Altec pc410 схема подключения: Программируемый ПИД контроллер температуры ALTEC PC410 с выходом на ПК

Программируемый ПИД контроллер температуры ALTEC PC410 с выходом на ПК

Термоконтроллер может содержать в себе до 10 термопрофилей, каждый из которых может содержать до 8 фаз.

ALTEC PC410

Программирование возможно только тогда когда термопрофиль не запущен. Путем нажатия кнопки 2 выберите программируемый термопрофиль (номер отобразиться на дисплее 6). Для начала программирования необходимо нажать кнопку SET|PROG (если затем в течение 16 секунд не нажимать ни одной кнопки автоматически произойдёт выход из режима программирования). На дисплее 8 отобразиться изменяемый параметр. Параметр r – скорость набора температуры градусы в секунду. Параметр L – температура фазы. Параметр D – длительность удержания температуры фазы. Изменение параметра производиться кнопками уменьшения или увеличения значения. Переключение между параметрами происходит кнопкой 1. Конец программирования End. При появлении параметра номером отображается номер фазы. Например L1 – температура на фазе 1, L2 – температура фазы 2 и т.д. На любой из фаз если Вы выберете скорость набора температуры 0 градусов и нажмёте кнопку уменьшение программирование термопрофиля закончиться (например если Вам нужно только 3 фазы , а не все 8. То выберете в параметре r4 – 0+ уменьшение и на дисплее отобразиться End после нуля).

Кроме того контроллер содержит множество других параметров и в частности выход для подключения компьютера по порту COM. Данный контроллер используется в большинстве китайских паяльных станциях. 

Инструкция: английский

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ:

  • Точность измерений: ± 0.2% от полной шкалы ±1 знак
  • Разрешение: 14 бит
  • Режим регулирования: дискретный пропорциональный интегрально-дифференциальный (ПИД)
  • Период опроса: 0.125 с
  • Размеры: 48 х 96 х 100 (мм) ± 0.2 мм
  • Тип индикатора: LED
  • Время интегрирования (I): 0 ~ 3600 сек
  • Время дифференцирования (D): 0 ~ 3600 сек
  • Напряжение питания: 85-264 В
  • Потребляемая мощность: менее 10 Вт

 

  • Температура окружающей среды: 0 ~ 50 °C, влажность 30 ~ 85%, отсутствие агрессивных газов
  • Заводские установки: термопара тип К; область температур 0 — + 400 °C (термопара в комплект не входит)
  • (возможно оказание услуг по изменению заводских установок по требованию заказчика)
  • Циклов перепрограммирования: 100000
  • Сохранение установок после отключения питания: 10 лет
  • Вес: 267 г

 

Термодатчики и область температур (выбирается программированием)

термопары: (K, J, R, S, B, E, N, T )

  • тип К (ТХА) (хромель-алюмель, чувствительность 41 мкВ/°C) 0 — +1370 °C
  • тип J (ТЖКн) (железо-константан, чувствительность 53 мкВ/°C) 0 — +120 °C
  • тип R (Pt13Ro-Ro, чувствительность 10 мкВ/°C) 0 — +1769 °C
  • тип S (ТПП, Pt10Ro-Pt, чувствительность 10 мкВ/°C) 0 — +1769 °C; может работать в окислительной и инертной атмосфере, следует тщательно защищать от соединений железа, углерода, серы, фосфора, мышьяка, сурьмы и селена
  • тип B (ТПР, Pt30Ro-Pt6Ro, чувствительность 10 мкВ/°C) 0 — +1820 °C
  • тип E (ТХКн, хромель-константан, чувствительность 68 мкВ/°C) 0 — +1000 °C
  • тип N (ТНН, нихросил-нисил) 0 — +1300 °C
  • тип T (медь-константан) -199.9 — +400 °C

термометры сопротивления: Pt100 (-199.9 — +649.0 °C), Сu50

 

 

 

ОБЗОР

Модернизация самодельной мини-печи для фьюзинга – применение программируемого термоконтроллера Altec-рс410, программирование

Самодельная печь для фьюзинга из электрической конфорки хороша многим, но в имеющейся конфигурации были два очень серьезных недостатка. Печь, даже в утепленном варианте имела довольно большие потери излучением (при высоких температурах), это не позволяло делать правильный отжиг спекшихся деталей – стекло после печи имело значительные внутренние напряжения. Это приводило к повышенному браку. Часто детали лопались при пайке (монтаже их средствами витражной техники Тиффани).

Второй момент – большое неудобство, впрочем, сугубо организационного смысла. Управление ходом сплавления вручную по таймеру. При этом, оператор был привязан к печи часами. Пропустив важный момент, можно было запросто испортить ценную заготовку. Применение недорогого программируемого промышленного контроллера китайского производства позволило нейтрализовать оба недостатка и сделать работу максимально простой и технологичной, вида – положил-включил-завтра забрал готовое.

Фото 1

Фото 2


Фото 3. Пример деталей выполненных в технике фьюзинг, в описываемой печи. Фото 1,2 – заготовки; фото 3 – готовые детали, установленные в витражный абажур светильника.

В целом, весь процесс сплавления стекол должен подчиняться определенной сложной зависимости время-температура. Часто ее называют

термопрофилем.


Экспериментально выстраданный термопрофиль стекла для фьюзинга Spektrum, получившийся в авторской печи, где: r – скорость изменения температуры. Нарисован несколько не в масштабе.

Рассмотрим первую причину предыдущих периодических неудач – плохой отжиг. Здесь виновата низкая тепловая инерционность печи – легкие огнеупоры ограждения рабочей камеры быстро нагреваются и быстро же остывают, в то время как для снятия напряжений в стекле, нужна не только выдержка при определенной, зависящей от сорта стекла, температуре, но и очень низкий темп остывания. Не менее чем (градусов/сек). А при выключении нагревателей печи, получалось более чем (тех же градусов/сек). Потому и частый брак. То есть, регулирование осуществлялось вручную – включить/выключить печь, включил – она нагревается со своим, ей угодным темпом, выключил – так же остывает. И если темп нагрева (тоже важно) можно замедлить, включив последовательно с нагревателем печи дополнительное сопротивление (разумно снизить мощность нагревателя внутри рабочей камеры), то снизить темп остывания, можно только изменив конструкцию печи. Утяжелив нагреваемую массу. Простой термоконтроллер занят только скорейшим достижением и точным поддержанием выбранной температуры и только. Все эти ваши темпы, не его задача. Вот и оставались напряжения внутри готовой детали – иногда чуть тронь и а-га. Более того, даже если сделать толстый муфель, остывание не будет равномерным – от 550 до ~300°С все равно печь будет остывать быстрее, чем от тех же 300 до комнатной температуры – потери на излучение.

Модернизация самодельной мини-печи для фьюзинга – применение программируемого термоконтроллера Altec-рс410, программирование
Простой температурный ПИД-контроллер задействованный в первой ипостаси печи. Умеет только точно удерживать выбранную температуру. Делает он это хорошо, молодец, но в данном применении этого мало.

Применение программируемого термоконтроллера, способного самостоятельно поддерживать внутри печи нужный термопрофиль, кроме полной автоматизации – смены температур в нужный момент, вполне решает и описанную задачу. То есть, скорость изменения температур (и ее постоянство) задается и очень точно контролируется. По крайней мере, те, которые способна обеспечить печь. Наши две главные скорости – первоначального нагрева и остывания в конце процесса удается задавать и регулировать в нужных пределах в полной мере. То есть в простой, легкой (масса) и недорогой печи из современных огнеупорных материалов, например «керамического одеяла», можно создать условия остывания как в массивной из сплошного шамота. Более того, в течение одного непрерывного процесса, можно запрограммировать их разными (например — r2 и r3, см. термопрофиль выше).

Это упрощает, удешевляет, облегчает и в то же время расширяет. Очень.

Что было использовано при работе

Кроме собственно, улучшаемой печи и нового контроллера, пригодились – набор инструментов для электромонтажа, в том числе паяльник с принадлежностями, мелкий слесарный инструмент. Для настройки и опытов — таймер-секундомер, ИК пирометр, самодельный полярископ (стрессомер). Опыты производились с образцами художественного стекла для фьюзинга.

Новый контроллер


Термоконтроллер Altec-pc410, способен обеспечивать сложный температурный процесс по заданному термопрофилю. Применяется в основном в паяльных станциях для монтажа BGA микросхем.

В качестве «Большого Брата» выбран термоконтроллер Altec-pc410 китайского производства. Его основная специализация – применение в BGA паяльных станциях. Микросхемы такого типа имеют контактные площадки для пайки, на дне и микросхема при монтаже греется насвозь. Сверху. Это обуславливает точное слежение за температурами и контролируемую скорость их нарастания во избежание термоудара. В отличие от множества аналогов, например популярного «печного» ОВЕНа-251, здесь задается не время на каждый шаг программы, а именно скорость нарастания, как параметр более значимый и информативный для помянутой пайки. Но для работы со стеклом это также удобнее! К тому же Altec имеет больше памяти (программ) и стоит, более чем в два раза дешевле отечественного. К минусам его, следует отнести менее наглядную индикацию, без вычерченной кривой со светодиодиками, передняя панель Altec кажется более сложной, без мнемосхем, а поскольку пользуются фьюзинг-печами в основном барышни, это серьезное препятствие. Впрочем, программируется элементарно. Пользоваться еще проще.

Подключение

Здесь, термоконтроллер, для проверки был подключен на живую нитку к старому блоку управления. Вместо контроллера обычного, однотемпературного, не программного. Контроллер не установлен в корпус как положено – это только проверка работоспособности прибора и идеи. В дальнейшем, контроллер будет работать с новой, несколько большей печью, в своей коробке, с трехфазной нагрузкой.

Управляющий выход прибора подключен к имеющемуся тиристорному ключу, на вход подан сигнал с заделанной в печь термопары К-типа (хромель-алюмель). Устройство дополнительно требует две внешних кнопки «Пуск» и «Стоп». Причем, контакты «Пуск» должны быть замкнуты все время выполнения программы.

В предыдущем варианте для некоторого снижения темпа нагрева, последовательно с нагревателем печи было включено внешнее сопротивление – масляный нагреватель 2кВт.

Теперь его можно не использовать – на задней стенке блока удалена розетка для его подключения, изменена коммутация. При этом повышается, и изрядно, КПД печи – убираются потери электричества на радиаторе. Всё в дом.

Программирование

Следует понимать, что существует не один вариант описываемого прибора – т.н. «исполнения», вполне могущие отличаться в незначительных деталях. Общий принцип, однако, един.

Первоначальное конфигурирование

Прибор в принципе универсальный и перед работой следует его сконфигурировать — включить нужные функции, ограничить их в нужных пределах, отключить ненужные, изменить некоторые параметры для удобной работы в конкретном применении.

Прибор предназначен для работы в составе паяльного оборудования. Максимальная температура при этом — 400°С. В фабричной конфигурации контроллер работает в этих пределах.
Итак. Для входа в меню параметров конфигурации следует нажать и удерживать более 3 сек. клавишу PAR/SET, найти параметр SP h и установить его нужное значение. В данном случае, хотя бы 800°С.

Программирование термопрофиля

Здесь все очень просто. Приведу наглядную памятку, с лицевой панели разрабатываемого блока управления.

То есть программа состоит из нескольких шагов, каждому шагу соответствует три параметра: L- нужная температура; d – время ее удержания; r – скорость ее нарастания. Ага – раз-два-три, раз-два-три, раз-два-три… Остальное очевидно.

Выводы

Получилось чудо как хорошо! Однажды настроенная печь работает исключительно без малейшей мороки и вполовину экономнее. Спекание превратилось в удовольствие.

Передняя панель при некоторой привычке показалась вполне информативной и понятной. Даже при беглом взгляде легко понять, какой момент отрабатывает программа.

Очень хотелось связать контроллер с компьютером. Возможность такая есть, но оказалось – совершенно незачем. Блажь и только. Легко программируется и без компьютера. Один раз. Потом только вызывается нужная программа из памяти. Более того, все программное обеспечение (есть несколько вариантов) для РС-шника, тоже для пайки – до 400°С. Ну да и черт с ним.

Babay Mazay, ноябрь, 2019 г.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Инфракрасная паяльная станция своими руками

Рано или поздно перед радиомехаником, занимающимся ремонтом современной электронной техники встаёт вопрос покупки инфракрасной паяльной станции. Необходимость назрела в связи с тем что современные элементы массово “откидывают копыта” короче говоря, производители как и мелочевки так и больших интегральных схем отказываются от гибких выводов в пользу пятачков. Процесс этот идёт уже достаточно давно.

ИК станция для пайки BGA
Такие корпуса микросхем называются BGA – Ball grid array, проще говоря – массив шариков. Такие микросхемы монтируются и демонтируются бесконтактным способом пайки.

Раньше, для не особо крупных микросхем можно было обходиться термовоздушной паяльной станцией. А вот крупные графические контроллеры  GPU термовоздушкой уже не снимешь и не посадишь. Разве что прогреть, но прогрев длительного результата не даёт.
В общем, ближе к теме.. Готовые профессиональные инфракрасные станции   имеют запредельные цены, а недорогие 1000 – 2000 зелёных недостаточный функционал, короче допиливать всё равно придётся. Лично по мне, инфракрасная паяльная станция – это тот инструмент, который можно собрать самому и под свои нужды. Да, не спорю, есть затраты по времени. Но если подойти к сборке ИК станции методично, то будет и необходимый результат и творческая удовлетворённость. Итак, я для себя наметил, что буду работать с платами размером 250х250 мм. Для пайки телевизионных Main и компьютерных видеоадаптеров, возможно планшетных ПК.

Итак, начал я с нечистого листа и дверцы от старой антресоли, прикрутив к этому будущему основанию 4 ножки от древней пишущей машинки. 

Инфракрасная паяльная станция

Основа при помощи приблизительных расчётов получилась 400х390 мм. Дальше необходимо было примерно рассчитать компоновку исходя из размеров нагревателей, ПИД-регуляторов. Таким нехитрым “фломастерным” способом я определил высоту своей будущей инфракрасной паяльной станции и угол скоса передней панели:

Ик станция  

Далее уже берёмся за скелет. Тут всё просто – изгибаем алюминиевые уголки согласно конструкции нашей будущей паяльной станции, закрепляем, связываем. Идём в гараж и с головой закапываемся в корпуса от DVD и видиков. Хорошо делаю, что не выбрасываю – знаю, что пригодятся. Глядишь, дом из них построю:) Вон из пивных банок строят, из пробок и даже палочек от мороженого!

Короче говоря, на облицовку лучше не придумаешь, чем крышки от аппаратуры. Листовой металл стоит не дёшево.

ИК паяльная станция 

 Бежим по магазинам в поисках антипригарного противня. Противень необходимо подобрать согласно размерам ИК-излучателей и их количеству. Я ходил по магазинам с небольшой рулеткой и измерял стороны дна и глубину. На вопросы продавцов типа – “Зачем вам пироги строго заданных размеров?” Отвечал, что неподходящие размеры пирога нарушают общую гармонию восприятия, что не соответствует моим моральным и этическим принципам.

 Паяльная станция своими руками

Урааа! Первая посылочка, а в ней особо важные запчастюлины: ПИД-ы (страшное слово-то какое) Расшифровка тоже не простая: Пропорционально-Интегрально-Дифференциальный регулятор. В общем, разбираемся с их настройкой и работой.

 Rex c100

Далее жестянка. Здесь как раз и пришлось попотеть с крышками от DVD-юков дабы всё получилось ровно и солидно, для себя делаем. После подгонки всех стенок необходимо вырезать нужные отверстия под ПИД-ы на передней, под кулер на задней стенке и в покраску – в гараж. В итоге – промежуточный вариант нашей ИК паяльной станции стал выглядеть таким образом:

 Инфракрасная паяльная станция своими руками

После тестирования регулятора REX C-100 предназначенного для преднагрева (нижнего нагревателя) выяснилось, что он не совсем подходит для моей конструкции паяльной станции, потому как не рассчитан на работу с твердотельными реле, которыми он и должен управлять. Пришлось его доработать под свою концепцию.

 rex-c-100

Урааа! Пришла посылка из Китая. Теперь в ней уже было самое основное богатство для постройки нашей инфракрасной паяльной станции. А именно – это 3 нижних ИК излучателя 60х240 мм, верхний 80х80 мм. и пара твердотельных реле на 40А Можно было и на 25 ампер взять, но всегда стараюсь всё сделать с запасом, да и ценой они не сильно отличались..

 ИК излучатели для паяльной станции

Глаза боятся, а руки делают. Стараюсь не забывать эту старую истину, также как и про курицу, та что по зёрнышку…Что имеем в итоге – После установки излучателей в противень, установки твердотелок на радиатор, обдуваемый кулером и соединении всего, получилось уже что-то более-менее похожее на инфракрасную паяльную станцию.

 Нижний нагреватель паяльной станции

Когда дело с преднагревом начало подходить к концу и были сделаны первые тесты на нагрев, удержание температуры и гистерезис, можно было смело приступать к верхнему инфракрасному излучателю. Работы с ним оказалось больше, чем я предполагал изначально. Было рассмотрено несколько конструктивных решений, но всё же более удачным на практике оказался последний вариант, который я и воплотил.

 ИК станция - верхний нагреватель

Сделать столик для удержания платы – очередная задача, требующая нагрева черепной коробки. Необходимо чтобы выполнялось несколько условий – равномерное удержание печатной платы, чтобы плата при нагреве не прогибалась. Кроме этого была возможность сдвигать влево-вправо уже зажатую плату. Зажим платы должен быть, как и крепкий, так и давать небольшую слабину, так как плата при нагреве расширяется. Ну и так же у столика должна быть возможность  закрепить платы разных размеров. Не до конца еще доделанный столик:                                            (нет прищепок для платы)

Инфракрасная паяльная станция 

Вот и настало время тестов, отладок, подгонки термопрофилей под разные виды микросхем, и паяльных сплавов. За осень 2014 было восстановлено приличное количество компьютерных видеокарт и телевизионных Main-board

 Самодельная инфракрасная станция

Не смотря на то, что паяльная станция кажется завершённой и прекрасно себя зарекомендовала, на самом деле не хватает еще нескольких важных вещей: Во-первых это лампа, ну или фонарик на гибкой ножке, Во-вторых обдув платы после пайки, в-третьих я хотел изначально сделать селектор для нижних нагревателей..

Конечно же, я написал не всё что хотел, потому как, при сборке было много мелочей, проблем и тупиков. Но зато я записал на видео весь процесс конструирования и теперь это полноценный обучающий видеокурс:

 

 

 

Терморегулятор с термопрофилем РС410

Описание Терморегулятор с термопрофилем РС410

Термоконтроллер pc410, способен обеспечивать сложный температурный процесс по заданному термопрофилю. Используется  в паяльных станциях для монтажа чип компонентов.

Обычный температурный ПИД-контроллер умеет только точно поддерживать выбранную температуру. Его задача, это скорейшее достижением и точные поддержанием выбранной температуры, также с применением аварийных выходов-отключение через определенный промежуток.

Для правильного изготовления некоторых продуктов этого недостаточно: при резко поднятых высоких температурах это не позволяет делать правильный отжиг деталей. Приходится производить управлением хода процесса сплавления или приготовления вручную по таймеру. При этом, оператор привязан к печи часами. Пропустив важный момент, можно  запросто испортить  продукт или ценную заготовку. Применение программируемого промышленного контроллера РС410 позволяет устранить недостатки и сделать работу максимально простой и технологичной, в виде-положил-включил-завтра забрал готовое, лишь бы свет не отключили.

В целом, весь процесс работы подчиняться определенной зависимости: работа определенное время, на разных температурах с последующим отключением, ее называют термопрофилем. r – скорость изменения температуры. Нужна не только выдержка при определенной, температуре, но и очень низкий темп остывания, а при включении нагревателей печи, получается резкое остывание. 

Установка программируемого терморегулятора, способного самостоятельно поддерживать внутри печи нужный термопрофиль и смену температур в нужный момент, со скоростью изменения температур задается и очень точно контролируется. Это позволяет производить контролируемый первоначальный нагрев и процесса остывания с отключением в конце.  В отличие от множества аналогов, например ОВЕН-251, здесь задается не время на каждый шаг программы, а именно скорость нарастания, как параметр более значимый и информативный для поминутой пайки. Но для работы со стеклом это также удобнее! К тому же Altec имеет 8 программ памяти. 

.Устройство дополнительно требует две внешних кнопки «Пуск» и «Стоп». Причем, контакты «Пуск» должны быть замкнуты все время выполнения программы.

Терморегулятор универсальный и перед работой следует его сконфигурировать — включить нужные функции, ограничить их в нужных пределах, отключить ненужные, изменить некоторые параметры для удобной работы в конкретном применении.

Для входа в меню параметров конфигурации следует нажать и удерживать более 3 сек. клавишу PAR/SET, найти параметр SP h и установить его нужное значение. В данном случае, хотя бы 800°С.

Программирование термопрофиля:

Программа состоит из нескольких шагов, каждому шагу соответствует три параметра: L- нужная температура; d – время ее удержания; r – скорость ее нарастания. 

 Легко программируется без компьютера. После этого вызывается нужная программа из памяти.

К контроллеру подключается термопара способная выдерживать требуемую температуру. Подключить к контроллеру нагревательный элемент напрямую не получится, Вам понадобится еще силовое контактор. Программирование производится только тогда когда термопрофиль не запущен, нажмите кнопку 2 выберите программируемый термопрофиль (например номер отобразиться на дисплее 6). Для начала программирования необходимо нажать кнопку SET|PROG. На дисплее 8 отобразиться изменяемый параметр. Параметр r – скорость набора температуры градусы в секунду. Параметр L – температура фазы. Параметр D – длительность удержания температуры фазы. Изменение параметра производиться кнопками уменьшения или увеличения значения. Переключение между параметрами происходит кнопкой 1. Конец программирования End. При появлении параметра номером отображается номер фазы. Например L1 – температура на фазе 1, L2 – температура фазы 2. На любой из фаз если Вы выберете скорость набора температуры 0 градусов и нажмёте кнопку уменьшение программирование термопрофиля закончиться (например если Вам нужно только 3 фазы , а не все 8. То выберете в параметре r4 – 0+ уменьшение и на дисплее отобразиться End после нуля). (по окончании в течение 16 секунд не нажимать ни одной кнопки и автоматически произойдет выход из режима программирования)

Основные характеристики:

Точность измерений: ± 0.2% от полной шкалы ±1 знак

Разрешение: 14 бит

Режим регулирования: дискретный пропорциональный интегрально-дифференциальный (ПИД)

Период опроса: 0.125 с

Размеры: 48 х 96 х 100 (мм) ± 0.2 мм

Тип индикатора: LED

Время интегрирования (I): 0 ~ 3600 сек

Время дифференцирования (D): 0 ~ 3600 сек
Напряжение питания: 85-264 В

Потребляемая мощность: менее 10 Вт
Термоконтроллер может содержать в себе до 10 термопрофилей, каждый из которых может содержать до 8 фаз.

Температура окружающей среды: 0 ~ 50 °C, влажность 30 ~ 85%, отсутствие агрессивных газов

Заводские установки: термопара тип К; область температур 0 — + 400 °C (термопара в комплект не входит)

(возможно оказание услуг по изменению заводских установок по требованию заказчика)

Циклов перепрограммирования: 100000

Сохранение установок после отключения питания: 10 лет

Вес: 267 г

Термодатчики и область температур (выбирается программированием) термопары: (K, J, R, S, B, E, N, T )

тип К (ТХА) (хромель-алюмель, чувствительность 41 мкВ/°C) 0 — +1370 °C

тип J (ТЖКн) (железо-константан, чувствительность 53 мкВ/°C) 0 — +120 °C

тип R (Pt13Ro-Ro, чувствительность 10 мкВ/°C) 0 — +1769 °C

тип S (ТПП, Pt10Ro-Pt, чувствительность 10 мкВ/°C) 0 — +1769 °C; может работать в окислительной и инертной атмосфере, следует тщательно защищать от соединений железа, углерода, серы, фосфора, мышьяка, сурьмы и селена

тип B (ТПР, Pt30Ro-Pt6Ro, чувствительность 10 мкВ/°C) 0 — +1820 °C

тип E (ТХКн, хромель-константан, чувствительность 68 мкВ/°C) 0 — +1000 °C

тип N (ТНН, нихросил-нисил) 0 — +1300 °C

тип T (медь-константан) -199.9 — +400 °C

термометры сопротивления: Pt100 (-199.9 — +649.0 °C), Сu50
начал работать в автомате по заданной программе необходимо, замкнуть 14 и15 контакт
Примеры настройки можно найти на Ютубе, применяется на паяльной станции : IR 6500, IR6500, IR6000,

Кроме того контроллер содержит множество других параметров и в частности выход для подключения компьютера по порту COM. Данный контроллер используется в большинстве китайских паяльных станциях.

 

 

 

 

кодирование

Основной инструмент

Выход 1

Выход 2

Тревога 1

связи

Опции

① Базовый прибор

   
   

PC410

Универсальный ПИД-регулятор Размер: 96 * 48 * 100 мм (по горизонтали)

②. Выход 1

0

Нет выхода

р

Реле, (NO, 3 A / 250 VAC)

L

Logic, (20 В / 20 мА), твердотельное реле привода (SSR)

D

Аналоговый, (0-10 мА, 4-20 мА, 0-20 мА, 0-5 В, 1-5 В, 0-10 В)

T1

 

T3

 

Y1

Однофазный сдвигающий импульсный выход, привод SCR

Y3

Трехфазный импульсный выход, привод SCR

③. Выход 2

0

Никто

р

Реле, (NO, 3A / 250 VAC)

L

Logic, 20 В / 10 мА, твердотельное реле привода (SSR)

D

Аналоговый выход (0-10 мА, 4-20 мА, 0-20 мА, 0-5 В, 0-10 В)

T1

 

④. Тревога 1

0

Нет выхода тревоги

р

Реле, (NO, 3A / 250 VAC)

⑤.Communications

0

Никто

232

RS232, 3 провода, расстояние между сообщениями: 15 м

485

RS485, 2 проводной, на расстоянии: 1.2 Km

⑥.Options

0

Никто

Rem

Дистанционный пульт

QP16

16 Сегментная программа

PVT

Передача значения процесса

Clk

Часы реального времени

СВТ

Передача заданного значения

Prt

Распечатать

 

 

Вот  пример:

PC410 / L / 0 / R

Размер: 96×48 мм (по горизонтали)

Выход 1: Логический

выход 2: Нет

Тревога 1: Релейные

контакты: Нет

Описание панели

 

SN

Вещь

Описание функции

PAR / SET

Клавиша установки параметров

AUTO / HAND

Автоматический / ручной выбор операций

Увеличить значение

Уменьшить значение

PTN

Выбор номера паттерна программы

RUN / PROG

Запускает программу

SET / PROG

Настройка параметров программы

DISP / SELECT

Измените индикацию на нижнем дисплее

OUT1

Светодиодный индикатор горит, когда выход 1 включен

OUT2

Светодиодный индикатор горит, когда выход 2 включен

ШАГ

Указывает номер шага программы

ПРОФИЛЬ

(Индикатор монитора программы)

Во время управления программой загорается индикатор «/» при повышении PV.

Во время управления программой «-» горит, когда PV постоянна.

Во время управления программой «» горит, когда падает PV

PTN-дисплей

Он указывает номер шаблона

OP3

Светодиодный индикатор горит, когда выход 3 включен

В

TunE на SV / MV / TIME мигает во время автонастройки

БЕЖАТЬ

Светодиодный индикатор горит во время управления программой

PV дисплей

Указывает переменную процесса и параметр

Дисплей SV / MV / TIME

Указывает значение настройки (SV), манипулирование значением (MV) или временем

. Дисплей может быть изменен клавишей «DISP SELECT»

С.В.

Загорается, когда значение параметра отображается на нижнем дисплее

М.В.

Загорается, когда значение Манипуляции отображается на нижнем дисплее

ВРЕМЯ

Загорается, когда TIME отображается на нижнем дисплее

AL1

Загорается, когда сигнал тревоги 1 включен

ЧЕЛОВЕК

Он горит в ручном режиме работы

COM

Он мигает, когда контроллер находится в активной связи с главным компьютером

Размеры и монтаж

электропроводка

Расположение задней панели

 


 

Электрическое подключение

 

 

 


 

 


 

Программируемый контроллер PC900 (базовый)

 

Выходной модуль:

Источник питания вспомогательного датчика (24 В)

+ U 0.-

Релейный выход (R)

+  0.-

Логический выход (L)

+  0.-

1-фазный TRIAC (T)

+  2,70

Трехфазный TRIAC (3T)

+ 20,30

1-фазный сдвиг SCR (1Y)

+ 13,50

3-фазный сдвиг SCR (3Y)

+  54.-

Аналоговый выход (D)

+ 13,50

Коммуникационный модуль:

RS232

+  27.-

RS422 / RS485

+  27.-

Характеристики

вход

Типы термопары: J, K, E, R, S, T, B, N

RTD: Pt100, Cu50

Аналоговый вход

(DC mA, DC V)

0-20 мА

4-20 мА

-10,0-50 мВ

0-10 В

Выход

Реле, макс. 250 В переменного тока, 3A

Логика, твердотельное реле привода (SSR)

SCR

Аналоговый выход, 0-10 мА, 0-20 мА, 4-20 мА, 0-5 В, 1-5 В, 0-10 В

точность

± 0,1 ° C

разрешение

± 0,2% (+) 1 цифра

Частота дискретизации

125 мс

Управление программой

10 шаблонов (профиль)

До 16 шагов / шаблонов

1-200 циклов цикла программы или циклического цикла

сигнализация

Выход: реле, макс. 250 В перем. Тока, 3А

Аварийный сигнал

тревоги с высоким уровнем

тревоги

Действие управления

ON / OFF

PID, автоматическая настройка PID

связи

RS-232 (3-проводная)

RS-485 (2-проводная)

Отображает

Верхний, 4 цифры, зеленый ярко-зеленый светодиод

Нижний, 4 цифры, яркость красного цвета

Светодиодные индикаторы

Размеры

(единица измерения: мм)

 

96 * 48 * 100

экологическая

Температура окружающей среды: 0-50 ° C

Влажность: ≤ 85%

Источник питания

85-264 В переменного тока, 45/60 Гц

Термоконтроллер с PID регулировкой, 110

Больше года я занимаюсь приготовление домашней колбасы и довольно успешно. Но контролировать процесс варки колбаски в простой эл. духовке, без точной регулировки температуры. проблематично. Иногда получал «отек». Для упрощения контроля и был приобретен REX — C100. Прибор и его комплектация оправдали ожидания полностью.
Термоконтроллер
— точность измерения: ±0.5%впи
— корректировка термопары: ± 2 ℃ могут быть изменены программным обеспечением в 0~50 ℃
— период цикла регулирования: 0.5 сек
— питание 110-240В 50/60Гц
— текущая t (PV)
— контролируемая t(SV)
— индикация данных и настроек: LED
— диапазон контролируемых температур: 0 до 400 ℃
— среда обслуживания: 0 ~ 50 ℃
— окружающая среда без агрессивных газов, 30~85% относительной влажности

Термопара K, кабель датчика
— длина: 1м
— датчик диаметр: 6 мм
— измеряемые температуры: 0 до 400 ℃
— внутренняя изоляция: стекловолокно
— внешнее экранирование: изолированная экранирование

Силовое реле ССР, макс.40А
— выходной ток: 40А
— входное напряжение: DC 3-32в
— выходное напряжение: 24-380V переменного тока

Комплектация:
1 x Рекс-С100 ПИД-регулятор температуры
1 x K Тип зонда датчик
1 x Макс.40А ССР

Рассмотрим что пришло в пакете. Коробка + реле + термодатчик.


В коробке сам термоконтроллер и прижимная рамка, инструкции на китайском и английском. Термоконтроллер без звукового оповещения, из коробки готов к работе. Для более щепетильных есть подробная инструкция по тонкой настройке.
Пришел под маркировкой REX-C100FK02-V-AN.
Буква F означает, что тип контроля обратного действия.
Буква K описывает тип датчика, а цифры 02 указывают на диапазон. Буква V описывает выходной сигнал контроля. Прибор заточен для работы с твердотельными реле SSR-40AD, управляемыми постоянным напряжением от 4 до 32 вольт. Использовать нужно 40-ка амперные, потому что разница в цене между ними и 25-ками небольшая. Ну а поскольку производитель рекомендует использовать реле на токах 60% от номинального, то рекомендованный ток безопасной и длительной эксплуатации у 40-ок — 24 ампера, или 5 кВт резистивной нагрузки. У 25-ток это 15 ампер или чуть больше 3 кВт. А запас по току никогда не помешает. Если кому то 3-х кВт достаточно, ради Бога, покупая SSR-25AD сэкономите доллар-полтора


Характеристики с корпуса.

Лицевая панель.
Индикаторы слева/ сверху вниз:
1. Аварийная сигнализация 1, нет
2. Выходной сигнал
3. Аварийная сигнализация 2, нет.
4. Индикатор работающей автонастройки PID

Клеммы. Схема подключения очень простая. Задействованы только клеммы 1-2-4-5-9-10. Питание (220 вольт), выход управляющего напряжения (прямиком на твердотельное реле), вход термопары.


Сам термодатчик запасован в полый болт, диаметр резьбы 6 мм, длина 10мм. Для замера температуры внутри батона колбасы нужно еще будет выточить конус мм. в 50, с внутренней резьбой.

— Установка температуры: Нажать на кнопку SET, кнопками ВВЕРХ или ВНИЗ установить температуру срабатывания основного реле. Снова нажать на кнопку SET для окончания настройки.
— Включение аларма (если есть): Нажать на кнопку SET продолжительно (5 секунд), попадёшь во второе меню. Сразу видим Al1. Кнопкой С.Вв или С.Вн устанавливаем Температуру срабатывания реле аларма. Продолжительно нажимаем на кнопку SET для выхода из меню. Загорается светодиод Alm1.
— Отключение авторегулирования: Нажать на кнопку SET продолжительно (5 секунд), попадаем во второе меню. Коротко нажимая на кнопку SET продвигаемся до установки Aru. По умолчанию она 00, то есть авторегулирование отключено. Кнопкой С.Вв (Стрелка вверх) устанавливаем 01, это значит PID-регулирование включено. Продолжительно нажимаем на кнопку SET для выхода из меню. Загорается светодиод AT.

Простейший корпус из 10мм фанеры


Применение этому термоконтроллеру можно найти в любой задумке, где необхотимо точное и автоматическое регулирование температуры, благо настроек много, под большинство запросов. Контроллер часто используется в любой промышленной отрасли, сельском хозяйстве, разных бытовых приборах, оборудованиях, в большинстве станков для разделения дисплейных модулей, для самостоятельной сборки станций, например, паяльной станции, для инкубаторов, муфельных печей, газовых горнов..Другими словами, он может применяться в любом устройстве с нагревательными элементами, например, в процессе пайки, дистилляции, ректификации.
Небольшое видео пробных испытаний — духовка+банка с водой+прибор, проверял как работает из коробки и при двойном превышении температуры внутри духовки. При выставлении 80° такого превышения t не будет.


Еще, но не мое.


Впечатление одно — аппарат надежный, простой в работе, понятный и эффективный, как термостат.

Программируемый ПИД контроллер температуры ALTEC PC410 с выходом на ПК

Термоконтроллер может содержать в себе до 10 термопрофилей, каждый из которых может содержать до 8 фаз.

ALTEC PC410

Программирование возможно только тогда когда термопрофиль не запущен. Путем использовать кнопку 2 выберите программируемый термопрофиль (номер дисплея на дисплее 6). Для начала программирования необходимо нажать кнопку SET | PROG (если в течение 16 секунд не нажимать ни одну кнопку автоматически произойдёт выход из режима программирования).На дисплее 8 отображиться изменяемый параметр. Параметр r — скорость набора температуры градусы в секунду. Параметр L — температура фазы. Параметр D — длительность удержания температуры фазы. Изменение производиться кнопками уменьшения или увеличения значения. Переключение между включением 1. Конец программирования End. При появлении отображаем номер фазы. Например L1 — температура на фазе 1, L2 — температура на фазе 2 и т.д. На любом из фаз, если вы выберете скорость набора температуры 0 градусов и нажмёте кнопку уменьшения программирования термопрофиля закончиться (например, если Вам нужно только 3 фазы, а не все 8.То выберете в параметр r4 — 0+ уменьшение и на дисплее (End после нуля).

Кроме того, предоставляет набор других параметров и в частности выход для подключения компьютера по порту COM. Данный контроллер используется в большинстве китайских паяльных станций.

Инструкция: английский

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ:

  • Точность измерений: ± 0.2% от полной шкалы ± 1 знак
  • Разрешение: 14 бит
  • Режим регулирования: дискретный пропорциональный интегрально-дифференциальный (ПИД)
  • Период опроса: 0.125 с
  • Размеры: 48 х 96 х 100 (мм) ± 0,2 мм
  • Тип индикатора: LED
  • Время интегрирования (I): 0 ~ 3600 сек
  • Время дифференцирования (D): 0 ~ 3600 сек
  • Напряжение питания: 85-264 В
  • Потребляемая мощность: менее 10 Вт

  • Температура окружающей среды: 0 ~ 50 ° C, влажность 30 ~ 85%, отсутствие агрессивных газов
  • Заводские установки: термопара тип К; область температур 0 — + 400 ° C (термопара в комплект не входит)
  • (возможно услуг по изменению заводских установок по требованию заказчика)
  • Циклов перепрограммирования: 100000
  • Сохранение установок после отключения питания: 10 лет
  • Вес: 267 г

Термодатчики и область температуры (выбирается программированием)

термопары: (K, J, R, S, B, E, N, T)

  • тип К (ТХА) (хромель-алюмель, чувствительность 41 мкВ / ° C) 0 — +1370 ° C
  • тип J (ТЖКн) (железо-константан, чувствительность 53 мкВ / ° C) 0 — +120 ° C
  • тип R (Pt13Ro-Ro, чувствительность 10 мкВ / ° C) 0 — +1769 ° C
  • тип S (ТПП, Pt10Ro-Pt, чувствительность 10 мкВ / ° C) 0 — +1769 ° C; Может работать в окислительной и инертной атмосфере, следует защищать соединения железа, углерода, серы, фосфора, мышьяка, сурьмы и селена
  • тип B (ТПР, Pt30Ro-Pt6Ro, чувствительность 10 мкВ / ° C) 0 — +1820 ° C
  • тип E (ТХКн, хромель-константан, чувствительность 68 мкВ / ° C) 0 — +1000 ° C
  • тип N (ТНН, нихросил-нисил) 0 — +1300 ° C
  • тип Т (медь-константан) -199.9 — +400 ° С

термометры сопротивления: Pt100 (-199,9 — +649,0 ° C), Сu50

ОБЗОР

.

ПИД-регулятор температуры с инструкцией по эксплуатации микроконтроллера

Я брал год назад по другой ссылке за 50 с лишним долларов, но там комплект с еще одним, более навороченным термоконтроллером. Поэтому даю ссылку на другой лот с вроде бы нормальным продавцом заказов.
Брался для совсем других целей, но оказался приделан к кухонной электродуховке 🙂 В этом применении работает отлично 🙂
Подробнее под катом.

Год назад я заказал себе для паяльной печи комплект из двух термоконтроллеров — один обозреваемый и второй гораздо более функциональный.Почему-то у меня появилась глупая мысль использовать их вместе, но когда уже получил резко поумнел и этот сравнительно простой термоконтроллер остался не удел.
Итак, что этот термоконтроллер может. Самое главное, конечно же, это поддерживать заданную температуру, управляя нагревателем. Но чем он лучше любого термоконтроллера за 1.5-2 бакса, которых полно на Али? Самое главное — тем, что он обеспечивает регулирование температуры ПИД-регулятором.

постараюсь объяснить попроще что такое ПИД-регуляция 🙂

По русски это понятие, кстати, сокращается в те же буквы — ПИД, Пропорционально-Интегрирующе-Дифференцирующая регуляция.
В инете множества статей, посвященных ПИД, но очень мало рассказывающих об этом понятными словами. Я не популяризатор, но постараюсь установить принцип работы ПИД-регуляторов максимально доступно 🙂 нужно поддерживать 70 градусов с помощью вставленного в эту банку нагревателя мощностью 100 Ватт. Для измерения температуры в воду опущен термометр.
Самый простой способ сделать это как раз в однбаксовых терморегуляторах: включаем нагреватель, температура достигает заданной, выключаем нагреватель, температура падает ниже заданной — включаем нагреватель и т.д.
Элементарнейший и дешевейший способ, не требующий никаких вычислительных ресурсов. На этом принципе делают как цифровые контроллеры, так и аналоговые, и даже механические. Однако есть у него большой недостаток — он не поддерживает более-менее точно заданную температуру.С таким регулятором температуры воды в нашей банке будет гулять вокруг заданной, то падая ниже. График температуры будет напоминать пилу. Это называется пороговый регулятор, то есть который включает или выключает нагреватель по достижению заданных порогов:

А что если не включить нагреватель, а регулировать его мощность — чем температура воды ниже заданной больше тем мощности подаем на нагреватель? Звучит логично и вот так у нас и появляется ПИД 🙂 Точнее, появилась первая его составляющая Пс — изменяющая, значение которой прямо пропорционально разнице между заданной и текущей температурми.Итак, будем выдавать на нагреватель значение Пс : при текущей температуре воды 20 градусов он выдаст на нагреватель 70-20 = 50 Ватт. Когда вода нагреется до 40 градусов, он уже будет выдавать 70-40 = 30 Ватт. При температуре воды 60 градусов он будет выдавать 70-60 = 10 Ватт. Отлично, никаких прыжков вокруг заданной температуры, все плавно 🙂 Однако есть одна закавыка: при мощности на нагревателе 10 Ватт он уже не может и дальше нагревать воду, а может только достичь эти достигнутые 60 градусов.Итак, вода 60 градусов, Пс соответственно выдает 10 градусов и температура воды стоит на месте, до 70 градусов таким регулятором ей не добраться:

Нужно что-то добавление к пропорциональной составляющей, какое-то значение, причем не постоянное. На помощь приходит Ис — интегрирующая составляющая. Это накопитель ошибок. При каждом измерении в нем добавляется разница между заданной и текущей температурой. Если заданная температура больше, то добавляется положительное число, если меньше, то отрицательное.Эта составляющая есть заданное максимальное значение, превысить то, что она не может, то есть, если при очередном добавлении, что сумма превысит максимум, то Ис становится равной максимум, но не больше. То же касается нуля — отрицательным числом она тоже не может стать. Пусть у нас этот максимум будет равен нагревателя — 100. Теперь на нагреватель будет выдаваться суммарное значение мощности Пс + Ис .Для последовательности температур и что при этом получается:
1. Температура 20 градусов, Ис изначально равна нулю, Пс = 70-20 = 50, в нагреватель выдается Ис + Пс = 0 + 50 = 50 Ватт.
2. Вода нагрелась до 30 градусов, Ис = 0 (ее предыдущее значение) + (70-30) = 40, Пс = 70-30 = 40, в нагреватель выдается Ис + Пс = 40 + 40 = 80 Ватт.
3. Вода нагрелась до 40 градусов, Ис = 40 (ее предыдущее значение) + (70-40) = 70, Пс = 70-40 = 30, в нагреватель выдается Ис + Пс = 70 + 30 = 100 Ватт.
4. Вода нагрелась до 60 градусов, Ис = 70 (ее предыдущее значение) + (70-60) = 80, Пс = 70-60 = 10, в нагреватель выдается Ис + Пс = 80 + 10 = 90 Ватт.
Смотрите-ка, пока все выглядит неплохо, вода уже 60 градусов, нагреватель все еще греет воду, хотя и начал снижать мощность 🙂
5. Вода нагрелась до 70 градусов, Ис = 80 (ее предыдущее значение) + (70-70) = 80, Пс = 70-70 = 0, в нагреватель выдается Ис + Пс = 80 + 0 = 80 Ватт.
6. Вода нагрелась до 80 градусов, Ис = 80 (ее предыдущее значение) + (70-80) = 70, Пс = 70-80 = -10, в нагреватель выдается Ис + Пс = 70 + (- 10) = 60 Ватт.
Вода перегрелась. И хотя, как видно, мощность пошла вниз, температура еще будет какое-то время колебаться, пока не успокоится на заданном значении:

Это называется перерегулирование. Происходит оно из-за того, что и нагреватель и термометр и, главное, вода имеют какую-то инерцию, регулятор получает обратную связь (показания температуры) с определенным запаздыванием. При подаче на нагреватель полной мощности вода не нагреется мгновенно до 100 градусов, и точно так же она не остынет мгновенно при выключении нагревателя.Регулятор посмотрел на температуру — холодная вода, добавил мощности. Через 2 секунды глянул — все еще холодная — опять добавил. А когда в очередной раз он обнаруживает, что вода уже дошла до нужной температуры начинает выдавать мощность, накопленную в Ис , считая, что это как раз нужное для поддержания значения мощности (на самом деле интегрирующая составляющая после устаканивания всех возмущений) действительно содержит необходимое для ровного поддержания регулируемой величины, а рассчитана только компенсировать случайные отклонения).Но для воды это много и она продолжает нагреваться. И только после превышения заданной температуры регулятор начинает снижать мощность. И эта качка продолжается некоторое время пока значение Ис не придет к нужной величине.
Что можно предпринять в таком случае? Ну, например можно понизить влияние на выходную мощность Ис . Это называется коэффициент, влияющий на каждую составляющую ПИД, который может увеличивать или уменьшать влияние этой составляющей на выходной результат.Уменьшим влияние Ис до 0.3 от его значения — Ис * 0.3:

Уже лучше, но все равно есть колебание в начале. Это из-за слишком большого влияния формирующей, уменьшим и ее влияние в 2 раза — Пс * 0,5:

Идеально, правда? 🙂
Нуу… Почти. Колебаний нет, но вот время страницы увеличилось. Оно пришло к заданной температуре только к 25-му отсчету.
На самом деле используют ПИ-регулятор, без его дифференцирующей системы и это вполне работает, как видно. Однако часто можно добиться лучшего результата с использованием третьей составляющей — дифференцирующей, Дс .
Она является «демпфером», не дающим регулируемому устройству слишком быстро менять свое состояние. В нашем примере Дс начинает снижать мощность тем сильнее, чем быстрее будет нагреваться «разогнаться» график роста температуры настолько, чтобы он проскочил заданную температуру 🙂 Дс не очень сильно на фоне других составляющих, температура может расти быстро.Но чем ближе она к заданной тем сильнее усиливается влияние Дс на фоне все уменьшающихся Ис и Пс .
Дс в отличии от Пс и Ис не прибавляется к выходному сигналу (в нашем примере- мощности), а вычитается из него. Она равна скорости изменения регулируемой величины (в нашем примере — температуры). Например, если в прошлый замер температура была 28 градусов, в текущем замере она уже 31 градус, то Дс будет равна 3 — на столько температура выросла с прошлого замера, это скорость роста температуры.И это, возможно, умноженное на свой коэффициент мощности, вычитается из выходной, потому что эта составляющая и называется дифференцирующей 🙂
Вот что получится при добавлении Дс :

Как видно, температура вышла на режим намного быстрее и при этом без всплесков и колебаний. Попытку регулятора проскочить температуру вверх погасила как раз дифференцирующая составляющая.
Вот, если интересно, график изменения значений Пс , Ис и Дс в этом регуляторе в том же временном масштабе:

А вот что было бы без дифференцирующей составляющей при тех же условиях :

И еще раз коротким итогом 🙂
ПИД — это регулятор, который формирует сигнал воздействия на регулируемую из трех составляющих: пропорциональной, интегрирующей и дифференцирующей.
Пропорциональная составляющая величина в выходной сигнал сиюминутную разницу между заданной и текущей величенной величинами (т.н. ошибку). Интегрирующая накапливает (интегрирует) разницы всех измерений и в выходной сигнал накопленное значение (но не превышающее заданного максимума). Дифференцирующая определяет скорость изменения регулируемой величины (на сколько она изменилась с прошлого измерения) и вычитает это из выходного сигнала. Все три составляющие могут иметь свои коэффициенты, усиливающие или ослабляющие их влияние на выходной сигнал.

Уфф… 🙂 Ну, я говорил, что не являюсь популяризатором, поэтому за доходчивость своего изложения не отвечаю. Но я старался 🙂

ЗЫ: самое веселое заключается в подборе коэффициентов этих составляющих, т.к. без правильных (хотя бы примерно) значений этих коэффициентов ПИД-регулятор или вообще не будет регулировать или будет регулировать очень плохо. Подбор идеальных коэффициентов, как я понял, дело весьма нетривиальное. Пока я не встречался в инете доступное объяснение как их рассчитывать, в основном приводятся методики их экспериментального подбора.Что, впрочем, достаточно логично, т.к.

Основные параметры этого регулятора (именно этой модели — REX-C100FK02-V * AN):

  • питание — 24 вольта постоянного напряжения / 24 вольта переменного напряжения / 85-264 вольта переменного
  • потребление — не более 9 ВА при 240 вольт
  • выходное напряжение — 12 вольт, сопротивление нагрузки 600 Ом и выше
  • тип подключаемой термопары — K ( в настройках можно выбрать целую кучу типов, но я не уверен, что железо универсальное и поддерживает всю эту кучу)
  • диапазон регулирования температуры — 0-400 градусов Цельсия (зависит от типа термопары)
  • выход аварийной сигнализации — один выход реле, на замыкание
  • период цикла регулирования — 0.5 сек
  • метод регулирования — PID, вкл / выкл (дискретный), P, PI, PD (настраивается)
  • вес — около 170 грамм
  • крепление — в отверстие панели

Вот русскоязычный мануал на этот контроллер (нашел где-то в сети) — drive.google.com/open?id=1HDs7UX5rllDy8GFdYrdINbcGI_Snoo00
А вот качественный русскоязычный, чуть более полный, но по настройкам немного не соответствует — drive.google.com/open?id=1Ez—F-3hjLzNtKP36FkGy6vfGQ_AkPkn

И пролежал бы он у меня еще неизвестно сколько, если бы жена не пожаловалась, что в нашей электродуховке она не может запекать полимерную глину — температуру там нормально не выставить.Да и пироги порой подгорают 🙂 Духовка из самых дешевых, увы 🙂 И я вспомнил об этом контроллере. Мне он не понадобился, слишком примитивен, а вот для духовки — самое то. Но решил я не курочить духовку, сделать отдельную коробочку с этим регулятором и твердотельным реле на 40 ампер. Точно такое же реле уже год трудится у меня на почти такой же духовке (переделанной в паяльную печь) и не жужжит.

Крепится контроллер очень просто — вставляется в панель и с обратной стороны поджимается рамкой с защелками.Рамка снабжена пружинными рычажками, поджимающим регулятором:

Все подключения производятся через винтовые клеммы на задней стенке:

Подключение очень понятно расписано как на наклейке на корпусе контроллера, так и в мануале.

Меня интересует: питание (220 вольт), выход управляющего напряжения (прямиком на твердотельное реле), вход термопары.
При желании можно еще подключить выход аварийной сигнализации. Ее можно или отключить на один из режимов:

  • ниже превышение заданной температуры
  • падение заданной температуры
  • попадание в заданный промежуток температуры
  • выход за заданный промежуток
Это может быть, например, для аварийного отключения питания нагревателя, на случай если будет пробит ключ, управляющий нагревателем (мосфет, твердотельное реле) и начнется неконтролируемый разогрев.

Общий был такой — отдельная коробочка с контроллером и твердотельным реле на радиаторе, из нее выходят два силовых провода с вилкой и розеткой (да, розетка на проводе) и термопара. Термопара вставляется в духовку и зажимается ее дверцей, изоляция в термопары термоупорная, ей ничего не будет 🙂
Сначала мелькнула мысль напечатать корпус на 3D-принтере, но печатать такой размер из ABS на моем открытом всем сквознякам Анет A8 — геморрой, а PLA, размягчающийся уже при 55-60 градусах рядом с духовкой долго не проживет.Решил резать из литого поликарбоната толщиной 6 мм, их у меня есть несколько листов 50х50 см 🙂

Для начала нарисовал модель (стакан для масштаба):

Вот так оно будет собираться:

Верхняя крышка и одна стенка съемные, на винтах, остальное клееное. Правда, уже потом, когда все было сделано, до меня дошло, что лучше бы было сделать съемным дно, а не крышку, но переделывать не стал 🙂
Вырезал на фрезерном станке, так что размеры сошлись идеально.Неидеально сошлась только толщина, которая оказалась 5.9 мм вместо 6. Для более прочной склейки по краям стенок сделал проточки, так что стенки соединяются полупазами:

И вот кучка запчастей готова к дальнейшей работе:

Сначала думал обклеить самоклейкой, но во-первых в мне не попалась пленка нормального цвета, только цветочки да тканевые узоры, а во-втором я не был уверен, что смогу обклеить без складок и щелей, так что решил красить.
Предварительная примерка показала, что все сходится, поэтому закрепил стенки малярным скотчем и проклеил все стыки. Клеил дихлорметаном, держит железно. Набрал его в шприц с иглой, у которой отрезал скошенный носик, и прошелся иголкой по всем стыкам изнутри (даже по одному стыку, который не надо было клеить, увлекся :)). Дихлорметан очень текуч — моментально заполняет мельчайшие щели, и очень интенсивно испаряется, так что даже не пришлось давить поршень, тепло рук нагревало дихлорметан достаточно, чтобы его испарения создавали избыточное давление внутри шприца.
Сохнет:

А пока корпус сох, я откопал у себя кусок радиатора, который когда-то зачем-то заказывал на али (уже даже не помню зачем). По размерам он подошел идеально, разве что по длине пришлось отпилить нужный кусок.

Распечатал шаблон отверстий, прихватил его кусочками двухстороннего скотча к радиатору и просверлил отверстия:

После чего обнаружил, что неправильно нарисовал модель твердотельного реле, и отверстия на радиаторе теперь не совсем совпадают с отверстиями в реле.К счастью, я ошибся очень удачно — во-первых, совпадало только одно отверстие, и во втором оно не совпало так сильно, что совершенно не мешало просверлить правильное 🙂 Так что все обошлось просто лишним отверстием 🙂

Через час корпус уже был достаточно прочным, чтобы можно было спокойно его крутить и примерять. И вот тут я обнаружил свой второй прокол в модели: сам-то контроллер по габаритам я нарисовал верно, а вот крепежную рамку с защелками рисовать не стал. И оказалось, что она теперь мешает крышке закрыться примерно на 3 мм.Пришлось класть крышку в станок и фрезеровать на ее внутренней стороне выемку.
Еще одна моя ошибка была в том, что узкие планки, которые я приклеил к стенкам и к которым должны прикручиваться крышки, я вырезал без отверстий для болтов. Решил, что приклею, а потом по месту просверлю. Сверлить ровно и именно там где наметил никогда не было моей сильной стороной. Короче, почти все отверстия в этих планках уехали. Из-за этого пришлось разбивать сверлом отверстия в крышках и зенковкой пытаться профрезеровать скосы для шляпок в ту же сторону 🙂 Получился слегка колхоз…
Кстати, резьба в поликарбонате держит болты очень хорошо, никаких гаек не нужно.
Перед покраской слегка закруглил грани с помощью напильника и шкурки, процесс очень быстрый и легкий.
В процессе покраски я не делал фото, как-то забыл об этом, да там ничего интересного, в общем-то, и нет. Шкуркой заматировал поверхность, обезжирил, покрыл двумя слоями грунта и потом двумя слоями краски.

Почему такой цвет? А фиг его знает 🙂 Просто кроме этого у меня были только черный, синий, красный и зеленый, а они мне не нравились в данном случае 🙂 Ну и почему бы и нет 🙂

В отверстия для проводов я вставил специальные резиновые шайбы для таких случаев, брал их тоже на али:

(полезная ковырять корпус когда краска еще не высохла окончательно)
Так как они не предназначены для панелей толщиной 6 мм, пришлось с внутренней стороны делать под них выемки, оставляя толщину 1 мм:

Затянул в отверстия силовые провода, соединил заземление и одну из жил, из которой сделал отвод для запитки контроллера, как и от одной из второй жилой, идущей от вилки, прикрутил реле на термопасту к радиатору, а радиатор к корпусу:

Дальше все просто — провода к реле, отмерить длину проводов до контроллера, отрезать, зачистить, залудить, прикрутить…
Все провода, выходящие из корпуса я обтянул изнутри стяжками, чтобы их случайно не выдернули.Стандартная практика.

Все соединил и включил посмотреть не бахнет ли что-нибудь салютом. Не бахнуло:

Там в глубине корпуса можно увидеть световой индикатор реле, значит все нормально, можно собирать 🙂

Для начала я решил устроить ему стресс-тест и подключил к нему вот такой тепловентилятор на 3 кВт:

Термопару при этом я посадил на радиатор реле и закрепил кусочком каптона, чтобы контролировать температуру не только на ощупь.

Включил, тепловентилятор зажужал, и я пошел писать спойлер про ПИД-регулятор, время от времени отвлекаясь и проверяя температуру радиатора. Через 15 минут после старта температура дошла до 50 градусов. Еще через 20 минут она была уже 67 градусов и на этом значении продержалась следующие 30 минут пока я не выключил все это — в офисе стало жарко 🙂 Вердикт — с духовкой 1.5-2 кВт справится без проблем 🙂

Повседневное (когда не нужно менять какие-то глубокие настройки) управление этим контроллером очень простое.Сразу после подачи питания она начинает пытаться регулировать температуру, отдельного включения для этого не предусмотрено.
Вообще передняя панель минималистична:

Верхний, красный дисплей — измеряемая (текущая) температура
Нижний, зеленый дисплей — заданная температура
. Индикаторы слева по порядку сверху вниз:
1. Аварийная сигнализация 1
2. Выходной сигнал
3. Аварийная сигнализация 2
4. Индикатор работающей автонастройки PID
Кнопки слева направо: «настройка», «сдвиг», «вверх», «вниз».
Для установки заданной температуры нажимаем «настройку», все разряды нижнего дисплея кроме младшего начинают мерцать. Кнопками «вверх» и «вниз» выставляем в младшем разряде нужную цифру и нажимаем «сдвиг», теперь мерцают все разряды кроме десятков, настройка сдвигается на разряд влево. И так выставляем нужные цифры во всех разрядах. Для окончания нажимаем еще раз «настройку».

Более подробные настройки вкратце

Как я писал в спойлере про ПИД-регулятор, коэффициенты такого регулятора — дело тонкое и подбирать их нужно для каждого случая.Изначальные коэффициенты в этом регуляторе скорее всего не подойдут под ваше применение. Эти коэффициенты и другие параметры в регуляторе можно изменить в более глубоких настройках. Чтобы войти в этот режим, нажмите и удерживайте кнопку «настройка» на 3-4 секунды.
На дисплейном отображении параметра, а на нижнем — текущее значение этого параметра. Настройка значения производится так же, как и настройка температуры — кнопками вверх-вниз меняем текущий разряд, затем нажмите сдвига переходим к следующему и т.д. Для перехода к следующему параметру нажимаем «настройку». Для сохранения всех настроек и выхода из этого режима жмем и удерживаем 3-4 секунды кнопку «настройка».
Список параметров в той системе, которую они перебирают:
  • AL1 — настройка выхода первой аварийной сигнализации (в модели она, второй нет).
  • AГU — автонастройка PID

  • P — коэффициент Пс (пропорциональной составляющей ПИД), когда выставлен в 0 контроллер работает в дискретном режиме регулирования
  • I — коэффициент Ис (интегрирующей составляющей ПИД), когда установлен в 0 контроллер работает в режиме ПД
  • d — коэффициент Дс (дифференцирующей составляющей ПИД), когда установлен в 0 контроллер работает в режиме ПИ
  • Ar — насколько я понял, этот параметр задает максимум Ис, но не уверен, что понял правильно.
  • Г — тоже не совсем понял этот параметр, но это происходит, когда происходит текущая температура и соответствующее изменение выходного сигнала
  • SC — тут можно подкорректировать показания термопары, это добавлено к ним. Может быть как положительным, так и отрицательным числом.
  • LCK — блокировка настроек, 0000 — все настройки доступны, 0001 — изменить можно только заданную температуру и AL1, 0011 — изменить можно только заданную температуру, 0111 — изменить ничего нельзя.
и далее опять по кругу, начиная с AL1.
И в этих настройках можно изменить коэффициенты ПИД на требуемые. Чтобы их понять, нужно понимать, что их работа отразится на работе контроллера. И для упрощения работы через автоматическую настройку этих коэффициентов.
Порядок проведения автонастройки:
Все условия должны быть приближены к реальным.То есть если вы настроены для использования с духовкой, чтобы духовка должна быть подключена, закрыта и температура на контроллере должна быть выставлена ​​на максимальную (можно на 10 процентов меньше) из того диапазона, который должен быть применен в духовке. В процессе настройки контроллер нагреет духовку до этой температуры и подержит ее некоторое время температуры.
Итак, подключили духовку (но пока не включаем ее нагреватели), выставили температуру (я установил 180 градусов), заходим в настройки, перебираем точки пока не появится AГU, выставляем в 1 младший разряд и выходим из настроек.Начинает мигать индикатор AT. Теперь включаем нагреватели духовки и ждем пока мигание AT прекратится. Контроллер нагревает духовку постоянным нагревом до заданной температуры, выключает нагрев и следит за тем на сколько и как быстро температура превысит заданную после выключения вызв. Исходя из скорости, «перескока» и скорости дальнейшего остывания он и вычисляет коэффициенты ПИД. Этот процесс он может повторить в 2-3 раза для уточнения.

Процесс автонастройки категорически рекомендуется после покупки или после изменения условий работы (другой нагревательный прибор, что-то изменили в текущем нагревателе и т.п., то есть все, что на процесс изменения). У меня до автонастройки контроллер вообще не мог довести температуру духовки до заданных 180 градусов. Провел автонастройку (видео ускорено в 10 раз):

И работа контроллера после этого (тоже ускорено в 10 раз):

Как видно, ПИД остался настроен не совсем оптимально. не обещал идеала :)), температура перескакивает по инерции заданную аж на 10 градусов.В дальнейшем при желании можно подкорректировать вычисленные им коэффициенты (что я и сделаю на домашней духовке), но при этом нужно понимать что и зачем менять.
Кстати, тот второй, более продвинутый контроллер (он видел слева на видео) справился с автонастройкой намного лучше, ничего корректировать не пришлось, перескок температуры на 200 градусах не превышает 2-3 градусов.

Есть и еще один уровень настроек, вход в него осуществляется нажатием и удержанием в течение 3-4 секунд одновременно кнопками «» и «сдвиг».Но туда без необходимости лучше не лазить, а при необходимости внимательно сверяться с мануалом 🙂

Результат всей возни 🙂


Итог:
Контроллер своих денег стоит и с работой справляется очень неплохо, особенно если настроить его чуть более тонко, чем предполагает автонастройка. Твердотельное реле тоже отлично справляется с достаточно большой нагрузкой, хотя насчет заявленных 40 ампер у меня очень большие сомнения.Максимум 20, да и то с хорошим радиатором и его активным охлаждением.

Все 🙂

.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *