Дб в разы онлайн: Перевод dB в «разы» и наоборот

Содержание

Перевод дБм в дБ (dBm в dB), взаимозависимость между мощностью и затуханием

Оптическая мощность, или мощность оптического излучения – это основополагающий параметр оптического сигнала. Он может быть выражен в привычных нам единицах измерения – Ватт (Вт), милливатт (мВт), микроватт (мкВт). А также логарифмических единицах – дБм.

Затухание оптического сигнала (А) – величина, которая показывает во сколько раз мощность сигнала на выходе линии связи (P вых) меньше мощности сигнала на входе этой линии (Pвх). Затухание выражается в дБ (дециБелл) и может быть определено по следующей формуле:

Рисунок 1 – формула расчета оптического затухания в случае если оптическая мощность выражена в Вт

Немного непривычно, не так ли? Логарифмические линейки и таблицы – уходят в прошлое, по крайней мере для молодых монтажников их давно уже заменил калькулятор. И даже с учетом использования калькулятора – такая формула не сильно удобна. Поэтому, для упрощения расчетов было принято решение перевести единицы измерения мощности в логарифмический формат и таким образом избавиться от логарифмов в формуле:

Рисунок 2 – пересчет мощности из мВт в дБм

Для перевода дБм в Вт и наоборот можно пользоваться также таблицей:

дБм Милливат
0 1,0
1 1,3
2 1,6
3 2,0
4 2,5
5 3,2
6 4
7 5
8 6
9 8
10 10
11 13
12 16
13 20
14 25
15 32

В результате пересчета, формула вычисления оптического затухания (рис 1) превращается в:

Рисунок 3 – перевод дБм в дБ (dBm в dB), взаимозависимость между мощностью и затуханием

Учитывая тот факт, что все известные автору измерители оптической мощности в качестве основной единицы измерения используют дБм, то используя формулу на рис 3 инженер может определить уровень затухания даже в уме.

Кроме того, многие приборы имеют функцию установки опорного уровня, благодаря чему пользователю выдается значение потерь сразу в Дб.

В этом случае, измерение затухания оптической линии значительно упрощается, что продемонстрировано на следующем видео.

Измерение затухания оптической линии

Зачастую измерянного значения затухания в дБ – достаточно. Однако для того, чтобы представить во сколько раз уменьшился входной сигнал, можно воспользоваться формулой: 

m = 10

(n / 10)

где m – отношение в разах, n – отношение в децибелах

можно также пользоваться следующей таблицей:

Таблица 1 – перевод дБ в разы
дБ Раз дБ Раз дБ Раз
0 1,000 0,9 1,109 9 2,82
0,1 1,012 1 1,122 10 3,16
0,2 1,023 2 1,26 11 3,55
0,3 1,035 3 1,41 12 3,98
0,4 1,047 4 1,58 13 4,47
0,5 1,059 5 1,78 14 5,01
0,6 1,072 6 2,00 15 5,62
0,7 1,084 7 2,24 16 6,31
0,8 1,096 8 2,51 17 7,08

СМОТРИТЕ ТАКЖЕ:

Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др.

единицах • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Random converter

Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др.

единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Электрическая проводимость

Знаете ли вы, что такой привычный диэлектрический материал, как стекло, может при определенных условиях прекрасно проводить электричество? Подробнее…

Логарифмическая линейка — механический аналоговый компьютер с несколькими логарифмическими шкалами

Введение

Мощность звука ракеты-носителя Сатурн-5 составляет 100 000 000 Вт или 200 дБ SWL

Логарифмическая шкала и логарифмические единицы часто используется в тех случаях, когда необходимо измерить некоторую величину, изменяющуюся в большом диапазоне. Примерами таких величин являются звуковое давление, магнитуда землетрясений, световой поток, различные частотно-зависимые величины, используемые в музыке (музыкальные интервалы), антенно-фидерных устройствах, электронике и акустике. Логарифмические единицы позволяют выразить отношения величин, изменяющихся в очень большом диапазоне с помощью удобных небольших чисел примерно так, как это делается при экспоненциальной записи чисел, когда любое очень большое или очень малое число может быть представлено в краткой форме в виде мантиссы и порядка. Например, мощность звука, издаваемого при запуске ракеты-носителя Сатурн, составляла 100 000 000 Вт или 200 дБ SWL. В то же время, мощность звука очень тихого разговора составляет 0,000000001 Вт или 30 дБ SWL (измерена в децибелах относительно мощности звука 10⁻¹² ватт, см. ниже).

Правда, удобные единицы? Но, как оказывается, они удобны далеко не для всех! Можно сказать, что большинство людей, плохо разбирающихся в физике, математике и технике, не понимают логарифмических единиц, таких как децибелы. Некоторые даже считают, что логарифмические величины относятся не к современной цифровой технике, а к тем временам, когда для инженерных расчетов использовали логарифмическую линейку!

Немного истории

Джон Непер. Источник: Википедия

Изобретение логарифмов упростило вычисления, так как они позволили заменить умножение сложением, которое выполняется значительно быстрее, чем умножение. Среди ученых, которые внесли значительный вклад в развитие теории логарифмов, можно отметить шотландского математика, физика и астронома Джона Непера, опубликовавшего в 1619 г. сочинение с описанием натуральных логарифмов, которые значительно упрощали вычисления.

Уильям Отред. Источник: Википедия

Важным инструментом для практического использования логарифмов были таблицы логарифмов. Первая такая таблица была составлена английским математиком Генри Бригсом в 1617 году. Основываясь на работах Джона Непера и других ученых, английский математик и священник англиканской церкви Уильям Отред изобрел логарифмическую линейку, которая использовалась инженерами и учеными (включая и автора этой статьи) в течение последующих 350 лет, пока в середине семидесятых прошлого века ее не заменили карманные калькуляторы.

Определение

Логарифм — операция обратная возведению в степень. Число y является логарифмом числа x по основанию b

y = logb(x)

если соблюдается равенство

by = x

Иными словами, логарифм данного числа — это показатель степени, в которую нужно возвести число, называемое основанием, чтобы получить данное число. Можно сказать проще. Логарифм — это ответ на вопрос «Сколько раз нужно умножить одно число само на себя, чтобы получить другое число». Например, сколько раз нужно умножить число 5 само на себя, чтобы получить 25? Ответом является 2, то есть

52 = 25

По приведенному выше определению

log5(25) = 2

Классификация логарифмических единиц

Логарифмические единицы широко используются в науке, технике и даже в таких ежедневных занятиях, как фотография и музыка. Имеются абсолютные и относительные логарифмические единицы.

С помощью абсолютных логарифмических единиц выражают физические величины, которые сравниваются с определенным фиксированным значением. Например, дБм (децибел милливатт) — это абсолютная логарифмическая единица мощности, в которой мощность сравнивается с 1 мВт. Отметим, что 0 дБм = 1 мВт. Абсолютные единицы прекрасно подходят для описания одиночной величины, а не соотношения двух величин. Абсолютные логарифмические единицы измерения физических величин всегда можно перевести в другие, обычные единицы измерения этих величин. Например, 20 дБм = 100 мВт или 40 дБВ = 100 В.

Цифровой измеритель уровня звука

С другой стороны, относительные логарифмические единицы используются для выражения физической величины в форме отношения или пропорции других физических величин, например, в электронике, где для этого используют децибел (дБ). Логарифмические единицы хорошо подходят для описания, например, коэффициента передачи электронных систем, то есть соотношения между выходным и входным сигналами.

Следует отметить, что все относительные логарифмические единицы являются безразмерными. Децибелы, неперы и другие названия — просто особые наименования, которые используются совместно с безразмерными единицами. Отметим также, что децибел часто используется с различными суффиксами, которые обычно присоединяются к сокращению дБ с помощью дефиса, например дБ-Гц, пробела, как в единице dB SPL, без какого-либо символа между дБ и суффиксом, как в дБм, или заключаются в кавычки, как в единице дБ(м²). Обо всех этих единицах мы поговорим ниже в этой статье.

Следует также отметить, что преобразование логарифмических единиц в обычные единицы часто бывает невозможным. Впрочем, это бывает только в тех случаях, когда говорят об отношениях. Например, коэффициент передачи усилителя по напряжению 20 дБ можно преобразовать только в «разы», то есть в безразмерную величину — он будет равным 10. В то же время, измеренное в децибелах звуковое давление можно перевести в паскали, так как звуковое давление измеряется в абсолютных логарифмических единицах, то есть, относительно опорного значения. Отметим, что коэффициент передачи в децибелах — тоже безразмерная величина, хотя и имеет название. Полная путаница получается! Но мы попробуем разобраться.

Логарифмические единицы измерения амплитуды и мощности

Мощность. Известно, что мощность пропорциональна квадрату амплитуды. Например, электрическая мощность, определяемая выражением P = U²/R. То есть, изменение амплитуды в 10 раз сопровождается изменением мощности в 100 раз. Соотношение двух величин мощности в децибелах определяется выражением

10 log10(P₁/P₂) dB

Амплитуда. В связи с тем, что мощность пропорциональна квадрату амплитуды, соотношение двух величин амплитуды в децибелах описывается выражением

20 log10(P₁/P₂) dB.

Примеры относительных логарифмических величин и единиц

  • Общие единицы
    • дБ (децибел) — логарифмическая безразмерная единица, используемая для выражения отношения двух произвольных значений одной и той же физической величины. Например, в электронике децибелы используются для описания усиления сигнала в усилителях или ослабления сигнала в кабелях. Децибел численно равен десятичному логарифму отношения двух физических величин, умноженному на десять для отношения мощностей и умноженному на 20 для отношения амплитуд.
    • Б (бел) — редко используемая логарифмическая безразмерная единица измерения отношения двух одноименных физических величин, равная 10 децибелам.
    • Н (непер) — безразмерная логарифмическая единица измерения отношения двух значений одноименной физической величины. В отличие от децибела, непер определяется как натуральный логарифм для выражения различия между двумя величинами x₁ и x₂ по формуле:

      R = ln(x₁/x₂) = ln(x₁) – ln(x₂)

      Преобразовать Н, Б и дБ можно на странице «Конвертер звука».

  • Музыка, акустика и электроника
    • Декада — относительная единица измерения интервала между двумя величинами, отношение которых равно 10. Измеряется декада с использованием логарифмической шкалы. Декаду часто используют в качестве единицы частотного интервала, например, если нужно описать отношение двух частот в музыке или электронике. Примерами являются отношения частот или частотные диапазоны. Отношение D двух частот f₁ и f₂ в декадах определяется как

      D = log10(f₂/f₁)

      Примеры: диапазон частот от 100 Гц до 10 000 Гц занимает log₁₀(10 000/100) = 2 декады. Выражение «на декаду» в электронике обычно означает «при увеличении частоты в 10 раз».

    • Интервал в одну октаву

    • Октава — относительная логарифмическая единица измерения музыкальных интервалов. Октава также используется в других областях науки и техники для выражения частотного интервала или если одной из рассматриваемых физических величин является частота. Примерами таких областей является оптика, акустика, радиоэлектроника и связь. Одна октава определяется как интервал между двумя частотами, отношение которых равно двум. Октаву можно определить по формуле
    • n = log₂ (f₂/f₁).

      Например, интервал между двумя частотами 20 и 40 Гц или 25 и 50 Гц равен одной октаве.

    • mO (миллиоктава) — безразмерная логарифмическая единица измерения музыкальных интервалов, определяемая как 1/1000 октавы. Интервал n в миллиоктавах между двумя частотами f₁ и f₂ определяется по формуле
    • n = 1000 log₂(f₂/f₁)

    • Цент — относительная безразмерная логарифмическая единица для измерения музыкальных интервалов, то есть, отношения двух частот. По определению, в каждом полутоне разделенного на 12 полутонов равномерного темперированного строя содержится 100 центов. Таким образом, интервал в n центов между двумя частотами f₁ и f₂ двух нот можно рассчитать как

      n = 1200 ∙ log₂ (f₂/f₁) ≈ 3986 log10(f₂/f₁)

      Иными словами, один цент — это 1/100 полутона в равномерно темперированном строе, то есть, интервала между двумя соседними клавишами фортепиано. Отметим, что цент, определенный для равномерно темперированного строя, можно использовать для измерения интервалов в любом музыкальном строе, например, в натуральном строе.

      Пример: если одна частота равна 440 Гц (нота ля первой октавы, A4 в научной нотации), то вторая частота на 200 центов выше будет 440 ∙ 2200/1200 ≈ 440 ∙ 1,122462048 = 493,8833 Гц (нота си первой октавы или B4 (h5) в научной нотации). Отметим, что все музыкальные интервалы, например, малая секунда, большая секунда, малая терция и т.п. является логарифмическими величинами.

    • Centitone — относительная логарифмическая безразмерная единица измерения музыкальных интервалов. По определению это музыкальный интервал, равный двум центам, то есть, 22/1200 or 21/600. Следовательно, интервал в n centitones между двумя частотами f1 и f2 двух нот можно рассчитать как

      n = 600 ∙ log₂(f₂/f₁) ≈ 1993 log10(f₂/f₁)

      Пример: если одна частота равна 440 Гц (нота ля первой октавы, A4 в научной нотации), то вторая частота на 100 центов выше будет 440 ∙ 2200/1200 ≈ 440 ∙ 1,122462048 = 493,8833 Гц (нота си первой октавы или B4 (h5) в научной нотации). Тон в равномерно темперированном строе равен 100 centitones. Похоже, что эта единица в русском языке не используется, поэтому и слова соответствующего нет. Пусть музыканты меня поправят.

    • Савар — относительная безразмерная логарифмическая единица измерения музыкальных интервалов. По определению один савар равен 1/1000 декады. Интервал в s саваров между двумя частотами f₁ и f₂ двух нот можно рассчитать как

    s = 1000 ∙ log10(f₂/f₁)

  • Антенная техника. Логарифмическая шкала используется во многих относительных безразмерных единицах для измерения различных физических величин в антенной технике. В таких единицах измерения измеряемый параметр обычно сравниваются с соответствующим параметром стандартного типа антенны.
    • дБи или dBi (изотропный децибел, отношение по мощности) — относительный безразмерный коэффициент усиления антенны в направлении максимума ее диаграммы направленности (графического представления направленности излучения антенны) в децибелах по отношению к усилению изотропной антенны, которая излучает одинаково во всех направлениях.
    • Максимальный коэффициент усиления антенны этого маршрутизатора Linksys равен 2,91 дБи на частоте 2,4 ГГц.

    • дБд или dBd (децибел относительно диполя, то есть полуволнового вибратора, отношение по мощности) — относительный безразмерный коэффициент усиления антенны в направлении максимума ее диаграммы направленности в децибелах по отношению к коэффициенту усиления полуволнового вибратора. Поскольку коэффициент усиления полуволнового вибратора равен 2,15 дБи, КУдБи = КУдБд + 2,15, где КУ — коэффициент усиления антенны. Единица дБд также используется для измерения коэффициента направленного действия антенны (КНД).
    • дБиК или dBiC (децибел изотропный круговой, отношение по мощности) — относительный безразмерный коэффициент усиления антенны в направлении максимума ее диаграммы направленности в децибелах по отношению к коэффициенту усиления изотропного излучателя с круговой поляризацией. Между дБиК и дБи нет фиксированного соотношения, так как оно зависит от приемной антенны и поляризации сигнала.
    • dBq (децибел четвертьволновый, отношение по мощности) — относительный безразмерный коэффициент усиления антенны в направлении максимума ее диаграммы направленности в децибелах по отношению к коэффициенту усиления четвертьволновой гибкой штыревой антенны. Используется редко, в основном в англоязычных маркетинговых материалах. 0 dBq = –0,85 дБи.
    • дБ(м²) или dBsm (децибел квадратный метр, отношение по мощности) — относительная безразмерная логарифмическая величина, характеризующая эффективную площадь антенны относительно 1 кв. м.
    • дБм⁻¹, дБ(м⁻¹), dBm⁻¹, или dB(m⁻¹) (децибел относительно обратного метра, отношение по мощности) — относительный безразмерный коэффициент калибровки антенны (антенный фактор).
  • Связь и передача данных
    • дБн или dBc (децибел несущая, отношение по мощности) — безразмерная мощность радиосигнала (уровень излучения) по отношению к уровню излучения на частоте несущей, выраженная в децибелах. Определяется как SдБн = 10 log₁₀(Pнесущей/Pмодуляции). Если величина дБн положительная, то мощность модулированного сигнала больше, чем мощность немодулированной несущей. Если же величина дБн отрицательная, то мощность модулированного сигнала меньше мощности немодулированной несущей.
  • Электронная аппаратура звуковоспроизведения и звукозаписи
    • dBFS (децибел относительно полной шкалы, отношение по амплитуде, англ. full scale — полная шкала) — амплитуда сигнала в децибелах относительно максимально возможного напряжения для данной цифровой системы, при котором еще не будет искажений. Если напряжение превышает этот уровень, сигнал обрезается, то есть возникает так называемый клиппинг, при котором верхушки синусоиды обрезаются. Эти величины всегда отрицательные или равны нулю (максимально допустимый уровень). Данная единица появилась в конце семидесятых годов прошлого века.
    • dBov или dBO (децибел перегрузки, отношение по амплитуде) — амплитуда сигнала (обычно это аудиосигнал) в децибелах относительно максимума, при котором аналоговое или цифровое устройство еще способно воспроизводить сигнал без искажений в виде клиппинга.
    • Взвешивающий псофометрический фильтр типа С, упомянутый в описании единицы dBrnC, применяется для измерения отношения сигнал/шум. Метод был разработан в Северной Америке много лет назад для оценки характеристик телефонных линий связи

    • dBrnC (децибел контрольный шум, псофометрический фильтр типа С, от англ. decibel reference noise, C-message weighting, соотношение по амплитуде) — уровень аудиосигнала в децибелах, обычно в телефонной линии, показывающий насколько он превышает опорный уровень шума, измеряемый с использованием псофометрического взвешивающего фильтра типа С. Данный фильтр используется, в основном, в Северной Америке, а в европейских странах обычно используют другой метод оценки шума. Взвешивающий фильтр используется в связи с тем, что шум содержит различные нерегулярные составляющие в широком диапазоне частот, причем в телефонной линии шум максимально мешает приему только в диапазоне частот голоса. Фильтр помогает правильно измерить влияние шума на качество приема речевого сигнала.
    • dBrnC0 (децибел контрольный шум 90 дБм, псофометрический фильтр типа С, откорректированный относительно точки с нулевым уровнем передачи) (от англ. decibel reference noise 90 dBm, C-message weighting, corrected to the point of zero transmission level). Точка измерения относительного уровня мощности (TLP — transmission level point) — это произвольно выбираемая в схеме связного оборудования точка, в которой может быть измерен сигнал и для которой задана номинальная мощность тестового сигнала. Точка уровня передачи 0 TLP или 0 дБм — это такая точка в системе, в которой номинальная мощность тестового сигнала равна 0 дБм или 1 мВт на стандартной испытательной частоте 1004 Гц.
    • dBTP (децибел реальных пиковых значений, амплитудное соотношение, от англ. decibel true peak) — максимально допустимый уровень истинных пиков — пиковая амплитуда сигнала в децибелах относительно максимума для данного устройства, при превышении которого сигнал обрезается (клиппинг). Значения всегда отрицательные или нулевые (полная шкала).
  • Другие единицы и величины
    • Порядок величины — шкала соотношений между двумя величинами, обычно записываемых в виде степеней 10. Например, числа 35 и 53 принадлежат к одному порядку величины, равному 1. Другим примером использования порядка в обычной речи является фраза «У нее шестизначный доход», то есть доход в определенной валюте выражается числами с шестью знаками. В этом случае порядок величины равен 5. Иными словами, порядок величины — это приблизительное положение этой величины на логарифмической шкале. Фраза «Диаметр Юпитера на порядок больше диаметра Земли» — еще один пример использования порядка величины в разговорном языке. Фраза означает, что диаметр Юпитера приблизительно в 10 раз (точно в 11,209 раз) больше диаметра Земли. То есть, в разговорном языке «на порядок больше» означает «примерно в 10 раз больше, а «на два порядка меньше» означает «примерно в 100 раз меньше».
    • В этой чашке кофе pH = 4.8

    • pH — водородный показатель, то есть относительная логарифмическая мера концентрации ионов водорода в водном растворе. Шкала pH используется для указания кислотности или щелочности водных растворов. По определению, pH = – log₁₀(aH+) = log₁₀(1/aH+), где aH+ — активность водородных ионов в растворе. Например, у лимонного сока pH = 2,2, а у дистиллированной воды pH = 7.0. У основных растворов pH > 7.
    • Относительное отверстие N в оптике и фотографии — мера светопропускания объектива. Это относительная логарифмическая единица, определяемая как отношение фокусного расстояния объектива f к диаметру его входного зрачка D N = f/D. Во всех фотографических объективах имеется диафрагма, предназначенная для изменения относительного отверстия. Шкала регулировки диафрагмы на фотообъективах с ручной регулировкой традиционно градуируется в дискретных числах диафрагмы. При изменении диафрагмы на одно деление в объективах с ручной регулировкой количество света, которое попадает в камеру, изменяется вдвое. В современных объективах используют стандартную шкалу диафрагм (f/1, f/1.4, f/2, f/2.8, f/4, f/5.6, f/8, f/11, f/16, f/22, f/32, f/45, f/64, f/90, f/128 и так далее). Отношение между соседними числами в этой последовательности равно приблизительно √2 (квадратному корню из двух или 1,414). Если D1 и D2 — два относительных отверстия, не находящиеся рядом на шкале, то соотношение между ними определяется формулой

      D₂ = (√2)ⁿ ∙ D₁

      Или

      На этом объективе «рыбий глаз» с ручной регулировкой установлена диафрагма 5,6

      (√2)ⁿ = D₂/D₁

      Или по определению логарифма,

      log(√2) (D₂/D₁) = n

      Определим, например, насколько более светосильным является объектив с относительным отверстием f/1,4 по сравнению с объективом, у которого относительное отверстие равно f/5,6. Если посмотреть на последовательность чисел шкалы диафрагм, то мы видим, что между f/1,4 и f/5,6 четыре деления. Проверим этот вывод по приведенной выше формуле: (√2)⁴ ∙ 1,4 = 4 ∙ 1,4 = 5,6. Как видно, значения диафрагм располагаются на логарифмической шкале!

      Подробнее об экспозиции, относительном отверстии и других параметрах, используемых при фотосъемке

    • Существует множество других относительных логарифмических единиц, таких как оптическое поглощение в химии и физике, видимая звездная величина небесного тела в астрономии, соотношение между интенсивностью ощущения и интенсивностью раздражителя в психофизиологии и многие другие.

Примеры абсолютных логарифмических единиц и величин в децибелах с суффиксами и опорными уровнями

  • Мощность, уровень сигнала (абсолютные)
    • дБм, дБмВт или dBm (децибел милливатт, отношение по мощности) — абсолютная мощность в децибелах относительно опорного уровня мощности в 1 мВт. Мощность в дБм = 10log₁₀(PВЫХ/1мВт) где PВЫХ — мощность, измеренная в милливаттах. Мощность, выделяемая в нагрузке, зависит от приложенного напряжения и импеданса нагрузки.
    • Wi-Fi передатчик этого маршрутизатора Linksys обеспечивает максимальную мощность 19,98 дБм на частоте 2,4 ГГц и 22,96 дБм на частоте 5 ГГц.

    • дБВт или dBW (децибел ватт, отношение по мощности) — абсолютная единица мощности с опорным уровнем 1 Вт. Например, мощность передатчика, измеренная в децибелах, равна +40 дБВт, что составляет 10 кВт.
    • Электрический ток (абсолютный)
    • дБмкА, дБ(мкА), dBμA или dB(μA) (децибел микроампер, амплитудное соотношение) — абсолютная величина тока с опорным уровнем 1 мкА.
  • Напряжение (абсолютное)
    • dBu или dBv (децибел относительно опорного напряжения 0,775 В, амплитудное соотношение) — абсолютное среднеквадратичное значение напряжения в децибелах относительно опорного напряжения 0,775 В, соответствующего мощности 0 дБм или 1 мВт на нагрузке 600 Ом (600 Ом ∙ 0,001 Вт) 1/2 = (0.6) 1/2 ≈ 0,775 В ≈ –2,218 dBV.
    • дБВ, dBV или dB(VRMS) (децибел вольт, амплитудное соотношение) — абсолютное напряжение в децибелах относительно 1 В, от импеданса не зависит.
    • Чувствительность этого микрофона Shure PG48 составляет -53,5 дБВ/Па или 2,10 мВ/Па (1 Па = 94 дБ SPL)

    • дБмВ, dBmV или dB(mVRMS) (децибел милливольт, амплитудное соотношение) — абсолютное напряжение в децибелах относительно 1 мВ, используется для измерения сигналов в радиочастотных и низкочастотных кабелях. То есть, dBmV = 20log₁₀(VВЫХ/1мВ) где VВЫХ выражено в мВ. Выражение показывает, что dBmV не зависит от импеданса. Поскольку это соотношение двух напряжений, можно измерять как пиковое, так и среднеквадратичное значение. Главное, чтобы единицы измерения были одинаковыми. Опорное напряжение 1 мВ.
    • дБмкВ, dBμV или dBuV (децибел микровольт, амплитудное соотношение) — абсолютное напряжение в децибелах относительно 1 мкВ, используется для измерения сигналов в радиочастотных и низкочастотных кабелях. То есть, дБмкВ = 20log₁₀(VВЫХ/1мкВ) где VВЫХ выражено в мкВ. Выражение показывает, что дБмкВ не зависит от импеданса. Поскольку это соотношение двух напряжений, можно измерять как пиковое, так и среднеквадратичное значение. Главное, чтобы единицы измерения были одинаковыми. Опорное напряжение 1 мкВ.
  • Электрическое сопротивление (абсолютное)
    • дБОм, dBohm или dBΩ (децибел ом, амплитудное соотношение) — абсолютное сопротивление в децибелах относительно 1 Ом. Эта единица измерения удобна, если рассматривают большой диапазон сопротивлений. Например, 0 dBΩ = 1 Ω, 6 dBΩ = 2 Ω, 10 dBΩ = 3,16 Ω, 20 dBΩ = 10 Ω, 40 dBΩ = 100 Ω, 100 dBΩ = 100 000 Ω, 160 dBΩ = 100 000 000 Ω и так далее.
  • Акустика (абсолютный уровень звука, звуковое давление или интенсивность звука)
    • dB SPL (децибел, уровень звукового давления, амплитудное соотношение) — амплитуда звукового давления относительно опорного значения 20 мкПа, соответствующего порогу слышимости здорового молодого человека. В этих единицах выражается громкость звука, например, болевой порог уровня звука составляет 120–140 dB SPL. SPL — от англ. sound pressure level — уровень звукового давления. Отметим, что очень часто суффикс SPL опускают и говорят о громкости звука просто в децибелах (дБ). Тем не менее, это абсолютная единица и ее всегда можно перевести в паскали или иные единицы звукового давления.
    • dB SIL (децибел, интенсивность звука, соотношение по мощности) — абсолютная логарифмическая единица интенсивности звука относительно порога слышимости человека в воздухе 10⁻¹² Вт/м². SIL — от англ. sound intensity level — уровень интенсивности звука.
    • dB SWL (децибел, уровень мощности звука, отношение по мощности) — логарифмическая единица абсолютного уровня мощности звука, измеренного относительно опорной мощности 10⁻¹² Вт или 1 пВт.
    • Большинство профессиональных наушников могут создавать звуковое давление, превышающее 85 dB(A), которое является максимально допустимым, если звук воздействует на человека в течение всего рабочего дня.

    • dBA или dB(A) (децибел, с весовым фильтром типа А, амплитудное соотношение) — уровень звукового давления, измеренный со взвешивающим фильтром типа А относительно звукового давления 20 мкПа, что соответствует порогу слышимости. Существуют различные взвешивающие фильтры, используемые в различных диапазонах частоты и громкости. Фильтр типа А предназначен для измерения относительно тихих звуков, причем они должны быть синусоидальной формы без искажений. Фильтры B и C рассчитаны на измерение более громких звуков, а фильтр типа D рассчитан на измерение сильного шума авиационных двигателей.
    • dBB или dB(B) (децибел, с весовым фильтром типа B, амплитудное соотношение) — уровень звукового давления, измеренный со взвешивающим фильтром типа B относительно звукового давления 20 мкПа, что соответствует порогу слышимости.
    • dBC или dB(C) (децибел, с весовым фильтром типа C, амплитудное соотношение) — уровень звукового давления, измеренный со взвешивающим фильтром типа B относительно звукового давления 20 мкПа, что соответствует порогу слышимости человека.
    • dB HL (децибел, пороговый уровень слуха, амплитудное соотношение) — абсолютное звуковое давление в децибелах, измеренное относительно порога слуха 20 мкПа. Используется при проверке слуха. В данном случае 0 dB HL означает очень тихий звук, а 90–110 dB HL — очень громкий звук.

      Обратите внимание на то, что единицы dB HL и dB SPL похожи по определению. Однако это разные единицы. С помощью dB SPL измеряется звуковое давление без учета особенностей слуха человека. С помощью dB HL измеряется звуковое давление при прослушивании чистого тона на разных частотах с учетом особенностей восприятия их человеческим ухом. Эти частоты для разных уровней dB HL и dB SPL приводятся в аудиометрических таблицах.

  • Радиолокация. Абсолютные значения по логарифмической шкале используются для измерения радиолокационной отражаемости по сравнению с какой-либо опорной величиной.
    • dBZ или dB(Z) (амплитудное соотношение) — абсолютный коэффициент радиолокационной отражаемости в децибелах относительно минимального облака Z = 1 мм⁶•м⁻³. 1 dBZ = 10 log (z/1 мм⁶ м³). Эта единица показывает количество капель в единице объема и используется метеорологическими радиолокационными станциями (метео-РЛС). Информация, полученная при измерениях в сочетании с другими данными, в частности, результатами анализа поляризации и допплеровского сдвига, позволяют оценить что происходит в атмосфере: идет ли дождь, снег, град, или летит стая насекомых или птиц. Например, 30 dBZ соответствует слабому дождю, а 40 dBZ — умеренному дождю.
    • dBη (амплитудное соотношение) — абсолютный фактор радиолокационной отражаемости объектов в децибелах относительно 1 см²/км³. Эта величина удобна, если нужно измерить радиолокационную отражаемость летающих биологических объектов, таких как птицы, летучие мыши. Метео-РЛС часто используются для наблюдения за подобными биологическими объектами.
    • дБ(м²), dBsm или dB(m²) (децибел квадратный метр, амплитудное соотношение) — абсолютная единица измерения эффективной площади рассеяния цели (ЭПР, англ. radar cross-section, RCS) по отношению к квадратному метру. Насекомые и слабо отражающие цели имеют отрицательную эффективную площадь рассеяния, в то время как большие пассажирские самолеты — положительную.
  • Связь и передача данных. Абсолютные логарифмические единицы используются для измерения различных параметров, связанных с частотой, амплитудой и мощностью передаваемых и принимаемых сигналов. Все абсолютные значения в децибелах можно преобразовать в обычные единицы, соответствующие измеряемой величине. Например, уровень мощности шумов в dBrn можно преобразовать непосредственно в милливатты.
    • дБГц, dBHz, dB-Hz или dB(Hz) (децибел герц, соотношение по амплитуде) — абсолютная единица измерения ширины полосы пропускания в децибелах относительно 1 Гц. Например, 20 дБГц соответствует полосе 100 Гц, а 60 дБГц соответствует полосе 1 МГц. Эта единица обычно используется для оценки общих потерь в каналах связи. Также единица используется для измерения отношения мощности цифрового сигнала на входе приемника к плотности мощности шума (C/N₀). Здесь плотность мощности шума N₀ измеряется в дБГц.
    • dBrn или dB(rn) (децибел опорный шум, отношение по мощности, от англ. reference noise) — абсолютная логарифмическая величина для измерения взвешенного шума относительно мощности в 1 пиковатт. В скобках обычно указывается использование различных взвешивающих фильтров или частотного диапазона. Эта единица удобнее, чем dBm для измерения шума, так как мощность шума обычно значительно меньше, чем 1 мВт. 0 dBrn = –90 dBm. Преобразование dBrn в dBm: dBrn = dBm + 90 dB.
  • Другие абсолютные логарифмические единицы. Таких единиц много в разных отраслях науки и техники и здесь мы приведем лишь несколько примеров.
    • Шкала магнитуды землетрясений Рихтера содержит условные логарифмические единицы (используется десятичный логарифм), используемые для оценки силы землетрясения. Согласно этой шкале магнитуда землетрясения определяется как десятичный логарифм отношения амплитуды сейсмических волн к произвольно выбранной очень малой амплитуде, которая представляет магнитуду 0. Каждый шаг шкалы Рихтера соответствует увеличению амплитуды колебаний в 10 раз.
    • dBr (децибел относительно опорного уровня, соотношение по амплитуде или по мощности, задается явным образом) — логарифмическая абсолютная единица измерения какой-либо физической величины, задаваемой в контексте.
    • dBSVL — колебательная скорость частиц в децибелах относительно опорного уровня 5∙10⁻⁸ м/с. Название происходит от англ. sound velocity level — уровень скорости звука. Колебательная скорость частиц среды иначе называется акустической скоростью и определяет скорость, с которой движутся частицы среды при их колебаниях относительно положения равновесия. Опорная величина 5∙10⁻⁸ м/с соответствует колебательной скорости частиц для звука в воздухе.

Автор статьи: Анатолий Золотков

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Что такое децибел (дБ)? Перевод из децибел в разы.

Перевод из децибел в разы и обратно

Довольно часто в популярной радиотехнической литературе, в описании электронных схем употребляется единица измерения – децибел (дБ или dB).

При изучении электроники начинающий радиолюбитель привык к таким абсолютным единицам измерения как Ампер (сила тока), Вольт (напряжение и ЭДС), Ом (электрическое сопротивление) и многим другим, с помощью которых обозначают количественно тот или иной электрический параметр (ёмкость, индуктивность, частоту).

Начинающему радиолюбителю, как правило, не составляет особого труда разобраться, что такое ампер или вольт. Тут всё понятно, есть электрический параметр или величина, которую нужно измерить. Есть начальный уровень отсчёта, который принимается по умолчанию в формулировке данной единицы измерения. Есть условное обозначение этого параметра или величины (A, V). И вправду, как только мы читаем надпись 12 V, то мы понимаем, что речь идёт о напряжении, аналогичном, например, напряжению автомобильной аккумуляторной батареи.

Но как только встречается надпись, к примеру: напряжение повысилось на 3 дБ или мощность сигнала составляет 10 дБм (10 dBm), то у многих возникает недоумение. Как это? Почему упоминается напряжение или мощность, а значение указывается в каких-то децибелах?

Практика показывает, что не многие начинающие радиолюбители понимают, что же такое децибел. Попытаемся развеять непроглядный туман над такой таинственной единицей измерения как децибел.

Что такое децибел?

Единицу измерения под названием Бел стали впервые применять инженеры телефонной лаборатории Белла. Децибел является десятой частью Бела (1 децибел = 0,1 Бел). На практике широко используется как раз децибел.

Как уже говорилось, децибел, это особенная единица измерения. Стоит отметить, что децибел не является частью официальной системы единиц СИ. Но, несмотря на это, децибел получил признание и занял прочное место наряду с другими единицами измерения.

Вспомните, когда мы хотим объяснить какое-либо изменение, мы говорим, что, например, стало ярче в 2 раза. Или, например, напряжение упало в 10 раз. При этом мы устанавливаем определённый порог отсчёта, относительно которого и произошло изменение в 10 или 2 раза. С помощью децибел также измеряют эти “разы”, только в логарифмическом масштабе.


График логарифмической зависимости

Например, изменение на 1 дБ, соответствует изменению энергетической величины в 1,26 раза. Изменение на 3 дБ соответствует изменению энергетической величины в 2 раза.

Но зачем так заморачиваться с децибелами, если отношения можно измерять в разах? На этот вопрос нет однозначного ответа. Но уж, поскольку, децибелы активно применяются, то наверняка это оправдано.

Причины для использования децибел всё-таки есть. Перечислим их.

Частично ответ на этот вопрос кроется в так называемом законе Вебера-Фехнера. Это эмпирический психофизиологический закон, т.е основан он на результатах реальных, а не теоретических экспериментов. Суть его заключается в том, что любые изменения каких-либо величин (яркости, громкости, веса) ощущаются нами при условии, если эти изменения носят логарифмический характер.


График зависимости ощущения громкости от силы (мощности) звука. Закон Вебера-Фехнера

Так, например, чувствительность человеческого уха уменьшается с ростом уровня громкости звукового сигнала. Именно поэтому, при выборе переменного резистора, который планируется применить в регуляторе громкости звукового усилителя стоит брать с показательной зависимостью сопротивления от угла поворота ручки регулятора. В этом случае, при повороте движка регулятора громкости звук в динамике будет нарастать плавно. Регулировка громкости будет линейной, так как показательная зависимость регулятора громкости компенсирует логарифмическую зависимость нашего слуха и в сумме станет линейной. При взгляде на рисунок это станет более понятно.


Зависимость сопротивления переменного резистора от угла поворота движка (А-линейная, Б-логарифмическая, В-показательная)

Здесь показаны графики зависимости сопротивления переменных резисторов разных типов: А – линейная, Б – логарифмическая, В – показательная. Как правило, на переменных резисторах отечественного производства указывается, какой зависимостью обладает переменный резистор. На тех же принципах основаны цифровые и электронные регуляторы громкости.

Также стоит отметить, что человеческое ухо воспринимает звуки, мощность которых различается на колоссальную величину в 10 000 000 000 000 раз! Таким образом, самый громкий звук отличается от самого тихого, который может уловить наш слух, на 130 дБ (10 000 000 000 000 раз).

Вторая причина широкого использования децибел является простота вычислений.

Согласитесь, что куда проще при вычислениях использовать небольшие числа вроде 10, 20, 60,80,100,130 (наиболее часто используемые числа при расчёте в децибелах) по сравнению с числами 100 (20 дБ), 1000 (30 дБ), 1000 000 (60 дБ),100 000 000 (80 дБ),10 000 000 000 (100 дБ), 10 000 000 000 000 (130 дБ). Ещё одним достоинством децибел является то, что их просто суммируют. Если проводить вычисления в разах, то числа необходимо умножать.

Например, 30 дБ + 30 дБ = 60 дБ (в разах: 1000 * 1000 = 1000 000). Думаю, с этим всё ясно.

Также децибелы очень удобны при графическом построении различных зависимостей. Все графики вроде диаграмм направленности антенн, амплитудно-частотных характеристик усилителей выполняют с применением децибел.

Децибел является безразмерной единицей измерения. Мы уже выяснили, что децибел на самом деле показывает, во сколько раз возросла, либо уменьшилась какая-либо величина (ток, напряжение, мощность). Отличие децибел от разов заключается лишь в том, что происходит измерение по логарифмическому масштабу. Чтобы это как-то обозначить и приписывают обозначение дБ. Так или иначе, при оценке приходится переходить от децибел к разам. Сравнивать с помощью децибел можно любые единицы измерения (не только ток, напряжение и проч.), так как децибел является относительной, безразмерной величиной.

Если указывается знак “-”, например, –1 дБ, то значение измеряемой величины, например, мощности, уменьшилось в 1,26 раз. Если перед децибелами не ставят никакого знака, то речь идёт об увеличении, росте величины. Это стоит учитывать. Иногда вместо знака “-” говорят о затуханиях, снижении коэффициента усиления.

Переход от децибел к разам.

На практике чаще всего приходится переходить от децибел к разам. Для этого есть простая формула:

Внимание! Данные формулы применяются для так называемых “энергетических” величин. Таких как энергия и мощность.

m = 10(n / 10) ,где m – отношение в разах, n – отношение в децибелах.

Например, 1дБ равен 10(1дБ / 10) = 1,258925…= 1,26 раза.

Аналогично,

Но, не всё так просто. Есть и подводные камни. Например, затухание сигнала составляет -10 дБ. Тогда:

  • при -10 дБ: 10(-10дБ / 10) = 0,1

    Если мощность с 5 Вт уменьшилась до 0,5 Вт, то снижение мощности равно -10 дБ (уменьшению в 10 раз).

  • при -20 дБ: 10(-20дБ / 10) = 0,01

    Здесь аналогично. При снижении мощности с 5 Вт до 0,05 Вт, в децибелах падение мощности составит -20 дБ (уменьшению в 100 раз).

Таким образом, при -10 дБ мощность сигнала уменьшилась в 10 раз! При этом если мы перемножим начальную величину сигнала на 0,1 ,то и получим значение мощности сигнала при затухании в -10 дБ. Именно поэтому значение 0,1 и указано без «разов», как в предыдущих примерах. Учитывайте эту особенность при подстановке в данные формулы значений децибел со знаком «-«.

Переход от разов к децибелам можно осуществить по следующей формуле:

  • n = 10 * log10(m) ,где n – значение в децибелах, m – отношение в разах.

  • Например, рост мощности в 4 раза будет соответствовать значению в 6,021 дБ.

  • 10 * log10(4) = 6,021 дБ.

Внимание! Для пересчёта отношений таких величин как напряжение и сила тока существуют немного иные формулы:

(Сила тока и напряжение, это так называемые “силовые” величины. Поэтому и формулы отличаются.)

n – значение в децибелах, m – отношение в разах.

Если Вы успешно дошли до этих строк, то считайте, что сделали ещё один весомый шаг в освоении электроники!

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Измерение децибел онлайн. Измерение затухания оптической линии. В животноводстве и канцелярской деятельности

Децибел — это относительная единица измерений, она не похожа на остальные известные величины, поэтому ее не включили в систему общепринятых единиц измерения СИ. Однако во многих расчетах допускается использование децибелов наравне с абсолютными единицами измерений и даже применение их в качестве опорной величины.

Децибелы определяются принадлежностью к физическим величинам, поэтому их нельзя относить к математическим понятиям. Это легко представить, если провести параллель с процентами, с которыми децибелы имеют много общего. Они не имеют конкретных размеров, но при этом очень удобны при сопоставлении 2-х одноименных величин, даже если они различны по своей природе. Таким образом, не сложно представить, что измеряется в децибелах.

История возникновения

Как выяснилось в результате длительных исследований, восприимчивость не находится в прямой зависимости от абсолютного уровня распространения звука. Она является показателем мощности, примененным к заданной единице площади, которая находится в зоне воздействия звуковых волн, что и измеряют в децибелах сегодня. В результате установили любопытную пропорцию — чем больше места принадлежит полезной площади человеческого уха, тем к лучшему восприятию минимальных мощностей оно расположено.

Таким образом, исследователю Александру Грэхему Беллу удалось установить, что предел восприятия человеческого уха равен от 10 до 12 Вт на метр квадратный. Полученные данные охватывали слишком широкий диапазон, который представлялся всего несколькими значениями. Это создавало определенные неудобства и исследователю пришлось создать собственную шкалу измерений.

В первоначальном варианте безымянная шкала имела 14 значений — от 0 до 13, где человеческий шепот имел значение «3», а разговорная речь — «6». Впоследствии эта шкала нашла широкое применение, а ее единицы назвали белами. Для получения более точных данных в логарифмическом масштабе исходную единицу увеличили в 10 раз — так сформировались децибелы.

Общие сведения

Прежде всего, следует отметить, что децибел — это одна десятая Бела, который является десятичной формой логарифма, определяющего отношение меж 2-мя мощностями. Природа мощностей, подлежащих сравнению, избирается произвольно. Главное, чтобы соблюдалось правило, представляющее сравниваемые мощности в равных единицах, например, в Ваттах. Благодаря этой особенности, обозначения децибелов применяют в разных областях:

  • механической;
  • электрической;
  • акустической;
  • электромагнитной.

Так как практическое применение показало, что Бел оказался довольно крупной единицей, то для лучшей наглядности было предложено его значение умножить на десять. Таким образом, появилась общепринятая единица — децибел, в чем измеряется звук сегодня.

Несмотря на обширную зону применения, большинству людей известно, что децибелы применяются для определения степени громкости. Эта величина характеризует волны на метр квадратный. Таким образом, увеличение громкости на 10 децибел сопоставимо с возрастанием силы звука вдвое.

В законодательстве децибел был признан расчетной величиной зашумленности помещения. Он явился определяющей характеристикой для исчисления допустимой силы шума в жилых строениях. Эта величина дает возможность измерить допустимый уровень шума в децибелах в квартире и выявить факты нарушения в случае необходимости.

Область применения

Сегодня проектировщики телекоммуникаций используют децибел в качестве базовой единицы для проведения сравнительных характеристик устройств, отраженных в логарифмическом масштабе. Такие возможности предоставляет конструктивная особенность данной величины, которая является логарифмической единицей разных уровней, используемых при затуханиях или, наоборот, усилениях мощностей.

Децибел получил широкое распространение в разнообразных областях современной техники. Что измеряется в децибелах сегодня? Это различные величины, изменяющиеся в обширном диапазоне, которые могут применяться:

  • в системах, связанных с передачей информации;
  • радиотехнике;
  • оптике;
  • антенной технике;
  • акустике.

Таким образом, децибелы применяют при измерении характеристик динамического диапазона, к примеру, ими можно измерить громкость звучания определенного музыкального инструмента. А также открывается возможность исчислять затухающие волны в момент их прохождения через поглощающую среду. Децибелы позволяют определить коэффициент усиления или зафиксировать коэффициент шума, создаваемого усилителем.

Использовать эти безразмерные единицы возможно как для физических величин, относящихся ко второму порядку — энергия или мощность, так и для величин, имеющих отношение к первому порядку — сила тока или напряжение. Децибелы открывают возможности измерения отношений между всеми физическими величинами, а кроме этого, с их помощью сопоставляют абсолютные значения.

Громкость звука

Физическая составляющая громкости звукового воздействия определяется уровнем имеющегося звукового давления, воздействующего на единицу контактной площади, что измеряется в децибелах. Формируется уровень шума из хаотического слияния звуков. На низкие частоты или, наоборот, звуки высокой частоты человек реагирует как на более тихие звуки. А звуки средних частот будут восприняты как более громкие, несмотря на одинаковую интенсивность.

Учитывая неравномерное восприятие звуков различной частоты человеческим ухом, на электронной базе был создан частотный фильтр, способный передавать эквивалентную степень звука с единицей измерения, которая выражается в дБа — где «а» обозначает применение фильтра. Этот фильтр, по итогам нормирования измерений, способен моделировать взвешенное значение уровня звука.

Способность разных людей воспринимать звуки находится в пределах громкости от 10 до 15 дБ, а в отдельных случаях даже выше. Воспринимаемые пределы интенсивности звука составляют частоты от 20 до 20 тыс. Герц. Наиболее легкие для восприятия звуки располагаются в частотном диапазоне от 3-х до 4-х кГц. Такую частоту принято использовать в телефонах, а также при радиовещании на средних и длинных волнах.

С годами диапазон воспринимаемых звуков сужается, особенно это касается высокочастотного спектра, где восприимчивость может снижаться до 18 кГц. Это приводит к общему ухудшению слуха, которому подвержены многие пожилые люди.

Допустимые показатели уровня шума в жилых помещениях

С использованием децибелов появилась возможность определить более точную шкалу шумов для окружающих звуков. Она отражает превосходящие по точности характеристики по сравнению с исходной шкалой, созданной в свое время Александром Беллом. С использованием этой шкалы законодательными органами определен уровень шума, норма которого действует в пределах жилых помещений, предназначенных для отдыха граждан.

Таким образом, значение «0» дБ означает полнейшую тишину, от которой раздается звон в ушах. Следующее значение 5 дБ также определяет полную тишину при наличии небольшого звукового фона, заглушающего внутренние процессы организма. При 10 дБ становятся различимы нечеткие звуки — всевозможные шорохи или шуршание листвы.

Значение в 15 дБ находится в диапазоне четкой слышимости самых тихих звуков, таких как тиканье наручных часов. При силе звука в 20 дБ можно разобрать осторожный шепот людей на расстоянии 1 метра. Отметка 25 дБ позволяет слышать более отчетливо разговор шепотом и шорох от трения мягких тканей.

30 дБ определяет, сколько децибел разрешено в квартире ночью и сопоставляется с беззвучным разговором или тиканьем настенных часов. При 35 дБ можно отчетливо слышать приглушенную речь.

Уровень в 40 децибел определяет силу звука обычного разговора. Это достаточная громкость, позволяющая свободно общаться в пределах помещения, смотреть телевизор или прослушивать музыкальные треки. Данная отметка определяет, сколько децибел разрешено в квартире днем.

Уровень шума, допустимый в рабочих условиях

По сравнению с допустимым уровнем шума в децибелах в квартире, на производстве и в офисной деятельности в рабочее время допускаются другие нормы уровня звука. Здесь действуют ограничения иного прядка, четко отрегулированные для каждого рода занятий. Основное правило в данных условиях — не допускать уровня шума, который способен отрицательно повлиять на здоровье человека.

В офисах

Значение уровня шума в 45 дБ находится в пределах хорошей слышимости и сопоставимо с шумом работы дрели или электродвигателя. Шум в 50 дБ также характеризуется пределами отличной слышимости и совпадает по силе со звуком печатающей машинки.

Уровень шума в 55 децибел остается в пределах превосходной слышимости, его можно представить на примере одновременного звучного разговора сразу нескольких людей. Этот показатель принимают в качестве верхней отметки, допустимой для офисных помещений.

В животноводстве и канцелярской деятельности

Сила шума в 60 дБ считается повышенной, такой уровень зашумленности можно встретить в конторах, где одновременно работает много печатных машинок. Показатель в 65 дБ также считают повышенным и его можно зафиксировать при работе типографского оборудования.

Уровень шума, достигающий отметки 70 дБ, сохраняет значение повышенного и встречается на животноводческих фермах. Значение шума в 75 дБ — это предельное значение повышенного уровня шума, его можно отметить на птицефабриках.

В производстве и транспорте

С отметкой в 80 дБ наступает уровень громкого звука, длительное воздействие которого станет следствием частичной утраты слуха. Поэтому, при работе в таких условиях рекомендуется применять защитные наушники. Сила шума в 85 дБ также находится в пределах уровня громкого звука, такие показания можно сопоставить с работой оборудования ткацкой фабрики.

Показатель шума в 90 дБ сохраняется в пределах громкого звука, такую силу зашумленности можно зарегистрировать при движении железнодорожного состава. Величина шума в 95 дБ достигает крайних пределов громкого звука, такой силы шум можно зафиксировать в металлопрокатном цеху.

Предельный уровень шума

Уровень шума на отметке 100 дБ достигает пределов чрезмерно громкого звука, его можно сравнить с раскатами грома. Работа в таких условиях считается вредной для здоровья и выполняется в рамках определенного стажа, по истечении которого человек считается непригодным для вредных работ.

Значение шума в 105 дБ также находится в пределах чрезмерно громкого звука, шум такой силы создает бензорезка при порезке металла. Сила шума в 110 дБ остается в границах чрезмерно громкого звука, такой показатель фиксируется при взлете вертолета. Величина шума в 115 дБ считается предельной для границ чрезмерно громкого звука, такой шум издает пескоструйный аппарат.

Уровень шума 120 дБ считается невыносимым, его можно сравнить с работой отбойного молотка. Шумовая отметка в 125 дБ также характеризуется невыносимым уровнем шума, такой отметки достигает самолет на старте. Максимальный уровень шума в дБ считается предельным на отметке 130, после чего наступает болевой порог, вынести который способен далеко не каждый.

Критический уровень шума

Сила шума на отметке 135 дБ считается недопустимой, человек, оказавшийся в зоне действия звука такой силы, получает контузию. Уровень шума в 140 дБ также приводит к контузии, таким звуком сопровождается старт реактивного самолета. При величине шума в 145 дБ разрывается осколочная граната.

Достигает отметки 150-155 дБ разрыв кумулятивного снаряда на танковой броне, звук такой силы приводит к контузии и травмам. После отметки 160 дБ наступает звуковой барьер, звук, превышающий этот предел, приводит к разрыву ушных барабанных перепонок, распаду легких и множественным травмам, нанесенным ударной волной, что вызывает мгновенную смерть.

Воздействие на организм неслышимых звуков

Звук, частота которого ниже 16 Гц, называют инфракрасным, а если частота его превышает 20 тыс. Гц, то такой звук называют ультразвуком. Барабанные перепонки человеческого уха не способны воспринимать звуки такой частоты, поэтому они находятся за пределами человеческого слуха. Децибелы, в чем измеряется звук сегодня, также определяют значения не слышимых звуков.

Звуки низкой частоты, находящиеся в пределах от 5-ти до 10-ти Гц, плохо переносятся человеческим организмом. Такое воздействие способно активизировать сбои в работе внутренних органов и отражаться на мозговой активности. Кроме этого, интенсивность низких частот оказывает воздействие на костные ткани, провоцируя суставные боли у людей, страдающих различными заболеваниями или перенесших травмы.

Повседневными источниками ультразвука являются различные транспортные средства, также ими могут служить раскаты грома или работа электронной аппаратуры. Такие воздействия выражаются в нагреве тканей, а сила их влияния находится в зависимости от расстояния до действующего источника и от степени звука.

Для общедоступных мест работы, обладающих неслышимого диапазона, также существуют определенные ограничения. Максимальная сила инфракрасного звука должна удерживаться в пределах 110 дБа, а сила ультразвука ограничивается отметкой в 125 дБа. Строго запрещено даже кратковременное нахождение в зонах, где звуковое давление превышает 135 дБ любой частоты.

Влияние шума, исходящего от оргтехники, и способы защиты

Шум, который издает компьютер и прочая организационная техника, может быть выше значения в 70 дБ. В связи с этим специалисты не рекомендуют устанавливать большое количество данной аппаратуры в одном помещении, особенно, если оно не большое. Шумные агрегаты рекомендуется устанавливать за пределами помещения, в котором находятся люди.

Для снижения уровня зашумленности в отделочных работах применяют материалы, обладающие шумопоглощающими свойствами. Кроме этого, можно использовать шторы из плотной ткани или, в крайнем случае, бируши, закрывающие от воздействия барабанные перепонки.

Сегодня при строительстве современных зданий существует новая норма, определяющая степень звукоизоляции помещений. Стены и перекрытия корпусов многоквартирных домов проверяют на устойчивость к воздействию шума. Если уровень звукоизоляции находится ниже допустимого предела, здание не может быть сдано в эксплуатацию до устранения неполадок.

Кроме всего, сегодня устанавливают ограничения по силе звука для различных сигнальных и оповещающих устройств. Для противопожарных систем, к примеру, сила звука оповещающего сигнала должна находиться в рамках от 75 дБа до 125 дБа.

Вопрос о переводе дБ в дБм и наоборот часто приходится слышать от клиентов, встречать на специализированных форумах. Однако, как бы не хотелось, нельзя перевести мощность в затухание.

Если мощность оптического сигнала измерена в дБм, то для определения затухания A (дБ) необходимо от мощности сигнала на входе в линию отнять мощность сигнала на выходе из нее. Но обо всем этом по порядку.

Оптическая мощность, или мощность оптического излучения — это основополагающий параметр оптического сигнала. Он может быть выражен в привычных нам единицах измерения — Ватт (Вт), милливатт (мВт), микроватт (мкВт). А также логарифмических единицах — дБм.

Затухание оптического сигнала (А) — величина, которая показывает во сколько раз мощность сигнала на выходе линии связи (P вых) меньше мощности сигнала на входе этой линии (Pвх). Затухание выражается в дБ (дециБелл) и может быть определено по следующей формуле:

Рисунок 1 — формула расчета оптического затухания в случае если оптическая мощность выражена в Вт

Немного непривычно, не так ли? Логарифмические линейки и таблицы — уходят в прошлое, по крайней мере для молодых монтажников их давно уже заменил калькулятор. И даже с учетом использования калькулятора — такая формула не сильно удобна. Поэтому, для упрощения расчетов было принято решение перевести единицы измерения мощности в логарифмический формат и таким образом избавиться от логарифмов в формуле:

Рисунок 2 — пересчет мощности из мВт в дБм

Для перевода дБм в Вт и наоборот можно пользоваться также таблицей:

дБм Милливат
0 1,0
1 1,3
2 1,6
3 2,0
4 2,5
5 3,2
6 4
7 5
8 6
9 8
10 10
11 13
12 16
13 20
14 25
15 32

В результате пересчета, формула вычисления оптического затухания (рис 1) превращается в:

Рисунок 3 — перевод дБм в дБ (dBm в dB), взаимозависимость между мощностью и затуханием

Учитывая тот факт, что все известные автору измерители оптической мощности в качестве основной единицы измерения используют дБм, то используя формулу на рис 3 инженер может определить уровень затухания даже в уме. Кроме того, многие приборы имеют функцию установки опорного уровня, благодаря чему пользователю выдается значение потерь сразу в Дб.

В этом случае, измерение затухания оптической линии значительно упрощается, что продемонстрировано на следующем видео.

Измерение затухания оптической линии

Зачастую измерянного значения затухания в дБ — достаточно. Однако для того, чтобы представить во сколько раз уменьшился входной сигнал, можно воспользоваться формулой:

m = 10 (n / 10)

где m — отношение в разах, n — отношение в децибелах

можно также пользоваться следующей таблицей:

Таблица 1 — перевод дБ в разы

дБ Раз дБ Раз дБ Раз
0 1,000 0,9 1,109 9 2,82
0,1 1,012 1 1,122 10 3,16
0,2 1,023 2 1,26 11 3,55
0,3 1,035 3 1,41 12 3,98
0,4 1,047 4 1,58 13 4,47
0,5 1,059 5 1,78 14 5,01
0,6 1,072 6 2,00 15 5,62
0,7 1,084 7 2,24 16 6,31
0,8 1,096 8 2,51 17 7,08

Логарифмическая шкала и логарифмические единицы часто используется в тех случаях, когда необходимо измерить некоторую величину, изменяющуюся в большом диапазоне. Примерами таких величин являются звуковое давление, магнитуда землетрясений, световой поток, различные частотно-зависимые величины, используемые в музыке (музыкальные интервалы), антенно-фидерных устройствах, электронике и акустике. Логарифмические единицы позволяют выразить отношения величин, изменяющихся в очень большом диапазоне с помощью удобных небольших чисел примерно так, как это делается при экспоненциальной записи чисел, когда любое очень большое или очень малое число может быть представлено в краткой форме в виде мантиссы и порядка. Например, мощность звука, издаваемого при запуске ракеты-носителя Сатурн, составляла 100 000 000 Вт или 200 дБ SWL. В то же время, мощность звука очень тихого разговора составляет 0,000000001 Вт или 30 дБ SWL (измерена в децибелах относительно мощности звука 10⁻¹² ватт, см. ниже).

Правда, удобные единицы? Но, как оказывается, они удобны далеко не для всех! Можно сказать, что большинство людей, плохо разбирающихся в физике, математике и технике, не понимают логарифмических единиц, таких как децибелы. Некоторые даже считают, что логарифмические величины относятся не к современной цифровой технике, а к тем временам, когда для инженерных расчетов использовали логарифмическую линейку!

Немного истории

Изобретение логарифмов упростило вычисления, так как они позволили заменить умножение сложением, которое выполняется значительно быстрее, чем умножение. Среди ученых, которые внесли значительный вклад в развитие теории логарифмов, можно отметить шотландского математика, физика и астронома Джона Непера, опубликовавшего в 1619 г. сочинение с описанием натуральных логарифмов, которые значительно упрощали вычисления.

Важным инструментом для практического использования логарифмов были таблицы логарифмов. Первая такая таблица была составлена английским математиком Генри Бригсом в 1617 году. Основываясь на работах Джона Непера и других ученых, английский математик и священник англиканской церкви Уильям Отред изобрел логарифмическую линейку, которая использовалась инженерами и учеными (включая и автора этой статьи) в течение последующих 350 лет, пока в середине семидесятых прошлого века ее не заменили карманные калькуляторы.

Определение

Логарифм — операция обратная возведению в степень. Число y является логарифмом числа x по основанию b

если соблюдается равенство

Иными словами, логарифм данного числа — это показатель степени, в которую нужно возвести число, называемое основанием, чтобы получить данное число. Можно сказать проще. Логарифм — это ответ на вопрос «Сколько раз нужно умножить одно число само на себя, чтобы получить другое число». Например, сколько раз нужно умножить число 5 само на себя, чтобы получить 25? Ответом является 2, то есть

По приведенному выше определению

Классификация логарифмических единиц

Логарифмические единицы широко используются в науке, технике и даже в таких ежедневных занятиях, как фотография и музыка. Имеются абсолютные и относительные логарифмические единицы.

С помощью абсолютных логарифмических единиц выражают физические величины, которые сравниваются с определенным фиксированным значением. Например, дБм (децибел милливатт) — это абсолютная логарифмическая единица мощности, в которой мощность сравнивается с 1 мВт. Отметим, что 0 дБм = 1 мВт. Абсолютные единицы прекрасно подходят для описания одиночной величины , а не соотношения двух величин. Абсолютные логарифмические единицы измерения физических величин всегда можно перевести в другие, обычные единицы измерения этих величин. Например, 20 дБм = 100 мВт или 40 дБВ = 100 В.

С другой стороны, относительные логарифмические единицы используются для выражения физической величины в форме отношения или пропорции других физических величин, например, в электронике, где для этого используют децибел (дБ). Логарифмические единицы хорошо подходят для описания, например, коэффициента передачи электронных систем, то есть соотношения между выходным и входным сигналами.

Следует отметить, что все относительные логарифмические единицы являются безразмерными. Децибелы, неперы и другие названия — просто особые наименования, которые используются совместно с безразмерными единицами. Отметим также, что децибел часто используется с различными суффиксами, которые обычно присоединяются к сокращению дБ с помощью дефиса, например дБ-Гц, пробела, как в единице dB SPL, без какого-либо символа между дБ и суффиксом, как в дБм, или заключаются в кавычки, как в единице дБ(м²). Обо всех этих единицах мы поговорим ниже в этой статье.

Следует также отметить, что преобразование логарифмических единиц в обычные единицы часто бывает невозможным. Впрочем, это бывает только в тех случаях, когда говорят об отношениях. Например, коэффициент передачи усилителя по напряжению 20 дБ можно преобразовать только в «разы», то есть в безразмерную величину — он будет равным 10. В то же время, измеренное в децибелах звуковое давление можно перевести в паскали, так как звуковое давление измеряется в абсолютных логарифмических единицах, то есть, относительно опорного значения. Отметим, что коэффициент передачи в децибелах — тоже безразмерная величина, хотя и имеет название. Полная путаница получается! Но мы попробуем разобраться.

Логарифмические единицы измерения амплитуды и мощности

Мощность . Известно, что мощность пропорциональна квадрату амплитуды. Например, электрическая мощность, определяемая выражением P = U²/R. То есть, изменение амплитуды в 10 раз сопровождается изменением мощности в 100 раз. Соотношение двух величин мощности в децибелах определяется выражением

10 log₁₀(P₁/P₂) dB

Амплитуда . В связи с тем, что мощность пропорциональна квадрату амплитуды, соотношение двух величин амплитуды в децибелах описывается выражением

20 log₁₀(P₁/P₂) dB.

Примеры относительных логарифмических величин и единиц

Примеры абсолютных логарифмических единиц и величин в децибелах с суффиксами и опорными уровнями

  • Мощность, уровень сигнала (абсолютные)
  • Напряжение (абсолютное)
  • Электрическое сопротивление (абсолютное)
    • дБОм, dBohm или dBΩ (децибел ом, амплитудное соотношение) — абсолютное сопротивление в децибелах относительно 1 Ом. Эта единица измерения удобна, если рассматривают большой диапазон сопротивлений. Например, 0 dBΩ = 1 Ω, 6 dBΩ = 2 Ω, 10 dBΩ = 3,16 Ω, 20 dBΩ = 10 Ω, 40 dBΩ = 100 Ω, 100 dBΩ = 100 000 Ω, 160 dBΩ = 100 000 000 Ω и так далее.
  • Акустика (абсолютный уровень звука, звуковое давление или интенсивность звука)
  • Радиолокация . Абсолютные значения по логарифмической шкале используются для измерения радиолокационной отражаемости по сравнению с какой-либо опорной величиной.
    • dBZ или dB(Z) (амплитудное соотношение) — абсолютный коэффициент радиолокационной отражаемости в децибелах относительно минимального облака Z = 1 мм⁶ м⁻³. 1 dBZ = 10 log (z/1 мм⁶ м³). Эта единица показывает количество капель в единице объема и используется метеорологическими радиолокационными станциями (метео-РЛС). Информация, полученная при измерениях в сочетании с другими данными, в частности, результатами анализа поляризации и допплеровского сдвига, позволяют оценить что происходит в атмосфере: идет ли дождь, снег, град, или летит стая насекомых или птиц. Например, 30 dBZ соответствует слабому дождю, а 40 dBZ — умеренному дождю.
    • dBη (амплитудное соотношение) — абсолютный фактор радиолокационной отражаемости объектов в децибелах относительно 1 см²/км³. Эта величина удобна, если нужно измерить радиолокационную отражаемость летающих биологических объектов, таких как птицы, летучие мыши. Метео-РЛС часто используются для наблюдения за подобными биологическими объектами.
    • дБ(м²), dBsm или dB(m²) (децибел квадратный метр, амплитудное соотношение) — абсолютная единица измерения эффективной площади рассеяния цели (ЭПР, англ. radar cross section, RCS) по отношению к квадратному метру. Насекомые и слабо отражающие цели имеют отрицательную эффективную площадь рассеяния, в то время как большие пассажирские самолеты — положительную.
  • Связь и передача данных. Абсолютные логарифмические единицы используются для измерения различных параметров, связанных с частотой, амплитудой и мощностью передаваемых и принимаемых сигналов. Все абсолютные значения в децибелах можно преобразовать в обычные единицы, соответствующие измеряемой величине. Например, уровень мощности шумов в dBrn можно преобразовать непосредственно в милливатты.
  • Другие абсолютные логарифмические единицы. Таких единиц много в разных отраслях науки и техники и здесь мы приведем лишь несколько примеров.
    • Шкала магнитуды землетрясений Рихтера содержит условные логарифмические единицы (используется десятичный логарифм), используемые для оценки силы землетрясения. Согласно этой шкале магнитуда землетрясения определяется как десятичный логарифм отношения амплитуды сейсмических волн к произвольно выбранной очень малой амплитуде, которая представляет магнитуду 0. Каждый шаг шкалы Рихтера соответствует увеличению амплитуды колебаний в 10 раз.
    • dBr (децибел относительно опорного уровня, соотношение по амплитуде или по мощности, задается явным образом) — логарифмическая абсолютная единица измерения какой-либо физической величины, задаваемой в контексте.
    • dBSVL — колебательная скорость частиц в децибелах относительно опорного уровня 5∙10⁻⁸ м/с. Название происходит от англ. sound velocity level — уровень скорости звука. Колебательная скорость частиц среды иначе называется акустической скоростью и определяет скорость, с которой движутся частицы среды при их колебаниях относительно положения равновесия. Опорная величина 5∙10⁻⁸ м/с соответствует колебательной скорости частиц для звука в воздухе.

В сети полным-полно подобных калькуляторов, но я захотел тоже запилить сделать свой. Уверен, никого не удивлю, сказав, что здесь тоже работает JavaScript , и вся вычислительная нагрузка ложится на твой браузер. Если есть пустые поля, это значит, что у тебя браузер не работает с JavaScript -ом, и вычисления работать не будут:(

19 дек 2017 появился конвертер величин ЭМС . Возможно, он больше отвечает твоим запросам?

Правила пользования просты до безобразия. Измени значение любой из величин, и все остальные значения будут пересчитаны автоматически.

Пересчёт отношений падающей и отражённой мощности в величину КСВ:

На всякий случай, подсказка по использованию:
Пересчитать дБмкВ в дБм (dBμV в dBm) В поле «Напряжение, dBμV» впиши величину напряжения в децибел-микровольтах. Если у тебя величина в децибел-милливольтах (дБмВ, dBmV), просто добавь к ней 60 дБ (0 дБмВ ≡ 60 дБмкВ). Не забывай, что для перевода напряжения в мощность необходимо знать и сопротивление нагрузки! Пересчитать дБм в дБмкВ (dBm в dBμV) В поле «Мощность, dBm» впиши величину мощности в децибел-милливаттах. Если у тебя величина в децибел-ваттах, просто вычти из неё 30 дБ (0 дБВт ≡ 30 дБм). Не забывай, что для перевода мощности в напряжение необходимо знать и сопротивление нагрузки! Пересчитать децибелы в разы Впиши в таблице изменение уровня в децибелах, и калькулятор покажет, во сколько раз изменятся напряжение и мощность. Калькулятор не любит отрицательных чисел, и заменяет их положительными. Пересчитать разы в децибелы Впиши в таблице изменение уровня напряжения или мощности сигнала в соответствующее поле, и узнаешь, сколько это децибел. Заодно пересчитается и изменение второй величины. Калькулятор не любит отрицательных чисел, и заменяет их положительными. В самом деле, увеличение в 0,5 раз — это уменьшение в 2 раза, и физически разницы нет. Зато так нагляднее! Пересчитать отношение мощностей в КСВ Впиши свои величины падающей и отражённой мощностей в соответствующие поля. Если вместо величин у тебя имеется их разница, сразу впиши эту разницу в поле для разницы и игнорируй два верхних поля Пересчитать КСВ в отношение мощностей Впиши величину КСВ в соответствующее поле, и калькулятор посчитает отношение мощностей, а для указанного значения P FWD впишет соответствующее значение P REF

Довольно часто в популярной радиотехнической литературе , в описании электронных схем употребляется единица измерения – децибел (дБ или dB).

При изучении электроники начинающий радиолюбитель привык к таким абсолютным единицам измерения как Ампер (сила тока), Вольт (напряжение и ЭДС), Ом (электрическое сопротивление) и многим другим, с помощью которых обозначают количественно тот или иной электрический параметр (ёмкость , индуктивность, частоту).

Начинающему радиолюбителю, как правило, не составляет особого труда разобраться, что такое ампер или вольт. Тут всё понятно, есть электрический параметр или величина, которую нужно измерить . Есть начальный уровень отсчёта, который принимается по умолчанию в формулировке данной единицы измерения. Есть условное обозначение этого параметра или величины (A, V). И вправду, как только мы читаем надпись 12 V, то мы понимаем, что речь идёт о напряжении, аналогичном, например, напряжению автомобильной аккумуляторной батареи .

Но как только встречается надпись, к примеру: напряжение повысилось на 3 дБ или мощность сигнала составляет 10 дБм (10 dBm), то у многих возникает недоумение. Как это? Почему упоминается напряжение или мощность, а значение указывается в каких-то децибелах?

Практика показывает, что не многие начинающие радиолюбители понимают, что же такое децибел. Попытаемся развеять непроглядный туман над такой таинственной единицей измерения как децибел.

Единицу измерения под названием Бел стали впервые применять инженеры телефонной лаборатории Белла. Децибел является десятой частью Бела (1 децибел = 0,1 Бел). На практике широко используется как раз децибел.

Как уже говорилось, децибел, это особенная единица измерения. Стоит отметить, что децибел не является частью официальной системы единиц СИ. Но, несмотря на это, децибел получил признание и занял прочное место наряду с другими единицами измерения.

Вспомните, когда мы хотим объяснить какое-либо изменение, мы говорим, что, например, стало ярче в 2 раза. Или, например, напряжение упало в 10 раз. При этом мы устанавливаем определённый порог отсчёта, относительно которого и произошло изменение в 10 или 2 раза. С помощью децибел также измеряют эти “разы”, только в логарифмическом масштабе .


Например, изменение на 1 дБ, соответствует изменению энергетической величины в 1,26 раза. Изменение на 3 дБ соответствует изменению энергетической величины в 2 раза.

Но зачем так заморачиваться с децибелами, если отношения можно измерять в разах? На этот вопрос нет однозначного ответа. Но уж, поскольку, децибелы активно применяются, то наверняка это оправдано.

Причины для использования децибел всё-таки есть. Перечислим их.

Частично ответ на этот вопрос кроется в так называемом законе Вебера-Фехнера . Это эмпирический психофизиологический закон, т.е основан он на результатах реальных, а не теоретических экспериментов. Суть его заключается в том, что любые изменения каких-либо величин (яркости, громкости, веса) ощущаются нами при условии, если эти изменения носят логарифмический характер.


График зависимости ощущения громкости от силы (мощности) звука. Закон Вебера-Фехнера

Так, например, чувствительность человеческого уха уменьшается с ростом уровня громкости звукового сигнала. Именно поэтому, при выборе переменного резистора , который планируется применить в регуляторе громкости звукового усилителя стоит брать с показательной зависимостью сопротивления от угла поворота ручки регулятора. В этом случае, при повороте движка регулятора громкости звук в динамике будет нарастать плавно. Регулировка громкости будет линейной, так как показательная зависимость регулятора громкости компенсирует логарифмическую зависимость нашего слуха и в сумме станет линейной. При взгляде на рисунок это станет более понятно.


Зависимость сопротивления переменного резистора от угла поворота движка (А-линейная, Б-логарифмическая, В-показательная)

Здесь показаны графики зависимости сопротивления переменных резисторов разных типов: А – линейная, Б – логарифмическая, В – показательная. Как правило, на переменных резисторах отечественного производства указывается, какой зависимостью обладает переменный резистор. На тех же принципах основаны цифровые и электронные регуляторы громкости.

Также стоит отметить, что человеческое ухо воспринимает звуки, мощность которых различается на колоссальную величину в 10 000 000 000 000 раз! Таким образом, самый громкий звук отличается от самого тихого, который может уловить наш слух, на 130 дБ (10 000 000 000 000 раз).

Вторая причина широкого использования децибел является простота вычислений.

Согласитесь, что куда проще при вычислениях использовать небольшие числа вроде 10, 20, 60,80,100,130 (наиболее часто используемые числа при расчёте в децибелах) по сравнению с числами 100 (20 дБ), 1000 (30 дБ), 1000 000 (60 дБ),100 000 000 (80 дБ),10 000 000 000 (100 дБ), 10 000 000 000 000 (130 дБ). Ещё одним достоинством децибел является то, что их просто суммируют. Если проводить вычисления в разах, то числа необходимо умножать.

Например, 30 дБ + 30 дБ = 60 дБ (в разах: 1000 * 1000 = 1000 000). Думаю, с этим всё ясно.

Также децибелы очень удобны при графическом построении различных зависимостей. Все графики вроде диаграмм направленности антенн, амплитудно-частотных характеристик усилителей выполняют с применением децибел.

Децибел является безразмерной единицей измерения . Мы уже выяснили, что децибел на самом деле показывает, во сколько раз возросла, либо уменьшилась какая-либо величина (ток, напряжение, мощность). Отличие децибел от разов заключается лишь в том, что происходит измерение по логарифмическому масштабу. Чтобы это как-то обозначить и приписывают обозначение дБ . Так или иначе, при оценке приходится переходить от децибел к разам. Сравнивать с помощью децибел можно любые единицы измерения (не только ток, напряжение и проч.), так как децибел является относительной, безразмерной величиной.

Если указывается знак “-”, например, –1 дБ , то значение измеряемой величины, например, мощности, уменьшилось в 1,26 раз. Если перед децибелами не ставят никакого знака, то речь идёт об увеличении, росте величины. Это стоит учитывать. Иногда вместо знака “-” говорят о затуханиях, снижении коэффициента усиления.

Переход от децибел к разам.

На практике чаще всего приходится переходить от децибел к разам. Для этого есть простая формула:

Внимание! Данные формулы применяются для так называемых “энергетических” величин. Таких как энергия и мощность.

m = 10 (n / 10) ,где m – отношение в разах, n – отношение в децибелах.

Например, 1дБ равен 10 (1дБ / 10) = 1,258925…= 1,26 раза.

Аналогично,

    при 20 дБ: 10 (20дБ / 10) = 100 (увеличение величины в 100 раз)

    при 10 дБ: 10 (10дБ / 10) = 10 (увеличение в 10 раз)

Но, не всё так просто. Есть и подводные камни. Например, затухание сигнала составляет -10 дБ. Тогда:

    при -10 дБ: 10 (-10дБ / 10) = 0,1

    Если мощность с 5 Вт уменьшилась до 0,5 Вт, то снижение мощности равно -10 дБ (уменьшению в 10 раз).

    при -20 дБ: 10 (-20дБ / 10) = 0,01

    Здесь аналогично. При снижении мощности с 5 Вт до 0,05 Вт, в децибелах падение мощности составит -20 дБ (уменьшению в 100 раз).

Таким образом, при -10 дБ мощность сигнала уменьшилась в 10 раз! При этом если мы перемножим начальную величину сигнала на 0,1 ,то и получим значение мощности сигнала при затухании в -10 дБ. Именно поэтому значение 0,1 и указано без «разов», как в предыдущих примерах. Учитывайте эту особенность при подстановке в данные формулы значений децибел со знаком «-«.

Переход от разов к децибелам можно осуществить по следующей формуле:

    n = 10 * log 10 (m) ,где n – значение в децибелах, m – отношение в разах.

    Например, рост мощности в 4 раза будет соответствовать значению в 6,021 дБ.

    10 * log 10 (4) = 6,021 дБ.

Внимание! Для пересчёта отношений таких величин как напряжение и сила тока существуют немного иные формулы:

(Сила тока и напряжение, это так называемые “силовые” величины. Поэтому и формулы отличаются.)

    Для перехода к децибелам: n = 20 * log 10 (m)

    Для перехода от децибел к разам: m = 10 (n / 20)

n – значение в децибелах, m – отношение в разах.

Если Вы успешно дошли до этих строк, то считайте, что сделали ещё один весомый шаг в освоении электроники!

Что такое децибел | Что измеряют в децибелах, формулы.

Очень часто новички сталкивается с таким понятием, как децибел. Многие из них интуитивно догадываются, что это такое, но у большинства до сих пор возникают вопросы.

Что такое децибел?

Относительные логарифмические единицы Белы (децибелы) широко используются при количественных оценках параметров различных аудио, видео, измерительных устройств. Физическая природа сравниваемых мощностей может быть любой — электрической, электромагнитной, акустической, механической, — важно лишь, чтобы обе величины были выражены в одинаковых единицах — ваттах, милливаттах и т. п. Бел выражает отношение двух значений энергетической величины десятичным логарифмом этого отношения, причем под энергетическими величинами понимаются: мощность, энергия.

Кстати, эта единица получила свое название в честь Александра Белл (1847 – 1922) – американского ученого шотландского происхождения, основоположника телефонии, основателя всемирно известных компаний AT&T и “Bell Laboratories”. Еще интересно напомнить, что во многих современных мобильных телефонах (смартфонах) обязательно есть выбираемый звук звонка (оповещения), так и называемый “bell”. Впрочем, Бел относится к единицам, не входящим в Международную систему единиц (СИ), но в соответствии с решением Международного комитета мер и весов допускается к применению без ограничений совместно с единицами СИ. В основном применяется в электросвязи, акустике, радиотехнике.

Формулы для вычисления децибелов

Бел (Б) = lg (P2/P1)

где

P1 – мощность до усиления, Вт

P2 – мощность после усиления или ослабления, Вт

На практике, оказалось, что удобнее пользоваться уменьшенным в 10 раз значением Бел, т.е. децибел, поэтому:

дециБел (дБ) = 10 * lg(P2/P1)

Усиление или ослабление мощности в децибелах выражается формулой:

где

NдБ – усиление, либо ослабление мощности в децибелах

P1 – мощность до усиления, Вт

P2 – мощность после усиления или ослабления, Вт

Значения Бел, децибел могут быть со знаком “плюс”, если P2 > P1 (усиление сигнала)  и со знаком “минус”, если P2 < P1 (ослабление сигнала)

Во многих случаях, сравнение сигналов путем измерения мощностей может быть неудобным или невозможным – проще измерить напряжение или ток.
В этом случае, если мы сравниваем напряжения или токи, формула примет уже другой вид:

где

NдБ – усиление, либо ослабление мощности в децибелах

U1 – это напряжение до усиления, В

U2  – напряжение после усиления, В

I1 – сила тока до усиления, А

I2 – сила тока после усиления, А

Вот небольшая табличка, в которой приведены основные отношения напряжений и соответствующее число децибел:

Дело в том, что операции умножения и деления над числами в обычном базисе, заменяются операциями сложения и вычитания в логарифмическом базисе. Например, у нас есть два каскадно-включенных усилителя с коэффициентами усиления K1 = 963 и K2 = 48. Какой общий коэффициент усиления? Правильно – он равен произведению K = K1 * K2. Вы можете в уме быстро вычислить 963*48? Я – нет. Я могу прикинуть K = 1000*50 = 50 тыс., не более. А, если нам известно, что K1 = 59 дБ и K2 = 33 дБ, то К = 59+33 = 92 дБ – сложить было не трудно, надеюсь.

Впрочем, актуальность таких вычислений было велика в эпоху, когда ввели понятие Бел и когда не было не то, что айфонов, но и электронных калькуляторов.  Сейчас же достаточно открыть калькулятор на ваших гаджетах и быстренько посчитать , что есть что. Ну и чтобы не париться каждый раз при переводе дБ в разы, удобнее всего найти в интернете онлайн-калькулятор. Да хотя бы вот.

Закон Вебера-Фехнера

Почему именно децибелы? Все исходит от закона Вебера-Фехнера, который говорит нам, что интенсивность ощущения человеческих чувств прямо-пропорциональна логарифму интенсивности какого-либо раздражителя.

Так светильник, в котором восемь лампочек, кажется нам настолько же ярче светильника из четырёх лампочек, насколько светильник из четырёх лампочек ярче светильника из двух лампочек. То есть количество лампочек должно увеличиваться  каждый раз вдвое, чтобы нам казалось, что прирост яркости постоянен. То есть если добавить к нашим 32 лампочкам на графике еще одну лампочку, то мы даже и не заметим разницы. Для того, чтобы для нашего глаза была заметна разница, мы должны к 32 лампочкам добавить еще 32 лампочки, и т.д. Или иными словами, для того, чтобы нам казалось, что наш светильник плавно набирает яркость, нам надо зажигать вдвое больше лампочек каждый раз, чем было предыдущее значение.

Поэтому децибел действительно удобнее в некоторых случаях, так как сравнивать две величины намного проще в маленьких цифрах, чем в миллионах и миллиардах. А так как электроника – это чисто физическое явление, то и децибелы не обошли ее стороной.

[quads id=1]

Децибелы и АЧХ усилителя

Как вы помните в  прошлом примере с ОУ, у нас неинвертирующий усилитель усиливал сигнал в 10 раз. Если посмотреть в нашу табличку, то это получается 20 дБ относительно входного сигнала. Ну да, так оно и есть:

Также в дБ на некоторых графиках АЧХ обозначают наклон характеристики АЧХ. Это может выглядеть примерно вот так:

На графике мы видим АЧХ полосового фильтра. Изменение сигнала +20 дБ на декаду (дБ/дек, dB/dec) говорит нам о том, что при каждом увеличении частоты в 10 раз, амплитуда сигнала возрастает на 20 дБ. То же самое можно сказать и про спад сигнала -20 дБ на декаду. При каждом увеличении частоты в 10 раз, у нас амплитуда сигнала будет уменьшаться на -20 дБ. Есть также похожая характеристика дБ на октаву (дБ/окт, dB/oct). Здесь почти все то же самое, только изменение сигнала происходит при каждом увеличении частоты в 2 раза.

Давайте рассмотрим пример. Имеем фильтр высоких частот (ФВЧ) первого порядка, собранного на RC-цепи.

Его АЧХ будет выглядеть следующим образом (кликните для полного открытия)

Нас сейчас интересует  наклонная прямая линия АЧХ. Так как у нее наклон примерно одинаковый до частоты среза  в -3дБ, то можно найти ее крутизну, то есть узнать, во сколько раз увеличивается сигнал при каждом увеличении частоты в 10 раз.

Итак возьмем первую точку на частоте в 10 Герц. На частоте в 10 Герц амплитуда сигнала уменьшилась на 44 дБ, это видно в правом нижнем углу (out:-44)

Умножаем частоту на 10 (декада) и получаем вторую точку в 100 Герц. На частоте в 100 Герц наш сигнал уменьшился приблизительно на 24 дБ

То есть получается за одну декаду у нас сигнал увеличился с -44  до -24 дБ на декаду. То есть наклон характеристики составил +20 дБ/декаду. Если +20 дБ/декаду перевести в дБ на октаву, то получится 6 дБ/октаву.

Достаточно часто, дискретные аттенюаторы (делители) выходного сигнала на измерительных приборах (особенно на генераторах) проградуированы в децибелах:
0, -3, -6, -10, -20, -30, -40 дБ. Это позволяет быстро ориентироваться в относительном уровне выходного сигнала.

Что еще измеряют в децибелах?

Также очень часто в дБ выражают отношение сигнал-шум (signal-to-noise ratio, сокр. SNR)

где

Uc – это эффективное значение напряжения сигнала, В

Uш – эффективное значение напряжения шума, В

Чем выше значение сигнал/шум, тем более чистый звук обеспечивается аудиосистемой. Для музыкальной аппаратуры желательно, чтобы это отношение было не менее 75 дБ, а для Hi-Fi аппаратуры не менее 90 дБ. Не имеет значение физическая природа сигнала, важно, чтобы единицы были в одинаковых измерениях.

В качестве единицы логарифмического отношения двух одноимённых физических величин применяется также непер (Нп) — 1 Нп ~ 0,8686 Б. В основе лежит не десятичный (lg), а натуральный (ln) логарифм отношений. В настоящее время используется редко.

Во многих случаях, удобно сравнивать между собой не произвольные величины, а одну величину относительно другой, названной условно опорной (нулевой, базовой).
В электротехнике, в качестве такой опорной или нулевой величины выбрано значение мощности равное 1 мВт выделяемое на резисторе сопротивлением 600 Ом.
В этом случае, базовыми значениями при сравнении напряжений или токов станут величины 0.775 В или 1.29 мА.

Для звуковой мощности такой базовой величиной является 20 микроПаскаль (0 дБ), а порог +130 дБ считается болевым для человека:

Более подробно об этом написано в Википедии по этой ссылке.

Для случаев когда в качестве базовых значений используются те или иные конкретные величины, придуманы даже специальные обозначения единиц измерений:

dbW (дБВт) – здесь отсчет идет относительно 1 Ватта (Вт). Например, пусть уровень мощности составил +20 дБВт. Это значит что мощность увеличилась в 100 раз, то есть на 100 Вт.

dBm (дБм) – здесь у нас отсчет уже идет относительно 1 милливатта (мВт). Например, уровень мощности в +30дБм будет соответственно равен 1 Вт. Не забываем, что это у нас энергетические децибелы, поэтому для них будет справедлива формула

Следующие характеристики – это уже амплитудные децибелы. Для них будет справедлива формула

dBV (дБВ) – как вы догадались, опорное напряжение 1 Вольт. Например, +20дБВ даст – это 10 Вольт

От  дБВ также вытекают другие виды децибелов с разными приставками:

dBmV (дБмВ) – опорный уровень 1 милливольт.

dBuV (дБмкВ) – опорное напряжение 1 микровольт.

Здесь я привел наиболее употребимые специальные виды децибелов в электронике.

Децибелы используются и в других отраслях, где они также показывают отношение каких-либо двух измеряемых величин в логарифмическом масштабе.

Также на YouTube есть интересное видео о децибелах.

При участии Jeer

Перевод в децибелы | 2021

Онлайн калькулятор перевода децибел в разы, напряжений в мощность.

Децибел. Что за странный пассажир? Ладно бы дебил, или, на худой конец, имбецил, так ведь нет — децибел, мать его.
Выпили по децелу, закусили, понимания не прибавило, ещё по сто, уже лучше — начали генерить мыслю.
И на кой хрен нам в батарее разводить мудрёные величины, да ещё (не при бабах будет сказано), численно равные десятичному логарифму безразмерного отношения физической величины к одноимённой физической величине, принимаемой за исходную, умноженному на десять?
Всё равно — как отмеряли потери сигнала в линиях километрами стандартного кабеля, так и будем отмерять.

Ответ не сложен — для удобства мировосприятия.
Природа наша такова, что воздействие на органы чувств многих физических и биологических процессов пропорционально не амплитуде входного воздействия, а логарифму входного воздействия. Поэтому и созерцать отображения больших диапазонов изменяющихся величин удобнее всего в логарифмическом масштабе.

Итак, децибелы — это соотношение двух величин, выраженное в логарифмическом масштабе. При этом отношение токов и напряжений имеет коэффициент 20, а отношение мощностей — коэффициент 10.
Для напряжений формула приобретает вид , а для мощностей — .
Если в лесах Чухломы у нас затерялось какое-либо электронное устройство, то в качестве отношения напряжений (либо токов, либо мощностей) принимается отношение выходной величины к входной, и это отношение называется коэффициентом передачи, или коэффициентом преобразования данного устройства.

Пока хватит, нарисуем таблицу.

ТАБЛИЦА ПЕРЕВОДА ОТНОШЕНИЙ ВЕЛИЧИН В ДЕЦИБЕЛЛЫ

Коэффициент передачи, выраженный в децибелах, может иметь знак плюс или минус в зависимости от соотношения величин на выходе и входе (если выходная величина больше входной — плюс, если меньше — минус).

А ТЕПЕРЬ НАОБОРОТ, ДЕЦИБЕЛЛЫ В ОТНОШЕНИЯ

В случае включения по каскадной схеме (последовательно, друг за другом) нескольких устройств — общий коэффициент передачи в децибельном выражении вычисляется простым сложением значений Кпер.(дБ) каждого из устройств.

А теперь переведём логарифмическую меру мощности, измеряемую в дБм (dBm — децибел на милливатт) в мощность устройства, измеряемую в привычных нашему организму ваттах.
Формула выглядит так: . Для чего нам сдался этот дБм?
На всякий пожарный — некоторые производители указывают именно этот параметр, характеризуя богатырскую мощь своих изделий.

ТАБЛИЦА ПЕРЕВОДА ДБМ В ВАТТЫ

Так ведь мало того, что мощность усилителей надумали измерять в дБм, посягнули и на святое — на чувствительность приёмной аппаратуры. Чувствительность стали определять как отношение мощности на входе приёмника к уровню мощности 1 мВт и также выражать в логарифмическом масштабе в дБм.
Куда деваться бедному крестьянину? Придётся привести таблицу и для этого бесчинства.

ТАБЛИЦА ПЕРЕВОДА ДБМ В МИКРОВОЛЬТЫ

А ещё, иногда бывает полезно знать, каким должен быть размах выходного напряжения на нагрузке, для получения заданного параметра мощности. Некоторые при расчёте выходной мощности пользуются простой формулой , подставляя вместо Uд — пиковое значение (амплитудное значение, равное максимальной амплитуде полуволны выходного сигнала). Это не правильно, вернее правильно только для сигналов прямоугольной формы. Для синусоидальных, для получения точного результата надо подставлять действующее значение напряжения — .
Лучше понять, что такое амплитудное значение, и как найти действующее для различных форм сигналов можно на странице ссылка на страницу.

ЗАВИСИМОСТЬ АМПЛИТУДЫ НАПРЯЖЕНИЯ ОТ МОЩНОСТИ

ЗАВИСИМОСТЬ МОЩНОСТИ ОТ ВЫХОДНОГО НАПРЯЖЕНИЯ

Онлайн-калькулятор децибел

В сети полным-полно подобных калькуляторов, но я захотел тоже запилить сделать свой. Уверен, никого не удивлю, сказав, что здесь тоже работает JavaScript, и вся вычислительная нагрузка ложится на твой браузер. Если есть пустые поля, это значит, что у тебя браузер не работает с JavaScript-ом, и вычисления работать не будут 🙁

Калькулятор позволяет пересчитать напряжение в вольтах в dBμV и обратно, мощность в ваттах в dBm и обратно, и пересчитать напряжение в мощность на заданной нагрузке и обратно

02 ноя 2016 калькулятор был дополнен функцией пересчёта децибел в разы.

19 дек 2017 появился конвертер величин ЭМС. Возможно, он больше отвечает твоим запросам?

Правила пользования просты до безобразия. Измени значение любой из величин, и все остальные значения будут пересчитаны автоматически.

Напряжение, мВ:
Напряжение, dBμV:
Нагрузка, Ω:
Мощность, dBm:
Мощность, мВт:

Таблица для пересчёта децибел в разы. Впиши изменение любой из величин, и остальные будут пересчитаны автоматически.

Изменение.
дБ
Напряжения, раз
Мощности, раз

Пересчёт отношений падающей и отражённой мощности в величину КСВ:

PFWD, падающая мощность, dBm
PREF, отражённая мощность, dBm
PFWD — PREF, разница, dB
SWR, величина КСВ

На всякий случай, подсказка по использованию:
Пересчитать В поле «Напряжение, dBμV» впиши величину напряжения в децибел-микровольтах. Если у тебя величина в децибел-милливольтах (дБмВ, dBmV), просто добавь к ней (). Не забывай, что для перевода напряжения в мощность необходимо знать и сопротивление нагрузки! Пересчитать В поле «Мощность, dBm» впиши величину мощности в децибел-милливаттах. Если у тебя величина в децибел-ваттах, просто вычти из неё 30 дБ (). Не забывай, что для перевода мощности в напряжение необходимо знать и сопротивление нагрузки! Пересчитать децибелы в разы Впиши в таблице изменение уровня в децибелах, и калькулятор покажет, во сколько раз изменятся напряжение и мощность. Калькулятор не любит отрицательных чисел, и заменяет их положительными. Пересчитать разы в децибелы Впиши в таблице изменение уровня напряжения или мощности сигнала в соответствующее поле, и узнаешь, сколько это децибел. Заодно пересчитается и изменение второй величины. Калькулятор не любит отрицательных чисел, и заменяет их положительными. В самом деле, увеличение — это уменьшение , и физически разницы нет. Зато так нагляднее! Пересчитать отношение мощностей в КСВ Впиши свои величины падающей и отражённой мощностей в соответствующие поля. Если вместо величин у тебя имеется их разница, сразу впиши эту разницу в поле для разницы и игнорируй два верхних поля Пересчитать КСВ в отношение мощностей Впиши величину КСВ в соответствующее поле, и калькулятор посчитает отношение мощностей, а для указанного значения PFWD впишет соответствующее значение PREF

Перевод величин из децибелов в абсолютные значения и мощность

При проведении измерений параметров радиоаппаратуры довольно часто приходится иметь дело с относительными величинами выраженными в децибелах [дБ]. В децибелах выражают интенсивность звука, усиление каскада по напряжению, току или мощности, потери передачи или ослабление сигнала, и т.д.

Децибел — это универсальная логарифмическая единица. Широкое использование представления величин в дБ связано с удобством логарифмического масштаба, а при расчетах децибелы подчиняются законам арифметики — их можно складывать и вычитать, если сигналы имеют одинаковую форму.

Существует формула для пересчета отношения двух напряжений в число децибелов (аналогичная формула справедлива и для токов):

Например, если выходной сигнал U2 имеет уровень вдвое больше, чем U1, то это отношение составит +6 дБ (Ig2=0,301). Если U2>U1 в 10 раз, то отношение сигналов составляет 20 дБ (Ig10=1). Если U1>U2, то знак у отношения меняется на минус 20 дБ.

Так, например, у измерительного генератора аттенюатор для ослабления выходного сигнала может иметь градуировку в дБ. В этом случае для перевода величины из децибелов в абсолютное значение быстрей будет получен результат, если воспользоваться уже посчитанной табл. 6; 1. Она имеет дискретность 1 дБ (что вполне достаточно в большинстве случаев) и диапазон значений 0. -119 дБ.

Табл. 6.1 можно использовать для перевода децибелов ослабления аттенюатора в уровень выходного напряжения. Для удобства использования таблицы потребуется на выходе генератора установить при отсутствии ослабления (0 дБ на аттенюаторе) уровень напряжения 1 В (действующего или амплитудного). В этом случае соответствующее нужное значение выходного напряжения после установки ослабления находится на пересечении горизонтальной и вертикальной граф (значения в децибелах складываются арифметически).

Величина выходного напряжения в таблице указана в микровольтах (1 мкВ=10-6 В). I

Воспользовавшись данной таблицей, не трудно решить и обратную задачу — по необходимому напряжению определить, какое нужно установить ослабление сигнала на аттенюаторе в децибелах. Например, чтобы получить на выходе генератора напряжения 5 мкВ, как видно из таблицы, на аттенюаторе потребуется установить ослабление 100+6=106 дБ. Отношение мощностей двух сигналов в децибелах вычисляется по формуле:

Формула для мощности справедлива при условии, что входное и выходное сопротивления устройства одинаковые, что часто выполняется в высокочастотных устройствах для облегчения их согласования между собой.

Для определения мощности можно воспользоваться посчитанной табл. 6.2

Нередко при практическом использовании дБ важно знать и абсолютное значение соотношения двух величин, т.е. во сколько раз напряжение или мощность на выходе больше, чем на входе (или наоборот). Если отношение двух величин обозначить: K=U2/U1 или К=Р2/Р1, то можно воспользоваться табл. 6.3 для перевода величины из дБ в разы (К) и наоборот.

Так, например, антенный усилитель обеспечивает усиление сигнала по мощности на 28 дБ. Из табл. 6.3 видно, что усиление сигнала выполняется в 631 раз.

Литература: И.П. Шелестов — Радиолюбителям полезные схемы, книга 3.

Что такое децибел?

Перевод из децибел в разы и обратно

Довольно часто в популярной радиотехнической литературе, в описании электронных схем употребляется единица измерения – децибел (дБ или dB).

При изучении электроники начинающий радиолюбитель привык к таким абсолютным единицам измерения как Ампер (сила тока), Вольт (напряжение и ЭДС), Ом (электрическое сопротивление) и многим другим, с помощью которых обозначают количественно тот или иной электрический параметр (ёмкость, индуктивность, частоту).

Начинающему радиолюбителю, как правило, не составляет особого труда разобраться, что такое ампер или вольт. Тут всё понятно, есть электрический параметр или величина, которую нужно измерить. Есть начальный уровень отсчёта, который принимается по умолчанию в формулировке данной единицы измерения. Есть условное обозначение этого параметра или величины (A, V). И вправду, как только мы читаем надпись 12 V, то мы понимаем, что речь идёт о напряжении, аналогичном, например, напряжению автомобильной аккумуляторной батареи.

Но как только встречается надпись, к примеру: напряжение повысилось на 3 дБ или мощность сигнала составляет 10 дБм (10 dBm), то у многих возникает недоумение. Как это? Почему упоминается напряжение или мощность, а значение указывается в каких-то децибелах?

Практика показывает, что не многие начинающие радиолюбители понимают, что же такое децибел. Попытаемся развеять непроглядный туман над такой таинственной единицей измерения как децибел.

Что такое децибел?

Единицу измерения под названием Бел стали впервые применять инженеры телефонной лаборатории Белла. Децибел является десятой частью Бела (1 децибел = 0,1 Бел). На практике широко используется как раз децибел.

Как уже говорилось, децибел, это особенная единица измерения. Стоит отметить, что децибел не является частью официальной системы единиц СИ. Но, несмотря на это, децибел получил признание и занял прочное место наряду с другими единицами измерения.

Вспомните, когда мы хотим объяснить какое-либо изменение, мы говорим, что, например, стало ярче в 2 раза. Или, например, напряжение упало в 10 раз. При этом мы устанавливаем определённый порог отсчёта, относительно которого и произошло изменение в 10 или 2 раза. С помощью децибел также измеряют эти “разы”, только в логарифмическом масштабе.


График логарифмической зависимости

Например, изменение на 1 дБ, соответствует изменению энергетической величины в 1,26 раза. Изменение на 3 дБ соответствует изменению энергетической величины в 2 раза.

Но зачем так заморачиваться с децибелами, если отношения можно измерять в разах? На этот вопрос нет однозначного ответа. Но уж, поскольку, децибелы активно применяются, то наверняка это оправдано.

Причины для использования децибел всё-таки есть. Перечислим их.

Частично ответ на этот вопрос кроется в так называемом законе Вебера-Фехнера. Это эмпирический психофизиологический закон, т.е основан он на результатах реальных, а не теоретических экспериментов. Суть его заключается в том, что любые изменения каких-либо величин (яркости, громкости, веса) ощущаются нами при условии, если эти изменения носят логарифмический характер.


График зависимости ощущения громкости от силы (мощности) звука. Закон Вебера-Фехнера

Так, например, чувствительность человеческого уха уменьшается с ростом уровня громкости звукового сигнала. Именно поэтому, при выборе переменного резистора, который планируется применить в регуляторе громкости звукового усилителя стоит брать с показательной зависимостью сопротивления от угла поворота ручки регулятора. В этом случае, при повороте движка регулятора громкости звук в динамике будет нарастать плавно. Регулировка громкости будет линейной, так как показательная зависимость регулятора громкости компенсирует логарифмическую зависимость нашего слуха и в сумме станет линейной. При взгляде на рисунок это станет более понятно.


Зависимость сопротивления переменного резистора от угла поворота движка (А-линейная, Б-логарифмическая, В-показательная)

Здесь показаны графики зависимости сопротивления переменных резисторов разных типов: А – линейная, Б – логарифмическая, В – показательная. Как правило, на переменных резисторах отечественного производства указывается, какой зависимостью обладает переменный резистор. На тех же принципах основаны цифровые и электронные регуляторы громкости.

Также стоит отметить, что человеческое ухо воспринимает звуки, мощность которых различается на колоссальную величину в 10 000 000 000 000 раз! Таким образом, самый громкий звук отличается от самого тихого, который может уловить наш слух, на 130 дБ (10 000 000 000 000 раз).

Вторая причина широкого использования децибел является простота вычислений.

Согласитесь, что куда проще при вычислениях использовать небольшие числа вроде 10, 20, 60,80,100,130 (наиболее часто используемые числа при расчёте в децибелах) по сравнению с числами 100 (20 дБ), 1000 (30 дБ), 1000 000 (60 дБ),100 000 000 (80 дБ),10 000 000 000 (100 дБ), 10 000 000 000 000 (130 дБ). Ещё одним достоинством децибел является то, что их просто суммируют. Если проводить вычисления в разах, то числа необходимо умножать.

Например, 30 дБ + 30 дБ = 60 дБ (в разах: 1000 * 1000 = 1000 000). Думаю, с этим всё ясно.

Также децибелы очень удобны при графическом построении различных зависимостей. Все графики вроде диаграмм направленности антенн, амплитудно-частотных характеристик усилителей выполняют с применением децибел.

Децибел является безразмерной единицей измерения. Мы уже выяснили, что децибел на самом деле показывает, во сколько раз возросла, либо уменьшилась какая-либо величина (ток, напряжение, мощность). Отличие децибел от разов заключается лишь в том, что происходит измерение по логарифмическому масштабу. Чтобы это как-то обозначить и приписывают обозначение дБ. Так или иначе, при оценке приходится переходить от децибел к разам. Сравнивать с помощью децибел можно любые единицы измерения (не только ток, напряжение и проч.), так как децибел является относительной, безразмерной величиной.

Если указывается знак “-”, например, –1 дБ, то значение измеряемой величины, например, мощности, уменьшилось в 1,26 раз. Если перед децибелами не ставят никакого знака, то речь идёт об увеличении, росте величины. Это стоит учитывать. Иногда вместо знака “-” говорят о затуханиях, снижении коэффициента усиления.

Переход от децибел к разам.

На практике чаще всего приходится переходить от децибел к разам. Для этого есть простая формула:

Внимание! Данные формулы применяются для так называемых “энергетических” величин. Таких как энергия и мощность.

m = 10 (n / 10) ,где m – отношение в разах, n – отношение в децибелах.

Например, 1дБ равен 10 (1дБ / 10) = 1,258925…= 1,26 раза.

при 20 дБ: 10 (20дБ / 10) = 100 (увеличение величины в 100 раз)

при 10 дБ: 10 (10дБ / 10) = 10 (увеличение в 10 раз)

Но, не всё так просто. Есть и подводные камни. Например, затухание сигнала составляет -10 дБ. Тогда:

при -10 дБ: 10 (-10дБ / 10) = 0,1

Если мощность с 5 Вт уменьшилась до 0,5 Вт, то снижение мощности равно -10 дБ (уменьшению в 10 раз).

при -20 дБ: 10 (-20дБ / 10) = 0,01

Здесь аналогично. При снижении мощности с 5 Вт до 0,05 Вт, в децибелах падение мощности составит -20 дБ (уменьшению в 100 раз).

Таким образом, при -10 дБ мощность сигнала уменьшилась в 10 раз! При этом если мы перемножим начальную величину сигнала на 0,1 ,то и получим значение мощности сигнала при затухании в -10 дБ. Именно поэтому значение 0,1 и указано без «разов», как в предыдущих примерах. Учитывайте эту особенность при подстановке в данные формулы значений децибел со знаком «-«.

Переход от разов к децибелам можно осуществить по следующей формуле:

n = 10 * log10(m) ,где n – значение в децибелах, m – отношение в разах.

Например, рост мощности в 4 раза будет соответствовать значению в 6,021 дБ.

10 * log10(4) = 6,021 дБ.

Внимание! Для пересчёта отношений таких величин как напряжение и сила тока существуют немного иные формулы:

(Сила тока и напряжение, это так называемые “силовые” величины. Поэтому и формулы отличаются.)

Для перехода к децибелам: n = 20 * log10(m)

Для перехода от децибел к разам: m = 10 (n / 20)

n – значение в децибелах, m – отношение в разах.

Если Вы успешно дошли до этих строк, то считайте, что сделали ещё один весомый шаг в освоении электроники!

Измерение децибел онлайн. Что измеряется в децибелах? Децибел: определение и области применения

И т. п., поэтому отношение D F {\displaystyle D_{F}} двух значений силовой величины F {\displaystyle F}

D F = 20 lg ⁡ F 1 F 0 .{0,05}} ≈ 1,122 раза.

Децибел относится к единицам, не входящим в Международную систему единиц (СИ) , но в соответствии с решением Международного комитета мер и весов допускается к применению без ограничений совместно с единицами СИ . В основном применяется в электросвязи , акустике , радиотехнике .

Энциклопедичный YouTube

    1 / 2

    ✪ Что такое децибел

    ✪ EdEra: Що таке децибел?

Субтитры

История

Распространение децибела берёт начало от методов, используемых для количественной оценки потери (ослабления) сигнала в телеграфных и телефонных линиях. Единицей потерь изначально была миля стандартного кабеля (англ. mile of standard cable — m.s.c.). 1 m.s.c. — это отношение мощностей сигнала с частотой 800 Гц на двух концах кабеля длиной в 1 милю (примерно 1,6 км), имеющего распределённое сопротивление 88 Ом (на петлю) и распределённую ёмкость 0,054 мкФ . Такое отношение мощностей, преобразованных в звуковые колебания, было близким к наименьшей различимой средним слушателем разнице двух сигналов по громкости. Однако миля стандартного кабеля была частотно-зависимой, и она не могла быть полноценной единицей отношения мощностей .

Определение

Децибелы принято использовать для измерения или выражения отношения одноимённых энергетических величин, таких как мощность, энергия, интенсивность, плотность потока мощности, спектральная плотность мощности и т. п., а также силовых величин, таких как напряжение, сила тока, напряженность поля, звуковое давление и т. п. Часто в качестве одной из величин отношения (в знаменателе) выступает общепринятая исходная (или опорная) величина. Тогда отношение, выраженное в децибелах, принято называть уровнем соответствующей физической величины (например, уровень мощности, уровень напряжения и т. д.) .

Энергетические величины

Примеры соотношений
с энергетическими и силовыми величинами
D {\displaystyle D} P 1 / P 0 {\displaystyle P_{1}/P_{0}} F 1 / F 0 {\displaystyle F_{1}/F_{0}}
40 dB 10000 100
20 dB 100 10
10 dB 10 ≈ 3,16
6 dB ≈ 4 ≈ 2
3 dB ≈ 2 ≈ 1,41
1 dB ≈ 1,26 ≈ 1,12
0 dB 1 1
−1 dB ≈ 0,79 ≈ 0,89
−3 dB ≈ 0,5 ≈ 0,71
−6 dB ≈ 0,25 ≈ 0,5
−10 dB 0,1 ≈ 0,32
−20 dB 0,01 0,1
−40 dB 0,0001 0,01

Отношение D P {\displaystyle D_{P}} двух значений энергетической величины P {\displaystyle P} и P 0 {\displaystyle P_{0}} , выраженное в децибелах, определяется по формуле:

D P = 10 lg ⁡ P 1 P 0 .{0,05D_{U}}.}

Определение единицы бел

Бел (русское обозначение: Б; международное: B) выражает отношение двух мощностей как десятичный логарифм этого отношения .

Сравнение логарифмических единиц

Единица Обозначение Изменение энергетической
величины в … раз
Изменение силовой
величины в … раз
Пересчёт в …
дБ Б Нп
децибел дБ, dB 10 10 {\displaystyle {\sqrt[{10}]{10}}} ≈ 1,259 10 20 {\displaystyle {\sqrt[{20}]{10}}} ≈ 1,122 1 0,1 ≈0,1151
бел Б, B 10 10 {\displaystyle {\sqrt {10}}} ≈ 3,162 10 1 ≈1,151
непер Нп, Np e 2 ≈ 7,389 e ≈ 2,718 ≈8,686 ≈0,8686 1

Применение

Децибелы широко применяются в областях техники, где требуется измерение или представление величин, меняющихся в широком диапазоне: в радиотехнике, антенной технике, в системах передачи информации, автоматического регулирования и управления, в оптике, акустике (в децибелах измеряется уровень громкости звука) и др. Так, в децибелах принято измерять или указывать динамический диапазон (например, диапазон громкости звучания музыкального инструмента), затухание волны при распространении в поглощающей среде, коэффициент затухания радиочастотного кабеля, коэффициент усиления и коэффициент шума усилителя.

Акустика

Звуковое давление — силовая величина, а интенсивность звука , пропорциональная квадрату звукового давления, — энергетическая величина. Например, если громкость звука (субъективно определяемая его интенсивностью) возросла на 10 дБ, то это значит, что интенсивность звука возросла в 10 раз, а звуковое давление — приблизительно в 3,16 раза.

Использование децибелов при указании громкости звука обусловлено человеческой способностью воспринимать звук в очень большом диапазоне изменений его интенсивности. Применение линейной шкалы оказывается практически неудобным. Кроме того, на основании закона Вебера - Фехнера , ощущение громкости звука пропорционально логарифму его интенсивности. Отсюда удобство логарифмической шкалы. Диапазон величин звукового давления от минимального порога слышимости звука человеком (20 мкПа) до максимального, вызывающего болевые ощущения, составляет примерно 120 дБ. Например, утверждение «громкость звука составляет 30 дБ» означает, что интенсивность звука в 1000 раз превышает порог слышимости звука человеком.

Для выражения громкости звука также используют единицы фон и сон , учитывающие частотную и субъективную восприимчивость звука человеком.

Удобства применения децибелов

Прежде всего следует отметить удобство децибела по сравнению с единицей бел . Для практических применений бел оказался слишком крупной единицей, часто предполагающей дробную запись значения логарифмической величины. Перечисленные ниже удобства так или иначе связаны с применением не только децибелов, а логарифмической шкалы и логарифмических величин вообще.

  • Характер отображения в органах чувств человека и животных изменений течения многих физических и биологических процессов пропорционален не амплитуде входного воздействия, а логарифму входного воздействия (см. Закон Вебера - Фехнера). Эта особенность делает применение логарифмических шкал, логарифмических величин и их единиц вполне естественным. Например, одной из таких шкал является музыкальная равномерно темперированная шкала частот.
  • Логарифмическая шкала даёт наглядное графическое представление и упрощение анализа величины, изменяющейся в очень широких пределах (примеры — диаграмма направленности антенны, амплитудно-частотная характеристика (АЧХ) системы автоматического регулирования). Это же относится к передаточным частотным характеристикам электрических фильтров (см. логарифмическая амплитудно-фазовая частотная характеристика). При этом форма кривой упрощается и возможно применение кусочно-линейной аппроксимации, при которой скорость убывания частотной характеристики имеет размерность дБ/декада или дБ/октава. Упрощается анализ частотной характеристики фильтров, составленных из последовательно включенных звеньев с независимыми друг от друга частотными характеристиками. Следует заметить, что построение графиков в логарифмическом масштабе требует определённого навыка (см. Логарифмическая бумага).
  • Логарифмическое представление некоторых относительных величин в ряде случаев упрощает математические операции с ними, в частности, умножение и деление заменяются сложением и вычитанием. Например, если собственные коэффициенты усиления последовательно включённых усилителей выражены в децибелах, то общий коэффициент усиления находится как сумма собственных коэффициентов.

Опорные величины и обозначения уровней

Если в качестве одной из величин отношения (в знаменателе) выступает общепринятая исходная (или опорная) величина X ref , то отношение, выраженное в децибелах, называют уровнем (иногда называют абсолютным уровнем ) соответствующей физической величины X и обозначают L X (от англ. level ).

В соответствии с действующими стандартами , при необходимости указать исходную величину её значение помещают в скобках за обозначением логарифмической величины. Например, уровень L P звукового давления P можно записать: L P (исх. 20 мкПа) = 20 дБ, а с использованием международных обозначений — L P (re 20 µPa) = 20 dB (re — сокращение от англ. reference ). Допускается указывать значение исходной величины в скобках за значением уровня, например: 20 дБ (исх. 20 мкПа). Также используется краткая форма, например, уровень L W мощности W можно записать: L W (1 мВт) = 30 дБ, или L W = 30 дБ (1 мВт). Значение «1» исходной величины может быть опущено, например, L W = 30 дБ (мВт). То есть, если в скобках указана только размерность исходной величины, а значение величины не указано, то подразумевается, что оно равно «1». Для сокращения записи широко используются специальные обозначения, например: L W = 30 дБм. Запись означает, что уровень мощности составляет +30 дБ относительно 1 мВт, то есть мощность равна 1 Вт.

Специальные обозначения

Приведены некоторые специальные обозначения, которые в предельно краткой форме указывают на значение исходной (опорной) величины, по отношению к которой определён соответствующий уровень, выраженный в децибелах . Для указанных ниже опорных величин под электрическим напряжением понимается его среднеквадратичное (эффективное) значение.

  • dBW (русское дБВт ) — опорная мощность 1 Вт. Например, уровень мощности +30 дБВт соответствует мощности 1 кВт.
  • dBm (русское дБм ) — опорная мощность 1 мВт.
  • dBm0 (русское дБм0 ) — опорная мощность 1 мВт. Обозначение применяется в электросвязи для указания абсолютного уровня мощности, приведённого к так называемой точке нулевого относительного уровня.
  • dBV (русское дБВ ) — опорное напряжение 1 В.
  • dBuV или dBμV (русское дБмкВ ) — опорное напряжение 1 мкВ.
  • dBu (русское дБн ) — опорное напряжение 0 , 600 {\displaystyle {\sqrt {0,600}}} ≈ 0,775 В, соответствующее мощности 1 мВт на нагрузке 600 Ом.
  • dBrn — опорное напряжение соответствует мощности теплового шума идеального резистора с сопротивлением R {\displaystyle R} равным 50 Ом при комнатной температуре в полосе частот 1 Гц: V n o i s e = 4 k B T R = 9 ⋅ 10 − 10 [ V ] {\displaystyle V_{noise}={\sqrt {4k_{B}TR}}=9\cdot 10^{-10}\left[{\text{V}}\right]} . Это значение соответствует уровню напряжения −61 dBμV или уровню мощности −168 dBm.
  • dBFS (от англ. full scale — «полная шкала») — опорный сигнал (мощность, напряжение) соответствует полной шкале аналого-цифрового преобразователя .
  • dB SPL (от

В сети полным-полно подобных калькуляторов, но я захотел тоже запилить сделать свой. Уверен, никого не удивлю, сказав, что здесь тоже работает JavaScript , и вся вычислительная нагрузка ложится на твой браузер. Если есть пустые поля, это значит, что у тебя браузер не работает с JavaScript -ом, и вычисления работать не будут:(

19 дек 2017 появился конвертер величин ЭМС . Возможно, он больше отвечает твоим запросам?

Правила пользования просты до безобразия. Измени значение любой из величин, и все остальные значения будут пересчитаны автоматически.

Пересчёт отношений падающей и отражённой мощности в величину КСВ:

На всякий случай, подсказка по использованию:
Пересчитать дБмкВ в дБм (dBμV в dBm) В поле «Напряжение, dBμV» впиши величину напряжения в децибел-микровольтах. Если у тебя величина в децибел-милливольтах (дБмВ, dBmV), просто добавь к ней 60 дБ (0 дБмВ ≡ 60 дБмкВ). Не забывай, что для перевода напряжения в мощность необходимо знать и сопротивление нагрузки! Пересчитать дБм в дБмкВ (dBm в dBμV) В поле «Мощность, dBm» впиши величину мощности в децибел-милливаттах. Если у тебя величина в децибел-ваттах, просто вычти из неё 30 дБ (0 дБВт ≡ 30 дБм). Не забывай, что для перевода мощности в напряжение необходимо знать и сопротивление нагрузки! Пересчитать децибелы в разы Впиши в таблице изменение уровня в децибелах, и калькулятор покажет, во сколько раз изменятся напряжение и мощность. Калькулятор не любит отрицательных чисел, и заменяет их положительными. Пересчитать разы в децибелы Впиши в таблице изменение уровня напряжения или мощности сигнала в соответствующее поле, и узнаешь, сколько это децибел. Заодно пересчитается и изменение второй величины. Калькулятор не любит отрицательных чисел, и заменяет их положительными. В самом деле, увеличение в 0,5 раз — это уменьшение в 2 раза, и физически разницы нет. Зато так нагляднее! Пересчитать отношение мощностей в КСВ Впиши свои величины падающей и отражённой мощностей в соответствующие поля. Если вместо величин у тебя имеется их разница, сразу впиши эту разницу в поле для разницы и игнорируй два верхних поля Пересчитать КСВ в отношение мощностей Впиши величину КСВ в соответствующее поле, и калькулятор посчитает отношение мощностей, а для указанного значения P FWD впишет соответствующее значение P REF

Единица измерения Бел выражает не саму величину, а отношение одной величины к другой. Бел — единица логарифмическая. Чаще эта единица употребляется с десятичной приставкой «деци- », т.е. «десятая часть». В децибелах удобно измерять коэффициенты затухания и усиления:

Зачем логарифмы? Так ведь и человеческое восприятие имеет логарифмический характер! Представь себе пакет с покупками массой 1 кг. Если к этой массе добавить ещё литр килограмм, то изменение массы будет очень даже ощутимо. Если этот же килограмм добавить к массе, скажем, 15 кг, то прирост массы будет заметен, но уже почти не будет ощущаться. А уж если этот килограмм добавить к целой тонне, то прирост будет и вовсе незаметен. Чтобы толкать автомобиль с литром сока и без оного, требуется приложить одинаковое усилие.

Кроме того, вспоминаем математику логарифмов, и видим, как упрощаются некоторые расчёты.

Это уже упрощает жизнь. Решим простенькую задачку:
Мощность сигнала затухает в линии в 6,3 раза, на приёмной стороне усилитель повышает мощностью в 25 раз. Во сколько раз мощность сигнала на выходе усилителя будет больше или меньше, чем на выходе генератора?

Только что мы посчитали, во сколько раз мощность сигнала на выходе тракта отличается от подаваемой в тракт. Наверняка хочется знать величину этой мощности. Можно ли выразить сами величины в децибелах? Конечно можно! Для этого надо величину поделить на единицу.

Теперь посчитать мощность сигнала на выходе тракта, выраженную в дБВт , не составляет труда. Например, если подводимая мощность была 0,25Вт (-6дБВт), то мощность сигнала на выходе тракта

Около 1 Вт, как нетрудно догадаться. Пересчитаем в ватты:

Теперь запомни несколько утверждений:

  • Изменение мощности в 2 раза — это 3 дБ
  • Изменение мощности в 3 раза — это 4.8 дБ
  • Изменение мощности в 10 раз — это 10 дБ
  • Изменение мощности в 100 раз — это 20 дБ
Правильность этих утверждений легко проверить. И именно отсюда следует, что рост сигнала на 6 дБ (2 раза по 3 дБ) — это увеличение мощности в 4 раза (дважды 2 раза). А увеличиение мощности в 20 раз (10×2) — это увеличение на 13 дБ (10 + 3)

…изменение мощности…

Я намеренно писал выше только о мощностях. Мощность имеет квадратичную зависимость от напряжения и от тока, а изменение на 3 децибелла — это всегда и во всех случаях изменение мощности в 2 раза . Как мы помним, мощность зависит от квадрата напряжения или от квадрата тока:

Помним, что логарифм степени есть произведение показателя степени и логарифма основания. Показатель степени — это двойка, и умножать надо не на 10, а на 20. Выразим 2 Вольта в децибел-вольтах, и 3 децибел-вольта в Вольтах:

Просто и нестрашно!

  • В расчётах энергетических величин (мощность) фигурирует число 10
  • В расчётах силовых величин (напряжение, ток) фигурирует число 20

Порешаем немного расчётных задач, чтобы совсем уверенно ориентироваться в децибелах.

1. Громкость звука

Громкость звука тоже измеряется в децибелах. Помня о том, что децибел — это мера отношения двух величин, мы обязательно всегда уточняем, по отношению к чему измерены эти децибелы, т.е. где начало отсчёта. А в данном случае — по отношению к порогу слышимости человека: 2×10 -5 Н/м 2 . Ньютон — это системная единица силы, т.е. явно силовая величина, поэтому в расчётах фигурирует число 20. А давайте посчитаем, какую силу оказывает звуковое давление на барабанную перепонку в нашем ухе, при взлёте реактивного самолёта и при тихом разговоре.

Что мы знаем:

  • Величины в децибелах выражены по отношению к 2×10 -5 Н/м 2
  • Площадь барабанной перепонки у человека около 55 мм 2 , или 5,5×10 -5 м 2
  • Табличная громкость реактивного самолёта — 120 дБ на расстоянии 5 м
  • Табличная громкость тихого разговора — 50 дБ на расстоянии 1 м

Энштейн, Ньютон и Паскаль играли в прятки. Водить выпало Эйнштейну. Паскаль убежал в кусты, замаскировался, вообще не видно мужика, а вот Ньютон просто стоит. Нарисовал вокруг себя квадрат и стоит. Эйнштейн досчитал до ста, поворачивается, видит Ньютона и кричит:
— Ура! Я нашел Ньютона!
Ньютон хитро улыбнувшись отвечает:
— Ошибся, умник! Это Ньютон на квадратный метр! ТЫ НАШЕЛ ПАСКАЛЯ!!!

Посчитаем величину звукового давления в Паскалях, или Ньютонах на квадратный метр:

Умножаем давление в Паскалях на площадь в квадратных метрах, и получим величину силы в Ньютонах:

Пересчитаем Ньютоны в более ощутимые грамм-силы:

  • Реактивный самолёт оказывает давление
    0,0011 Н × 102 гс/Н = 0,1122 гc
  • Звук негромкого разговора давит на барабанную перепонку с силоу
    0,0000003479 Н × 102 гс/Н = 0,000035 гс

Как говорится, почувствуйте разницу! И не забывайте, что механизм слуха более сложен, и звук мы воспринимаем не только барабанной перепонкой в глубине уха!

2. Перевод уровня напряжения в мощность сигнала

На работе мы часто измеряем уровни радиосигнала на антенном входе измерительного приёмника. А измерительный приёмник по своим метрологическим свойствам близок к селективному вольтметру, и измеренная величина исчисляется в децибел-микровольтах (дБмкВ ). В то же время, часто в радиоизмерениях оперируют мощностью сигнала в точке приёма, нередко выраженной в децибел-милливаттах (дБм ). Давайте пересчитаем одно в другое!

И для пущего счастья, сделал онлайн-калькулятор, пересчитывающий напряжение в децибел-микровольтах в мощность в децибел-милливаттах и обратно (знаю-знаю, в интернете их и без меня бесчисленное множество! :))

Онлайн-калькулятор децибел

Правила пользования просты до безобразия. Измени значение любой из величин, и все остальные значения будут пересчитаны автоматически.

Децибел — это относительная единица измерений, она не похожа на остальные известные величины, поэтому ее не включили в систему общепринятых единиц измерения СИ. Однако во многих расчетах допускается использование децибелов наравне с абсолютными единицами измерений и даже применение их в качестве опорной величины.

Децибелы определяются принадлежностью к физическим величинам, поэтому их нельзя относить к математическим понятиям. Это легко представить, если провести параллель с процентами, с которыми децибелы имеют много общего. Они не имеют конкретных размеров, но при этом очень удобны при сопоставлении 2-х одноименных величин, даже если они различны по своей природе. Таким образом, не сложно представить, что измеряется в децибелах.

История возникновения

Как выяснилось в результате длительных исследований, восприимчивость не находится в прямой зависимости от абсолютного уровня распространения звука. Она является показателем мощности, примененным к заданной единице площади, которая находится в зоне воздействия звуковых волн, что и измеряют в децибелах сегодня. В результате установили любопытную пропорцию — чем больше места принадлежит полезной площади человеческого уха, тем к лучшему восприятию минимальных мощностей оно расположено.

Таким образом, исследователю Александру Грэхему Беллу удалось установить, что предел восприятия человеческого уха равен от 10 до 12 Вт на метр квадратный. Полученные данные охватывали слишком широкий диапазон, который представлялся всего несколькими значениями. Это создавало определенные неудобства и исследователю пришлось создать собственную шкалу измерений.

В первоначальном варианте безымянная шкала имела 14 значений — от 0 до 13, где человеческий шепот имел значение «3», а разговорная речь — «6». Впоследствии эта шкала нашла широкое применение, а ее единицы назвали белами. Для получения более точных данных в логарифмическом масштабе исходную единицу увеличили в 10 раз — так сформировались децибелы.

Общие сведения

Прежде всего, следует отметить, что децибел — это одна десятая Бела, который является десятичной формой логарифма, определяющего отношение меж 2-мя мощностями. Природа мощностей, подлежащих сравнению, избирается произвольно. Главное, чтобы соблюдалось правило, представляющее сравниваемые мощности в равных единицах, например, в Ваттах. Благодаря этой особенности, обозначения децибелов применяют в разных областях:

  • механической;
  • электрической;
  • акустической;
  • электромагнитной.

Так как практическое применение показало, что Бел оказался довольно крупной единицей, то для лучшей наглядности было предложено его значение умножить на десять. Таким образом, появилась общепринятая единица — децибел, в чем измеряется звук сегодня.

Несмотря на обширную зону применения, большинству людей известно, что децибелы применяются для определения степени громкости. Эта величина характеризует волны на метр квадратный. Таким образом, увеличение громкости на 10 децибел сопоставимо с возрастанием силы звука вдвое.

В законодательстве децибел был признан расчетной величиной зашумленности помещения. Он явился определяющей характеристикой для исчисления допустимой силы шума в жилых строениях. Эта величина дает возможность измерить допустимый уровень шума в децибелах в квартире и выявить факты нарушения в случае необходимости.

Область применения

Сегодня проектировщики телекоммуникаций используют децибел в качестве базовой единицы для проведения сравнительных характеристик устройств, отраженных в логарифмическом масштабе. Такие возможности предоставляет конструктивная особенность данной величины, которая является логарифмической единицей разных уровней, используемых при затуханиях или, наоборот, усилениях мощностей.

Децибел получил широкое распространение в разнообразных областях современной техники. Что измеряется в децибелах сегодня? Это различные величины, изменяющиеся в обширном диапазоне, которые могут применяться:

  • в системах, связанных с передачей информации;
  • радиотехнике;
  • оптике;
  • антенной технике;
  • акустике.

Таким образом, децибелы применяют при измерении характеристик динамического диапазона, к примеру, ими можно измерить громкость звучания определенного музыкального инструмента. А также открывается возможность исчислять затухающие волны в момент их прохождения через поглощающую среду. Децибелы позволяют определить коэффициент усиления или зафиксировать коэффициент шума, создаваемого усилителем.

Использовать эти безразмерные единицы возможно как для физических величин, относящихся ко второму порядку — энергия или мощность, так и для величин, имеющих отношение к первому порядку — сила тока или напряжение. Децибелы открывают возможности измерения отношений между всеми физическими величинами, а кроме этого, с их помощью сопоставляют абсолютные значения.

Громкость звука

Физическая составляющая громкости звукового воздействия определяется уровнем имеющегося звукового давления, воздействующего на единицу контактной площади, что измеряется в децибелах. Формируется уровень шума из хаотического слияния звуков. На низкие частоты или, наоборот, звуки высокой частоты человек реагирует как на более тихие звуки. А звуки средних частот будут восприняты как более громкие, несмотря на одинаковую интенсивность.

Учитывая неравномерное восприятие звуков различной частоты человеческим ухом, на электронной базе был создан частотный фильтр, способный передавать эквивалентную степень звука с единицей измерения, которая выражается в дБа — где «а» обозначает применение фильтра. Этот фильтр, по итогам нормирования измерений, способен моделировать взвешенное значение уровня звука.

Способность разных людей воспринимать звуки находится в пределах громкости от 10 до 15 дБ, а в отдельных случаях даже выше. Воспринимаемые пределы интенсивности звука составляют частоты от 20 до 20 тыс. Герц. Наиболее легкие для восприятия звуки располагаются в частотном диапазоне от 3-х до 4-х кГц. Такую частоту принято использовать в телефонах, а также при радиовещании на средних и длинных волнах.

С годами диапазон воспринимаемых звуков сужается, особенно это касается высокочастотного спектра, где восприимчивость может снижаться до 18 кГц. Это приводит к общему ухудшению слуха, которому подвержены многие пожилые люди.

Допустимые показатели уровня шума в жилых помещениях

С использованием децибелов появилась возможность определить более точную шкалу шумов для окружающих звуков. Она отражает превосходящие по точности характеристики по сравнению с исходной шкалой, созданной в свое время Александром Беллом. С использованием этой шкалы законодательными органами определен уровень шума, норма которого действует в пределах жилых помещений, предназначенных для отдыха граждан.

Таким образом, значение «0» дБ означает полнейшую тишину, от которой раздается звон в ушах. Следующее значение 5 дБ также определяет полную тишину при наличии небольшого звукового фона, заглушающего внутренние процессы организма. При 10 дБ становятся различимы нечеткие звуки — всевозможные шорохи или шуршание листвы.

Значение в 15 дБ находится в диапазоне четкой слышимости самых тихих звуков, таких как тиканье наручных часов. При силе звука в 20 дБ можно разобрать осторожный шепот людей на расстоянии 1 метра. Отметка 25 дБ позволяет слышать более отчетливо разговор шепотом и шорох от трения мягких тканей.

30 дБ определяет, сколько децибел разрешено в квартире ночью и сопоставляется с беззвучным разговором или тиканьем настенных часов. При 35 дБ можно отчетливо слышать приглушенную речь.

Уровень в 40 децибел определяет силу звука обычного разговора. Это достаточная громкость, позволяющая свободно общаться в пределах помещения, смотреть телевизор или прослушивать музыкальные треки. Данная отметка определяет, сколько децибел разрешено в квартире днем.

Уровень шума, допустимый в рабочих условиях

По сравнению с допустимым уровнем шума в децибелах в квартире, на производстве и в офисной деятельности в рабочее время допускаются другие нормы уровня звука. Здесь действуют ограничения иного прядка, четко отрегулированные для каждого рода занятий. Основное правило в данных условиях — не допускать уровня шума, который способен отрицательно повлиять на здоровье человека.

В офисах

Значение уровня шума в 45 дБ находится в пределах хорошей слышимости и сопоставимо с шумом работы дрели или электродвигателя. Шум в 50 дБ также характеризуется пределами отличной слышимости и совпадает по силе со звуком печатающей машинки.

Уровень шума в 55 децибел остается в пределах превосходной слышимости, его можно представить на примере одновременного звучного разговора сразу нескольких людей. Этот показатель принимают в качестве верхней отметки, допустимой для офисных помещений.

В животноводстве и канцелярской деятельности

Сила шума в 60 дБ считается повышенной, такой уровень зашумленности можно встретить в конторах, где одновременно работает много печатных машинок. Показатель в 65 дБ также считают повышенным и его можно зафиксировать при работе типографского оборудования.

Уровень шума, достигающий отметки 70 дБ, сохраняет значение повышенного и встречается на животноводческих фермах. Значение шума в 75 дБ — это предельное значение повышенного уровня шума, его можно отметить на птицефабриках.

В производстве и транспорте

С отметкой в 80 дБ наступает уровень громкого звука, длительное воздействие которого станет следствием частичной утраты слуха. Поэтому, при работе в таких условиях рекомендуется применять защитные наушники. Сила шума в 85 дБ также находится в пределах уровня громкого звука, такие показания можно сопоставить с работой оборудования ткацкой фабрики.

Показатель шума в 90 дБ сохраняется в пределах громкого звука, такую силу зашумленности можно зарегистрировать при движении железнодорожного состава. Величина шума в 95 дБ достигает крайних пределов громкого звука, такой силы шум можно зафиксировать в металлопрокатном цеху.

Предельный уровень шума

Уровень шума на отметке 100 дБ достигает пределов чрезмерно громкого звука, его можно сравнить с раскатами грома. Работа в таких условиях считается вредной для здоровья и выполняется в рамках определенного стажа, по истечении которого человек считается непригодным для вредных работ.

Значение шума в 105 дБ также находится в пределах чрезмерно громкого звука, шум такой силы создает бензорезка при порезке металла. Сила шума в 110 дБ остается в границах чрезмерно громкого звука, такой показатель фиксируется при взлете вертолета. Величина шума в 115 дБ считается предельной для границ чрезмерно громкого звука, такой шум издает пескоструйный аппарат.

Уровень шума 120 дБ считается невыносимым, его можно сравнить с работой отбойного молотка. Шумовая отметка в 125 дБ также характеризуется невыносимым уровнем шума, такой отметки достигает самолет на старте. Максимальный уровень шума в дБ считается предельным на отметке 130, после чего наступает болевой порог, вынести который способен далеко не каждый.

Критический уровень шума

Сила шума на отметке 135 дБ считается недопустимой, человек, оказавшийся в зоне действия звука такой силы, получает контузию. Уровень шума в 140 дБ также приводит к контузии, таким звуком сопровождается старт реактивного самолета. При величине шума в 145 дБ разрывается осколочная граната.

Достигает отметки 150-155 дБ разрыв кумулятивного снаряда на танковой броне, звук такой силы приводит к контузии и травмам. После отметки 160 дБ наступает звуковой барьер, звук, превышающий этот предел, приводит к разрыву ушных барабанных перепонок, распаду легких и множественным травмам, нанесенным ударной волной, что вызывает мгновенную смерть.

Воздействие на организм неслышимых звуков

Звук, частота которого ниже 16 Гц, называют инфракрасным, а если частота его превышает 20 тыс. Гц, то такой звук называют ультразвуком. Барабанные перепонки человеческого уха не способны воспринимать звуки такой частоты, поэтому они находятся за пределами человеческого слуха. Децибелы, в чем измеряется звук сегодня, также определяют значения не слышимых звуков.

Звуки низкой частоты, находящиеся в пределах от 5-ти до 10-ти Гц, плохо переносятся человеческим организмом. Такое воздействие способно активизировать сбои в работе внутренних органов и отражаться на мозговой активности. Кроме этого, интенсивность низких частот оказывает воздействие на костные ткани, провоцируя суставные боли у людей, страдающих различными заболеваниями или перенесших травмы.

Повседневными источниками ультразвука являются различные транспортные средства, также ими могут служить раскаты грома или работа электронной аппаратуры. Такие воздействия выражаются в нагреве тканей, а сила их влияния находится в зависимости от расстояния до действующего источника и от степени звука.

Для общедоступных мест работы, обладающих неслышимого диапазона, также существуют определенные ограничения. Максимальная сила инфракрасного звука должна удерживаться в пределах 110 дБа, а сила ультразвука ограничивается отметкой в 125 дБа. Строго запрещено даже кратковременное нахождение в зонах, где звуковое давление превышает 135 дБ любой частоты.

Влияние шума, исходящего от оргтехники, и способы защиты

Шум, который издает компьютер и прочая организационная техника, может быть выше значения в 70 дБ. В связи с этим специалисты не рекомендуют устанавливать большое количество данной аппаратуры в одном помещении, особенно, если оно не большое. Шумные агрегаты рекомендуется устанавливать за пределами помещения, в котором находятся люди.

Для снижения уровня зашумленности в отделочных работах применяют материалы, обладающие шумопоглощающими свойствами. Кроме этого, можно использовать шторы из плотной ткани или, в крайнем случае, бируши, закрывающие от воздействия барабанные перепонки.

Сегодня при строительстве современных зданий существует новая норма, определяющая степень звукоизоляции помещений. Стены и перекрытия корпусов многоквартирных домов проверяют на устойчивость к воздействию шума. Если уровень звукоизоляции находится ниже допустимого предела, здание не может быть сдано в эксплуатацию до устранения неполадок.

Кроме всего, сегодня устанавливают ограничения по силе звука для различных сигнальных и оповещающих устройств. Для противопожарных систем, к примеру, сила звука оповещающего сигнала должна находиться в рамках от 75 дБа до 125 дБа.

При проведении измерений параметров радиоаппаратуры довольно часто приходится иметь дело с относительными величинами выраженными в децибелах [дБ]. В децибелах выражают интенсивность звука, усиление каскада по напряжению, току или мощности, потери передачи или ослабление сигнала, и т.д.

Децибел — это универсальная логарифмическая единица. Широкое использование представления величин в дБ связано с удобством логарифмического масштаба, а при расчетах децибелы подчиняются законам арифметики — их можно складывать и вычитать, если сигналы имеют одинаковую форму.

Существует формула для пересчета отношения двух напряжений в число децибелов (аналогичная формула справедлива и для токов):

Например, если выходной сигнал U2 имеет уровень вдвое больше, чем U1, то это отношение составит +6 дБ (Ig2=0,301). Если U2>U1 в 10 раз, то отношение сигналов составляет 20 дБ (Ig10=1). Если U1>U2, то знак у отношения меняется на минус 20 дБ.

Так, например, у измерительного генератора аттенюатор для ослабления выходного сигнала может иметь градуировку в дБ. В этом случае для перевода величины из децибелов в абсолютное значение быстрей будет получен результат, если воспользоваться уже посчитанной табл. 6; 1. Она имеет дискретность 1 дБ (что вполне достаточно в большинстве случаев) и диапазон значений 0…-119 дБ.

Табл. 6.1 можно использовать для перевода децибелов ослабления аттенюатора в уровень выходного напряжения. Для удобства использования таблицы потребуется на выходе генератора установить при отсутствии ослабления (0 дБ на аттенюаторе) уровень напряжения 1 В (действующего или амплитудного). В этом случае соответствующее нужное значение выходного напряжения после установки ослабления находится на пересечении горизонтальной и вертикальной граф (значения в децибелах складываются арифметически).

Величина выходного напряжения в таблице указана в микровольтах (1 мкВ=10-6 В). I

Воспользовавшись данной таблицей, не трудно решить и обратную задачу — по необходимому напряжению определить, какое нужно установить ослабление сигнала на аттенюаторе в децибелах. Например, чтобы получить на выходе генератора напряжения 5 мкВ, как видно из таблицы, на аттенюаторе потребуется установить ослабление 100+6=106 дБ. Отношение мощностей двух сигналов в децибелах вычисляется по формуле:

Формула для мощности справедлива при условии, что входное и выходное сопротивления устройства одинаковые, что часто выполняется в высокочастотных устройствах для облегчения их согласования между собой.

Для определения мощности можно воспользоваться посчитанной табл. 6.2

Нередко при практическом использовании дБ важно знать и абсолютное значение соотношения двух величин, т.е. во сколько раз напряжение или мощность на выходе больше, чем на входе (или наоборот). Если отношение двух величин обозначить: K=U2/U1 или К=Р2/Р1, то можно воспользоваться табл. 6.3 для перевода величины из дБ в разы (К) и наоборот.

Так, например, антенный усилитель обеспечивает усиление сигнала по мощности на 28 дБ. Из табл. 6.3 видно, что усиление сигнала выполняется в 631 раз.

Литература: И.П. Шелестов — Радиолюбителям полезные схемы, книга 3.

The Times Digital Archive, 1785-2019 *

* Клиенты, купившие этот архив после 1-го июня 2021 года, получат полный архив с 1785-2019. Клиенты, которые ранее приобрели исходный архив за 1785-2014 годы, могут приобрести 2015-2019 годы, чтобы расширить свой существующий архив. Обратите внимание, что модуль доступен только в качестве надстройки для учреждений, у которых есть исходный архив, и не доступен как отдельная покупка.

The Times Digital Archive — это онлайн-полнотекстовое факсимильное сообщение более чем 200-летнего периода Times , одного из наиболее уважаемых ресурсов для освещения новостей восемнадцатого, девятнадцатого и двадцатого веков, с каждой страницей каждого выпуска с 1785 по 2019 год.Этот исторический газетный архив дает исследователям беспрецедентную возможность искать и просматривать самую известную и наиболее цитируемую газету в мире в Интернете в ее первоначальном опубликованном контексте.

Читаемый как мировыми лидерами, так и широкой публикой, Times предлагает читателям всестороннее, отмеченное наградами, объективное освещение мировых событий с момента своего создания в 1785 году и является старейшей ежедневной газетой, выходящей непрерывно.

Начиная с 1986 года, Times расширило свое спортивное и культурное освещение за счет увеличения количества пищевых добавок по выходным, что дает сегодняшним исследователям еще более широкое представление о нашем современном мире.

Архив поддерживает исследования по множеству дисциплин и областей интересов, включая бизнес, гуманитарные науки, политологию, философию и множество других предметов с освещением всех основных международных исторических событий.

Доступ через вашу библиотеку >>

The Times (Лондон) — старейшая в мире непрерывно издающаяся газета. Читатели обратились к Times за подробным освещением новостей, парламентскими отчетами и комментариями, редакционным мнением и уникальным взглядом на историю от основных репортеров и редакторов того периода. The Times Digital Archive, 1785-2013 позволяет пользователям видеть полную страницу каждого выпуска, опубликованного за четыре столетия. Для облегчения точного поиска каждая статья отнесена к одной из двадцати шести подкатегорий в семи основных категориях, в том числе:

  • Реклама — взгляд на современную жизнь
  • Редакционные статьи и комментарии — охватывающие все мыслимые темы.
  • Бизнес — внутренние рынки, континентальная биржа, денежные рынки, акции и акции, новости компании
  • Люди — обширное освещение рождений, смертей, браков и некрологов
  • Характеристики — книги, кино, театр, опера, музыка, радио, телевидение, спорт, погода, мост, кроссворды.
  • Новости — от самой маленькой новости до всемирно известной новости
  • Картинная галерея — фотографии, рисунки или любой другой графический объект, не связанный с товаром.

В приложении 2015–2019 годов содержится информация о заметных событиях, в том числе:

  • Водопад Восточного Алеппо (2016)
  • Северная Корея ракетно-ядерные испытания (2016 г.)
  • Вирус Зика (2016)
  • Кризис беженцев рохинджа (2017)
  • Протесты против гимна НФЛ (2017)
  • Президентство Трампа (2017)
  • Brexit
  • Движение #MeToo (2017/2018)
  • Свадьба Гарри и Меган (2018)
  • Скандал с Cambridge Analytica (2018)
  • Протесты в Гонконге (2019)
  • Отречение японского императора Акихито (2019)
  • Смерть Тони Моррисон (2019)
  • Первый выход в открытый космос женщин (2019)
  • Пожары в тропических лесах Амазонки (2019)

Как самая известная англоязычная газета того периода, Times (Лондон) является важным ресурсом для изучения ряда предметов.Примеры затронутых тем:

  • Наука и технологии: изобретение телефона, телеграфа, огромного количества бытовой техники и освоение космоса, Интернет, мобильные телефоны, клонирование
  • Геополитика: русская революция, создание Израиля, конец холодной войны и рост глобального терроризма
  • Война: Крымская война, Первая мировая война, Вторая мировая война, война во Вьетнаме, распад Югославии, войны в Персидском заливе и конфликт в Афганистане
  • Катастрофы: гибель Титаника , землетрясение в Сан-Франциско 1906 года, геноцид в Руанде, цунами в День подарков и землетрясение в Кобе
  • Политика: движение за гражданские права, движение за избирательное право, годы правления Тэтчер-майора-Блэра в Великобритании, вторая администрация Рейгана и президентство Джорджа У.Президентство Буша
  • Спорт: Освещение Олимпийских игр и крупных спортивных турниров, а также спорных историй о спорте, таких как миля Роджера Баннистера менее четырех минут и победа Бена Джонсона в Сеуле в 1988 году, вызванная наркотиками.
  • Экономика: промышленная революция, Великая депрессия, кризис ссуд и сбережений, рост Китая как финансовой державы и азиатский банковский кризис
  • Business: промышленная революция, пузырь доткомов, подъем Microsoft и Apple
  • Культура: Суд над Оскаром Уайльдом, смерть Элвиса Пресли, появление рок-н-ролла и «кинематографа» (позже известного как кино), распространение книги в мягкой обложке, движение молодых британских художников и появление хип-хоп в массовую культуру

— Таймс Микроволновая печь

Параметры производительности продукта
Номинальное затухание 0 дБ / 100 футов, 0 дБ / 100 м
Средняя мощность 0 кВт
Кабель Vg 0%
Номинальный Td 0 нс / фут, 0 нс / м
Емкость 0 пФ / фут, 0 пФ / м
Типичная потеря соединителя 0 дБ / пара
Характеристики кабельной сборки
Максимальные вносимые потери кабельной сборки 0 дБ
Эффективность кабельной трассы 0%
Задержка времени прохождения кабеля 0 нс

Значения являются расчетными номинальными характеристиками при 25 ° C.Фактические измеренные значения могут отличаться от расчетных значений, основанных на производственных допусках, длина кабельной сборки, характеристики разъема, фактическая рабочая частота и точность измерения.

Калькулятор возвращает данные только для частот ниже частоты среза или fco кабеля. Предупреждение отображается при представлении данных выше максимальной частоты, проверенной во время производственных испытаний кабеля.

Расчет допустимой мощности основан на работе в контролируемых условиях: 25 ° C, уровень моря, неподвижный воздух (естественная конвекция).Обработка мощности может быть ограничена выбором разъема. Если ваше приложение будет работать на высоких уровнях мощности, обратитесь в Times Application Engineering. Представитель для дополнительной информации.

Архивы — Los Angeles Times

Поиск на веб-сайте Los Angeles Times (с 1985 г. по настоящее время)

Подписчики Los Angeles Times имеют полный доступ к статьям на веб-сайте Los Angeles Times. Сюда входит большинство статей, опубликованных с 1985 года, а также меньшее количество старых статей.Ищите на сайте напрямую или через поисковые системы. Вы также можете просматривать по годам и месяцам на нашей исторической карте сайта.

Поиск печатных статей и страниц (с 1881 г. по настоящее время)

Читатели могут искать печатные страницы и отрывки из статей, относящиеся к 1881 году, в базе данных, размещенной на газетах.com.

ОБНОВЛЕНО 23 ноября 2020 г. | 18:51

Все ли архивы бесплатны?