555 таймер схема: Микросхема 555 практическое применение — Схемы радиолюбителей

Содержание

Схемы пороговых устройств на микросхеме 555. Применение выхода Output. Устройство с функцией задержки включения

Таймер NE555 является, пожалуй, самой популярной интегральной микросхемой своего времени. Несмотря на то, что он был разработан более 40 лет назад (в 1972 году) он до сих пор выпускается многими производителями. В этой статье, постараемся подробно осветить вопросы описания и применения таймера NE555.

Умные соединения компаратора, сбрасываемый триггер и инвертирующий усилитель в одной монолитной интегральной микросхеме, наряду с несколькими другими элементами породили почти бессмертные схемы устройств, которые сегодня используется многими радиолюбителями.

555 Таймер был разработан американской компанией Signetics в 1972 году и зарегистрирован на мировом рынке. Два года спустя той же компании был разработана микросхема с обозначением 556, которая объединила в себе два отдельных таймера NE555 имеющих только общие выводы по питанию. Еще позже были разработаны микросхемы 557, 558 и 559 с применением до четырех таймеров NE555 в одном корпусе. Но позже они были сняты с производства и почти забыты.

Интегральная микросхема NE555 разрабатывалась в качестве таймера и содержит в себе комбинацию аналоговых и цифровых элементов в одном кристалле. Выпускается в различном исполнении, начиная от классического DIP корпуса стандартного и SOIC для SMD монтажа и до миниатюрного корпуса версии SSOP или SOT23-5. (Цены на таймер NE555)

Таймер NE555, кроме стандартного исполнения производиться так же в маломощном CMOS исполнении. Схема электропитания NE555 составляет от 4,5 до 15 вольт (18 вольт максимум), а CMOS вариант использует питание от 3 вольт. Максимальная выходная нагрузка выхода для NE555 200мА, у версии маломощного таймера только 20 мА при 9 вольт.

Стабильность работы стандартной версии 555 сильно зависит от качества источника питания. Это не так сильно сказывается в простых схемах с применением таймера, однако, в более сложных конструкциях, желательно устанавливать буферный конденсатор по цепи питания емкостью 100 мкф.

Основные характеристики интегрального таймера NE555

  • Максимальная частота более чем 500 кГц.
  • Длина одного импульса от 1 мсек до часа.
  • Может работать в режиме моностабильного мультвибратора.
  • Высокий выходной ток (до 200 мА)
  • Регулируемая скважность импульса (отношение периода импульса к его длительности).
  • Совместимость с TTL уровнями.
  • Температурная стабильность 0,005% на 1 градус Цельсия.

Микросхема NE555 в своем составе содержит чуть более 20 транзисторов и 10 резисторов. На следующем рисунке приводится структурная схема таймера от Philips Semiconductors.

В следующей таблице перечислены основные свойства NE555

Назначение выводов таймера NE555

№2 — Запуск (триггер)

Триггер переключается, если на этом выводе напряжение упадет ниже 1/3 напряжения питания. Данный вывод имеет высокое входное сопротивление, более 2 мОм. В нестабильном режиме используется для контроля напряжения на времязадающем конденсаторе, в бистабильном режиме к нему подключается элемент коммутации, например, кнопка.

№4 – Сброс

Если напряжение на этом выводе ниже 0,7 вольт, то происходит сброс внутреннего компаратора. В случае неиспользования, на данный вывод таймера NE555 необходимо подать напряжение питания. Сопротивление вывода составляет около 10 кОм.

№5 — Контроль

Может использоваться для регулировки длительности импульсов на выходе путем подачи напряжения 2/3 от напряжения питания. Если это вывод не используется, то его желательно подключить к минусу источника питания через конденсатор 0,01 мкф.

№6 — Стоп (компаратор)

Останавливает функционирование таймера, если напряжение на этом выводе будет выше 2/3 напряжения питания. Вывод имеет высокое входное сопротивление, более 10 мОм. Он обычно используется для измерения напряжения на времязадающем конденсаторе.

№7 — Разряд

Вывод через внутренний транзистор подключается к «земле», когда внутренний триггер находится в активном состоянии. Вывод (открытый коллектор) используется в основном для разряда времязадающего конденсатора.

№3 – Выход

Микросхема NE555 имеет всего один выход с током до 200 мА. Это значительно больше, чем у обычных интегральных микросхем. Вывод способен управлять, например, светодиодами (с токоограничивающим резистором), небольшими лампочками, пьезоэлектрическим преобразователем, динамиком (с конденсатором), электромагнитным реле (с защитным диодом) или даже маломощными двигателями постоянного тока. Если требуется более высокий выходной ток, то можно подключить подходящий транзистор в качестве усилителя.

Таймер NE555 — схема включения

Способность вывода 3 таймера NE555 создавать как высокий уровень напряжения, так и низкий (практически 0 вольт) позволяет управлять нагрузкой подключенной как к минусу питания, так и к плюсу. Как пример, подключение светодиодов. Это, конечно, не является обязательным требованием, и нагрузка (светодиод) может быть подключен либо к минусу, либо плюсу питания.

Если таймер NE555 работает в нестабильном состоянии (режим генератора), то к выходу его можно подключить динамик. Он подключается после разделительного конденсатора (например, 100 мкф) и должен иметь сопротивление не менее 64 Ом из-за ограниченного максимального тока нагрузки выхода таймера. Конденсатор предназначен для отделения постоянной составляющей сигнала и проводит только аудиосигнал.

Динамик с сопротивлением катушки ниже чем 64 Ом можно подключить либо через конденсатор с меньшей емкостью (реактивное сопротивление), являющегося дополнительным сопротивлением либо с помощью усилителя. Усилитель также может быть использован для подключения более мощного громкоговорителя.

Как и все интегральных микросхемы, выход таймера NE555 управляющий индуктивной нагрузкой (реле) должен быть защищена от скачков повышенного напряжения, созданное в в момент отключения. Диод (например, 1N4148) всегда подключается параллельно к катушке реле в обратном направлении.

Однако, для микросхемы NE555 требуется второй диод, включенный последовательно с катушкой реле. Он ограничивает низкое напряжение, которое находится на выходе 3 таймера и предотвращает возбуждение реле небольшим током.

Таким диодом может быть, например, 1N4001 (1N4148 диод не подходит) либо светодиод.

(скачено: 3 612)

В предыдущей заметке, посвященной электронике, мы познакомились с довольно простой интегральной схемой, счетчиком 4026 . Чип, о котором речь пойдет в этом посте, существенно интереснее, как минимум, потому что он может выполнять не одну-единственную функцию, а сразу несколько. Более того, с его помощью мы наконец-то научимся не только мигать светодиодами, но и генерировать звуки. Название чипа — таймер 555.

Как работает таймер 555

Я видел разные объяснения того, как работает данная микросхема. Но лучшее, как мне кажется, приводится во всей той же книге Чарьза Платта . Платт предлагает представить, что внутри микросхемы как бы спрятан виртуальный переключатель:

Ножки 1 и 8 просто подключаются к питанию. Про ножку 5 (control) можно пока забыть, потому что она редко используется и обычно подключается к земле. Притом, через конденсатор небольшой емкости, чтобы предотвратить помехи. Зачем она на самом деле нужна, будет объяснено чуть позже.

Упомянутый переключатель изображен на картинке зеленым цветом. В исходном состоянии он подключает выходы 3 и 7 к земле. Когда напряжение на ножке 2 (trigger) падает до 1/3 напряжения питания, это замечает компаратор A (тоже виртуальный, понятное дело) и опускает переключатель вниз. В этом состоянии выход 3 становится подключен к плюсу, а выход 7 разомкнут. Когда напряжение на ножке 6 (threshold) вырастает до 2/3 напряжения питания, это замечает компаратор B и поднимает переключатель вверх. Собственно, ножка 5 (control) нужна для того, чтобы вместо 2/3 выбирать какое-то другое значение. Наконец, понизив напряжение на ножке 4 (reset), можно вернуть микросхему в исходное состояние.

Чтобы понять, почему же таймер 555 называется «таймером», рассмотрим три режима его работы.

Моностабильный режим (monostable mode)

Также иногда называется режимом одновибратора. Ниже изображена схема использования чипа в этом режиме:

Заметьте, что, как это часто бывает, расположение ножек чипа на схеме не совпадает с их физическим расположением. На этой и следующих схемах не указано напряжение источника питания, так как его можно менять в некотором диапазоне. Лично я проверял работоспособность схем при напряжении от 3 до 6 В. На всех схемах есть конденсатор емкостью 100 мкФ, подключенный параллельно нагрузке. Как нам с вами уже известно, он играет роль сглаживающего фильтра . На двух схемах из трех ножка 5 (control) подключена к керамическому конденсатору на 100 нФ. Почему так сделано, уже было рассказано выше. Это что общего у всех схем. Теперь поговорим о различиях.

Fun fact! Согласно спецификации, таймер 555 не рассчитан на работу при напряжении менее 4.5 В. Однако на практике он не так уж плохо работает и при напряжении 3 В.

Итак, что здесь происходит. В исходном состоянии светодиод не горит. При нажатии на кнопку, подключенную к ножке 2 (trigger), светодиод загорается примерно на 2.5 секунды, а затем гаснет. Если в то время, когда светодиод горит, нажать на кнопку, подключенную к ножке 4 (reset), светодиод тут же погаснет, до истечения времени.

Как это работает? Обратите внимание на правую часть схемы. В начальный момент времени вывод 7 подключен к минусу, поэтому ток идет через резистор прямо на него, не доходя до конденсатора внизу схемы. Вывод 3 (out) также подключен к минусу, поэтому ток через светодиод не идет и, соответственно, он не горит. При нажатии на копку, подключенную к выводу 2 (trigger), вывод 7 начинает ни к чему не вести, а вывод 3 подключается к плюсу. В итоге ток идет на светодиод и он зажигается. Кроме того, начинает заряжаться конденсатор внизу схемы. Когда конденсатор достигает 2/3 напряжения питания, таймер видит это через вывод 6 (threshold) и возвращает чип в исходное состояние. В итоге светодиод гаснет, а конденсатор полностью разряжается. Пользователь может преждевременно вернуть чип в исходное состояние, нажав вторую кнопку.

Время, в течение которого светодиод горит, можно регулировать при помощи емкости конденсатора и сопротивления резистора по следующей формуле:

>>> import math
>>> R = 100 * 1000
>>> C = 22 / 1000 / 1000
>>> T = math.log(3) * R * C
>>> T
2.4169470350698417

Здесь R — сопротивление резистора в омах, C — емкость конденсатора в фарадах, а T — время горения светодиода в секундах. Учтите однако, что на практике характеристики всех элементов определяются с некоторой погрешностью. Для резисторов, например, она типично составляет либо 5% (золотая полоска), либо 10% (серебряная полоска).

Автоколебательный режим (astable mode)

Соответствующая схема:

Что здесь происходит? Светодиод просто мигает с частотой около 3-х раз в секунду. Никаких кнопок или иного интерактива не предусмотрено.

Как это работает. Благодаря тому, что изначально вывод 7 (discharge) подает низкое напряжение и подключен к выводу 2 (trigger) через резистор сопротивлением 10 кОм, чип тут же переключается в свое «нижнее» состояние. Светодиод загорается, а конденсатор внизу схемы начинает заряжаться через два резистора справа. Когда напряжение на конденсаторе достигает 2/3 полного напряжения, чип видит это через вывод 6 (threshold) и переключается в «верхнее» состояние. Конденсатор начинает разряжаться через вывод 7 (discharge), но делает это медленнее, чем в предыдущей схеме, так как на сей раз он разряжается через резистор сопротивлением 10 кОм. Когда напряжение на конденсаторе падает до 1/3 полного напряжения, чип видит это через вывод 2 (trigger). В результате он снова переходит в «нижнее» состояние и процесс повторяется.

То, как будет мигать светодиод, можно определить по формулам:

>>> import math
>>> C = 22 / 1000 / 1000
>>> R1 = 1 * 1000
>>> R2 = 10 * 1000
>>> H = math.log(2) * C * (R1 + R2)
>>> H
0.16774161769550675
>>> L = math.log(2) * C * R2
>>> L
0.15249237972318797
>>> F = 1 / (H + L)
>>> F
3.1227165387207

Здесь F — частота миганий в герцах, H — время в секундах, в течение которого светодиод горит, а L — время в секундах, в течение которого светодиод не горит. Интересно, что параллельно с резистором R2 можно подключить диод, тем самым заставив конденсатор заряжаться только через R1, а разряжаться, как и раньше, через R2. Таким образом, можно добиться полной независимости времени H от времени L и наоборот.

Fun fact! Подключив в этой схеме вместо светодиода динамик или пьезо-пищалку, а также выбрав C равным 100 нФ или 47 нФ, можно насладиться звуком с частотой 687 Гц или 1462 Гц соответственно. На самом деле, это далеко не чистый звук определенной частоты, так как чип 555 генерирует прямоугольный сигнал, а для чистого звука нужна синусоида. Почувствовать разницу между прямоугольным и синусоидальным сигналом проще всего в Audacity, сказав Generate → Tone. Заметьте, что можно регулировать R2, а следовательно и частоту звука, заменив соответствующий резистор на потенциометр. Кроме того, резистор, подключенный последовательно с динамиком или пьезо-пищалкой, можно также заменить на потенциометр и регулировать с его помощью громкость. Наконец, к выводу 5 (control) вместо конденсатора также можно подключить потенциометр и с его помощью более тонко подогнать частоту сигнала.

Бистабильный режим (bistable mode)

И, наконец, схема бистабильного режима:

Что происходит. Изначально светодиод не горит. При нажатии на кнопку, подключенную к ножке 2 (trigger) он загорается и горит бесконечно долго. При нажатии на другую кнопку, подключенную к ножке 4 (reset), светодиод гаснет. То есть, получилось что-то вроде кнопок «включить» и «выключить».

Как это работает. Режим похож на моностабильный (первый рассмотренный), только нет никакого конденсатора, который мог бы вернуть чип из «нижнего» состояния обратно в «верхний». Вместо этого вывод 6 (threshold) подключен напрямую к земле, а выводы 5 (control) и 7 (discharge) вообще ни к чему не подключены. В данном случае это нормально, так как подача любого сигнала на эти выводы все равно будет игнорироваться. В общем и целом, это тот же моностабильный режим, только чип не меняет свое состояние автоматически. Изменить состояние может только пользователь, явно подав низкое напряжение на вывод 2 (trigger) или 4 (reset).

Заключение

Согласитесь, это было не так уж и сложно! На следующем фото изображены все описанные выше режимы, собранные на макетной плате:

Слева направо — моностабильный, автоколебательный и бистабильный режимы. Вариант, где автоколебательный режим используется с динамиком и двумя потенциометрами, выглядит куда более впечатляюще, но менее наглядно, поэтому здесь я его не привожу.

Исходники приведенных выше схем, созданных в gschem, вы найдете . Кое-какие дополнительные сведения можно найти в статье 555 timer IC на Википедии, а также далее по ссылкам.

Как всегда, буду рад вашим вопросам и дополнениям. А часто ли вам приходится использовать таймер 555?

Fun fact! Есть энтузиасты, которые делают на таймере 555 совершенно сумасшедшие вещи. Например, при сильном желании на его основе можно делать операционные усилители или логические вентили, а следовательно, теоретически, и целые процессоры. Подробности можно найти, например, в посте You Know You Can Do That with a 555 на сайте hackaday.com.

Дополнение: Вас также могут заинтересовать посты

Микросхема интегрального таймера NE555 — это настоящий прорыв в области электроники. Она была создана в 1972 году сотрудником компании Signetics Гансом Р. Камензиндом. Изобретение не утратило своей актуальности и по сегодняшний день. Позднее устройство стало основой таймеров с удвоенной (IN556N) и счетверенной конфигурацией (IN558N).

Без сомнения, детище электронщика позволило занять ему свою видную нишу в истории технических изобретений. По уровню продаж данное устройство с момента своего появления превзошло любое другое. На второй год существования микросхема 555 стала самой покупаемой деталью.

Лидерство сохранялось и во все последующие годы. Микросхема 555, применение которой возрастало с каждым годом, продавалась очень хорошо. К примеру, в 2003 году было реализовано более чем 1 миллиард экземпляров. Конфигурация самого агрегата за это время не изменилась. Она существует свыше 40 лет.

Появление устройства стало неожиданностью для самого создателя. Камензинд преследовал цель сделать гибкую в использовании ИС, но, что она окажется столь многофункциональной, он не ожидал. Изначально она употреблялась как таймер или же Микросхема 555, применение которой увеличивалось быстрыми темпами, сегодня используется от игрушек для детей до космических кораблей.

Устройство отличает выносливость, поскольку оно построено на основе биполярной технологии, и для применения его в космосе специально предпринимать ничего не требуется. Только испытательные работы проводятся с особой строгостью. Так, при тесте схемы NE 555 для ряда приложений создаются индивидуальные пробные спецификации. При производстве схем не существует никаких различий, но подходы при выходном контроле заметно разнятся.

Появление схемы в отечественной электронике

Первое упоминание об инновации в советской литературе по радиотехнике появилось в 1975 году. Статью об изобретении опубликовали в журнале «Электроника». Микросхема 555, аналог которой был создан советскими электронщиками в конце 80-х годов прошлого столетия, в отечественной радиоэлектронике получила название КР1006ВИ1.

В производстве эту деталь употребляли при сборке видеомагнитофонов «Электроника ВМ12». Но это был не единственный аналог, так как многие производители во всем мире создавали подобное устройство. Все агрегаты имеют обячный корпус DIP8, а также корпус малых размеров SOIC8.

Технические характеристики схемы

Микросхема 555, графическое изображение которой представлено ниже, включает в себя 20 транзисторов. На блок-схеме устройства находятся 3 резистора с сопротивлением 5кОм. Отсюда и название прибора «555».

Основными техническими характеристиками изделия являются:

  • напряжение питания 4,5-18В;
  • максимальный показатель тока на выходе 200 мА;
  • потребляемая энергия составляет до 206 мА.

Если его рассмотреть на выход, то это цифровое устройство. Он может находиться в двух положениях — низком (0В) и высоком (от 4,5 до 15 В). В зависимости от блока питания может показатель достигать и 18 В.

Для чего нужно устройство?

NE 555 микросхема — унифицированное устройство с широким спектром применения. Его часто используют при сборке различных схем, и это только придает изделию популярность. Соответственно, повышается уровень спроса потребителя. Такая известность вызвала падение цены на таймер, что радует многих мастеров.

Внутреннее строение таймера 555


Что же заставляет это устройство функционировать? Каждый из выводов агрегата подсоединен к цепи, содержащей 20 транзисторов, 2 диода и 15 резисторов.

Удвоенный формат модели

Следует отметить, что NE 555 (микросхема) выпускается в удвоенном формате под названием 556. Она содержит два свободных IC.

Таймер 555 оснащен 8 контактами, тогда как модель 556 содержит 14 контактов.

Режимы работы устройства

Микросхема 555 обладает тремя режимами работы:

  1. Моностабильный режим микросхемы 555. Он работает как одноразовый односторонний. Во время функционирования выбрасывается импульс заданной длины как ответ на вход триггера при нажимании кнопки. Выход пребывает в низком напряжении до включения триггера. Отсюда он и получил название ждущий (моностабильный). Такой принцип функционирования сохраняет устройство в бездействии до включения. Режим обеспечивает включение таймеров, переключателей, сенсорных переключателей, делителей частоты и др.
  2. Нестабильный режим является автономной функцией устройства. Он позволяет схеме пребывать в генераторном режиме. Напряжение в выходе изменчиво: то низкое, то высокое. Эта схема применима при надобности задавания устройству толчков прерывистого характера (при недолговременном включении и выключении агрегата). Режим используется при включении ламп на светодиодах, функционирует в логической схеме часов и др.
  3. Бистабильный режим, или же триггер Шмидта. Понятно, что он работает по системе триггера при отсутствии конденсатора и обладает двумя устойчивыми состояниями, высоким и низким. Низкий показатель триггера переходит в высокий. При сбрасывании низкого напряжения система устремляется к низкому состоянию. Эта схема применима в сфере железнодорожного строительства.

Выводы таймера 555

Генератор микросхема 555 включает восемь выводов:

  1. Вывод 1 (земля). Он подсоединен к минусовой стороне питания (общий провод схемы).
  2. Вывод 2 (триггер). Он подает высокое напряжение на время (все зависит от и конденсатора). Эта конфигурация и является моностабильной. Вывод 2 контролирует вывод 6. Если напряжение в обоих низкое, то на выходе оно будет высоким. В противном случае, при высоком напряжении в выводе 6 и низком в выводе 2, выход на таймере будет низким.
  3. Вывод 3 (выход). Выходы 3 и 7 располагаются в фазе. Подавая высокое напряжение с показателем примерно 2 В и низкое с 0,5 В будет получаться до 200 мА.
  4. Вывод 4 (сброс). Подача напряжения на этот выход низка, несмотря на режим работы таймера 555. Во избежание случайных сбросов, следует производить подключение этого выхода к плюсовой стороне при использовании.
  5. Вывод 5 (контроль). Он открывает доступ к Это вывод в российской электронике не применяется, но при его подключении можно достичь широких возможностей управления устройством 555.
  6. Вывод 6 (остановка). Входит в компаратор 1. Он противоположен выводу 2, применим для остановки устройства. При этом получается низкое напряжение. Это вывод может принимать синусоидальные и прямоугольные импульсы.
  7. Вывод 7 (разряд). Он подсоединяется к транзисторному коллектору Т6, а эмиттер последнего заземлен. При открытом транзисторе конденсатор разряжается до его закрытия.
  8. Вывод 8 (плюсовая сторона питания), которая составляет от 4,5 до 18 В.

Применение выхода Output

Выход 3 (Output) может пребывать в двух состояниях:

  1. Осуществляется подключение цифрового выхода прямо к входу другого драйвера на цифровой основе. Цифровой выход может осуществлять управление другими устройствами при посредстве нескольких дополнительных составляющих (напряжение источника питания равно 0 В).
  2. Показатель напряжения во втором состоянии высок (Vcc на источнике питания).

Возможности агрегата

  1. При понижении напряжения в Output ток направляется через устройство и осуществляет его подключение. Это и есть понижение, так как ток производится из Vcc и проходит сквозь агрегат до 0 В.
  2. При возрастании Output ток, проходя через прибор, обеспечивает его включение. Этот процесс можно назвать источником текущих. Электроэнергия в этом случае производится от таймера и идет через прибор до 0 В.

Возрастание и понижение могут функционировать вместе. Таким образом достигается поочередное включение и выключение прибора. Такой принцип применим при функционировании ламп на светодиодах, реле, двигателей, электромагнитов. К минусам такого свойства можно отнести то, что прибор надо подключать к Output разными способами, так как выход 3 может выступать как в роли потребителя, так и в роли источника тока до 200 мА. Используемый блок питания дожжен подать достаточный ток для обоих устройств и таймера 555.

Микросхема LM555

Микросхема 555 Даташит (LM555) обладает широкими функциональными возможностями.

Она используется от генераторов прямоугольных импульсов с изменяемым показателем скважности и реле и задержкой срабатывания до сложных конфигураций ШИМ генераторов. Микросхема 555 цоколевка и внутреннее строение отражены на рисунке.

Уровень точности приспособления равен 1% от расчетного показателя, что является оптимальным. На такой агрегат, как NE 555 микросхема даташит, не воздействуют температурные условия окружающей среды.

Аналоги микросхемы NE555

Микросхема 555, аналог которой в России был назван КР1006ВИ1, представляет интегральное устройство.

Среди рабочих блоков следует выделить RS-триггер (DD1), компараторы (DA1 и DA2), на выходе, основанный на двухтактной системе и дополняющий транзистор VT3. Назначение последнего заключается в сбросе задающего время конденсатора при использовании агрегата в роли генератора. Сбрасывание триггера происходит при подаче логической единицы (Юпит/2…Юпит) на входы R.

В случае сброса триггера на выходе устройства (вывод 3) будет наблюдаться низкий показатель напряжения (транзистор VT2 открыт).

Уникальность схемы 555

При функциональной схеме устройства очень трудно понять, в чем же заключается ее необычность. Оригинальность устройства состоит в том, что оно обладает особым управлением триггера, а именно формирует управляющие сигналы. Их создание происходит на компараторах DA1 и DA2 (на один из входов, на который подано опорное напряжение). Для формирования управляющих сигналов на входах триггера (выходах компараторов) следует получить сигналы с высоким напряжением.

Как произвести запуск устройства?

Чтобы запустить таймер, на выход 2 надо подать напряжение с показателем от 0 до 1/3 Юпит. Этот сигнал способствует срабатыванию триггера, и при выходе создается сигнал с высоким напряжением. Сигнал выше предельного показателя не вызовет каких-либо изменений в схеме, так как опорное напряжение для компаратора равно DA2 и составляет 1/3 Юпит.

Остановить таймер можно при сбрасывании триггера. С этой целью напряжение на выходе 6 должно превышать показатель 2/3 Юпит (опорное напряжение для компаратора DA1 составляет 2/3 Юпит). При сбросе установится сигнал с низким напряжением и разряд конденсатора, задающего время.

Регулировать опорное напряжение можно посредством подключения дополнительного сопротивления или источника питания к выводу агрегата.

В последнее время среди владельцев автомобилей стало модным сматывать на спидометре пройденный машиной километраж.

Многие интересуются, подмотка спидометра на 555 микросхеме выполнима ли самостоятельно?

Эта процедура не представляет особой трудности. Для его изготовления используется микросхема 555, которая может функционировать в качестве Отдельные составляющие схемы можно брать с показателями, отклоняющимися на 10-15 % от расчетных значений.

Тебе не нужен контроллер, говорили они. Делай все на таймерах NE555, говорили они. Ну я и сделал — похоже, только чтобы убедиться, что получается конструкция, потрясающая по своему сокрушительному воздействию на мою неокрепшую психику.

Обзор, если этот текст можно так назвать, будет не слишком длинным. Поскольку в нем лишь констатация моего полного и безоговорочного провала в сборке элементарных схем и демонстрация того, что по крайней мере шесть из двадцати чипов вполне себе работоспособны.

Еще обратите внимание: похоже, магазин недавно изменил правила, поскольку теперь у них минимальный заказ с бесплатной доставкой — от $6, а если меньше, то за доставку возьмут $1,5. Когда я покупал, то списали только стоимость покупки, то есть $0,59, и все.

В двух блистерах ровно двадцать штук. С одной стороны каждый блистер замотан скотчем, с другой закрыт резиновой пробкой:

Вообще, изначально таймеры я покупал, чтобы сделать простенький генератор для поиска короткого замыкания в проводке — знакомые заинтересовались. Суть прибора, если я правильно понял, в том, что цепь до КЗ представляет собой антенну, сигнал от которой можно послушать с обычным СВ/ДВ приемником.

Где писк прекратился — примерно там и замыкание. Вот так это выглядит на практике у товарища, по стопам которого я и планировал идти:

Но потом знакомые с потребностью решили, что им все не так уж и нужно. Или еще что-то решили, а я настаивать не стал. И огорчаться тоже: вы же видели, сколько стоят таймеры (чуть больше половины доллара за 20 штук) — какое огорчение?

Обычные DIP8:

Поэтому решил поразвлекаться другим способом и посмотрел, что вообще делают из NE555. А делают, как выяснилось, массу всего. Всяческие сигнализации, индикаторы напряжения, указатели пропущенных импульсов. В общем, я впечатлился.

Ну а так как все описывают примерно одно и то же, то вот вам пара ссылок РадиоКота: и . Схемы — во второй.

Предполагается, что популярность NE555 объясняется тем, что это проверенная годами (точнее — уже 45 годами) конструкция, которая обескураживающе просто конфигурируется и довольно точно соблюдает характеристики вне зависимости от питающего напряжения, которое может быть в диапазоне от 4,5В до 16В у обычной версии (но есть варианты). То есть, напряжение гуляет, а частота — скорее стабильна, чем нет.

Фактически, чтобы таймер заработал, нужна пара деталей и любой подходящий источник питания — очень привлекательно, чтобы сделать какую-нибудь фиговину без особых хлопот.

Как по мне, так с микроконтроллером хлопот еще меньше, но в комментариях к рассказу про «Пищаль» я получил и потерял покой. Понял, что должен попробовать хотя бы для того, чтобы успокоиться.

Итак, идея была проста — таймер кормления котов. Которые, потеряв всякий стыд, стали требовать еду чуть ли не каждые полчаса, а съедая по три сухаря, довольные расходились. По мнению ветеринара это не очень полезно (а по нашему — еще и чрезвычайно хлопотно), поэтому необходимо было вернуть им режим питания на место. Ну как на место: кормить хотя бы не чаще, чем раз в пять-шесть часов.

Следить по часам, конечно, не сложно. Однако, во-первых, ситуацию осложняет тот факт, что если днем кормление по часам еще более-менее проходит, то ночью — уже не совсем, поскольку у одного кота, скажем так, сложный характер. Именно — он идет и скребет когтями по батарее, и даже если бы я решил не обращать внимания на данный сомнительного качества музыкальный эксперимент, соседей жалко.

То есть, ночью надо вставать и снова засекать время, а в полубессознательном состоянии это немного затруднительно.

Во-вторых, не все коты такие скандальные, поэтому некоторые просто не приходят вместе с тем вот возмутителем спокойствия. И получается, что интервалы у всех разные, а по справедливости неплохо было бы покормить через установленное время и тех, кто пропустил внеочередной прием пищи.

Поэтому я придумал сделать кучку независимых таймеров на фиксированное время — по одному на кота. И чтобы вот так: пришел кот, выдаешь ему еду, нажимаешь на кнопку, загорелась лампочка. Как лампочка погасла, кота снова можно покормить.

Как несложно догадаться, это один из основных вариантов работы таймера. Называть его можно по-разному: можно калькой из — моностабильный, можно — одновибратором, можно — ждущим мультивибратором.

Суть от этого не меняется: от NE555 требуется, по сути, выдать только один импульс требуемой продолжительности.

Поэтому за основу я взял схему таймера из :

Но немного упростил ее, избавившись от подстроечного резистора (поскольку у меня фиксированный интервал) и второго светодиода — за ненадобностью. Заодно поменял номиналы времязадающей цепочки, сверившись все с той же документацией, которая сообщает, что для расчета примерной длительности импульса следует воспользоваться формулой y t = 1.1RC.

Поиграв с шрифтами номиналами деталек, имеющихся в бутике Чип-и-Дип установил, что для устраивающего всех пятичасового интервала вполне подойдут конденсатор емкостью 3300 мкФ и резистор 5,1 МОм:

T = 1,1*0,0033*5100000 = 18513 сек = 5,14 час.

Реальность, однако оказалась немного не совпадающей с теорией. Собранный по этой схеме и с этими номиналами таймер и после пяти часов продолжал работать. Терпения дождаться окончания его работы у меня не хватило, поэтому я предположил, что NE555 не очень хорошо работает с большими номиналами.

Беглое гугление показало, что таки да — это возможно, однако проблем не должно было быть (теоретически) при сопротивлении вплоть до 20 МОм при напряжении питания 15 В. Поэтому я продолжил эксперименты и выяснил, что в моем случае формула получается примерно такая:

И оказался очень себе признателен, что купил не только 5,1 МОм, но и на всякий случай ближайшие номиналы — 4,7 МОм и 3,9 МОм. Последний по счастью как раз и подошел для необходимого интервала.

С этими номиналами (3300 мкФ и 3,9 МОм) я и собрал блок таймеров с лампочками и кнопочками. Все соединил общей линией питания, больше у них точек соприкосновения нет (ну, по крайней мере, старался, чтобы не было). А так как собирал внавес, то на каждом шаге проверял себя мультиметром и был почти спокоен, когда запускал первый из таймеров.

Получилось вот так (я предупреждал в самом начале):

Включился он как и положено, поэтому я распаял оставшиеся кнопочки и лампочки, включил. Понажимал на кнопочки. Светодиоды включились точно так, как и должны были: нажимаешь кнопку — включился, и так все.

И тут я совершил большую ошибку. Не сделал еще несколько тестовых запусков, а просто огорчился, что не очень хорошо припаял провода к кнопкам, и решил их перепаять. Поэтому я пока не знаю, что именно случилось: то ли изначально сделал что-то не так, то ли что-то успел испортить в момент перепайки проводов.

Но вышло смешно. При повторном включении (с перепаянными проводами) сразу же загорелись три светодиода. А нажатие на кнопки выявило полный хаос: нажимаешь на одну кнопку — загорается ее светодиод (т.е., по идее, включается таймер), нажимаешь другую — первый светодиод гаснет, загорается второй. И так далее.

Опытным путем выяснил, что существует некоторая комбинация нажатий кнопок, при которой зажигаются все светодиоды. Но пока руки не доходят проверить схему на предмет коротких замыканий там, где их не должно быть.

Бонус-трек — играем в сапера:

Подводя итог хочу сказать, что с таймерами развлекся. На практике проверил, что покупать их в Китае можно — приходят рабочие.

И хотя кототаймер сделать не смог, бонусом получил головоломку «Зажги все лампочки». И заодно понимание того, что NE555 — явно не для меня. И вот почему:

Минимальное напряжение питания 4,5В
— большой потребляемый ток

Разумеется, эти недостатки можно побороть заказом CMOS-версии чипа, которая гораздо более экономична и работает, начиная с 1,5В. Но обычные стоят $0,59 за двадцать штук, а CMOS — уже около $10. То есть примерно вдвое дороже контроллера, а если применять в конструкции два и более таймеров, то выгода вообще пропадает.

Так что всем спасибо, я возвращаюсь к ATmega328p, на котором, очевидно, и буду делать таймер кормления.

Ps. А теперь можно я тоже напишу про экранчик от ITEAD Studio? Меня, между прочим, совесть мучает, поскольку, с одной стороны, здесь уже этих экранов было выше крыши, а с другой — надо же выполнять обещание.

Планирую купить +19 Добавить в избранное Обзор понравился +38 +67

Электронные интегральные схемы — такая отрасль нашей науки и техники, возможности которой еще далеко не исчерпаны. Видимо, это и есть ростки того самого искусственного интеллекта, о котором так много уже сказано. Причем, если наш природный интеллект строится на элементах — нейронах — которые можно назвать электронно-химическими, то созданные руками человека интегральные схемы в природе не встречаются. Это чистое изобретение человеческого разума. Оно получено в результате долгой работы по совершенствованию самых обыкновенных электроприборов, которые понадобились людям сразу после открытия электричества — выключателей, резисторов, конденсаторов, полупроводниковых приборов. Совершенствование шло как в направлении усложнения схем, так и в стремлении уместить большое количество элементов на ограниченной площади или в ограниченном объеме. А также создать из все тех же схемных примитивов нечто универсальное, долгоиграющее и омниполезное.

Таймер NE555

История изобретения этого таймера показывает, что настоящие шедевры делаются не всегда в самые лучшие для изобретателей времена, и часто даже в совершенно не высокотехнологичных условиях. Ганс Камензинд в свои 33 года кроме служебных обязанностей имел мечту. Это не всегда бывает по вкусу начальству, и ему пришлось уволиться. Свой шедевр он придумал, сидя в гараже в 1971 году, а через год микросхема на восьми ножках бойко пошла в производство и продажу. Схема простая и, как оказалась, полезная. Быть может, не последнюю роль в удаче сыграло и название, которое толком и объяснить не могут: почему NE — от названия фирмы Signetics? Почему 555 — потому что им полюбилась пятерка? Таймер? — да, но не такой, как обычные. Те, что всегда только безостановочно тикают импульсами, а этот может выдать очень точный интервал времени, и не в каких-то привычных в импульсной технике микросекундах, а в достаточно ощутимом интервале: взять и включить лампочку на несколько секунд.

Схема, как часто и все гениальное, оказалась на стыке двух техник: импульсной и аналоговой.

Аналоговые — операционные усилители — усиливают сигнал до нужного стандарта (2 на входах (двухпороговый компаратор) и 1 на выходе). А в середине работает импульсный RS-триггер, который может как генерировать импульсы (мультивибратор), так и выдавать одиночный импульс заданной протяженности (одновибратор).

И все очень легко регулируется — практически, соотношением параметров двух резисторов и одной емкости, подключенных к микросхеме на входах, а также подачей других сигналов на входы.

Видимо, схема имеет какое-то неуловимо удачное соотношение простоты управления и простоты конструкции, что в сочетании с неожиданным многообразием работы элементов и придало ей популярности на протяжении стольких лет. Потому что перечисленные свойства, как следствие, выразились в совсем даже невысокой стоимости и в применимости в разных схемах — и ширпотребовских, и профессиональных. Они хороши для использования в детских игрушках, реле времени, кодовых замках, космических аппаратах. А ежегодные продажи исчисляются до сих пор миллиардами штук по всему миру. Причем за все время схема не претерпела практически никаких изменений. По какой причине слово «эволюция» под рисунком выше и взято в кавычки. Таймер 555 выпускают многие фирмы по всему миру. Известны и отечественные аналоги NE555 — микросхема КР1006ВИ1 и ее КМОП вариант КР1441ВИ1.

Функциональная схема и описание прибора

Функционально таймер состоит из 5 компонентов. Выводов у схемы больше, чем внутренних блоков, что и говорит о возможной гибкости включения в различные схемные решения с участием данной микросхемы.

Входной внутренний делитель напряжения задает опорные напряжения для двух компараторов — верхнего и нижнего. RS-триггер принимает их сигналы и формирует выходной сигнал, который отправляет на усилитель мощности. Еще имеется дополнительный транзистор с выведенным наружу коллектором, который используется для подключения внешней времязадающей цепочки.

Выводы схемы расположены одинаково, независимо от исполнения микросхемы

Описание выводов схемы

Приведенный ниже даташит содержит выводы и подаваемые на них сигналы, откуда становится немного понятной работа микросхемы. Хотя очень многое зависит от ее подключения.

  1. Земля –

Минусовой общий вывод питания

Плюсовой вывод питания – 8

  1. Запуск

Вход компаратора №2 (нижнего).

Сигнал низкого уровня – аналоговый или импульсный.

Таймер срабатывает на сигнал (аналоговый или импульсный) низкого уровня (порог – 1/3 Vпит)

На 3 выводе появляется выходной сигнал высокого уровня

  1. Выход

Выходной сигнал (высокий уровень) зависит от питания: Vпит – 1,7 В

Низкий уровень (нет сигнала) – примерно 0,25 В

Временная характеристика выходного сигнала определяется внешней времязадающей цепочкой, состоящей из резистора (или резисторов) и емкости.

  1. Сброс

Срабатывает по сигналу низкого уровня (≤ 0,7 В)

Немедленный сброс выходного сигнала

Входной сигнал не зависит от напряжения питания

  1. Контроль

Управление опорным напряжением компаратора №1

Величина напряжения управляет длительностью выходных импульсов (одновибратор) или их частотой (мультивибратор).

  1. Останов

Сбрасывающий сигнал высокого уровня – аналоговый или импульсный

  1. Разряд

Цепь разряда времязадающего конденсатора С

  1. Питание +

Плюсовой провод питания

Vпит = от 4,5 В до 18 В

Минусовой – 1

Применение: варианты подключения NE555 (или NE555 аналогов)

Одновибратор

Емкость С и резистор R задают длительность импульса t, выдаваемого схемой в ответ на сигнал по входу Input (вывод 2). Напряжение питания влияет не на длительность, а на амплитуду выходного сигнала. При выдаче импульса изменение входного сигнала схемой не воспринимается. Через время t схема выдает задний фронт выходного сигнала и возвращается в исходное состояние, после чего готова снова реагировать на входной сигнал. Таким образом, она может выделять информативные всплески (низкого уровня) на фоне помех, так как сигнал на входе в общем случае аналоговый. Может работать как антидребезговая схема.

Генератор импульсов (мультивибратор)

Мультивибратору не нужно подавать на вход никаких сигналов, он начинает работать сразу после включения питания.

Разряженный в начале конденсатор С задает на вход низкий уровень, отчего таймер срабатывает, выдавая на выход высокий потенциал. Его длительность определяется зарядкой конденсатора C через резисторы R1 и R2. Далее происходит разрядка C через R2 и вход 7, что и определяет длительность паузы на таймере. После этого все повторяется, и на выходе получаются импульсы заданной напряжением питания амплитуды и длительностями t 1 и t 2 , то есть частотой f

и скважностью S = T/t 1 . Скважность в данном простейшем подключении более 2 быть не может, так как время импульса t 1 всегда > времени паузы t 2 .

Конструкции на интегральном таймере 555

Для начинающих радиолюбителей переход от создания простейших схем с применением резисторов, конденсаторов, диодов к созданию печатных плат с различными микросхемами, означает переход на новый уровень мастерства. Однако при этом схемы основываются на базе простейших микросхем, одной из которых является микросхема интегрального таймера NE555.

Изучение любой микросхемы следует начинать с фирменной документации — DATA SHEET. Для начала следует обратить внимание на расположение выводов и их назначение для таймер NE555 (рисунок 1). Иностранные компании, как правило, не предоставляют принципиальные схемы своих устройств. Однако микросхема таймера NE555 является достаточно популярной и имеет свой отечественный аналог КР1006ВИ1, схема которого представлена на рисунке 2.

Рисунок 1

Рисунок 2

Далее рассмотрим простейшие схемы на базе микросхемы интегрального таймера NE555.

1. Одновибратор на базе NE555 (рисунок 3).

Рисунок 3

Работа схемы: на вывод 2 микросхемы подается импульс низкого уровня. На выходе 3 микросхемы получается прямоугольный импульс, длительность которого определяется времязадающей RC-цепочкой (ΔT = 1,1*R*C). Сигнал высокого уровня на выводе 3 формируется до тех пор, пока не зарядится времязадающий конденсатор С до напряжения 2/3Uпит. Диаграммы работы одновибратора показаны на рисунке 4. Для формирования импульса запуска работы микросхемы можно воспользоваться механической кнопкой (рисунок 5) или полупроводниковым элементом.

Рисунок 4

Рисунок 5

Назначение схемы одновибратора на базе микросхемы интегрального таймера NE555 – создание временных выдержек от нескольких миллисекунд до нескольких часов.

2 Генераторы на базе интегрального таймера NE555

Генератор на базе NE555 способен вырабатывать импульсы с максимальной частотой в несколько килогерц для прямоугольных импульсов и с частотой в несколько мегагерц для импульсов не прямоугольной формы. Частота, как и в случае с одновибратором, будет определяться параметрами времязадающей цепи.

2.1 Генератор импульсов формы меандр на базе NE555

Схема такого генератора представлена на рисунке 6, а временные диаграммы работы генератора на рисунке 7. Отличительной особенностью генератора импульсов формы меандр является то, что время импульса и время паузы равны между собой.

Рисунок 6

Рисунок 7

Принцип действия схемы аналогичен схеме одновибратора. Исключение составляет лишь отсутствующий импульс запуска работы микросхемы таймера на выводе 2. Частота вырабатываемых импульсов определяется выражением f = 0,722/(R1*C1).

2.2 Генератор импульсов с регулируемой скважностью на базе NE555

Регулирование скважности вырабатываемых импульсов позволяет строить на базе NE555 широтно-импульсные генераторы. Скважность определяется отношением времени импульса к длительности импульса. Обратной величиной скважности является коэффициент заполнения (англ. Duty cycle). Схема генератора импульсов с регулируемой скважностью на базе NE555 представлена на рисунке 8.

Рисунок 8

Принцип работы схемы: время импульса и время паузы определяется временем заряда конденсатора С1. Сигнал высокого уровня формируется при заряде С1 по цепи R1-RP1-VD1. При достижении напряжения 2/3Uпит таймер переключается и конденсатор С1 разряжается по цепи VD2-RP1-R1. По достижению 1/3Uпит таймер снова переключается и цикл повторяется.

Регулировка времени заряда и разряда конденсатора С1 осуществляется переменным резистором RP1. При этом происходит изменение скважности выходных импульсов при постоянном периоде следования импульса.

Для проверки работоспособности микросхемы интегрального таймера NE555 можно собрать схему, представленную на рисунке 9 (схема в симуляторе Multisim).

Рисунок 9

Регулировка выходного напряжения осуществляется переменным резистором R1. На приведенной схеме достаточно просто разобраться в алгоритме работы таймера. При величине питающего напряжения 12В опорное значение напряжения для переключения микросхемы составляет 4В и 8В. При напряжении 7,8В (Рисунок 10) на выходе таймера – высокий уровень сигнала (светодиод LED1 не горит). При достижении 8В (рисунок 11) произойдет переключение микросхемы – загорается светодиод LED1. Дальнейшее увеличение напряжение никаких изменений в работе таймера не вызовет.


Всего комментариев: 0


мир электроники — микросхема-таймер серии 555

Электронные устройства

 материалы в категории

Специализированные микросхемы

Таймер 555 – простое в использовании устройство, о множеством возможных применений. Он широко используется во всевозможных схемах, и это только усиливает его популярность и соответственно повышает спрос на продукцию, а это удешевляет сам таймер 555, что радует радиомастеров.
Следует отметить что таймер 555 также выпускается в «двойном» формате. И называется таймер 556. Он включает два независимых IC 555 в одном корпусе.

Изначально выпускалась микросхема-таймер под названием NE555, но позже она также производилась разными производителями под разными названиями. Вот только лишь некоторые из аналогов микросхемы: AN1555, GL555, LB8555, MC1455, NJM555. Был также и отечественный аналог КР1006ВИ1.

В общем-то в наше время приобрести микросхемы особого труда не составляет: все что угодно можно найти в интернете. Ну, например здесь…

Внешний вид микросхемы-таймера серии NE555

Назначение выводов микросхем серии NE555 и NE556

Эту микросхему можно рассматривать как цифровое (логическое) устройство с двумя устойчивыми состояниями: логический ноль и логическая единица. Причем уровень напряжения при логической единице напрямую зависит от питания и может быть как 5V так и более, что делает ее универсальной: она может работать совместно как с ТТЛ-микросхемами так и с КМОП (что такое ТТЛ и КМОП технологии можно почитать здесь).

Сама по себе микросхема-таймер NE555 может работать в нескольких режимах:

Моностабильный режим – этот режим таймера 555 функционирует как «одноразовый-односторонний». Такой режим может включать таймеры, переключатели, сенсорные переключатели, делители частоты и т.д.

Нестабильный – автономная функция работы таймера 555. Такая функция позволяет работать в режиме генератора. Используют ее во включении светодиодные лампы, логической части часов и т.п.

И последний – бистабильный режим. Или триггер Шмитта. Понятно, что в таком случае таймер 555 работает как триггер, если нет конденсатора.

 Рассмотрим каждый из режимов работы таймера

Нестабильный режим работы таймера 555

 

Данная схема не имеет стабильного состояния – отсюда и «нестабильность». Выход постоянно «гуляет» высокое и низкое, используя при этом пользователем так называемом «квадрата» волны. Данная схема может использоваться при необходимости подавать механизму прерывистые толчки при кратковременном включении и выключении таймера.

Моностабильный режим таймера 555

Нетрудно заметить что здесь все работает по принципу ждущего мультивибратора: запуск устройства происходит при подаче управляющего сигнала. Но включено устройство не постоянно а лишь какое-то время.

Бистабильный режим ( триггер Шмитта )

 

Как видно из графика- здесь таймер 555 работает как триггер: при нажатии на «запуск» он переходит в устойчивое состояние логической единицы на выходе, при кнопке «сброс» все возвращается в исходное состояние.

 

ПРОВЕРКА МИКРОСХЕМ ТАЙМЕРОВ

Привет всем гостям и почитателям сайта Радиосхемы! Сегодня хочу рассказать об изготовлении миниатюрного, мобильного и не сложного пробника для тестирования всем известных микросхем таймеров NE555. Микросхема эта в быту радиолюбителя очень нужная и распространенная, на ней собрано очень большое количество радиосхем. Поэтому многие люди, кто занимается радиолюбительством, покупают данные таймеры сразу по несколько штук. А если собрать данный тестер, то всегда можно оперативно проверить микросхемы на работоспособность.

Принципиальная схема тестера 555

Итак, приступим: для начала возьмём стандартную схему астабильного мультивибратора, добавим к ней пару светодиодов для визуального контроля состояния выхода микросхемы. При высоком уровне напряжения на выходе будет светиться нижний по схеме светодиод, при низком уровне – верхний. Соответственно, если оба светодиода будут по очереди зажигаться, то это будет означать исправность таймера. Если же какой-либо светодиод не светит, то можно смело отправлять микросхему на утилизацию.

   

Далее разработаем миниатюрную печатную плату в программе Sprint-layout. Для экономии места лучше использовать SMD компоненты. После распечатываем на глянцевой бумаге рисунок платы, переводим его на односторонний фольгированный стеклотекстолит, при помощи технологии ЛУТ. Смываем лишнюю медь в травильном растворе (я использую медный купорос и поваренную соль, подогреваю не плите раствор в эмалированной посуде почти до кипения, в итоге процесс занимает не больше пяти минут). Сверлим отверстия и обрабатываем контур платы. После чего остаётся залудить и впаять компоненты, которых собственно не так уж и много.

Список используемых деталей

  • Резисторы SMD:
  • 680 Ом – 2шт.
  • 30 кОм – 1шт.
  • 56 кОм – 1шт.
  • 0 Ом (перемычка) – 1шт.
  • Конденсаторы:
  • 1 мкФ – 1шт.
  • 10 нФ – 1шт.
  • Светодиоды 3 мм – 2шт.
  • Панелька 8-pin под микросхему – 1шт.
  • Тактовая кнопка – 1шт.
  • Штепсельный разъём от старой батарейки «крона» — 1шт.

После впайки компонентов на плату, необходимо припаять короткие проводки к колодке «кроны» и их соединить с платой соблюдая полярность. После чего можно проверить плату, вставив микросхему и подсоединив батарейку. Если всё заработает как положено – заливаем термоклеем пространство между платой и колодкой, ориентируя их относительно друг друга в правильное положение. При этом нужно учесть расстояние между ними, чтобы не было замыкания выводов на плату.

Теперь наш миниатюрный пробник готов! Осталось присоединить его к батарейке «крона» и использовать по назначению. Плюс ко всему у него есть ещё одна полезная функция – это карманный мини-фонарик, который может работать даже без микросхемы.

Видео работы устройства на Ютубе

Печатная плата в формате Lay. находится в архиве. До новых встреч на страницах сайта Радиосхемы! Собрал и испытал конструкцию Тёмыч (Артём Богатырь).

   Форум

   Форум по обсуждению материала ПРОВЕРКА МИКРОСХЕМ ТАЙМЕРОВ




УСИЛИТЕЛЬ К ЭЛЕКТРОГИТАРЕ

Высококачественный усилитель для электрогитары — полное руководство по сборке и настройке схемы на JFET и LM386.


Блок питания на таймере 555

Автор: Radioelectronika-Ru · Опубликовано 23.08.2017 · Обновлено 20.03.2018

Микросхема 555-го таймера (отечественный аналог КР1006ВИ1) настолько универсальна, что ее можно встретить в самых неожиданных узлах РЭА. В этой статье рассмотрены схемы импульсных источников питания, в которых используется эта микросхема.
В домашней лаборатории, особенно в полевых условиях, необходим маломощный источник разных постоянных напряжений, который можно запитать от аккумуляторов или гальванических элементов, легкий и портативный. Подобные схемы импульсных источников питания, которые принято называть DC/DC-преобразователями, можно создать на 555-м таймере. Так получилось, что мы в своих конструкциях используем микросхему NE555, но в рассматриваемых схемах можно использовать любые ее аналоги.

Схема импульсного источника питания двухполярного напряжения


Он собран на одной микросхеме NE555 (рис.1), которая служит задающим генератором прямоугольных импульсов. Генератор собран по классической схеме. Частота следования выходных импульсов генератора 6,474…6,37 кГц. Она изменяется в зависимости от напряжения питания, которое может быть 3,6 В (3 аккумулятора в кассете питания) и 4,8 В (при 4 аккумуляторах в кассете). В схеме импульсного источника питания были использованы аккумуляторы ENERGIZER типоразмера АА емкостью 2500 мА-ч.
Прямоугольные импульсы с выхода 3 МС 555 через ограничивающий резистор R5 подаются на базу транзисторного ключа VT1, нагрузкой которого является дроссель L1 индуктивностью 3 мГн. При резком запирании этого транзистора в дросселе L1 наводится большая ЭДС самоиндукции. Полученные таким образом высоковольтные импульсы поступают на два параллельных выпрямителя с удвоением напряжения, на выходах которых будут два разнополярных напряжения ±4,5…15 В.

Эти напряжения можно регулировать, изменяя скважность выходных импульсов с помощью потенциометра R1.

Постоянное напряжение с движка R1 попадает на вывод 5 МС555 и меняет скважность, а следовательно, и выходные напряжение обоих выпрямителей. Выходные напряжения этого источника будут идеально равны только в том случае, когда скважность импульсов генератора будет равна 2 (длительность импульсов равна паузе между ними). При другой скважности импульсов выходные напряжения источника в точках А и Б будут несколько разниться (до 1…2 В). Столь небольшая разница обеспечивается применением в схеме импульсного источника питания выпрямителей удвоения, конденсаторы которых заряжаются как положительными, так и отрицательными импульсами. Этот недостаток компенсируется простотой и дешевизной схемы.

В этой схеме импульсного источника питания можно использовать дроссели от электронных балластов негодных экономичных ламп дневного света. Разбирая эти лампы, старайтесь не повредить спиральные или U-образные стеклянные трубки, так как они содержат ртуть. Делать это лучше на открытом воздухе.
На некоторых дросселях, особенно импортных, нанесена величина индуктивности в мГн (2.8, 2.2, 3.0, 3,6 и т.д.).
Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.1 приведены в табл.1.

Схема импульсного источника питания на двух NE555


На рис.2 показана схема импульсного источника питания с двумя таймерами NE555. Первая из этих микросхем (DD1) включена по схеме мультивибратора, на выходе которого проявляются короткие прямоугольные импульсы, снимаемые с ножки 3. Частота следования этих импульсов изменяется с помощью потенциометра R3.
Этим импульсы поступают на дифференцирующую цепочку C3R5 и параллельно подключенный к резистору R5 диод VD1. Поскольку катод диода подключен к шине питания, короткие положительные всплески продифференцированных импульсов (фронты) шунтируются малым прямым сопротивлением диода и имеют незначительную величину, а отрицательные всплески (спады), попадая на запертый диод VD1, свободно проходят на вход ждущего мультивибратора МС DD2 (ножка 2) и запускают его. Хотя на схеме VD1 указан как Д9И, в этой позиции желательно использовать маломощный диод Шотки, а, в крайнем случае, можно использовать кремниевый диод КД 522.

Резистор R6 и конденсатор С6 определяют длительность выходного импульса ждущего мультивибратора (одновибратора) DD2, управляющего ключом VT1.
Как в предыдущей схеме импульсного источника питания ток через транзистор VT1 регулируется резистором R7, а нагрузкой служит дроссель из балласта экономичных ламп дневного света 3 мГн.
Поскольку частота генерации МС ниже, чем в первой схеме, то конденсатор выпрямителя с удвоением напряжения С7 имеет емкость 10 мкФ, а для уменьшения габаритов в этой позиции использован керамический SMD-конденсатор, но можно использовать и другие типы конденсаторов: К73, КБГИ, МБГЧ, МБМ или электролитические на подходящее напряжение.
Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.2 приведены в табл.2.

Схема импульсного источника питания на таймере NE555 и операционном усилителе


Схема импульсного источника питания, показанная на рис.3, подобна, но в качестве задающего генератора прямоугольных импульсов используется операционный усилитель (ОУ) типа К140 УД12 или КР140 УД 1208. Этот ОУ очень экономичен, может работать от однополярного напряжения питания от 3 до 30 В или от двуполярного ±1,5… 15 В.
Частоту генерации регулируют потенциометром R3. Для увеличения широкополосности выводы 1,4,5 объединяют и заземляют на общий провод. Резистор R6, регулирующий токуправления, уменьшают до минимально возможного значения 100 кОм. Ток потребления ОУ в пределах 1,5…2 мА. Между выходом ОУ и дифференцирующей цепочкой C3R10VD1, от которой запускается одновибратор DD1, включен буферный усилитель на транзисторе VT1 типа ВС237, который служит для увеличения крутизны фронта и спада выходного импульса МС DA1.

В нагрузке ключа VT2 использован дроссель L1 из тех же балластов от экономичных ламп. От перенапряжения этот дроссель защищен цепочкой R13VD2. Его индуктивность 1,65 мГн, но намотан он более толстым проводом, следовательно, его активное сопротивление меньше, а добротность выше. Это позволяет получить на выходе выпрямителя с удвоением VD3VD4 напряжение приблизительно 24…25 В.
Необходимо также отметить, что схема импульсного источника питания рис.3 может работать от однополярного напряжения питания 3,3 В.
Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.3 приведены в табл.3.

Похожие статьи:
Малогабаритный импульсный источник питания на микросхеме LNK501
Импульсный источник питания на однопереходном транзисторе
Импульсный источник питания паяльника и дрели
Импульсный источник питания мощностью 20 Вт

Таймеры так же заслуживают внимания в деле строительства лабораторных источников питания. Обладая универсальностью, хорошими нагрузочными свойствами и работая в достаточно широком диапазоне частот, таймеры, как нельзя лучше подходят для создания простых импульсных ЛБП. Отсюда, видимо, и любовь создателей наиболее популярных серий ШИ-регуляторов к «таймерным» задающим генераторам, ведь, как известно, времязадающая часть серии 38ХХ и многих семейств прочих производителей, включая легендарный Viper, выполнена именно на таком генераторе.

В отличии от своих более специфичных собратьев по «импульсно-силовому» цеху, знаменитый таймер 555 (КР1006ВИ — в отечественной номенклатуре) менее привередлив к условиям запуска, работая в диапазоне напряжений 3−18В, и не менее универсален, что позволяет на базе этой простой микросхемы создать самодостаточное «ядро» управления импульсным ЛБП с ничуть не худшими параметрами, чем на специализированных микросхемах.

Содержание / Contents

↑ Схема 6

На схеме 6 приведен несложный вариант импульсно-линейного концепта на таймере 555.
Как видно, в схеме использованы практически все те же самые ключевые узлы и цепи регулировки, поэтому отдельно и вновь описывать их не имеет особого смысла.

Схема включения таймера так же не имеет секретов. Обращу внимание лишь на то, как организовано регулирование выходного напряжения. Выводы 5 и 6 таймера являются разнопролярными входами дифференциального каскада встроенного компаратора. На прямом входе (вывод 6) компаратора при помощи R3, C4 и разрядного транзистора, встроенного в таймер, формируется треугольное напряжение, уровень которого сравнивается с напряжением на инверсном входе компаратора (вывод 5).

Чем ниже уровень напряжения на инверсном входе (которое первоначально образовано встроенным делителем напряжения), тем ранее во времени происходит опрокидывание выхода (вывод 3) таймера в «0», тем короче выходной положительный импульс, тем меньшее время силовой ключ VT3 находится в открытом состоянии, насыщая контур L1-C6, тем меньше выходное напряжение ЛБП. Увеличивая напряжение на выводе 5, получаем обратную картину. В данном случае, применительно к схеме 6 и 7, управление напряжением на выводе 5 таймера осуществляется оптроном IC1.
При достижении на входе/выходе DA2 некоторого падения напряжения (2,9−3,3В приблизительно, зависит от типа оптрона, резистора R5), светодиод оптрона зажигается, провоцируя отпирание собственного транзистора, который, в свою очередь, обесточивает инверсный вход встроенного компаратора таймера. Выход таймера опрокидывается в «0», запирая силовой ключ VT3 (запирая драйвер VT1 в схеме 7).

Замечания по схеме. Для нормального функционирования данного ЛБП, ключ которого выполнен на мощном полевом транзисторе, не стоит пренебрегать наличием стабилизатора на VT1, т. к. в противном случае, качество управляющих импульсов может быть ухудшено из-за относительно больших импульсных токов в момент заряда затвора ПТ.
Это замечание справедливо и для других схем (предыдущих и последующих, где этот стабилизатор «прописан»), описанных в данной статье.

↑ Схема 7

Схема 7 является прототипом схемы 1 и ничего нового сказать о макете ЛБП, показанном на схеме 7, я не могу. Испытывался этот вариант при тех же входных напряжениях, способен обеспечить те же выходные параметры (в условиях, ограниченных макетной сборкой), что и прототип, построенный на семействе микросхем 38ХХ.

↑ Схема 8

Простейший вариант импульсного ЛБП с применением таймера изображен на схеме 8. Никаких особенностей, если не считать, что в качестве элемента, следящего за напряжением в средней точке делителя P1-R8, применен маломощный полевой транзистор КП501А, который справляется со многими задачами в приведенных схемах лучше своих биполярных собратьев. Он же гораздо дешевле своих зарубежных прототипов.

↑ Осциллограммы

↑ Фотки

На Рис1, 2 показан участок макетки, на которой отрабатывались схемы ЛБП.
Несмотря на несвойственный для силовых импульсных устройств монтаж, монтируемые схемы выдавали заявленные результаты.

C детства — музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, — для интереса, — и своих, и чужих.

За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования.
Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. — электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все — такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

Автор: Radioelectronika-Ru · Опубликовано 23.08.2017 · Обновлено 20.03.2018

Микросхема 555-го таймера (отечественный аналог КР1006ВИ1) настолько универсальна, что ее можно встретить в самых неожиданных узлах РЭА. В этой статье рассмотрены схемы импульсных источников питания, в которых используется эта микросхема.
В домашней лаборатории, особенно в полевых условиях, необходим маломощный источник разных постоянных напряжений, который можно запитать от аккумуляторов или гальванических элементов, легкий и портативный. Подобные схемы импульсных источников питания, которые принято называть DC/DC-преобразователями, можно создать на 555-м таймере. Так получилось, что мы в своих конструкциях используем микросхему NE555, но в рассматриваемых схемах можно использовать любые ее аналоги.

Схема импульсного источника питания двухполярного напряжения


Он собран на одной микросхеме NE555 (рис.1), которая служит задающим генератором прямоугольных импульсов. Генератор собран по классической схеме. Частота следования выходных импульсов генератора 6,474…6,37 кГц. Она изменяется в зависимости от напряжения питания, которое может быть 3,6 В (3 аккумулятора в кассете питания) и 4,8 В (при 4 аккумуляторах в кассете). В схеме импульсного источника питания были использованы аккумуляторы ENERGIZER типоразмера АА емкостью 2500 мА-ч.
Прямоугольные импульсы с выхода 3 МС 555 через ограничивающий резистор R5 подаются на базу транзисторного ключа VT1, нагрузкой которого является дроссель L1 индуктивностью 3 мГн. При резком запирании этого транзистора в дросселе L1 наводится большая ЭДС самоиндукции. Полученные таким образом высоковольтные импульсы поступают на два параллельных выпрямителя с удвоением напряжения, на выходах которых будут два разнополярных напряжения ±4,5…15 В.

Эти напряжения можно регулировать, изменяя скважность выходных импульсов с помощью потенциометра R1.

Постоянное напряжение с движка R1 попадает на вывод 5 МС555 и меняет скважность, а следовательно, и выходные напряжение обоих выпрямителей. Выходные напряжения этого источника будут идеально равны только в том случае, когда скважность импульсов генератора будет равна 2 (длительность импульсов равна паузе между ними). При другой скважности импульсов выходные напряжения источника в точках А и Б будут несколько разниться (до 1…2 В). Столь небольшая разница обеспечивается применением в схеме импульсного источника питания выпрямителей удвоения, конденсаторы которых заряжаются как положительными, так и отрицательными импульсами. Этот недостаток компенсируется простотой и дешевизной схемы.

В этой схеме импульсного источника питания можно использовать дроссели от электронных балластов негодных экономичных ламп дневного света. Разбирая эти лампы, старайтесь не повредить спиральные или U-образные стеклянные трубки, так как они содержат ртуть. Делать это лучше на открытом воздухе.
На некоторых дросселях, особенно импортных, нанесена величина индуктивности в мГн (2.8, 2.2, 3.0, 3,6 и т.д.).
Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.1 приведены в табл.1.

Схема импульсного источника питания на двух NE555


На рис.2 показана схема импульсного источника питания с двумя таймерами NE555. Первая из этих микросхем (DD1) включена по схеме мультивибратора, на выходе которого проявляются короткие прямоугольные импульсы, снимаемые с ножки 3. Частота следования этих импульсов изменяется с помощью потенциометра R3.
Этим импульсы поступают на дифференцирующую цепочку C3R5 и параллельно подключенный к резистору R5 диод VD1. Поскольку катод диода подключен к шине питания, короткие положительные всплески продифференцированных импульсов (фронты) шунтируются малым прямым сопротивлением диода и имеют незначительную величину, а отрицательные всплески (спады), попадая на запертый диод VD1, свободно проходят на вход ждущего мультивибратора МС DD2 (ножка 2) и запускают его. Хотя на схеме VD1 указан как Д9И, в этой позиции желательно использовать маломощный диод Шотки, а, в крайнем случае, можно использовать кремниевый диод КД 522.

Резистор R6 и конденсатор С6 определяют длительность выходного импульса ждущего мультивибратора (одновибратора) DD2, управляющего ключом VT1.
Как в предыдущей схеме импульсного источника питания ток через транзистор VT1 регулируется резистором R7, а нагрузкой служит дроссель из балласта экономичных ламп дневного света 3 мГн.
Поскольку частота генерации МС ниже, чем в первой схеме, то конденсатор выпрямителя с удвоением напряжения С7 имеет емкость 10 мкФ, а для уменьшения габаритов в этой позиции использован керамический SMD-конденсатор, но можно использовать и другие типы конденсаторов: К73, КБГИ, МБГЧ, МБМ или электролитические на подходящее напряжение.
Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.2 приведены в табл.2.

Схема импульсного источника питания на таймере NE555 и операционном усилителе


Схема импульсного источника питания, показанная на рис.3, подобна, но в качестве задающего генератора прямоугольных импульсов используется операционный усилитель (ОУ) типа К140 УД12 или КР140 УД 1208. Этот ОУ очень экономичен, может работать от однополярного напряжения питания от 3 до 30 В или от двуполярного ±1,5… 15 В.
Частоту генерации регулируют потенциометром R3. Для увеличения широкополосности выводы 1,4,5 объединяют и заземляют на общий провод. Резистор R6, регулирующий токуправления, уменьшают до минимально возможного значения 100 кОм. Ток потребления ОУ в пределах 1,5…2 мА. Между выходом ОУ и дифференцирующей цепочкой C3R10VD1, от которой запускается одновибратор DD1, включен буферный усилитель на транзисторе VT1 типа ВС237, который служит для увеличения крутизны фронта и спада выходного импульса МС DA1.

В нагрузке ключа VT2 использован дроссель L1 из тех же балластов от экономичных ламп. От перенапряжения этот дроссель защищен цепочкой R13VD2. Его индуктивность 1,65 мГн, но намотан он более толстым проводом, следовательно, его активное сопротивление меньше, а добротность выше. Это позволяет получить на выходе выпрямителя с удвоением VD3VD4 напряжение приблизительно 24…25 В.
Необходимо также отметить, что схема импульсного источника питания рис.3 может работать от однополярного напряжения питания 3,3 В.
Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.3 приведены в табл.3.

Похожие статьи:
Малогабаритный импульсный источник питания на микросхеме LNK501
Импульсный источник питания на однопереходном транзисторе
Импульсный источник питания паяльника и дрели
Импульсный источник питания мощностью 20 Вт

НАШ САЙТ РЕКОМЕНДУЕТ:

Метки:  

Реле времени на 555 таймере своими руками – ne555 схемы

В автомобиле очень много устройств призванных работать временно, то есть не постоянно а время от времени. Это и различные подогреватели и указатели поворотов (ленивый указатель поворотов) и турботаймеры и устройства включающие камеры заднего хода не сразу, а через какое-то время, то есть с задержкой. Так вот, везде в этих случаях используется таймер, который и задет для исполняющего устройства период его работы или отключения. То есть таймер в машине применяется часто и много где. Мы даже уверены в том, что не все случаи смогли упомянуть и еще несколько вариантов вы можете предложить сами, а может ради них и зашли к нам на страничку. Если это действительно так, то вы здесь как раз и найдете что вам надо, то есть таймер для включения, а равно и отключения исполнительного устройства на машине, в автомобиле.

Описание

Созданию микросхемы NE555, реализованному в 1970 году специалистами компании Signetics (США), предшествовали теоретические разработки Ганса Камензинда, который сумел доказать важность, не имевшего на тот момент времени аналогов, изобретения. Таймер NE555 явился первой и единственной «таймерной» микросхемой, доступной рядовым потребителям, которая позволяла собирать миниатюрные и недорогие устройства за счет плотной компановки элементов в кристалле микросхемы.

Основные параметры ИМС серии 555

Микросхема NE 555 состоит из пяти функциональных узлов:

  • делителя напряжения;
  • двух прецизионных компараторов;
  • триггера;
  • транзистора с открытым коллектором на выходе

РИСУНОК 1

Устройство микросхемы NE 555

Параметры работы микросхемы во многом определяются качеством сборки аналогов. Для таймера NE 555 диапазон рабочих температур составляет: 0° — 70° С, а для SE 555 он шире: от -55°С до +125°С.

Существенное влияние на точность работы схемы NE555оказывает вариант исполнения: гражданский или «военный». У последнего выше точность и продолжительнее ресурс работы. Корпус выполнен из керамики или металла.

Питание микросхем

Рекомендуемый интервал питания микросхем 555 и их аналогов лежит в интервале 4,5 V — 16V. Для микросхемы с индексом SE может достигать 18V.

Потребляемый ток в норме составляет 2-5 мА, при пиковых значениях: 10-15 мА.

Выходной ток у китайских аналогов и отечественной микросхемы КР1006ВИ1 составляет не более 100 мА. У оригинальных импортных микросхем NE/SE 555 он около 200 мА.

Преимущества и недостатки микросхемы

У микросхемы 555 «таймерного» типа существует множество преимуществ. Именно поэтому она популярна столь долгое время.

Внутренний делитель задает верхний и нижний порог срабатывания для двух встроенных компараторов. Это одновременно является достоинством, та как не требуется вводить дополнительные элементы, одновременно это и недостаток: пороговым напряжением микросхемы нельзя управлять.

Кроме этого в процессе эксплуатации выявился и еще один недостаток: при каждом переключении возникает паразитный сквозной ток, достигающий в пиковых значениях силы в 400 мА. За счет этого увеличиваются тепловые потери. Микросхема нагревается.

Как избавиться от недостатков

Решение проблемы давно найдено. Оно заключается в установке между проводом вывода управления и общим проводом полярного конденсатора небольшой емкости (до 0,1 мкФ). Этот конденсатор стабилизирует работу микросхемы при запуске.

Помехоустойчивость работы микросхемы достигается установкой в цепь питания неполярного конденсатора емкостью 1 мкФ. Вариации микросхемы NE 555, собранные на КМОП-транзисторах, не несут в себе указанных недостатков. Для их стабильной работы нет необходимости устанавливать внешние конденсаторы.

Реле времени на 555 таймере своими руками

31.08.2012 Электронная техника

В видеоуроке канала «самоделки и Обзоры посылок от jakson» будем собирать схему реле времени на базе микросхемы таймера на NE555. Весьма несложная — мало подробностей, что будет очень просто спаять все собственными руками. Наряду с этим многим она будет нужна.

Радиодетали для реле времени

Пригодится сама микросхема , два несложных резистора ( один переменный, один полярный), конденсатор на 3 микрофарада, неполярный конденсатор на 0,01 мкф, транзистор КТ315, диод практически любой, одно реле. Напряжение питания устройства будет от 9 до 14 вольт. Приобрести радиодетали либо готовое собранное реле времени возможно в этом китайском магазине.

Плагин на Google Хром для экономии в нём: 7 процентов с приобретений возвращается вам.

Схема весьма несложная.

Схема реле времени на 555 таймере

Любой ее сможет осилить, при наличии нужных подробностей. Сборка на печатной макетной плате, что окажется все компактно. В итоге часть платы нужно будет отломать. Пригодится несложная кнопка без фиксатора, она будет активировать реле.


Кроме этого два переменных резистора, вместо одного, что требуется в схеме, потому, что у мастера нет нужного номинала.

2 мегаома. Последовательно два резистора по 1 мегаому. Кроме этого реле, напряжение питания 12 вольт постоянного тока, пропустить через себя может 250 вольт, 10 ампер переменного.

По окончании сборки в итоге так выглядит реле времени на базе 555 таймера.

Все оказалось компактно. Единственное, что визуально портит вид, диод, потому, что имеет такую форму, что его нереально впаять в противном случае, потому, что у него ножки намного шире, чем отверстия в плате. Все равно оказалось достаточно хорошо.

Проверка устройства на 555 таймере

Удостоверимся в надежности отечественное реле. Индикатором работы будет светодиодная лента. Так же подсоединим мультиметр. Удостоверимся в надежности — нажимаем на кнопку, загорелась светодиодная лента. Напряжение, которое подается на реле — 12,5 вольт. Напряжение на данный момент по нулям, но из-за чего то горят светодиоды — наверняка неисправность реле.

Оно старое, выпаяно из ненужной платы.

При трансформации положения подстроечных резисторов мы можем регулировать время работы реле. Измерим большое и минимальное время. Оно практически сразу же выключается. И большое время.

Прошло около 2-3 мин. — вы сами видите.

Но такие показатели лишь в представленном случае. У вас они смогут быть другие, потому, что зависит от переменного резистора, что вы станете применять и от емкости электроконденсатора. Чем больше емкость — тем продолжительнее будет трудиться ваше реле времени.

Заключение

Увлекательное устройство мы сейчас собрали на NE 555. Все трудится превосходно. Схема не весьма сложная, без неприятностей многие ее смогут осилить. В Китае продаются кое-какие аналоги аналогичных схем, но увлекательнее собрать самому, так будет дешевле.

Использование подобному устройству в быту сможет отыскать любой. К примеру, уличный свет. Вы вышли из дома, включили уличное освещение и через какое-то время оно само выключается, именно, в то время, когда вы уже уйдете.

Смотрите все на видео про сборку схемы на 555 таймере.

Случайные записи:
Реле времени своими руками
Похожие статьи, которые вам понравятся:

alekseybalabanov.ru

Области применения

Сложно найти направления в развитии электроприборов, в которой бы не нашел применение таймер NE/SE 555. На нем успешно конструируют платы генераторов и реле времени, с возможностью управления интервалом от микросекунд до нескольких часов, используют при создании датчиков освещенности и контроля уровня жидкости, охранной сигнализации и кодовых замков.

Сигнализатор темноты

С устройствами, включающимися или выключающимися при изменении силы светового потока (освещенности), каждый вольно или невольно сталкивается каждый день:

  • на улицах с помощью таких устройств включаются фонари освещения;
  • в подъездах – дежурное освещение лестничных площадок;
  • в квартирах — различные устройства имеющий суточный ритм работы.

Принцип действия устройства, реагирующего на изменение освещенности, основан на том, что при изменении сопротивления фоторезистора, на входе NE555 меняется потенциал. Это влечет изменение напряжения на выходе и включает реле.

РИСУНОК 2

Принципиальная схема датчика света

Модуль сигнализации

Сигнализация, собранная с использованием микросхемы 555, использует ее как одновибратор, который, получив сигнал от датчика, генерирует управляющий сигнал включающий сирену. Продолжительность, тональность и громкость звучания регулируется введенными в схему переменными резисторами.

РИСУНОК 3

Принципиальная схема сигнализации

Метроном

Аналог механического прибора, задающего ритм определенной частоты и используемый музыкантами в процесс обучения и репетиций, имеет электронный аналог, собираемый с использованием таймера 555.

В данном случае микросхема работает в режиме мультивибратора, генерирующего периодические импульсы, которые регулируются транзисторами Q1 и Q2, обеспечивающими регулировку частоты импульсов. Непосредственно частота имульсов регулируется потенциометром Р1 . Для получения щелчка, схожего с щелчком механического метронома, в схему добавлен транзистор Q3 .

РИСУНОК 4

Принципиальная схема метронома

Таймер

Пример использования микросхемы по «прямому» назначению – отсчету интервала времени. Работа устройства основана на способности переключать режимы, выдавая сигналы на включение/выключение.

При разряженном конденсаторе потенциал на входе 555 обнулен. В процесс зарядки, требующей определенного времени, «отсчитывается» заданный интервал. После достижения заданного значения зарядки происходит разряд конденсатора, изменение потенциала. Таймер срабатывает на включение или выключение.

РИСУНОК 5

Принципиальная схема таймера

Точный генератор

Используется для регулирования параметров выходных импульсов в различных электронных устройствах. В частности – в высокочастотных преобразователях, входящих в блоки питания LED-лент.

РИСУНОК 6

Принципиальная схема таймера

Расположение и назначение выводов

Микросхема NE555 имеет восемь выходов. В настоящее время встречаются микросхемы в прямоугольных DIP-корпусах, хотя, изредка, можно встретить микросхему в круглом металлическом корпусе. От этого назначение выводов не меняется.

Расположение и нумерация показана на рисунке:

РИСУНОК 7

Расположение и назначение выводов NE555

Усовершенствованное реле времени на таймере 555

Микросхема-таймер 555 хорошо подходит для изготовления на её основе недорогого реле времени, однако популярная схема такого реле имеет некоторые недостатки которые не позволяют расширить область применения данного реле времени. О таких недостатках много написано в комментариях на странице electe.blogspot.ru/2014/01/2-555.html. Один из недостатков — это низкая помехоустойчивость, другой — реле не выключается если длительность импульса на входе превышает время задержки. Также у данной микросхемы есть одна интересная особенность которая позволяет упростить и немного удешевить готовое устройство путём уменьшения количества элементов — это достаточно большой максимальный выходной ток для того чтобы многие обмотки реле можно было подключить напрямую к выходу. Рассмотрим схему:
Рисунок 1 — Усовершенствованное реле времени на таймере 555.

Обмотка реле К1 подключается напрямую к выходу микросхемы! Обратный диод VD1, естественно, тоже нужен. Максимальный выходной ток таймера 555, судя по данным из интернета, больше 100мА поэтому если обмотка реле потребляет меньше то её можно смело подключать напрямую к выходу микросхемы, если больше то нужен подходящий транзистор (как его поставить см. схему на странице по ссылке выше). Главная причина низкой помехоустойчивости в том что в микросхеме 555 имеется два компаратора у которых половина входных выводов выведена наружу а другая подсоединена к внутренним резисторам которые имеют большое активное сопротивление, это хорошо видно на упрощённой схеме данного таймера:

Рисунок 2 — Упрощённая схема таймера 555

Выводы 2, 5 и 6 выведены наружу из за этого, напряжения на них можно задавать как угодно. Ещё один вывод компаратора остаётся внутри но напряжение на нём вряд ли из за наводок сможет хоть как то повлиять на работу таймера. Вывод 6 подключен к RC-цепи (и так было ранее) поэтому напряжение на нём чётко задано. Вывод 5 можно, на всякий случай, подключить к трём наружным резисторам с небольшим сопротивлением — это должно немного увеличить помехоустойчивость. Вывод 2 обычно подключается через резистор к плюсу питания и через кнопку на землю (0 питания (или минус как его ещё иногда называют)) — обычно это не создаёт проблем т.к. когда кнопка не нажата на 2 выводе напряжение равно напряжению питания, когда нажата на выводе 2 напряжение равно нулю. Однако если подключить длинный провод, кабель и т.д. к выводу 2 то этот провод, кабель и т.д. будет «собирать» всевозможные помехи из окружающего пространства и делать на выводе 2 «чёрт знает» какое напряжение только не то которое надо, поэтому расстояние от вывода 2 до кнопки или того что делает на нём нужное напряжение должно быть как можно меньше а сопротивление резистора который «подтягивает» этот вывод к плюсу (минусу или куда надо если этого не делает другая штука (но в данном случае резистор к плюсу)) тоже должно быть как можно меньше (но не настолько чтобы произошло короткое замыкание при нажатии на кнопку или каким либо другим образом проседания до нуля напряжения в этом месте). В предыдущей схеме сопротивление этого резистора было 100кОм т.е. побольше для меньшего расхода электроэнергии, в данной схеме это сопротивление 4.7кОм т.е. поменьше для увеличения помехоустойчивости, хотя можно поставить ещё меньше (например если рядом стоит индукционная печь или ещё что либо подобное хотя в таком случае это может не помочь т.к. индукционная печь хорошо плавит металлы). Для устранения ещё одного недостатка поставлен конденсатор C1. Оптрон U1 нужен для того чтобы гальванически развязать цепь управления и реле времени и тем самым повысить помехоустойчивость. При резком включении светодиода оптрона его транзистор открывается и напряжение на его коллекторе резко проседает от чего на выводе 2 возникает низкое напряжение на некоторое небольшое время. Когда конденсатор C1 заряжается напряжение снова становиться равно напряжению питания и даже если держать транзистор открытым вечно то импульс на входе микросхемы всё равно будет коротким и реле выключится после того как пройдёт время задержки. После того как транзистор закроется конденсатор C1, через некоторое время, разрядится через резисторы R1 и R2 и можно будет запускать таймер снова. При изготовлении платы для реле времени можно использовать двухсторонний стеклотекстолит и сделать все дорожки для всех элементов на одно стороне а другую оставить и припаять к ней 0 питания и соединить его с выводом 1 таймера 555 — это значительно повысит помехоустойчивость (проверено на практике см. видео ниже). Также желательно контакты реле вынести подальше от основной схемы и по возможности не припаивать их на ту же плату на которой располагается микросхема 555. Конечно все эти меры могут не помочь в каких то случаях, но тем не менее они повышают помехоустойчивость, расширяют область применения данного реле времени и доказывают что таймер 555 не плохой, просто его надо уметь использовать! КАРТА БЛОГА (содержание)

electe.blogspot.com

Режимы работы NE555

У микросхемы возможны три режима работы. Каждый из них используется в различных электронных устройствах.

Одновибратор

В этом режиме микросхема формирует одиночные импульсы. Эта способность реализуется в охранной сигнализации, таймерах включения/выключения.

Мультивибратор

В режиме мультивибрации происходит генерация одинаковых по амплитуде и частоте импульсов прямоугольной формы. Это свойство реализуется в электронных метрономах или в конструкциях блоков питания для светодиодных лент.

Прецизионный триггер Шмидта с RS триггером

Способность делить компаратором входное напряжение на три части, по достижении пикового значения каждой го из которых происходит очередное переключение. Это свойство реализуется в системах автоматического регулирования различных устройств.

Усовершенствованное реле времени на таймере 555

Микросхема-таймер 555 хорошо подходит для изготовления на её основе недорогого реле времени, однако популярная схема такого реле имеет некоторые недостатки которые не позволяют расширить область применения данного реле времени. Один из недостатков — это низкая помехоустойчивость, другой — реле не выключается если длительность импульса на входе превышает время задержки. Также у данной микросхемы есть одна интересная особенность которая позволяет упростить и немного удешевить готовое устройство путём уменьшения количества элементов — это достаточно большой максимальный выходной ток для того чтобы многие обмотки реле можно было подключить напрямую к выходу. Обмотка реле К1 подключается напрямую к выходу микросхемы! Обратный диод VD1, естественно, тоже нужен. Максимальный выходной ток таймера 555, судя по данным из интернета, больше 100мА поэтому если обмотка реле потребляет меньше то её можно смело подключать напрямую к выходу микросхемы, если больше то нужен подходящий транзистор (как его поставить см. схему на странице по ссылке выше). Главная причина низкой помехоустойчивости в том что в микросхеме 555 имеется два компаратора у которых половина входных выводов выведена наружу а другая подсоединена к внутренним резисторам которые имеют большое активное сопротивление. Выводы 2, 5 и 6 выведены наружу из за этого, напряжения на них можно задавать как угодно. Ещё один вывод компаратора остаётся внутри но напряжение на нём вряд ли из за наводок сможет хоть как то повлиять на работу таймера. Вывод 6 подключен к RC-цепи (и так было ранее) поэтому напряжение на нём чётко задано. Вывод 5 можно, на всякий случай, подключить к трём наружным резисторам с небольшим сопротивлением — это должно немного увеличить помехоустойчивость. Вывод 2 обычно подключается через резистор к плюсу питания и через кнопку на землю (0 питания (или минус как его ещё иногда называют)) — обычно это не создаёт проблем т.к. когда кнопка не нажата на 2 выводе напряжение равно напряжению питания, когда нажата на выводе 2 напряжение равно нулю. Однако если подключить длинный провод, кабель и т.д. к выводу 2 то этот провод, кабель и т.д. будет «собирать» всевозможные помехи из окружающего пространства и делать на выводе 2 «чёрт знает» какое напряжение только не то которое надо, поэтому расстояние от вывода 2 до кнопки или того что делает на нём нужное напряжение должно быть как можно меньше а сопротивление резистора который «подтягивает» этот вывод к плюсу (минусу или куда надо если этого не делает другая штука (но в данном случае резистор к плюсу)) тоже должно быть как можно меньше (но не настолько чтобы произошло короткое замыкание при нажатии на кнопку или каким либо другим образом проседания до нуля напряжения в этом месте). Читать далее…

subscribe.ru

ИС таймера 555 — принцип работы, блок-схема, электрическая схема

В этом руководстве мы узнаем, как работает таймер 555, одна из самых популярных и широко используемых ИС всех времен. Вы можете посмотреть следующее видео или прочитать письменное руководство ниже.

Обзор

Таймер 555, разработанный Хансом Камензинд в 1971 году, можно найти во многих электронных устройствах, начиная от игрушек и кухонных приборов и заканчивая космическими кораблями. Это высокостабильная интегральная схема, способная создавать точные временные задержки и колебания.Таймер 555 имеет три режима работы: бистабильный, моностабильный и нестабильный.

Как это работает, внутренняя схема и блок-схема

Давайте подробнее рассмотрим, что находится внутри таймера 555, и объясним, как он работает в каждом из трех режимов. Вот внутренняя схема таймера 555, который состоит из 25 транзисторов, 2 диодов и 15 резисторов.

Представленный блок-схемой, он состоит из 2 компараторов, триггера, делителя напряжения, разрядного транзистора и выходного каскада.

Делитель напряжения состоит из трех одинаковых резисторов 5 кОм, которые создают два опорных напряжения при 1/3 и 2/3 подаваемого напряжения, которые могут находиться в диапазоне от 5 до 15 В.

Далее идут два компаратора. Компаратор — это элемент схемы, который сравнивает два аналоговых входных напряжения на его положительном (неинвертирующем) и отрицательном (инвертирующем) входном выводе. Если входное напряжение на положительной клемме выше, чем входное напряжение на отрицательной клемме, компаратор выдает 1.И наоборот, если напряжение на отрицательной входной клемме выше, чем напряжение на положительной клемме, компаратор выдаст 0.

Первая отрицательная входная клемма компаратора подключена к 2/3 опорного напряжения на делителе напряжения. и внешний «контрольный» вывод, а положительный входной вывод — к внешнему «пороговому» выводу.

С другой стороны, отрицательная входная клемма второго компаратора подключена к контакту «Триггер», а положительная входная клемма — к опорному напряжению 1/3 на делителе напряжения.

Таким образом, используя три контакта, триггер, порог и управление, мы можем управлять выходом двух компараторов, который затем подается на входы R и S триггера. Триггер будет выводить 1, когда R = 0, а S = 1, и наоборот, он будет выводить 0, когда R = 1, а S = 0. Кроме того, триггер может быть сброшен через внешний вывод, называемый «Reset», который может заблокировать два входа, таким образом сбросив весь таймер в любое время.

Выход Q-bar флип-флип поступает на выходной каскад или выходные драйверы, которые могут либо подавать, либо отдавать ток 200 мА в нагрузку.Выход триггера также подключен к транзистору, который соединяет контакт «Разряд» с землей.

Таймер 555 — бистабильный режим

Теперь давайте рассмотрим пример работы таймера 555 в бистабильном режиме. Для этого нам понадобятся два внешних резистора и две кнопки.

Выводы триггера и сброса микросхемы подключены к VCC через два резистора, и поэтому они всегда имеют высокий уровень. Две кнопки подключены между этими контактами и землей, поэтому, если мы будем удерживать их нажатыми, состояние входа будет низким.

Первоначально два выхода компаратора равны 0, таким образом, выход триггера, а также выход таймера 555 равны 0.

Если мы нажмем кнопку триггера, состояние на входе триггера станет низким, Таким образом, компаратор будет выводить High, и это приведет к понижению выходного сигнала Q-bar с переворотом. Выходной каскад инвертирует это, и конечный выход таймера 555 будет высоким.

Выход будет оставаться высоким, даже если кнопка триггера не нажата, потому что в этом случае входы триггера R и S будут равны 0, что означает, что триггер не изменит предыдущее состояние.Чтобы сделать выход низким, нам нужно нажать кнопку сброса, которая сбрасывает триггер и всю ИС.

Связанное руководство: Что такое триггер Шмитта | Как это работает

Таймер 555 — моностабильный режим

Теперь давайте посмотрим, как таймер 555 работает в моностабильном режиме. Вот пример схемы.

Триггерный вход удерживается высоким путем подключения его к VCC через резистор. Это означает, что триггерный компаратор выдает 0 на вход S триггера.С другой стороны, вывод Threshold имеет низкий уровень, и это также делает вывод компаратора Threshold 0. Вывод Threshold на самом деле низкий, потому что выход Q-bar триггера имеет высокий уровень, который поддерживает разрядный транзистор активным, поэтому напряжение, исходящее от источника, идет на землю через этот транзистор.

Чтобы изменить состояние выхода таймера 555 на High, нам нужно нажать кнопку на контакте триггера. Это заземлит контакт триггера, или входное состояние будет 0, таким образом, компаратор будет выводить 1 на вход S триггерного переключателя.Это приведет к тому, что выход Q-bar станет низким, а выход таймера 555 — высоким. При этом мы можем заметить, что разрядный транзистор выключен, поэтому теперь конденсатор C1 начнет заряжаться через резистор R1.

Таймер 555 будет оставаться в этом состоянии до тех пор, пока напряжение на конденсаторе не достигнет 2/3 подаваемого напряжения. В этом случае пороговое входное напряжение будет выше, и компаратор выведет 1 на вход R триггера. Это вернет схему в исходное состояние.Выход Q-bar станет высоким, что активирует разрядный транзистор, а также снова установит низкий уровень на выходе IC.

Итак, мы можем заметить, что количество времени, в течение которого выходной сигнал таймера 555 является высоким, зависит от того, сколько времени требуется конденсатору для зарядки до 2/3 подаваемого напряжения, и это зависит от значений обоих конденсатор С1 и резистор R1. На самом деле мы можем рассчитать это время по следующей формуле: T = 1,1 * C1 * R1.

Таймер 555 — нестабильный режим

Теперь давайте посмотрим, как таймер 555 работает в нестабильном режиме.В этом режиме ИС становится осциллятором или также называемым мультивибратором свободного хода. Он не имеет стабильного состояния и постоянно переключается между высоким и низким без применения какого-либо внешнего триггера. Вот пример схемы таймера 555, работающего в нестабильном режиме.

Нам понадобятся всего два резистора и конденсатор. Контакты Trigger и Threshold соединены друг с другом, поэтому нет необходимости во внешнем пусковом импульсе. Первоначально источник напряжения начнет заряжать конденсатор через резисторы R1 и R2.Во время зарядки компаратор триггера выдает 1, потому что входное напряжение на контакте триггера все еще ниже 1/3 подаваемого напряжения. Это означает, что выход Q-bar равен 0 и разрядный транзистор закрыт. В это время выходной сигнал таймера 555 высокий.

Когда напряжение на конденсаторе достигнет 1/3 подаваемого напряжения, компаратор триггера выдаст 0, но в этот момент это не изменится, поскольку оба входа R и S триггера равны 0.Таким образом, напряжение на конденсаторе будет продолжать расти, и как только оно достигнет 2/3 подаваемого напряжения, пороговый компаратор выведет 1 на вход R триггера. Это активирует разрядный транзистор, и теперь конденсатор начнет разряжаться через резистор R2 и разрядный транзистор. В этот момент выходной сигнал таймера 555 низкий.

Во время разряда напряжение на конденсаторе начинает снижаться, и пороговый компаратор сразу же начинает выводить 0, который фактически не меняет, поскольку теперь оба входа R и S триггера равны 0.Но как только напряжение на конденсаторе упадет до 1/3 подаваемого напряжения, триггерный компаратор выдаст 1. Это отключит разрядный транзистор, и конденсатор снова начнет заряжаться. Таким образом, эти процессы зарядки и разрядки от 2/3 до 1/3 подаваемого напряжения будут продолжать работать сами по себе, создавая прямоугольную волну на выходе таймера 555.

Мы можем вычислить время, в течение которого выходной сигнал будет высоким и низким, используя показанные формулы. Время высокого уровня зависит от сопротивления как R1, так и R2, а также от емкости конденсатора.С другой стороны, время низкого уровня зависит только от сопротивления R2 и емкости конденсатора. Если мы суммируем время максимума и минимума, мы получим период одного цикла. С другой стороны, частота — это то, сколько раз это происходит за одну секунду, поэтому один за период даст использовать частоту выходного сигнала прямоугольной формы.

Если мы внесем некоторые изменения в эту схему, например, заменим резистор R2 переменным резистором или потенциометром, мы сможем мгновенно контролировать частоту и скважность прямоугольной волны.Однако подробнее об этом в моем следующем видео, где мы сделаем ШИМ-контроллер скорости двигателя постоянного тока с использованием таймера 555.

Надеюсь, вам понравился этот урок и вы узнали что-то новое. Не стесняйтесь задавать любой вопрос в разделе комментариев ниже.

555 ИС таймера — Типы, конструкция, работа и применение

555 ИС таймера — Режим работы — Схема, внутренняя, блок-схема и приложения

Цифровые таймеры

Таймеры — это схемы, которые подают периодические сигналы к цифровой системе, которая изменяет состояние этой системы.Другими словами, те схемы, которые работают на основе смены мультивибратора или устройства, которое можно использовать как мультивибратор, называются Таймером .

Что такое микросхема таймера 555?

555 Таймер представляет собой цифровую монолитную интегральную схему (ИС), которая может использоваться в качестве тактового генератора . Другими словами, таймер 555 — это схема, которая может быть подключена как стабильный или моностабильный мультивибратор . Проще говоря, таймер 555 — это монолитная схема синхронизации , которая может производить точные синхронизирующие импульсы с коэффициентом заполнения 50% или 100%.Он был разработан в 1970 году компанией Signetic Corporation и спроектирован Хансом Камензиндом в 1971 году.

555 Таймер — это универсальное и наиболее удобное устройство в электронных схемах и конструкциях, которое работает как в стабильном, так и в моностабильном состоянии. Это может обеспечить временную задержку от микросекунд до многих часов. Таймер

555 — это очень дешевая ИС, которая работает в широком диапазоне разности потенциалов (обычно от 4,5 до 15 В постоянного тока), а различные входные напряжения не влияют на выход таймера.

555 Таймер — это линейное устройство, которое может быть напрямую подключено к цифровым схемам CMOS или TTL (транзистор — транзисторная логика) из-за его совместимости, но для использования таймера 555 с другими цифровыми схемами необходимо взаимодействие.

Являясь неотъемлемой частью проекта электроники, микросхема таймера 555 очень часто используется в простых и сложных проектах электроники. Стандартная микросхема таймера 555 состоит из 2 диодов, 25 транзисторов и 15 резисторов, установленных в 8-контактном двухрядном корпусе.

Полезно знать:

Этот таймер называется таймером 555 из-за того, что он содержит три резистора 5 кОм, соединенных последовательно , чтобы сформировать диаграмму направленности делителя напряжения.

Связанное сообщение:

Характеристики таймера 555 IC
  • В зависимости от номенклатуры существует два типа таймера 555 — NE 555 Timer и SE 555 Timer . В то время как таймер NE 555 может использоваться в диапазоне температур от 0 до 70 ° C, таймер SE 555 может использоваться в диапазоне температур от -55 ° C до 125 ° C и имеет температурную стабильность 0,005% на 0C ..
  • может работать с различными источниками питания в диапазоне от 5 вольт до 18 вольт .
  • Он может использоваться как генератор импульсов или как генератор , работая в различных режимах.
  • Название 555 связано с тем, что он содержит три резистора 5 кОм, соединенных последовательно , чтобы сформировать диаграмму направленности делителя напряжения.
  • Он может управлять как транзисторно-транзисторной логикой (TTL) из-за высокого выходного тока, так и логическими схемами CMOS.
  • Он имеет высокий выходной ток и регулируемый рабочий цикл .
  • Таймер
  • 555 может работать как в нестабильном, , так и в моностабильном режимах .
  • Выход таймера 555 может обеспечивать или поглощать ток до 200 мА понижая или подавая ток на нагрузку.
  • Он содержит 24 транзистора , 2 диода и 17 резисторов .
  • 555 Таймер доступен как 8-контактный двухрядный Корпус ( DIP ), 8-контактный металлический корпус или 14-контактный двухрядный корпус ( DIP ).

Статьи по теме:

Таймер 555 Конструкция и блок-схема

Есть много производителей, которые производят таймер 555, который включает номер 555 e.грамм. NE555 , CA555 , SE555 , MC14 555 и т. Д. Обычно два таймера 555 зажаты внутри одного чипа, который называется 556 . В настоящее время доступны чипы с четырьмя таймерами на 555 штук. Эти устройства доступны в круглой ИС с восемью (8), DIP (Dual inline Package) с 8 контактами или DIP с 14 контактами.

Ниже представлена ​​схема контактов таймера DIP (Dual inline Package) 555 с 8 контактами.

Рис. 1: Конструкция ИС таймера 555 и выводов

Простая схема таймера 555 показана выше на рис. 3, который показывает внутреннюю конструкцию таймера 555.Согласно рис. 1 и 3, таймер содержит два компаратора, RS-триггер, выходной стежок (выходной буфер) и разрядный транзистор Q 1 .

Кроме того, три резистора 5 кОм соединены последовательно с резистором 5 кОм, первый конец которого подключен к V CC (контакт 8 = напряжение питания), а другой конец подключен к земле (GND = контакт 1).

На рис. 1 и выше (а также на рис. 2 и 3 ниже), как показано на блок-схеме, сердце ИС находится в двух схемах компаратора.В то время как инвертирующий вывод верхнего компаратора подключен к точке с потенциалом постоянного тока 2/3 В CC (где V CC может быть от + 5 В до + 18 В), неинвертирующий вывод подключается к пороговому выводу.

Инвертирующая клемма нижнего компаратора подключена к входному контакту внешнего триггера, тогда как неинвертирующая клемма подключена к точке с потенциалом постоянного тока 1/3 В CC . Три резистора по 5 кОм соединены последовательно, образуя цепь делителя напряжения.Выходные данные обоих компараторов передаются на триггер R-S, состояние которого зависит от выходного сигнала двух компараторов.

Выход R-S триггера подключен к двум транзисторам — Q 1 и Q 2 . Q1 является разрядным транзистором и обеспечивает путь разряда к внешнему конденсатору, когда он насыщен. Q 2 — это транзистор сброса, подающий импульс которого сбрасывает всю схему синхронизации. Выходной сигнал триггера усиливается блоком усилителя мощности.

Статьи по теме:

555 Конфигурация выводов таймера 9029
555 Распиновка IC таймера
PIN-код Имя Заземление (0 В)
2 TRIG Для подачи внешнего триггерного напряжения
3 OUT 1.На 7 В ниже + V CC или к GND
4 RESET Для сброса временного интервала
5 CTRL Обеспечивает доступ для управления внутренним делителем напряжения
6 Пороговое напряжение
7 DIS Синфазно с выходом
8 В CC Положительное напряжение питания

Вот простое объяснение 8 контактов 55 Таймер IC (рис. 1 и 2). Давайте разберемся с этой ИС с ее конфигурацией контактов и принципиальной схемой.

Рис. 2 — Схема выводов микросхемы таймера 555

1. Земля (GND)

Это общая точка заземления цепи. Клемма заземления внешней цепи, а также клемма заземления источника питания (V CC ) подключены к клемме GND (Земля) таймера 555.

Этот вывод либо заземлен, либо подключен к отрицательной шине. Подключение с использованием резистора не рекомендуется во избежание нагрева ИМС из-за накопленного в ней паразитного напряжения.

2. Триггер

Когда клемма триггера получает 1/3 (1/3) напряжения питания, то есть В CC /3 отрицательный импульс запуска равной амплитуды, тогда выходной сигнал схемы изменяется с низкого на Высокий.

Этот вывод является выводом триггера входа для ИС и активирует цикл синхронизации. Низкий сигнал на этом выводе запускает таймер. Требуемый ток на этом выводе составляет 0,5 мкА в течение периода 0,1 мкСм . Чтобы избежать ложного срабатывания из-за шума, штифт требует подтягивающего соединения.Напряжение на этом выводе составляет 1,67 Вольт для напряжения питания 5 Вольт и 5 Вольт для напряжения питания 15 Вольт .

3. Выход

Этот терминал используется для получения выхода и подключения к нагрузке. В любой момент его значение низкое или высокое. т.е. это выходной контакт таймера. Выход таймера зависит от длительности временного цикла входного импульса. Выход может потреблять или истощать ток, максимум 200 мА. Для НИЗКОГО выхода он потребляет ток, напряжение немного больше нуля, а для ВЫСОКОГО выхода он подает ток с напряжением менее V CC .

4. Сброс

Без учета предыдущего состояния выхода, подача триггерного импульса на этот терминал сбрасывает устройство. Т.е. Его выход становится низким.

Вывод сброса либо не подключен, либо подключен к положительной шине. Логический сигнал LOW на этом выводе сбрасывает таймер независимо от его входа. Требуемое напряжение сброса составляет 0,7 В при токе 0,1 мА.

5. Управляющее напряжение

На клемме управляющего напряжения есть два третьих положительных напряжения из общего количества питающих напряжений (В CC ).Таким образом, он становится частью схемы компаратора. Обычно между клеммами заземления и управления напряжением подключается конденсатор.

Это также обычно неподключенный контакт или заземленный через конденсатор 0,01 мкФ . Для некоторых приложений этот вывод требуется для управления пороговым напряжением на верхнем компараторе и подключен к внешнему сигналу постоянного тока для изменения рабочего цикла.

6. Пороговое напряжение

Пороговое напряжение и управляющее напряжение — это два входа схемы компаратора.Схема сравнивает доступное напряжение на клемме порогового напряжения с доступным опорным напряжением на клемме управления.

Если доступное напряжение на пороговом выводе (вывод 6) больше управляющего напряжения, т. Е. Две трети от V CC , то выходной сигнал будет низким, в противном случае он будет высоким.

Этот вывод обеспечивает пороговое напряжение на верхний компаратор. Когда напряжение на этом выводе больше 2/3 В CC , рабочий цикл изменяется.Он подключен к неинвертирующему выводу верхнего компаратора. Требуемый ток составляет 0,1 мА , при длительности импульса 0,1 мкс .

7. Разряд

Когда выходной сигнал низкий, разрядный терминал обеспечивает путь разряда с низким сопротивлением к внешнему подключенному конденсатору. Тем не менее, он действует на разрыв цепи, когда выходная мощность высока.

Этот вывод обеспечивает путь разряда для синхронизирующего конденсатора через NPN-транзистор. Ток разряда менее 50 мА требуется во избежание повреждений.Его также можно использовать как выход с открытым коллектором.

8. + V CC (клемма напряжения питания)

На эту клемму подается напряжение питания для работы таймера. Этот вывод подключен к положительной шине источника питания и также известен как V CC . Напряжение питания может варьироваться от + 5 Вольт до +18 Вольт .

Связанные сообщения:

Схема и принцип работы микросхемы таймера 555

В блоке или функциональной схеме таймера 555 компараторами являются те устройства, которые имеют высокий выход, когда их положительное входное напряжение больше, чем их отрицательное входное напряжение и наоборот.

Внутренняя функциональная схема таймера 555 Внутренняя функциональная схема таймера 555

Делитель напряжения в цепи (который содержит три последовательно соединенных резистора 5 кОм ), который обеспечивает уровень срабатывания одной трети от В CC (V CC /3) и две трети (2/3) порогового напряжения. Чтобы понять этот момент, предположим, что входное значение — 15V . В этом случае значение уровня запуска будет 5V as ( V CC /3 = 15V / 3 = 5V ).И значение порогового уровня будет 10V как ( V CC x 2/3 = 15V x (2/3) ) = 10V .

При необходимости уровень запуска и порог могут быть отрегулированы с помощью клеммы управляющего напряжения (вывод 5), т.е.изменив управляющее напряжение на выводе 5, мы можем изменить уровень запуска и пороговое напряжение в соответствии с требуемой спецификацией. Однако в этом случае значение триггера и порога останется равным 1 /3 V CC и 2/3 V CC соответственно.

Что касается рабочей части микросхемы таймера 555, эта схема обычно работает в трех различных режимах, а именно в A-стабильном, моностабильном и бистабильном режимах. Для лучшего понимания микросхемы таймера 555 и ее различных состояний, проверьте приведенную ниже принципиальную схему.

Внутренняя принципиальная схема таймера Рис. 3: Рис. Внутренняя принципиальная схема таймера 555

Когда нормальное высокое входное значение триггера мгновенно уменьшается, то 1/3 В CC , Затем выход Компаратора B становится High из Low, в результате RS-защелка или RS-триггер переходит в положение «set».Когда триггер установится, тогда выход (в точке 3) станет высоким. Одновременно с этим отключается разрядный транзистор Q 1 , и выходной сигнал остается высоким до тех пор, пока значение обычно низкого порогового значения на входе не увеличится, а затем 2/3 В CC .

Как только входной порог увеличивается, чем 2 / 3V CC , тогда выход компаратора A становится низким, в результате триггер RS сбрасывается (поскольку выход компаратора напрямую подключен к RS вход R триггера, как показано на рис.Когда триггер сбрасывается, на выходе становится низкий уровень, и разрядный транзистор Q 1 включается.

Триггер можно сбросить, применив внешний сброс входа без пороговой цепи. Обратите внимание, что триггерные и пороговые входы (контакт 2 и контакт 6) управляются внешними компонентами, и таймер 555 может использоваться как стабильная , , моностабильная или бистабильная работа , управляя входами триггера и порога с помощью этих внешних компонентов.

Типы таймеров 555 и Рабочие режимы

Существует три основных типа таймеров 555 в зависимости от режима работы и работы.

  1. 555 Таймер как нестабильный мультивибратор
  2. 555 Таймер как моностабильный мультивибратор
  3. 555 Таймер как бистабильный режим

555 Таймер может работать в трех режимах, двухстабильный режим — Моностабильный и Астабильный режим .

Нестабильный режим:

В этом режиме на выходе не будет стабильного уровня, и выход будет постоянно колебаться между высоким и низким. я.e.- Он не имеет стабильного состояния и продолжает переключаться между высоким и низким без применения какого-либо внешнего триггера.

Работа таймера 555 в A-стабильном режиме:

Выводы триггера и порога соединены вместе, поэтому нет необходимости во внешнем импульсе триггера. Компаратор выдает 1 во время зарядки триггера, потому что входное напряжение на контакте триггера все еще ниже 1/3 подаваемого напряжения. На этот раз выходной сигнал таймера высокий. Как только напряжение на контакте достигнет 1/3 от подаваемого напряжения, триггерный компаратор выдаст 0, сохраняя ситуацию неизменной, поскольку оба входа R и S триггера равны 0.Как только напряжение на конденсаторе достигнет 3/7 приложенного напряжения, пороговый компаратор будет выводить 1 на вход R триггера. Теперь конденсатор начнет разряжаться через резистор R 2 и разряжать транзистор. Выходной сигнал таймера 555 в этот момент низкий. Как только напряжение на конденсаторе упадет до 1/3 подаваемого напряжения, триггерный компаратор выдаст 1.

Вы можете легко рассчитать выходной сигнал этой конфигурации, используя приведенную ниже формулу.Время зависит от резисторов R 1 , R 2 и конденсатора. С другой стороны, низкое время зависит только от резистора R 2 и конденсатора.

High Time:

T H = 0,693 x (R 1 x R 2 ) XC 1

Low Time:

T L = 0,6493 x (R 2 ) X (C 1 )

Период для одного цикла:

T = TH + TL x (R 1 + 2R 2 ) C1

Частота:

f = 1 .44 / (R 1 + R 2 ) C 1 ) HZ

Он также известен как режим самозапуска, таймер используется в этом режиме как генератор тактовых импульсов или генератор . Таймер переключается между двумя квазистабильными состояниями и без внешнего триггерного входа.

Ниже представлена ​​схема таймера 555 в нестабильном режиме.

Рис. 5: Астабильный режим таймера 555

(см. Также рис. 2). Когда таймер включен, то есть на выходе ВЫСОКИЙ, транзистор Q 2 будет в области отсечки при получении НИЗКОГО входного сигнала.Конденсатор заряжается через оба резистора R 1 и R 2 в направлении V CC . Время зарядки конденсатора составляет

τ 1 = 0,693 (R 1 + R 2 ) * C.

Это напряжение конденсатора является пороговым напряжением для верхнего компаратора.

Когда напряжение превышает 2/3 В CC , верхний выход компаратора сбрасывает триггер, который переводит выход таймера в состояние ВЫКЛ (при условии, что вывод сброса находится в состоянии НИЗКОГО) Транзистор τ будет в области насыщения, т.е.е. будет включен, обеспечивая путь разряда конденсатора через резистор R 2 , время разряда составляет — 0,693 R 2 * C .

Когда напряжение конденсатора падает ниже -1 / 3V CC , второй выход компаратора устанавливает триггер, который делает выход таймера НИЗКИМ, и весь процесс начинается снова. Таким образом, выходной сигнал таймера колеблется между ВЫСОКИМ и НИЗКИМ состоянием, генерируя колебания.

Вы также можете прочитать:

Моностабильный режим :

Эта конфигурация состоит из одного стабильного и нестабильного состояний.Если стабильный выход установлен на высокий уровень, тогда выходной сигнал таймера высокий.

Работа таймера 555 в моностабильном режиме —

Триггерный вход удерживается на высоком уровне путем подключения его к V CC через резистор. Вывод порогового значения низкий, что делает пороговый компаратор равным 0. В результате напряжение, поступающее от источника, идет на землю через транзистор. Нажмите кнопку на спусковом крючке, чтобы переключить выход таймера 555 на высокий. При этом конденсатор С 1 начнет заряжаться через резистор R 1 .Таймер 555 будет оставаться в этом положении до тех пор, пока напряжение на конденсаторе не достигнет 2/3 подаваемого напряжения. Компаратор будет выводить 1 на вход R триггера, переводя схему в исходное состояние. Время, в течение которого выходной сигнал таймера будет оставаться на высоком уровне; полностью зависят от номинала как конденсатора C 1 , так и резистора R 1 .

Для расчета времени используйте следующую формулу:

T = 1,1 * C 1 * R 1

Он также известен как режим одиночного импульса или режим генерации импульсов.В этом состоянии таймер 555 обычно находится в стабильном состоянии до срабатывания, после чего он переходит в квазистабильное состояние.

Ниже представлена ​​схема таймера 555 в моностабильном режиме.

Рис. 4: Таймер 555 в моностабильном режиме

(также см. Рис. 2). Первоначально выход таймера имеет низкий уровень, а транзистор Q 2 находится в режиме насыщения, то есть полностью включен. Поскольку на второй компаратор подается отрицательный пусковой импульс, более отрицательный, чем -1/3 В CC , триггер устанавливается на ВЫСОКИЙ, переводя выход таймера в ВЫСОКОЕ состояние, а транзистор τ выключено.

Выход остается ВЫСОКИМ в течение времени Tout, т.е. τ = 1,1 RC , то есть времени, необходимого для зарядки конденсатора C (также известного как постоянная времени RC) . Когда напряжение на конденсаторе превышает 2/3 В CC , выходной сигнал верхнего компаратора сбрасывает триггер на ноль, и разрядный транзистор Q 2 снова насыщается, обеспечивая путь разряда к конденсатору. Когда напряжение конденсатора возвращается к нулю, схема возвращается в свое нормальное состояние.

Бистабильный режим :

В этой конфигурации оба состояния выхода стабильны. При каждом прерывании выходной сигнал изменяется с низкого на высокий и наоборот. Если у нас высокий выход, он переходит в низкий уровень после получения прерывания и остается низким до тех пор, пока следующее прерывание не изменит состояние.

Работа таймера 555 в бистабильном режиме:

Контакты запуска и сброса микросхемы таймера 555 подключены к V CC через два резистора.Чтобы сохранить состояние входа на низком уровне, удерживая их нажатыми, подключите две кнопки между этими контактами и землей.

После нажатия кнопки триггера состояние входа триггера станет низким. Следовательно, компаратор будет выводить High, и это заставит выход Q-bar flip-flip перейти в Low. Конечное состояние таймера будет высоким. Выход будет оставаться высоким, даже если кнопка триггера не нажата, потому что в этом случае вход R и S триггера будет 0, что означает, что триггер не будет изменить исходное состояние.Чтобы сделать выход низким, нам нужно сбросить кнопку, которая в конечном итоге сбрасывает всю микросхему таймера 555.

Это также известно как режим триггера, и в этом режиме таймер остается в двух стабильных состояниях. Он не требует какой-либо внешней схемы синхронизации, поскольку временная задержка между двумя состояниями зависит от времени подачи внешних импульсов.

Ниже представлена ​​схема таймера 555 в бистабильном режиме.

Рис. 6: Бистабильный режим таймера 555

Два переключателя соединены таким образом, что, в то время как переключатель S 1 подключен к контакту сброса с V CC , переключатель S 2 подключен к контакту триггера с землей.Отрицательный импульс на входе триггера при напряжении более отрицательном, чем -1 / 3V CC , запускает выход нижнего компаратора для установки триггера и, следовательно, выхода таймера на ВЫСОКИЙ уровень. Поскольку пороговый вывод заземлен, положительный импульс на выводе сброса запускает

Поскольку таймер остается в одном стабильном состоянии до подачи внешнего импульса, а затем переходит в другое стабильное состояние, этот режим называется бистабильным режимом. . Важным приложением является схема триггера Шмитта.

555 Калькулятор таймера

Калькулятор можно увидеть под заголовком « 555 Калькулятор таймера с формулой и уравнениями »

Применение таймера 555

Таймер 555 является наиболее важной интегральной схемой (микросхемой), широко используемой в цифровой электронике. Ниже перечислены некоторые распространенные варианты использования и применения микросхемы таймера 555:

  • ШИМ (широтно-импульсная модуляция) и PPM (импульсная модуляция положения)
  • Осциллятор рабочего цикла
  • Диммер лампы
  • Для обеспечения точных задержек по времени
  • В качестве переворота -flop элемент
  • Цифровые логические пробники
  • Аналоговые частотомеры
  • Приложения четырех таймеров
  • Генерация импульсов, сигналов и прямоугольных сигналов
  • Генератор ступенчатых тоновых и тональных пакетов и линейное изменение температуры
  • Тахометры и измерение температуры
  • It может использоваться как моностабильный мультивибратор и нестабильный мультивибратор
  • Преобразователи постоянного тока в постоянный
  • Регуляторы напряжения постоянного тока
  • Преобразователь напряжения в частоту
  • Делитель частоты
  • Триггер Шмитта
  • Тестер кабеля
  • Датчик импульсов
  • Контроль скорости движения Wiper Переключатель
  • Генерация выдержки времени, точность t iming и последовательная синхронизация
  • ИС таймера 555 широко используются в большинстве интересных электронных схем и проектов, таких как схема светофора с таймером 555, светодиодные мигающие схемы, полицейская сирена, светодиодные игральные кости, музыкальная шкатулка, металлоискатель, джойстик и игровые манипуляторы, и недорогой линейный приемник, схема активации переключателя хлопка и множество других проектов и схем.

Это базовое руководство по микросхеме таймера 555. Любая другая информация о таймере 555 приветствуется в разделе комментариев. Мы надеемся, что вы лучше понимаете микросхему таймера 555 и ее работу в различных конфигурациях.

Вы также можете прочитать:

Знакомство с микросхемой таймера 555 — Учебное пособие

В этом сообщении блога мы представим интегральную схему (ИС) с таймером 555. Вы узнаете, что это такое, три разных режима и его распиновку.

Таймер 555 (EN555)

Таймер 555 — это интегральная схема, она чрезвычайно универсальна и может использоваться для построения множества различных схем.

EN555 обычно используется для генерации непрерывных серий импульсов. Эти серии импульсов позволяют, например, непрерывно мигать светодиодом.

EN555

Таймер 555 может работать в трех различных режимах:

  • Моностабильный режим: обычно используется для создания временных задержек
  • Астабильный режим: выводит колебательный импульсный сигнал
  • Бистабильный режим: таймер 555 изменяет свой выход в зависимости от состояния двух входов

В этом посте вы увидите пример нестабильного режима.

Распиновка

Если вы выполните поиск по таблице данных таймера Google 555 , одним из первых результатов должна быть таблица данных в формате PDF.

Это документ с большим количеством информации, но на что вам действительно стоит обратить внимание прямо сейчас, так это на распиновку. Распиновка EN555:

Распиновка EN555

Эта микросхема имеет 8 контактов:

  1. Земля
  2. Спусковой крючок
  3. Выход
  4. Сброс
  5. Управляющее напряжение
  6. Порог
  7. Разряд
  8. VCC

На принципиальной схеме обычно таймер 555 изображен следующим образом:

EN555 представлен на принципиальной схеме

Выход

Вывод 3 — это выход.Этот штифт генерирует колебания. Напряжение высокое, затем низкое, затем высокое, затем снова низкое и так далее (это называется нестабильным режимом).

Выходное напряжение в зависимости от времени в нестабильном режиме

Астабильный режим

Чтобы таймер 555 работал в нестабильном режиме, вы должны подключить свою схему следующим образом:

Принципиальная схема EN555 — нестабильный режим

Частоту колебаний можно регулировать, изменяя номиналы резисторов R1 и R2 и емкость конденсатора C.

Частоту можно рассчитать с помощью следующего выражения:

С выходным напряжением, поступающим с контакта 3, вы можете управлять чем угодно (например, светодиодом, динамиком, двигателем и т. Д.).

Мигание светодиода с таймером 555

В этом разделе вы будете мигать светодиодом, используя таймер 555 в нестабильном режиме. Итак, нам просто нужно добавить светодиод к выходу предыдущей схемы.

Необходимые компоненты

Это необходимые компоненты:

Вы можете использовать предыдущие ссылки или перейти непосредственно на MakerAdvisor.com/tools, чтобы найти все детали для ваших проектов по лучшей цене!

Принципиальная схема

Это принципиальная схема:

Схема подключения

Вы можете либо следовать предыдущей схеме, либо следовать схеме электрических соединений на макетной плате, приведенной ниже.Наконец, включите свою схему, подключив батарею к макетной плате:

В конце концов, вы должны увидеть, как ваш светодиод мигает следующим образом:

Примечание: замените электролитический конденсатор емкостью 1 мкФ другим конденсатором с меньшей емкостью и увидите, как светодиод будет мигать с другой частотой. При более низких значениях емкости частота вспышек увеличивается.

Подведение итогов

Надеюсь, вы узнали что-то новое сегодня и сочли это объяснение полезным.

Если вы хотите узнать больше об основах электроники или начать знакомство с миром электроники, обязательно ознакомьтесь с нашей электронной книгой Electronics for Beginners .

Спасибо за чтение!

Как сгенерировать ШИМ с помощью микросхемы таймера 555? 555 Цепь таймера PWM

В этом уроке я покажу вам, как сгенерировать ШИМ-сигнал с помощью микросхемы таймера 555. Мы немного узнаем о микросхеме таймера 555, о том, как она работает как нестабильный мультивибратор, и как мы можем использовать сигнал ШИМ с таймером 555 для регулировки яркости светодиода.

Что такое ШИМ?

ШИМ, сокращение от широтно-импульсной модуляции, является важным понятием в современной электронике. Обычно он используется в качестве механизма подачи энергии в системах управления двигателем и освещением.

В методе ШИМ напряжение, которое должно подаваться на двигатель постоянного тока или светодиод, подается в форме импульсов быстрого переключения, а не в виде непрерывного аналогового сигнала. «Рабочий цикл» и «Частота» сигнала ШИМ определяют выходное напряжение.

Рабочий цикл сигнала ШИМ описывает количество времени, в течение которого импульс остается ВЫСОКИМ в одном цикле. Обычно это выражается в процентах.

Если T HIGH — это длительность, в течение которой импульс является ВЫСОКИМ в одном цикле, а T LOW — это длительность, в течение которой импульс является НИЗКИМ, то период импульса равен

.

T = T ВЫСОКИЙ + T НИЗКИЙ

Рабочий цикл = (T HIGH / T) * 100

Частота сигнала ШИМ описывает скорость, с которой сигнал завершает один цикл.

На изображении выше показаны различные сигналы ШИМ и разные рабочие циклы, а также выходное напряжение.

С помощью таймера 555 IC очень легко сгенерировать сигнал ШИМ. Но прежде чем увидеть, как генерируется ШИМ-сигнал таймера 555, вам необходимо понять работу нестабильного мультивибратора микросхемы таймера 555.

Как только вы это поймете, то, внося небольшие изменения, вы можете легко получить сигнал ШИМ с помощью таймера 555.

Как таймер 555 работает в нестабильном режиме?

Как следует из названия, нестабильный мультивибратор — это колебательный контур без стабильного состояния i.е., он автоматически переключается между двумя состояниями. Следовательно, нестабильный мультивибратор также известен как автономный мультивибратор или автономный осциллятор.

Используя всего три дополнительных компонента, мы можем заставить таймер 555 работать в нестабильном режиме. Они представляют собой пару резисторов и конденсатор.

Принципиальная схема нестабильного режима таймера 555

На следующем изображении показана упрощенная схема микросхемы таймера 555 в нестабильном режиме.

Операция

Я сделал специальный учебник по «Астабильный мультивибратор с таймером 555 ».Для подробного объяснения, проверьте это. Чтобы понять работу таймера 555 в нестабильном режиме, взгляните на внутреннюю схему таймера 555.

Первоначально, когда микросхема таймера 555 сбрасывается, ее выход низкий. Это включит внутренний транзистор, который обеспечит путь разряда конденсатора через R2.

Когда напряжение конденсатора падает ниже 1/3 В CC , выход становится ВЫСОКИМ, а транзистор выключается. Это заставит конденсатор заряжаться через R1 и R2.Когда напряжение конденсатора поднимается выше 2/3 В CC , выходной сигнал становится НИЗКИМ, и цикл продолжается.

На следующем изображении показано соотношение между напряжением конденсатора и выходным напряжением.

По сути, значения R1, R2 и C будут определять продолжительность, в течение которой выходной сигнал будет ВЫСОКИМ или НИЗКИМ.

Рабочий цикл

Думаю, вы понимаете, куда мы движемся с приведенным выше объяснением. Поскольку длительность ВЫСОКОГО или НИЗКОГО выходного сигнала зависит от времени зарядки и разрядки конденсатора, мы можем контролировать рабочий цикл и частоту выходного импульса.

В учебном пособии «Нестабильный режим» я получил все значения, связанные с синхронизацией и частотой. Я просто напишу здесь окончательные значения.

T ВКЛ = 0,693 * (R1 + R2) * C

T ВЫКЛ = 0,693 * R2 x C

Период T = T ON + T OFF = 0,693 * (R1 + 2 * R2) * C

Частота F = 1 / T = 1,44 / ((R1 + 2R2) * C) Гц

В следующей таблице показаны некоторые общие значения для R1, R2 и C и соответствующая частота.

Генерация 555 Таймер ШИМ

Из приведенной выше принципиальной схемы таймера 555 в нестабильном режиме видно, что конденсатор заряжается через R1 и R2, в то время как он разряжается только через R2.

Следовательно, если мы заменим R2 на потенциометр, мы сможем контролировать зарядку и разрядку конденсатора и, по сути, рабочий цикл сигнала ШИМ.

Я выбрал R1 как резистор 1 кОм, R2 как потенциометр 10 кОм и C как конденсатор 10 нФ (0,01 мкФ).Кроме того, я добавил два диода с быстрой коммутацией, один в цепи зарядки, а другой — в цепи разряда.

Принципиальная схема

На следующем рисунке показана принципиальная схема генератора 555 Timer PWM.

Принципиальная схема для генерации ШИМ с таймером 555

Необходимые компоненты

  • 555 Таймер IC
  • Резистор 1 кОм
  • Потенциометр 10 кОм
  • 2 конденсатора 10 нФ (0,01 мкФ)
  • 1N4148 Быстрый переключающий диод x 2
  • Резистор 470 Ом
  • светодиод
  • Макет
  • Блок питания 12 В
  • Соединительные провода

Работа генератора 555 Таймер ШИМ

ПРИМЕЧАНИЕ: Вместо резистора 1 кОм для R1 я подключил последовательно два резистора 470 Ом.Кроме того, я не подключал конденсатор 10 нФ между выводом 5 микросхемы 555 IC и GND.

Перед пониманием работы схемы генерации ШИМ с таймером 555, если вы хотите рассчитать рабочий цикл и частоту ШИМ-сигнала на основе выбранных компонентов, вы можете использовать вышеупомянутые формулы.

Теперь, продолжая работу, конденсатор заряжается через R1, D2 и правую сторону R2 и разряжается через левую сторону R2 и D1. Таким образом, перемещая дворник потенциометра, мы контролируем время зарядки и разрядки конденсатора.

Поскольку зарядка и разрядка конденсатора напрямую связаны с длительностью включения и выключения выходного импульса, мы можем легко изменить рабочий цикл сигнала ШИМ.

Заключение

Здесь демонстрируется простой проект для генерации ШИМ-сигнала с использованием микросхемы таймера 555. Чтобы показать результат, я использовал светодиод в качестве устройства вывода. Вы можете легко изменить приведенную выше схему для управления скоростью двигателя постоянного тока.

ИС таймера 555 — конфигурация выводов, режимы и его применение

ИС таймера 555

Таймер IC 555 был изобретен «Сигнетик Корпорейшн» и назывался таймером SE или NE555.Как правило, это монолитная схема синхронизации, которая обеспечивает точные и очень стабильные задержки времени или колебаний. Эти типы ИС очень дешевы и надежны по стоимости, если сравнивать с приложениями OP-Amp в тех же областях. Эти ИС используются в качестве нестабильных и моностабильных мультивибраторов в цифровых логических пробниках, преобразователях постоянного тока в постоянный, тахометрах, аналоговых частотомерах, регуляторах напряжения, устройствах контроля температуры и измерениях. IC SE555 используется в диапазоне температур от -55 ° C до 125 ° C, а IC NE555 используется в диапазоне температур от 0 ° до 70 ° C.

Что такое микросхема таймера 555?

Таймер IC 555 — это микросхема одного типа, используемая в различных приложениях, таких как генератор, генерация импульсов, таймер. Проектирование таймеров IC 555 может быть выполнено с использованием различных электрических и электронных компонентов, таких как транзисторы, резисторы, диоды и триггеры. Рабочий диапазон этой ИС составляет от 4,5 В до 15 В постоянного тока. Функциональные части микросхемы таймера 555 включают триггер, делитель напряжения и компаратор. Основная функция этой ИС — генерировать точный тактовый импульс.В моностабильном режиме задержка этой ИС контролируется внешними компонентами, такими как резистор и конденсатор. В нестабильном режиме рабочий цикл и частота регулируются двумя внешними резисторами и одним конденсатором.

Конфигурация выводов микросхемы таймера 555

Микросхема таймера 555 состоит из 8 выводов, каждый вывод которых выполняет определенную функцию. Конфигурация выводов этой ИС показана ниже.

Конфигурация выводов

микросхемы таймера 555

Вывод GND

Вывод 1 — вывод GND, который используется для подачи нулевого напряжения на ИС.

Триггерный вывод

Контакт-2 — это триггерный вывод, который используется для преобразования FF из набора в RST (сброс). Выходной сигнал таймера зависит от амплитуды внешнего триггерного импульса, подаваемого на триггерный вывод.

Выходной контакт

Контакт-3 — выходной контакт.

Вывод сброса

Вывод 4 — это вывод RST. Когда отрицательный импульс подается на этот вывод для отключения или сброса, и ложным срабатыванием можно пренебречь, подключившись к VCC.

Контакт управляющего напряжения

Контакт 5 — это контакт управляющего напряжения, используемый для управления шириной импульса выходного сигнала, а также уровнями порога и триггера. Когда на этот вывод подается внешнее напряжение, тогда форма выходного сигнала будет модулироваться

Пороговый вывод

Вывод 6 является пороговым выводом, когда напряжение подается на пороговый вывод, тогда оно контрастирует с опорным напряжением. Установленное состояние FF может зависеть от амплитуды этого вывода.

Разрядный контакт

Разрядный контакт 7 — это разрядный контакт, когда выход открытого коллектора разряжает конденсатор между интервалами, затем он переключает выход с высокого на низкий.

Клемма питания

Контакт 8 — это контакт источника напряжения, который используется для подачи напряжения на ИС по отношению к клемме заземления.

Режимы работы таймера 555 IC

Режимы работы таймера 555 — нестабильный, бистабильный и моностабильный.Каждый режим работы обозначается схемой и его выходом.

Работа в нестабильном режиме

В этом режиме схема таймера IC 555 выдает непрерывные импульсы с точной частотой в зависимости от номинала двух резисторов и конденсаторов. Здесь зарядка и разряд конденсаторов зависит от определенного напряжения. Принципиальная схема таймера 555 в нестабильном режиме показана ниже. Если напряжение подается на схему ниже, конденсаторы непрерывно заряжаются через два резистора и непрерывно генерируют импульсы.В следующей схеме контакты 2 и 6 замкнуты вместе для бесконечного повторного включения цепи. Если импульс запуска o / p высокий, конденсатор в цепи полностью разряжается. Длительные задержки достигаются за счет использования более высоких номиналов резисторов и конденсаторов.

Астабильный режим

Работа в моностабильном режиме

В этом режиме схема генерирует только одиночный импульс, когда таймер получает индикацию от i / p кнопки триггера. Длительность импульса может зависеть от номиналов резистора и конденсатора.Если активирующий импульс подается на i / p схемы через кнопку, конденсатор заряжается, а схема таймера продлевает высокий импульс, затем он остается высоким. пока конденсатор полностью не разрядится.Если необходимо увеличить временную задержку, то требуются конденсатор и резистор большего номинала.

Моностабильный режим

Работа в бистабильном режиме

В этом режиме схема выдает 2 сигнала стабильного состояния: низкий уровень и состояние. Сигналы o / p для сигналов низкого и высокого состояния управляются сбросом и активацией контактов i / p, а не зарядкой и разрядкой конденсаторов. Если на активный вывод подан низкий логический сигнал, то отключение микросхемы IC переходит на высокий уровень.Если на вывод RST подан низкий логический сигнал, то o / p схемы переходит на низкий уровень.

Бистабильный режим

Важные особенности таймера 555

  • Микросхема таймера 555 работает с широким спектром источников питания в диапазоне от + 5В до + 18В.
  • Ток нагрузки составляет 200 мА.
  • Внешние компоненты должны быть выбраны правильно, чтобы временные интервалы могли быть выполнены за несколько минут вместе с частотами, превышающими несколько сотен кГц.
  • Выходной сигнал микросхемы таймера 555 может управлять TT1 из-за ее высокого тока переключения.
  • Требуется температурная стабильность при изменении температуры на 50 ppm / oC (ppm означает части на миллион)
  • Рабочий цикл таймера можно регулировать.
  • Максимальная рассеиваемая мощность на корпус составляет 600 милливатт, а его сброс и триггерные i / ps совместимы по логике.

Цепи таймера 555

ИС таймера 555 используются для генерации точной прямоугольной формы волны, которая используется во многих схемах.Эта схема разработана с транзисторами, диодами, резисторами и триггерами, и эта схема может работать в диапазоне питания постоянного тока 4,5-15 В. Схема таймера 555 состоит из трех функциональных частей, а именно триггеров, компаратора и делителя напряжения.

Основная функция компаратора заключается в сравнении уровней напряжения 2-i / p, таких как инвертирующие (-) и неинвертирующие (+) клеммы. Если «V» высокий на неинвертирующем выводе, значит, высокое значение o / p. Сопротивление / p идеального компаратора бесконечно.

Поскольку сопротивление i / p в компараторе бесконечно, напряжение между всеми тремя резисторами делится аналогичным образом, и значение на каждом резисторе равно Vin / 3

Триггеры — это цифровые электронные устройства, и у них есть память. Если i / p высокий, а низкий на R, то o / p на Q высокий. Когда S высокий, o / p Q также высокое, а если R высокое, то o / p Q низкое.

555 Проекты на базе микросхем таймера для студентов инженерных специальностей

ИС таймера 555 используется во многих проектах электронной инженерии для генерации импульсного сигнала.Здесь мы обсудили некоторые основные проекты на основе микросхем таймера 555, и они очень полезны для студентов инженерных специальностей.

Низковольтный преобразователь постоянного тока с использованием микросхемы IC 555

Этот проект используется для повышения напряжения, почти вдвое превышающего напряжение i / p, с использованием принципа умножителя напряжения. Например, если входное напряжение составляет около 5 В постоянного тока, то выходное напряжение, которое мы можем получить, составляет около 10 В постоянного тока. Данный проект разработан с таймером 555, работает в нестабильном режиме. В этом проекте конденсаторы соединены последовательно, и для зарядки этих конденсаторов таймер IC 555 подает тактовые импульсы.Эти заряженные конденсаторы изменяют напряжение, которое почти равно удвоенному напряжению i / p. Значение o / p можно рассчитать с помощью мультиметра.

Сигнал тревоги разрыва шлейфа для взломщиков

Этот проект используется для определения того, когда вор атакует, чтобы разбить оконное стекло, чтобы подать сигнал тревоги. Этот проект разработан с использованием микросхемы таймера 555, и этот проект используется в качестве системы безопасности. При разрыве проволочной петли ИС активирует зуммер, чтобы подать сигнал тревоги.

Скрытый активный детектор сотового телефона

Этот проект разработан для идентификации любого активированного мобильного телефона на расстоянии полутора футов, чтобы избежать использования неавторизованного мобильного телефона в запрещенных зонах или в целях обеспечения безопасности. В этом проекте используется микросхема таймера 555, работающая в моностабильном режиме. Когда какой-либо неизвестный человек пытается позвонить, зуммер сигнализирует о наличии активного сотового телефона.

Сенсорный переключатель нагрузки

Этот проект разработан для регулирования нагрузки в течение короткого времени с помощью сенсорного переключателя и таймера 555.Эта ИС работает в моностабильном режиме и активируется с помощью сенсорной панели, которая подключена к ее спусковому штифту. O / p IC обеспечивает высокий логический уровень в течение фиксированного интервала времени, который определяется постоянной времени RC. O / p заставляет реле включать нагрузку на это время, после чего оно автоматически выключается.

Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о реле расстояния.

Итак, это все, что касается основ микросхемы таймера 555, описания выводов и режимов работы. Мы надеемся, что вы лучше понимаете эту концепцию.Кроме того, любые вопросы относительно этой концепции или идей инженерного проекта, пожалуйста, дайте свои ценные предложения, комментируя в разделе комментариев ниже. Вот вам вопрос, какова основная функция микросхемы таймера 555?

10 лучших схем таймера, использующих IC 555

Схемы, описанные здесь, представляют собой 10 лучших малых схем таймера, использующих универсальную микросхему IC 555, которая генерирует заранее определенные временные интервалы в ответ на мгновенные входные триггеры.

Временные интервалы могут использоваться для удержания нагрузки, управляемой реле, включенной или активированной на желаемый период времени и автоматического выключения по истечении периода задержки.Временной интервал можно установить, выбрав соответствующие значения для внешнего резистора, конденсаторной сети.

Внутренняя схема IC 555

На изображении ниже представлена ​​внутренняя схема стандартной IC 555. Мы видим, что она состоит из 21 транзистора, 4 диодов и 15 резисторов.

Каскад с тремя резисторами 5 кОм работает как каскад делителя напряжения, который выдает 1/3 уровня напряжения на неинвертирующем входе операционного усилителя триггерного компаратора и деление напряжения 2/3 на инвертирующем входе порогового компаратора. операционный усилитель

С помощью этих триггерных входов два операционных усилителя управляют каскадом триггера R / S (сброс / установка), который дополнительно управляет условиями включения / выключения дополнительного выходного каскада и транзистора драйвера Q6

Состояние выхода триггера Флоп также может быть установлен путем срабатывания контакта 4 сброса микросхемы.

Как работают таймеры IC 555

Когда IC 555 настроен в режиме моностабильного таймера, на контакте 2 TRIGGER поддерживается потенциал уровня питания через внешний резистор RT.

В этой ситуации Q6 остается насыщенным, что удерживает внешний синхронизирующий конденсатор CD замкнутым на землю, в результате чего вывод 3 ВЫХОДА должен находиться на низком логическом уровне или уровне 0 В.

Стандартное действие таймера IC 555 инициируется путем подачи триггерного импульса 0 В на вывод 2. Этот импульс 0 В, находящийся ниже 1/3 уровня напряжения питания постоянного тока или Vcc, вынуждает выход триггерного компаратора к изменить состояние.

Из-за этого триггер R / S также изменяет свое выходное состояние, выключая Q6 и устанавливая на выводе 3 ВЫХОДНОЙ сигнал высокий уровень.При выключении Q6 отключает короткое замыкание на CD. Это позволяет конденсатору CD заряжаться через синхронизирующий резистор RD до тех пор, пока напряжение на CD не достигнет 2/3 уровня питания или Vcc.

Как только это происходит, триггер R / S возвращается в свое предыдущее состояние, включая Q6 и вызывая быструю разрядку CD. В этот момент выходной контакт 3 снова возвращается в свое ранее низкое состояние. Вот так IC 555 завершает временной цикл.

Согласно одной из характеристик, IC после запуска перестает реагировать на любые последующие триггеры, пока цикл синхронизации не завершится.Но если кто-то хочет завершить цикл синхронизации, это можно сделать в любой момент, подав отрицательный импульс или 0 В на остальной вывод 4.

Синхронизирующий импульс, генерируемый на выходе IC, в основном имеет форму прямоугольной волны. чей временной интервал определяется величинами R и C.

Формула для его расчета: tD (временная задержка) = 1,1 (значение R x значение C) Другими словами, временной интервал, создаваемый IC 555, напрямую определяется пропорционально произведению R и C.

Следующий график показывает график зависимости временной задержки отсопротивление и емкость, используя приведенную выше формулу задержки времени. Здесь tD выражается в миллисекундах, R — в килограммах Ом, а C — в мкфарадах.

Он показывает диапазон кривых временной задержки и линейно изменяющиеся значения относительно соответствующих значений RT и C.

Можно установить задержки в диапазоне от 10 мкс до 100 мкс, выбрав соответствующие значения конденсаторов от 0,001 мкФ до 100 мкФ и резисторы от 1 кОм до 10 МОм.

Простые схемы таймера IC 555

На первом рисунке ниже показано, как сделать таймер IC 555 с фиксированным периодом на выходе.Здесь он установлен на 50 секунд.

Это в основном моностабильная конструкция IC 555.

На следующем рисунке показаны формы сигналов, полученные на указанных выводах ИС во время процесса переключения.

Действия, описанные на изображении сигнала, инициируются, как только контакт 2 TRIGGER заземляется при нажатии на мгновенный переключатель START S1.

Это мгновенно вызывает появление прямоугольного импульса на выводе 3 и одновременно генерирует экспоненциальную пилу на выводе 7 DISCHARGE.

Период времени, в течение которого этот прямоугольный импульс остается активным, определяется значениями R1 и C1. Если R1 заменить на переменный резистор, этот выходной момент может быть установлен в соответствии с предпочтениями пользователя.

Свечение светодиода указывает на включение и выключение выходного контакта 3 IC

Переменный резистор может быть в форме потенциометра, как показано на следующем рисунке 2.

В этой конструкции выход может быть установлен на производят периоды времени от 1.От 1 секунды до 120 секунд с помощью различных регулировок потенциометра R1.

Обратите внимание на резистор 10 кОм, который очень важен, поскольку он предохраняет ИС от возгорания в случае, если горшок установлен на минимальное значение. Резистор серии 10 кОм также обеспечивает минимальное значение сопротивления, необходимое для правильной работы цепи при минимальной настройке потенциометра.

Кратковременное нажатие переключателя S1 позволяет ИС запустить временную последовательность (контакт 3 становится высоким и загорается светодиод), в то время как нажатие кнопки сброса S2 позволяет мгновенно завершить или сбросить временную последовательность, так что выходной контакт 3 возвращается в исходное состояние. Ситуация 0 В (светодиод не горит постоянно)

IC 555 позволяет использовать нагрузки с максимальным током до 200 мА.Хотя эти нагрузки обычно являются неиндуктивными, индуктивная нагрузка, такая как реле, также может эффективно использоваться непосредственно между контактом 3 и землей, как показано на следующих схемах.

На третьем рисунке ниже мы видим, что реле можно подключить к контакту 3 и земле, а также контакту 3 и плюсу. Обратите внимание на диод свободного хода, подключенный к катушке реле, он настоятельно рекомендуется для нейтрализации опасных противо-эдс от катушки реле в моменты выключения.

Контакты реле могут быть подключены с заданной нагрузкой для их включения / выключения в соответствии с заданными временными интервалами.

На 4-й схеме показана стандартная схема регулируемого таймера IC 555, имеющая два набора временных диапазонов и выходное реле для переключения желаемой нагрузки.

Хотя схема выглядит правильно, у этой базовой схемы может быть несколько отрицательных аспектов.

  1. Во-первых, эта конструкция будет постоянно потреблять некоторый ток, даже когда выход схемы находится в выключенном состоянии.
  2. Во-вторых, поскольку два конденсатора C1 и C3 имеют широкий диапазон допусков, потенциалы необходимо калибровать с помощью двух отдельных шкал настройки.

Обсуждаемые выше недостатки можно фактически преодолеть, сконфигурировав схему следующим образом. Здесь мы используем реле DPDT для процедур.

На этой диаграмме 5-го таймера IC 555 мы видим, что контакты реле соединены параллельно с переключателем START S1, которые оба находятся в «нормально разомкнутом» режиме и обеспечивают отсутствие утечки тока, пока цепь выключена.

Чтобы запустить цикл отсчета времени, кратковременно нажимают S1.

Это мгновенно приводит в действие IC 555.Вначале можно ожидать, что C2 полностью разрядится. Из-за этого на выводе 2 ИС создается отрицательный триггер включения, который инициирует цикл синхронизации, и реле RY1 включается.

Контакты реле, подключенные параллельно S1, позволяют IC 555 оставаться под напряжением даже после отпускания S2.

По истечении установленного периода времени реле деактивируется, и его контакты возвращаются в положение N / C, отключая питание от всей цепи.

Выходной сигнал временной задержки схемы в основном определяется значениями R1 и потенциометра R5, а также значениями C1 или C2 и в зависимости от положения селекторного переключателя S3 a.

Сказав это, мы должны также отметить, что на синхронизацию дополнительно влияет то, как регулируются потенциометры R6 и R7.

Они переключаются через переключатель S3 b и интегрированы с контактом 5 напряжения CONTROL IC.

Эти потенциометры предназначены для эффективного шунтирования внутреннего напряжения IC 555, которое в противном случае могло бы нарушить синхронизацию выходного сигнала системы.

Благодаря этому усовершенствованию схема теперь может работать с предельной точностью даже с конденсаторами, имеющими несовместимые уровни допусков.

Кроме того, эта функция также позволяет схеме работать с одиночной шкалой синхронизации, откалиброванной для считывания двух отдельных диапазонов синхронизации в соответствии с положением селекторного переключателя.

Для настройки вышеупомянутой точной схемы таймера IC 555 необходимо сначала настроить R5 на максимальный диапазон. После этого S3 может быть выбран в положение 1.

Затем отрегулируйте R6, чтобы получить 10-секундную шкалу выходного сигнала времени включения с некоторым методом проб и ошибок. Выполните те же процедуры для выбора положения 2, через горшок R7 для получения точной шкалы 100 секунд

Таймеры для автомобильных фар

Этот шестой простой таймер на основе автомобильной фары IC 555 предотвращает выключение автомобильных фар, как только зажигание выключено.

Вместо этого фары могут оставаться включенными в течение некоторой заданной задержки, когда водитель блокирует зажигание автомобиля и уходит к месту назначения, которым может быть его дом или офис. Это позволяет владельцу видеть путь и комфортно входить в пункт назначения при видимом освещении от фар.

Затем, по истечении периода задержки, схема IC 555 выключает фары.

Как это работает

Когда ключ зажигания S2 включен, реле RY1 срабатывает через D3.Реле позволяет управлять фарами через верхние контакты реле и переключатель S1, так что фары работают нормально через S1.

В этот момент конденсатор C3, связанный с выводом 2 ИС, остается полностью разряженным, поскольку оба его вывода находятся под положительным потенциалом.

Однако, когда ключ зажигания S2 выключен, конденсатор C3 подвергается воздействию потенциала земли через катушку реле, что внезапно вызывает появление отрицательного триггера на контакте 2.

Это вызывает включение выходного контакта 3 IC 555. , и позволяет реле оставаться под напряжением, даже если зажигание выключено.В зависимости от значений компонентов синхронизации R1 и C1, реле остается включенным, сохраняя включенными фары (в течение 50 секунд), пока, наконец, не истечет период времени и контакт 3 IC не отключится, отключив питание реле и освещения.

Схема не создает помех обычному функционированию фар во время движения автомобиля.

Следующая 7-я схема таймера, показанная ниже, также является таймером фар автомобиля, который управляется вручную, а не переключателем зажигания.

В схеме используется реле DPDT с двумя наборами контактов. Моностабильное действие IC 555 запускается кратковременным нажатием S1. Это активирует реле, и оба контакта перемещаются вверх и подключаются к положительному источнику питания.

Правая пара контактов активирует фары, а левые контакты питают цепь IC 555. C3 вызывает мгновенный отрицательный импульс, появляющийся на выводе 2, который запускает режим счета IC, а вывод 3 становится высоким, фиксируя реле.

Теперь фары включены. В зависимости от значений R1 и C1 выход контакта 3 поддерживает реле и фары включенными (в данном случае в течение 50 секунд), пока C1 не зарядится до 2/3 Vcc, установив низкий уровень на контакте 3 и выключив реле. и фары.

Таймер освещения крыльца на 1 минуту

Эта 8-я схема показывает простую схему таймера освещения крыльца, которую можно активировать на минуту только в ночное время. В дневное время сопротивление LDR становится низким, что поддерживает высокое соединение с R5.

По этой причине нажатие S1 не влияет на вывод 2 ИС. Однако с наступлением темноты сопротивление LDR становится бесконечным, достигая почти 0 В на стыке R4 и R5.

В этом состоянии, когда переключатель S1 нажат, вызывает отрицательный триггер на контакте 2 IC 555, который активирует контакт 3 на высокий уровень, а также включает реле. Загорается подъездной светильник с контактами реле.

Схема остается включенной в течение примерно 1 минуты, пока C1 не зарядится до 2/3 напряжения постоянного тока.Теперь микросхема сбрасывается до низкого уровня на поворотном контакте 3, обесточивая реле и выключая свет крыльца.

Переключатель S1 может быть выполнен в виде небольшого скрытого переключателя возле дверной ручки / петли или под ковриком, который активируется, когда владелец наступает на коврик.

Приложение тахометра

Схема моностабильного таймера с использованием IC 555 также может быть эффективно реализована для создания схемы тахометра, которая будет предоставлять пользователю точную информацию о частоте и синхронизации двигателя.

Частота, поступающая от двигателя, сначала преобразуется в прямоугольную волну правильного размера через RC-дифференцирующую сеть, а затем подается на контакт № 2 моностабильного устройства.

Схема дифференциатора преобразует передний или задний фронт прямоугольного сигнала в соответствующие импульсы запуска.

9-я практическая схема ниже показывает, как RC-цепь и транзистор преобразуют любой входной сигнал с любой амплитудой в правильно сформированные прямоугольные волны для генерации идеальных запускающих импульсов, переключаясь между полным уровнем IC Vcc и землей.

Заключение

Во всех схемах, представленных до сих пор, 555 функционирует как моностабильный (однократный) генератор периода синхронизации. Необходимые триггерные сигналы подаются на контакт 2 TRIGGER, а на выходной контакт 3 подается синхронизированный импульс.

Во всех конструкциях сигнал, подаваемый на вывод TRIGGER 2, имеет соответствующие размеры, чтобы сформировать импульс с отрицательной границей.

Обеспечивает переключение амплитуды триггера с уровня «выключено» выше 2/3 напряжения питания на значение «включено» ниже 1/3 уровня питания.

Срабатывание одноразового моностабильного срабатывания микросхемы фактически происходит, когда потенциал на выводе 2 понижается до 1/3 уровня напряжения питания.

Для этого требуется, чтобы длительность импульса запуска на выводе 2 была больше 100 наносекунд, но меньше, чем импульс, который должен появиться на выходном выводе 3.

Это определяет устранение импульса запуска к моменту установленного периода моностабильности. истекает.

Схема таймера 5-20 минут с использованием IC 555

Вот проект схемы таймера 555 .Вы можете использовать его для повтора сигнала будильника с зуммером.

Во время работы 5, 10, 15 и 20 минут.

Это легко сделать и переносить с небольшими печатными платами.

Также…

Если вы хотите управлять другими нагрузками. Это просто с реле напрямую. Потому что выход 555 имеет максимальный ток до 200 мА.

Как это работает

Когда мы включаем переключатель-S1, чтобы ввести источник питания в схему. Он будет готов к работе.

Детали имеют другое назначение.

Схема включает IC1-555 Mono Stable (таймер) для задержки.

Коммутаторы S3 S6 — выбираем время, как мы хотим

  • Если включает S3 на 5 минут. Затем выключите S3.
  • Для включения S4 на 10 минут. Затем выключите S4.
  • Далее включается S5 на 15 минут. Затем выключите S5.
  • Последнее, включение S6 запланировано на 20 минут.

В этом проекте используется принцип моностабильного мультивибратора 555. Работает с задержкой заряда и разряжается полностью.

Когда вовремя установил. Он отправит сигнал о низком уровне на контакте 3. Но может питание зуммера-БЗ1 пищит.

Значение времени определяется значениями R2, R3, R4, R5 и C2.

Если нужно настраивать надолго. Увеличивает R и C.

Времени мало. Если это уменьшило R и C.

Другое: 555 таймер проектов

Как собрать этот проект

Прежде всего, возьмите компоненты из списка ниже. Этот проект очень простой.Из-за использования нескольких компонентов.

Детали, которые вам понадобятся

IC1: таймер NE555 IC
C1: 0,1 мкФ 50 В, керамические конденсаторы
C2: 470 мкФ 16 В, электролитические конденсаторы
R1: резисторы 22 кОм, 0,25 Вт, допуск: 5%
BZ1: 9 В Пьезозонд ( с генератором 3 кГц)
S1: выключатель SPST
S2: нормально разомкнутый кнопочный переключатель
S3 — S6: маленький ползунковый переключатель SPST
B1: батареи 9 В
Провода, разъем IC и т. д.

Затем соберите их на Печатная плата как разводка печатной платы и компоновка компонентов.


Компоновка медной печатной платы

Компоновка компонентов

Или, если вы хотите сэкономить и быстро собрать, вы также можете использовать перфорированную печатную плату.

Но…

Будьте осторожны с некоторыми устройствами с клеммами. Например, IC-555, электролитические конденсаторы и зуммер.

Они будут подключаться только к соответствующим клеммам.

Примечание:
Этот проект работал, мой сын протестировал его на макетной плате.Ниже!


Он тестирует через 5 минут.

Что касается S3 — S6, разработчик хочет использовать только небольшой переключатель. Вы можете использовать поворотный переключатель. Это тоже легко.

Добавление реле для большего контроля

Если вы хотите контролировать большую нагрузку. Это простой способ с помощью Relay. Посмотрите на изображение ниже.

Заключение

Это простой проект универсального таймера. Вы можете использовать реле для подключения к зуммеру. Для управления другими нагрузками, которые вы хотите.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *