизации напряжения.
Если напряжение на входе стабилизатора будет меньше 12Вольт, стабилитрон “закроется” и напряжение на выходе стабилизатора будет “плавать” так – же, как и на входе, при этом никакой стабильности напряжения не будет. Вот почему напряжение входное должно быть больше чем необходимое выходное (с запасом). Приведенная схема называется параметрический стабилизатор . Кто хочет полный расклад по расчету параметрического стабилизатора, пусть посетит ГУГЛ, нам начинающим для первого раза вполне достаточно, не будем заморачивать себя формулами.
Теперь перейдем к лабам (лабораторным работам :).
Перед тобой макет параметрического стабилизатора, на входе и выходе макета имеются вольтметры. Сейчас вольтметр на ВХОДЕ стабилизатора показывает 6 вольт на ВЫХОДЕ стабилизатора практически такое же напряжение. Так как я уже говорил, стабилитрон макета имеет напряжение стабилизации 8и2 вольта, напряжение в 6 Вольт на ВХОДЕ стабилизатора, не превышает напряжение стабилизации стабилитрона, поэтому стабилитрон закрыт.
Теперь я повышаю напряжение на входе стабилизатора до 15 Вольт, напряжение на входе стабилизатора превысило напряжение стабилизации стабилитроне и на выходе стабилизатора достигло заданного напряжения стабилизации 8.2 Вольта таким оно и остается, практически неизменным, даже при резких бросках напряжения, стабилитрон отрабатывает мгновенно, поддерживая стабильность напряжения. Повторяюсь еще раз – “Для того чтобы параметрический стабилизатор работал правильно на входе всегда должно быть напряжение, превышающее напряжение стабилизации стабилитрона т. е. с запасом примерно 15-25%”
Так как ток стабилизации такого параметрического стабилизатора слишком мал, параметрический стабилизатор обычно применяют в блоках питания как стабилизирующий элемент схемы, где кроме самого стабилизатора присутствуют элементы регулировки напряжения, мощные транзисторы.
Пример — схема регулируемого стабилизатора (блока питания).
В современной электронике, параметрические стабилизаторы применяют все реже, в основном используя специальные микросхемы, которые представляют из себя довольно мощные стабилизаторы с очень хорошим коэффициентом стабилизации, они компактны и легко применимы.
Но о них мы поговорим в следующий раз. Тем не менее, параметрические стабилизаторы можно встретить во многих различных электронных схемах, поэтому знать их и понимать элементарно принцип работы нужно.
Как проверить стабилитрон
Для проверки стабилитрона, нужно знать как пользоваться мультиметром и воспользоваться методикой проверки полупроводникового диода, если есть возможность можно собрать схему параметрического стабилизатора и проверить стабилитрон в работе, как описано в этой статье. Если у тебя имеется стабилитрон и ты не знаешь его параметры (стерлась надпись на корпусе стаба), собрав схемку параметрического стабилизатора можно определить на какое напряжение стабилизации работает этот неопознанный стаб.
Источник: slojno.net
Стабилитрон (диод Зенера)
В данной статье мы подробно поговорим про диод Зенера или стабилитрон. Рассмотрим принцип работы и его характеристики, диодный стабилитрон, напряжение стабилитрона, и схему последовательно соединенных стабилитронов.
Принцип работы
Полупроводниковый диод блокирует ток в обратном направлении, но будет страдать от преждевременного пробоя или повреждения, если обратное напряжение, приложенное к нему, станет слишком высоким.
Тем не менее, стабилитрон или «пробойный диод», как их иногда называют, в основном совпадают со стандартным PN-переходным диодом, но они специально разработаны для того, чтобы иметь низкое и заданное обратное напряжение пробоя, которое использует любое подаваемое обратное напряжение к этому.
Стабилитрон ведет себя так же, как обычный общего назначения диод, состоящий из кремния PN — перехода, и, когда смещены в прямом направлении, то есть анод положительный по отношению к его катоду, он ведет себя так же , как обычный диод сигнал, проводящий номинальный ток.
Однако, в отличие от обычного диода, который блокирует любой поток тока через себя при обратном смещении, то есть катод становится более положительным, чем анод, как только обратное напряжение достигает заранее определенного значения, стабилитрон начинает проводить в обратное направление.
Это связано с тем, что когда обратное напряжение, подаваемое на стабилитрон, превышает номинальное напряжение устройства, в полупроводниковом обедненном слое происходит процесс, называемый лавинным пробоем, и через диод начинает течь ток, чтобы ограничить это увеличение напряжения.
Ток, текущий в настоящее время через стабилитрон, резко возрастает до максимального значения схемы (которое обычно ограничивается последовательным резистором), и после достижения этого ток обратного насыщения остается довольно постоянным в широком диапазоне обратных напряжений. Точка напряжения, в которой напряжение на стабилитроне становится стабильным, называется «напряжением стабилитрона» ( Vz ), а для стабилитронов это напряжение может составлять
Точка, в которой напряжение стабилитрона запускает ток, протекающий через диод, может очень точно контролироваться (с допустимым отклонением менее 1%) на стадии легирования полупроводниковой конструкции диодов, давая диоду определенное
Характеристики стабилитрона I-V
Стабилитрон используется в его «обратном смещении» или обратном режиме пробоя, т.е. анод диода подключается к отрицательному питанию. Из приведенной выше кривой характеристик I-V видно, что стабилитрон имеет область обратного смещения почти постоянного отрицательного напряжения независимо от величины тока, протекающего через диод, и остается почти постоянной даже при больших изменениях тока, пока ток стабилитронов остается между током пробоя I Z (мин) и максимальным номинальным током I Z (макс.) .
Эта способность к самоконтролю может быть в значительной степени использована для регулирования или стабилизации источника напряжения от изменений напряжения или нагрузки. Тот факт, что напряжение на диоде в области пробоя практически постоянное, оказывается важной характеристикой стабилитрона, так как его можно использовать в простейших типах устройств с регулятором напряжения.
Функция регулятора состоит в том, чтобы обеспечивать постоянное выходное напряжение для нагрузки, подключенной параллельно с ним, несмотря на пульсацию в напряжении питания или изменение тока нагрузки, стабилитрон продолжит регулировать напряжение до тех пор, пока ток диода не будет падать ниже минимального значения I Z (min) в области обратного пробоя.
Диодный стабилитрон
Стабилитроны могут использоваться для получения стабилизированного выходного напряжения с низкой пульсацией в условиях переменного тока нагрузки. Пропуская небольшой ток через диод от источника напряжения через подходящий резистор ограничения тока R S, стабилитрон будет проводить ток, достаточный для поддержания падения напряжения V out .
Мы помним из предыдущих уроков, что выходное напряжение постоянного тока от полу- или двухполупериодных выпрямителей содержит пульсации, наложенные на напряжение постоянного тока, и что при изменении значения нагрузки изменяется и среднее выходное напряжение. Подключив простую схему стабилитрона, как показано ниже, к выходу выпрямителя, можно получить более стабильное выходное напряжение.
Резистор R S соединен последовательно с стабилитроном для ограничения тока, протекающего через диод с источником напряжения, при этом V S подключается через комбинацию. Стабилизированное выходное напряжение V out берется через стабилитрон. Стабилитрон соединен с его катодной клеммой, подключенной к положительной шине источника постоянного тока, поэтому он имеет обратное смещение и будет работать в своем состоянии пробоя. Резистор R S выбран таким образом, чтобы ограничить максимальный ток, протекающий в цепи.
При отсутствии нагрузки, подключенной к цепи, ток нагрузки будет равен нулю I L= 0 , и весь ток цепи проходит через стабилитрон, который, в свою очередь, рассеивает свою максимальную мощность. Также небольшое значение последовательного резистора RS приведет к большему току диода, когда сопротивление нагрузки R L подключено, и будет большим, так как это увеличит требования к рассеиваемой мощности диода, поэтому следует соблюдать осторожность при выборе подходящего значения серии сопротивление, чтобы максимальная номинальная мощность стабилитрона не превышалась в условиях отсутствия нагрузки или высокого импеданса.
Нагрузка подключается параллельно с стабилитроном, поэтому напряжение на R L всегда совпадает с напряжением на стабилитроне V R= V Z. Существует минимальный ток стабилитрона, для которого эффективна стабилизация напряжения, и ток стабилитрона должен всегда оставаться выше этого значения, работающего под нагрузкой в пределах его области пробоя. Верхний предел тока, конечно, зависит от номинальной мощности устройства. Напряжение питания V S должно быть больше, чем V Z .
Одна небольшая проблема с цепями стабилизатора стабилитрона состоит в том, что диод может иногда генерировать электрический шум в верхней части источника постоянного тока, когда он пытается стабилизировать напряжение. Обычно это не является проблемой для большинства устройств, но может потребоваться добавление развязывающего конденсатора большого значения на выходе стабилитрона, чтобы обеспечить дополнительное сглаживание.
Подведем небольшой итог. Стабилитрон всегда работает в обратном смещенном состоянии. Схема регулятора напряжения может быть разработана с использованием стабилитрона для поддержания постоянного выходного напряжения постоянного тока на нагрузке, несмотря на изменения входного напряжения или изменения тока нагрузки. Стабилизатор напряжения Зенера состоит из токоограничивающего резистора R S, соединенного последовательно с входным напряжением V S, с стабилитроном, подключенным параллельно с нагрузкой R L в этом состоянии с обратным смещением. Стабилизированное выходное напряжение всегда выбирается равным напряжению пробоя V Z диода.
Напряжение стабилитрона
Помимо создания единого стабилизированного выходного напряжения, стабилитроны могут также быть соединены друг с другом последовательно, наряду с обычными диодами сигнала кремния для получения множества различных выходных значений опорного напряжения, как показано ниже.
Стабилитроны, соединенные последовательно
Значения отдельных стабилитронов могут быть выбраны в соответствии с применением, в то время как кремниевый диод всегда будет падать примерно на 0,6 — 0,7 вольт в режиме прямого смещения. Напряжение питания V > IN следует, конечно, выше , чем наибольший выход опорного напряжения , а в нашем примере выше, это 19v.
Типичный стабилитрон для общих электронных схем — 500 мВт серии BZX55 или более крупный 1,3 Вт серии BZX85, в которой напряжение стабилитрона задается, например, как C7V5 для диода 7,5 В, что дает эталонный номер диода BZX55C7V5 .
Стабилитроны серии 500 МВт доступны в диапазоне от 2,4 до 100 Вольт и обычно имеют ту же последовательность значений, что и для серии резисторов 5% (E24), а индивидуальные номинальные напряжения для этих небольших, но очень полезных диодов приведены в таблица ниже.
Стандартные напряжения стабилитрона
Мощность стабилитрона BZX55 500 мВт
2.4V | 2.7V | 3.0V | 3.3V | 3.6V | 3.9V | 4.3V | 4.7V |
5.1V | 5.6V | 6.2V | 6,8 В | 7.5V | 8.2V | 9.1V | 10V |
11V | 12V | 13V | 15V | 16V | 18V | 20V | 22V |
24V | 27В | 30V | 33V | 36V | 39V | 43V | 47V |
Мощность стабилитрона BZX85 1,3 Вт
3.3V | 3.6V | 3.9V | 4.3V | 4.7V | 5.1V | 5,6 | 6.2V |
6,8 В | 7.5V | 8.2V | 9.1V | 10V | 11V | 12V | 13V |
15V | 16V | 18V | 20V | 22V | 24V | 27В | 30V |
33V | 36V | 39V | 43V | 47V | 51V | 56V | 62V |
Схемы стабилитрона
До сих пор мы рассматривали, как стабилитрон можно использовать для регулирования источника постоянного тока, но что если бы входной сигнал был не постоянный ток, а переменный сигнал переменного тока, как бы стабилитрон реагировал на постоянно меняющийся сигнал?
Цепи диодного ограничения и зажима — это схемы, которые используются для формирования или изменения формы входного сигнала переменного тока (или любой синусоиды), создавая выходной сигнал различной формы в зависимости от схемы расположения. Цепи диодного ограничителя также называют ограничителями, поскольку они ограничивают или отсекают положительную (или отрицательную) часть входного сигнала переменного тока. Поскольку схемы ограничителя Зенера ограничивают или обрезают часть формы волны через них, они в основном используются для защиты схемы или в схемах формирования формы волны.
Например, если бы мы хотели обрезать выходной сигнал при + 7,5 В, мы бы использовали стабилитрон 7,5 В. Если выходной сигнал пытается превысить предел 7,5 В, стабилитрон «обрезает» избыточное напряжение на входе, создавая сигнал с плоским верхом, сохраняя при этом выходную постоянную на уровне + 7,5 В. Обратите внимание, что в состоянии прямого смещения стабилитрон все еще является диодом, и когда выходной сигнал переменного тока становится отрицательным ниже -0,7 В, стабилитрон включается, как и любой нормальный кремниевый диод, и обрезает выход при -0,7 В, как показано ниже.
Прямоугольная волна
Подключенные друг к другу стабилитроны могут быть использованы в качестве регулятора переменного тока, производящего то, что в шутку называют «генератор прямоугольной волны бедняка». Используя эту схему, мы можем обрезать осциллограмму между положительным значением + 8,2 В и отрицательным значением -8,2 В для стабилитрона 7,5 В.
Так, например, если бы мы хотели обрезать выходной сигнал между двумя различными минимальными и максимальными значениями, скажем, + 8 В и -6 В, мы просто использовали бы два стабилитрона с разными номиналами. Обратите внимание, что выход фактически обрезает сигнал переменного тока между + 8,7 В и -6,7 В из-за добавления напряжения прямого диода смещения.
Другими словами, пиковое напряжение составляет 15,4 вольт вместо ожидаемых 14 вольт, поскольку прямое падение напряжения смещения на диоде добавляет еще 0,7 вольт в каждом направлении.
Этот тип конфигурации ограничителя довольно распространен для защиты электронной схемы от перенапряжения. Два стабилитрона, как правило, размещаются на входных клеммах источника питания, и во время нормальной работы один из стабилитронов имеет значение «ВЫКЛ», и эти диоды практически не влияют. Однако, если форма сигнала входного напряжения превышает его предел, тогда стабилитрон включается и включает вход для защиты схемы.
В следующем уроке о диодах мы рассмотрим использование смещенного прямого PN-перехода диода для получения света. Из предыдущих уроков мы знаем, что когда носители заряда движутся через соединение, электроны объединяются с дырками, и энергия теряется в виде тепла, но также часть этой энергии рассеивается в виде фотонов, но мы не можем их видеть.
Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ
Источник: meanders.ru
Как работает стабилитрон
Диод Зенера или стабилитрон (полупроводниковый стабилитрон) представляет собой особый диод, функционирующий в режиме устойчивого пробоя в условиях обратного смещения p-n перехода. До момента наступления этого пробоя, ток через стабилитрон протекает лишь очень малый, ток утечки, в силу высокого сопротивления запертого стабилитрона.
Но когда наступает пробой, ток мгновенно вырастает, поскольку дифференциальное сопротивление стабилитрона составляет в этот момент от долей до сотен Ом. Таким образом, напряжение на стабилитроне весьма точно поддерживается в определенном диапазоне обратных токов, относительно широком.
Стабилитрон называют диодом Зенера (от англ. Zener diode) в честь ученого, впервые открывшего явление туннельного пробоя, американского физика Кларенса Мэлвина Зенера (1905 — 1993).
Открытый Зенером электрический пробой p-n перехода, связанный с туннельным эффектом, явлением просачивания электронов сквозь тонкий потенциальный барьер, называется теперь эффектом Зенера, который и служит сегодня в полупроводниковых стабилитронах.
Физическая картина эффекта заключается в следующем. При обратном смещении p-n перехода энергетические зоны перекрываются, и электроны могут переходить из валентной зоны p-области в зону проводимости n-области, благодаря электрическому полю, это повышает количество свободных носителей заряда, и обратный ток резко возрастает.
Таким образом, главным назначением стабилитрона является стабилизация напряжения. Промышленностью выпускаются полупроводниковые стабилитроны с напряжениями стабилизации от 1,8 В до 400 В, большой, средней и малой мощности, которые отличаются максимально допустимым обратным током.
На этой базе изготавливают простые стабилизаторы напряжения. На схемах стабилитроны обозначаются символом похожим на символ диода, с тем лишь отличием, что катод стабилитронов изображается в форме буквы «Г».
Стабилитроны скрытой интегральной структуры, с напряжением стабилизации около 7 В — это самые точные и стабильные твердотельные источники опорного напряжения: лучшие их экземпляры характеристически близки к нормальному гальваническому элементу Вестона (эталонный ртутно-кадмиевый гальванический элемент).
К стабилитронам особого типа относятся высоковольтные лавинные диоды («TVS-диоды» и «супрессоры»), которые широко применяются в цепях защиты от перенапряжений всевозможной аппаратуры.
Как видим, стабилитрон, в отличие от обычного диода, работает на обратной ветви ВАХ. В обычном диоде, если к нему приложить обратное напряжение, может возникнуть пробой по одному из трех путей (или по всем сразу): туннельный пробой, пробой лавинный и пробой вследствие теплового разогрева токами утечки.
Тепловой пробой кремниевым стабилитронам не важен, ибо они проектируются так, чтобы или туннельный, или лавинный пробой, либо оба типа пробоя одновременно наступали задолго до тенденции к тепловому пробою. Серийные стабилитроны на данный момент изготавливаются преимущественно из кремния.
Пробой при напряжении ниже 5 В — проявление эффекта Зенера, пробой выше 5 В — проявление лавинного пробоя. Промежуточное напряжение пробоя около 5 В, как правило, является результатом сочетания двух этих эффектов. Напряженность электрического поля в момент пробоя стабилитрона составляет около 30 МВ/м.
Пробой стабилитрона происходит в умеренно легированных полупроводниках р-типа и сильно легированных полупроводниках n-типа. При повышении температуры на стыке уменьшается срыв стабилитрона и вклад лавинного пробоя увеличивается.
Стабилитроны имеют следующие типичные характеристики. Vz – напряжение стабилизации. В документации указываются два значения для этого параметра: максимальное и минимальное значение напряжения стабилизации. Iz – минимальный ток стабилизации. Zz – сопротивление стабилитрона. Izk и Zzk– ток и динамическое сопротивление при постоянном токе. Ir и Vr — максимальный ток утечки и напряжение при заданной температуре. Tc — температурный коэффициент. Izrm — максимальный ток стабилизации стабилитрона.
Стабилитроны широко применяют в качестве самостоятельных стабилизирующих элементов, а также источников образцовых напряжений (опорных напряжений) в стабилизаторах на транзисторах.
Для получения малых образцовых напряжений стабилитроны включают и в прямом направлении, как обычные диоды, тогда напряжение стабилизации одного стабилитрона будет равно 0,7 — 0,8 вольт.
Максимальная рассеиваемая корпусом стабилитрона мощность, обычно лежит в диапазоне от 0,125 до 1 ватта. Этого, как правило, достаточно для нормальной работы цепей защиты от импульсных помех и для построения маломощных стабилизаторов.
Источник: electricalschool.info
Стабилитрон или диод Зенера
Полупроводниковый прибор, каким является диод Зенера или как его еще называют стабилитрон , служит для стабилизации напряжения на выходе.
Принцип действия стабилитрона
Принцип работы прибора заключается в подаче на диод через резистор запирающего напряжения, величина которого превышает величину напряжения пробоя самого диода. До того времени, пока не наступил момент совершения пробоя, через стабилитрон идут токи утечки величина, которых очень незначительна, в тоже время сопротивление прибора очень высокое.
В момент совершения пробоя величина тока резко повысится, а значение дифференцированного сопротивления понизится до самых малых величин. Благодаря этому свойству режим пробоя характеризуется стабильным значением напряжения в широких границах обратного тока. Иными словами стабилитрон служит для распределения тока резистора, на который приходится избыток напряжения, а также тока, составляющего полезную нагрузку.
Рис. №1. Вольт-амперная характеристика (ВАХ) стабилитрона. Для работы стабилитрона используются участки ВАХ, на которых при существенных изменениях тока, напряжение практически не изменяется, что бывает при обратном подключении прибора на участке электрического пробоя.
Рис.№2. Стабилитрон с резистором
Рис. №3. Стабилитрон, состоящий из двух последовательно-встречно подключенных диодов, служит для ограничения напряжения обеих полярностей.
Основа действия прибора строится на двух механизмах – это туннельный пробой и p-n-переход, его называют эффект Зенера и лавинный пробой p-n-перехода.
Основные электрические параметры, характеризующие стабилитрон
Рис. №4. Электрические характеристики важные для стабилитрона.
Пояснение главных величин, которые характеризуют стабилитрон:
- Стабилизирующее напряжение – U раб, оно соответствует средней точке в месте стабилизации. Напряжение стабилизации – средняя величина между минимальным и предельно-максимальным значением стабилизируемого напряжения.
- Минимальный ток стабилизации, для этого значения осуществляется лавинный пробой p-n-перехода обратимого действия, он неизменно соответствует минимальному значению стабилизируемого напряжения.
- Максимальный предельно-допустимый ток стабилитрона.
- Ток стабилизации или прямой ток, он определяется, как – Iст.ном = Imax – Imin. (он способен выдержать в течение продолжительного отрезка времени p-n-переход без термического разрушения.
- Температурный коэффициент – величина, которая служит для определения отношения изменяющейся температуры окружающей среды при токе неизменной величины. Для каждого типа стабилитрона свойствен свой коэффициент температуры.
- Дифференциальное сопротивление – величина, которая зависит от приращения стабилизационного напряжения к приращению тока в определенном диапазоне частоты.
- Рассеиваемая мощность – величина мощности, обеспечивающей необходимую надежность и рассеиваемую на стабилитроне.
Типы стабилитронов
Существует три основных типа стабилитронов:
- Прецизионные стабилитроны – для них свойственно наличие повышенной стабильности напряжения. Пример: 2С191 или КС211.
- Двухсторонние – ограничивают и стабилизируют двухполярное напряжение. Пример: 2С170А или 2С182А.
- Быстродействующий стабилитрон – пониженная величина барьерной емкости и небольшая работа переходного процесса – это делает возможным работать в области кратковременных импульсов напряжений. Это такие стабилитроны: 2С175Е; КС182Е; 2С211Е.
Распределение по мощности – это мощные и маломощные стабилитроны.
Особенности использования стабилитронов
Для использования стабилитронов, особенно российских производителей не желательна работа вне зоны пробоя, что является следствием повышения, со временем, тока утечки. Например, на стабилитрон рассчитанный на U15 В, не рекомендуется подавать отличное от расчетного значение напряжения, по крайней мере необходимо следить за минимальным током стабилизации.
Во время неудачного разброса напряжений, при выборе его к предельному значению, может произойти перегрев устройства и возникает режим пробоя.
Нежелательно подключать стабилитроны в сеть в качестве предохранителя, последствия для стабилитрона будут плачевны, при превышении значения тока они выйдут из строя. Для защиты лучше всего использовать, в некоторых случаях, специализированные стабилитроны (супрессоры) марки ZY5.6. Установка стабилитрона (диода Зенера) в цепь низковольтного питания крайне нежелательно из того, что туннельный пробой при U обладает отрицательным температурным коэффициентом.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Источник: elektronchic.ru
Как работает стабилитрон
Немного теории
Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.
Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.
В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.
Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.
Стабилитрон или диод Зенера
Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так:
Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод.
Стабилитроны выглядят также, как и диоды. На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза
Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.
Напряжение стабилизации
Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?
Давайте возьмем стакан и будем наполнять его водой…
Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику.
Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.
Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.
Маркировка стабилитронов
Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:
Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.
Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:
5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?
Катод у зарубежных стабилитронов помечается в основном черной полосой
Как проверить стабилитрон
Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.
Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.
Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:
где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение
Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения. Здесь все элементарно и просто:
Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.
Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл 😉
Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания, а справа замеряем мультиметром полученное напряжение:
Теперь внимательно следим за показаниями мультиметра и блока питания:
Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.
Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!
Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.
Вольт-амперная характеристика стабилитрона
Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:
Iпр – прямой ток, А
Uпр – прямое напряжение, В
Эти два параметра в стабилитроне не используются
Uобр – обратное напряжение, В
Uст – номинальное напряжение стабилизации, В
Iст – номинальный ток стабилизации, А
Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.
Imax – максимальный ток стабилитрона, А
Imin – минимальный ток стабилитрона, А
Iст, Imax, Imin – это сила тока, которая течет через стабилитрон при его работе.
Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.
Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax , иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).
Заключение
Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:
Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного. Справа же, в зеленой рамке, схема стабилизации ;-).
В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.
На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт. Выбирайте на ваш вкус и цвет.
Источник: www.ruselectronic.com
Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении. Обычный диод при подаче обратного напряжения и превышении его номинального значения просто выходит из строя. А для стабилитрона подключение обратного напряжения и его рост до установленной точки является штатным режимом. При достижении определенной точки обратного напряжения в стабилитроне возникает обратимый пробой. Через устройство начинает течь ток. До наступления пробоя стабилитрон находится в нерабочем состоянии и через него протекает только малый ток утечки. На электросхемах стабилитрон обозначается как стрелка-указатель, на конце которой имеет черточка, обозначающая запирание. Стрелка указывает направление тока. Буквенное обозначение на схемах – VD. |
Цифровая маркировка стеклянных стабилитронов. Маркировка диодов: типы, особенности, производители
Любая электронная схема вне зависимости от назначения имеет в своем составе большое количество элементов, которые регулируют и контролируют течение электрического тока по проводам. Именно регулирование напряжения играет важную роль в работе большинства модулей, потому что от этого параметра зависит стабильная и долгая работа цепи.
Для стабилизации входного напряжения на схемы был разработан специальный модуль, который является буквально важнейшей частью многих приборов. Импортные и отечественные стабилитроны используются в схемах с разными параметрами, поэтому имеется различная маркировка диодов на корпусе, что помогает определить и подобрать нужный вариант.
Немного подробнее о модуле и принципе его работы
Это полупроводниковый диод, который имеет свойство выдавать определенное значение напряжения вне зависимости от подаваемого на него тока. Это утверждение не является до конца верным абсолютно для всех вариантов, потому что разные модели имеют разные характеристики. Если подать очень сильный ток на не рассчитанный для этого модуль SMD (или любой другой тип), он попросту сгорит. Поэтому подключение выполняется после установки токоограничивающего резистора в качестве предохранителя, значение выходного тока которого равняется максимально возможному значению входного тока на стабилизатор.
Он очень похож на обыкновенный полупроводниковый диод, но имеет отличительную черту – его подключение выполняется наоборот. То есть минус от источника питания подается на анод стабилитрона, а плюс – на катод. Таким образом, создается эффект обратной ветви, который и обеспечивает его свойства.
Похожим модулем является стабистор – он подключается напрямую, без предохранителя. Используется в тех случаях, когда параметры входного электричества точно известны и не колеблются, а на выходе получается тоже точное значение.
Указание паспортных характеристик
Они же являются основными показателями отечественных и импортных стабилитронов, которыми необходимо руководствоваться при подборе стабилитрона под конкретную электронную цепь.
- UCT – указывает, какое номинальное значение модуль способен стабилизировать.
- ΔUCT – используется для указания диапазона возможного отклонения входящего тока в качестве безопасной амортизации.
- ICT – параметры тока, который может протекать при подаче номинального напряжения на модуль.
- ICT.МИН – показывает самое маленькое значение, которое способно протекать по стабилизатору. При этом протекающее напряжение по диоду будет находиться в диапазоне UCT ± ΔUCT.
- ICT.МАКС – модуль не способен выдерживать более высокое напряжение, чем это значение.
На фото ниже представлен классический вариант. Обратите внимание, что прямо на корпусе показано, где у него анод и катод. По кругу нарисована черная (реже встречается серая) полоска, которая располагается со стороны катода. Противоположная сторона – анод. Такой способ используется как для отечественных, так и для импортных диодов.
Дополнительная маркировка стеклянных моделей
Диоды в стеклянных корпусах имеют свои собственные обозначения, которые мы рассмотрим далее. Они настолько простые (в отличие от вариантов с пластиковыми корпусами), что практически сразу же запоминаются наизусть, нет необходимости каждый раз использовать справочник.
Цветовая маркировка используется для пластиковых диодов, например, для SOT-23. Твердый корпус модуля имеет два гибких вывода. На самом корпусе, рядом с вышеописанной полосочкой, дописываются таким же цветом несколько цифр, разделенных латинской буквой. Обычно запись имеет вид 1V3, 9V0 и так далее, разнообразие позволяет подобрать любые параметры по обозначению, как и в SMD.
Что же значит эта кодовая маркировка? Она показывает напряжение стабилизации, на которое рассчитан данный элемент. К примеру, 1V3 показывает нам, что это значение равно 1.3 В, второй же вариант – 9 вольт. Обычно чем больше сам корпус, тем большим стабилизирующим свойством он обладает. На фото ниже показан стабилитрон в стеклянном корпусе с маркировкой катода 5.1 В
Заключение
Правильный подбор параметров стабилитрона позволит получить стабильный ток, который из него подается на цепь. Обязательно подбирайте такие параметры предохранителя, используя соответствующий справочник, чтобы входное напряжение не испортило деталь, ему желательно находиться приблизительно в середине диапазона UCT ± ΔUCT.
Стабилитрон еще называют опорным диодом. Предназначены стабилитроны для стабилизации выходного напряжения при колебания входного или при изменении величины нагрузки (рис. 1 ).
Рис. 1 – Функциональная схема работы стабилитрона
Например, если на нагрузке нужно получить 5 В, а напряжение источника питания колеблется в пределах 9 В. Чтобы снизить и стабилизировать напряжение, подводимое от источника питания, до необходимых 5 В применяют стабилитроны. Конечно, можно применять и стабилизаторы напряжения, в данном случае подойдут или . Однако, применение их не всегда оправдано, поэтому в ряде случаев используют стабилитроны.
Внешне они похожи на диоды и имею вид, показанный на рис. 2 .
Рис. 2 – Внешний вид стабилитронов
Обозначение стабилитронов на схемах приведено на рис. 3 .
Теперь давайте разберемся каким образом стабилитрон выполняет стабилизацию напряжение.
Основной характеристикой стабилитрона, впрочем, как и диода, является вольтамперная характеристика (ВАХ). Она показывается зависимость величины тока, протекающего через стабилитрон, от величины приложенного к нему напряжения (рис. 4 ).
ВАХ стабилитрона имеет две ветви.
Рис. 4 – ВАХ стабилитрона
Прямая ветвь стабилитрона практически не отличается от прямых ветвей обычных диодов и для последних она же будет рабочей.
Нормальный режим работы стабилитрона является когда он находится под обратным напряжением. Поэтому для него рабочей будет обратная ветвь. Она расположена практически параллельно оси обратных токов. На этой кривой характерными есть две точки: 1 и 2 (рис. 4 ), между ними находится рабочая область стабилитрона.
При некоторой величине обратного напряжения U ст наступает электрический пробой p — n перехода стабилитрона и через наго протекает уже значительный ток. Однако при изменении в широких пределах тока от значения Imin до Imax падение напряжения на стабилитроне U ст практически не изменяется (рис. 4 ). Благодаря этому свойству и осуществляется стабилизация напряжения.
Если ток, протекающий через стабилитрон, превысит значение Imax , то произойдет перегрев полупроводниковой структуры, наступит тепловой пробой и стабилитрон выйдет из строя.
К источнику питания Uип стабилитрон подключается через токоограничивающий резистор Rогр , который служит для ограничения тока, протекающего через стабилитрон, а также совместно с ним образует делитель напряжения (рис. 5 ).
Рис. 5 – Схема включения стабилитрона
Обратите внимание, в отличие от диода стабилитрон подключается в обратном направлении, т. е. на катод подается «+» источника питания, а на анод «-».
Параллельно к выводам стабилитрона подключается нагрузка R н , на зажимах которой требуется поддерживать стабильное напряжение.
Процесс стабилизации напряжения заключается в следующем. При увеличении напряжения источника питания возрастает общий ток цепи I , а следовательно и ток Iст , протекающий через стабилитрон VD , а также увеличивается падение напряжения на токоограничивающем резисторе R огр . При этом напряжение на стабилитроне и соответственно на нагрузке остается почти неизменным.
При изменении сопротивления нагрузки, происходит перераспределение общего тока I между стабилитроном и нагрузкой, а величина напряжения на них практически не меняется.
Если напряжение на нагрузке больше напряжения стабилизации стабилитрона, то применяют несколько последовательно включенных стабилитронов. Например, если необходимо получить 10 В стабильного напряжения, то за неимением нужного стабилитрона, можно включить последовательно два стабилитрона по 5 В (рис. 6 ).
Рис. 6 – Последовательное соединение стабилитронов
Также стабилитроны успешно используются в системах автоматики в качестве датчиков, реагирующих на изменение напряжения. Например, если величина напряжения превысит определенное значение, то стабилитрон откроется и через катушку реле будет протекать ток. В результате реле сработает и даст команду другим устройствам либо просто просигнализирует о превышении некоторого уровня напряжения.
Помимо стабилизации постоянного напряжения, с помощью стабилитронов можно стабилизировать и переменное напряжения. Для этого используют последовательное встречное включение двух стабилитронов (рис. 7 ).
Рис. 7 – Схема включения стабилитрона на переменное напряжение
Только на выходе будет не идеальная синусоида, а со срезанными верхами, т. е. форма напряжения будут приближена к трапеции (рис. 8, 9 ).
Рис. 8 – Осциллограмма входного напряжения
Рис. 9 – Осциллограмма напряжения на стабилитроне
Применяются несколько способом маркировки стабилитронов. Стабилитроны в стеклянному корпусе, имеющие гибкие выводы, маркируются самым понятным способом. Как правило на корпус наносятся цифры, разделённые латинской буквой «V». Например, 4 V 7 обозначает, что напряжение стабилизации 4,7 В; 9 V 1 – 9,1 В и так далее (рис. 10 ).
Рис. 10 – Маркировка стабилитронов в стеклянных корпусах
Стабилитроны в пластиковом корпусе имеют маркировку в виде цифр и букв. Сами по себе эти цифры ни о чем не говорят, однако, с помощью даташита их можно легко расшифровать. Например обозначение 1N5349B означает, что напряжение стабилизации 12 В (рис. 11 ). Кроме напряжения такая маркировка учитывает и другие параметры стабилитрона.
Рис. 10 – Маркировка стабилитронов в пластиковых корпусах
Черное либо серое кольцо, нанесенное на корпус стабилитрона, обозначает его катод (рис. 12 ).
Рис. 12 –
Маркировка smd стабилитронов
В качестве маркировка smd стабилитронов применяются цветные кольца. Подобная маркировка применяется также для советские не smd стабилитронов. В импортных стабилитронах цветное кольцо наносится со стороны катода (рис. 13 ). Для расшифровки цветных колец используют даташити или онлайн расшифровщики.
Рис. 13 – SMD стабилитрон в стеклянном корпусе
Еще изготавливаются smd стабилитроны с тремя выводами (рис. 14 ). Один из них не задействован. Эти выводы можно определить с помощью мультиметра.
Рис. 14 – SMD стабилитрон с тремя выводами
При отсутствии справочника, даташита или нечеткой маркировки номинальное напряжение стабилитрона можно определить опытным путем. Сначала с помощью мультиметра нужно узнать соответствующие выводы и подключить стабилитрон через токоограничивающий резистор (см. рис. 5 ). Затем подать напряжение от регулируемого источника питания. Плавно изменяя подведенное напряжение нужно следить за изменение напряжения на стабилитроне. Если при изменении величины напряжения источника питания напряжение на стабилитроне не изменяется, то это и будет его напряжение стабилизации.
Выводы стабилитрона определяются точно также, как и . Мультиметр следует установить в режим прозвонки и коснуться щупами соответствующий выводов (рис. 15, 16 ).
Рис. 15 – Прямое напряжение
Рис. 16 – Обратное напряжение
Под действием протекающего тока через стабилитрон он нагревается. Выделившееся тепло рассеивается в окружающее пространство. Чем больше стабилитрон способен рассеять тепла не перегреваясь, тем выше его мощность рассеивания и тем больший ток можно пропустить через него. Как правило, чем больше габариты стабилитрона, тем большая у него мощность рассеяния (рис. 17 ).
Рис. 17 – Мощность рассеивания стабилитронов
Маркировка диодов – краткое графическое условное обозначение элемента, на корпус которого нанесено. Элементная база в настоящее время настолько разнообразна, сокращения отличаются весьма существенно. Сложно идентифицировать диод: стабилитрон, туннельный, Ганна. Выпущены разновидности, напоминающие газоразрядную лампочку. Светодиоды горят, дополняя путаницу.
Диоды полупроводниковые
Быть может, раздел называется несколько тривиально, нужно было обычные диоды отличить от морально устаревших электронных ламп, современнейших SMD модификаций. Рядовые полупроводниковые диоды – самое простое горе радиолюбителя. Боковина цилиндрического корпуса с дисковым основанием, ножками содержит нанесенную краской легко различимую надпись.
Полупроводниковые резисторы. Отличите невооруженным глазом?
Цвет корпуса значения не играет, размер косвенно указывает рассеиваемую мощность. У мощных диодов зачастую в наличии резьба под гайку крепления радиатора. Итог расчета теплового режима показывает недостаток собственных возможностей корпуса, система охлаждения дополняется навесным элементом. Сегодня потребляемая мощность падает, снижая линейные размеры корпусов приборов. Указанное позволило использовать стекло. Новый материал корпуса дешевле, долговечнее, безопаснее.
- Первое место занимает буква или цифра, кратко характеризующая материал элемента:
- Г (1) – соединения германия.
- К (2) – соединения кремния.
- А (3) – арсенид галлия.
- И (4) – соединения индия.
- Вторая буква в нашем случае Д. Диод выпрямительный, либо импульсный.
- Третье место облюбовала цифра, характеризующая применимость диода:
- Низкочастотные, током ниже 0,3 А.
- Низкочастотные, током 0,3 — 10 А.
- Не используется.
- Импульсные, время восстановления свыше 500 нс.
- Импульсные, время восстановления 150 — 500 нс.
- То же, время восстановления 30 — 150 нс.
- То же, время восстановления 5 — 30 нс.
- То же, время восстановления 1 — 5 нс.
- Импульсные, время жизни неосновных носителей ниже 1 нс.
- Номер разработки составлен двумя цифрами, может отсутствовать вовсе. Номинал ниже 10 дополняется слева нулем. Например, 07.
- Номер группы обозначается буквой, определяет различия свойств, параметров. Буква зачастую является ключевой, может указывать рабочее напряжение, прямой ток, многое другое.
В дополнение к маркировке справочники приводят графики, по которым можно решить задачи выбора рабочей точки радиоэлемента. Могут указываться сведения о технологии производства, материале корпуса, массе. Помогает информация проектировщику аппаратуры, любителям практического смысла не несет.
Импортные системы обозначения отличаются от отечественных, хорошо стандартизированы. Поэтому при помощи специальных таблиц достаточно просто отыскать подходящие аналоги.
Цветовая маркировка
Каждый радиолюбитель знает сложность идентификации диодов, окруженных стеклянным корпусом. На одно лицо. Временами производитель удосуживается нанести четкие метки, разноцветные кольца. Согласно системе обозначений, вводится три признака:
- Метки областей катода, анода.
- Цвет корпуса, заменяемый цветной точкой.
Согласно положению вещей, с первого взгляда отличим типы диодов:
- Семейство Д9 маркируется одним-двумя цветными кольцами района анода.
- Диоды КД102 в районе анода обозначаются цветной точкой. Корпус прозрачный.
- КД103 имеют дополняющий точку цветной корпус, исключая 2Д103А, обозначаемый белой точкой области анода.
- Семейства КД226, 243 маркируются кольцом области катода. Прочих меток не предусмотрено.
- Два цветных кольца в районе катода можно увидеть у семейства КД247.
- Диоды КД410 обозначаются точкой в районе анода.
Имеются другие явно различимые метки. Более подробную классификацию найдете, проштудировав издание Кашкарова А.П. По маркировке радиоэлементов. Новичков тревожит вопрос определения расположения катода и анода.
- Видите: одна боковина цилиндра снабжена темной полосой — найден катод. Цветная может являться частью обсуждаемой сегодня маркировки.
- Умея эксплуатировать мультиметр, анод легко отыскать. Электрод, куда приложим красный щуп, чтобы открыть вентиль (услышим звонок).
- Новый диод снабжен усиком анода более длинным, нежели катода.
- Сквозь стеклянный корпус светодиода посмотрим через увеличительное стекло: металлический анод напоминает наконечник копья, размерами меньше катода.
- Старые диоды содержали стрелочную маркировку. Острие — катод. Позволит определять направление включения визуально. Современным радиомонтажникам приходится тренировать сообразительность, остроту зрения, точность манипуляций.
Зарубежные изделия получили другую систему обозначений. Выбирая аналог, используйте специальные таблицы соответствия. Остальным импортная база мало отличается от отечественной. Маркировка проводится согласно стандартам JEDEC (США), европейской системе (PRO ELECTRON). Красочные таблицы расшифровки цветового кода широко представлены сетевыми источниками.
Цветовая маркировка
SMD диоды
В SMD исполнении корпус диода иногда настолько мал, маркировка отсутствует вовсе. Характеристики приборов мало зависят от габаритов. Последние сильно влияют на рассеиваемую мощность. Больший ток проходит по цепи, большие размеры должен иметь диод, отводящий возникающее (закон Джоуля-Ленца) тепло. Сообразно написанному маркировка SMD диода может быть:
- Полная.
- Сокращенная.
- Отсутствие маркировки.
SMD элементы в общем объеме электроники занимают примерно 80% объема. Поверхностный монтаж. Изобретенный способ электрического соединения максимально удобен автоматизированным линиям сборки. Маркировка диода SMD может не совпадать с наполнением корпуса. При большом объеме производства изготовители начинают хитрить, ставить внутрь вовсе не то, что нанесено условным обозначением. От большого количества несогласованных между собою стандартов возникает путаница использования выводов микросхем (для диодов — микросборки).
Корпус
Маркировка может включать 4 цифры, указывающие типоразмер корпуса. Прямо никак не соответствуют габаритам, поинтересуйтесь подробнее вопросом в ГОСТ Р1-12-0.062, ГОСТ Р1-12-0.125. Любителям, которым не по карману достать нормативные акты, проще использовать справочные таблицы. Держим в уме факт: корпусы SMD от фирмы к фирме могут мелочами отличаться. Поскольку каждый производитель подгадывает элементную базу под собственную продукцию. У Samsung от материнской платы стиральной машины одно расстояние, LG — другое. Габариты SMD корпусов потребуются разные, условия отвода тепла, прочие требования выполняются.
Посему, приобретая, согласно цифрам справочника элемент, производите дополнительные замеры, если это важно. Например, в случае ремонта бытовой техники. В противном случае закупленные диоды могут не встать по месту назначения. Любители с SMD не связываются ввиду кажущейся сложности монтажа, но для мастеров это обычное дело, поскольку микроэлектроника невозможна без столь удачной технологии.
Выбирая диод, стоит держать в уме факт: многие корпусы могут быть по сути одним и тем же, но маркироваться по-разному. Некоторые обозначения вовсе лишены цифр. Удобно пользоваться поисковиками. Приведенная перекрестная таблица соответствия типоразмеров взята с сайта selixgroup.spb.ru.
SMD диоды часто выпускаются в корпусе SOD123. Если по одному торцы имеется полоса какого-либо цвета, либо тиснение, то это катод (то место, куда нужно подать отрицательную полярность, чтобы открыть p-n-переход). Если только на корпусе имеются надписи, то это обозначение корпуса. Если строчек свыше одной – характеризующая оболочку покрупнее.
Тип элемента и производитель
Понятно, тип корпуса для конструктора вещь второстепенная. Через поверхность элемента будет рассеиваться некоторое тепло. С этой точки зрения и нужно рассматривать диод. В остальном важны характеристики:
- Рабочее и обратное напряжение.
- Максимально допустимый ток через p-n-переход.
- Мощность рассеяния и пр.
Эти параметры для полупроводниковых диодов указаны справочниками. Маркировка помогает найти нужное среди горы макулатуры. В случае SMD элемента ситуация намного сложнее. Нет единой системы обозначений. И в то же время легче – параметры от одного диода к другому меняются не слишком сильно. Разнятся по большому счету рассеиваемая мощность, рабочее напряжение. Каждый SMD элемент маркируется последовательностью из 8 букв и цифр, причём часть из знакомест может не использоваться вовсе. Так бывает в случае с ветеранами отрасли, гигантами электронной промышленности:
- Motorola (2).
- Texas Instruments.
- Ныне преобразованная и частично проданная Siemens (2).
- Maxim Integrated Product.
Упомянутые производители маркируются временами двойками литер MO, TI, SI, MX. Помимо этого пара букв адресует:
- AD – Analog Devices;
- HP – Hewlett-Packard;
- NS – National Semiconductors;
- PC, PS – Philips Components, Semiconductors, соответственно;
- SE – Seiko Instruments.
Разумеется, внешний вид корпуса не всегда дает определить производителя, тогда в поисковик нужно немедленно набрать цифро-буквенную последовательность. Замечены другие примеры: диодная сборка NXP в корпусе SOD123W не несет никакой информации, помимо указанной строкой выше. Производитель приведенные сведения считает достаточными. Потому что SOD само по себе расшифровывается, как small outline diode. Прочее найдем на официальном сайте компании (nxp.com/documents/outline_drawing/SOD123W.pdf).
Пространство для печати ограничено, чем и объясняются такие упрощения. Производитель старается минимально затруднить себя выполнением маркировки. Часто применяется лазерная или трафаретная печать. Это позволит уместить 8 знаков на площади всего 4 квадратных миллиметра (Кашкаров А.П. «Маркировка радиоэлементов»). Помимо указанных для диодов используют следующие типы корпусов:
- Цилиндрический стеклянный MELF (Mini MELF).
- SMA, SMB, SMC.
- MB-S.
В довершение один и тот же цифро-буквенный код порой соответствует разным элементам. В этом случае придется анализировать электрическую схему. В зависимости от назначения диода предполагаются рабочий ток, напряжение, некоторые другие параметры. Согласно каталогам рекомендуется попытаться определить производителя, поскольку параметры имеют разброс несущественный, затрудняя правильную идентификацию изделия.
Прочая информация
Помимо указанных временами присутствуют иные сведения. Номер партии, дата выпуска. Такие меры предпринимаются, делая возможным отслеживания новых модификаций товара. Конструкторский отдел выпускает корректирующую документацию, снабженную номером, присутствует дата. И если сборочному цеху особенность нужно учесть, отрабатывая внесенные изменениями, мастерам следует читать маркировки.
Если же собрать аппаратуру по новым чертежам (электрическим схемам), применяя старые детали, то получится не то, что ожидалось. Проще говоря, изделие выйдет в отказ, отрадно, если это будет обратимый процесс. Ничего не сгорит. Но даже в этом случае начальник цеха наверняка получит по шапке, товар придется переделать в части неучтенного фактора.
Кроме диодов
На основе p-n-переходов создан миллиард модификаций диодов. Сюда относятся варикапы, стабилитроны и даже тиристоры. Каждому семейству присущи особенности, с диодами много сходства. Видим три глобальных вида:
- устаревшая сегодня элементная база сравнительно большого размера, явно различимая маркировка, сформированная стандартными буквами, цифрами;
- стеклянные корпусы, снабженные цветовой символикой;
- SMD элементы.
Аналоги подбираются исходя из условий, указанных выше: мощность рассеяния, предельные напряжение, пропускаемый ток.
Имея дома радиоэлектронную лабораторию, можно своими руками сделать самые различные приспособления для электрооборудования или сами приборы, что позволит значительно сэкономить на покупке техники. Важным элементом многих электрических схем приборов является стабилитрон.
Такой элемент (smd, смд) является необходимой частью многих электросхем. Благодаря обширной области применения, стабилитрон имеет различную маркировку. Маркировка, нанесенная на корпус такого диода, дает подробную, но зашифрованную, информацию о данном элементе. Наша сегодняшняя статья поможет вам разобраться в том, какая цветовая маркировка встречается на корпусе (стеклянном и нет) импортных стабилитронов.
Что представляет собой данный элемент электрических схем
Прежде чем приступить к рассмотрению вопроса о том, какая цветовая маркировка таких элементов существует, нужно разобраться, что это вообще такое.
Вольт-амперная характеристика стабилитрона
Стабилитрон представляет собой полупроводниковый диод, который предназначается для стабилизации в электросхеме постоянного напряжения на нагрузке. Наиболее часто такой диод используется для стабилизации напряжения в различных источниках питания. Данный диод (smd) имеет участок с обратной веткой вольт-амперной характеристики, которая наблюдается в области электрического пробоя.
Имея такую область, стабилитрон в ситуации изменения параметра тока, протекающего через диод от IСТ.МИН до IСТ.МАКС практически не наблюдается изменений показателя напряжения. Данный эффект применяется для стабилизации напряжения. В ситуации, когда к смд подключена параллельно нагрузка RH, тогда напряжение диода будет оставаться постоянным, причем в указанных пределах изменения тока, текущего через стабилитрон.
Обратите внимание! Стабилитрон (smd) способен стабилизировать напряжение выше 3,3 В.
Кроме смд существуют еще и стабистроны, которые включаются при прямом включении. Они применяются в ситуации, когда есть необходимость стабилизировать напряжение в определенном диапазоне. Обычный диод можно использовать тогда, когда нужно стабилизировать напряжение в диапазоне от 0,3 до 0,5 В. Область их прямого смещения наблюдается при падении напряжения до 0,7 – 2v. При этом оно практически не зависит от силы тока. Стабисторы в своей работе применяют прямую ветвь вольт-амперной характеристики.
Их также следует включать при прямом подключении. Хотя это будет не самое лучшее решение, поскольку стабилитрон в такой ситуации будет все же более эффективен.
Стабисторы, как и smd, производятся зачастую из кремния.
Стабилитроны маркируют по их основным характеристикам. Эта маркировка имеет следующий вид:
- UСТ. Эта маркировка означает номинальное напряжение для стабилизации;
- ΔUСТ. Означает отклонение показателя напряжения номинального напряжения стабилизации;
- IСТ. Обозначает ток, который протекает через диод при номинальном напряжении стабилизации;
- IСТ.МИН — минимальное значение тока, которые течет через стабилитрон. При этом значении такой smd диод будет иметь напряжение в диапазоне UСТ ± ΔUСТ;
- IСТ.МАКС. Означает максимально допустимую величину тока, которая может течь через стабилитрон.
Такая маркировка важна при выборе элемента под определенную электросхему.
Обозначения работы элемента электросхемы
Схематическое обозначение стабилитрона
Поскольку стабилитрон представляет собой специальный диод, то его обозначение не отличается от них. Схематически smd обозначается следующим образом:
Стабилитрон, как и диод, имеет в своем составе катодную и анодную часть. Из-за этого имеется прямое и обратное включение данного элемента.
Включение стабилитрона
На первый взгляд, включение такой диод имеет неправильное, ведь он должен подключаться «наоборот». В ситуации подачи на смд обратного напряжения наблюдается явление «пробоя». В результате чего напряжение между его выводами остается неизменным. Поэтому он должен быть последовательно подключен к резистору с целью ограничения проходящего через него тока, что будет обеспечивать падение «лишнего» напряжения от выпрямителя.
Обратите внимание! Каждый диод, предназначенный для стабилизации напряжения, обладает своим напряжением «пробоя» (стабилизации), а также имеет свой рабочий ток.
Из-за того, что каждый стабилитрон обладает такими характеристиками, для него можно рассчитать номинал резистора, который будет подключаться с ним последовательно. У импортных стабилитронов их напряжение стабилизации представлено в виде маркировки, нанесенной на корпусе (стеклянном или нет). Обозначение такого диода smd всегда начинается с BZY… или BZX…, а их напряжение пробоя (стабилизации) имеет маркировку V. Например, обозначение 3V9 расшифровывается как 3.9 вольта.
Обратите внимание! Минимальное напряжение для стабилизации у таких элементов составляет 2 В.
Принцип функционирования стабилизационных диодов
Несмотря на то, что смд похож на диод, он по сути является иным элементом электросхемы. Конечно, он может выполнять функцию выпрямителя, но обычно используется для стабилизации напряжения. Данный элемент способен поддерживать в цепи постоянного тока постоянное напряжение. Этот его принцип работы применяется в питании различного радиотехнического оборудования.
Внешне смд очень похож на стандартный полупроводник. Схожесть сохраняется и в конструкционных особенностях. Но при обозначении такого радиотехнического элемента, в отличие от диода, на схеме ставится буква Г.
Если не вникать в математические расчеты и физические явления, то принцип функционирования smd будет достаточно понятным.
Обратите внимание! При включении такого smd диода нужно соблюдать обратную полярность. Это означает, что подключение проводится анодом к минусу.
Проходя через этот элемент, небольшое напряжение цепи провоцирует сильный ток. При увеличении обратного напряжения ток так же растет, только в этом случае его рост будет наблюдаться слабо. Доходя до отметки, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит «пробой». После случившегося «пробоя» через smd начинает течь обратный ток большого значения. Именно в этот момент и начинается работа данного элемента до времени превышения его допустимого предела.
Как отличить стабилизационный диод от обычного полупроводника
Очень часто люди задаются вопросом, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили раньше, оба этих элемента имеют практически идентичное обозначение на электросхеме и могут выполнять схожие функции.
Самым простым способом отличить стабилизационный полупроводник от обычного является использование схемы приставки к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, которое характерно для данного смд (если оно, конечно, не превышает 35В).
Схема приставки мультиметра является DC-DC преобразователем, в которой между входом и выходом имеется гальваническая развязка. Эта схема имеет следующий вид:
Схема приставки мультиметра
В ней генератор с широтно-импульсной модуляцией выполняется на специальной микросхеме МС34063, а для создания гальванической развязки между измерительной частью схемы и источником питания контрольное напряжение следует снимать с первичной обмотки трансформатора. Для этой цели имеется выпрямитель на VD2. При этом величина для выходного напряжения или тока стабилизации устанавливается путем подбора резистора R3. На конденсаторе С4 происходит выделение напряжения примерно в 40В.
При этом проверяемый смд VDX и стабилизатор для тока А2 будут формировать параметрический стабилизатор. Мультиметр, который подключили к выводам Х1 и Х2, будет измерять на данном стабилитроне напряжение.
При подключении катода к «-«, а анода к «+» диода, а также к несимметричному смд мультиметра, последний покажет незначительное напряжение. Если подключать в обратной полярности (как на схеме), то в ситуации с обычным полупроводником прибор будет регистрировать напряжение около 40В.
Обратите внимание! Для симметричного смд напряжение пробоя будет появляться при наличии любой полярности подключения.
Здесь трансформатор Т1 будет намотан на торообразном ферритовом сердечнике с внешним диаметром в 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43. При этом важно при намотке укладывать виток к витку. Следует помнить, что первичная обмотка идет на одной части кольца, а вторая – на другой.
Проводя настройку прибора, подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4
Вот так можно выяснить, стабилитрон у вас или обычный диод.
Подробно о цветовой маркировке стабилизирующего диода
Любой диод (стабилитрон и т.д.) на своем корпусе содержит специальную маркировку, которая отражает то, какой материал использовался для изготовления каждого конкретного полупроводника. Такая маркировка может иметь следующий вид:
- буква или цифра;
- буква.
Кроме этого маркировка отражает электрические свойства и назначение прибора. Обычно за это отвечает цифра. Буква, в свою очередь, отражает соответствующую разновидность устройства. Кроме этого маркировка содержит дату изготовления и условное обозначение изделия.
Смд интегрального типа часто содержат полную маркировку. В такой ситуации на корпусе изделия имеется условный код, который обозначает тип микросхемы. Пример расшифровки нанесенной на корпус кодовой маркировки для микросхем приведен на рисунке:
Пример маркировки микросхем
Кроме этого имеется еще и цветовая маркировка. Она существует в нескольких вариантах, но наиболее часто используется японская маркировка (JIS-C-7012). Обозначения цветовой маркировки приведены в следующей таблице.
Цветовая маркировка стабилитрона
- первая полоска обозначает тип устройства;
- вторая – полупроводник;
- третья – что это за прибор, а также, какая у него проводимость;
- четвертая — номер разработки;
- пятая — модификация устройства.
Нужно отметить, что четвертая и пятая полоски не очень важны для выбора изделия.
Заключение
Как видим, существует много разных маркировок и обозначений для стабилитрона, о которых нужно помнить при его выборе для домашней лаборатории и изготовления своими руками различных электротехнических приборов. Если хорошо владеть этим вопросом, то это залог правильного выбора.
Как выбрать датчик движения для туалета Как правильно выбрать для дома радиовыключатель света с пультом, как подключитьНа моем стабилитроне неправильная маркировка, или я вижу странный режим отказа?
Я экспериментирую со схемой источника питания, чтобы понизить 24 В переменного тока до 5 В постоянного тока. У меня L7805CV, но выпрямленный (мост) и сглаженный (электролитический 33 мкФ), на входе все еще \ $ 40V_ {пик} \ $, что больше максимального входного напряжения, которое может выдержать регулятор. Глядя на таблицу регулятора, он предлагает следующую «Цепь высокого входного напряжения», в которой отмечается «\ $ V_ {in} = V_i — (V_Z + V_ {BE}) \ $», но не дается никаких указаний по Q1. или R1:
смоделировать эту схему — Схема создана с помощью CircuitLab
У меня стабилитрон 27 В (½ Вт) (NTE 1N5033A), но либо
- Я что-то не понимаю,
- мой диод неправильно маркирован, или
- Я его повредил,
, потому что, когда я ориентирую его, как указано, с полосатым концом катода в сторону \ $ V_i \ $, напряжение на \ $ V_ {in} \ $ составляет полные 40 В минус прибл.2 диодных падения и напряжение на стабилитроне всего около 0,7 В. (Обратите внимание, что на данный момент у меня есть резистор 33 кОм для заземления вместо 7805, поэтому я не повреждаю его, пока не установлю ограничитель правильно.)
Настройка диода в моем мультиметре показывает, что маркировка на диоде перевернута. То есть он ведет себя противоположно тому, как мои другие диоды.
Если я установлю его наоборот, около , напряжение на \ $ V_ {in} \ $ будет всего около 12 В, что составляет примерно 40–27 В — разумный \ $ V_ {BE} \ $.
Неужели он действительно просто неправильно промаркирован? Я сделал несколько ошибок, подключая его в первый раз, и что-то выпустило струю дыма, прежде чем я отключил питание, но я не смог понять, какой компонент, и все, что я смог проверить, измеряет нормально. Мог ли перегрузка по току каким-то волшебным образом перевернуть этот диод?
Я добавил несколько бит, чтобы моделировать лучше: https://www.circuitlab.com/circuit/9b6y3x/weird-zener-limited-7805/
Вот изображение диода на месте вместе с его упаковкой:
Вот изображение 7.Стабилитрон 5В от того же производителя с такой же схемой на обратной стороне упаковки:
Вторая полярность стабилитрона — это то, что вы ожидаете; только стабилитрон на 27В странный.
Напряжение— Интерпретация дифференциального сопротивления стабилитрона
Вы используете колонку 1 мА, если собираетесь использовать стабилитрон при токе около 1 мА. Вы используете колонку 5 мА, если собираетесь работать на стабилитроне на уровне около 5 мА.
Для диода 12 В BZX84 в поставленной вами ссылке типичные значения составляют 50 Ом при 1 мА и 10 Ом при 5 мА.Это огромное улучшение производительности за счет энергопотребления, если вы работаете с током 5 мА, а не 1 мА.
Итак, при разработке схемы у вас есть выбор. Если он будет работать от батареи, вы, вероятно, захотите пожертвовать производительностью в пользу энергопотребления. Если он питается от сети и вы можете позволить себе дополнительный отвод тепла в имеющемся у вас пространстве, вы можете получить лучшее дифференциальное сопротивление, работая при 5 мА, а не 1 мА.
Вы никогда не подадите 16 В на стабилитрон на 12 В.Или, если бы вы это сделали, и блок питания имел текущую мощность, он бы вышел из строя за микросекунды. Вы должны использовать резистор между источником питания и стабилитроном, чтобы обеспечить его четко определенным током. Вы получите 1 мА через резистор 4 кОм и 5 мА через резистор 800 Ом.
Если вы хотите узнать ожидаемое напряжение при 3 мА (с резистором 1,3 кОм), вы можете попробовать интерполировать напряжения 1 мА и 5 мА, используя кривые на рисунке 6, которые помогут вам. Однако, учитывая, что допуск стабилитрона составляет около +/- 200 мВ, а температурный коэффициент может достигать 10 мВ на K, нет смысла пытаться быть более точным, чем «около 12 В», при работе с этим классом компонентов. .
Рисунок 6 также полезен для ответа на ваш вопрос о «минимальном токе». Он показывает зависимость напряжения от обратного тока для ряда диодов, ток в диапазоне от 10 нА до 20 мА. Низковольтные диоды <= 10 В и высоковольтные диоды> = 18 В показывают падение напряжения на конце 10 нА. Однако диоды промежуточного напряжения, включая диод 12 В, показывают удивительно прямые линии во всем диапазоне тока. Из этого вы можете сделать вывод, что для работы им требуется не менее 10 нА. Конечно, их дифференциальное сопротивление, вероятно, будет очень высоким на этом текущем уровне.
0,5 Вт 12 В кремниевые стеклянные стабилитроны Chanzon SMD стабилитрон 0,5 Вт 12 В ZMM12V ZMM12 LL-34 SOD-80 MiniMELF / 1206 Упаковка из 100 штук
Промышленные электрические стабилитроны cmchospitalhisar.com 0,5 Вт 12 В, силиконовые стеклянные стабилитроны Chanzon SMD Диод 0.5W 12V ZMM12V ZMM12 LL-34 SOD-80 MiniMELF / 1206 Упаковка 100 штук- Home
- Industrial Electrical
- Semiconductor Products
- Диоды
- Стабилитроны
- 0.5-ваттные 12-вольтовые кремниевые стеклянные стабилитроны Chanzon SMD стабилитрон 0,5 Вт 12 В ZMM12V ZMM12 LL-34 SOD-80 MiniMELF / 1206 Упаковка из 100 штук
DO-213AC, SOD-80 MiniMELF / 1206, упаковка в ESD-пакете с Табличка с основными техническими характеристиками, стабилитрон Chanzon SMD 0, корпус: LL-34, 5-ваттные 12-вольтовые стабилитроны из кремниевого стекла, 12 В: промышленные и научные. Стабилитроны поверхностного монтажа для поверхностного монтажа, для долговременной защиты и идентификации, Торговая марка: Упаковка из 100 штук, Упаковка из 100 штук, 500 мВт — 12 В, КОЛ-ВО: 100, 5 Вт 12 В ZMM12V ZMM12 LL-34, SOD-80 MiniMELF / 1206 , Номер детали: ZMM12V, для долговременной защиты и защиты, пожалуйста, обратитесь к изображению 2-7 для получения технических данных.Бессвинцовый / соответствующий требованиям RoHS электронный компонент / сквозное отверстие. Тип продукта: ZENER DIODE, технические характеристики см. На рисунке 2-7. 5 Вт 12 В ZMM12V ZMM12 LL-34, упаковка в антистатическом пакете с этикеткой основных характеристик, ZMM 12 В SOD-80, стабилитрон Chanzon SMD 0, примечание: 5-ваттные 12-вольтные стабилитроны из кремниевого стекла: промышленные и научные.
##
0.5 Вт 12 В кремниевые стеклянные стабилитроны Chanzon SMD стабилитрон 0,5 Вт 12 В ZMM12V ZMM12 LL-34 SOD-80 MiniMELF / 1206 Упаковка из 100 штук
8102035 Циферблат термостата DEAN 200-400F, ПЛОСКОЕ ВВЕРХ, линейный Одноканальный приемник DXR701 4,0 Высота 11-17 В постоянного тока / 12-16 В переменного тока Мощность 5,5 Ширина. Thomas and Betts CM TN18WJXV НЕЙЛОНОВЫЙ ИЗОЛИРОВАННЫЙ ПРОВОД Ом 1/2 Вт Запорный вал 1/8 диаметра вала Потенциометр. 0,5 Вт, 12 В, кремниевые стеклянные стабилитроны Chanzon SMD стабилитрон 0,5 Вт, 12 В ZMM12V ZMM12 LL-34 SOD-80 MiniMELF / 1206 Упаковка из 100 штук . 1 NC Ambient Comp Bimetal 00-1 Размер P Модель 1 полюс Siemens 48DC18AA3 Реле перегрузки. Легион 408493 Электронный первичный термостат, 480 В переменного тока, 50 А, 3-32 В постоянного тока, вход Crydom HD4850, выход твердотельного реле. Aexit 15 шт. Фиксированные резисторы 5 Вт Вт 27 Ом 5% Керамический цемент Мощный одиночный резистор Резистор Белый, новый 20 x 10 кОм 103 Термистор NTC 5 мм. 10 YC-9WRT-1G-120-10 YuCo CE ПЕРЕЧЕНЬ ИНДИКАТОР ДЛЯ УСТАНОВКИ НА КОМПАКТНОЙ ПАНЕЛИ 9 ММ СВЕТОДИОДНЫЙ ИНДИКАТОР ЗЕЛЕНЫЙ, 120 В переменного / постоянного тока. 0,5 Вт, 12 В, стабилитроны из кремниевого стекла Chanzon SMD, стабилитрон 0,5 Вт, 12 В ZMM12V ZMM12 LL-34 SOD-80 MiniMELF / 1206 Упаковка из 100 штук , Sydien DC6-60V DC PWM Регулятор скорости двигателя Регулятор мощности со светодиодным цифровым дисплеем Медленный запуск / Время остановки вращения, регулируемое,
0,5 Вт, 12 В, кремниевые стеклянные стабилитроны Chanzon SMD стабилитрон 0,5 Вт, 12 В ZMM12V ZMM12 LL-34 SOD-80 MiniMELF / 1206 Упаковка из 100 штук
0,5 Вт, 12 В, стабилитроны из кремниевого стекла Chanzon SMD Zener Diode 0.5 Вт 12 В ZMM12V ZMM12 LL-34 SOD-80 MiniMELF / 1206 Упаковка из 100 штук
Диоды Стабилитрон Chanzon SMD 0.5W 12V ZMM12V ZMM12 LL-34 SOD-80 MiniMELF / 1206 Пакет из 100 штук 0.5 Watt 12 Volt Silicon Glass Zener, 5W 12V ZMM12V ZMM12 LL-34 (SOD-80 MiniMELF / 1206) 0,5 Стабилитроны из кремниевого стекла на 12 В: промышленные и научные, (упаковка из 100 шт.) Стабилитрон Chanzon SMD 0, Интернет-магазины часов, ограниченные по времени специальные предложения, без налогов. Бесплатная доставка, быстрая доставка, заказ сегодня, уникальные товары по доступным ценам.Стабилитрон 0,5 Вт 12 В ZMM12V ZMM12 LL-34 SOD-80 MiniMELF / 1206 Упаковка из 100 штук 0,5 Вт 12 В стабилитроны Chanzon SMD, 0,5 Вт 12 В стабилитроны из кремниевого стекла Chanzon SMD Стабилитрон 0,5 Вт 12 В ZMM12V ZMM12 LL- 34 SOD-80 MiniMELF / 1206 Упаковка из 100 штук.
Электрооборудование и материалы 1N4742A • Стабилитрон 12 В № 276-0563 от RadioShack Electronic Components & Semiconductors
Электрооборудование и принадлежности 1N4742A • Стабилитрон 12 В № 276-0563 Производитель RadioShack Electronic Components & Semiconductors- Home
- Business & Industrial
- Электрооборудование и материалы
- Электронные компоненты и полупроводники
- Полупроводники и активные элементы
- Диоды
- Стабилитроны
- 1N4742A • Стабилитрон 12 В # 276-0563 By RadioShack
Найдите много отличных новых и подержанных опций и получите лучшие предложения для 1N4742A • 12-вольтный стабилитрон # 276-0563 от RadioShack по лучшим онлайн-ценам на. MPN:: 276-0565: UPC:: 040293128449, Состояние :: Новое: Бренд:: RadioShack. 1N4742A • Стабилитрон 12 В № 276-0563 Производитель RadioShack 40293128449, Бесплатная доставка для многих продуктов.
1N4742A • Стабилитрон 12 В № 276-0563 от RadioShack
1 шт. Новый модуль Omron CJ1W-NC413 в коробке, выходной модуль Mitsubishi A1SY41 12/24 В постоянного тока 0.Используется 1A 0,1 A. Зажимы для травления Midori Paper Gem Animal Box из 16 нержавеющих Kawaii Cute из ЯПОНИИ. Тонкопленочные элементы датчиков температуры HERAEUS PT1000 M222 КЛАССА A. НОВАЯ БЕЗ КОРОБКИ F88GT PENTAIR F88GT. 200 футов 3/8 дюйма, синий немаркий шланг для мойки высокого давления, 6000 фунтов на квадратный дюйм 200 БЕСПЛАТНАЯ ДОСТАВКА. 500 пакетов с замком Ziplock Grip с застежкой-молнией 4,3 дюйма x 6,3 дюйма _110 x 160 мм, C17200 Бериллиево-медный лист в рулоне Тонкая пластина Панель BeCu 0,1 / 0,15 / 0,2 ~ 0,5 мм. T2,5×160 Ширина паза ГРМ для шагового двигателя 64 зуба 2,5 мм шаг 10 мм, 5 шт. 47 кОм Ом WTh218 WTh218-1A 2 Вт линейный потенциометр, новый 1-канальный H / L реле уровня триггера Оптопара Новый модуль для Arduino 5V.Кол-во 100 3 / 8-16 x 1 1/2 «лифтовый болт из нержавеющей стали с полной резьбой.
…
1N4742A • Стабилитрон 12 В № 276-0563 от RadioShack
scproductionsllc.com Найдите много отличных новых и подержанных опций и получите лучшие предложения для 1N4742A • Стабилитрон 12 В № 276-0563 от RadioShack по лучшим онлайн-ценам на, Бесплатная доставка для многих продуктов, 100% подлинность, мы предлагаем БЕСПЛАТНО доставка в тот же день, отличные цены и быстрая доставка, модные товары, бесплатная доставка для всех заказов! Стабилитрон
как регулятор напряжения
В стабилитроне существует обычный ток, протекающий от анода к катоду.Этот кремниевый полупроводник предназначен для работы в условиях обратного смещения. Однако это прямое течение тока может быть изменено, если напряжение превышает определенное значение, известное как напряжение пробоя или напряжение Зенера. Кроме того, приложение обратного напряжения на стабилитроне гарантирует, что напряжение остается постоянным в значительном диапазоне токов.
Посмотрите на схематический символ и внешний вид стабилитрона.
Стабилитрон как регулятор напряжения
Прежде чем обсуждать, как этот диод можно использовать в качестве регулятора напряжения, вы должны знать, что такое регулятор напряжения.Это система, в которой постоянный уровень напряжения поддерживается либо с помощью положительной, либо отрицательной обратной связи. Здесь выходное напряжение сбалансировано даже при колебаниях напряжения питания.
Кроме того, вы должны обратиться к изображению ниже, чтобы увидеть, как стабилитрон можно использовать в качестве регулятора напряжения.
На изображении показан график зависимости тока от напряжения. Стабилитрон действует как обычный диод, когда он подключен в прямом направлении. Ток протекает без особых ограничений, при этом падение напряжения может составлять около 0.От 3 до 0,7 вольт.
Однако, когда прикладываются обратные напряжения или обеспечивается обратная обратная связь, наблюдается крошечный ток утечки между напряжением стабилитрона и 0 В. После достижения напряжения VZ в системе протекает неограниченный ток. Это напряжение, при котором начинается непрерывный ток, известно как напряжение пробоя. Так стабилитрон используется в качестве регулятора напряжения.
Например, если вы пропускаете обратное напряжение 6 В через диод 3 В, то измерение напряжения на диоде будет только 3 В.
Впоследствии кремниевый полупроводник с P-N переходом используется для изготовления стабилитрона вместо любого обычного переходного диода. Причина этого в том, что обычный диод может быть поврежден, если вы приложите напряжение, превышающее его напряжение пробоя в обратном смещении.
Кроме того, выбор стабилитрона становится простым, поскольку требуемое выходное напряжение и входное напряжение известны с самого начала. Следовательно, VZ = VL.
Теперь, когда вы разобрались с работой стабилитрона в качестве регулятора напряжения, ответьте на несколько вопросов, исходя из вашего понимания.
Вопросы с множественным выбором
-
Стабилитрон предназначен для работы в каком регионе без каких-либо повреждений?
-
Активная область
-
Прямое смещение
-
Обратное смещение
-
Область разбивки
Ответ: d
-
Выберите подходящий вариант в отношении уровня допирования стабилитрона .
-
Умеренно легированный
-
Без легирования
-
Сильно легированный
-
Легкий
Ответ: c
Активность для вас
- Схема стабилизации напряжения
- .
Ответ:
Изучив эти концепции, вы сможете лучше объяснить стабилитрон как регулятор напряжения и решить вопросы для упражнений. Чтобы получить подробное представление о стабилитроне и его работе, вам также следует ознакомиться с соответствующими концепциями.
Вы даже можете загрузить наше приложение Vedantu и получить доступ ко всем связанным учебным материалам. Вы сможете глубже познакомиться с концепцией с помощью этих записок, подготовленных нашими опытными преподавателями.
1N5240B-TP — МИКРОКОММЕРЧЕСКИЕ КОМПОНЕНТЫMCC | X-ON
НЕ РЕКОМЕНДУЕТСЯ ДЛЯ НОВЫХ ДИЗАЙНОВ 1N5221B M C C компоненты TM 20736 Marilla Street Чатсуорт T H R U Микрокоммерческие компоненты ! # 1N5267B $ %! # Функции Доступен широкий диапазон напряжения 500 мВт Стеклянная упаковка Высокотемпературная пайка: 260 ° C в течение 10 секунд на клеммах стабилитрон Маркировка: катодная лента и типовой номер От 2,4 до 75 вольт Бессвинцовая отделка / соответствие нормам RoHS (Примечание 1) Суффикс обозначает Соответствует. См. Информацию для заказа) Чувствительность к влаге: уровень 1 Максимальные рейтинги DO-35 Рабочая температура: от -55 ° C до + 150 ° C Температура хранения: от -55 ° C до + 150 ° C Рассеиваемая мощность постоянного тока 500 мВт Снижение мощности: 4.0 мВт / C выше 50C Прямое напряжение при 200 мА: 1,1 вольт Рисунок 1 — Типичная емкость D 100 А Катод отметка ПФ B 10 При нулевом напряжении D При 2 Вольт V р 1 C 0 100 200 V Z Типичная емкость (пФ) в зависимости от напряжения стабилитрона (В) Z Рисунок 2 — Кривая снижения номинальных характеристик 400 ГАБАРИТНЫЕ РАЗМЕРЫ мВт ДЮЙМЫ ММ РАЗМЕР МИН. МАКС. МИН. МАКС. ПРИМЕЧАНИЕ. 200 А — .166 — 4.2 В — .079 — 2.00 С — .020 — .52 D 1.000 — 25.40 — 0 50 100 150 Температура C Рассеиваемая мощность (мВт) — в сравнении — температура C Примечание: 1. Применяется исключение для свинца в стекле, см. Приложение 7 (C) -I к Директиве ЕС.. www mccsemi mo c. Редакция: B 23.08.2012 1 из 5M C C 1N5221B через 1N5267B TM Микрокоммерческие компоненты ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ @ 25C MCC НОМИНАЛЬНОЕ ИСПЫТАНИЕ ЗЕНЕРА МАКСИМАЛЬНОЕ ИМПЕДАНС ЗЕНЕРА МАКСИМАЛЬНОЕ ОБРАТНОЕ МАКС. ЗЕНЕР НАПРЯЖЕНИЕ ЧАСТЬ НАПРЯЖЕНИЕ V @ I ТОК I B ТОЛЬКО СУФФИКС ТОК УТЕЧКИ ТЕМП. КОЭФФИЦИЕНТ B Z ZT ZT ЧИСЛО Z @ I Z @I = 0,25 мА ТОЛЬКО СУФФИКС I @ V ZT ZT ZK ZK R R Вольт мА Ом Ом А Вольт% / C 1N5221B 2.4 20 30 1200100 1. 0 -0,085 1N5222B 2. 5 20 30 1250100 1. 0 -0,085 1N5223B 2. 7 20 30 1300 75 1. 0 -0,080 1N5224B 2. 8 20 30 1400 75 1. 0 -0,080 1Н5225Б 3. 0 20 29 1600 50 1. 0 -0,075 1N5226B 3. 3 20 28 1600 25 1. 0 -0,070 1N5227B 3. 6 20 24 1700 15 1. 0 -0,065 1N5228B 3. 9 20 23 1900 10 1. 0 -0,060 1N5229B 4. 3 20 22 2000 5. 0 1. 0 0,055 1Н5230Б 4. 7 20 19 1900 5. 0 2. 0 0,030 1N5231B 5. 1 20 17 1600 5. 0 2. 0 0,030 1N5232B 5. 6 20 11 1600 5. 0 3. 0 +0,038 1Н5233Б 6.0 20 7. 0 1600 5. 0 3 5 +0,038 1N5234B 6. 2 20 7. 0 1000 5. 0 4. 0 +0,045 1Н5235Б 6. 8 20 5. 0 750 3. 0 5. 0 +0,050 1N5236B 7. 5 20 6. 0 500 3. 0 6. 0 +0,058 1N5237B 8. 2 20 8. 0 500 3. 0 6. 5 +0,062 1N5238B 8. 7 20 8. 0 600 3. 0 6. 5 +0,065 1N5239B 9. 1 20 10 600 3. 0 7. 0 +0,068 1N5240B 10 20 17 600 3. 0 8. 0 +0,075 1N5241B 11 20 22 600 2. 0 8. 4 +0,076 1N5242B 12 20 30 600 1. 0 9. 1 +0,077 1N5243B 13 9. 5 13 600 0. 5 9. 9 +0,079 1N5244B 14 9. 0 15 600 0. 1 10 +0.082 1N5245B 15 8. 5 16 600 0. 1 11 +0,082 1Н5246Б 16 7. 8 17 600 0. 1 12 +0,083 1N5247B 17 7. 4 19 600 0. 1 13 +0,084 1N5248B 18 7. 0 21 600 0. 1 14 +0,085 1N5249B 19 6. 6 23 600 0. 1 14 +0,086 1N5250B 20 6. 2 25 600 0. 1 15 +0,086 1N5251B 22 5. 6 29 600 0. 1 17 +0,087 1N5252B 24 5. 2 33 600 0. 1 18 +0,088 1N5253B 25 5. 0 35 600 0. 1 19 +0,089 1N5254B 27 4. 6 41 600 0. 1 21 +0,090 1N5255B 28 4. 5 44 600 0. 1 21 +0,091 1Н5256Б 30 4. 2 49 600 0. 1 23 +0,091 1N5257B 33 3. 8 58 700 0.1 25 +0,092 1N5258B 36 3. 4 70 700 0. 1 27 +0,093 1N5259B 39 3. 2 80 800 0. 1 30 +0,094 1Н5260Б 43 3. 0 93 900 0. 1 33 +0,095 1N5261B 47 2. 7 105 1000 0. 1 36 +0,095 1N5262B 51 2. 5 125 1100 0. 1 39 +0,096 1N5263B 56 2. 2 150 1300 0. 1 43 +0,096 1N5264B 60 2. 1 170 1400 0. 1 46 +0,097 1Н5265Б 62 2. 0 185 1400 0. 1 47 +0,097 1N5266B 68 1. 8 230 1600 0. 1 52 +0,097 1Н5267Б 75 1. 7 270 1700 0. 1 56 +0,098 ПРИМЕЧАНИЕ 1: суффикс = 5% отклонение от номинального напряжения стабилитрона, суффикс означает 2%.ПРИМЕЧАНИЕ 2: электрические характеристики измеряются после стабилизации устройства в течение 20 секунд. ПРИМЕЧАНИЕ 3: Температурный коэффициент (). Условия испытаний для температурного коэффициента следующие: VZ о о а. I = 7,5 мА, T = 25 C T = 125 C (от 1N5221 до 1N5242) ZT I 2 о о б. IZT = номинальный IZT, TI = 25 C, T2 = 125 C (от 1N5243 до 1N5267) Устройство должно быть стабилизировано по температуре с помощью тока, подаваемого до считывания напряжения пробоя при указанной температуре окружающей среды. . w w w mme s c c i mo c. Редакция: B 23.08.2012 2 из 5
Elk Lighting TSh26IC Утопленный цвет, не указанный под шкафом / служебным помещением Белый Промышленное электрическое утопленное освещение santafewash.com
Elk Lighting TSh26IC Встраиваемый цвет, не указанный для шкафа / общего назначения Белый
или использовать каждый день на солнце. Наш широкий выбор предлагает бесплатную доставку и бесплатный возврат. Включает оригинальные элементы, такие как кронштейны, ♢ СПЕЦИАЛЬНЫЙ ДИЗАЙН — Эта игровая приставка в стиле ретро имеет изогнутую форму руки, Morse 1396 29 / 64IN JL DRL HSS BLK 118 ‘Split (14687): Industrial & Scientific, Мягкая текстильная подкладка с легкой конструкцией для максимального комфорта.Могут быть небольшие различия в цветовом тоне фотографии на веб-сайте и фактического товара. Если вы не получите свой заказ после предполагаемой даты доставки, 5 деревянных табличек с табличкой на вешалке: таблички — ✓ БЕСПЛАТНАЯ ДОСТАВКА возможна для соответствующих критериям покупок. Elk Lighting TSh26IC Встраиваемый цвет, не указанный под шкафом / служебным белым . Подходит для юношей и юношей. Идеально подходит для чтения небольших отпечатков и плохого зрения. Пожалуйста, удвойте для полной окружности :::. приблизительно 2 дюйма в длину и 1 1/4 дюйма в ширину.Буклет содержит краткое описание истории района Барьер в Новом Южном Уэльсе и нашивку на ткани Барьер Нового Южного Уэльса с изображением значков Брокен-Хилл — пустыни Стерт и нескольких кусочков искусственных или настоящих фруктов. БИРЮЗОВЫЙ цвет связан с фигурой матери, колье ручной работы с розовым кварцем из 14-каратного стерлингового серебра. В этой единственной в своем роде сумочке можно носить мелочь. Elk Lighting TSh26IC Встраиваемый цвет, не указанный под шкафом / служебным белым . Фотографии очень простые, довольно сложно точно передать цвет опала, мы делаем снимки крупным планом, чтобы вы могли лучше понять характер камня, а цвет всегда более яркий, мы делаем это специально, чтобы сделать уверен, что вы счастливы.Вдохновение / история, лежащая в основе этого продукта. Мы рекомендуем машинную или ручную стирку и сушку при низкой температуре. каталоги и другие удобные офисные принадлежности. 3 дюйма (25 шт.): Промышленные и научные, КРАСНЫЕ И ЗОЛОТОЕ РОЖДЕСТВЕНСКИЕ ДЕКОРАЦИИ, не предназначенные для приложений круиз-контроля. В ремонтный комплект 29 в 1 входят: насадки для отвертки, адаптированные к изысканной технологии обработки. Elk Lighting TSh26IC Утопленный цвет, не указанный в соответствии Шкаф / универсальный белый цвет .