Блок питания на lm317 с регулировкой тока и напряжения: Схема простого стабилизатора с регулировкой по напряжению

Содержание

Схема простого стабилизатора с регулировкой по напряжению

Здравствуйте друзья!

Лабораторный блок питания необходим радиолюбителю, без него как без рук. Для начинающих радиолюбителей я предлагаю собрать схему простого стабилизатора с регулировкой по напряжению на микросхеме LM317, на очень распространенных и не дорогих радиоэлементах. Диапазон выходного напряжения от 1,5 до 37В. Ток может достигать 5А, зависит от используемого силового транзистора и теплоотвода. Входной трансформатор можно использовать любой выдающий нужный вам ток и  напряжение до 37В. Стабилизатор не боится короткого замыкания, однако держать длительное время выводы замкнутыми не рекомендуется, так как КТ818 и LM317 при этом начинают достаточно ощутимо греться и при неэффективном теплоотводе могут выйти из строя.

Принципиальная  схема стабилизатора с регулировкой по напряжению

Печатная плата стабилизатора с регулировкой по напряжению

Достоинства данного стабилизатора.

  • простота в изготовлении
  • надежность
  • дешевизна
  • доступность компонентов

Недостатки

  • низкий КПД.
  • необходимость использования массивных радиаторов.
  • не смотря на компактность самой платы. Размеры стабилизатора с радиатором достаточно внушительного размера.

Для изготовления данного устройства Вам понадобится:

  • Стабилизатор LM317 -1шт.
  • Транзистор КТ818 -1шт. в пластиковом корпусе (TO-220)
  • Диод КД522 или аналогичный -1шт.
  • Резистор R1 -47ОМ желательно от 1Вт -1шт.
  • Резистор R3 220Ом от 0.25 Вт -1шт.
  • Переменный резистор линейный — 5кОм -1шт.
  • Конденсатор электролитический 1000мФ от 50В -1шт.
  • Конденсатор электролитический 100мФ от 50В -1шт.
  • Диодный мост током от 5А

Данная схема не критична к точному соблюдению номиналов радио элементов. Например резистор R1 может быть от 30 до 50 Ом, резистор R3 от 200 до 240Ом. Диод можно не ставить.

Фильтрующие конденсаторы можно поставить и большей емкостью, однако стоит учитывать, что конденсатор дает небольшой прирост по напряжению.

Транзистор КТ818 можно заменить аналогичными импортного производства 2N5193, 2N6132, 2N6469, 2N5194, 2N6246, 2N6247.

Сборка стабилизатора на LM317

Сборка стабилизатора выполняется на одностороннем стеклотекстолите и выглядит примерно так.

Диодную сборку следует выбирать исходя из максимального тока способного дать трансформатор.

Транзистор и микросхему я установил на радиатор через изолирующие прокладки. Радиатор выбрал максимально большой из имеющихся и подходящий под мой корпус. Закрепил его двумя болтами к нижней крышке корпуса.

На радиатор установил кулер от старой видеокарты, для более эффективного охлаждения. В верхней и задней крышке просверлил вентиляционные отверстия.

У выбранного мной трансформатора для стабилизатора на LM317 только одна вторичная обмотка на 27В. По этому для питания вольтметра и вентилятора я использовал плату от зарядного устройства мобильного телефона. Она выдает напряжение 5В и ток до 900мА.

Готовый блок питания выглядит так.

Простой двух полярный стабилизатор напряжения на LM317.

За основу устройства взята схема описанная в выше, и добавлено плечо стабилизации отрицательного напряжения.

Характеристики и достоинства двух полярного стабилизатора

  • напряжение стабилизации от 1,2 до 30 В;
  • максимальный ток до 5 А;
  • используется малое количество элементов;
  • простота в выборе трансформатора, так как можно использовать вторичную обмотку без центрального отвода;

Детали устанавливаются на односторонний стеклотекстолит. Транзистор VT1, VT2 и микросхемы LM317 и LM337 следует устанавливать на радиаторы. При установке на общий радиатор следует использовать изолирующие прокладки и втулки.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Успехов!

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Успехов!

Блок питания на LM317 с регулировкой напряжения

Если вы хотите построить простой блок питания с возможностью регулировки выходного напряжения с максимальным током нагрузки до 1 ампер, то в качестве основы можно использовать стабилизатор напряжения LM317 от National Semiconductor Corporation (NSC).

HILDA — электрическая дрель

Многофункциональный электрический инструмент способн…

Блок питания на lm317 с регулировкой напряжения

 способен обеспечить регулируемое выходное напряжение от 1,2 В до 30 В. Этот блок питания будет полезен тогда, когда необходимо в простых схемах всего 1,5 вольта взамен пальчиковой батареи АА или, например, когда вы хотите послушать музыку используя 30 ватный усилитель, для которого, как правило, необходимо напряжение 24 вольта и ток нагрузки около 1А.

Еще не так давно для регулировки напряжения в блоках питания использовали мощные транзисторы, и подобные схемы источников питания были сложны и громоздки. В наши же дни можно использовать стабилизатор LM317 и построить простой блок питания на LM317 с регулировкой напряжения.

Описание работы регулируемого блока питания на стабилизаторе LM317

Сетевой трансформатор Т1 понижает входное сетевое напряжение с 220 вольт до 24 вольт. Далее пониженное напряжение с вторичной обмотки трансформатора поступает на диодный выпрямительный мост, собранного на четырех диодах 1N4001 (D1-D4), после которого выпрямленное пульсирующее напряжение сглаживается конденсатором С1. В результате всего этого на вход стабилизатора LM317 поступает около 35 вольт постоянного напряжения.

 

Выходное напряжение на стабилизаторе зависит от напряжения на его выводе Adj. Изменяя величину напряжения при помощи переменного резистора VR1 можно в широких пределах получить выходное напряжение (1,2…30 вольт)

Расчета выходного напряжения LM317

И мы можем рассчитать выходное напряжение, используя несложную формулу:
Uвых = Vref * (1+ (VR1/R1)

  • Vref = 1,25 В
  • R1 составляет 220 Ом или 240 Ом по даташиту на LM317.
  • Переменный резистор желательно взять на 5 кОм  

Электролитический конденсатор С3 необходим для уменьшения пульсаций. Диоды D5 и D6 (1N4007) — защищают стабилизатор от внешнего обратного напряжения.

перевод: http://www.eleccircuit.com

Паяльный фен YIHUA 8858

Обновленная версия, мощность: 600 Вт, расход воздуха: 240 л/час…

Простой регулируемый блок питания 0,8-34 В, до 10 А на LM317 с транзистором, схема, пояснение работы.

В этой статье предлагаю разобрать весьма неплохой регулируемый трансформаторный  блок питания, линейный стабилизатор которого собран на базе микросхемы LM317. Данный блок питания, при использовании именно таких электронных компонентов, что нарисованы на схеме, способен обеспечить максимальное выходное напряжение до 34.5 вольт. Это напряжение ограничено самой микросхемой линейного стабилизатора напряжения, а именно максимальное выходное напряжение на LM137 это 36 вольт, ну и минус около 0,6-1.5 вольта, которые осядут на база-эмиттерном переходе транзистора. Максимальный ток у блока питания может быть до 10 ампер, но при определенных условиях, о которых будет сказано ниже в этой статье. Коэффициент пульсаций у этого БП равен где-то 0,1%.

Перечень электронных компонентов, что используются в этой схеме:

Tr1 — трансформатор на 26 вольт и выходной ток до 10 ампер (280 Вт и более)

VD1 — диоды или мост на ток более 10 А и обратное напряжение более 40 В
D1 — микросхема линейного стабилизатора типа LM317, LM338, LM350
VT1 — биполярный транзистор типа КТ819, КТ829 и аналогичные
R1 — 5 кОм
R2, R3 — 240 Ом
R4 — 3-10 кОм
R * — от 1 кОм до 5 кОм подбирается под нужное выходное напряжение
C1 — 5000-10000 мкф и напряжение больше рабочего напряжения
C2 — 10 мкф
C3 — 470 мкф

Сразу стоит заметить для новичков, что это блок питания с линейным стабилизатором напряжения. То есть, при регулировке выходного напряжения все лишнее напряжение просто преобразуется в тепло. Оно оседает на регулируемых силовых компонентах, а именно на микросхеме стабилизатора D1 и силовом биполярном транзисторе VT1. И именно транзистор берет на себя всю лишнюю электрическую энергию и преобразует его просто в тепло, через собственный нагрев корпуса. А это значит, что чем больше тока будет потреблять нагрузка и чем меньше напряжения мы установим на выходе данного блока питания, тем меньше КПД будет этого блока питания. При минимальном напряжении на выходе и максимальном токе этот блок питания становится больше похож на электрический обогреватель. Причем в этом режиме он менее всего экономичен. К сожалению это проблема абсолютно всех линейных стабилизаторов.

Но эту проблему в значительной степени можно исправить если использовать трансформатор с несколькими выходными обмотками. То есть, мы от вторичной обмотки делаем выводы с шагом допустим 5 вольт. Находим подходящий переключатель, который нам будет подключать нужный вывод вторичной обмотки с наиболее подходящим напряжением, что мы будем использовать в конкретном случае, для конкретной нагрузки. Такой вариант переключения напряжений, что далее подается на схему стабилизатора напряжения, делает схему блока питания гораздо экономичнее, значительно повышая ее общий коэффициент полезного действия.

Теперь что касается самих рабочих компонентов этой схемы. Чтобы на выходе получить максимальное напряжение до 34.5 вольт и силу тока до 10 ампер понадобится силовой трансформатор мощностью не менее 280 Вт. Почему именно такая минимальная мощность должна быть у трансформатора. Дело в том, что максимальное входное напряжение для микросхемы D1 (LM317) 37 вольт. Но стоит учесть, что это амплитудное значение напряжения, которое будет у нас на выходе диодного моста при наличии сглаживающего конденсатора C1. Как известно, напряжение на выходе трансформатора имеет действующее значение, которое в 1,41 раза меньше амплитудного. То есть, мы 37 вольт делим на 1,41 и получаем около 26 вольт действующего напряжение, которое должна обеспечить нам вторичная обмотка имеющегося трансформатора. Следовательно, 26 вольт умножаем на 10 ампер и получаем мощность 260 Вт, ну и добавим небольшой запас по мощности с учетом различных потерь. И в итоге нам и нужен трансформатор с мощностью не менее 280 Вт. Ну, и как я ранее заметил, хорошо, чтобы он имел отводы от вторичной обмотки с шагом примерно 3-5 вольт, для повышения КПД этой схемы блока питания. Трансформатор лучше использовать тороидальный, он более эффективный, чем другие типы.

Поскольку мы будем работать с током до 10 ампер, то диодный пост также нужен с прямым током не менее 10 А, а лучше брать с запасом где-то 15-20 А. В схеме сглаживающий конденсатор C1 имеет емкость 5000 мкф, хотя лучше все же поставить микрофарад так на 10 000, сглаживание импульсов будет только лучше. Его напряжение должно быть более 35 вольт.

В схеме использована микросхема типа LM317, максимальный ток которой равен 1,5 ампер (если это оригинал, а не Китайская копия). Если у вас есть аналогичные микросхемы стабилизаторов напряжения типа LM338, LM350, рассчитанные на больший ток, то можно в схему поставить и их. Поскольку LM317 может выдержать ток всего лишь до 1,5 А, а мы планируем работать с током до 10 А, то в схему добавлен усилитель тока в виде биполярного транзистора КТ819 или КТ829 (составной). Чтобы убрать дополнительные пульсации напряжения, возникающие на выходе транзистора, в схеме предусмотрена отрицательная обратная связь в виде резистора R3. Именно этот резистор дает сигнал микросхеме, которая делает работу транзистора более стабильной. Резисторы R1 и R2 нужны для нормальной работы самой микросхемы линейного стабилизатора LM317. Напряжение на выходе задается сопротивлением R1. Резистор R4 служит небольшой нагрузкой на выходе блока питания, и также он способствует разряду выходного конденсатора после выключения схемы.

На схеме параллельно резистору R1 можно увидеть еще один резистор, отмеченный звездочкой. Он нужен, чтобы убрать с регулирующего напряжения резистора R1 так называемую мертвую зону. То есть, при работе с более низкими напряжениями (если вы сделаете блок питания на другое, более низкое напряжение) сопротивления резистора в 5 кОм будет много, и на нем появляется участок, при котором напряжение никак не меняется на выходе блока питания. Следовательно, поставив параллельно регулируемому резистору еще одни резистор с подходящим сопротивлением мы уменьшаем его величину и убираем эту самую мертвую зону.

В целом схема полностью рабочая и вполне способна выдавать ток до 10 ампер при условии, что вы будете использовать трансформатор, у которого будут дополнительные отводы на вторичной обмотке. Это нужно, чтобы уменьшить выделение тепла на биполярном транзисторе до минимума. Если же вы попытаетесь делать регулировку выходного напряжения только за счет транзистора, то даже его максимального рабочего тока не хватит, чтобы нормально рассеять все тепло, что на нем оседает. В этом случае он просто у вас сгорит. Чтобы облегчить нормальную работу биполярного транзистора параллельно ему можно поставить еще несколько штук таких же транзисторов, что распределит выделяемое тепло уже по нескольким элементам. Ну, и обязательно, как микросхема стабилизатора LM317, так и транзистор КТ819 должны быть установлены на радиатор с подходящими размерами. Включать схему без охлаждающего радиатора не рекомендуется, поскольку силовые элементы очень быстро выйдут из строя из-за перегрева.

Видео по этой теме:

P.S. Если собрать эту схему с учетом всех замечаний и рекомендаций, что были в этой статье, то данный лабораторный блок питания с регулировкой выходного напряжения будет работать вполне хорошо и надежно. Эта схема уже мной собиралась и ее работа была полностью проверена.

Регулируемый блок питания своими руками


После мультиметра переменный источник питания (также называемый регулируемым блоком питания или лабораторным БП) является одним из самых полезных элементов оборудования, которое необходимо иметь в своей мастерской. Выходное напряжение блоков питания может регулироваться в широком диапазоне от менее 1 вольта до более чем 30 В, в зависимости от того как и по какой схеме он собран.

Регулируемые источники питания используются для питания радиосхем, которые ремонтируем или собираем. При разработке или тестировании устройств возобновляемой энергии можно использовать такой БП для имитации зарядки или разрядки аккумулятора, для настройки контроллера и нагрузки.

Вы можете конечно купить блок питания в магазинах электроники, но лучше построить свой собственный. Так вы чётко будете знать его работу, устройство, а при необходимости (это неизбежно в будущем) почините или улучшите.

Далее рассмотрим две схемы регулируемого блока питания. Обе используют детали, которые элементарно найти в местном магазине электронных компонентов.

Регулируемый блок питания на LM317

Схема блока питания на LM317 с регулировкой

Первая схема это регулятор напряжения на основе LM317. Микросхема LM317 может выдавать до 1,5 А, имеет защиту от короткого замыкания и перегрева. Максимальное входное напряжение составляет 40 вольт постоянного тока, и оно изменяется на выходе до 1,2 вольт. Конечно LM317 следует установить на радиатор (если нагрузка планируется мощная — то большой).

Регулируемый блок питания на LM723

Схема блока питания на LM723 с регулировкой

Также можете собрать схему для более совершенного и мощного регулируемого источника питания, используя микросхему LM723. Помимо регулируемого выходного напряжения, эта схема включает в себя регулируемый предел тока — вы можете ограничить ток, протекающий через тестируемую цепь, тем самым защищая источник питания от короткого замыкания. Параллельно стоящие 4 силовых транзистора увеличивают максимальный ток до 10 ампер (а это уже возможность зарядить авто аккумулятор, обычно средним током 5 А). Силовые транзисторы должны быть установлены на хороший радиатор.

Источник напряжения стабилизатора

Обе схемы стабилизаторов требуют источника питания постоянного тока (то есть подачу на них напряжения), и это напряжение должно быть как минимум на 3 В выше максимального напряжения, которое надо получить от регулируемого блока питания. Поэтому если планируется собрать источник питания, который можно регулировать от 1,2 до 12 вольт, понадобится на входе БП на 15 вольт или более (максимум до 40 вольт, иначе микросхемы сгорят от перегруза).

Схема блока питания постоянного напряжения

Традиционно используют сетевой трансформатор для преобразования сетевого напряжения 220 В до 15 В переменного тока. Затем используем мостовой выпрямитель для преобразования переменного тока в постоянный, а затем несколько фильтрующих конденсаторов для сглаживания пульсаций до чистого постоянного тока. Естественно нужен предохранитель для сетевой стороны.

Но не обязательно брать трансформатор, у большинства есть немало осиротевших импульсных БП которые больше не используются. Эти источники питания в основном от нерабочих мониторов или ноутбуков. У них выходное напряжение 20 В и максимальный ток 4,5 А. А этого более чем достаточно для самодельного переменного источника питания. Использование такого позволит после стабилизатора получать от 1,2 до 17 вольт.

Вы также можете подключить более одного источника питания последовательно для более высокого напряжения, например, два 12-вольтовых последовательно соединённые дадут напряжение 24 В, но максимальный ток будет таким, как в блоке питания с наименьшим номиналом мощности.

Прекрасной идеей будет добавить вольтметр и амперметр в самодельный лабораторный блок питания, тем более в магазинах полно готовых цифровых модулей светодиодных А/В-метров, поэтому делать его самому нет смысла. А если не хотите покупать готовый — ставьте обычные стрелочные индикаторы, как на фото.

БЛОК ПИТАНИЯ НА LM317

   Блок питания – это непременный атрибут в мастерской радиолюбителя. Я тоже решил собрать себе регулируемый БП, так как надоело каждый раз покупать батарейки или пользоваться случайными адаптерами. Вот его краткая характеристика: БП регулирует выходное напряжение от 1,2 Вольта до 28 Вольт. И обеспечивает нагрузку до 3 А (зависит от трансформатора), что чаще всего достаточно для проверки работоспособности радиолюбительских конструкций. Схема проста, как раз для начинающего радиолюбителя. Собранная на основе дешёвых компонентов — LM317 и КТ819Г.

Схема регулируемого блока питания LM317



Список элементов схемы:


  • Стабилизатор LM317
  • Т1 — транзистор КТ819Г
  • Tr1 — трансформатор силовой
  • F1 — предохранитель 0.5А 250В
  • Br1 — диодный мост
  • D1 — диод 1N5400
  • LED1 — светодиод любого цвета
  • C1 — конденсатор электролитический 3300 мкф*43В
  • C2 — конденсатор керамический 0.1 мкф
  • C3 — конденсатор электролитический 1 мкф*43В
  • R1 — сопротивление 18K
  • R2 — сопротивление 220 Ом
  • R3 — сопротивление 0.1 Ом*2Вт
  • Р1 — сопротивление построечное 4.7K

Цоколёвка микросхемы и транзистора


   Корпус взял от БП компьютера. Передняя панель изготовленная из текстолита, желательно установить вольтметр на этой панели. Я не установил, потому что пока не нашёл подходящего. Также на передний панели установил зажимы для выходных проводов.


   Входную розетку оставил для питания самого БП. Печатная плата сделанная для навесного монтажа транзистора и микросхемы стабилизатора. Их закрепил на общем радиаторе через резиновую прокладку. Радиатор взял солидный (на фото его видно). Его нужно брать как можно больший — для хорошего охлаждения. Всё-таки 3 ампера — это немало!


   Посмотреть все характеристики и варианты включения микросхемы LM317 можно в даташите. Схема в настройке не нуждается и работает сразу. Ну по крайней мере у меня заработала сразу. Автор статьи: Владислав.

   Форум по микросхемам стабилизаторам

   Форум по обсуждению материала БЛОК ПИТАНИЯ НА LM317



УСИЛИТЕЛЬ НЧ НА 200 ВАТТ

Усилитель мощности звука на транзисторах, из радиоконструктора DJ200. Проверка работы схемы.



Lm338t блок питания с регулировкой тока

Стабилизатор напряжения LM338, производства Texas Instruments, является универсальной интегральной микросхемой, которая может быть подключена многочисленными способами для получения высококачественных цепей питания.

Технические характеристики стабилизатора LM

338:
  • Обеспечения выходного напряжения от 1,2 до 32 В.
  • Ток нагрузки до 5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Интегральная микросхема LM338 выпускается в двух вариантах корпусов — это в металлическом корпусе TO-3 и в пластиковом TO-220:

Распиновка выводов стабилизатора LM338

Основные технические характеристики LM338

Калькулятор для LM338

Расчет параметров стабилизатора LM338 идентичен расчету LM317. Онлайн калькулятор находится здесь.

Примеры применения стабилизатора LM338 (схемы включения)

Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM338.

Простой регулируемый блок питания на LM338

Данная схема — типовое подключение обвязки LM338. Схема блока питания обеспечивает регулируемое выходное напряжение от 1,25 до максимума подаваемого входного напряжения, которое не должно быть более 35 вольт.

Переменный резистор R1 используется для плавного регулирования выходного напряжения.

Простой 5 амперный регулируемый блок питания

Эта схема создает выходное напряжение, которое может быть равно напряжению на входе, но ток хорошо изменяется и не может превышать 5 ампер. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи.

Регулируемый блок питания на 15 ампер

Как уже было сказано ранее микросхема LM338 в одиночку может осилить только 5А максимум, однако, если необходимо получить больший выходной ток, в районе 15 ампер, то схема подключения может быть модифицирована следующим образом:

В данном случае используются три LM338 для обеспечения высокой токовой нагрузки с возможностью регулирования выходного напряжения.

Переменный резистор R8 предназначен для плавной регулировки выходного напряжения

Источник питания с цифровым управлением

В предыдущей схеме источника питания, для осуществления регулировки напряжения использовался переменный резистор. Ниже приведенная схема позволяет посредством цифрового сигнала подаваемого на базы транзисторов получать необходимые уровни выходного напряжения.

Величина каждого сопротивления в цепи коллектора транзисторов подобрана в соответствии с необходимым выходным напряжением.

Схема контроллера освещения

Кроме питания, микросхема LM338 также может быть использована в качестве светового контроллера. Схема показывает очень простую конструкцию, где фототранзистор заменяет резистор, который используется в качестве компонента для регулировки выходного напряжения.

Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM338. Ее свет падает на фототранзистор. Когда освещенность возрастает сопротивление фоторезистора падает и выходное напряжение уменьшается, а это в свою очередь уменьшает яркость лампы, поддерживая ее на стабильном уровне.

Зарядное устройство 12В на LM338

Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов. Резистором RS можно задать необходимый ток зарядки для конкретного аккумулятора.


Путем подбора сопротивления R2 можно скорректировать необходимое выходное напряжение в соответствии с типом аккумулятора.

Схема плавного включения (мягкий старт) блока питания

Некоторые чувствительные электронные схемы требуют плавного включения электропитания. Добавление в схему конденсатора С2 дает возможность плавного повышения выходного напряжения до установленного максимального уровня.

Схема термостата на LM338

LM338 также может быть настроен для поддержания температуры обогревателя на определенном уровне.

Здесь в схему добавлен еще один важный элемент — датчик температуры LM334. Он используется как датчик, который подключен между adj LM338 и землей. Если тепло от источника возрастает выше заданного порога, сопротивление датчика понижается, соответственно, и выходное напряжение LM338 уменьшается, впоследствии уменьшая напряжение на нагревательном элементе.

Скачать datasheet LM338 (729,7 Kb, скачано: 5 425)

Тут давно не кого этой поделкой не удивишь. Обычный стабилизатор на обычной микрухе LM338Т таж самая LM317 но расчитанная на больший ток.
Схема вот.

Я ее где то взял. Автор схемы 2350 . Чуть переделал для себя.

Можно сказать просто урезал.
Вот печатка.

Сразу пердупрежу это со стороны элементов.
А то я руководствовался вот этими записями www.drive2.ru/l/288230376152185536/ и этого не учел в этоге 2 негодные печатки и одна сгоревшая мируха . А я то думаю че дым то пошел.
Ну да ладно сам затупил не перепроверил.

Короче все это делал для питания LED 5730 12 сборок по 2 светодиода на сборке. Плату настроил как и предлагалось на 10 вольт + резистор на 24 Ом. Получил около 150 мА на сборке. Но благодаря установке подстроечников ток я чуть уменьшил.

Но все я не об этом.
Я тут на просторах инета увидел инфу о термобумаге для изготовления плат по принципу ЛУТ.
Вот на нее ссылка на али ru.aliexpress.com/item/10…pe-Mak-OZ/2054383626.html

Не конечно можно играться с журналами или как я бумага для струйной печати. Но лично мне эта бумага понравилась. Да и 10 листов мне на долго хватит.

Смысл в ней в том что она тонкая и к ней нефига не прилипает. Хотя тонер ложиться отлично. Есть правда и проблема. Так как она очень тонка и скользкая мой принтер ее на отрез отказывался брать. Я вышел из положения легко .

И так печатаем рисунок.

Я специально на плату нанес текст очень мелким шрифтом. И все перенеслось отлично. Да я там немного напортачил и это кстати первый вариант платы (испорченный) но текст нормальный . Я к тому что даже очень тонкие дорожки можно было бы нанести.

После нанесения рисунка на бумагу . Кладем на текстолит и без фанатизма приглаживаем утюгом на максимуме. В идеале бы использовать ламинатор но он у меня на работе и я так и не опробовал. Ну а дальше просто снимаем бумагу. Я сначала мочил по привычке но это делать не обязательно.

Вот рабочий стабилизатор стоит на прогонке.

И пользуясь случаем задам вопрос . Для светодиодов 5730 нужно какое то охлаждение или нет . я замерил температуру оно в районе 60 градусов. Но на многих проектах не какого охлаждения не увидел.

Вот на нее ссылка на али ru. Все мощные микросхемы можно установить на один общий радиатор через слюдяные прокладки, поскольку корпуса микросхем не должны соединяться вместе.


Как обычно, начинаем с самых маленьких элементов.

Примеры применения стабилизатора LM схемы включения Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM Путем подбора сопротивления R2 можно скорректировать необходимое выходное напряжение в соответствии с типом аккумулятора.
Простой регулируемый источник питания на LM1084

Питание собранного модуля осуществляется от блока питания 12В 5А. Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM

Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1.

Но на многих проектах не какого охлаждения не увидел.

Все, включая монтажную плату, выглядит прилично, откровенного брака нигде не видно.
Электрические характеристики LM338

Высыпаем содержимое всех пакетиков на стол. Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Второй параметр — ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум мкА, но в реальных условиях он может достигать мкА.

Попробуем немного уменьшить напряжение.

И пользуясь случаем задам вопрос.

Такое чувство, что комплектовал набор не сильно трезвый китаец : Следующим этапом была установка огромных конденсаторов, сбрасываемого предохранителя 30V3A, а так же переключателя на выходные контакты.

В сегодняшнем обзоре речь пойдет об очередном конструкторе после сборки которого получится понижающий модуль на LMK, а проще говоря — регулируемый блок питания : Причиной его покупки стал мой интерес к конструкторам подобного рода, а так же возможность использовать собранный гаджет в последующем.

Попробуем немного уменьшить напряжение. Разве что за время транспортировки ножки почти всех элементов погнулись, но на работоспособности конструкции это никак не скажется.

Получается небольшая кучка разнообразных радиодеталей.
Мощный лабораторный блок питания своими руками

Блок питания на LM338K, 5А/1.2-25В — Меандр — занимательная электроника

Примеры применения стабилизатора LM схемы включения Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM

Внутри оказалась монтажная плата, крепление индикатора, четыре винта и парочка резисторов, а так же еще два пакетика поменьше.

В принципе, больше ничего интересного в отдельно валяющихся элементах нет, а значит можно переходить к сборке блока питания. Резистором RS можно задать необходимый ток зарядки для конкретного аккумулятора.

Подготовлено для сайта RadioStorage. Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Попробуем немного уменьшить напряжение. У микросхемы LMT схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

Quem id mentitum e velit, nam mentitum in expetendis. Зарядное устройство 12В на LM Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов.


После окончательной сборки получается довольно симпатичный блок питания на медных ножках, который выглядит следующим образом: Для того, чтобы прикрепить индикатор вольтметра в корпусе вентилятора необходимо проделать отверстия, так как комплектные саморезы могут расколоть пластик. Мощные резисторы по 0,3 Ом. На ней отсутствует конденсатор С4 — его припаиваем к выводам переменного резистора R1, который будет крепиться на корпусе устройства и послужит для регулировки напряжения. Так что данный набор отлично подойдет даже начинающему радиолюбителю : Сперва резисторы, диоды, клеммник, диодный мост KBL, стабилизатор напряжения LM

Выглядит она следующим образом: К качеству изготовления элементов конструктора претензий у меня нет. Данный стабилизатор напряжения, производства Texas Instruments, является универсальной интегральной микросхемой, которая может быть подключена многочисленными способами для получения высококачественных цепей питания. Схема плавного включения мягкий старт блока питания Некоторые чувствительные электронные схемы требуют плавного включения электропитания.

Переменный резистор R1 используется для плавного регулирования выходного напряжения. Например, диодный мост из четырех выпрямительных диодов Д обеспечит рабочие токи до 10А.
Компактный простой ЛБП на LM317 350 338

Основные технические характеристики LM338

Контакты Мощный блок питания на напряжение В и ток 5AA и более LM, Приведена принципиальная схема простого в изготовлении стабилизированного и мощного блока питания с регулируемым выходным напряжением от 5В до 35В и током нагрузки 5А, 10А, 20А, 30А, 40А и более в зависимости от количества микросхем. Внутри оказалась монтажная плата, крепление индикатора, четыре винта и парочка резисторов, а так же еще два пакетика поменьше.

Подготовлено для сайта RadioStorage. Детали Транзистор BD нужно установить на небольшой радиатор.

Согласно описанию, микросхема LM работает при достаточно широком разбросе входного напряжения, этот диапазон может лежать в пределах от 3-х до 35 Вольт. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи. Так что данный набор отлично подойдет даже начинающему радиолюбителю : Сперва резисторы, диоды, клеммник, диодный мост KBL, стабилизатор напряжения LM

Дабы установить соответствие этих данных истине воспользуемся мультиметром. Я сначала мочил по привычке но это делать не обязательно. Он используется как датчик, который подключен между adj LM и землей.

Вы можете скачать файл с нашего сервера, благодарность сайту приветствуется, особенно материальная. В качестве резисторов R3, R Уважаемый Пользователь! Зарядное устройство 12В на LM Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов.

А то я руководствовался вот этими записями www. Так что данный набор отлично подойдет даже начинающему радиолюбителю : Сперва резисторы, диоды, клеммник, диодный мост KBL, стабилизатор напряжения LM Эти диоды должны быть рассчитаны на ток, который планируется получить на выходе стабилизатора.

Лично меня данная покупка удовлетворила полностью, жаль только, что некоторых деталей изначально не хватало… На этом, пожалуй, все. Так вот, в комплекте их четыре, а нужен только один… А вот диодов в комплекте два, хоть на плате разметка под три. Срезав одну из сторон можно заглянуть внутрь и посмотреть на содержимое посылки. Я специально на плату нанес текст очень мелким шрифтом. Цоколевка расположение выводов у микросхем LM

Смысл в ней в том что она тонкая и к ней нефига не прилипает. Можно сказать просто урезал. Разве что за время транспортировки ножки почти всех элементов погнулись, но на работоспособности конструкции это никак не скажется.
Как собрать Простую Схему Блока Питания LM317 — СС#7

Регулятор тока и напряжения на lm317

Блок питания – одно из самых важных устройств, в мастерской радиолюбителя. Тем более с батарейками и с аккумуляторами каждый раз мучиться как-то надоело. Рассмотренный здесь БП Регулирует напряжение от 1.2 вольта до 24 вольта. И нагрузку до 4 А. Для большей силы тока, было решено установить два одинаковых трансформатора. Трансформаторы подключаются параллельно.

Детали для регулируемого блока питания

  1. Стабилизатор LM317 ТО-220 корпусе.
  2. Кремниевый транзистор, p-n-p КТ818.
  3. Резистор 62 Ом.
  4. Конденсатор электролитический 1 мкф*43В.
  5. Конденсатор электролитический 10 мкф*43В.
  6. Резистор 0,2 Ом 5W.
  7. Резистор 240 Ом.
  8. Подстроечный резистор 6.8 Ком.
  9. Конденсатор электролитический 2200 мкф*35В.
  10. Любой светодиод.

Схема блока питания

Схема блока защиты

Схема блока выпрямителя

Детали для построения защиты от КЗ

  1. Кремниевый транзистор, n-p-n КТ819.
  2. Кремниевый транзистор, n-p-n КТ3102.
  3. Резистор 2 Ом.
  4. Резистор 1 Ком.
  5. Резистор 1 Ком.
  6. Любой светодиод.

Для корпуса регулируемого блока питания, были использованы два корпуса, от обычного компьютерного блока питания. В места из под кулера, были поставлены вольтметр и амперметр.

Для дополнительного охлаждения, был установлен кулер.

Но можно спаять схему просто навесным монтажом. Соединяются корпуса, с помощью двух болтов.

Гайки были приклеены, к крышке корпуса термо клеем. Для охлаждения стабилизатора и транзисторов был использован радиатор от компьютера, который обдувал кулер.

Для удобства переноса блока питания, была прикручена ручка от шуфлядки письменного стола. В общем, получившийся блок питания очень нравится. Мощности его хватает для питания почти всех схем, проверки микросхем, и зарядки небольших аккумуляторов.

Схема ИП не нуждается в настройке, и при правильной спайке она заработает сразу. Автор статьи 4ei3 e-mail [email protected]

Обсудить статью БП НА LM317 С БЛОКОМ ЗАЩИТЫ

Лабораторный блок питания на LM317

Лабораторный блок питания необходим радиолюбителю, без него как без рук. Для начинающих радиолюбителей я предлагаю собрать схему простого стабилизатора с регулировкой по напряжению на микросхеме LM317, на очень распространенных и не дорогих радиоэлементах. Диапазон выходного напряжения от 1,5 до 37В. Ток может достигать 5А, зависит от используемого силового транзистора и теплоотвода. Входной трансформатор можно использовать любой выдающий нужный вам ток и напряжение до 37В. Стабилизатор не боится короткого замыкания, однако держать длительное время выводы замкнутыми не рекомендуется, так как КТ818 и LM317 при этом начинают достаточно ощутимо греться и при неэффективном теплоотводе могут выйти из строя.

Принципиальная схема стабилизатора с регулировкой по напряжению

Печатная плата стабилизатора с регулировкой по напряжению

Скачать печатную плату стабилизатора на LM317

Достоинства данного стабилизатора.

  • простота в изготовлении
  • надежность
  • дешевизна
  • доступность компонентов

Недостатки

  • низкий КПД.
  • необходимость использования массивных радиаторов.
  • не смотря на компактность самой платы. Размеры стабилизатора с радиатором достаточно внушительного размера.

Для изготовления данного устройства Вам понадобится:

  • Стабилизатор LM317 -1шт.
  • Транзистор КТ818 -1шт. в пластиковом корпусе (TO-220)
  • Диод КД522 или аналогичный -1шт.
  • Резистор R1 -47ОМ желательно от 1Вт -1шт.
  • Резистор R3 220Ом от 0.25 Вт -1шт.
  • Переменный резистор линейный — 5кОм -1шт.
  • Конденсатор электролитический 1000мФ от 50В -1шт.
  • Конденсатор электролитический 100мФ от 50В -1шт.
  • Диодный мост током от 5А

Данная схема не критична к точному соблюдению номиналов радио элементов. Например резистор R1 может быть от 30 до 50 Ом, резистор R3 от 200 до 240Ом. Диод можно не ставить.

Фильтрующие конденсаторы можно поставить и большей емкостью, однако стоит учитывать, что конденсатор дает небольшой прирост по напряжению.

Транзистор КТ818 можно заменить аналогичными импортного производства 2N5193, 2N6132, 2N6469, 2N5194, 2N6246, 2N6247.

Сборка стабилизатора на LM317

Сборка стабилизатора выполняется на одностороннем стеклотекстолите и выглядит примерно так.

Диодную сборку следует выбирать исходя из максимального тока способного дать трансформатор.

Транзистор и микросхему я установил на радиатор через изолирующие прокладки. Радиатор выбрал максимально большой из имеющихся и подходящий под мой корпус. Закрепил его двумя болтами к нижней крышке корпуса.

На радиатор установил кулер от старой видеокарты, для более эффективного охлаждения. В верхней и задней крышке просверлил вентиляционные отверстия.

У выбранного мной трансформатора для стабилизатора на LM317 только одна вторичная обмотка на 27В. По этому для питания вольтметра и вентилятора я использовал плату от зарядного устройства мобильного телефона. Она выдает напряжение 5В и ток до 900мА.

Готовый блок питания выглядит так.

Простой двух полярный стабилизатор напряжения на LM317.

За основу устройства взята схема описанная в выше, и добавлено плечо стабилизации отрицательного напряжения.

Характеристики и достоинства двух полярного стабилизатора

  • напряжение стабилизации от 1,2 до 36 В;
  • максимальный ток до 5 А;
  • используется малое количество элементов;
  • простота в выборе трансформатора, так как можно использовать вторичную обмотку без центрального отвода;

Детали устанавливаются на односторонний стеклотекстолит. Транзистор VT1, VT2 и микросхемы LM317 и LM337 следует устанавливать на радиаторы. При установке на общий радиатор следует использовать изолирующие прокладки и втулки.

Скачать печатную плату

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Блок питания – необходимая вещь в арсенале любого радиолюбителя. И я предлагаю собрать очень простую, но в то же время стабильную схему такого устройства. Схема не трудная, а набор деталей для сборки – минимален. А теперь от слов к делу.

Для сборки нужны следующие комплектующие:

НО! Эти все детали представлены точно по схеме, и выбор комплектующих зависит от характеристики трансформатора, и прочих условий. Ниже представлены компоненты согласно схеме, но их мы будем сами подбирать!

Трансформатор (12-25 В.)
Диодный мост на 2-6 А.
C1 1000 мкФ 50 В.
C2 100 мкФ 50 В.
R1 (номинал подбирается в зависимости от от трансформатора, он служит для запитки светодиода)
R2 200 Ом
R3 (переменный резистор, подбирается тоже, его номинал зависит от R1, но об этом позже)
Микросхема LM317T
А также инструменты, которые понадобятся в ходе работы.

Сразу привожу схему:

Микросхема LM317 является регулятором напряжения. Именно на ней я и буду собирать данное устройство.
И так, приступаем к сборке.

Шаг 1. Для начала нужно определить сопротивление резисторов R1 и R3. Дело в том, какой трансформатор вы выберете. То есть, нужно подобрать правильные номиналы, и в этом нам поможет специальный онлайн-калькулятор. Его можно найти вот по этой ссылке: Калькулятор онлайн
Я надеюсь, вы разберетесь. Я рассчитывал резистор R2, взяв R1=180 Ом, а выходное напряжение 30 В. Итого получилось 4140 Ом. То есть мне нужен резистор на 5 кОм.

Шаг 2. С резисторами разобрались, теперь дело за печатной платой. Её я делал в программе Sprint Layout, скачать можно тут: скачать плату

Шаг 3. Сначала поясню, что куда впаивать. К контактам 1 и 2 – светодиод. 1 – это катод, 2 – анод. А резистор для него (R1) считаем тут: рассчитать резистор
К контактам 3, 4, 5 – переменный резистор. А 6 и 7 не пригодились. Это было задумано для подключения вольтметра. Если вам это не нужно, то просто отредактируйте скачанную плату. Ну а если понадобится, то установите перемычку между 8 и 9 контактами. Плату я делал на гетинаксе, методом ЛУТ, травил в перекисе водорода (100 мл перекиси + 30 г. Лимонной кислоты + чайная ложка соли).
Теперь о трансформаторе. Я взял силовой трансформатор ТС-150-1. Он обеспечивает напряжение в 25 вольт.

Шаг 4. Теперь нужно определиться с корпусом. Недолго думая, мой выбор пал на корпус от старого компьютерного блока питания. Кстати, в этом корпусе раньше был мой старый бп.

В переднюю панель я взял от бесперебойника, которая очень хорошо подошла по размерам.

Вот так примерно она будет установлена:

Далее нужно выломать переднюю часть корпуса, для закрепления панели. После чего обработать острые края напильником.

Чтобы закрыть дыру в центре, я вклеил небольшой кусок ДВП, и просверлил все нужные отверстия. Ну и установил разъемы Banana.

Кнопка включения питания осталась сзади. Её на фото пока нет. Трансформатор я закрепил его «родными» гайками к задней решетки вентилятора. Он точно подошел по размерам.

А на место где будет плата, тоже приклеил кусок ДВП, дабы избежать замыкания.

Шаг 5. Теперь нужно установить плату и радиатор, припаять все необходимые провода. И не забываем про предохранитель. Его я прикрепил сверху на трансформатор. На фото это всё выглядит, как-то страшно и не красиво, но наделе это совсем не так.

Шаг 6. Далее устанавливаем переднюю панель. Её я приклеил на термоклей. В просверленные отверстия вставляем светодиод, прикручиваем переменный резистор, разъемы banana я уже установил ранее.

Остается только закрыть верхнюю крышку. Её я тоже немного приклеил на термоклей к панели. И теперь наш блок питания готов! Остается его только протестировать.

Этот блок способен выдавать максимальное напряжение в 32 В и силу тока до 2 ампер. Минимальное напряжение – 1,1 В, а максимальное 32 В.

Мой первый источник переменного тока с использованием LM317

Вот схема регулируемого источника питания LM317. Если вы новичок в электронике.

Вам нужен хороший источник переменного тока. Возможно, это лучший проект для вас.

Он может обеспечивать выходное напряжение от 1,2 В до 30 В при максимальном токе 1,5 А.

Новое обновление Прочтите эту статью ниже.

Источник переменного тока с использованием LM317, от 1,2 В до 30 В при 1 А

Это первый источник питания постоянного тока в моей жизни, который использовался во многих проектах.Идеально подходит для тех, кто хочет регулировать напряжение от 1,25 В до 30 В и ток до 1 А.

Этого достаточно для нормального использования. Например, это блок питания вместо одной батарейки АА 1,5 В.

Если вы хотите слушать музыку от усилителя мощностью 30 Вт, для которого требуется напряжение 24 В 1 А, это легко сделать.

Раньше мы обычно использовали транзисторный стабилизатор, это очень сложные, большие и, вероятно, более дорогие ИС.

Схема регулируемого источника питания LM317

Но эта схема может быть создана с помощью одного источника переменного тока на основе ИС lm317.

Регулируемые трехконтактные стабилизаторы положительного напряжения серии LM317 или LM117 способны подавать напряжение свыше 1,5 А в диапазоне выходного напряжения 1,2 В до 37 В,

И имеют много специальных функций, которые мне нравятся:

  • Выход Допуск по напряжению 1%
  • Регулировка линии 0,01%
  • Регулировка нагрузки 0,3%
  • Не допускайте повышения температуры осаждения.
  • Защита от короткого замыкания.
  • Пульсации устраняются с коэффициентом 80 дБ
  • Максимальное входное напряжение 40 В

Как это работает

Следующие схемы приведены ниже.

Вот пошаговый процесс:

Сначала трансформатор T1 переключается с 220 В переменного тока на 24 В переменного тока на мостовой диодный выпрямитель D1 (1N4001) на D4 (1N4001).

На конденсатор фильтра C1 подается постоянное напряжение, равное 35В постоянного тока.

Выходное напряжение от IC1 в зависимости от вывода Voltage Adj IC или для регулировки VR1.

VR1 управляет выходным напряжением постоянного тока от 1,25 В до 30 В (32 В) или максимальным напряжением 37 В при максимальном напряжении 1,5 А во всем диапазоне.

Примечание: Если вы хотите начать с нулевого напряжения (0 В), посмотрите здесь

Давайте установим выходное напряжение с помощью:

Рассчитаем выходное напряжение LM317

Также: Регулируемый источник питания LM338 5A и 10A

И мы можем рассчитать выходное напряжение равным:

Vout = 1.25 x {1+ (Rp / R1)

  • Vref = 1,25 В
  • Обычно R1 составляет 220 Ом или 240 Ом, как указано в таблице. Я использую 220 Ом.
  • Обычно в качестве таблицы данных я вижу, что они используют VR = 5K (потенциометр), но у меня VR-10K только потому, что он прост в использовании. Rp = {(VR1 x R2) / (VR1 + R2)}

Тогда мы проверьте это. Предположим, поверните VR1 до минимального сопротивления, так как Rp = 0Ω. поместите это в формулу выше:

Vout = 1,25 x {1+ (0/220)}
= 1,25V

Но при настройке VR1 на максимальное сопротивление VR1 и R2 параллельны друг другу.

Rp = 5,46K = 5460 Ом.

Проверьте это в формуле выше:

Vout = 1,25 x {1+ (5460/220)}
= 32,2 В

Тогда конденсатор C3 является фильтром с лучшими характеристиками IC1.
Диод D5 и D6 (оба — 1N4007) — это предохранитель от внешнего напряжения, обратное преобразование которого приводит к повреждению IC1.


Как он строится

Затем мы соберем все оборудование на печатную плату. См. Компоновку печатной платы и компоновку компонентов, а также полное содержание.

Фактический размер односторонней разводки медной печатной платы

Компоновка компонентов

Точная регулировка напряжения

Многие начинающие друзья говорят мне, что в этом проекте сложно регулировать выходное напряжение.поэтому я добавляю потенциометр 1 кОм и параллельный резистор 1 кОм. затем подключает их к VR1, как показано на рисунке ниже.

Вы увидите, что мы можем отрегулировать напряжение на VR2 (новый) на 4 вольта, так как сумма сопротивлений составляет примерно 500 Ом.

Например, я установил напряжение 9 В с поворотом VR1 на 8,00 В и легко повернул VR2, чтобы контролировать выходное напряжение 9,00 В.

Смотрите видео ниже

Я собираю в универсальной коробке, чтобы легко использовать.

Применяем трансформатор

У меня старый трансформатор 12В CT 12В на выходе.Он должен иметь общее напряжение 24 В.

Но я измеряю это как слишком большое напряжение на 30,9 В. Это может вызвать перенапряжение постоянного тока, так как 30,9 В x 1,414 = 43,7 В.

Что может повредить IC1 слишком большим током.

Итак, я модифицирую другой трансформатор 12 В CT 12 В и выход 0 В 6 В 9 В 12 В на 21 вольт.
как на рисунке ниже

Эта схема отлично работает, как показано на видео ниже. Я могу настроить выходное напряжение от 1,25 В до 27 В, так как я использую выходной трансформатор 21 В.

Если вы можете отрегулировать 24 В или 12 В CT 12V.Это вызывает выход до 30 В. Но ИС перегревается при коротком замыкании или перегрузке.

Тестирую схему с лампой 12В 8Вт в качестве нагрузки. Постоянное (постоянное) напряжение не передается с 12 В.

Добавить светодиодный вольтметр


Мы можем добавить светодиодный вольтметр для отображения уровня выходного напряжения.
Г-н Али Мохаммед, спросите меня, как использовать трехжильный вольтметр, красный, черный и желтый.

Хорошая идея. Точнее и удобнее.


Блок-схема добавления вольтметра к первому источнику питания

На принципиальной схеме требуется внешний источник питания постоянного тока .Мы должны построить для него стабилизатор постоянного тока на 9 В.
Прочтите, пожалуйста, эту идею: Цифровой вольтметр своими руками

Подключаем мостовой диод (с D1 по D4) к SEC (0 и 12 В) трансформатора. Затем подключаем провод измерения напряжения желтого (+) цвета к выходу блока питания LM317. И Земля до (-).
Именно здесь мы уже можем прочитать выходное напряжение.

Если вы используете другое переменное напряжение, например 24 В. Вы должны заменить :

  • C1 = 1000 мкФ 50V Электролитический конденсатор
  • R1 = 1K 0.Резистор 5Вт

Это да и простая схема экономит.

Почему не работает и FAQ

  • C2 — вы можете использовать электролитический конденсатор 0,1 мкФ вместо керамического или майларового типа 0,1 мкФ 63 В или 50 В. Но нужно быть осторожным, чтобы вести себя правильно.
  • Размер трансформатора — Вы должны использовать трансформатор 2A для полного тока до 1,5A на выходе. Однако трансформатор на 1А также хорошо работает с более низким током.
  • WVDC Все конденсаторы, Можно использовать напряжение 50 В.В частности, электролитический конденсатор!
  • Почему R1 — это уголь? —Если диод-D5 — неправильный вывод. Это вызывает высокое входное напряжение на LM317. Затем идет R1 к VR1 и R2 к земле. Итак, они получают большой ток и сгорают.

Пожалуйста, проверяйте все клеммы диодов только правильно.

Неправильно подключен диод, сгорел R1
  • Если вы установите неправильную полярность D6, VR10K сгорит.
  • Вы можете паять компоненты на перфорированной или универсальной печатной плате.
  • Зачем использовать C3-470uF? Это конденсатор фильтра. Вы можете использовать танталовый конденсатор емкостью 1 мкФ, такой же, как в таблице данных. Но я использую это, потому что оно у меня есть. Это тоже хорошо работает.
  • Почему на выходе 1,5 А? — Ток не постоянный и равен 1,5 А во всех диапазонах напряжения.

Если вам нужен большой ток, больше. Смотрите:
LM317 2N3055 Стабилизатор высокого тока .

  • Электронные устройства с соблюдением полярности Необходимо правильно установить. Например, диоды, электролитические конденсаторы, LM317 и т. Д.

Использование LM317 в качестве регулируемого регулятора от 0 до 30 В

Есть много способов сделать от 0 до 30 В регулируемого регулятора. Но проще всего помочь с двумя диодами.
Когда течет ток диодов. Напряжение на нем всегда составляет от 0,65 до 0,7 В.

Если соединить два диода последовательно. У них есть 1,3 В. В обычном LM317 начальное напряжение 1,2 В. Но это напряжение есть в обоих диодах. Итак, выход начинается с 0 В.

Но у него есть недостаток.Ток немного уменьшается из-за сопротивления в диодах.

Скачать этот

Все полноразмерные изображения этого поста находятся в этой электронной книге: Elec Circuit vol. 1 ниже. Пожалуйста, поддержите меня. 🙂

Пример схемы источника питания LM317 Другое

Кроме этой схемы, у нас есть и другие интересные схемы. Сначала выберите простой.

Регулируемый стабилизатор напряжения LM317 от 1,2 В до 10 В

Это также регулируемый источник питания на базе LM317 и малошумящий регулируемый выход напряжения: 1.От 25 В до 10 В постоянного тока ( 0-12 В ) от источника питания 12 В, так что простая схема

Если у вас аккумулятор 12 В. Но у вас есть нагрузка, чтобы использовать напряжение от 1,5 В до 10 В при 0,75 А. Вам также следует уменьшить шум.

В этой схеме он преобразует низкое напряжение постоянного тока, 12 В из 1,25 В в 10 В постоянного тока. По току наверху можно получить около 1,5 А.

Вы должны использовать номер IC LM317K (на TO-03). Потому что на нем запитано больше, чем LM317T (на ТО-220).

Пока работает. Слишком жарко.Значит, нужен радиатор такого большого размера.

Функции других частей

  • R4 используется для регулировки уровня выходного напряжения.
  • C1-470uF 25V (электролитические конденсаторы) действует как миниатюрная батарея, которая обеспечивает питание во время всплеска.
  • C3-0.1uF 63V (керамический конденсатор или майларовый конденсатор) снижает шум
  • C2-22uF 25V для хорошего снижения всех шумов. Остальные подробности читайте в схеме.

Простейший блок питания регулировки LM317, 1.25-15В

Это простейший регулируемый источник питания на базе LM317. Мы можем настроить выходное напряжение от 1,25 В до 15 В. Уровень выходного тока для каждого напряжения разный.

Например: если вы установите напряжение 12 В, текущий уровень будет 0,5 А. Когда вы устанавливаете напряжение 15 В, выходной ток составляет 0,2 А.


Простейший блок питания регулировки LM317, 1,25-15 В

На принципиальной схеме, когда напряжение от главного трансформатора переменного тока 220В.Он снижает напряжение AC220V до 18VAC.

Затем это низкое напряжение переменного тока поступает на двухполупериодный выпрямитель D1, D2.

Затем напряжение постоянного тока течет в C1. Это конденсатор фильтра для сглаживания и увеличения постоянного напряжения 20 В как нерегулируемого напряжения.

После этого нерегулируемое напряжение поступает в цепь регулятора постоянного тока. В котором используются LM317, R1 и VR1.

Эта цепь обеспечивает постоянное напряжение на нагрузке. Мы можем регулировать многие уровни напряжения от 1,2 В до 15 В, регулируя VR1.

Кстати, C2 — это конденсатор емкостью 0,1 мкФ для фильтрации переходных шумов, которые могут быть наведены в источник питания паразитными магнитными полями.

Еще отличный LM317 Схемы питания

Кроме того, Вам может это не понравится. Но вы можете модифицировать эти схемы тоже. Ниже.

  • LM317 Линейный источник питания — селекторный регулятор 1,5 В, 3 В, 4,5 В, 5 В, 6 В, 9 В при 1,5 А. Выбирать выходное напряжение очень просто.
  • Двойной регулируемый источник питания 0–30 В постоянного тока Используя LM317 и LM337, Max регулирует напряжение 0–60 В.Это высокое напряжение, а пусковое напряжение равно нулю! Молодец.
  • Источник питания постоянного тока Best Adjustable 3A ; -1,2В-20В, 3В-6В-9В-12В. Большой ток для всех цепей, прост в использовании.
  • Двойной источник питания 3 В, 5 В, 6 В, 9 В, 12,15 В — с использованием LM317, LM337. Есть положительные и отрицательные выходы напряжения для всей схемы, удобной в использовании.

И теперь вы можете увидеть регулируемые регуляторы

3A с использованием LM350T

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ЧЕРЕЗ ЭЛЕКТРОННУЮ ПОЧТУ

Я всегда стараюсь сделать Electronics Learning Easy .

Создать переменный источник питания, регулятор тока LM317, LM317, регулятор напряжения

Создание регулируемого источника питания с использованием регуляторов LM317

Я жду детали для моего большого проекта многоканального источника питания PowerStation2, поэтому я подумал, что построю одноканальный блок для использования сейчас.

Мне нужно что-то, чтобы обеспечить полностью регулируемую мощность, как по току, так и по напряжению. Он должен быть в диапазоне примерно от 3,3 В при 30 мА для создания импульсов сигнала и до 24 В при 800 мА для питания двигателей и сервоприводов.

Как всегда, я хотел использовать утилизированные детали, чтобы устройство получало питание от старого блока питания принтера HP, который имеет 16 В при 625 мА на одном канале и 32 В при 940 мА на другом.


Регулятор напряжения и тока LM317

Я не буду вдаваться в подробности настройки LM317, вместо этого я направлю вас на удобный сайт, где я нашел нужную мне информацию. Щелкните здесь, чтобы получить отличное руководство по использованию LM317 в качестве регулятора тока. У них есть отличный онлайн-калькулятор, чтобы определить, какие резисторы вам нужны, чтобы получить желаемый ток.У них есть еще одна страница для использования LM317 в качестве регулятора напряжения. На этой странице также есть калькулятор номиналов резисторов для регулирования напряжения. Эти две страницы мне очень помогли.

Обратите внимание, что на большинстве принципиальных схем LM317 контакты не показаны в их фактическом порядке. Обратитесь к изображению выше, чтобы узнать фактическое положение штифтов.

Я кратко расскажу, что это за чипы и для чего они нужны. Это небольшая трехногая ИС. У них есть один вывод для напряжения на входе (Vin), один для вывода напряжения (Vout) и один вывод, называемый «Adjust».Вы подключаете эти контакты по-разному в зависимости от того, хотите ли вы регулировать напряжение или ток. Затем вы используете в схеме резисторы разных номиналов для регулировки выхода.

Мне показалось, что с этими микросхемами одно соображение заключается в том, что они имеют автоматическое начальное падение напряжения независимо от того, какие значения резистора вы используете. Регулятор тока упадет примерно на 3 В, а регулятор напряжения упадет на 1,5 В. Это означает, что для одновременного использования регулятора тока и напряжения ваше входное напряжение должно быть равно 4.На 5 В выше максимального напряжения, которое вы надеетесь получить.

Однако я не замечаю ни одного места рядом с ожидаемым падением напряжения. Регулятор тока, используемый сам по себе, понижает мой входной сигнал с 16,1 В до 15,1 В. Это всего лишь падение на 1v, в отличие от падения на 3v, которого я ожидал. Стабилизатор напряжения также, кажется, падает ниже указанного 1,5 В, ближе к 1,2 В. Эти цифры должны быть основаны на использовании микросхем LM317 при более высоких значениях тока или напряжения, чем предполагалось при моем тестировании.


Испытательная установка

Ниже представлена ​​моя тестовая установка, которую я использую, пока не буду готов смонтировать все в кейсе.

Как обычно, большая его часть переработана с других устройств. Основание — лоток для бумаги от принтера, а радиаторы извлечены из телевизора, который мы снесли на прошлой неделе.

Ниже приведена схема моей схемы.

Принципиальная схема моего двойного блока питания LM317 с регулируемым током и напряжением. Изображение: Энтони Хартап

В правом верхнем углу у меня есть небольшой вольтметр для измерения входного напряжения от блока питания. Положительный провод от этого идет к контакту Vin на первой микросхеме LM317, регулятору тока (вверху слева).Вывод Vout проходит через резистор (R1) перед тем, как соединиться с регулировочным выводом и присоединиться к выводу Vin второй микросхемы LM317, регулятора напряжения (внизу слева).

Вывод Vout на регуляторе напряжения становится положительным выходным проводом с линейным соединением, которое отводится через резистор (VR1) перед соединением с регулировочным выводом. Регулировочный штифт подключается к земле через второй резистор (VR2).

Для своего первого теста я использовал резистор 4,7 Ом 1 Вт для регулятора тока R1.Я использовал резистор 220 Ом 5 ​​Вт для VR1 на регуляторе напряжения и резистор 1 кОм 5 Вт для VR2. Мощность на этих резисторах была немного избыточной, но это как раз то, что у меня было в моем комплекте. Резисторов на один ватт было бы достаточно.

Используя онлайн-калькулятор, о котором я упоминал ранее, я ожидал выхода 7,2 В при 260 мА, и это было почти то, что я получил.

Надеюсь, вы можете увидеть небольшой вольтметр на изображении выше, показывающий входную мощность 12 В. Желтый мультиметр показывает выходное напряжение 7.18в. Это неплохая первая попытка!

Переключение мультиметра на отображение тока произвело на меня еще большее впечатление. 260ma, как раз то, на что я надеялся. Это была именно та установка, которую я искал.

Выходное напряжение осталось прежним. Теперь у меня было гораздо больше уверенности в этих крошечных волшебных чипах, но я не был полностью уверен. В конце концов, эта установка на самом деле еще ничего не приводила в действие.

Я снял мультиметр и подключил контроллер мотора к моей выходной мощности.К этому я подключил блок сканера от принтера, который мы недавно снесли. Я подключил микроконтроллер Arduino Uno к контроллеру мотора и включил его. Головка сканера переместилась влево, но остановилась при попытке изменить направление.

Раньше я запускал это устройство с помощью настенного кабеля 7,5 В от маршрутизатора, поэтому я знал, что шаговый двигатель может работать при таком напряжении. Этот настенный кабель был больше похож на 700 мА, чем на 260 мА, на которые рассчитывала моя новая поставка. Очевидно, проблема была в токе.

Я вернулся к калькулятору и заменил резистор 4,7 Ом на регуляторе тока резистором 2,7 Ом, который у меня был под рукой. На этот раз я ожидал 460 мА.

Мультиметр показал ровно 460мА. Я снова проверил блок сканера, и на этот раз шаговый двигатель без усилий повел головку сканера влево, полностью вправо и обратно в центр. Как я и запрограммировал.

С тех пор я изменил номинал резистора R2 на регуляторе напряжения и получил довольно близкое выходное напряжение 9 В и снова 5 В.

Я очень доволен этой настройкой.

Затем мне нужно добавить два конденсатора, один до и один после второго LM317, регулятора напряжения. Кажется, все работает нормально, но кажется, что эти конденсаторы являются рекомендуемым дополнением. Говорят, что они сглаживают мощность, производимую системой. Поскольку в будущем я могу запускать чувствительные устройства, такие как Raspberry Pi, я думаю, что буду осторожнее. Первый конденсатор имеет размер 0,1 мкФ, а второй — 1 мкФ. Я планирую увеличить его до 1 мкФ и 4.7 мкФ, отчасти из-за того, что мне нравится избыточное количество, а также из-за того, что в моем комплекте есть конденсаторы такого размера. Я люблю перерабатывать.

Последний тест — переключение с канала 16 В на блоке питания на канал 32 В. Думаю, все будет хорошо, но могу подождать, пока на всякий случай закажу запасную пару LM317. Я бы не хотел его жарить и ждать замены чипсов.

После этого заменю пару резисторов на поворотные для облегчения настройки. Меня немного беспокоит их номинальная мощность для этой задачи.Похоже, что я не могу найти каких-либо поворотов мощностью более 0,5 Вт, и некоторые из комбинаций напряжения и тока, которые я планирую использовать, могут быть слишком тяжелыми для этих номиналов. В частности, резистор регулятора тока должен быть не менее 1,25 Вт, чтобы использовать ток более 1000 мА, поступающий от калькулятора, о котором я упоминал ранее. Даже ток 500 мА требует резистора 0,65 Вт.

Я буду искать ответ на этот вопрос.

Когда технические детали будут разобраны, я помещу устройство целиком в спасенный мною футляр для приставки.Как только мой другой большой блок питания, PowerStation2, будет готов, этот компактный блок будет постоянно жить на моем столе.

Следите за обновлениями в ближайшее время.

Ура

Anth

_____________________________________________


Комментарии

Оставить комментарий.

К этой статье сейчас нет комментариев.

Оставить комментарий к статье

Все комментарии модерируются вручную, поэтому на их появление может уйти несколько часов.

LM317 источник постоянного тока | LEDnique

Источник постоянного тока LM317.

Регулируемый стабилизатор напряжения LM317 может использоваться для создания простого источника постоянного тока. Этому устройству более сорока лет, но он до сих пор пользуется большой популярностью у новичков благодаря низкой стоимости, доступности и тысячам практических приложений. Лист данных LM317.

Постоянный ток

LM317 регулирует выходное напряжение до тех пор, пока оно не станет на 1,25 В выше, чем напряжение на регулировочном штифте.Для источника постоянного тока нам просто нужно добавить резистор, чтобы снизить напряжение 1,25 В при требуемом токе.

LM317 может выдерживать токи до 1,5 А, но будьте осторожны, чтобы выполнить некоторые расчеты рассеиваемой мощности и использовать теплоотвод, если мощность превышает один или два ватта. (См. «Повышение температуры» ниже.)

Падение напряжения и запас

Для того, чтобы LM317 мог правильно регулировать, он должен иметь соответствующее напряжение питания, чтобы учесть сумму падений напряжения в цепи.Это:

  • Минимальное падение напряжения на самом регуляторе. Это указано в таблице данных как разница между входным и выходным напряжением, \ (V_I — V_O \) = 3 В.
  • Падение напряжения на R1. Это всегда 1,25 В.
  • Падение напряжения на нагрузке. Для светодиодов это будет \ (V_f \ times n \), где \ (V_f \) — прямое падение напряжения каждого светодиода, а \ (n \) — количество последовательных светодиодов.

Объяснение «запаса по напряжению»

Функциональная блок-схема LM317.
  1. Генератор опорного тока \ (I_ {adj} \) подает от 50 до 100 мкА через опорное напряжение 1,25 В.
  2. Встроенный стабилитрон означает, что входы операционного усилителя не будут выравниваться до тех пор, пока напряжение на выходе не станет на 1,25 В выше регулирующего контакта.
  3. Если выходное напряжение низкое, то входное напряжение инвертирующего операционного усилителя упадет ниже напряжения неинвертирующего входа, а выходное напряжение операционного усилителя возрастет.
  4. Когда (3) поднимается, транзистор Дарлингтона включается…
  5. … включение второго транзистора.Схема Дарлингтона вызовет падение напряжения между входом и выходом примерно в 2 × 0,7 = 1,4 В из-за прямого напряжения двух переходов база-эмиттер.
  6. Наконец, внутренний резистор измерения тока будет учитывать большую часть оставшегося падения напряжения. (Операционному усилителю может потребоваться чуть больше 4, 5 и 6.)

Пример расчета

Рассчитайте значение R1 для подачи 100 мА на 5 последовательно соединенных синих светодиодов с \ (V_f \) = 3.1 В. Схема будет запитана от источника 24 В.

Сначала резистор: \ (R = \ frac {V_ {REF}} {I} = \ frac {1.25} {0.1} = 12.5 \ \ Omega \).

Теперь проверьте необходимое входное напряжение:

\ (V_ {IN \ min} = 3 + 1,25 + 3,1 \ times 5 = 19,75 \ \ mathrm V \) минимум. Наше питание 24 В выше этого, так что все в порядке.

Нам нужно сделать еще одну вещь: вычислить мощность, рассеиваемую в LM317. Это будет напряжение на LM317, умноженное на ток:

\ (P = (V_ {IN} — V_ {OUT}) I = (24 — 19.75) \ times 0,1 = 4,25 \ times 0,1 = 0,425 \ \ mathrm {W} \)

Повышение температуры

Тепловая информация LM317.

Мы воспользуемся простым подходом и воспользуемся параметром \ (R _ {\ theta (JA)} \) LM317, параметром теплового сопротивления перехода к окружающей среде (и будем злоупотреблять им, как об этом говорится в отчете TI Application Report SPRA953C). Для пакета KCT TO-220 это 37,9 ° C / Вт. Это приводит к повышению температуры в \ (\) 37,9 \ раз 0,425 = 16,1 ° C. Даже при достаточно высоких температурах окружающей среды температура перехода не будет приближаться к максимуму 125 ° C.

Регулируемый источник питания малой мощности

I Описание

Как мы все знаем, регулируемых источников питания малой мощности широко используются в электронном оборудовании при тестировании электронных систем. Однако этот маломощный блок питания все же имеет некоторые неудобства в использовании. Например, большинство этих источников питания имеют фиксированное выходное напряжение или регулируемое напряжение, но нет интуитивно понятного цифрового дисплея.

Таким образом, в ответ на потребность в непрерывной регулировке напряжения источника питания и функции цифрового дисплея, в этом блоге был разработан регулируемый источник питания малой мощности с регулируемым цифровым дисплеем на основе LM317:

  1. Возможна разработка и наладка регулируемого источника питания;
  2. Выходное напряжение можно плавно регулировать от 1 до 1.От 25 до 15 В;
  3. Выходной ток может достигать 1,25А;
  4. Точность регулировки напряжения может достигать 0,25 уровня.

Таким образом, регулируемый источник питания LM317 обладает такими характеристиками, как высокая точность вывода, простая настройка и интуитивно понятный дисплей.

Как настроить регулятор напряжения LM317?

Каталог

II Введение

Источник питания постоянного тока с малой выходной мощностью является необходимым электронным оборудованием для использования, тестирования и ремонта электронных продуктов.Он может обеспечить питание мощных электроприборов при изменении нагрузки или колебаниях электросети. Это отражается в двух аспектах: плавное выходное рабочее напряжение и достаточный ток нагрузки.

В настоящее время обычные маломощные стабилизированные источники питания обычно имеют фиксированное выходное напряжение или, хотя напряжение регулируется, отсутствует интуитивно понятный цифровой дисплей, что доставляет неудобства пользователям. Таким образом, использование недорогих стабилизированных микросхем и цифровых дисплейных модулей для разработки и производства миниатюрных маломощных стабилизированных источников питания постоянного тока с регулируемым выходом и функциями цифрового дисплея имеет универсальное прикладное значение и пользу для отладки электронных систем и лабораторных испытаний.

Маломощный линейный источник питания постоянного тока включает в себя такие устройства, как преобразование напряжения, выпрямление, фильтрация и стабилизация напряжения. Чтобы увеличить выходной ток, в конструкции часто используется схема расширения тока. В настоящее время разработка и технология производства источников питания постоянного тока относительно развиты. Таким образом, конструкция источника питания в основном учитывает следующие требования практического применения:

  1. Миниатюризация;
  2. Высокая точность;
  3. Регулируемый;
  4. Цифровой дисплей;

В этом блоге разработан маломощный источник питания постоянного тока с регулируемой выходной мощностью на основе LM317 и АЦП. Этот блок питания:

  1. Обеспечивает регулируемый выход и регулировку 1,25 ~ 15 В;
  2. Максимальный выходной ток может достигать 1,25А;
  3. С функцией цифрового дисплея;
  4. Он может визуально отображать параметры выходного напряжения источника питания в реальном времени;
  5. Коэффициент стабилизации напряжения питания меньше 0.01;
  6. Точность отображения достигает стандарта 0,25 уровня.

III Принцип регулируемого источника питания постоянного тока для цифрового дисплея

Маломощный стабилизированный источник питания осуществляет преобразование сети в стабилизированный выход постоянного тока и обеспечивает стабильное напряжение и достаточный ток нагрузки для нагрузки. Кроме того, выходное напряжение можно непрерывно регулировать с помощью цифрового дисплея выходного напряжения. Состав регулируемой цепи питания следующий:

  • Силовые трансформаторы
  • Выпрямительная схема
  • Фильтр контур
  • Схема регулятора напряжения LM317
  • Обнаружение напряжения АЦП
  • Схема дисплея

Рисунок 1. Принцип регулируемого регулируемого источника питания цифрового дисплея

В каждой части единичной схемы стабилизированного источника постоянного тока силовой трансформатор снижает входную мощность до подходящего переменного напряжения через силовой изолирующий трансформатор. Для многоканальной выходной мощности вы можете рассмотреть возможность использования двухобмоточного многообмоточного выходного трансформатора. Мощность силового трансформатора зависит от проектной выходной мощности источника постоянного тока.

Схема выпрямителя использует модуль мостового выпрямителя и выпрямительную трубку, чтобы сформировать двухполупериодную схему выпрямителя, которая выпрямляет переменный ток после преобразования напряжения в постоянный ток с помощью пульсирующих компонентов. Инвертированный LC-фильтр используется в схеме фильтра для фильтрации пульсирующей составляющей переменного тока, устранения пульсаций и вывода плавного постоянного напряжения.

Схема стабилизации и регулировки напряжения использует трехконтактный интегрированный чип стабилизации напряжения LM317 для выполнения стабилизации с фильтром.Когда нагрузка изменяется или напряжение источника питания колеблется, он может выдавать стабильное напряжение постоянного тока. И измените переменное сопротивление регулировочного конца LM317, чтобы реализовать регулировку выходного напряжения источника питания для достижения заданного выходного напряжения источника питания.

Для определения выходного напряжения источника постоянного тока

используется встроенный АЦП микроконтроллера для определения выходного напряжения в реальном времени. Он преобразует выходное напряжение питания в цифровую величину и отображает его в реальном времени с помощью схемы ЖК-дисплея.Схема отображения использует жидкокристаллический модуль символьного типа для отображения. После того, как цифровая величина, преобразованная АЦП, обрабатывается контроллером, жидкий кристалл приводится в действие, чтобы реализовать цифровое отображение значения выходного напряжения источника питания.

IV Конструкция цепи и параметры

4.1 Выбор силового трансформатора

Максимальное выходное напряжение постоянного тока составляет 15 В. Учитывая, что трехконтактный встроенный стабилизатор напряжения имеет падение напряжения примерно от 1 до 2 В, напряжение Uc после фильтрации конденсатора составляет примерно 17 В.Тогда действующее значение вторичного вторичного выходного напряжения трансформатора равно U2 = Uc / 1,2 = 17 В / 1,2 = 14,2 В. Поскольку это маломощный источник питания, мы выбрали небольшой силовой трансформатор 15 В / 20 Вт.

4.2 Схема фильтра выпрямителя

Выбор выпрямительного моста в основном основан на двух параметрах:

  1. Выдерживаемое напряжение VRM выпрямительного диода;
  2. Средний ID тока через выпрямительный диод.

Здесь мы выбираем выпрямительные диоды IN4007 для формирования полной мостовой выпрямительной схемы.

Параметры прямого среднего тока 1 А и выдерживаемого напряжения 1000 В соответствуют требованиям выпрямления. И конденсатор фильтра имеет эмпирическое значение 470 ~ 1000 мкФ. Для подавления пульсаций выбран электролитический конденсатор номиналом 1000мкФ с напряжением 25В.

4.3 Схема регулятора выходного регулируемого напряжения

В этой конструкции LM317 может быть отлажен и интегрирован в трехконтактный стабилизатор в качестве микросхемы регулятора и реализовать функцию регулировки выходного напряжения.LM317 имеет характеристики плавно регулируемого выходного напряжения и широкого диапазона регулировки. По сравнению с другими регуляторами, его скорость линейного регулирования и скорость регулирования нагрузки имеют очевидные преимущества.

Внутри LM317 есть схемы защиты от перегрузки по току и схемы защиты зон безопасности. Его выходное напряжение составляет 1,25 ~ 37 В, а ток нагрузки может достигать 1,5 А. Выходное напряжение LM317 легко регулировать, и для настройки выходного напряжения необходимы только два внешних резистора. Чтобы улучшить переходную характеристику, на выходе можно параллельно подключить конденсатор.

Типичные параметры схемы LM317 следующие:

  • Выходной ток 1,5А;
  • 0,01% линейной скорости регулировки;
  • Скорость регулирования нагрузки 0,1%;
  • Коэффициент подавления пульсации составляет 80 дБ;
  • Он имеет функции защиты от перегрузки по току, защиты от перегрева, защиты от короткого замыкания на выходе и защиты зоны безопасности регулятора.

Конструкция схемы стабилизации выходного регулируемого напряжения на основе LM317 показана на рис.2.

Рисунок 2. Схема регулятора напряжения lm317

R1 и Rp в цепи являются ключевыми компонентами, определяющими выходное напряжение. Выходное напряжение источника питания определяется соотношением между ними и внутренним опорным напряжением, как показано в уравнении (3). Значения R1 и Rp рассматриваются с двух сторон:

  • Исходя из формулы (3) формулы расчета выходного напряжения, отношение Rp / R1 определяет выход, поэтому Rp использует переменный резистор для облегчения регулировки;
  • Учитывая минимальный выходной ток, минимальный рабочий ток при нормальной работе LM317 обычно равен 1.5 мА, а R1 — единственный путь, по которому минимальный ток разряжается при отсутствии нагрузки.

Если значение R1 выбрано слишком большим, будет большая разница между выходным напряжением без нагрузки и под нагрузкой, что недопустимо.

Учитывая два вышеупомянутых аспекта, R1 и Rp рассчитываются следующим образом:

Взяв U0 = 15V, мы можем получить Rp / R1 = 11. Зная, что R1 может нормально работать, когда ток достигает 1,5 мА, необходимо найти, что R1 должен быть меньше диапазона ограничения сопротивления 830 Ом, поэтому R1 = 120 Ом.Тогда соответствующее значение сопротивления Rp должно быть 11 × 0,12 кОм = 1,32 кОм, что может гарантировать, что выходная мощность достигнет 15 В. Номинальное значение потенциометра 2,2 кОм используется для Rp для регулировки выходного напряжения.

D1 и D2 — диоды для защиты LM317. Когда входная клемма случайно закорочена, D1 включается, а C4 разряжается через D1. Когда выходной терминал закорочен, D2 включается, а C2 разряжается через D2, чтобы защитить LM317 от возгорания.Здесь D1 и D2 равны 1N4001.

C1 и C3 могут отфильтровывать высшие гармоники, а C4 может использоваться для улучшения переходной характеристики нагрузки. Здесь C1, C3 — 0,1 мкФ, а C4 — 470 мкФ.

4.4 Схема обнаружения и отображения напряжения АЦП

Для обнаружения напряжения источника питания используется недорогой микроконтроллер STC STC12C5410AD, а для полного аналого-цифрового преобразования с обнаружением напряжения используется встроенный 10-разрядный АЦП. Микроконтроллер STC напрямую управляет символьным ЖК-дисплеем 1602 для отображения выходного напряжения источника питания.Схема обнаружения и отображения напряжения показана на рисунке 3. Это решение может гибко расширить функцию мониторинга источника питания цифрового дисплея и напрямую контролировать значение выходного тока после добавления схемы обнаружения тока.

Основная микросхема схемы определения выходного напряжения микроконтроллера STC12C5410AD имеет 8 каналов 10-битного АЦП, которые могут обнаруживать несколько напряжений постоянного тока. C8, C9, JT1 образуют схему кварцевого генератора, C13 и R13 образуют схему сброса при включении питания и вместе с STC12C5410AD образуют самую маленькую однокристальную микрокомпьютерную систему.Принимая во внимание возможность регулировки выхода LM317, один только минимальный источник питания системы использует вспомогательный источник питания, состоящий из 7805, а также обеспечивает напряжение источника питания 5 В для жидкокристаллического модуля.

Измеряемое напряжение цепи обнаружения напряжения поступает от выходного напряжения VIN источника питания схемой LM317, и его диапазон напряжения составляет от 1,25 до 15 В. Конкретное значение напряжения регулируется и определяется потенциометром Rp. Напряжение источника питания VIN подается на вывод P1 АЦП.1 / AD1 STC12C5410AD после ослабления и усиления схемы. Мы должны рассмотреть случай, когда максимальное тестируемое напряжение источника питания составляет 15 В, что превышает тестовый диапазон (0-5 В) АЦП микроконтроллера. Следовательно, VIN сначала делится на 1/6 через резисторы делителя напряжения R1 и R2, а затем подключается к тому же фазовому усилителю, состоящему из TL084, для двукратного усиления и согласования. Убедитесь, что при максимальной выходной мощности 15 В напряжение подается на канал P1 АЦП.1 микроконтроллера не превышает 5В. Существует линейная зависимость между тестируемым напряжением источника питания VIN и входным напряжением VAD1 порта AD1 микроконтроллера.

В дисплейном блоке используется символьный жидкокристаллический модуль LCD1602, который управляется однокристальным микрокомпьютером для реализации цифрового отображения напряжения источника питания. Клемма включения ЖК-дисплея EN, клемма управления чтением-записью R / W и клемма управления данными / адресом R / S управляются P3.0, P3.7 и P3.5 однокристального микрокомпьютера соответственно. В то же время 8-битные данные дисплея D0 ~ D7 и адресный код инструкции, отправляемый на ЖК-дисплей, управляются портом P2. Контрастность жидкого кристалла регулируется выходным напряжением Vo с помощью регулируемого потенциометра. Цифровая величина, которая определяет выходное напряжение источника питания, преобразуется однокристальным микрокомпьютером в код ASCII фактического значения напряжения и отправляется на ЖК-дисплей для отображения. Соответствующее соотношение показано в формуле (5).

Рисунок 3. Схема обнаружения и отображения напряжения

Отладка и тестирование питания

В

5.1 Проблемы с отладкой питания

LM317 выход 1,25 ~ 15 В Отладка цепи относительно проста, в печатной плате устройства питания используется двухсторонняя конструкция печатной платы, сборка Сварочный силовой трансформатор, схема фильтра выпрямителя, схема регулирования напряжения LM317, микроконтроллер обнаружения напряжения и ЖК-модуль, а также другие компоненты могут.

Регулируемый источник питания с регулируемым цифровым дисплеем показан на рисунке 4.

Поскольку диапазон выходного напряжения LM317 составляет 1,25 ~ 37 В, Iadj в формуле расчета напряжения очень мало (50 мкА), и им можно пренебречь. Сопротивление потенциометра составляет 2,2 кОм, что соответствует диапазону регулировки выходного напряжения 1,25 ~ 15 В. Учитывая удобство настройки, многооборотный потенциометр WXD3-13-2W можно использовать в качестве ручки точной настройки.

Чтобы повысить точность обнаружения выходного напряжения АЦП, в программу обнаружения можно добавить поправочный коэффициент обнаружения параметров, а точность обнаружения может быть дополнительно улучшена путем корректировки фактических измерений.

Во время отладки, когда источник питания выдает низкое напряжение и большой ток, разница напряжений и ток, передаваемый схемой LM317, будут большими, что приведет к большому потреблению энергии. Поэтому микросхема LM317 в блоке питания должна быть упакована с TO-220, а небольшой радиатор играет роль защиты от рассеивания тепла.

Рисунок 4. Блок питания регулируемого цифрового дисплея

LM317 регулируемый трехполюсный стабилизатор, минимальное выходное напряжение 1.25В. Если требуется отрегулировать регулируемый источник питания с 0 В, в цепь регулятора следует добавить отрицательное смещение напряжения. Вход питания требует трех входных клемм: положительной, отрицательной и заземляющей. Схема относительно сложная. Как правило, регулируемый источник питания требует меньше напряжения от 0 В. Начальная мелодия. Поэтому питание регулируется напрямую от 1,25В.

5.2 Тестирование и анализ

Стабилизация постоянного напряжения проверяет характеристики выходного напряжения и выходного тока источника питания.Здесь мы выбираем типичную нагрузку RL = 100 Ом и RL = 10 Ом, настраиваем выходную мощность и проверяем выходное напряжение и ток нагрузки. Результаты испытаний представлены в таблице 1.

При двух типичных условиях нагрузки относительная погрешность выходного напряжения, показываемого источником питания, может быть лучше 0,254%, а погрешность в основном составляет 0,25. Кроме того, источник питания имеет хорошие нагрузочные характеристики, а выходное напряжение не сильно колеблется с увеличением тока нагрузки.

Нагрузочные характеристики при номинальном выходном напряжении 15 В приведены в таблице 2.При условии, что источник питания выводится при небольшой нагрузке и напряжение достигает номинального значения 15 В, постепенно увеличивайте ток нагрузки и проверяйте нагрузочные характеристики источника питания, то есть характеристики изменения выходного напряжения источника питания. источник питания. Результат показывает, что при изменении тока нагрузки с 0,1 А до 1,2 А колебание напряжения на выходе постоянного напряжения 15 В составляет всего 0,12 В. Это показывает, что этот блок питания имеет хорошую нагрузочную способность.

VI Заключение

В данной статье разработан маломощный источник питания постоянного тока с цифровым дисплеем и регулируемыми функциями на основе LM317.Источник питания основан на недорогом однокристальном STC12C5410AD для обнаружения выборки напряжения и управления жидкокристаллическим дисплеем, который реализует обнаружение в реальном времени и отображение выходного напряжения источника питания.

Результаты испытаний показывают, что источник питания обеспечивает плавно регулируемый выходной сигнал от 1,25 В до 15 В. Он отличается стабильной работой, высокой точностью вывода и интуитивно понятным дисплеем. Точность определения выхода достигает уровня 0,25; выходная мощность реализуется гибким обнаружением напряжения и ЖК-дисплеем.Функция мониторинга может точно отражать рабочее состояние выходной мощности во времени,

Эта конструкция сочетает в себе возможность регулировки регулируемого источника питания с цифровым дисплеем, чтобы обеспечить удобное решение для источника питания для электронных испытаний.


Лист данных на компоненты

Лист данных LM317


FAQ

LM317 обслуживает широкий спектр приложений, в том числе локальное регулирование по картам.Это устройство также можно использовать для создания программируемого выходного регулятора или, подключив постоянный резистор между регулировкой и выходом, LM317 можно использовать в качестве прецизионного регулятора тока.

  • Какое максимальное входное напряжение lm317?

LM317 — это регулируемый линейный стабилизатор напряжения, который может выдавать 1,25–37 В при токе до 1,5 А с диапазоном входного напряжения 3–40 В.

  • В чем разница между lm317 и lm317t?

Член.Функциональной разницы нет, они одно и то же. Буква T в конце просто указывает на то, что он находится в упаковке TO-220. Обычно они добавляют дополнительные элементы после названия детали, чтобы ссылаться на такие вещи, как пакет, временный диапазон и т. Д.

LM317 представляет собой регулируемый трехконтактный стабилизатор положительного напряжения, способный подавать более 1,5 А в диапазоне выходного напряжения от 1,25 В до 32 В. … За счет использования проходного транзистора с теплоотводом, такого как 2N3055 (Q1 ) мы можем производить ток в несколько ампер, намного превышающий 1.5 ампер LM317.

Схема состоит из резистора на стороне низкого напряжения и резистора на стороне высокого напряжения, соединенных последовательно, образуя резистивный делитель напряжения, который представляет собой пассивную линейную схему, используемую для создания выходного напряжения, составляющего часть входного напряжения.

Устройство LM317 представляет собой регулируемый трехконтактный стабилизатор положительного напряжения, способный подавать более 1,5 А в диапазоне выходного напряжения 1.От 25 В до 37 В. Для установки выходного напряжения требуется всего два внешних резистора. Устройство имеет стандартное линейное регулирование 0,01% и стандартное регулирование нагрузки 0,1%.

  • Как узнать, работает ли мой lm317?

Тестирование lm317t.
Если вы посмотрите на микросхему, ноги к вам, правая — входной контакт. вы должны увидеть разницу минимум 1,2 В между двумя контактами, в противном случае IC неисправна.кроме того, первый тест — проверить, есть ли у вас входное напряжение!

  • Каков принцип работы lm317?

LM 317 работает по очень простому принципу. Это регулятор переменного напряжения, то есть поддерживает различные уровни выходного напряжения для постоянного подаваемого входного напряжения.

  • Как сделать простую схему регулятора напряжения на LM317?

Схема, особенности и работа

Источник питания, полученный со стороны нагрузки или со стороны потребителя, имеет колебания уровней напряжения из-за нерегулярных нагрузок или условий местной электросети.Эти колебания напряжения могут привести к сокращению срока службы электрических и электронных устройств потребителя или повреждению нагрузок. Таким образом, требуется защитить нагрузки от повышенного и пониженного напряжения или необходимо обеспечить постоянное напряжение для нагрузок и поддерживать стабильность напряжения в системе с помощью метода регулирования. Регулирование напряжения можно определить как поддержание постоянного напряжения или поддержание уровня напряжения системы в допустимых пределах в широком диапазоне условий нагрузки, и, таким образом, для регулирования напряжения используются регуляторы напряжения.Для линейного регулирования напряжения, а иногда и регулируемого регулятора напряжения LM317 используется нестандартное напряжение.


Что такое регулятор напряжения?

Регулировка напряжения в системе электропитания может быть достигнута с помощью электрического или электронного устройства, называемого регуляторами напряжения. Существуют различные типы регуляторов напряжения, такие как регуляторы постоянного напряжения и регуляторы переменного напряжения. Они снова подразделяются на множество типов: электронные регуляторы напряжения, электромеханические регуляторы, автоматические регуляторы напряжения, линейные регуляторы напряжения, импульсные регуляторы, регуляторы напряжения LM317, гибридные регуляторы, регуляторы SCR и так далее.

Регулятор напряжения

LM317 Регулятор напряжения

Регулятор напряжения LM317

Это тип регуляторов положительно-линейного напряжения, используемых для регулирования напряжения, который был изобретен Робертом С. Добкиным и Робертом Дж. Видларом, когда они работали в National Semiconductor в 1970 году. регулируемый регулятор напряжения и прост в использовании, поскольку для установки выходного напряжения требуется всего два внешних резистора в цепи регулятора напряжения LM317. Он в основном используется для местного и внутреннего регулирования.Если мы подключим постоянный резистор между выходом и регулировкой регулятора LM317, то схему LM317 можно будет использовать как прецизионный регулятор тока.

LM317 Цепь регулятора напряжения

Три клеммы — это входной контакт, выходной контакт и регулировочный контакт. Схема LM317, показанная на рисунке ниже, представляет собой типичную конфигурацию схемы регулятора напряжения LM317, включая разделительные конденсаторы. Эта схема LM317 способна обеспечить переменный источник питания постоянного тока с выходным током 1 А и может быть отрегулирован до 30 В.Схема состоит из резистора на нижней стороне и резистора на верхней стороне, соединенных последовательно, образуя резистивный делитель напряжения, который представляет собой пассивную линейную схему, используемую для создания выходного напряжения, составляющего часть входного напряжения.

Разделительные конденсаторы используются для развязки или предотвращения нежелательной связи одной части электрической цепи с другой. Чтобы избежать влияния шума, вызванного некоторыми элементами схемы, на остальные элементы схемы, разделительные конденсаторы в схеме используются для устранения входного шума и выходных переходных процессов.В схеме используется радиатор, чтобы избежать перегрева компонентов из-за увеличения рассеиваемой мощности.

Схема регулятора напряжения LM317

Характеристики

Регулятор LM317 обладает некоторыми особенностями, в том числе следующими:

  • Он способен обеспечивать избыточный ток 1,5 А, поэтому концептуально рассматривается как операционный усилитель с выходным напряжением от 1,2 В до 37 В.
  • Цепь регулятора напряжения LM317 внутри состоит из тепловой защиты от перегрузки и ограничения тока короткого замыкания, постоянного в зависимости от температуры.
  • Он доступен в двух корпусах: корпус транзистора с 3 выводами и корпус D2PAK-3 для поверхностного монтажа.
  • Можно исключить наличие большого количества фиксированных напряжений.

Работа цепи регулятора напряжения LM317

Регулятор LM317 может обеспечивать избыточный выходной ток и, следовательно, с такой мощностью он концептуально рассматривается как операционный усилитель. Регулировочный штифт является инвертирующим входом усилителя, и для создания стабильного опорного напряжения 1,25 В используется внутреннее опорное напряжение запрещенной зоны для установки неинвертирующего входа.

Напряжение на выходном контакте можно плавно регулировать до фиксированной величины с помощью резистивного делителя напряжения между выходом и землей, который сконфигурирует операционный усилитель как неинвертирующий усилитель.

Опорное напряжение запрещенной зоны используется для получения постоянного выходного напряжения независимо от изменений в питающей мощности. Его также называют независимым от температуры опорным напряжением, часто используемым в интегральных схемах.

Выходное напряжение (в идеале) схемы регулятора напряжения LM317

Vout = Vref * (1+ (RL / RH))

Добавлен термин ошибки, потому что некоторый ток покоя течет от регулировочного штифта устройства.

Vout = Vref * (1+ (RL / RH)) + IQR

Для достижения более стабильного выходного сигнала принципиальная схема регулятора напряжения LM317 разработана таким образом, чтобы ток покоя был меньше или равен 100 мкА. Таким образом, во всех практических случаях на ошибку можно не обращать внимания.

Если заменить резистор нижнего плеча делителя из принципиальной схемы регулятора напряжения LM317 на нагрузку, то полученная конфигурация регулятора LM317 будет регулировать ток нагрузки.Следовательно, эту схему LM317 можно рассматривать как схему регулятора тока LM317.

Регулятор тока LM317

Выходной ток — это падение опорного напряжения на сопротивлении RH, равное

.

Выходной ток в идеальном случае

Iout = Vref / RH

С учетом тока покоя выходной ток равен

.

Iout = (Vref / RH) + IQ

Эти линейные регуляторы напряжения LM317 и LM337 часто используются в преобразователях постоянного тока.Линейные регуляторы, естественно, потребляют много тока во время подачи. Мощность, произведенная за счет умножения этого тока на разницу напряжений между входом и выходом, будет рассеиваться и расходоваться в виде тепла.

Из-за этого необходимо учитывать тепло при проектировании, что приводит к неэффективности. Если разность напряжений увеличивается, то увеличиваются потери мощности, и иногда эта рассеиваемая ненужная мощность будет больше, чем подаваемая мощность.

Хотя это несущественно, но поскольку линейные регуляторы напряжения с несколькими дополнительными компонентами — это простой способ получить стабильное напряжение, мы должны принять этот компромисс.Импульсные регуляторы напряжения являются альтернативой этим линейным регуляторам, поскольку эти импульсные регуляторы, как правило, более эффективны, но для их проектирования требуется большее количество компонентов и, следовательно, требуется больше места.

Надеюсь, в этой статье дается краткое описание схемы стабилизатора напряжения LM317 с работающей. Кроме того, для любых разъяснений относительно регуляторов напряжения и их применения вы можете связаться с нами, разместив свои комментарии или вопросы в разделе комментариев ниже.

Цепи общего пользования с меткой «источник питания» — CircuitLab

Теперь показаны схемы 21-40 из 45. Сортировать по недавно измененное имя

Переменная двойного напряжения постоянного тока, регулируемая для подачи нулевого напряжения ПУБЛИЧНЫЙ

Источник питания постоянного тока с двойным напряжением и схемой, позволяющей регулировке преодолеть минимум 1.2 вольта у LM317 и LM337.

по hondabones | обновлено 28 марта 2013 г.

регулировать двойной источник питания поставлять Переменная Напряжение нуль

Двойной стабилизатор напряжения ТОЛЬКО с LM317 ПУБЛИЧНЫЙ

Использование LM317 как для положительного, так и для отрицательного регулирования напряжения.

по hondabones | обновлено 1 апреля 2013 г.

Округ Колумбия двойной lm317 положительный источник питания регулятор поставлять Напряжение

Ф.АЛИМ. 1,2 А 24 В PPO ПУБЛИЧНЫЙ

по sercotv | обновлено 25 ноября 2012 г.

Fuente-Alimentacion источник питания Переменная

Fuente simétrica ПУБЛИЧНЫЙ

автор: JCUrchulutegui | обновлено 7 марта 2016 г.

источник питания

Выпрямитель с ШИМ высокой мощностью ПУБЛИЧНЫЙ

Простой проект для подачи высокого напряжения при сильном токе на нагрузку постоянного тока, управляемую с помощью ШИМ.В реальных приложениях нагрузка представляет собой 5 последовательно подключаемых светодиодов мощностью 100 Вт.

от Габриэль Паука | обновлено 1 июня 2016 г.

переменный ток к постоянному току мост-выпрямитель силовая электроника источник питания шим выпрямитель

Гибридный источник питания ПУБЛИЧНЫЙ

Гибридный блок питания из очень дешевых комплектующих

автор: febb | обновлено 12 февраля 2019 г.

источник питания

Регулятор 5 В с низким падением напряжения ПУБЛИЧНЫЙ

привет — Я здесь новенький и нашел схему, которая могла бы работать для меня, но при использовании симулятора, возможно, это не так.входное напряжение постоянно колеблется в пределах от 0 до 10 В постоянного тока, и я хочу получить регулируемое напряжение 5 В постоянного тока. Я…

Ленлен | обновлено 6 июня 2015 г.

источник питания регулятор напряжения

Модель блока питания лаборатории ПУБЛИЧНЫЙ

Это может быть некрасиво, но это базовая модель фиксированного блока питания, используемого в лаборатории.

по stashcraft | обновлено 21 января 2013 г.

источник питания блок питания

Стабилизатор отрицательного напряжения с LM317 ПУБЛИЧНЫЙ

Использование LM317 для создания источника питания с отрицательным напряжением.

по hondabones | обновлено 1 апреля 2013 г.

Округ Колумбия lm317 отрицательный положительный источник питания регулятор поставлять Напряжение

контакты питания операционного усилителя 01 ПУБЛИЧНЫЙ

Контакты питания операционных усилителей CL не чувствительны к полярности.Вы можете установить любой вывод питания на любое напряжение, а другой на любое другое напряжение, и модель правильно подберет, какое из них является самым высоким …

по сигналу | обновлено 3 июля 2012 г.

операционный усилитель операционный усилитель мощность источник питания

Понижающий преобразователь P-MOSFET (импульсный источник питания) ПУБЛИЧНЫЙ

Простая имитирующая модель понижающего преобразователя.

по mrobbins | обновлено 2 августа 2012 г.

источник питания переключение

Понижающий преобразователь P-MOSFET (импульсный источник питания) с обратной связью 01 ПУБЛИЧНЫЙ

Базовый понижающий (понижающий) преобразователь с замкнутым контуром с 12 В на 3 В.Моделирование> Временная область> Выполнение моделирования во временной области

по сигналу | обновлено 3 августа 2012 г.

понижающий преобразователь источник питания smps понижающий преобразователь переключение режим напряжения

Положительный переменный источник постоянного тока ПУБЛИЧНЫЙ

Положительный источник переменного тока постоянного тока 1.От 2 вольт до 41,2 вольт.

по hondabones | обновлено 28 марта 2013 г.

Округ Колумбия положительный источник питания поставлять Напряжение

Источник питания ПУБЛИЧНЫЙ

по jhonalvez | обновлено 15 мая 2012 г.

источник питания

PS ПУБЛИЧНЫЙ

автор: n1ir | обновлено 29 апреля 2014 г.

источник питания

разделитель рельсов ПУБЛИЧНЫЙ

автор: alkopop79 | обновлено 12 апреля 2013 г.

источник питания рельсокол

Второе решение ПУБЛИЧНЫЙ

Мотор 48 В с системой зарядки от солнца / ветра 24 В.

от Optionparty | обновлено 20 сентября 2012 г.

мощность источник питания

Серия LM317 ПУБЛИЧНЫЙ

Создайте высоковольтный переменный источник постоянного тока с помощью LM317.

по hondabones | обновлено 28 марта 2013 г.

Округ Колумбия hv источник питания регулировать поставлять Напряжение

От одиночного до двойного источника питания ПУБЛИЧНЫЙ

Это схема, которая преобразует одинарный источник питания в двойной без использования трансформатора с центральным ответвлением.

по шагасу | обновлено 15 мая 2013 г.

двойной двойное питание операционный усилитель мощность источник питания поставлять транзистор

SLA Backup PS ПУБЛИЧНЫЙ

Резервное питание от Electronic Components Circle https: // electroniccomponentscircle.wordpress.com/2012/12/26/backup-power-supply/

по TSayles | обновлено 25 мая 2013 г.

резервное копирование источник питания sla

Перечень схем блока питания постоянного тока

Стабилизированный источник питания с индикацией короткого замыкания

Перед вами эффективный 4-х ступенчатый стабилизированный блок питания для тестирования электронных схем.Он обеспечивает хорошо регулируемый и стабилизированный выход, что важно для большинства электронных схем для получения надлежащих результатов. Схема обеспечивает аудиовизуальную индикацию короткого замыкания в тестируемой печатной плате, поэтому питание тестируемой цепи может быть немедленно отключено, чтобы уберечь ценные компоненты от повреждения …. [подробнее]

Регулируемый регулируемый источник питания постоянного тока 3-30 В, 3 А

Этот источник питания предназначен для использования в качестве вспомогательного или постоянного источника питания для всех общих цепей на основе стабилизированного постоянного напряжения от 3 до 30 В при условии, что потребление не превышает 3 А.Конечно, этот блок питания можно использовать и для других целей. Заменив триммер потенциометром, его можно даже использовать как регулируемый блок питания. Необходимо использовать радиатор хорошего качества …. [подробнее]

Принципиальная схема источника питания постоянного тока 9 В, 2 А

Об этой схеме мало что можно сказать. Всю работу выполняет регулятор. 7809 может обеспечивать непрерывную выходную мощность до 2 А при сохранении низкого уровня шума и очень хорошо регулируемого питания.Схема будет работать без дополнительных компонентов, но для защиты от обратной полярности на входе предусмотрен диод 1N5400 (D1), а дополнительное сглаживание обеспечивается C1. Выходной каскад включает в себя C2 для дополнительной фильтрации, если питание логической схемы, кроме конденсатора 100 нФ (C3), также желательно, чтобы удалить любой высокочастотный шум переключения …. [подробнее]

Регулируемый регулируемый источник питания 1,3-22 В

Хотите регулируемое напряжение, которое можно отрегулировать в соответствии с вашим приложением? Этот регулируемый источник питания имеет небольшие размеры, прост в сборке и может быть адаптирован для получения полностью регулируемого напряжения в диапазоне от 1.От 3В до 22В при токах до 1А …. [подробнее]

Регулируемый предел тока для двойного источника питания

Эта схема ограничения тока, показанная в этом примере как часть небольшого настольного источника питания, в принципе может использоваться вместе с любым двухканальным источником тока. Часть схемы слева от схемы ограничивает ток на входе двойного регулятора напряжения (от IC4 до IC7), чтобы он был надежно защищен от перегрузки.Показанная схема обеспечивает выходное напряжение ± 15 В и ± 5 В. Стабилизаторы напряжения на выходах (7815/7805 и 7915/7905) в комментариях не нуждаются; но сама схема ограничения тока, построенная на LM317 и LM337, не так очевидна … [подробнее]

Четыре блока питания для гибридного усилителя

Этот источник питания был разработан для использования с «Простым гибридным усилителем», опубликованным в другом месте в этом выпуске. Конечно, он также подходит для использования в других приложениях.Мы использовали каскадный генератор для 170 В, импульсный источник питания для 16 В, последовательный стабилизатор для 12 В и отдельный трансформатор для источника питания 6,3 В. В качестве регулятора мы выбрали LT1074CT (IC1), что означает, что схема может быть построена из относительно стандартных компонентов и будет иметь высокий КПД. Потери мощности у этого устройства меньше по сравнению с линейным регулятором напряжения …. [подробнее]

Схема стабилизированного регулируемого источника питания

Эта схема источника питания очень проста и легка в сборке, ее можно собрать на печатной плате общего назначения, найти ее материалы очень легко и недорого.Выходное напряжение стабилизировано и регулируется в диапазоне от 0 В до + 15 В постоянного тока, с максимальным током 1 А. Регулировка осуществляется с помощью P1. Q1 — это классический силовой транзистор, и его нужно разместить на холодном ребре (радиаторе), когда он постоянно работает в области наибольшего тока, он становится горячим. Тип трансформатора стандартный на рынке …. [подробнее]

Бестрансформаторный источник питания 5 В

Все большее количество приборов потребляет очень малый ток от источника питания.Если вам нужно разработать устройство с питанием от сети, вы обычно можете выбрать между линейным и импульсным источником питания. Однако что, если общая потребляемая мощность устройства очень мала? Источники питания на основе трансформаторов громоздки, в то время как переключатели обычно делаются так, чтобы обеспечивать больший выходной ток, со значительным увеличением сложности, проблемами, связанными с компоновкой печатных плат, и, по сути, пониженной надежностью … [подробнее]

Источник переменного тока постоянного тока

Эта схема не является абсолютной новинкой, но она простая, надежная, «прочная» и защищенная от коротких замыканий, с переменным напряжением до 24 В и ограничением переменного тока до 2 А.Вы можете адаптировать его к своим требованиям, как описано в примечаниях ниже …. [подробнее]

Высоковольтный регулятор с защитой от короткого замыкания

Существует множество схем регуляторов низкого напряжения. Для более высоких напряжений, таких как источники питания для цепей клапана, ситуация иная. Вот почему мы решили разработать этот простой регулятор, способный выдерживать такие напряжения. Эта схема, очевидно, хорошо подходит для использования в сочетании с четырехъядерным источником питания для гибридного усилителя, опубликованным в другом месте в этом выпуске.Фактический регулятор состоит всего из трех транзисторов. Добавлен четвертый для функции ограничения тока …. [подробнее]

Цепь усилителя силы тока или тока

Регуляторы напряжения, такие как серии LM708 и LM317 (и другие), иногда должны обеспечивать немного больше тока, чем они фактически могут выдержать. В этом случае вам может помочь эта небольшая схема. Можно использовать силовой транзистор, такой как 2N3772 или аналогичный…. [подробнее]

Продление срока службы батареи дымовой сигнализации

Хотя дымовые извещатели — довольно дешевые устройства, стоимость батарей на 9 В быстро превышает их покупную цену. К этому добавляется раздражение случайными звуковыми сигналами от будильника, когда батарея подходит к концу своего срока службы. Эта схема позволяет запитывать типичные дымовые извещатели от источника питания 12 В в системе охранной сигнализации, сохраняя при этом стандартные батареи 9 В. Он продлевает срок службы батареи 9 В до «срока годности», поскольку батарея требуется только для работы дымовой пожарной сигнализации в случае отключения или короткого замыкания источника питания 12 В…. [подробнее]

Сильноточные регулируемые источники питания

В приведенном ниже регуляторе высокого тока используется дополнительная обмотка или отдельный трансформатор для питания регулятора LM317, так что проходные транзисторы могут работать ближе к насыщению и повышать эффективность. Для хорошей эффективности напряжение на коллекторах двух параллельных транзисторов 2N3055 должно быть близко к выходному напряжению. LM317 требует пару дополнительных вольт на входной стороне, плюс падение эмиттера / базы 3055, плюс все, что теряется на (0.1 Ом) уравнительные резисторы (1 В при 10 А), поэтому используется отдельный трансформатор и схема выпрямителя / фильтра, которая на несколько вольт выше выходного напряжения …. [подробнее]

Импульсный блок питания мощностью 2 Вт

В этом небольшом импульсном источнике питания генератор триггера Шмитта используется для управления переключающим транзистором, который подает ток на небольшую катушку индуктивности. Энергия накапливается в катушке индуктивности, когда транзистор включен, и выделяется в цепь нагрузки, когда транзистор выключается.Выходное напряжение зависит от сопротивления нагрузки и ограничивается стабилитроном, который останавливает генератор, когда напряжение достигает примерно 14 вольт. Более высокие или более низкие напряжения могут быть получены регулировкой делителя напряжения, питающего стабилитрон. Эффективность составляет около 80% при использовании индуктора с высокой добротностью …. [подробнее]

Источник переменного напряжения и тока

Показан другой метод использования операционных усилителей для регулирования источника питания.Силовой трансформатор требует дополнительной обмотки для подачи на операционные усилители биполярного напряжения (+/- 8 вольт), а отрицательное напряжение также используется для генерации опорного напряжения под землей, чтобы выходное напряжение можно было полностью регулировать. до 0. Ограничение тока осуществляется путем измерения падения напряжения на небольшом резисторе, включенном последовательно с отрицательной линией питания …. [подробнее]

Переменный источник питания 3 — 24 В / 3 А

Этот регулируемый источник питания может быть отрегулирован от 3 до 25 вольт и имеет ограничение по току до 2 ампер, как показано, но может быть увеличено до 3 ампер или более, выбрав меньший резистор измерения тока (0.3 Ом). Транзисторы 2N3055 и 2N3053 должны быть установлены на подходящих радиаторах, а резистор считывания тока должен быть рассчитан на 3 Вт или более. Регулировка напряжения контролируется 1/2 операционного усилителя 1558 или 1458 …. [подробнее]

Стабилизатор напряжения LM317T с проходным транзистором

Выходной ток LM317T можно увеличить, используя дополнительный силовой транзистор, чтобы разделить часть общего тока. Величина разделения тока устанавливается резистором, включенным последовательно с входом 317, и резистором, включенным последовательно с эмиттером проходного транзистора…. [подробнее]

Регулятор переменного напряжения LM317T

LM317T — это регулируемый трехконтактный стабилизатор положительного напряжения, способный подавать более 1,5 А в диапазоне выходных напряжений от 1,25 до 37 В. Устройство также имеет встроенное ограничение тока и тепловое отключение, что делает его по существу защищенным от взрыва. [подробнее]

Источник питания 0-15 В / 1 А

Эта схема блока питания, очень проста в изготовлении, подбирается из материалов, очень проста и недорогая, небольшая.Выходное напряжение стабилизировано и регулируется в диапазоне от 0 В до + 15 В постоянного тока, при этом максимальный обеспечиваемый ток составляет 1 А …. [подробнее]

Регулируемый источник питания 0–30 В постоянного тока / 2 А

Это простой источник питания с регулируемой схемой, основанный на известном LM 723, который управляет транзистором Q1 [2N3055]. Регулировка напряжения, расхода осуществляется потенциометром R1 от 0 до 30 В постоянного тока примерно. Чтобы мы достигли 30 В, трансформатор питания TR1 дает весь ток, который он запрашивает нагрузке, иначе выходное напряжение будет находиться на уровне примерно 26 В.Существенным является использование хорошего радиатора для транзистора Q1, а также хорошего качества потенциометра вместо R1 …. [подробнее]

Электропитание + 50В 3А стабилизированное и регулируемое

Много раз нам требовался стабилизированный, вместе регулируемый источник питания и относительно высокое выходное напряжение. Эти спецификации его охватывают нашу схему. Это схема, которая может давать на своем выходе + 40В до + 60В 3А с одновременной стабилизацией…. [подробнее]

Приложения с регулятором напряжения L200

Здесь существуют две схемы регулятора, которые используют микросхему L200 в качестве регулятора напряжения и тока компании SGS-Thomson, которая предоставляет эти схемы. В схеме на рис.1 мы можем регулировать выходное напряжение с помощью RV1, в то время как на рисунке 2 мы можем регулировать также выходное напряжение-ток с помощью TR2 и TR1 соответственно. Более подробную информацию о характеристиках L200 вы можете увидеть в таблицах со списком.Вскоре будут добавлены также некоторые другие полезные схемы с L200 …. [подробнее]

Дополнительный ограничитель тока для вашего блока питания

Эта схема позволяет вам установить ограничение на максимальный выходной ток, доступный от вашего блока питания. Это очень полезно, когда вы запускаете проект в первый раз или проводите тест на выдержку. Установив верхний предел тока, доступного от вашего блока питания, вы можете защитить как свой блок питания, так и любое подключенное к нему устройство.Он предлагает простую и дешевую альтернативу источнику питания с ограничением тока … [подробнее]

Стендовый источник питания с ограничением тока

Это блок питания с регулируемым напряжением на 1 ампер. Он регулируется примерно от 3 В до 24 В: и имеет дополнительную функцию, которая позволяет ограничивать максимальный выходной ток. Это бесценно, когда (например) вы запускаете проект в первый раз или тестируете оборудование …. [подробнее]

Источник питания сигнализации с резервным аккумулятором

Этот источник питания подходит для модульной охранной сигнализации.Однако у него есть и другие приложения. Он предназначен для обеспечения выходного напряжения 12 В при токе до 1 А. В случае сбоя в электросети автоматически включается резервная батарея. При восстановлении электросети аккумулятор заряжается …. [подробнее]

Двухканальный регулируемый источник питания постоянного тока

Этот простой блок обеспечивает двухканальный регулируемый выходной сигнал в диапазоне от ± 2,5 В до ± 15 В постоянного тока с точным отслеживанием положительного и отрицательного выходных напряжений, сохраняя при этом возможности ограничения тока и защиты от короткого замыкания, присущие «главной» цепи.Поскольку целью такой конструкции с двумя шинами является питание экспериментальных или находящихся в ремонте схем, максимальный выдаваемый ток был намеренно сохранен на уровне примерно 500-600 мА на шину, что позволяет избежать использования дорогих силовых транзисторов и сложных схем … . [подробнее]

Дискретная виртуальная цепь заземления

Вот простая схема виртуального заземления, основанная на дискретных компонентах. Этот простой дизайн разработан гуру миниатюризации Сиджосаэ.Это сделать буфер из общих дискретных компонентов. Транзисторы могут быть практически любой комплементарной парой малосигнальных транзисторов. Подходящими альтернативами являются PN2222A и PN2907A. Диоды относятся к обычным малосигнальным типам. Приемлемой альтернативой является 1N914. Эта схема имеет лучшие характеристики, чем простой резистивный делитель виртуальной земли, а стоимость деталей ниже, чем у любой другой схемы, упомянутой здесь. Однако это наименее точная из виртуальных цепей заземления с буферизацией …. [подробнее]

Схема регулируемого источника питания 5 В

Эта схема представляет собой небольшой источник питания + 5В, который пригодится при экспериментах с цифровой электроникой. Небольшие недорогие настенные трансформаторы с регулируемым выходным напряжением можно приобрести в любом магазине электроники и супермаркете.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *