Выпрямительный диод: параметры и схема
Одним из электронных устройств, широко использующихся в различных схемах, является выпрямительный диод, с помощью которого переменный ток преобразуется в постоянный. Его конструкция создана в виде двухэлектродного прибора с односторонней электрической проводимостью. Выпрямление переменного тока происходит на переходах металл-полупроводник и полупроводник-металл. Точно такой же эффект достигается в электронно-дырочных переходах некоторых кристаллов – германия, кремния, селена. Эти кристаллы во многих случаях используются в качестве основных элементов приборов.
Принцип работы выпрямительного диода
Выпрямительные диоды применение нашли в различных электронных, радиотехнических и электрических устройствах. С их помощью осуществляется замыкание и размыкание цепей, детектирование и коммутация импульсов и электрических сигналов, а также другие аналогичные преобразования.
Каждый диод оборудуется двумя выводами, то есть электродами – анодом и катодом. Анод соединяется с р-слоем, а катод – с n-слоем. В случае прямого включения диода на анод поступает плюс, а на катод – минус. В результате, через диод начинает проходить электрический ток.
Если же подачу тока выполнить наоборот – к аноду подать минус, а к катоду – плюс получится так называемое обратное включение диода. В этом случае течения тока уже не будет, на что указывает вольтамперная характеристика выпрямительного диода. Поэтому при поступлении на вход переменного напряжения, через диод будет проходить только одна полуволна.
Представленный рисунок наглядно отражает вольтамперную характеристику диода. Ее прямая ветвь расположена в первом квадранте графика. Она описывает диод в состоянии высокой проводимости, когда к нему приложено прямое напряжение. Данная ветвь выражается в виде кусочно-линейной функции u = U + RД x i, в которой u представляет собой напряжением на вентиле во время прохождения тока i. Соответственно, U и RД являются пороговым напряжением и динамическим сопротивлением.
Третий квадрант содержит обратную ветвь вольтамперной характеристики, указывающей на низкую проводимость при обратном напряжении, приложенном к диоду. В этом состоянии течение тока через полупроводниковую структуру практически отсутствует.
Данное положение будет правильным лишь до определенного значения обратного напряжения. В этом случае напряженность электрического поля в области p-n-перехода может достичь уровня 105 В/см. Такое поле сообщает электронам и дыркам – подвижным носителям заряда, кинетическую энергию, способную вызвать ионизацию нейтральных атомов кремния.
Стандартная структура выпрямительного диода предполагает наличие дырок и электронов проводимости, постоянно возникающих под действием термической генерации по всему объему структуры проводника. В дальнейшем происходит их ускорение под действием электрического поля p-n-перехода. То есть электроны и дырки также участвуют в ионизации нейтральных атомов кремния. В этом случае обратный ток нарастает лавинообразно, возникают так называемые лавинные пробои. Напряжение, при котором резко повышается обратный ток, обозначается на рисунке в виде напряжения пробоя U3.
Основные параметры выпрямительных диодов
Определяя параметры выпрямительных элементов, следует учитывать следующие факторы:
- Разница потенциалов, максимально допустимая при выпрямлении тока, когда устройство еще не может выйти из строя.
- Максимальное значение среднего выпрямленного тока.
- Максимальный показатель обратного напряжения.
Выпрямительные устройства выпускаются различной формы и могут монтироваться разными способами.
В соответствии с физическими характеристиками, они разделяются на следующие группы:
- Выпрямительные диоды большой мощности, пропускная способность которых составляет до 400 А. Они относятся к категории высоковольтных и выпускаются в двух видах корпусов. Штыревой корпус изготавливается из стекла, а таблеточный – из керамики.
- Выпрямительные диоды средней мощности с пропускной способностью от 300 мА до 10 А.
- Маломощные выпрямительные диоды с максимально допустимым значением тока до 300 мА.
Выбирая то или иное устройство, необходимо учитывать вольтамперные характеристики обратного и пикового максимальных токов, максимально допустимое прямое и обратное напряжение, среднюю силу выпрямленного тока, а также материал изделия и тип его монтажа. Все основные свойства выпрямительного диода и его параметры наносятся на корпус в виде условных обозначений. Маркировка элементов указывается в специальных справочниках и каталогах, ускоряя и облегчая их выбор.
Схемы с использованием выпрямительных диодов отличаются количеством фаз:
- Однофазные нашли широкое применение в бытовых электроприборах, автомобилях и аппаратуре для электродуговой сварки.
- Многофазные используются в промышленном оборудовании, специальном и общественном транспорте.
В зависимости от используемого материала, выпрямительные диоды и схемы с диодами могут быть германиевыми или кремниевыми. Чаще всего применяется последний вариант, благодаря физическим свойствам кремния. Данные диоды обладают значительно меньшей величиной обратных токов при одном и том же напряжении, поэтому допустимое обратное напряжение имеет очень высокую величину, в пределах 1000-1500 вольт.
Для сравнения, у германиевых диодов эта величина составляет 100-400 В. Кремниевые диоды сохраняют работоспособность в температурном диапазоне от – 60 до + 150 градусов, а германиевые – только в пределах от – 60 до + 850С. Электронно-дырочные пары при температуре, превышающей это значение, образуются с большой скоростью, что приводит к резкому увеличению обратного тока и снижению эффективности работы выпрямителя.
Схема включения выпрямительного диода
Простейший выпрямитель работает по следующей схеме. На вход подается переменное напряжение сети с положительными и отрицательными полупериодами, окрашенными соответственно в красный и синий цвета. На выходе подключается обычная нагрузка RH, а выпрямляющим элементом будет диод VD.
Когда на анод поступают положительные полупериоды напряжения, происходит открытие диода. В этот период через диод и нагрузку, запитанную от выпрямителя, будет протекать прямой ток диода Iпр. На графике, расположенном справа, эта волна обозначена красным цветом.
При поступлении на анод отрицательных полупериодов напряжения, наступает закрытие диода, и во всей цепи начинается течение незначительного обратного тока. В данном случае отрицательная полуволна переменного тока отсекается диодом. Эту отсеченную полуволну обозначает синяя прерывистая линия. На схеме условное обозначение выпрямительного диода такое же, как обычно, только поверх значка проставляются символы VD.
В результате, через нагрузку, подключенную через диод к сети, будет протекать уже не переменный, а пульсирующий ток одного направления. Фактически, это и есть выпрямленный переменный ток. Однако такое напряжение подходит лишь для нагрузок малой мощности, запитанных от сети переменного тока. Это могут быть лампы накаливания, которым не требуются особые условия питания. В этом случае напряжение будет проходить через лампу лишь во время импульсов – положительных волн. Наблюдается слабое мерцание лампы с частотой 50 Гц.
При подключении питания с таким же напряжением к приемнику или усилителю мощности, в громкоговорителе или колонках, будет слышен гул с низкой тональностью, частотой 50 Гц, известный как фон переменного тока. В этих случаях аппаратура начинает «фонить». Причиной такого состояния считается пульсирующий ток, проходящий через нагрузку и создающий в ней пульсирующее напряжение. Именно оно и создает фон.
Данный недостаток частично устраняется путем параллельного подключения к нагрузке фильтрующего электролитического конденсатора Сф с большой емкостью. В течение положительных полупериодов он заряжается импульсными токами, а во время отрицательных – разряжается с помощью нагрузки RH. Большая емкость конденсатора позволяет поддерживать на нагрузке непрерывный ток в течение всех полупериодов – положительных и отрицательных. На графике такой ток представляет собой сплошную волнистую линию красного цвета.
Тем не менее, данный сглаженный ток все равно не обеспечивает нормальную работу, поскольку половина входного напряжения теряется при выпрямлении, когда задействуется только один полупериод. Этот недостаток компенсируют мощные выпрямительные диоды, собранные вместе в так называемый диодный мост. Данная схема состоит из четырех элементов, что позволяет пропускать ток в течение всех полупериодов. За счет этого преобразование переменного тока в постоянный происходит значительно эффективнее.
Выпрямительные диоды: обозначение, принцип работы, ВАХ
- Главная
- Электротехника и электроника
- Выпрямительные диоды
Выпрямительные диоды — это полупроводниковые приборы, которые имеют один p-n переход и два металлических вывода. Вся система заключена в пластмассовом, металлическом, стеклянном или металлокерамическом корпусе. Предназначены для преобразования переменного тока в постоянный.
Обозначение и расшифровка диодов
Обозначение выпрямительного диода на схеме согласно “ГОСТ 2.730-73 ЕСКД. Обозначения условные графические в схемах. Приборы полупроводниковые”. В приложении данного ГОСТа указаны размеры в модульной сетке. Выглядит это следующим образом:
Существуют различные варианты обозначения диодов.
Согласно ОСТ 11366.919-81 следующее буквенно-цифровое обозначение:
- 1) первая буква или цифра указывает на материал:
- 1 (Г) — германий Ge
- 2 (К) — кремний Si
- 3 (А) — галлий Ga
- 4 (И) — индий In
- 2) Вторая буква — это подкласс полупроводникового прибора. Для нашего случая — это буква Д.
- 3) Третья цифра — функционал элемента в зависимости от класса (диоды, варикапы, стабилитроны и др.).
Например, для выпрямительных диодов (Д):
101…199 — диоды малой мощности с постоянным или средним значением прямого тока менее 0,3А.
201…299 — диоды средней мощности с постоянным или средним значением прямого тока от 0,3 до 10А.
Также существуют диоды большой мощности с током более 10А. Отвод тепла у диодов малой мощности осуществляется через корпус, у диодов средней и большой мощности через теплоотводящие радиаторы.
До 1982 года была другая классификация:
- первая Д — характеризовала весь класс диодов
- далее шел цифровой код:
- от 1 до 100 — для точечных германиевых диодов
- от 101 до 200 — для точечных кремниевых диодов
- от 201 до 300 — для плоскостных кремниевых диодов
- от 301 до 400 — для плоскостных германиевых диодов
- от 401 до 500 — для смесительных СВЧ детекторов
- от 501 до 600 — для умножительных диодов
- от 601 до 700 — для видеодетекторов
- от 701 до 749 — для параметрических германиевых диодов
- от 750 до 800 — для параметрических кремниевых диодов
- от 801 до 900 — для стабилитронов
- от 901 до 950 — для варикапов
- от 951 до 1000 — для туннельных диодов
- от 1001 до 1100 — для выпрямительных столбов
- третья цифра — разновидность групп однотипных приборов
Система JEDEC (США)
- первая цифра — число p-n переходов (1 — диод; 2 — транзистор; 3 — тиристор)
- далее N (типа номер) и серийный номер
- после может идти пару цифр про номиналы и отдельные характеристики диода
Система Pro Electron (Европа)
По данной системе приборы делятся на промышленные и бытовые. Бытовые кодируются двумя буквами и тремя цифрами от 100 до 999. У промышленных приборов будет идти три буквы и две цифры от 10 до 99. Для диодов:
- 1) первая буква:
- A — германий Ge
- B — кремний Si
- C
- R — другие полупроводники
- 2) Вторая буква — это буква A, указывающая на маломощные импульсные и универсальные диоды.
- 3) Третья буква отвечает за принадлежность элемента к сфере специального применения (промышленность, военная). “Z”, “Y”, “X” или “W”.
- 4) Четвертая — это 2х, 3х или 4х-значный серийный номер прибора.
- 5) Дополнительный код — в нем для выпрямительных диодов указывается максимальная амплитуда обратного напряжения.
Система JIS (Япония)
Применяется в странах Азии и тихоокеанского региона.
Существуют и специальные обозначения от фирм-изготовителей, которые отличаются от приведенных выше.
Принцип действия выпрямительного диода
Полупроводники по своим электрическим свойствам являются чем-то средним между проводниками и диэлектриками.
Как ведет себя диод при прямом и обратном включении
Прямое направление — направление постоянного тока, в котором диод имеет наименьшее сопротивление.
Обратное направление — направление постоянного тока, в котором диод имеет наибольшее сопротивление.
Рассмотрим поведение тока в цепи при прямом и обратном включении на переменное и постоянное напряжение. Изначально мы будем иметь синусоиду, которая получается от источника переменного тока.
При таких способах подключения отсекается половина синусоиды положительная или отрицательная. На выходе — пульсирующий переменный ток одного знака (считай, постоянный, только загвоздка в том, что им никто не пользуется).
- анод (для прямого включения подключаем к плюсу), основание треугольника
- катод (подключаем к минусу для прямого включения) палочка
Ток течет от анода к катоду, некоторые прибегают к сравнению с воронкой. В широкое горлышко жидкость проходит быстрее, чем в узкое. Принцип работы заключается в пропускании тока при прямом включении и запирании диода при обратном включении (отсутствии тока). Всё дело в запирающем слое, который испаряется или расширяется в зависимости от способа подключения диода.
Рассмотрим поведение диода в схеме постоянного тока. На левом изображении ток, напряжение проходит — лампочка горит (черная) — это прямое включение. На правом изображении диод не пропускает достаточно тока и напряжения для загорания лампочки — обратное включение.
ВАХ выпрямительных диодов (Ge, Si)
Вольт-амперные характеристики диодов представляют собой графики зависимостей прямых и обратных токов (Y) и напряжений (X) при различных температурах.
При подаче обратного напряжения, превышающего пороговое значение, величина обратного тока возрастает и происходит пробой p-n слоя. Стоит обратить внимание и на порядки чисел по осям. Величины обратного тока на порядок меньше прямого. Значения прямого напряжения на порядок меньше обратного. По достижении порогового значения прямого напряжения прямой ток начинает увеличиваться лавинообразно.
Разница между диодами в том, что обратный ток кремниевых диодов меньше, чем у германиевых. Поэтому, за счет большего тока, у Ge диодов пробой носит тепловой характер, у Si — преобладает электрический пробой. Мощность, рассеиваемая при одинаковых токах у германиевых диодов меньше.
Выпрямительный диод — это… Что такое Выпрямительный диод?
Аналогия между работой обратного клапана и диода Эффект односторонней проводимости показан в зависимости от полярности подключения диода на схемеВыпрями́тельные дио́ды — диоды, предназначенные для преобразования переменного тока в постоянный. На смену электровакуумным диодам и игнитронам пришли диоды из полупроводниковых материалов и диодные мосты (четыре диода в одном корпусе). Обычно к быстродействию, ёмкости p-n перехода и стабильности параметров выпрямительных диодов не предъявляют специальных требований.
Электрические параметры
Основные параметры выпрямительных диодов:
- среднее прямое напряжение Uпр.ср. при указанном токе Iпр.ср.;
- средний обратный ток Iобр.ср. при заданных значениях обратного напряжения Uобр и температуры;
- допустимое амплитудное значение обратного напряжения Uобр.макс.;
- средний прямой ток Iпр.ср.;
- частота без снижения режимов.
Частотный диапазон выпрямительных диодов невелик. При преобразовании промышленного переменного тока рабочая частота составляет 50 Гц, предельная частота выпрямительных диодов не превышает 20 кГц.
По максимально допустимому среднему прямому току диоды делятся на три группы: диоды малой мощности (Iпр.ср. ≤ 0,3 А), диоды средней мощности (0,3 А < Iпр.ср. < 10 А) и мощные (силовые) диоды (Iпр.ср. ≥ 10 А).
В состав параметров диодов входят диапазон температур окружающей среды (для кремниевых диодов обычно от -60 до +125 °С) и максимальная температура корпуса.
Среди выпрямительных диодов следует особо выделить диоды Шотки, создаваемые на базе контакта металл-полупроводник и отличающиеся более высокой рабочей частотой (для 1 МГц и более), низким прямым падением напряжения (менее 0,6 В).
Мостовая схема включения диодов
Для повышения коэффициента полезного действия выпрямительные диоды включают по мостовой (реже полумостовой) схеме, чтобы питание нагрузки осуществлялось на протяжении обоих полупериодов.
См. также
Примечания
Ссылки
Выпрямительные диоды — презентация онлайн
1. Выпрямительные диоды
Выполнили студенты группы 235-3:Прытков С.В.
Дорохов А.С.
Ержанов Д.С.
Ефимов К.
2. Содержание.
1.2.
3.
4.
5.
6.
7.
8.
9.
Определение.
Область применения.
Принцип работы.
Разновидности устройств и их обозначение.
Параметры выпрямительных диодов.
ВАХ.
Мостовые схемы включения диодов.
Диоды Шотки.
3. Определение.
Выпрямительный диод — этополупроводниковый прибор с
одним p-n переходом и с двумя
электродами, который служит
для преобразования
переменного тока в
постоянный.
4. Область применения.
Выпрямительные диоды применяются вцепях управления, коммутации, в
ограничительных и развязывающих цепях, в
источниках питания для преобразования
(выпрямления) переменного напряжения в
постоянное, в схемах умножения напряжения и
преобразователях постоянного напряжения,
где не предъявляются высокие требования к
частотным и временным параметрам сигналов.
5. Принцип работы выпрямительного диода
Принцип работы этого устройства основывается наособенностях p-n перехода. Анод присоединён к p
слою, катод к n слою. Возле переходов двух
полупроводников расположен слой, в котором отсутствуют
носители заряда. Это запирающий слой. Его
сопротивление велико.
При воздействии на слой определенного внешнего
переменного напряжения, толщина его становится
меньше, а впоследствии и вообще исчезнет.
Возрастающий при этом ток называют прямым. Он
проходит от анода к катоду. Если внешнее переменное
напряжение будет иметь другую полярность, то
запирающий слой будет больше, сопротивление возрастет.
6. Разновидности устройств и их обозначение.
По конструкции различают приборы двух видов: точечные и плоскостные.
В промышленности наиболее распространены кремниевые (обозначение —
Si) и германиевые (обозначение — Ge). У первых рабочая температура выше.
Преимущество вторых — малое падение напряжения при прямом токе.
Принцип обозначений диодов – это буквенно-цифровой код:
— Первый элемент – обозначение материала из которого он выполнен;
— Второй определяет подкласс;
— Третий обозначает рабочие возможности;
— Четвертый является порядковым номером разработки;
— Пятый – обозначение разбраковки по параметрам.
7. Параметры выпрямительных диодов.
• Частотный диапазон выпрямительных диодовневелик. При преобразовании промышленного
переменного тока рабочая частота составляет 50 Гц,
предельная частота выпрямительных диодов не
превышает 20 кГц.
• По максимально допустимому среднему прямому
току диоды делятся на три группы: диоды малой
мощности (Iпр.ср. ≤ 0,3 А), диоды средней
мощности (0,3 А
(силовые) диоды (Iпр.ср. ≥ 10 А). Диоды средней и
большой мощности требуют отвода тепла, поэтому
они имеют конструктивные элементы для установки
на радиатор.
8. Параметры выпрямительных диодов.
• В состав параметров диодов входятдиапазон температур окружающей среды (для
кремниевых диодов обычно от −60 до +125 °С)
и максимальная температура корпуса.
• Среди выпрямительных диодов следует особо
выделить диоды Шотки, создаваемые на базе
контакта металл-полупроводник и
отличающиеся более высокой рабочей
частотой (для 1 МГц и более), низким прямым
падением напряжения (менее 0,6 В).
9. Вольт-амперная характеристика
Вольт-амперную характеристику (ВАХ)выпрямительного диода можно
представить графически. Из графика
видно, что ВАХ устройства нелинейная.
В начальном квадранте Вольт-амперной
характеристики ее прямая ветвь
отражает наибольшую проводимость
устройства, когда к нему приложена
прямая разность потенциалов. Обратная
ветвь (третий квадрант) ВАХ отражает
ситуацию низкой проводимости. Это
происходит при обратной разности
потенциалов.
Реальные Вольт-амперные характеристики
подвластны температуре. С
повышением температуры прямая
разность потенциалов уменьшается.
10. Коэффициент выпрямления
• Коэффициент выпрямления можно рассчитать.Он будет равен отношению прямого тока
прибора к обратному. Такой расчет приемлем
для идеального устройства. Значение
коэффициента выпрямления может достигать
нескольких сотен тысяч.
Чем он больше, тем лучше
выпрямитель делает свою
работу.
11. Мостовые схемы включения диодов.
Дио́дный мо́ст — электрическая схема,предназначенная для преобразования
(«выпрямления») переменного
тока в пульсирующий. Такое выпрямление
называется двухполупериодным.
Выделим два варианта включения мостовых
схем :
1. Однофазную
2. Трехфазную.
12. Однофазная мостовая схема.
На вход схемы подается переменное напряжение (для простоты будемрассматривать синусоидальное), в каждый из полупериодов ток
проходит через два диода, два других диода закрыты
Выпрямление положительной полуволны
Выпрямление отрицательной полуволны
результате такого преобразования на выходе мостовой схемы
получается пульсирующее напряжение вдвое большее частоты
напряжения на входе .
В
а) исходное напряжение (напряжение на входе), б)
однополупериодное выпрямление, с) двухполупериодное
выпрямление
14. Трехфазная мостовая схема.
В схеме трехфазного выпрямительного моста в результатеполучается напряжение на выходе с меньшими пульсациями, чем
в однофазном выпрямителе .
15. Диоды Шотки
Диоды Шоттки получают, используя переход металл-полупроводник.При этом применяют подложки из низкоомного n-кремния (или
карбида кремния) с высокоомным тонким эпитаксиальным слоем того
же полупроводника .
УГО и структура диода Шоттки:
1 –низкоомный исходный кристалл кремния
2 – эпитаксиальный слой высокоомного
‖
‖‖‖
Кремния
‖‖‖
3 – область объемного заряд
4 – металлический контакт
принцип действия, обозначения на схеме, проверка исправности
Почти вся электронная аппаратура для своей работы требует определённую величину постоянного напряжения. В электрический сети передаётся синусоидальный сигнал с частотой 50 Гц. Для преобразования сигнала используется свойство полупроводниковых элементов пропускать ток только в одном направлении, а в другом блокировать его прохождение. В качестве преобразователя применяется схема диодного моста, позволяющая получать на выходе сигнал постоянной величины.
Физические свойства p-n перехода
Главным элементом, использующимся при создании выпрямительного узла, является диод. В основе его работы лежит электронно-дырочный переход (p-n).
Общепринятое определение гласит: p-n переход — это область пространства, находящаяся на границе соединения двух полупроводников разного типа. В этом пространстве образуется переход n-типа в p-тип. Значение проводимости зависит от атомного строения материала, а именно от того, насколько прочно атомы удерживают электроны. Атомы в полупроводниках располагаются в виде решётки, а электроны привязаны к ним электрохимическими силами. Сам по себе такой материал является диэлектриком. Он или плохо проводит ток, или не проводит его совсем. Но если в решётку добавить атомы определённых элементов (легирование), физические свойства такого материала кардинально изменяются.
Примешанные атомы начинают образовывать, в зависимости от своей природы, свободные электроны или дырки. Образованный избыток электронов формирует отрицательный заряд, а дырок — положительный.
Избыток заряда одного знака заставляет носителей отталкиваться друг от друга, в то время как область с противоположным зарядом стремится притянуть их к себе. Электрон, перемещаясь, занимает свободное место, дырку. При этом на его старом месте также образовывается дырка. В результате чего создаётся два потока движения зарядов: один основной, а другой обратный. Материал с отрицательным зарядом в качестве основных носителей использует электроны, его называют полупроводником n-типа, а с положительным зарядом, использующим дырки, p-типа. В полупроводниках обоих типов неосновные заряды образуют ток, обратный движению основных зарядов.
В радиоэлектронике из материалов для создания p-n перехода используется германий и кремний. При легировании кристаллов этих веществ образуется полупроводник с различной проводимостью. Например, введение бора приводит к появлению свободных дырок и образованию p-типа проводимости. Добавление фосфора, наоборот, создаст электроны, и полупроводник станет n-типа.
Принцип работы диода
Диод — это полупроводниковый прибор, имеющий малое сопротивление для тока в одном направлении, и препятствующий его прохождению в обратном. Физически диод состоит из одного p-n перехода. Конструктивно представляет собой элемент, содержащий два вывода. Вывод, подключённый к p-области, называется анодом, а соединённый с n-областью — катодом.
При работе диода существует три его состояния:
- сигнал на выводах отсутствует;
- он находится под действием прямого потенциала;
- он находится под действием обратного потенциала.
Прямым потенциалом называется такой сигнал, когда плюсовой полюс источника питания подключён к области p-типа полупроводника, другими словами, полярность внешнего напряжения совпадает с полярностью основных носителей. При обратном потенциале отрицательный полюс подключён к p-области, а положительный к n.
В области соединения материала n- и p-типа существует потенциальный барьер. Он образуется контактной разностью потенциалов и находится в уравновешенном состоянии. Высота барьера не превышает десятые доли вольта и препятствует продвижению носителей заряда вглубь материала.
Если к прибору подключено прямое напряжение, то величина потенциального барьера уменьшается и он практически не оказывает сопротивление протеканию тока. Его величина возрастает и зависит только сопротивления p- и n- области. При прикладывании обратного потенциала, величина барьера увеличивается, так как из n-области уходят электроны, а из p-области дырки. Слои обедняются и сопротивление барьера прохождению тока возрастает.
Основным показателем элемента является вольт-амперная характеристика. Она показывает зависимость между приложенным к нему потенциалом и током, протекающим через него. Представляется эта характеристика в виде графика, на котором указывается прямой и обратный ток.
Схема простого выпрямителя
Синусоидальное напряжение представляет собой периодический сигнал, изменяющийся во времени. С математической точки зрения он описывается функцией, в которой начало координат соответствует времени равным нулю. Сигнал состоит из двух полуволн. Находящаяся полуволна в верхней части координат относительно нуля называется положительным полупериодом, а в нижней части — отрицательным.
При подаче переменного напряжения на диод через подключённую к его выводам нагрузку, начинает протекать ток. Этот ток обусловлен тем, что в момент поступления положительного полупериода входного сигнала диод открывается. В этом случае к аноду прикладывается положительный потенциал, а к катоду отрицательный. При смене волны на отрицательный полупериод диод запирается, так как меняется полярность сигнала на его выводах.
Таким образом, получается, что диод как бы отрезает отрицательную полуволну, не пропуская её на нагрузку и на ней появляется пульсирующий ток только одной полярности. В зависимости от частоты приложенного напряжения, а для промышленных сетей она составляет 50 Гц, изменяется и расстояние между импульсами. Такого вида ток называется выпрямленным, а сам процесс —однополупериодным выпрямлением.
Выпрямляя сигнал, используя один диод, можно питать нагрузку, не предъявляющую особых требований к качеству напряжения. Например, нить накала. Но если запитать, например, приёмник, то появится низкочастотный гул, источником которого и будет промежуток, возникающий между импульсами. В некоторой мере для избавления от недостатков однополупериодного выпрямления совместно с диодом применяется параллельно включённый нагрузке конденсатор. Этот конденсатор будет заряжаться при поступлении импульсов и разряжаться при их отсутствии на нагрузку. А значит, чем больше значение ёмкости конденсатора, тем ток на нагрузке будет более сглажен.
Но наибольшего качества сигнала возможно достичь, если использовать для выпрямления одновременно две полуволны. Устройство, позволяющее это реализовать, получило название диодный мост, или по-другому — выпрямительный.
Диодный мост
Такое устройство представляет собой электрический прибор, служащий для преобразования переменного тока в постоянный. Словосочетание «диодный мост» образуется из слова «диод», что предполагает использование в нём диодов. Схема диодного моста выпрямителя зависит от сети переменного тока, к которой он подключается. Сеть может быть:
- однофазной;
- трёхфазной.
В зависимости от этого и выпрямительный мост называется мостом Гретца или выпрямителем Ларионова. В первом случае используется четыре диода, а во втором прибор собирается уже на шести.
Первая схема выпрямительного прибора собиралась на радиолампах и считалась сложным и дорогим решением. Но с развитием полупроводниковой техники диодный мост полностью вытеснил альтернативные способы выпрямления сигнала. Вместо диодов редко, но ещё применяются селеновые столбы.
Конструкции и характеристики прибора
Конструктивно выпрямительный мост выполняется из набора отдельных диодов или литого корпуса, имеющего четыре вывода. Корпус может быть плоского или цилиндрического вида. По принятому стандарту, значками на корпусе прибора отмечаются выводы подключения переменного напряжения и выходного постоянного сигнала. Выпрямители, имеющие корпус с отверстием, предназначены для крепления на радиатор. Основными характеристиками выпрямительного моста являются:
- Наибольшее прямое напряжение. Это максимальная величина, при которой параметры прибора не выходят за границы допустимых.
- Наибольшее допустимое обратное напряжение. Это максимальное импульсное напряжение, при котором мост длительно и надёжно работает.
- Наибольший рабочий ток выпрямления. Обозначает средний ток, протекающий через мост.
- Максимальная частота. Частота подаваемого на мост напряжения, при которой прибор работает эффективно и не превышает допустимый нагрев.
Превышение значений характеристик выпрямителя приводит к резкому сокращению срока его службы или пробою p-n переходов. Необходимо отметить такой момент, что все параметры диодов указываются для температуры окружающей среды 20 градусов. К недостаткам применения мостовой схемы выпрямления относят большее падение напряжения, по сравнению с однополупериодной схемой, и более низкое значение коэффициента полезного действия. Для уменьшения величины потерь и снижения нагрева мосты часто изготавливают с применением быстрых диодов Шотки.
Схема подключения устройства
На электрических схемах и печатных платах диодный выпрямитель обозначается в виде значка диода или латинскими буквами. Если выпрямитель собран из отдельных диодов, то рядом с каждым ставится обозначение VD и цифра, обозначающая порядковый номер диода в схеме. Редко используются надписи VDS или BD.
Диодный выпрямитель может подключаться напрямую к сети 220 вольт или после понижающего трансформатора, но схема включения его остаётся неизменной.
При поступлении сигнала в каждом из полупериодов ток сможет протекать только через свою пару диодов, а противоположная пара будет для него заперта. Для положительного полупериода открытыми будут VD2 и VD3, а для отрицательного VD1 и VD4. В итоге на выходе получится постоянный сигнал, но его частота пульсации будет увеличена в два раза. Для того чтобы уменьшить пульсацию выходного сигнала, используется, как и в случае с одним диодом, параллельное включение конденсатора С1. Такой конденсатор ещё называют сглаживающим.
Но случается так, что диодный мост ставится не только в переменную сеть, но и подключается в уже выпрямленную. Для чего нужен диодный мост в такой цепи, станет понятно, если обратить внимание в каких схемах используется такое его включение. Эти схемы связаны с использованием чувствительных радиоэлементов к переполюсовке питания. Использование моста позволяет осуществить простую, но эффективную защиту «от дурака». В случае ошибочного подключения полярности питания радиоэлементы, установленные за мостом, не выйдут из строя.
Проверка на работоспособность
Такой тип электронного прибора можно проверить, не выпаивая из схемы, так как в конструкциях устройств никакое его шунтирование не используется. В случае выпрямителя, собранного из диодов, проверяется каждый диод в отдельности. А в случае с монолитным корпусом измерения проводятся на всех четырёх его выводах.
Суть проверки сводится к прозвонке мультиметром диодов на короткое замыкание. Для этого выполняются следующие действия:
- Мультиметр переключается в режим позвонки диодов или сопротивления.
- Штекер одного провода (чёрного) вставляется в общее гнездо тестера, а второго (красного) в гнездо проверки сопротивления.
- Щупом, подключённым чёрным проводом, дотроньтесь до первой ножки, а щупом красного провода до третьего вывода. Тестер должен показать бесконечность, а если поменять полярность проводов, то мультиметр покажет сопротивление перехода.
- Минус тестера подается на четвёртую ногу, а плюс на третью. Мультиметр покажет сопротивление, при смене полярности бесконечность.
- Минус на первую ногу, плюс на вторую. Тестер покажет открытый переход, при смене – закрытый.
Такие показания тестера говорят об исправности выпрямителя. В случае отсутствия мультиметра можно воспользоваться обычным вольтметром. Но при этом придётся подать питание на схему и замерить напряжение на сглаживающем конденсаторе. Его величина должна превышать входное в 1,4 раза.
Диоды: описание, подключение, схема, характеристики
Содержание
- Принцип работы
- Разновидности, назначения и примеры использования
- Вывод
- FAQ
Принцип работы
Диод — один из элементарных “кирпичиков”, который несмотря на свою принципиальную простоту, настолько разнообразен в исполнении и широте применения, что без него не обходится ни одно из электронных устройств, даже радикально отличающихся друг от друга. А профессия у него самая понятная: пропускать ток в одном направлении и не пропускать в обратном, на этом все. Широкими мазками устройство диода можно объяснить и изобразить так:Внутри корпуса находятся два электрода из разных материалов, один из них имеет недостаток электронов (так называемый P-тип), другой избыток (P-тип). Между ними имеется граница (P-N переход). Граница эта становится либо проводником, когда плюс напряжения подается на анод диода, либо диэлектриком, когда плюс подается, соответственно, на катод. Вот и все что нам нужно пока знать, если не хотим вдаваться в подробности конструкции и химического состава электродов.
Разновидности и назначения
Простота принципа работы вовсе не значит, что диод — узкоспециализированное устройство, годное лишь показать пару трюков. Вот не самая полная таблица разновидностей диодов по конструктивному типу.Кратко рассмотрим лишь некоторые из них, которые чаще всего используются в DIY-изделиях.
Диод универсальный. Он же диод выпрямительный. Исполняет титульные диодные обязанности: пропускает сквозь себя ток только в одном направлении. В современном виде для маломощной электроники выглядит как одноцветный (чаще — черный) цилиндр с поперечной полосой со стороны катода.
В SMD исполнении они еще компактнее. Полоска присутствует тоже со стороны катода.
Силовые же диоды, рассчитанные на большие токи, особенно советского производства, выглядят намного суровее и запросто могут быть использованы в качестве холодного оружия. Анод, в данном случае, расположен со стороны “хвоста”.
Одно из частых применений: “выпрямление” тока, то есть его преобразование из переменного в постоянный. Для этого четыре диода собираются в несложную схему, называемую в народе “диодный мост”.
Диоды отправляют на плюс только положительные фазы напряжения каждого из входящих электродов, на выходе получается постоянный ток, остается лишь его немного сгладить и привести к нужному вольтажу.
Защитная функция. Тут все понятно, не допускает случайной переполюсовки, то есть при подключении питания “наоборот” дальнейшая схема не пострадает.
Защита от индуктивности. Многие потребители тока грешат наличием так называемой индуктивности, то есть в случае отключения питания некоторое время “тормозят”, продолжая по инерции вырабатывать ток самостоятельно, причем в обратном направлении. Ярким примером считается электромотор, будучи раскрученным и отключенным, он превращается в генератор, и пока ротор вращается, в сеть отправляется вполне ощутимый ток. Индуктивностью обладают очень многие устройства и элементы, даже не имеющие механически подвижных частей. Если не принять мер, индуктивный ток способен навредить элементам электрической схемы, особенно таким чувствительным, как, например, транзисторы. В роли защитника проще всего использовать наш диод, подключая его параллельно индуктивной нагрузке, но в обратном направлении.
Таким образом он пропускает только “правильный” ток, но отсекает вредный индуктивный. На заметку: диод обязателен к использованию с любыми индуктивными элементами в вашей схеме.
Диодный детектор. В симбиозе с конденсатором способен выделить сигналы определенной частоты из общей массы, что позволяет принимать амплитудно-модулированные данные. Нашел широкое применение в аналоговых радиоприемниках и телевизорах.
Одним из побочных свойств диода является падение напряжения при его использовании. Для универсального типа оно составляет порядка 0,7-0,8 В, что очень важно учитывать при проектировании. Кроме очевидных минусов, в этом можно заметить и некоторые возможности. Часть особо капризных электронных модулей требует нестандартное питание, к примеру широко известный SIMM800L, способный превратить Ардуино в сотовый телефон. Согласно даташиту напряжение на входе должно составлять от 3,4 до 4,4 В, при меньшем его работа будет нестабильна, при большем начнет перегреваться и, в конечном итоге, сгорит. Проще всего, хоть и не лучше, уменьшить вольтаж добавлением в цепь питания диода или двух, что обеспечит безопасное напряжение. То же самое рекомендуется сделать с сигнальным входом RX.
Стабилитрон. Он же диод Зенера, по фамилии изобретателя.
В отличие от универсального диода способен пропускать обратный ток, если тот превышает некоторое заранее установленное в стабилитроне значение. Будучи умышленно подключеным в обратном направлении, выполняет таким образом функцию “перепускного клапана”, сбрасывая “излишки” напряжения на минус.
В результате — при напряжении на входе выше заданного — на выходе получаем стабильное напряжение с номиналом, который установлен в стабилитроне. Это один из самых простых способов понизить напряжение до заданного, при правильном расчете мощности стабилитрона и токоограничивающего резистора. Кроме того, схема является одной из самых точных, часто используется для калибровки измерительных приборов. В продаже имеется широкий ряд диодов Зенера, отличающихся по рабочему напряжению и мощности, можно подобрать практически под любую задачу. Но необходимо помнить, что стабилитрон только ограничивает напряжение, то есть отсекает лишнее, поднять его до номинала он, конечно же, не сможет.
Для приведенного выше примера с SIMM800L данный способ добывания правильного вольтажа предпочтительней, так как напряжение будет гораздо стабильнее и точнее.
Диод Шоттки. Еще одна авторская разновидность, известная также как диод сигнальный. Внешне от универсального ничем не отличается, а на схемах изображается с характерными завитками.
В отличие от обычного универсального полупроводникового диода, Шоттке имеет два преимущества: очень высокое быстродействие и малое падение напряжения, всего 0,2-0,3 В. К недостаткам, относительно универсального, можно отнести малый максимальный вольтаж и неспособность самовосстанавливаться после пробоя.
Благодаря своим свойствам диоды Шоттке успешно используются в блоках питания, импульсных стабилизаторах напряжения, в передатчиках и приемниках цифровых сигналов, и прочих устройствах, где важна скорость и нежелательна большая потеря вольтажа.
Светодиод. Очень популярный электронный компонент. Применяется как источник света (в том числе в невидимых диапазонах), так и для индикации чего угодно. Может похвастаться очень большим количеством разновидностей по форме, размеру, мощности, яркости, цвету и так далее.
Не следует использовать светодиод для ограничения направления тока, как обычный диод, в неправильной полярности он способен молча, но быстро выйти из строя. Кроме того, он имеет очень малое внутреннее сопротивление и при прямом подключении к источнику питания даже в правильной полярности сгорит тоже быстро, правда уже со спецэффектом. Для подключения в цепь обязательно добавляется токоограничивающий резистор, номинал которого следует рассчитать в зависимости от типа светодиода и вольтажа питания. Например так.
Популярный трехцветный светодиод, это три обычных светодиода, заточенных в один корпус. И для каждого из них обязательно нужен свой резистор.
Пример подключения трехцветного светодиода с общим катодом.
Знаменитый же за последние годы адресный светодиод отличается от многоцветного лишь встроенным в него собственным микроконтроллером (ШИМ-драйвером) и пресловутыми обязательными резисторами. Все в одном микроскопическом корпусе.
Фотодиод. Как светодиод, только наоборот. Работает в двух режимах: как генератор тока и как детектор освещенности.
В первом случае, как правило, преобразует солнечный свет в электричество, правда, с небольшим КПД, в районе 20%. Во втором случае подключается в обратной полярности и способен улавливать даже очень слабые отблески света, что в ряде случае может быть полезнее, чем использование для этой цели фоторезистора.
Вывод
Диод — многоликий и многофункциональный элемент электроники, решающий ряд разнообразных задач — от защиты электронных схем до генерации тока из солнечного света. Здесь мы рассмотрели лишь малую часть разновидностей диодов и их назначений. Знание возможностей и различий этих простых, но важных устройств и умение применять их в реальных электронных схемах незаменимо для каждого DIY-мастера.FAQ
Вопрос: можно ли использовать стабилитрон в качестве обычного диода?Можно, если напряжение заведомо не превышает установленного в этом стабилитроне, но лучше использовать его по назначению.
Вопрос: если светодиод может сгореть при неправильной полярности, как можно заранее определить где у него плюс, где минус?
У нового светодиода ножки разной длины, длинная — это плюс (анод). Если же кто-то заранее откусил ножки, можно определить полярность по внешнему виду внутренних электродов, анод намного меньше катода. Также, по слухам, корпус светодиода со стороны анода имеет более выступающую “юбочку”, но это не точно.
Вопрос: Как проверить работоспособность универсального диода?
С помощью любого мультиметра. Включаем его в режиме омметра, соединяем красный щуп с анодом, черный с катодом, прибор должен показывать ноль. Если перекинуть щупы наоборот, прибор покажет разрыв цепи (OL в цифровых мультиметрах). Если покажет как-то иначе, значит диод испорчен.
Вопрос: какова скорость “включения” и “выключения” светодиодов?
Зависит от типа светодиода. Для обычных, которые чаще всего используются в DIY-проектах, это время составляет сотню-другую наносекунд, то есть довольно быстро, может использоваться, к примеру, для анимации и передачи данных.
Типы выпрямителей переменного тока.
Какие бывают выпрямители?
Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.
Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.
Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.
Однополупериодный выпрямитель.
Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.
Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.
Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети — 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.
Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 — 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.
Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.
К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.
Двухполупериодные выпрямители.
Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.
Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.
Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.
Как видим, на выходе выпрямителя уже в два раза меньше «провалов» напряжения — тех самых пульсаций.
Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов — общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.
Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.
Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.
О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage drop — VF). Для обычных выпрямительных диодов оно может быть 1 — 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.
Большой интерес вызывает выпрямитель с удвоением напряжения.
Выпрямитель с удвоением напряжения.
Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)
Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор — смело применяем данную схему.
Развитием схемы стало создание умножителя на полупроводниковых диодах.
Умножитель напряжения.
Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.
На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.
Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.
Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.
Трёхфазные выпрямители.
Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.
Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.
Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.
В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.
Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.
Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой «Полупроводниковые выпрямители».
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Диодные выпрямительные схемы
»Электроника
Цепи диодного выпрямителябывают самых разных форм, от простых диодов до полуволновых, двухполупериодных выпрямителей, схем с использованием мостовых выпрямителей, удвоителей напряжения и многих других.
Цепи диодного выпрямителя Включают: Цепи диодного выпрямителя
Полупериодный выпрямитель
Двухполупериодный выпрямитель
Двухдиодный двухполупериодный выпрямитель
Двухполупериодный мостовой выпрямитель
Синхронный выпрямитель
Диодные выпрямительные схемы — одна из ключевых схем, используемых в электронном оборудовании.Их можно использовать в импульсных источниках питания и линейных источниках питания, в демодуляции радиочастотных сигналов, измерении мощности радиочастот и во многом другом.
Существует несколько различных типов схем диодного выпрямителя, каждая из которых имеет свои преимущества и недостатки. Решение о том, какой тип диодной схемы использовать, зависит от конкретной ситуации.
Основы схемы диодного выпрямителя
Ключевым компонентом любой схемы выпрямителя, естественно, является используемый диод или диоды. Эти устройства уникальны тем, что пропускают ток только в одном направлении.Интересно, что Амброуз Флеминг, который изобрел первую форму диода, назвал свою версию клапаном из-за его одностороннего действия. Полупроводниковые диоды теперь выполняют ту же функцию, но занимают небольшую часть пространства и обычно составляют лишь небольшую часть стоимости.
Полупроводниковый диод имеет характеристики, похожие на показанные ниже. В прямом направлении требуется небольшое напряжение на диоде, прежде чем он станет проводящим — это называется напряжением включения. Фактическое напряжение зависит от типа диодного выпрямителя и используемого материала.Для стандартного выпрямителя с кремниевым диодом это напряжение включения составляет около 0,6 В. Германиевые диоды имеют напряжение включения около 0,2 — 0,3 В, а кремниевые диоды Шоттки имеют аналогичное напряжение включения в диапазоне 0,2 — 0,3 В
PN диод VI характеристикаВ обратном направлении диодный выпрямитель окончательно выйдет из строя. Напряжение пробоя обычно значительно превышает напряжение включения — шкалы на диаграмме были изменены (сжаты) в обратном направлении, чтобы показать, что происходит обратный пробой.
Примечание о типах диодов:
Хотя основная функция диода остается прежней, существует много различных типов с немного разными характеристиками. Некоторые из них оптимизированы для выпрямления мощности, другие — для выпрямления сигналов, третьи используют диодный переход для излучения света или имеют переменную емкость и т. Д.
Подробнее о типах полупроводниковых диодов .
Для выпрямления мощности обычно используются силовые диоды или диоды Шоттки.Для выпрямления сигналов можно использовать мелкоконтактные диоды, сигнальные диоды или диоды Шоттки. Преимущество диода Шоттки в том, что для прямой проводимости требуется только прямое напряжение около 0,2 — 0,3 вольт. Это особенно полезно при обнаружении слабых радиосигналов, а при использовании в качестве выпрямителя мощности потери мощности снижаются. Однако характеристики обратной утечки не так хороши, как у обычных кремниевых диодов.
Символ диода и упаковка
Условное обозначение диодной цепи широко известно.Диоды также поставляются в различных упаковках, хотя некоторые из наиболее распространенных форматов показаны на диаграмме ниже.
Обозначение диодной цепиДействие диодного выпрямителя
Действие диода — пропускать ток только в одном направлении. Поэтому на диод подается переменная форма волны, тогда она допускает проводимость только более половины формы волны. Оставшаяся половина заблокирована.
Выпрямляющее действие диодаСхема диодного выпрямителя
Существует несколько различных конфигураций схемы диодного выпрямителя.Каждая из этих различных конфигураций имеет свои преимущества и недостатки и поэтому применима к различным приложениям.
-
Схема однополупериодного выпрямителя: Это самая простая форма выпрямителя. Часто использование только одного диода блокирует половину цикла и пропускает другой. Таким образом, используется только половина формы волны.
Хотя преимуществом этой схемы является ее простота, недостатком является то, что между последовательными пиками выпрямленного сигнала больше времени.Это делает сглаживание менее эффективным и затрудняет подавление пульсаций высокого уровня.
Эта схема не используется для каких-либо источников питания — она чаще используется для обнаружения сигналов и уровней.
-
Двухполупериодная схема выпрямителя: Эта форма выпрямительной схемы использует обе половины формы волны. Это делает эту форму выпрямителя более эффективной, а поскольку в обеих половинах цикла присутствует проводимость, сглаживание становится намного проще и эффективнее.Есть два типа выпрямителей с полным выпрямителем.
-
Двухдиодный двухдиодный двухполупериодный выпрямитель с ленточным трансформатором: Для двухдиодной версии двухполупериодной схемы выпрямителя требуется центральный отвод в трансформаторе. Когда использовались вакуумные трубки / термоэмиссионные клапаны, этот вариант широко использовался ввиду стоимости клапанов. Однако в случае с полупроводниками четырехдиодная мостовая схема позволяет сэкономить на стоимости трансформатора с центральным ответвлением и является столь же эффективной.
-
Мостовая схема полного выпрямителя: Это особая форма двухполупериодного выпрямителя, в котором используются четыре диода в мостовой топологии. Мостовые выпрямители широко используются, особенно для выпрямления мощности, и их можно получить как один компонент, содержащий четыре диода, соединенных в виде моста.
В этом формате используются четыре диода, по два проводящих в каждой половине цикла. Это означает, что есть два падения напряжения на диодах, которые могут рассеивать некоторую мощность, но это экономит потребность в трансформаторе с центральным ответвлением, что дает значительную экономию затрат.Кроме того, диоды не обязательно должны иметь такое высокое номинальное обратное напряжение, как те, которые используются в конфигурации с двумя диодами.
Ввиду того, что есть два падения напряжения на диодах, эта схема редко используется для обнаружения сигналов. Однако он очень подходит для использования в линейных источниках питания, а также во многих случаях в импульсных источниках питания.
-
-
Схема синхронного выпрямителя: Синхронные или активные выпрямители используют активные элементы вместо диодов для обеспечения переключения.Это позволяет избежать потерь в диодах и значительно повысить эффективность.
Ввиду более высокого уровня эффективности, который могут обеспечить синхронные выпрямители, они очень широко используются в высокоэффективных импульсных источниках питания. Их сложность более чем перевешивается гораздо более высоким достижимым уровнем эффективности.
Принимая во внимание разнообразие различных типов выпрямительных схем, существует хороший выбор того, какой тип использовать.Во многих случаях это продиктовано требуемым уровнем производительности, и в большинстве случаев необходим двухполупериодный выпрямитель. Благодаря доступности и невысокой стоимости мостовых выпрямителей, это, как правило, самый дешевый вариант, а не экономия на диодах и необходимость в центральном ленточном трансформаторе.
Из-за современных источников питания, требующих все более высокого уровня эффективности, многие разработчики обращаются к использованию синхронных выпрямителей. Хотя они более сложные и поэтому стоят дороже, эти затраты часто окупаются отдачей, которую они дают при повышении уровня эффективности.
Другие схемы и схемотехника:
Основы операционных усилителей
Схемы операционных усилителей
Цепи питания
Конструкция транзистора
Транзистор Дарлингтона
Транзисторные схемы
Схемы на полевых транзисторах
Условные обозначения схем
Вернуться в меню «Конструкция схемы». . .
На что следует обратить внимание при выборе правильного диода…
Полупроводниковые диоды широко используются во многих конструкциях электронных схем.Различные типы диодов оптимизированы для обеспечения различных характеристик, используемых в схемах. Важная функция диодов — выпрямление.
Цепи однополупериодного выпрямителя используются для выпрямления мощности, демодуляции сигнала и обнаружения пиков, в то время как двухдиодные схемы обеспечивают двухполупериодное выпрямление при использовании с трансформатором с центральным отводом. Сегодня схема двухдиодного выпрямителя встречается не так часто, как четырехдиодные мостовые выпрямители, которые могут быть построены с трансформатором или без него, что значительно снижает стоимость схемы.
Рисунок 1. Схема однополупериодного выпрямителя. Рисунок 2. Схема двухдиодного (с центральным ответвлением) двухполупериодного выпрямителя. Рисунок 3. Схема двухполупериодного мостового выпрямителя.При этом следует учитывать три диода для схем выпрямителя:
1) Напряжение включения
Типичное прямое напряжение включения кремниевого диода составляет 0,7 В, а германиевого диода — около 0,2- 0,3 В. Уменьшение прямого падения напряжения увеличивает чувствительность диодного выпрямителя, что актуально в определенных приложениях, таких как обнаружение сигнала.
2) Номинальный ток диода
Величина тока нагрузки, протекающего через диод, определяет желаемый номинальный постоянный ток. Например, если нагрузка потребляет ток 1 А, тогда будет достаточно диода 1N1007 (номинал 1 А) (хотя и без запаса прочности!). Однако, если ток нагрузки превышает 1 А, тогда требуется диод с более высоким номинальным током. Ток нагрузки не должен превышать номинал диода постоянного тока. То же самое можно сказать и о токе питания.Если в конструкции требуется источник питания на 3 А, диод должен выдерживать ток 3 А. Ток питания никогда не должен превышать номинальный ток диода, даже если он кратковременный.
3) Пиковое обратное напряжение
Диоды должны выдерживать максимальное обратное напряжение на них. Когда конденсатор сглаживает выходной сигнал, значение напряжения представляет собой пик формы входного сигнала, который в √2 раз больше среднеквадратичного напряжения.
Полупериодный выпрямительный диод PIVНа другой половине волнового цикла пиковое значение напряжения еще в √2 раз больше среднеквадратичного напряжения.Сумма двух значений — это максимальное обратное напряжение на диоде. Таким образом, номинальное значение PIV-диода должно быть как минимум в 2 x √2 раза больше входного среднеквадратичного напряжения для цепей полуволнового выпрямителя и как минимум в четыре раза превышать пиковое напряжение трансформатора для цепей двухдиодного полнополупериодного выпрямителя с учетом возможных переходных процессов.
Двухдиодные (с центральным отводом) полнополупериодные выпрямительные диоды PIVВ мостовых выпрямителях для того же выходного напряжения требуются диоды с половиной PIV-рейтинга, чем у выпрямителя с центральным отводом.
Мостовые полнополупериодные выпрямительные диоды PIVРассмотрение этих трех важных спецификаций гарантирует, что диод будет работать как выпрямитель, не повредив их или остальную часть проекта, в котором он находится.
Что такое выпрямитель? Типы выпрямителей, работа и применение
Различные типы выпрямителей — работа и применение
В электронике схема выпрямителя является наиболее часто используемой схемой, потому что почти каждое электронное устройство работает от постоянного тока (постоянного тока) , но доступность из источников постоянного тока ограничены, например, электрические розетки в наших домах обеспечивают переменного тока (переменного тока) .Выпрямитель — идеальный кандидат для этой работы в промышленности и дома, чтобы преобразовать переменный ток в постоянный ток . Даже в наших зарядных устройствах для сотовых телефонов используются выпрямители для преобразования AC из домашних розеток в DC . Различные типы выпрямителей используются для определенных приложений.
В основном у нас есть два типа напряжения, которые широко используются в наши дни. Они бывают переменного и постоянного напряжения. Эти типы напряжения могут быть преобразованы из одного типа в другой с помощью специальных схем, разработанных для этого конкретного преобразования.Эти преобразования происходят повсюду.
Наши основные источники питания, которые мы получаем от электросетей, имеют переменный характер, и бытовые приборы, которые мы используем в своих домах, обычно требуют небольшого постоянного напряжения. Этот процесс преобразования переменного тока в постоянный получил название выпрямления. Преобразованию переменного тока в постоянный предшествует дальнейший процесс, который может включать в себя фильтрацию, преобразование постоянного тока в постоянный и так далее. Одна из самых распространенных частей электронного блока питания — мостовой выпрямитель.
Для многих электронных схем требуется выпрямленный источник питания постоянного тока для питания различных основных электронных компонентов от доступной сети переменного тока.Простой мостовой выпрямитель используется во множестве электронных силовых устройств переменного тока.
Другой способ взглянуть на схему выпрямителя состоит в том, что можно сказать, что она преобразует токи, а не напряжения. Это имеет более интуитивный смысл, потому что мы более привыкли использовать ток для определения природы компонента. Вкратце, выпрямитель принимает ток, который имеет как отрицательную, так и положительную составляющие, и выпрямляет его так, чтобы осталась только положительная составляющая тока.
Мостовые выпрямители широко используются в источниках питания, которые обеспечивают необходимое постоянное напряжение для электронного компонента или устройств.Наиболее эффективными коммутационными аппаратами, характеристики которых известны полностью, являются диоды. Теоретически вместо диодов можно использовать любой твердотельный переключатель, которым можно управлять или которым нельзя управлять.
Обычно выпрямители типа s классифицируются в зависимости от их мощности. В этой статье мы обсудим многие типы выпрямителей, такие как:
- Однофазные выпрямители
- Трехфазные выпрямители
- Управляемые выпрямители
- Неуправляемые выпрямители
- Полуволновые выпрямители
- Полноволновые выпрямители
- Мостовые выпрямители
- Center -Tapped Rectifiers
Что такое выпрямитель?
Выпрямитель — это электрическое устройство, состоящее из одного или более чем одного диода, которое преобразует переменный ток ( AC ) в постоянный ток ( DC ).Он используется для выпрямления, где процесс ниже показывает, как он преобразует переменный ток в постоянный.
Что такое выпрямление?
Выпрямление — это процесс преобразования переменного тока (который периодически меняет направление) в постоянный ток (поток в одном направлении).
Типы выпрямителей
В основном есть два типа выпрямителей:
- Неуправляемый выпрямитель
- Управляемый выпрямитель
Мостовые выпрямители бывают многих типов, и оснований для классификации может быть много, чтобы назвать несколько, тип питания, конфигурации мостовой схемы, возможности управления и т. д.Мостовые выпрямители можно в целом разделить на одно- и трехфазные выпрямители в зависимости от типа входа, на котором они работают. Оба этих типа включают следующие дополнительные классификации, которые можно разделить как на однофазные, так и на трехфазные выпрямители.
Дальнейшая классификация основана на коммутационных устройствах, которые использует выпрямитель, и их типы: неуправляемые, полууправляемые и полностью управляемые выпрямители. Некоторые типы выпрямителей обсуждаются ниже.
В зависимости от типа выпрямительной схемы выпрямители подразделяются на две категории.
- Полупериодный выпрямитель
- Двухполупериодный выпрямитель
Полупериодный выпрямитель преобразует только половину волны переменного тока в сигнал постоянного тока, тогда как двухполупериодный выпрямитель преобразует полный сигнал переменного тока в постоянный.
Мостовой выпрямитель — это наиболее часто используемый выпрямитель в электронике, и в этом отчете будет рассказано о его работе и изготовлении. Схема простого мостового выпрямителя — самый популярный метод двухполупериодного выпрямления.
Мы подробно обсудим как управляемые, так и неуправляемые (полуволновые и полнополупериодные мостовые) выпрямители со схемами и принципами работы, как показано ниже.
Неуправляемый выпрямитель:
Тип выпрямителя, выходное напряжение которого не может контролироваться , называется неуправляемым выпрямителем .
Выпрямитель работает с переключателями. Переключатели могут быть различных типов, в широком смысле, управляемые переключатели и неуправляемые переключатели. Диод — это однонаправленное устройство, которое позволяет току течь только в одном направлении. Работа диода не контролируется, так как он будет работать до тех пор, пока он смещен в прямом направлении.
При конфигурации диодов в любом конкретном выпрямителе выпрямитель не полностью находится под контролем оператора, поэтому выпрямители такого типа называются неуправляемыми выпрямителями. Это не позволяет изменять мощность в зависимости от требований к нагрузке. Таким образом, этот тип выпрямителя обычно используется в постоянных или фиксированных источниках питания.
В неуправляемом выпрямителе используются только диоды, и они дают фиксированное выходное напряжение, зависящее только от входа AC .
Типы неуправляемых выпрямителей:
Неконтролируемые выпрямители подразделяются на два типа:
- Полуволновый выпрямитель
- Полноволновый выпрямитель
Полуволновый выпрямитель:
A Тип только выпрямителя, который преобразует полупериод переменного тока (AC) в постоянный (DC) известен как полуволновой выпрямитель.
- Положительный полупериодный выпрямитель:
Полупериодный выпрямитель, который преобразует только положительный полупериод и блокирует отрицательный полупериод.
- Выпрямитель отрицательной полуволны:
Выпрямитель отрицательной полуволны преобразует только отрицательный полупериод переменного тока в постоянный ток.
Во всех типах выпрямителей однополупериодный выпрямитель — это простейший из них , поскольку он состоит только из одного диода .
Диод пропускает ток только в одном направлении, известном как вперед смещение . Нагрузочный резистор RL включен последовательно с диодом.
Положительный полупериод:
Во время положительного полупериода вывод диода , анод станет положительным, а катод станет отрицательным, известным как прямое смещение . И это позволит протекать положительному циклу.
Отрицательный полупериод:
Во время отрицательного полупериода анод станет отрицательным, а катод станет положительным, что известно как обратное смещение .Таким образом, диод заблокирует отрицательный цикл.
Таким образом, когда источник переменного тока подключен к однополупериодному выпрямителю, через него будет проходить только полупериод , как показано на рисунке ниже.
Выход этого выпрямителя снимается с нагрузочного резистора RL . Если мы посмотрим на график вход-выход , он показывает пульсирующий положительный полупериод входа.
На выходе полуволнового выпрямителя слишком много пульсаций , и использовать этот выход в качестве источника постоянного тока не очень практично.Чтобы сгладил этот пульсирующий выходной сигнал, через резистор вводится конденсатор . Конденсатор будет заряжаться во время положительного цикла и разряжаться во время отрицательного цикла, чтобы выдать плавный выходной сигнал.
Такие типы выпрямителей тратят впустую мощность полупериода входа переменного тока.
Двухполупериодный выпрямитель:
Двухполупериодный выпрямитель преобразует как положительные, так и отрицательные полупериодов переменного (переменного тока) в постоянный (постоянный ток).Он обеспечивает двойное выходное напряжение по сравнению с полуволновым выпрямителем
Двухполупериодный выпрямитель состоит из более чем одного диода.
Существует два типа двухполупериодных выпрямителей.
- Мостовой выпрямитель
- Выпрямитель с центральным отводом
Мостовой выпрямитель
Мостовой выпрямитель использует четыре диода для преобразования обоих полупериодов входного переменного тока в постоянный выходной.
В этом типе выпрямителя диоды подключаются в особой форме, как указано ниже.
Положительный полупериод:
Во время положительного полупериода входа диод D1 и D2 становится прямым смещением, а D3 и D4 становится обратным смещением. Диод D1 и D2 образуют замкнутый контур, который обеспечивает положительное выходное напряжение на нагрузочном резисторе RL .
Отрицательный полупериод:
Во время отрицательного полупериода диод D3 и D4 становится прямым смещением, а D1 и D2 становится обратным смещением.Но полярность нагрузочного резистора RL остается прежней и обеспечивает положительный выходной сигнал на нагрузке.
Выход двухполупериодного выпрямителя имеет низкие пульсации по сравнению с полуволновым выпрямителем, но, тем не менее, он не является плавным и стабильным.
Чтобы выходное напряжение было плавным и стабильным, на выходе помещается конденсатор , как показано на рисунке ниже.
Заряд и разряд конденсатора, обеспечивающий плавные переходы между полупериодами.
Работа схемы мостового выпрямителя
Из принципиальной схемы видно, что диоды подключены определенным образом. Это уникальное расположение и дало название конвертеру. В мостовом выпрямителе напряжение на входе может быть от любого источника. Это может быть трансформатор, который используется для повышения или понижения напряжения, или сеть нашего домашнего источника питания. В этой статье мы используем трансформатор с ответвлениями 6-0-6 для обеспечения переменного напряжения.
В первой фазе работы выпрямителя, во время положительного полупериода, диоды D3-D2 смещаются в прямом направлении и проводят ток. Диоды D1-D4 имеют обратное смещение и не проводят в этом полупериоде, действуя как разомкнутые переключатели. Таким образом, мы получаем на выходе положительный полупериод. И наоборот, в отрицательном полупериоде диоды D1-D4 смещаются в прямом направлении и начинают проводить, тогда как диоды D3-D2 имеют обратное смещение и не проводят в этом полупериоде.
Опять получаем на выходе положительный полупериод.В конце процесса выпрямления отрицательная часть переменного тока преобразуется в положительный цикл. Выходной сигнал выпрямителя — это два полуположительных импульса с той же частотой и величиной, что и входной.
В отличие от работы полуволнового выпрямителя, полный мостовой выпрямитель имеет другую ветвь, которая позволяет ему проводить отрицательную половину формы волны напряжения, которую полумостовой выпрямитель не имел возможности сделать. Таким образом, среднее напряжение на выходе полного мостового выпрямителя вдвое больше, чем у полумостового выпрямителя.
Несмотря на то, что мы используем четыре отдельных силовых диода для изготовления двухполупериодного мостового выпрямителя, готовые компоненты мостового выпрямителя доступны в готовом виде в диапазоне различных значений напряжения и тока, которые можно использовать непосредственно для обеспечения работоспособности. схема.
Форма волны выходного напряжения после выпрямления не соответствует правильному постоянному току, поэтому мы можем попытаться преобразовать ее в форму волны постоянного тока, используя конденсатор для фильтрации. Сглаживающие или накопительные конденсаторы, подключенные параллельно нагрузке на выходе схемы двухполупериодного мостового выпрямителя, увеличивают средний выходной уровень постоянного тока до требуемого среднего напряжения постоянного тока на выходе, поскольку конденсатор действует не только как фильтрующий компонент, но и также периодически заряжается и разряжается, эффективно увеличивая выходное напряжение.
Конденсатор заряжается до тех пор, пока форма сигнала не достигнет своего пика, и равномерно разряжается в цепи нагрузки, когда форма сигнала начинает снижаться. Таким образом, когда выходной сигнал становится низким, конденсатор поддерживает правильную подачу напряжения в цепи нагрузки, тем самым создавая постоянный ток.
Преимущества мостового выпрямителя:
- Низкие пульсации в выходном сигнале постоянного тока
- Высокий КПД выпрямителя
- Низкие потери мощности
Недостатки мостового выпрямителя:
- Мостовой выпрямитель сложнее, чем мостовой выпрямитель. однополупериодный выпрямитель
- Больше потерь мощности по сравнению с двухполупериодным выпрямителем с центральным ответвлением.
Выпрямитель с центральным отводом
Двухполупериодный выпрямитель этого типа использует трансформатор с центральным отводом и два диода.
Трансформатор с центральным отводом — это трансформатор с двойным напряжением, который имеет два входа ( I1 и I2 ) и три выходные клеммы ( T1, T2, T3 ). Клемма T2 подключена к центру выходной катушки, которая действует как опорное заземление (опорное напряжение o вольт ).Клемма T1 выдает положительное напряжение , а клемма T3 создает отрицательное напряжение относительно T2 .
Конструкция выпрямителя с центральным отводом приведена ниже:
Положительный полупериод:
Во время входного положительного полупериода T1 будет вырабатывать положительное напряжение, а T2 — отрицательное напряжение. Диод D1 станет прямым смещением, а диод D2 станет обратным смещением.Это создает закрытый путь от T1 к T2 через нагрузочный резистор RL , как показано ниже.
Отрицательный полупериод:
Теперь во время входного отрицательного полупериода T1 будет генерировать отрицательный цикл, а T2 будет генерировать положительный цикл. Это переведет диод D1 в обратное смещение, а диод D2 в прямое смещение. Но полярность на нагрузочном резисторе RL остается такой же, поскольку ток проходит от T3 к T1 , как показано на рисунке ниже.
Выход DC выпрямителя с центральным отводом также имеет пульсации, и он не является плавным и устойчивым. DC . Конденсатор на выходе устранит пульсации и обеспечит устойчивый выход DC .
Управляемый выпрямитель:
Тип выпрямителя, выходное напряжение которого может изменяться на или на , называется управляемый выпрямитель .
Необходимость управляемого выпрямителя становится очевидной, если мы рассмотрим недостатки неуправляемого мостового выпрямителя.Чтобы превратить неуправляемый выпрямитель в управляемый, мы используем твердотельные устройства с управляемым током, такие как SCR, MOSFET и IGBT. У нас есть полный контроль, когда тиристоры включаются или выключаются в зависимости от импульсов затвора, которые мы применяем к ним. Они обычно более предпочтительны, чем их неконтролируемые аналоги.
Он состоит из одного или более одного SCR ( кремниевый управляемый выпрямитель ).
Тиристор , также известный как тиристор , представляет собой трехконтактный диод.Эти клеммы представляют собой анод , катод и управляющий вход, известный как Gate .
Точно так же, как простой диод, SCR проводит при прямом смещении и блокирует ток при обратном смещении, но он запускает прямую проводимость только при наличии импульса на входе затвора . Таким образом, выходным напряжением можно управлять с помощью входа затвора.
Типы управляемого выпрямителя
Есть два типа управляемого выпрямителя.
Выпрямитель с полуволновым управлением
Выпрямитель с полуволновым управлением состоит из одного тиристора (выпрямителя с кремниевым управлением).
Полупериодный управляемый выпрямитель имеет ту же конструкцию, что и полуволновой неуправляемый выпрямитель, за исключением того, что мы заменили диод на SCR , как показано на рисунке ниже.
SCR не проводит обратное смещение, поэтому он блокирует отрицательный полупериод.
Во время положительного полупериода SCR будет проводить ток при одном условии, когда на вход затвора подается импульс.Вход затвора, конечно, представляет собой периодический импульсный сигнал, который предназначен для активации SCR в каждом положительном полупериоде.
Таким образом, мы можем контролировать выходное напряжение этого выпрямителя.
Выходной сигнал SCR также является пульсирующим напряжением / током DC . Эти импульсы удаляются с помощью конденсатора , параллельного нагрузочному резистору RL .
Полнопериодный управляемый выпрямитель
Тип выпрямителя, который преобразует как положительный, так и отрицательный полупериод переменного тока в постоянный, а также регулирует выходную амплитуду , известен как двухполупериодный управляемый выпрямитель.
Как и неуправляемый выпрямитель, управляемый двухполупериодный выпрямитель бывает двух типов.
Управляемый мостовой выпрямитель
В этом выпрямителе диодный мост заменен мостом SCR ( Thyristor ) с такой же конфигурацией, как показано на рисунке ниже.
Положительный полупериод :
Во время положительного цикла SCR (тиристор) T1 и T2 будет проводить при подаче импульса затвора. T3 и T4 будут иметь обратное смещение, поэтому они будут блокировать ток. Выходное напряжение будет установлено на нагрузочном резисторе RL , как показано ниже.
Отрицательный полупериод:
Во время отрицательного полупериода тиристоры T3 и T4 будут иметь прямое смещение с учетом входного импульса затвора, а T1 и T2 станут обратным смещением. Выходное напряжение появится на нагрузочном резисторе RL .
В конце вывода используется конденсатор для удаления пульсаций и обеспечения стабильного и плавного вывода.
Управляемый Выпрямитель с центральным отводом:
Как и неуправляемый выпрямитель с центральным отводом, в этой конструкции используются два SCR вместо двух диодов.
Оба эти переключения SCR будут синхронизированы по-разному в зависимости от входной частоты AC .
Его работа такая же, как и у неуправляемого выпрямителя, и его схематическая конструкция приведена ниже.
Однофазные и трехфазные выпрямители
Эта классификация основана на типе входа, на котором работает выпрямитель. Именование довольно простое. Когда вход однофазный, выпрямитель называется однофазным выпрямителем, а когда вход трехфазный, он называется трехфазным выпрямителем.
Однофазный мостовой выпрямитель состоит из четырех диодов, тогда как трехфазный выпрямитель использует шесть диодов, расположенных определенным образом для получения желаемого выхода.Это могут быть управляемые или неуправляемые выпрямители в зависимости от компонентов переключения, используемых в каждом выпрямителе, таких как диоды, тиристоры и т. Д.
Сравнение выпрямителей
В следующей таблице показано соответствие между различными типами выпрямителей, такими как однополупериодный выпрямитель, двухполупериодный выпрямитель и выпрямитель с центральным ответвлением.
Применение выпрямителей
В основном почти все электронные схемы работают от постоянного напряжения.Основная цель использования выпрямителя — выпрямление, то есть преобразование переменного напряжения в постоянное. То есть выпрямители используются почти во всех выпрямительных и электронных устройствах.
Ниже приведен список общих областей применения и использования различных выпрямителей.
- Выпрямление, т.е. преобразование постоянного напряжения в переменное.
- Выпрямители используются в электросварке для обеспечения поляризованного напряжения.
- Применяется также в тяговых двигателях, подвижном составе и трехфазных тяговых двигателях, используемых для движения поездов.
- Полуволновые выпрямители используются в средствах от комаров и паяльниках.
- Полуволновой выпрямитель также используется в AM Radio в качестве детектора и детектора пикового сигнала.
- Выпрямители также используются в умножителях модуляции, демодуляции и напряжения.
Похожие сообщения:
Диодный выпрямитель с индуктивной нагрузкой
Принцип работы
Однофазный диодный выпрямитель преобразует напряжение переменного тока на входе в напряжение постоянного тока на выходе. Поток мощности в цепи однонаправленный, т.е.е., только от входа переменного тока к выходу постоянного тока. Это полный мостовой выпрямитель, поскольку в нем две пары диодов. Работа схемы зависит от состояния источника напряжения (L s , R s и L d для простоты не учитываются):
- Положительный полупериод: Диоды D 1 и D 2 проводят, а диоды D 3 и D 4 блокируют. Положительное напряжение сети индуцирует положительное напряжение на сопротивлении нагрузки.
- Отрицательный полупериод: Теперь диоды D 3 и D 4 проводят, а диоды D 1 и D 2 блокируются. Поскольку через диоды D 3 и D 4 протекает положительный ток, напряжение на резисторе снова положительное.
Комбинация четырех диодов обеспечивает двухполупериодное выпрямление входного переменного напряжения со средним постоянным напряжением:
Влияние индукторов
Во время положительного полупериода напряжения сети пара диодов D 1 / D 2 проводит.Когда напряжение постоянного тока пересекает ноль, обе пары диодов D 1 / D 2 и D 3 / D 4 проводят ток, поскольку катушки индуктивности L s и L d пытаются поддерживать ток. Время, в течение которого обе пары диодов проводят ток, называется интервалом коммутации тока . Все четыре диода имеют нулевое прямое напряжение, поэтому во время коммутации тока между двумя парами диодов постоянное напряжение остается нулевым.
Последовательная комбинация L d и R d действует как фильтр нижних частот первого порядка, который уменьшает пульсации напряжения на выходе.
Эксперименты
- Измените индуктивность источника со 100 мкГн на 500 мкГн и наблюдайте за увеличением интервала коммутации тока.
- Измените индуктивность нагрузки с 20 мГн на 100 мГн и наблюдайте за уменьшением пульсаций выходного напряжения.
Shahram Marivani — ПОЛНОВОЛНОВЫЕ ВЫПРЯМИТЕЛИ И ИСТОЧНИКИ ПИТАНИЯ
ПОЛНОВОЛНОВЫЕ ВЫПРЯМИТЕЛИ И ИСТОЧНИКИ ПИТАНИЯ
Цель:
Целью этого эксперимента является изучение рабочих характеристик и характеристик двухполупериодных выпрямителей и источников питания постоянного тока, использующих стабилитрон в качестве устройства стабилизации напряжения.Будут изучены и измерены характеристики двухполупериодного выпрямителя, а также стабилитрона.
Введение:
Одно из важных применений диодов с P-N переходом — преобразование переменного тока (AC) в постоянный ток (DC). Можно использовать полуволновые выпрямители, но они крайне неэффективны при преобразовании мощности переменного тока в мощность постоянного тока. Кроме того, они имеют высокое содержание гармоник, которые трудно отфильтровать и сгладить пульсации выпрямленного переменного тока.С другой стороны, двухполупериодный выпрямитель повышает эффективность преобразования мощности переменного тока в мощность постоянного тока. Это также уменьшит содержание гармоник в выпрямленной форме волны и снизит требования к сглаживающему фильтру, необходимому для уменьшения пульсаций в выпрямленной форме волны. Типичная форма сигнала двухполупериодного выпрямителя показана на рисунке 1.
Рисунок 1 — Формы выходных сигналов двухполупериодного выпрямителя; темная линия — это отфильтрованный вывод, а более тонкая линия — нефильтрованный вывод.Стабилитроны
— это специальные диоды, предназначенные для поддержания фиксированного напряжения на нагрузке. Они предназначены для «пробоя» надежным и неразрушающим образом, когда они смещены в обратном направлении напряжением, превышающим напряжение пробоя. Типичная характеристика постоянного тока стабилитрона показана на рисунке 2. Перегиб в области обратного смещения на рисунке 2 — это «напряжение пробоя» стабилитрона. Однако это напряжение также известно как напряжение Зенера.
Рисунок 2 — Вольт-амперная характеристика кремниевого стабилитрона. Стабилитроны
имеют номинальное напряжение пробоя и максимальную мощность.Минимальное доступное напряжение стабилитрона составляет 2,7 В, тогда как номинальная мощность составляет 400 мВт и 1,3 Вт. Схема подключения стабилитрона в качестве базовой цепи стабилизации напряжения показана на рисунке 3.
Рисунок 3 — Подключение стабилитрона в качестве регулятора напряжения
Полный и стабилизированный источник питания может быть получен путем использования выпрямительных диодов для изменения мощности переменного тока на мощность постоянного тока. Выпрямленное напряжение фильтруется, чтобы уменьшить пульсации выпрямленного сигнала. Затем используется стабилитрон для регулирования напряжения до желаемого конечного значения.Простая блок-схема источника питания показана на рисунке 4.
На блок-схеме Рисунка 4 каждый отдельный блок описан более подробно ниже:
- Трансформатор: понижает напряжение сети переменного тока высокого напряжения до переменного тока низкого напряжения.
- Диодный выпрямитель: преобразует переменный ток в постоянный, но на выходе постоянного тока присутствует большая составляющая пульсаций.
- Фильтр: сглаживает постоянный ток от сильных колебаний и уменьшает составляющую пульсации.
- Регулятор напряжения: устраняет пульсации, устанавливая на выходе постоянного тока фиксированное напряжение.
- Нагрузка: это часть цепи, на которую подается питание постоянного тока для выполнения полезной работы.
Рисунок 4 — Простая блок-схема стабилизированного источника постоянного тока.
Лабораторные работы:
- Измерение постоянной характеристики стабилитрона:
- Установите напряжение постоянного тока источника питания на 0 В.
- Подключите схему стабилитрона, как показано на рисунке 5.
- Измените напряжение питания постоянного тока небольшими шагами.Используйте цифровой вольтметр, измерьте V в , V R и V D , как показано на рисунке 5. Сведите данные измерений в таблицу.
- Для каждого шага вычислите постоянный ток через диод, который равен (V R /2000).
- Поменяйте полярность источника питания постоянного тока на рис. 5. Повторите шаги измерения с 1.a до 1.d.
Рисунок 5 — Схема подключения для измерения характеристики постоянного тока стабилитрона - Характеристика мостового выпрямителя:
- Подключите двухполупериодную схему выпрямителя, как показано на рисунке 6, на котором R L = 1 кОм.Не подключайте конденсатор к нагрузке.
- Monitor V o (см. Рисунок 6) на осциллографе. ЗАПРЕЩАЕТСЯ контролировать V s и V o на осциллографе одновременно. Измерьте пиковое входное и пиковое выходное напряжения. Захватите отображаемую форму волны. С помощью цифрового вольтметра измерьте напряжение постоянного тока на R L .
- Подключите 47 мкФ к R L . Наблюдайте за V o на осциллографе и фиксируйте осциллограмму. Повторите измерение с конденсатором 10 мкФ.Сравните две формы выпрямленного сигнала, полученные с разными конденсаторами.
- Измените нагрузочный резистор на 10 кОм и 100 кОм и контролируйте выпрямленное напряжение на выходе. Прокомментируйте влияние сопротивления нагрузки на пульсации на выходе.
- Характеристика двухполупериодного выпрямителя с центральным отводом:
- Выполните необходимые измерения на трансформаторе с центральным ответвлением, чтобы определить, какой вывод является центральным ответвлением.
- Подключите двухполупериодную схему выпрямителя, как показано на рисунке 7, на котором R L = 1 кОм. Не подключайте конденсатор к нагрузке.
- Контролируйте на осциллографе одновременно V s и V o (см. Рисунок 7). Измерьте пиковое входное и пиковое выходное напряжения. Захватите отображаемые формы сигналов. С помощью цифрового вольтметра измерьте напряжение постоянного тока на R L .
- Подключите 47 мкФ к R L . Наблюдайте за V s и V o на осциллографе и фиксируйте обе формы сигнала.
- Регулируемый источник питания постоянного тока:
- Рассмотрим схему источника питания постоянного тока, показанную на рисунке 8. Используя ранее измеренные выпрямленные напряжения постоянного тока и стабилитрон, вычислите минимальное значение R s , необходимое для защиты стабилитрона в условиях, когда нагрузка представляет собой разомкнутую цепь (это это наихудшее состояние). Стабилитрон рассчитан на 400 мВт, а минимальный ток стабилитрона составляет 5 мА.Обсудите результат с инструктором лаборатории, прежде чем использовать его в эксперименте.
- Подключите схему, показанную на рисунке 8, и используйте значение R s , вычисленное в 4.a. Наблюдайте за напряжением на нагрузке с помощью осциллографа. Измерьте напряжение на R L и напряжение на R s . Рассчитайте ток, проходящий через стабилитрон.
- Отключите R L и измерьте напряжение и ток на стабилитроне.
Рисунок 8 — Регулируемый источник питания постоянного тока
Рисунок 6 — Нефильтрованный двухполупериодный выпрямитель с мостовым соединением диодов
Рисунок 7 — Нефильтрованная двухполупериодная схема выпрямителя, использованная в эксперименте.
Результаты и обсуждения:
В дополнение к вопросам, указанным в лабораторной процедуре, выполните следующие действия и ответьте на них:
- Постройте график ВАХ стабилитрона.
- Какое значение прямого сопротивления стабилитрона?
- Что такое напряжение стабилитрона?
Из чего состоит схема мостового выпрямителя?
Введение
Для нормальной работы электрической системы необходим стабильный источник питания.За исключением использования солнечных элементов или химических батарей в определенных особых случаях, постоянный ток большинства цепей преобразуется из переменного тока сети. Мостовой выпрямитель обычно используется для преобразования переменного тока в постоянный, который является наиболее часто используемой схемой, в которой для выпрямления используется однонаправленная проводимость диодов. Существует много типов мостовых выпрямителей: плоские, круглые, квадратные, скамейки (вставные и SMD, ) и др., Имеющих конструкции GPP и O / J.Максимальный выпрямленный ток составляет от 0,5 до 100 А, а максимальное обратное пиковое напряжение — от 50 до 1600 В.
Что такое мостовой выпрямитель?
Каталог
Ⅰ Схема мостового выпрямительного диода
Мостовой выпрямитель использует четыре полупроводниковых диода , соединенных попарно. Когда положительная половина синусоидальной волны входа включается, две лампы включаются, и получается положительный выход; наоборот, когда вводится отрицательная половина синусоидальной волны, две другие лампы включаются.Поскольку две лампы соединены в обратном порядке, на выходе все еще остается положительная часть синусоидальной волны. Кроме того, эффективность использования входной синусоидальной волны мостовым выпрямителем в два раза выше, чем у полуволнового выпрямителя.
Блок выпрямительного моста обычно используется в двухполупериодной схеме выпрямителя и делится на полный мост и полумост. Полный мост состоит из 4 выпрямительных диодов, соединенных в виде двухполупериодной мостовой схемы выпрямителя и собранных как единое целое.Полумост предназначен для соединения половин двух диодных мостовых выпрямителей. Два полумоста могут образовывать схему мостового выпрямителя, а полумост может также образовывать двухполупериодную схему выпрямителя с центральным отводом трансформатора. При выборе выпрямительного моста необходимо тщательно учитывать схему выпрямителя и рабочее напряжение.
Прямой ток полного моста имеет различные характеристики, такие как 0,5 А, 1 А, 1,5 А, 2 А, 2,5 А, 3 А, 5 А, 10 А, 20 А, 35 А, 50 А и т. Д. Выдерживаемое напряжение (максимальное обратное напряжение) составляет 25 В, 50 В, 100 В, 200 В, 300 В, 400 В, 500 В, 600 В, 800 В, 1000 В и т. д.
В этой главе выпрямительный диод рассматривается как идеальный компонент , то есть его сопротивление прямой проводимости считается равным нулю, а его обратное сопротивление бесконечно, из-за удобства анализа схемы выпрямителя . Однако в практических приложениях следует учитывать, что диод имеет внутреннее сопротивление, и выходная амплитуда сигнала, полученная после выпрямления, будет уменьшена на 0,6 ~ 1 В. Когда входное напряжение выпрямительной схемы велико, этой частью падения напряжения можно пренебречь.Напротив, если входное напряжение небольшое, например, если входное напряжение 3 В, то выходное напряжение составляет всего 2 В, и необходимо учитывать влияние прямого падения напряжения на диоде.
Направление тока цепи мостового выпрямителя
Рисунок 1.
В положительном полупериоде u2, D1 и D3 включены, D2 и D4 выключены, и ток возвращается с верхнего конца вторичного TR на нижний конец через D1 → RL → D3 и на нагрузке RL получается полуволновое выпрямленное напряжение.
В отрицательном полупериоде u2, D1 и D3 выключены, D2 и D4 включены, и ток возвращается от нижнего конца вторичной цепи Tr к верхнему концу вторичной цепи Tr через D2 → RL → D4 и другая полуволна выпрямленного напряжения получается на нагрузке RL.
Ⅱ Характеристики схемы мостового выпрямителя
(1) Используемое устройство выпрямления в два раза больше, чем у двухполупериодного выпрямителя.
(2) Направление изменения импульса выпрямленного напряжения такое же, как и при двухполупериодном выпрямлении.
(3) Обратное напряжение, которое несет каждое устройство, является пиковым значением напряжения источника питания.
(4) Коэффициент использования трансформатора выше, чем у двухполупериодной схемы выпрямителя.
Ⅲ Однофазное выпрямление и трехфазное выпрямление
3.1 Схема однофазного мостового выпрямителя
Рисунок 2.
Однофазная мостовая схема выпрямителя состоит из четырех диодов, соединенных в виде моста.Его недостаток в том, что он использует только половину цикла источника питания, и при этом напряжение выпрямления имеет большие пульсации.
На рисунке 2 (а) выше показано направление тока в схеме однофазного мостового выпрямителя. Сплошная стрелка указывает на ситуацию, когда источник питания переменного тока находится в положительном полупериоде, а пунктирная стрелка указывает на ситуацию, когда источник питания переменного тока находится в отрицательном полупериоде.
Видно, что четыре диода разделены на две части: положительный полупериод и отрицательный полупериод.Однако текущее направление нагрузки не меняется. Это двухполупериодное выпрямление. Кроме того, схема однофазного мостового выпрямителя на практике может быть реализована с помощью интегрального устройства « мостовой стек ».
На Рисунке 3. показана диаграмма формы сигнала однофазной мостовой выпрямительной схемы. Согласно диаграмме, среднее напряжение составляет: Uo ≈ 0,9U2 (где U2 — действующее значение выходного напряжения вторичной обмотки трансформатора).
Рисунок 3.Форма волны (однофазная)
3.2 Схема трехфазного мостового выпрямителя
Рисунок 4.
Схема трехфазного мостового выпрямителя разработана на основе схемы неуправляемого однополупериодного выпрямителя, которая, по сути, представляет собой последовательное соединение набора общего катода и набора общего анода с тремя полупроводниковыми диодами.
Кроме того, трехфазная мостовая схема должна иметь два тиристора, включенных одновременно, один в общей катодной области, а другой в общей анодной области, чтобы сформировать петлю.
Закон анализа цепей
Включается диод с максимальным анодным потенциалом в общей катодной группе.
Включается диод с наименьшим катодным потенциалом в общей анодной группе.
Примеры анализа цепей
Рисунок 5. t1 ~ t2
В группе с обычным катодом потенциал в точке U самый высокий, а V1 включен.
В группе с общим анодом потенциал в точке V самый низкий, а V4 включен.
Напряжение на нагрузке равно линейному напряжению Uuv.
Рисунок 6. t2 ~ t3
В группе с обычным катодом потенциал в точке U самый высокий, а V1 включен.
В группе с общим анодом потенциал в точке W самый низкий, и V6 включен.
Напряжение на нагрузке равно линейному напряжению Uuw.
Рисунок 7. t3 ~ t4
В группе с общим катодом потенциал в точке V самый высокий, а V3 включен.
В общей анодной группе потенциал в точке W самый низкий, а V6 включен.
Напряжение на нагрузке соответствует линейному напряжению Uvw .
…
…
Summery
В полнополупериодном цикле его можно разделить на 6 интервалов, каждый из которых питается от пары фазных проводов к нагрузке.
В полнополупериодном цикле каждый диод включен на одну треть времени (угол проводимости составляет 120 °).
В течение 6 периодов цикла напряжение нагрузки можно рассматривать как периодическое изменение.
Ⅳ Роль мостового выпрямителя
1. Преобразуйте переменный ток, генерируемый генератором переменного тока, в постоянный ток для питания электрического оборудования и зарядки аккумулятора.
2. Ограничьте ток батареи, чтобы течь обратно к генератору, чтобы защитить генератор от сгорания обратным током.
Рисунок 8. Блок-схема мостового выпрямителя переменного тока в постоянный
Ⅴ Схема подключения мостового выпрямителя
В схеме мостового выпрямителя устранены недостатки, заключающиеся в том, что схема двухполупериодного выпрямителя требует, чтобы вторичная обмотка трансформатора имела центральный отвод, а диод выдерживал большую реверсивную нагрузку. напряжение, но используются два диода.При быстром развитии полупроводниковых устройств и низкой стоимости сегодня этот недостаток не очевиден, поэтому на практике широко используются мостовые выпрямительные схемы.
Следует отметить, что диод в качестве компонента выпрямителя следует выбирать в соответствии с различными методами выпрямления и значениями нагрузки. При неправильном выборе вы не сможете безопасно работать или даже сжечь трубу, что приведет к отходам.
Рисунок 9. Принципиальная схема мостового выпрямителя
Схема мостового выпрямителя также может рассматриваться как разновидность схемы двухполупериодного выпрямителя.Трансформатор подключается к четырем диодам в соответствии со способом, показанным на рисунке 9. D1 ~ D4 — это четыре идентичных выпрямительных диода, соединенных в виде моста, поэтому они называются мостовыми выпрямительными схемами. Используя направляющую функцию диода, вторичный выход может быть направлен на нагрузку даже в отрицательном полупериоде. Из рисунка видно, что D1 и D2 проводят ток через RL сверху вниз в течение положительного полупериода, а D3 и D4 проводят ток через RL сверху вниз в течение отрицательного полупериода.В этой структуре, если на выходе выдается такое же постоянное напряжение, вторичной обмотке трансформатора требуется только половина обмотки по сравнению с двухполупериодным выпрямлением. Однако, если необходимо вывести такое же количество тока, диаметр обмотки следует соответственно увеличить.
Потому что выходное напряжение схемы выпрямителя содержит более крупные пульсирующие компоненты. С другой стороны, чтобы уменьшить составляющую пульсации в максимально возможной степени, необходимо как можно больше поддерживать составляющую постоянного тока, чтобы выходное напряжение было близким к идеальному постоянному току.Это фильтрующая мера. Фильтрация обычно достигается за счет использования эффекта накопления энергии конденсаторов или катушек индуктивности.
Рисунок 10. Схема мостового выпрямителя с конденсатором
В этой экспериментальной схеме используется конденсаторная фильтрация, то есть конденсатор фильтра C подключен параллельно сопротивлению нагрузки RL. Схема показана на рисунке 11, а форма отфильтрованного сигнала показана на рисунке ниже.
Рис. 11. Форма волны двухполупериодного фильтра выпрямления
Постоянная составляющая двухполупериодного выпрямленного выходного напряжения (по сравнению с полуволновым) увеличивается, а пульсации уменьшаются, но трансформатору требуется центральный отвод, который сложно производить, а выпрямительный диод должен выдерживать высокое обратное напряжение, поэтому обычно подходит для низкого выходного напряжения.
Рис. 12. Форма волны полуволнового выпрямительного фильтра
Полупериодное выпрямление — это наиболее часто используемая схема, в которой для выпрямления используется однонаправленная проводимость диода.
Ⅵ Разница между мостовым выпрямителем и двухполупериодной схемой выпрямителя
1) Не требуется центральный отвод на вторичной стороне трансформатора схемы мостового выпрямителя, но используйте еще 2 выпрямительных диода.
2) В двухполупериодной схеме выпрямителя используется менее 2 выпрямительных диодов, но вторичная обмотка трансформатора должна иметь центральное ответвление.
3) Обратное выдерживаемое напряжение выпрямительного диода, используемого в двухполупериодной схеме выпрямителя, вдвое больше, чем у мостового выпрямителя.
4) Выпрямление и двухполупериодное выпрямление имеют разные требования к количеству вторичных трансформаторов. Для первого требуется только 1 набор катушек, а для второго — 2 набора.
5) Выпрямление и двухполупериодное выпрямление имеют разные требования к вторичному току трансформатора, первое в два раза больше второго.
Часто задаваемые вопросы о схеме мостового выпрямителя
1.Что делает мостовой выпрямитель?
Мостовой выпрямитель обеспечивает двухполупериодное выпрямление от двухпроводного входа переменного тока, что приводит к снижению стоимости и веса по сравнению с выпрямителем с трехпроводным входом от трансформатора с вторичной обмоткой с центральным отводом. … Диоды также используются в мостовых топологиях вместе с конденсаторами в качестве умножителей напряжения.
2. Как мостовой выпрямитель преобразует переменный ток в постоянный? Мостовые выпрямители
преобразуют переменный ток в постоянный, используя систему диодов, изготовленных из полупроводникового материала, либо полуволновым методом, который выпрямляет одно направление переменного сигнала, либо полуволновым методом, который выпрямляет оба направления входного переменного тока.
3. Что происходит при выходе из строя мостового выпрямителя?
Без сглаживания конденсатора, когда 1 диод в мостовом выпрямителе выходит из строя, как напряжение, так и ток уменьшаются. При конденсаторном сглаживании, когда в мостовом выпрямителе выходит из строя 1 диод, напряжение остается довольно постоянным, но увеличивается ток.
4. Почему мы используем 4 диода в мостовом выпрямителе?
Мостовой выпрямитель, состоящий из четырех диодов, обеспечивает двухполупериодное выпрямление без использования трансформатора с центральным ответвлением.Мостовой выпрямитель — это электронный компонент, который широко используется для обеспечения двухполупериодного выпрямления и, возможно, является наиболее широко используемой схемой для этого приложения.
5. Почему мостовой выпрямитель предпочтительнее двухполупериодного выпрямителя? Мостовой выпрямитель
приводится в действие одной обмоткой, которая пропускает ток в обоих циклах нагрузки. … Полная волна лучше, чем мост, еще в одном аспекте, то есть выходное напряжение постоянного тока немного выше, чем у моста. Это потому, что он имеет только 1 диодный переход от переменного к постоянному току.
Альтернативные модели
Часть | Сравнить | Производителей | Категория | Описание | |
Производитель.Часть #: TC4427EOA713 | Сравнить: Текущая часть | Производители: Microchip | Категория: Драйверы на полевых транзисторах | Описание: 1.Двойной МОП-транзистор 5A Drvr8 SOIC 3,9 мм (0,15 дюйма) T / R | |
Производитель Номер детали: TC4426EOA | Сравнить: TC4427EOA713 VS TC4426EOA | Производители: Microchip | Категория: Драйверы на полевых транзисторах | Описание: TC4426EOA; Драйвер питания с двумя полевыми МОП-транзисторами 1.5А; От 4,5 до 18 В; Инвертирование; 8-контактный SOIC | |
Производитель Номер детали: TC4427COA | Сравнить: TC4427EOA713 VS TC4427COA | Производители: Microchip | Категория: Драйверы на полевых транзисторах | Описание: TC4427COA, Драйвер питания с двумя полевыми МОП-транзисторами 1.5A, от 4,5 до 18 В, неинвертирующий, 8-контактный SOIC | |
Производитель Номер детали: TC4427EOA | Сравнить: TC4427EOA713 VS TC4427EOA | Производители: Microchip | Категория: Драйверы на полевых транзисторах | Описание: TC4427EOA, Драйвер питания с двумя полевыми МОП-транзисторами 1.5A, от 4,5 до 18 В, неинвертирующий, 8-контактный SOIC |
Полноволновой мостовой выпрямитель — инженеры в последнюю минуту
Существует еще одна, более популярная двухполупериодная конструкция выпрямителя, построенная на основе конфигурации четырехдиодного моста.Он известен как полноволновой мостовой выпрямитель или просто мостовой выпрямитель .
Преимущество этого типа конструкции перед версией с центральным отводом состоит в том, что он не требует специального трансформатора с центральным отводом, что резко снижает его размер и стоимость.
Также эта конструкция использует все вторичное напряжение в качестве входа для выпрямителя. Используя тот же трансформатор, мы получаем в два раза больше пикового напряжения и вдвое больше постоянного напряжения с мостовым выпрямителем, чем с двухполупериодным выпрямителем с центральным ответвлением.
Вот почему мостовые выпрямители используются гораздо чаще, чем двухполупериодные.
Двухполупериодный мостовой выпрямитель
Для выпрямления обоих полупериодов синусоидальной волны в мостовом выпрямителе используются четыре диода, соединенные вместе в «мостовой» конфигурации. Вторичная обмотка трансформатора подключена с одной стороны сети диодного моста, а нагрузка — с другой.
На следующем изображении показана схема мостового выпрямителя.
Функционирование этой схемы легко понять по одному полупериоду за раз.
Во время положительного полупериода источника диоды D1 и D2 проводят ток, в то время как D3 и D4 имеют обратное смещение. Это создает положительное напряжение нагрузки на нагрузочном резисторе (обратите внимание на положительную полярность нагрузочного резистора).
В течение следующего полупериода полярность напряжения источника меняется на противоположную. Теперь D3 и D4 смещены в прямом направлении, а D1 и D2 — в обратном. Это также создает положительное напряжение нагрузки на нагрузочном резисторе, как и раньше.
Обратите внимание, что независимо от полярности входа напряжение нагрузки имеет одинаковую полярность, а ток нагрузки — в одном направлении.
Таким образом, схема преобразует входное напряжение переменного тока в пульсирующее выходное напряжение постоянного тока.
Если вам неприятно вспоминать правильное расположение диода в схеме мостового выпрямителя, вы можете обратиться к альтернативному представлению схемы. Это точно такая же схема, за исключением того, что все диоды расположены горизонтально и направлены в одном направлении.
Значение постоянного тока для двухполупериодного сигнала
Поскольку мостовой выпрямитель выдает двухполупериодный выходной сигнал, формула для расчета среднего значения постоянного тока такая же, как и для двухполупериодного выпрямителя:
Это уравнение говорит нам, что значение постоянного тока двухполупериодного сигнала составляет около 63.6 процентов от пикового значения. Например, если пиковое напряжение двухполупериодного сигнала составляет 10 В, напряжение постоянного тока будет 6,36 В
Когда вы измеряете полуволновой сигнал с помощью вольтметра постоянного тока, показание будет равно среднему значению постоянного тока.
A Приближение второго порядка
В действительности мы не можем получить идеальное двухполупериодное напряжение на нагрузочном резисторе. Из-за барьерного потенциала диод не включается, пока напряжение источника не достигнет примерно 0,7В .
И поскольку мостовой выпрямитель управляет двумя диодами одновременно, два диода выпадают (0.7 * 2 = 1,4 В) напряжения источника теряются в диоде. Таким образом, пиковое выходное напряжение определяется по формуле:
Выходная частота
Двухполупериодный выпрямитель инвертирует каждый отрицательный полупериод, удваивая количество положительных полупериодов. Из-за этого двухполупериодный выход имеет в два раза больше циклов, чем входной.
Следовательно, частота двухполупериодного сигнала в два раза превышает входную частоту.
Например, если частота сети 60 Гц, выходная частота будет 120 Гц.
Фильтрация выходного сигнала выпрямителя
Выходной сигнал, который мы получаем от двухполупериодного выпрямителя, представляет собой пульсирующее постоянное напряжение, которое увеличивается до максимума, а затем уменьшается до нуля.
Нам не нужно такое постоянное напряжение. Что нам нужно, так это стабильное и постоянное напряжение постоянного тока, без каких-либо колебаний или пульсаций напряжения, которые мы получаем от батареи.
Чтобы получить такое напряжение, нам нужно отфильтровать двухполупериодный сигнал. Один из способов сделать это — подключить конденсатор, известный как сглаживающий конденсатор , через нагрузочный резистор, как показано ниже.
Изначально конденсатор не заряжен. В течение первой четверти цикла диоды D1 и D2 смещены в прямом направлении, поэтому конденсатор начинает заряжаться. Зарядка продолжается до тех пор, пока входной сигнал не достигнет пикового значения. В этот момент напряжение на конденсаторе равно Vp.
После того, как входное напряжение достигает пика, оно начинает уменьшаться. Как только входное напряжение становится меньше Vp, напряжение на конденсаторе превышает входное напряжение, что отключает диоды.
Когда диоды выключены, конденсатор разряжается через нагрузочный резистор и обеспечивает ток нагрузки, пока не будет достигнут следующий пик.