Эмиттер коллектор база кт805: КТ805АМ, КТ805БМ, КТ805А, КТ805Б, КТ805ВМ

Содержание

КТ805АМ, КТ805БМ, КТ805А, КТ805Б, КТ805ВМ

Транзисторы кремниевые эпитаксиальные n-p-n переключательные низкочастотные мощные: КТ805АМ, КТ805БМ, КТ805А, КТ805Б, КТ805ВМ. Предназначены для применения в схемах выходных каскадов строчной развёртки телевизоров, систем зажигания двигателей внутреннего сгорания.

Транзисторы КТ805А, КТ805Б выпускаются в металлостеклянном корпусе с жёсткими выводами.

Транзисторы КТ805АМ, КТ805БМ, КТ805ВМ выпускаются в пластмассовом корпусе с гибкими выводами.

Масса транзистора в металлостеклянном корпусе не более 24 грамма, в пластмассовом не более 2,5 грамма.

Чертёж транзистора КТ805АМ, КТ805БМ, КТ805А, КТ805Б, КТ805ВМ

Электрические параметры.

Напряжение насыщения коллектор-эмиттер при IК=5 А, IБ=0,5 А
КТ805А, КТ805АМ, не более 2,5 В
КТ805Б, КТ805БМ, не более
5 В
IК=2 А, IБ=0,2 А КТ805ВМ, не более 2,5 В
Напряжение насыщения база-эмиттер при IК=5 А, IБ=0,5 А
КТ805А, КТ805АМ, не более 2,5 В
КТ805Б, КТ805БМ, КТ805ВМ, не более 5 В
Статический коэффициент передачи тока в схеме с общим эмиттером при UКЭ=10 В, IК=2 А, не менее
при Т=24,85°С 15
при Т=-60,15°С 5
Граничная частота коэффициента передачи тока в схеме с общим эмиттером при U
КЭ
=10 В, IК=1 А, не менее
20 МГц
Импульсный обратный ток коллектора при RБЭ=10 Ом, при Т=24,85°С и 99,85°С, не более
КТ805А, КТ805АМ при UКЭ=160 В 60 мА
КТ805Б, КТ805БМ, КТ805ВМ при UКЭ=135 В 70 мА
Обратный ток эмиттера при UЭБ=5 В, не более 100 мА

Предельные эксплуатационные данные.

Импульсное напряжение коллектор-эмиттер при τи≤500 мс, τφ≥15 мс, RБЭ≤10 Ом
КТ805А, КТ805АМ 160 В
КТ805Б, КТ805БМ, КТ805ВМ 135 В
Постоянное напряжение эмиттер-база 5 В
Постоянный ток коллектора 5 А
Импульсный ток коллектора при τи≤200 мс и Q=1,5 8 А
Постоянный ток базы 2 А
Импульсный ток базы при τи≤20 мс 2,5 А
Средняя рассеиваемая мощность
при Тк≤49,85°С 30 Вт
при Тк=99,85°С 15 Вт
Тепловое сопротивление переход-корпус 3,3 К/Вт
Температура перехода 149,85°С
Температура окружающей среды От -60,15 до Тк=99,85°С

Примечания. 1. Для КТ805А, КТ805АМ в схемах строчной развёртки телевизоров допускается UКЭ и=180 В при Тк≤69,85°С, τ

и≤15 мкс. При повышении температуры до 149,85°С UКЭ и уменьшается на 10 % через каждые 10 К. В схемах строчной развёртки телевизоров допускается UЭБ и=8 В при τи≤40 мкс.

2. При температуре корпуса от 49,85 до 99,85°С рассеиваемая мощность коллектора, Вт, рассчитывается по формуле:

PКмакс=(423-Тк)RТп к.

3. Пайку выводов транзисторов в металлостеклянном корпусе следует производить в течение не более 10 секунд. Температура пайки не должна превышать 259,85°С.

Пайку выводов транзисторов в пластмассовом корпусе разрешается производить на расстоянии не менее 5 мм от корпуса транзистора.

При монтаже транзисторов в схему допускается одноразовый изгиб их выводов на расстоянии не менее 2,5 мм от корпуса под углом 90° с радиусом изгиба не менее 0,8 мм. При этом должны приниматься меры исключающие возможность передачи усилий на корпус.

Изгиб в плоскости выводов не допускается.

Зависимость статического коэффициента передачи тока от тока коллектора и зависимость модуля коэффициента передачи тока от частоты

Зависимость статического коэффициента передачи тока от тока коллектора и зависимость модуля коэффициента передачи тока от частоты.

Зависимость статического коэффициента передачи тока от температуры и зависимость относительного максимально допустимого напряжения коллектор-эмиттер от сопротивления эмиттер-база

Зависимость статического коэффициента передачи тока от температуры и зависимость относительного максимально допустимого напряжения коллектор-эмиттер от сопротивления эмиттер-база.


КТ805АМ характеристики транзистора, datasheet, цоколевка и аналоги

По своим характеристикам транзистор КТ805АМ относится к мощным среднечастотным кремниевым полупроводниковый компонентам отечественного производства. Он изготавливается по эпитаксиальной технологии, имеет n-p-n-структуру и относится к биполярному типу. Чаще всего устройство применяется в ключевых схемах, поэтому в техописаниях указывается как переключающее.

Первые транзисторы данного типа, в металлическом корпусе, были изготовлены в СССР еще в 70-х годах. В пластиковом корпусе они появились только в 80-х и использовались промышленностью тех лет в различных бытовых приборах. Например, устанавливались в выходных каскадах: первых советских УНЧ, строчной развертки у телевизоров и блоках регулировки оборотов видеомагнитофонов «Электроника ВМ-12» и др.

Назначение выводов

Цоколевка КТ805АМ следующая. Прибор выполнен в пластиковом корпусе типа КТ-28 (КТ-28-2), для дырочного монтажа. Он имеет встроенный радиатор с отверстием (3.6 мм) для крепления на электрическую плату. В зарубежной классификации это корпус TO-220 (ТО-220AB). Три контакта, если смотреть на маркировку, слева на право, имеют следующие назначение: 1- эмиттер (Э), 2- коллектор(К), 3- база(Б). Масса устройства не более 2.5 гр.

Многие радиолюбители путают КТ-28 с корпусом КТ-27. Но это разные упаковки. Будьте внимательны при покупке. КТ805АМ(КТ-27) не бывает !

Вместе с тем, существует транзистор КТ805А в металлостеклянном светлом корпусе, с аналогичными параметрами. Он имеет габариты побольше и весит 24 гр. Характеристики, рассмотренные ниже, относятся к обеим видам устройств.

Технические характеристики

КТ805АМ, как все полупроводниковые приборы, имеет техническое описание от производителя. Оно содержит информацию об устройстве, его обозначению, а так же предельно допустимые характеристики. Рассмотрим их более подробно:

  • максимальное напряжение К-Э: постоянное (UКЭ ) до 60 В; импульсное (UКЭ и) до 160 В при tИ ≤ 500 мкс, tФ ≥15 мс, RБЭ = 10 Ом, температуре перехода  (ТП) ≤ +100OС; до 180 вольт в схемах строчной телевизионной развертки при ТК ≤, tИ ≤ 50 мс;
  • напряжение Э-Б (UЭБ): — 5 В, импульсное (UЭБ и)  до 8 В, при tИ  ≤ 40 мс;
  • ток коллектора (IК): -5 А; импульсный (IК и) при tИ≤ 40 мс и Q≥1.5 — 8 А;
  • ток базы (IБ) — 2 А; импульсный (IБ и) при tИ ≤ 20 мc — 2.5 А;
  • тепловое сопротивление кристалл-корпус (RТ(П-К)) — 3.3 OС/Вт;
  • средняя рассеиваемая мощность (PК)  на коллекторе при ТК ≤ +50 OС  до 30 Вт, а при ТК = +100 OС до 15 Вт. Если ТК ≥  +50 OС, то мощность PK рассчитывается по стандартной формуле PK макс = (150 – TК)/RТ(П-К),Вт;
  • максимальная температура ТП  до + 150 OС, вокруг корпуса от -60 до +100 OС.

При увеличении температуры корпуса (ТК) у КТ805А(АМ) более чем на +70 OС, предельное напряжение снижается на 10 процентов на каждые 10 OС.

Электрические

Кроме предельно допустимых значений, в даташит на КТ805АМ указаны электрические значения. В них каждый параметр приводится с учётом определенных режимов измерений, указанных в отдельном столбце. Температура вокруг корпуса прибора при этом составляет не более  +25 OС:

Аналоги

Полным отечественным аналогом у КТ805АМ, с идентичными электрическими параметрами, но в другом металлостеклянном корпусе является транзистор КТ305А. Эти два устройства указаны в одном техническом описании у всех российских производителей. Зарубежными аналогами в пластиковом корпусе ТО-220 можно считать: 2SC2562, 2SC3422 (Toshiba), в металлизированном TO3 — BDY60.

Транзисторы КТ805А(АМ) не интересуют скупщиков драгоценных металлов. Чаще всего в подобных устройствах ищут золото, но его в них нет. В интернете попадается информация о содержании в них золота в количестве 0.073  гр. в одной штуке. Однако, согласно справочной информации, даже серебра на 1000 штук в КТ805А ничтожно мало, всего 73.52 гр.

Примеры использования

В настоящее время КТ805А(АМ) сильно устарел, но его продолжают применять в учебных целях и для ремонта древней бытовой электроники. С его помощью можно делать простейшие схемы различных автоматических переключателей, преобразователей напряжения, высокочастотных генераторов, усилителей звуковой частоты и др. Наиболее интересные примеры использования для начинающих можно посмотреть в следующем видеоматериале.

Производители

КТ805АМ является советским транзистором и никогда не выпускался зарубежными компаниями. Его продолжают делать такие известные производители как: АО «Группа Кремний ЭЛ» г.Брянск; ОАО Интеграл г.Минск. Нажмите по ссылке с наименованием изготовителя, чтобы скачать техническое описание на устройство.

Транзистор КТ805БМ: характеристики, цоколевка и аналоги

Согласно своим техническим характеристикам КТ805БМ – это кремниевый, мощный, низкочастотный биполярный транзистор, который изготавливается по эпитаксиально-мезапланарной технологии. Он использоваться в строчной развёртке телевизионных приёмников. Его также можно встретить в системах зажигания автомобильных двигателей и других схемах в качестве ключа. Его структура n-p-n.

Цоколевка КТ805БМ

Изготавливают в пластмассовом корпусе с гибкими выводами, его тип КТ-28. Вес транзистора не должен превышать 2,5 грамм. Если смотреть на него сверху, прямо на маркировку, то самая левая ножка – это эмиттер, средняя коллектора, а справа расположена база.

Технические характеристики

Рассмотрим основные предельно допустимые характеристики для кт805бм, которые приводят производители. Для долговечной работы транзистора они должны быть меньше реальных рабочих. Приведённые ниже значения не могут быть превышены при эксплуатации прибора.

  • кратковременное напряжение К – Э (t ≤ 500 мс, t ≥ 15 мс, RБЭ ≤ 10 Ом, при Tп ≤ 373 К) – 135 В;
  • постоянно действующее напряжение Э – Б – 5 В;
  • максимальный постоянный коллекторный ток – 5 А;
  • кратковременный коллекторный ток (t ≤ 200 мс, Q = 1,5) – 8 А;
  • предельно допустимый ток базы – 2 А;
  • кратковременный ток базы (t ≤ 20 мс) – 2,5 А;
  • максимальная мощность, рассеиваема на коллекторе (Tп ≤ 50ОС) – 30 Вт;
  • тепловое сопротивление между переходом и корпусом – 3,3 ОС/Вт;
  • предельно допустимая температура кристалла — +150ОС;
  • рабочая температура — -60 … +100 ОС.

Электрические характеристики также содержат важную и интересную информацию о рассматриваемом изделии. Именно они определяют возможности и сферу применения устройства. Параметры, при которых тестировалось изделие, производители приводят по мере необходимости.

  • коэффициент передачи тока при работе в схеме с общим эмиттером (Uкэ = 10 В, Iк = 2 А):
  • Т = +25 ОС – 15;
  • Т = -60 ОС – 5;
  • коэффициент передачи тока на высокой частоте (f = 10 МГц, Uкэ = 10 В, Iк = 1 А) – 2;
  • напряжение насыщения К – Э (IК = 5 А, IБ = 0,2 А) – 5 В;
  • напряжение насыщения Б – Э (IК = 5 А, IБ = 0,5 А) – 5 В;
  • обратный кратковременный ток К – Э:
  • Т = +25 ОС – 70 мА;
  • Т = +100 ОС – 70 мА;
  • обратный эмиттерный ток (UБЭ = 5 В) – 100 мА.

Кроме этого в технической документации также прописаны правила безопасности при пайке. КТ805БМ должен паяться при температуре не более +260ОС, не дольше 3 секунд и не ближе чем на расстоянии 5 мм от корпуса.

В рассматриваемом транзисторе содержится 0,0151 грамм золота.

Что можно сделать на КТ805БМ

На транзисторах серии КТ805 часто делают регулируемые блоки питания. Приведём простую схему одного из них, которая подойдёт для повторения даже начинающему. С её помощью можно регулировать выходное напряжение в диапазоне от 0 до 12 В. В ней можно использовать любой транзистор из серии КТ805. Стабилитрон можно установить и один, но с двумя регулировка будет более плавной.

Аналоги

Прямого полного аналога КТ805БМ нет. В зависимости от схемы, в которой он используется для замены можно использовать для разные транзисторы. Но в каждом случае нужно проверять параметры по технической документации. Перечислим устройства, которые могут подойти: BD241, TIP31C, BD241C, 2N3054, BD148, MJE13009. При замене можно также использовать транзистор из той же серии КТ805Б, который имеет немного лучшие технические характеристики, но больше по размерам.

Производители

Производит КТ805БМ АО «ГРУППА КРЕМНИЙ ЭЛ» из г. Брянска. Кроме этого данное изделие выпускают в Белоруссии на предприятии ОА «ИНТЕГРАЛ», г. Минск. В отечественных магазинах можно найти продукцию обеих компаний.

Транзистор КТ805 — DataSheet

Цоколевка транзисторов КТ802, КТ803, КТ805

Цоколевка транзистора КТ805М

 

 

Параметры транзистора КТ805
Параметр Обозначение Маркировка Условия Значение Ед. изм.
Аналог КТ805А 2SC687 *1, MJE5182 *1, BU312 *1, 182Т2А *1, KDY25 *1
КТ805Б BU311 *1, SK3440 *1, 2N6466 *3, 2N6465 *3, 2N6473 *3, 181Т2А *3
КТ805АМ MJE5182 *2, MJE5181 *2, BD241E *2, BD241F *2
КТ805БМ SK3440, 2N6474 *2, BD241D *2, BDT41C *2, BDT31C *2, TIP31C *2, 2N6473 *2, BD241C *2, 2SD772 *2
КТ805ВМ SK3440, 2N6474 *2, BD241D *2, BDT41C *2, BDT31C *2, TIP31C *2, 2N6473 *2, BD241C *2, 2SD772 *2
Структура  — n-p-n
Максимально допустимая постоянная рассеиваемая мощность коллектора PK max,P*K, τ max,P**K, и max КТ805А 30 мВт
КТ805Б 30
КТ805АМ 50 °С 30*
КТ805БМ 50 °С 30*
КТ805ВМ 50 °С 30*
Граничная частота коэффициента передачи тока транзистора для схемы с общим эмиттером fгр, f*h31б, f**h31э, f***max КТ805А ≥20 МГц
КТ805Б ≥20
КТ805АМ ≥20
КТ805БМ ≥20
КТ805ВМ ≥20
Пробивное напряжение коллектор-база при заданном обратном токе коллектора и разомкнутой цепи эмиттера UКБО проб., U*КЭR проб., U**КЭО проб. КТ805А 160 имп. 60* В
КТ805Б 135 имп. 60*
КТ805АМ 160 имп. 60*
КТ805БМ 135 имп. 60*
КТ805ВМ 135 имп. 60*
Пробивное напряжение эмиттер-база при заданном обратном токе эмиттера и разомкнутой цепи коллектора UЭБО проб.,  КТ805А 5 В
КТ805Б 5
КТ805АМ 5
КТ805БМ 5
КТ805ВМ 5
Максимально допустимый постоянный ток коллектора IK max, I*К , и max КТ805А 5(8*) А
КТ805Б 5(8*)
КТ805АМ 5(8*)
КТ805БМ 5(8*)
КТ805ВМ 5(8*)
Обратный ток коллектора — ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера IКБО, I*КЭR, I**КЭO КТ805А 60 В ≤15* мА
КТ805Б 60 В ≤15*
КТ805АМ 60 В ≤15*
КТ805БМ 60 В ≤15*
КТ805ВМ 60 В ≤15*
Статический коэффициент передачи тока транзистора в режиме малого сигнала для схем с общим эмиттером h21э,  h*21Э КТ805А 10 В; 2 А ≥15*
КТ805Б 10 В; 2 А ≥15*
КТ805АМ 10 В; 2 А ≥15*
КТ805БМ 10 В; 2 А ≥15*
КТ805ВМ 10 В; 2 А ≥15*
Емкость коллекторного перехода cк,  с*12э КТ805А
пФ
КТ805Б
КТ805АМ
КТ805БМ
КТ805ВМ
Сопротивление насыщения между коллектором и эмиттером  rКЭ нас,  r*БЭ нас, К**у.р. КТ805А ≤0.5 Ом, дБ
КТ805Б ≤1
КТ805АМ ≤0.5
КТ805БМ ≤1
КТ805ВМ ≤1.25
Коэффициент шума транзистора Кш, r*b, P**вых КТ805А Дб, Ом, Вт
КТ805Б
КТ805АМ
КТ805БМ
КТ805ВМ
Постоянная времени цепи обратной связи на высокой частоте τк, t*рас,  t**выкл,  t***пк(нс) КТ805А пс
КТ805Б
КТ805АМ
КТ805БМ
КТ805ВМ

Описание значений со звездочками(*,**,***) смотрите в таблице параметров биполярных транзисторов.

*1 — аналог по электрическим параметрам, тип корпуса отличается.

*2 — функциональная замена, тип корпуса аналогичен.

*3 — функциональная замена, тип корпуса отличается.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Эмиттер и коллектор у транзистора

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.

2. Расчет входного тока базы Ib

Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно — Ibmax и Ibmin.

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V).

Посчитаем Ibmax и Ibmin с помощью закона Ома:

2. Расчет выходного тока коллектора iс

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора ( Icmax и Icmin).

3. Расчет выходного напряжения Vout

Осталось посчитать напряжение на выходе нашего усилителя Vout. В данной цепи — это напряжение на коллекторе VC.

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.

Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

Режим отсечки (cut off mode).

Активный режим (active mode).

Режим насыщения (saturation mode).

Инверсный ражим (reverse mode ).

Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB. Обозначаетсяβ, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзисторов.

β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление Rout = 0 (Rвых = 0)).

Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала. С повышением частоты, способность транзистора усиливать сигнал постепенно падает. Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах. На изменения входного сигнала в базе транзистор реагирует не мгновенно, а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей. Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.

В этом цикле статей мы попытаемся просто и доходчиво рассказать о таких непростых компонентах, как транзисторы.

Сегодня этот полупроводниковый элемент встречается почти на всех печатных платах, в любом электронном устройстве (в сотовых телефонах, в радиоприёмниках, в компьютерах и другой электронике). Транзисторы являются основой для построения микросхем логики, памяти, микропроцессоров… Вот давайте и разберёмся, что это чудо из себя представляет, как работает и чем вызвана такая широта его применения.

Транзистор — это электронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током.

Многие считают, что транзистор усиливает входной сигнал. Спешу огорчить, — сами по себе, без внешнего источника питания, транзисторы ничего не усилят (закон сохранения энергии ещё никто не отменял). На транзисторе можно построить усилитель, но это лишь одно из его применений, и то, для получения усиленного сигнала нужна специальная схема, которая проектируется и рассчитывается под определённые условия, плюс обязательно источник питания.

Сам по себе транзистор может только управлять током.

Что нужно знать из самого важного? Транзисторы делятся на 2 большие группы: биполярные и полевые. Эти 2 группы отличаются по структуре и принципу действия, поэтому про каждую из этих групп мы поговорим отдельно.

Итак, первая группа — биполярные транзисторы.

Эти транзисторы состоят из трёх слоёв полупроводника и делятся по структуре на 2 типа: pnp и npn. Первый тип (pnp) иногда называют транзисторами прямой проводимости, а второй тип (npn) — транзисторами обратной проводимости.

Что означают эти буквы? Чем отличаются эти транзисторы? И почему именно двух проводимостей? Как обычно — истина где-то рядом. © Всё гениальное — просто. N — negative (англ.) — отрицательный. P — positive (англ.) — положительный. Это обозначение типов проводимостей полупроводниковых слоёв из которых транзистор состоит. «Положительный» — слой полупроводника с «дырочной» проводимостью (в нём основные носители заряда имеют положительный знак), «отрицательный» — слой полупроводника с «электронной» проводимостью (в нём основные носители заряда имеют
отрицательный знак).

Структура и обозначение биполярных транзисторов на схемах показаны на рисунке справа. У каждого вывода имеется своё название. Э — эмиттер, К — коллектор, Б — база. Как на схеме узнать базовый вывод? Легко. Он обозначается площадкой, в которую упираются коллектор и эмиттер. А как узнать эмиттер? Тоже легко, — это вывод со стрелочкой. Оставшийся вывод — это коллектор. Стрелочка на эмиттере всегда показывает направление тока. Соответственно, для npn транзисторов — ток втекает через коллектор и базу, а вытекает из эмиттера, для pnp транзисторов наоборот, — ток втекает через эмиттер, а вытекает через коллектор и базу.

Тонем в теории глубже… Три слоя полупроводника образуют в транзисторе два pn-перехода. Один — между эмиттером и базой, его обычно называют эмиттерный, второй — между коллектором и базой, его обычно называют коллекторный.

На каждом из двух pn-переходов может быть прямое или обратное смещение, поэтому в работе транзистора выделяют четыре основных режима, в зависимости от смещения pn-переходов (помним да, что если на стороне с проводимостью p-типа напряжение больше, чем на стороне с проводимостью n-типа, то это прямое смещение pn-перехода, если всё наоборот, то обратное). Ниже, на рисунках, иллюстрирующих каждый режим, стрелочками показано направление от большего напряжения к меньшему (это не направление тока!). Так легче ориентироваться: если стрелочка направлена от «p» к «n» — это прямое смещение pn-перехода, если от «n» к «p» — это обратное смещение.

Режимы работы биполярного транзистора:

1) Если на эмиттерном pn-переходе прямое смещение, а на коллекторном — обратное, то транзистор находится в нормальном активном режиме (иногда говорят просто: «активный режим», — опуская слово нормальный). В этом режиме ток коллектора зависит от тока базы и связан с ним следующим соотношением: Iк=Iб*β.

Активный режим используется при построении транзисторных усилителей.

2) Если на обоих переходах прямое смещение — транзистор находится в режиме насыщения. При этом ток коллектора перестаёт зависеть от тока базы в соответствии с указанной выше формулой (в которой был коэффициент β), он перестаёт увеличиваться, даже если продолжать увеличивать ток базы. В этом случае говорят, что транзистор полностью открыт или просто открыт. Чем глубже мы уходим в область насыщения — тем больше ломается зависимость Iк=Iб*β. Внешне это выглядит так, как будто коэффициент β уменьшается. Ещё скажу, что есть такое понятие, как коэффициент насыщения. Он определяется как отношение реального тока базы (того, который у вас есть в данный момент) к току базы в пограничном состоянии между активным режимом и насыщением.

3) Если у нас на обоих переходах обратное смещение — транзистор находится в режиме отсечки. При этом ток через него не течёт (за исключением очень маленьких токов утечки — обратных токов через pn-переходы). В этом случае говорят, что транзистор полностью закрыт или просто закрыт.

Режимы насыщения и отсечки используются при построении транзисторных ключей.

4) Если на эмиттерном переходе обратное смещение, а на коллекторном — прямое, то транзистор попадает в инверсный активный режим. Этот режим является довольно экзотическим и используется редко. Несмотря на то, что на наших рисунках эмиттер не отличается от коллектора и по сути они должны быть равнозначны (посмотрите ещё раз на самый верхний рисунок, — на первый взгляд ничего не изменится, если поменять местами коллектор и эмиттер), на самом деле у них есть конструктивные отличия (например в размерах) и равнозначными они не являются. Именно из-за этой неравнозначности и существует разделение на «нормальный активный режим» и «инверсный активный режим».

Иногда ещё выделяют пятый, так называемый, «барьерный режим». В этом случае база транзистора закорочена с коллектором. По сути правильнее было бы говорить не о каком-то особом режиме, а об особом способе включения. Режим тут вполне обычный — близкий к пограничному состоянию между активным режимом и насыщением. Его можно получить и не только закорачивая базу с коллектором. В данном конкретном случае вся фишка в том, что при таком способе включения, как бы мы не меняли напряжение питания или нагрузку — транзистор всё равно останется в этом самом пограничном режиме. То есть транзистор в этом случае будет эквивалентен диоду.

Итак, c теорией пока закончили. Едем дальше.

Биполярный транзистор управляется током. То есть, для того, чтобы между коллектором и эмиттером мог протекать ток (по другому говоря, чтобы транзистор открылся), — должен протекать ток между эмиттером и базой (или между коллектором и базой — для инверсного режима). Более того, величина тока базы и максимально возможного тока через коллектор (при таком токе базы) связаны постоянным коэффициентом β (коэффициент передачи тока базы): IБ*β=IK.

Кроме параметра β используется ещё один коэффициент: коэффициент передачи эмиттерного тока (α). Он равен отношению тока коллектора к току эмиттера: α=Iк/Iэ. Значение этого коэффициента обычно близко к единице (чем ближе к единице — тем лучше). Коэффициенты α и β связаны между собой следующим соотношением: β=α/(1-α).

В отечественных справочниках часто вместо коэффициента β указывают коэффициент h21Э (коэффициент усиления по току в схеме с общим эмиттером), в забугорной литературе иногда вместо β можно встретить hFE. Ничего страшного, обычно можно считать, что все эти коэффициенты равны, а называют их зачастую просто «коэффициент усиления транзистора».

Что нам это даёт и зачем нам это надо? На рисунке слева изображены простейшие схемы. Они эквивалентны, но построены с участием транзисторов разных проводимостей. Также присутствуют: нагрузка, в виде лампочки накаливания, переменный резистор и постоянный резистор.

Смотрим на левую схему. Что там происходит? Представим себе, что ползунок переменного резистора в верхнем положении. При этом на базе транзистора напряжение равно напряжению на эмиттере, ток базы равен нулю, следовательно ток коллектора тоже равен нулю (IК=β*IБ) — транзистор закрыт, лампа не светится. Начинаем опускать ползунок вниз
— напряжение на нём начинает опускаться ниже, чем на эмиттере — появляется ток из эмиттера в базу (ток базы) и одновременно с этим — ток из эмиттера в коллектор (транзистор начнёт открываться). Лампа начинает светиться, но не в полный накал. Чем ниже мы будем перемещать ползунок переменного резистора — тем ярче будет гореть лампа.

И тут, внимание! Если мы начнём перемещать ползунок переменного резистора вверх — то транзистор начнёт закрываться, а токи из эмиттера в базу и из эмиттера в коллектор — начнут уменьшаться. На правой схеме всё то же самое, только с транзистором другой проводимости.

Рассмотренный режим работы транзистора как раз является активным. В чём суть? Ток управляет током? Именно, но фишка в том, что коэффициент β может измеряться десятками и
даже сотнями. То есть для того, чтобы сильно менять ток, протекающий из эмиттера в коллектор, нам достаточно лишь чуть-чуть изменять ток, протекающий из эмиттера в базу.

В активном режиме транзистор (с соответствующей обвязкой) используется в качестве усилителя.

Мы устали… отдохнём немного…

Теперь разберёмся с работой транзистора в качестве ключа. Смотрим на левую схему. Пусть переключатель S будет замкнут в положении 1. При этом база транзистора через резистор R притянута к плюсу питания, поэтому ток между эмиттером и базой отсутствует и транзистор закрыт. Представим, что мы перевели переключатель S в положение 2. Напряжение на базе становится меньше, чем на эмиттере, — появляется ток между эмиттером и базой (его величина определяется сопротивлением R). Сразу возникает ток КЭ. Транзистор открывается, лампа загорается. Если мы снова вернём переключатель S в положение 1 — транзистор закроется, лампа погаснет. (на правой схеме всё то же самое, только транзистор другой проводимости)

В этом случае говорят, что транзистор работает в качестве ключа. В чём суть? Транзистор переключается между двумя состояниями — открытым и закрытым. Обычно при использовании транзистора в качестве ключа — стараются, чтобы в открытом состоянии транзистор был близок к насыщению (при этом падение напряжения между коллектором и эмиттером, а значит и потери на транзисторе, — минимальны).Для этого специальным образом рассчитывают ограничительный резистор в цепи базы. Состояний глубокого насыщения и глубокой отсечки обычно стараются избежать, потому что в этом случае увеличивается время переключения ключа из одного состояния в другое.

Небольшой пример расчётов. Представим себе, что мы управляем лампой накаливания 12В, 50мА через транзистор. Транзистор у нас работает в качестве ключа, поэтому в открытом состоянии должен быть близок к насыщению. Падение напряжения между коллектором и эмиттером учитывать не будем, поскольку для режима насыщения оно на порядок меньше напряжения питания. Так как через лампу течёт ток 50 мА, то нам нужно выбрать транзистор с максимальным током КЭ не менее 62,5 мА (обычно рекомендуют использовать компоненты на 75% от их максимальных параметров, это такой своеобразный запас). Открываем справочник и ищем подходящий p-n-p транзистор. Например КТ361. В нашем случае по току подходят с буквенными индексами «а, б, в, г», так как максимальное напряжение КЭ у них 20В, а у нас в задаче всего 12В.

Предположим, что использовать будем КТ361А, с коэффициентом усиления от 20 до 90. Так как нам нужно, чтобы транзистор гарантированно открылся полностью, — в расчёте будем использовать минимальный Кус=20. Теперь думаем. Какой минимальный ток должен течь между эмиттером и базой, чтобы через КЭ обеспечить ток 50 мА?

50 мА/ 20 раз = 2,5 мА

Токоограничивающий резистор какого номинала нужно поставить, чтобы пустить через БЭ ток 2,5 мА?

Тут всё просто. Закон Ома: I=U/R. Следовательно R=(12 В питания — 0,65 В потери на pn-переходе БЭ) / 0,0025 А = 4540 Ом. Так как 2,5 мА — это минимальный ток, который в нашем случае должен протекать из эмиттера в базу, то нужно выбрать из стандартного ряда ближайший резистор меньшего сопротивления. Например, с 5% отклонением это будет резистор 4,3 кОм.

Теперь о токе. Для зажигания лампы с номинальным током 50 мА нам нужно коммутировать ток всего 2,5 мА. И это при использовании ширпотребовского, копеечного транзистора, с низким Кус, разработанного 40 лет назад. Чувствуете разницу? Насколько можно уменьшить габариты выключателей (а значит и их стоимость) при использовании транзисторов.

Вернёмся опять к теории.

В рассмотренных выше примерах мы использовали только одну из схем включения транзистора. Всего же, в зависимости от того, куда мы подаём управляющий сигнал и откуда снимаем выходной сигнал (от того, какой электрод для этих сигналов является общим) выделяют 3 основных схемы включения биполярных транзисторов (ну, логично, да? — у транзистора 3 вывода, значит если делить схемы по принципу, что один из выводов общий, то всего может быть 3 схемы):

1) Схема с общим эмиттером.

Если считать, что входной ток — это ток базы, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора и выходное напряжение — это напряжение между коллектором и эмиттером, то можно записать, что: Iвых/Iвх=Iк/Iб=β , Rвх=Uбэ/Iб.

Кроме того, так как Uвых=Eпит-Iк*R, то видно, что, во-первых, выходное напряжение легко можно сделать гораздо выше входного, а во-вторых, что выходное напряжение инвертировано по отношению ко входному (когда Uбэ=Uвх увеличивается и входной ток растёт — выходной ток также растёт, но Uкэ=Uвых при этом уменьшается).

Такая схема включения (для краткости её обозначают ОЭ) является наиболее распространённой, поскольку позволяет усилить как ток, так и напряжение, то есть позволяет получить максимальное усиление мощности. Замечу, что эта дополнительная мощность у усиленного сигнала берётся не из воздуха и не от самого транзистора, а от источника питания (Eпит), без которого транзистор ничего не сможет усилить и вообще никакого тока в выходной цепи не будет. (Я думаю, — мы позже, в отдельной статье, про то, как именно работают транзисторные усилители и как их рассчитывать, подробнее напишем).

2) Схема с общей базой.

Здесь входной ток — это ток эмиттера, входное напряжение — это напряжение на переходе БЭ, выходной ток — ток коллектора, а выходное напряжение — это напряжение на включенной в цепь коллектора нагрузке. Для этой схемы: Iвых≈Iвх, т.к. Iк≈Iэ, Rвх=Uбэ/Iэ.

Такая схема (ОБ) усиливает только напряжение и не усиливает ток. Сигнал в данном случае по фазе не сдвигается.

3) Схема с общим коллектором (эмиттерный повторитель).

Здесь входной ток — это ток базы, а входное напряжение подключено к переходу БЭ транзистора и нагрузке, выходной ток — ток эмиттера, а выходное напряжение — это напряжение на включенной в цепь эмиттера нагрузке. Для этой схемы: Iвых/Iвх=Iэ/Iб=(IК+IБ)/IБ=β+1, т.к. обычно коэффициент β достаточно большой, то иногда считают Iвых/Iвх≈β. Rвх=Uбэ/Iб+R. Uвых/Uвх=(Uбэ+Uвых)/Uвых≈1.

Как видим, такая схема (ОК) усиливает ток и не усиливает напряжение. Сигнал в данном случае по фазе не сдвигается. Кроме того, данная схема имеет самое большое входное сопротивление.

Оранжевыми стрелками на приведённых выше схемах показаны контура протекания токов, создаваемых источником питания выходной цепи (Епит) и самим входным сигналом (Uвх). Как видите, в схеме с ОБ ток, создаваемый Eпит, протекает не только через транзистор, но и через источник усиливаемого сигнала, а в схеме с ОК, наоборот, — ток, создаваемый входным сигналом, протекает не только через транзистор, но и через нагрузку (по этим приметам можно легко отличить одну схему включения от другой).

Ну и на последок поговорим о том, как проверить биполярный транзистор на исправность. В большинстве случаев о исправности транзистора можно судить по состоянию pn-переходов. Если рассматривать эти pn-переходы независимо друг от друга, то транзистор можно представить как совокупность двух диодов (как на рисунке слева). В общем-то взаимное влияние pn-переходов и делает транзистор транзистором, но при проверке можно с этим взаимным влиянием не считаться, поскольку напряжение к выводам транзистора мы прикладываем попарно (к двум выводам из трёх). Соответственно, проверить эти pn-переходы можно обычным мультиметром в режиме проверки диодов. При подключении красного щупа (+) к катоду диода, а чёрного к аноду — pn-переход будет закрыт (мультиметр показывает бесконечно большое сопротивление), если поменять щупы местами — pn-переход будет открыт (мультиметр показывает падение напряжения на открытом pn-переходе, обычно 0,6-0,8 В). При подключении щупов между коллектором и эмиттером мультиметр будет показывать бесконечно большое сопротивление, независимо от того какой щуп подключен к коллектору, а какой к эмиттеру.

Что будет, если перепутать коллектор и эмиттер в схеме

Для опыта мы возьмем простой и всеми нами любимый транзистор КТ815Б:

Соберем знакомую вам схемку:

Для чего я поставил перед базой резистор, читаем здесь.

На Bat1 выставляю напряжение в 2,5 вольта. Если подавать более 2,5 Вольт, то лампочка уже ярче гореть не будет. Скажем так, это граница, после которой дальнейшее повышение напряжение на базе не играет никакой роли на силу тока в нагрузке

На Bat2 я выставил 6 Вольт, хотя лампочка у меня на 12 Вольт. При 12 Вольтах транзистор у меня ощутимо грелся, и я не хотел его спалить. Здесь мы видим, какую силу тока потребляет наша лампочка и даже можем рассчитать мощность, которую она потребляет, перемножив эти два значения.

Ну и как вы видели, лампочка горит и схема нормально работает:

Но что случится, если мы перепутаем коллектор и эмиттер? По логике, у нас ток должен течь от эмиттера к коллектору, потому как базу мы не трогали, а коллектор и эмиттер состоят из N полупроводника.

Но на практике лампочка гореть не хочет.

Потребление на блоке питания Bat2 каких-то 10 миллиампер. Значит, ток через лампочку все-таки течет, но очень слабый.

Почему при правильном подключении транзистора ток течет нормально, а при неправильном нет? Дело все в том, транзистор делают не симметричным.

В транзисторах площадь соприкосновения коллектора с базой намного больше, чем эмиттера и базы. Поэтому, когда электроны устремляются из эмиттера к коллектору, то почти все они “ловятся” коллектором, а когда мы путаем выводы, то не все электроны из коллектора “ловятся” эмиттером.

Кстати, чудом не пробило P-N переход эмиттер-база, так как напряжение подавали в обратной полярности. Параметр в даташите UЭБ макс . Для этого транзистора критическое напряжение считается 5 Вольт, у нас же оно было даже чуть выше:

Итак, мы с вами узнали, что коллектор и эмиттер неравнозначны. Если в схеме мы перепутаем эти выводы, то может произойти пробой эмиттерного перехода и транзистор выйдет из строя. Так что, не путайте выводы биполярного транзистора ни в коем случае!

Как определить выводы транзистора

Способ №1

Думаю, самый простой. Скачать на этот транзистор даташит. В каждом нормальном даташите есть рисуночек с подробными надписями, где какой вывод. Для этого вводим в гугл или яндекс крупненькие циферки и буковки, которые написаны на транзисторе, и рядышком добавляем слово “даташит”. Пока еще не было такого, чтобы я не отыскивал даташит на какой-то радиоэлемент.

Способ №2

Думаю, с поиском вывода базы проблем возникнуть не должно, если учесть, что транзистор состоит из двух диодов, включенных последовательно или катодами, или анодами:

Здесь все просто, ставим мультиметр на значок прозвонки “•)))” и начинаем пробовать все вариации, пока не найдем эти два диода. Вывод, где эти диоды соединяются либо анодами, либо катодами – это и есть база. Чтобы найти коллектор и эмиттер, сравниваем падение напряжение на этих двух диодах. Между коллектором и базой ом оно должно быть меньше, чем между эмиттером и базой. Давайте проверим, так ли это?

Для начала рассмотрим транзистор КТ315Б:

Ставим мультиметр на прозвонку и базу находим без проблем. Теперь замеряем падение напряжения на обоих переходах. Падение напряжения на базе-эмиттере 794 милливольт

Падение напряжения на коллекторе-базе 785 милливольт. Мы убедились, что падение напряжения между коллектором и базой меньше, чем между эмиттером и базой. Следовательно, средний синий вывод – это коллектор, а красный слева – эмиттер.

Проверим еще транзистор КТ805АМ. Вот его цоколевка (расположение выводов):

Это у нас транзистор структуры NPN. Предположим, базу нашли (красный вывод). Узнаем, где у него коллектор, а где эмиттер.

Делаем первый замер.

Делаем второй замер:

Следовательно, средний синий вывод – это коллектор, а желтый слева – эмиттер.

Проверим еще один транзистор – КТ814Б. Он у нас PNP структуры. База у него – синий вывод. Замеряем напряжение между синим и красным выводом:

а потом между синим и желтым:

Во фак! И там и там 720 милливольт.

Этот способ этому транзистору не помог. Ну не переживайте, для этого есть третий способ…

Способ №3

Почти в каждом современном муль тиметре есть 6 маленьких отверстий, и рядом какие-то буковки, что-то типа NPN, PNP, E, C, B. Вот эти шесть крохотных отверстий как раз и предназначены для того, чтобы замерять коэффициент бета. Я же эти отверстия буду называть дырками. На отверстия они не очень похожи))).

Ставим крутилку мультиметра на значок “hFE“.

Определяем какой он проводимости, то есть NPN или PNP, в такую секцию его и толкаем. Проводимость определяем расположением диодов в транзисторе, если не подзабыли. Берем наш транзистор, которые в обе стороны показал одинаковое падение напряжения на обоих P-N переходах, и суем базу в ту дырочку, где буковка “В”.

Далее суем оставшихся два вывода в дырочки С и Е в этом ряду и смотрим на показания мультика:

Базу не трогаем, а тупо меняем местами два вывода. Опа-на, мультик показал намного больше, чем в первый раз. Следовательно, в дырочке Е находится в настоящее время эмиттер, а в дырочке С – коллектор. Все элементарно и просто ;-).

Способ №4

Думаю, является самым легким и точным способом проверки распиновки транзистора. Для этого достаточно приобрести Универсальный R/L/C/Transis tor-metr и сунуть выводы транзистора в клеммы прибора:

Он сразу вам покажет, жив ли ваш транзистор. И если он жив, то выдаст его распиновку.

Устройство и принцип работы биполярного транзистора.

Всем доброго времени суток! В сегодняшней статье мы положим начало обсуждению очень важной и обширной темы, а именно транзисторам 🙂 Разберем теоретические аспекты работы, устройство, виды, рассмотрим принцип работы на практических примерах, методику расчета схем, в общем, постараемся затронуть абсолютно все!

Чтобы обсуждение было максимально структурированным и понятным, материал будет разбит на четкие разделы и разные статьи. А, поскольку транзисторы сразу же можно разделить на два крупных класса, а именно — биполярные и полевые, то так и поступим — начнем с подробного разбора биполярных и, изучив их полностью, перейдем к полевым.

Устройство биполярного транзистора.

И, первым делом, мы рассмотрим устройство биполярного транзистора и химические процессы, протекающие в нем. И в этом нам очень поможет статья о p-n переходе (ссылка), поскольку ключевые понятия мы будем использовать те же самые. Ведь транзистор есть ни что иное как три полупроводниковые области, которые формируют между собой два p-n перехода.

Кстати транзистор называется биполярным, потому что в переносе заряда участвуют и дырки, и электроны.

Итак, биполярный транзистор состоит из 3-х полупроводниковых областей. Причем тип примесной проводимости у этих областей чередуется:

То есть мы получаем два вида биполярных транзисторов — n-p-n и p-n-p. Давайте дальше все обсуждение строить на примере n-p-n транзисторов, суть для p-n-p будет такой же:

Называются эти три полупроводниковые области:

  • эмиттер
  • база
  • коллектор

Тип проводимости эмиттера и коллектора одинаковый, но технологически они отличаются довольно значительно. Во-первых, общая область перехода база-эмиттер намного меньше общей области перехода база-коллектор. Зачем так сделано мы разберемся чуть позже. И, во-вторых, область коллектора содержит намного меньше примесей, чем область эмиттера.

Принцип работы биполярного транзистора.

Итак, транзистор содержит два p-n перехода (эмиттер-база и база-коллектор). Если не прикладывать к выводам транзистора никаких внешних напряжений, то на каждом из p-n переходов формируются области, обедненные свободными носителями заряда. Все в точности так же как здесь 🙂

В активном же режиме переход эмиттер-база (эмиттерный переход) имеет прямое смещение, а коллекторный переход — обратное.

Так как переход эмиттер-база смещен в прямом направлении, то внешнее электрическое поле будет перемещать электроны из области эмиттера в область базы. Там они частично будут вступать во взаимодействие с дырками и рекомбинировать.

Но большая часть электронов доберется до перехода база-коллектор (это связано с тем, что область базы конструктивно выполняется очень тонкой и содержит небольшой количество примесей), который смещен уже в обратном направлении. И в этом случае внешнее электрическое поле снова будет содействовать электронам, а именно помогать им проскочить в область коллектора.

В результате получается, что ток коллектора приблизительно равен току эмиттера:

I_к = \alpha I_э

Коэффициент \alpha численно равен 0.9…0.99. В то же время:

I_э = I_б + I_к

А что произойдет, если мы увеличим ток базы? Это приведет к тому, что переход эмиттер-база откроется еще сильнее, и большее количество электронов смогут попасть в область коллектора (все по тому же маршруту, который мы обсудили 🙂 ). Давайте выразим ток эмиттера из первой формулы, подставим во вторую и получим:

I_э = \frac{I_к}{\alpha}

\frac{I_к}{\alpha} = I_б + I_к

Выражаем ток коллектора через ток базы:

I_к = \frac{\alpha}{1 — \alpha} I_б = \beta I_б

Коэффициент \beta обычно составляет 100-500. Таким образом, незначительный ток базы управляет гораздо большим током коллектора. В этом и заключается принцип работы биполярного транзистора!

Коэффициент, связывающий величину тока коллектора с величиной тока базы называют коэффициентом увеличения по току и обозначают h_{21}. Этот коэффициент является одной из основных характеристик биполярного транзистора. В следующих статьях мы будем рассматривать схемы включения транзисторов и подробнее разберем этот параметр и его зависимость от условий эксплуатации.

Режимы работы биполярного транзистора.

Итак, мы рассмотрели активный режим работы транзистора (переход эмиттер-база открыт, переход коллектор-база закрыт), не обойдем вниманием и другие 🙂

Режим отсечки. Оба p-n перехода закрыты. Причем важно отметить, что переход эмиттер-база открывается начиная с некоторого значения приложенного прямого напряжения (не с нуля). Это напряжение обычно составляет около 0.6 В. То есть в режиме отсечки либо оба перехода смещены в обратном направлении, либо коллекторный переход — в обратном, а эмиттерный — в прямом, но величина напряжения не превышает 0.6 В.

В данном режиме переходы сильно обеднены свободными носителями заряда и протекание тока практически полностью прекращается. Исключение составляют только малые побочные токи переходов. В идеальном случае (без токов утечки) транзистор в режиме отсечки эквивалентен обрыву цепи.

Режим насыщения. Оба перехода открыты, и в результате основные носители заряда активно перемещаются из коллектора и эмиттера в базу. В базе возникает избыток носителей заряда, ее сопротивление и сопротивление p-n переходов уменьшается и между эмиттером и коллектором начинает течь ток. В идеальном случае транзистор в таком режиме эквивалентен замыканию цепи.

Барьерный режим. Его мы обязательно еще разберем подробнее, вкратце, идея заключается в том, что база напрямую или через небольшое сопротивление соединена с коллектором. Это эквивалентно использованию диода с последовательно подключенным сопротивлением.

Вот и все самые основные режимы работы биполярного транзистора!

Еще очень многое нам предстоит обсудить в рамках изучения транзисторов, а на сегодня, заканчиваем статью! Спасибо за внимание и ждем вас на нашем сайте снова!

Как отличить коллектор от эмиттера

Что будет, если перепутать коллектор и эмиттер в схеме

Для опыта мы возьмем простой и всеми нами любимый транзистор КТ815Б:

Соберем знакомую вам схемку:

Для чего я поставил перед базой резистор, читаем здесь.

На Bat1 выставляю напряжение в 2,5 вольта. Если подавать более 2,5 Вольт, то лампочка уже ярче гореть не будет. Скажем так, это граница, после которой дальнейшее повышение напряжение на базе не играет никакой роли на силу тока в нагрузке

На Bat2 я выставил 6 Вольт, хотя лампочка у меня на 12 Вольт. При 12 Вольтах транзистор у меня ощутимо грелся, и я не хотел его спалить. Здесь мы видим, какую силу тока потребляет наша лампочка и даже можем рассчитать мощность, которую она потребляет, перемножив эти два значения.

Ну и как вы видели, лампочка горит и схема нормально работает:

Но что случится, если мы перепутаем коллектор и эмиттер? По логике, у нас ток должен течь от эмиттера к коллектору, потому как базу мы не трогали, а коллектор и эмиттер состоят из N полупроводника.

Но на практике лампочка гореть не хочет.

Потребление на блоке питания Bat2 каких-то 10 миллиампер. Значит, ток через лампочку все-таки течет, но очень слабый.

Почему при правильном подключении транзистора ток течет нормально, а при неправильном нет? Дело все в том, транзистор делают не симметричным.

В транзисторах площадь соприкосновения коллектора с базой намного больше, чем эмиттера и базы. Поэтому, когда электроны устремляются из эмиттера к коллектору, то почти все они “ловятся” коллектором, а когда мы путаем выводы, то не все электроны из коллектора “ловятся” эмиттером.

Кстати, чудом не пробило P-N переход эмиттер-база, так как напряжение подавали в обратной полярности. Параметр в даташите UЭБ макс . Для этого транзистора критическое напряжение считается 5 Вольт, у нас же оно было даже чуть выше:

Итак, мы с вами узнали, что коллектор и эмиттер неравнозначны. Если в схеме мы перепутаем эти выводы, то может произойти пробой эмиттерного перехода и транзистор выйдет из строя. Так что, не путайте выводы биполярного транзистора ни в коем случае!

Как определить выводы транзистора

Способ №1

Думаю, самый простой. Скачать на этот транзистор даташит. В каждом нормальном даташите есть рисуночек с подробными надписями, где какой вывод. Для этого вводим в гугл или яндекс крупненькие циферки и буковки, которые написаны на транзисторе, и рядышком добавляем слово “даташит”. Пока еще не было такого, чтобы я не отыскивал даташит на какой-то радиоэлемент.

Способ №2

Думаю, с поиском вывода базы проблем возникнуть не должно, если учесть, что транзистор состоит из двух диодов, включенных последовательно или катодами, или анодами:

Здесь все просто, ставим мультиметр на значок прозвонки “•)))” и начинаем пробовать все вариации, пока не найдем эти два диода. Вывод, где эти диоды соединяются либо анодами, либо катодами – это и есть база. Чтобы найти коллектор и эмиттер, сравниваем падение напряжение на этих двух диодах. Между коллектором и базой ом оно должно быть меньше, чем между эмиттером и базой. Давайте проверим, так ли это?

Для начала рассмотрим транзистор КТ315Б:

Ставим мультиметр на прозвонку и базу находим без проблем. Теперь замеряем падение напряжения на обоих переходах. Падение напряжения на базе-эмиттере 794 милливольт

Падение напряжения на коллекторе-базе 785 милливольт. Мы убедились, что падение напряжения между коллектором и базой меньше, чем между эмиттером и базой. Следовательно, средний синий вывод – это коллектор, а красный слева – эмиттер.

Проверим еще транзистор КТ805АМ. Вот его цоколевка (расположение выводов):

Это у нас транзистор структуры NPN. Предположим, базу нашли (красный вывод). Узнаем, где у него коллектор, а где эмиттер.

Делаем первый замер.

Делаем второй замер:

Следовательно, средний синий вывод – это коллектор, а желтый слева – эмиттер.

Проверим еще один транзистор – КТ814Б. Он у нас PNP структуры. База у него – синий вывод. Замеряем напряжение между синим и красным выводом:

а потом между синим и желтым:

Во фак! И там и там 720 милливольт.

Этот способ этому транзистору не помог. Ну не переживайте, для этого есть третий способ…

Способ №3

Почти в каждом современном муль тиметре есть 6 маленьких отверстий, и рядом какие-то буковки, что-то типа NPN, PNP, E, C, B. Вот эти шесть крохотных отверстий как раз и предназначены для того, чтобы замерять коэффициент бета. Я же эти отверстия буду называть дырками. На отверстия они не очень похожи))).

Ставим крутилку мультиметра на значок “hFE“.

Определяем какой он проводимости, то есть NPN или PNP, в такую секцию его и толкаем. Проводимость определяем расположением диодов в транзисторе, если не подзабыли. Берем наш транзистор, которые в обе стороны показал одинаковое падение напряжения на обоих P-N переходах, и суем базу в ту дырочку, где буковка “В”.

Далее суем оставшихся два вывода в дырочки С и Е в этом ряду и смотрим на показания мультика:

Базу не трогаем, а тупо меняем местами два вывода. Опа-на, мультик показал намного больше, чем в первый раз. Следовательно, в дырочке Е находится в настоящее время эмиттер, а в дырочке С – коллектор. Все элементарно и просто ;-).

Способ №4

Думаю, является самым легким и точным способом проверки распиновки транзистора. Для этого достаточно приобрести Универсальный R/L/C/Transis tor-metr и сунуть выводы транзистора в клеммы прибора:

Он сразу вам покажет, жив ли ваш транзистор. И если он жив, то выдаст его распиновку.

Что будет, если перепутать коллектор и эмиттер в схеме

Для опыта мы возьмем простой и всеми нами любимый транзистор КТ815Б:

Соберем знакомую вам схемку:

Для чего я поставил перед базой резистор, читаем здесь.

На Bat1 выставляю напряжение в 2,5 вольта. Если подавать более 2,5 Вольт, то лампочка уже ярче гореть не будет. Скажем так, это граница, после которой дальнейшее повышение напряжение на базе не играет никакой роли на силу тока в нагрузке

На Bat2 я выставил 6 Вольт, хотя лампочка у меня на 12 Вольт. При 12 Вольтах транзистор у меня ощутимо грелся, и я не хотел его спалить. Здесь мы видим, какую силу тока потребляет наша лампочка и даже можем рассчитать мощность, которую она потребляет, перемножив эти два значения.

Ну и как вы видели, лампочка горит и схема нормально работает:

Но что случится, если мы перепутаем коллектор и эмиттер? По логике, у нас ток должен течь от эмиттера к коллектору, потому как базу мы не трогали, а коллектор и эмиттер состоят из N полупроводника.

Но на практике лампочка гореть не хочет.

Потребление на блоке питания Bat2 каких-то 10 миллиампер. Значит, ток через лампочку все-таки течет, но очень слабый.

Почему при правильном подключении транзистора ток течет нормально, а при неправильном нет? Дело все в том, транзистор делают не симметричным.

В транзисторах площадь соприкосновения коллектора с базой намного больше, чем эмиттера и базы. Поэтому, когда электроны устремляются из эмиттера к коллектору, то почти все они “ловятся” коллектором, а когда мы путаем выводы, то не все электроны из коллектора “ловятся” эмиттером.

Кстати, чудом не пробило P-N переход эмиттер-база, так как напряжение подавали в обратной полярности. Параметр в даташите UЭБ макс . Для этого транзистора критическое напряжение считается 5 Вольт, у нас же оно было даже чуть выше:

Итак, мы с вами узнали, что коллектор и эмиттер неравнозначны. Если в схеме мы перепутаем эти выводы, то может произойти пробой эмиттерного перехода и транзистор выйдет из строя. Так что, не путайте выводы биполярного транзистора ни в коем случае!

Как определить выводы транзистора

Способ №1

Думаю, самый простой. Скачать на этот транзистор даташит. В каждом нормальном даташите есть рисуночек с подробными надписями, где какой вывод. Для этого вводим в гугл или яндекс крупненькие циферки и буковки, которые написаны на транзисторе, и рядышком добавляем слово “даташит”. Пока еще не было такого, чтобы я не отыскивал даташит на какой-то радиоэлемент.

Способ №2

Думаю, с поиском вывода базы проблем возникнуть не должно, если учесть, что транзистор состоит из двух диодов, включенных последовательно или катодами, или анодами:

Здесь все просто, ставим мультиметр на значок прозвонки “•)))” и начинаем пробовать все вариации, пока не найдем эти два диода. Вывод, где эти диоды соединяются либо анодами, либо катодами – это и есть база. Чтобы найти коллектор и эмиттер, сравниваем падение напряжение на этих двух диодах. Между коллектором и базой ом оно должно быть меньше, чем между эмиттером и базой. Давайте проверим, так ли это?

Для начала рассмотрим транзистор КТ315Б:

Ставим мультиметр на прозвонку и базу находим без проблем. Теперь замеряем падение напряжения на обоих переходах. Падение напряжения на базе-эмиттере 794 милливольт

Падение напряжения на коллекторе-базе 785 милливольт. Мы убедились, что падение напряжения между коллектором и базой меньше, чем между эмиттером и базой. Следовательно, средний синий вывод – это коллектор, а красный слева – эмиттер.

Проверим еще транзистор КТ805АМ. Вот его цоколевка (расположение выводов):

Это у нас транзистор структуры NPN. Предположим, базу нашли (красный вывод). Узнаем, где у него коллектор, а где эмиттер.

Делаем первый замер.

Делаем второй замер:

Следовательно, средний синий вывод – это коллектор, а желтый слева – эмиттер.

Проверим еще один транзистор – КТ814Б. Он у нас PNP структуры. База у него – синий вывод. Замеряем напряжение между синим и красным выводом:

а потом между синим и желтым:

Во фак! И там и там 720 милливольт.

Этот способ этому транзистору не помог. Ну не переживайте, для этого есть третий способ…

Способ №3

Почти в каждом современном муль тиметре есть 6 маленьких отверстий, и рядом какие-то буковки, что-то типа NPN, PNP, E, C, B. Вот эти шесть крохотных отверстий как раз и предназначены для того, чтобы замерять коэффициент бета. Я же эти отверстия буду называть дырками. На отверстия они не очень похожи))).

Ставим крутилку мультиметра на значок “hFE“.

Определяем какой он проводимости, то есть NPN или PNP, в такую секцию его и толкаем. Проводимость определяем расположением диодов в транзисторе, если не подзабыли. Берем наш транзистор, которые в обе стороны показал одинаковое падение напряжения на обоих P-N переходах, и суем базу в ту дырочку, где буковка “В”.

Далее суем оставшихся два вывода в дырочки С и Е в этом ряду и смотрим на показания мультика:

Базу не трогаем, а тупо меняем местами два вывода. Опа-на, мультик показал намного больше, чем в первый раз. Следовательно, в дырочке Е находится в настоящее время эмиттер, а в дырочке С – коллектор. Все элементарно и просто ;-).

Способ №4

Думаю, является самым легким и точным способом проверки распиновки транзистора. Для этого достаточно приобрести Универсальный R/L/C/Transis tor-metr и сунуть выводы транзистора в клеммы прибора:

Он сразу вам покажет, жив ли ваш транзистор. И если он жив, то выдаст его распиновку.

Опытные электрики и электронщики знают, что для полной проверки транзисторов существуют специальные пробники.

С помощью них можно не только проверить исправность последнего, но и его коэффициент усиления — h31э.

СОДЕРЖАНИЕ (нажмите на кнопку справа):

Необходимость наличия пробника

Пробник действительно нужный прибор, но, если вам необходимо просто проверить транзистор на исправность вполне подойдет и мультиметр.

Устройство транзистора

Прежде, чем приступить к проверке, необходимо разобраться что из себя представляет транзистор.

Он имеет три вывода, которые формируют между собой диоды (полупроводники).

Каждый вывод имеет свое название: коллектор, эмиттер и база. Первые два вывода p-n переходами соединяются в базе.

Один p-n переход между базой и коллектором образует один диод, второй p-n переход между базой и эмиттером образует второй диод.

Оба диода подсоединены в схему встречно через базу, и вся эта схема представляет собой транзистор.

Ищем базу, эмиттер и коллектор на транзисторе

Как сразу найти коллектор.

Чтобы сразу найти коллектор нужно выяснить, какой мощности перед вами транзистор, а они бывают средней мощности, маломощные и мощные.

Транзисторы средней мощности и мощные сильно греются, поэтому от них нужно отводить тепло.

Делается это с помощью специального радиатора охлаждения, а отвод тепла происходит через вывод коллектора, который в этих типах транзисторов расположен посередине и подсоединен напрямую к корпусу.

Получается такая схема передачи тепла: вывод коллектора – корпус – радиатор охлаждения.

Если коллектор определен, то определить другие выводы уже будет не сложно.

Бывают случаи, которые значительно упрощают поиск, это когда на устройстве уже есть нужные обозначения, как показано ниже.

Производим нужные замеры прямого и обратного сопротивления.

Однако все равно торчащие три ножки в транзисторе могу многих начинающих электронщиков ввести в ступор.

Как же тут найти базу, эмиттер и коллектор?

Без мультиметра или просто омметра тут не обойтись.

Итак, приступаем к поиску. Сначала нам нужно найти базу.

Берем прибор и производим необходимые замеры сопротивления на ножках транзистора.

Берем плюсовой щуп и подсоединяем его к правому выводу. Поочередно минусовой щуп подводим к среднему, а затем к левому выводам.

Между правым и среднем у нас, к примеру, показало 1 (бесконечность), а между правым и левым 816 Ом.

Эти показания пока ничего нам не дают. Делаем замеры дальше.

Теперь сдвигаемся влево, плюсовой щуп подводим к среднему выводу, а минусовым последовательно касаемся к левому и правому выводам.

Опять средний – правый показывает бесконечность (1), а средний левый 807 Ом.

Это тоже нам ничего не говорить. Замеряем дальше.

Теперь сдвигаемся еще левее, плюсовой щуп подводим к крайнему левому выводу, а минусовой последовательно к правому и среднему.

Если в обоих случаях сопротивление будет показывать бесконечность (1), то это значит, что базой является левый вывод.

А вот где эмиттер и коллектор (средний и правый выводы) нужно будет еще найти.

Теперь нужно сделать замер прямого сопротивления. Для этого теперь делаем все наоборот, минусовой щуп к базе (левый вывод), а плюсовой поочередно подсоединяем к правому и среднему выводам.

Запомните один важный момент, сопротивление p-n перехода база – эмиттер всегда больше, чем p-n перехода база – коллектор.

В результате замеров было выяснено, что сопротивление база (левый вывод) – правый вывод равно 816 Ом, а сопротивление база – средний вывод 807 Ом.

Значит правый вывод — это эмиттер, а средний вывод – это коллектор.

Итак, поиск базы, эмиттера и коллектора завершен.

Как проверить транзистор на исправность

Чтобы проверить транзистор мультиметром на исправность достаточным будет измерить обратное и прямое сопротивление двух полупроводников (диодов), чем мы сейчас и займемся.

В транзисторе обычно существуют две структуру перехода p-n-p и n-p-n.

P-n-p – это эмиттерный переход, определить это можно по стрелке, которая указывает на базу.

Стрелка, которая идет от базы указывает на то, что это n-p-n переход.

P-n-p переход можно открыть с помощью минусовое напряжения, которое подается на базу.

Выставляем переключатель режимов работы мультиметра в положение измерение сопротивления на отметку «200».

Черный минусовой провод подсоединяем к выводу базы, а красный плюсовой по очереди подсоединяем к выводам эмиттера и коллектора.

Т.е. мы проверяем на работоспособность эмиттерный и коллекторный переходы.

Показатели мультиметра в пределах от 0,5 до 1,2 кОм скажут вам, что диоды целые.

Теперь меняем местами контакты, плюсовой провод подводим к базе, а минусовой поочередно подключаем к выводам эмиттера и коллектора.

Настройки мультиметра менять не нужно.

Последние показания должны быть на много больше, чем предыдущие. Если все нормально, то вы увидите цифру «1» на дисплее прибора.

Это говорит о том, что сопротивление очень большое, прибор не может отобразить данные выше 2000 Ом, а диодные переходы целые.

Преимущество данного способа в том, что транзистор можно проверить прямо на устройстве, не выпаивая его оттуда.

Хотя еще встречаются транзисторы где в p-n переходы впаяны низкоомные резисторы, наличие которых может не позволить правильно провести измерения сопротивления, оно может быть маленьким, как на эмиттерном, так и на коллекторном переходах.

В данном случае выводы нужно будет выпаять и проводить замеры снова.

Признаки неисправности транзистора

Как уже отмечалось выше если замеры прямого сопротивления (черный минус на базе, а плюс поочередно на коллекторе и эмиттере) и обратного (красный плюс на базе, а черный минус поочередно на коллекторе и эмиттере) не соответствуют указанным выше показателям, то транзистор вышел из строя.

Другой признак неисправности, это когда сопротивление p-n переходов хотя бы в одном замере равно или приближено к нулю.

Это указывает на то, что диод пробит, а сам транзистор вышел из строя. Используя данные выше рекомендации, вы легко сможете проверить транзистор мультиметром на исправность.

bjt — PNP и NPN коллекторное эмиттерное обозначение

Чтобы понять это, нужно понять, что происходит внутри транзистора. Транзистор NPN имеет три секции типа « легированный полупроводник », а именно полупроводник N-типа (легированный атомами, которые обеспечивают свободный электрон) по краям, а полупроводник P-типа между ними (легированный атомами с одним электроном меньше). чем требуется — так образовалась «положительная» дыра). А именно, n-тип -> p-тип -> полупроводниковая конструкция n-типа.PNP представляет собой полупроводниковую схему p-типа -> n-типа -> p-типа.

Обычно эмиттер является «источником» энергии, а не ее выходом. Коллектор — это тот, который служит «выходом» тока, а не эмиттер. Таким образом, представление о том, что коллектор «собирает» ток, а эмиттер выводит ток, возможно, неверно — скорее наоборот. Нет никакого «сбора» тока коллектором, который будет «испускаться» эмиттером как таковым. Скорее, коллектор — это часть транзистора, которая позволяет току течь от эмиттера (источника), если в базе есть ток.

Обратите внимание, что стрелка всегда находится между эмиттером и базой.

Итак, что означает стрелка на эмиттере, особенно если это источник электронов (отрицательный заряд, если эмиттер n-типа) или дырок (положительный заряд, если эмиттер p-типа)? Он показывает направление от полупроводника p-> n-типа (или направление прямого смещения). Это показывает направление тока между эмиттером и базой (или показывает противоположное направление потока электронов) для каждого типа транзистора.

В транзисторе NPN ток должен течь в базу, а эмиттер должен быть подключен к земле (ток течет к земле или к более низкому потенциалу), следовательно, стрелка направлена ​​наружу, показывая, что ток идет от p -типа к n-типу в транзисторе NPN. С другой стороны, транзистор PNP имеет направление к базе, показывая, что база является областью n-типа, а эмиттер — областью p-типа.

Не думайте о стрелке как о направлении результирующего тока — эмиттер на самом деле является «источником» энергии.Стрелка показывает направление от p-области к n-области каждого отдельного транзистора (между эмиттером и базой).

Надеюсь, это длинное объяснение помогло!

BJT транзистор, коллектор-базовый переход

, однако, нет напряжения базы коллектора, которое мы должны преодолеть, поскольку как только мы подаем 0,7 В на базу, транзистор уже проводит между эмиттером и коллектором, не предлагая сопротивления

Верно.

Для полного объяснения, пожалуйста, обратитесь к тексту по теории полупроводников.Я представляю здесь упрощение, которое, я надеюсь, достаточно точное.

Внутри диода есть три области: N-область, P-область и на стыке между ними обедненный слой. Если напряжение между N-областью и P-областью недостаточно, очень мало электронов в N-области пересекает обедненный слой, и очень мало дырок в P-области пересекает обедненный слой. Когда между N-областью и P-областью имеется достаточное напряжение, электроны будут переходить из N-области в P-область, а дырки будут переходить из P-области в N-область.

Когда электроны переходят из N-области в P-область, они не сразу объединяются с дырками, а продолжают путешествовать на некоторое расстояние в качестве «неосновных носителей». Они являются неосновными носителями, поскольку являются электронами в P-областях. Точно так же, когда дырки переходят из P-области в N-область, они не сразу объединяются с электронами, а продолжают путешествовать на некоторое расстояние в качестве неосновных носителей.

Если N-область более сильно легирована, чем P-область, то больше электронов перейдет из N-области в P-область, чем дырки перейдут из P-области в N-область.Будь то в основном электроны, пересекающие обедненную область, или в основном дырки, пересекающие обедненную область, в диоде на самом деле не имеет значения. Диод в любом случае проводит ток.

Для простоты ниже, когда я говорю о «транзисторе», я буду иметь в виду транзистор NPN. То, что происходит в транзисторе PNP, похоже, за исключением того, что роли электронов и дырок меняются местами.

Когда переход база-эмиттер (NPN) транзистора смещен в прямом направлении, электроны переходят от эмиттера N-области к базе P-области.Там они миноритарные перевозчики. Они не сразу соединяются с отверстиями в основании. Если база тонкая и средний путь электрона до рекомбинации достаточно велик, электроны достигнут перехода база-коллектор. Поскольку они являются неосновными носителями, они легко проходят через переход база-коллектор и попадают в коллектор. Попав в коллектор, они снова становятся основными носителями и свободно перемещаются к терминалу коллектора металла. Вот почему, когда переход эмиттер-база смещен в прямом направлении, ток будет течь от эмиттера через базу в коллектор, даже если разность напряжений база-коллектор меньше, чем у типичного диодного перехода или смещена в обратном направлении.

Концентрация легирования коллектора значительно ниже, чем у базы или эмиттера. Итак, для NPN-транзистора электроны легко текут в только что описанном направлении. Также возможно поменять местами роли эмиттера и коллектора, но поскольку концентрации легирования в эмиттере и коллекторе существенно различаются, транзистор, смещенный в «обратном активном режиме», не имеет таких же электрических характеристик, как транзистор в «активный режим вперед». Поскольку база более сильно легирована, чем коллектор, дыркам намного легче переходить из базы в коллектор (когда коллекторный переход базы смещен вперед), чем электронам переходить из коллектора в базу.Вот почему коллектор транзистора не является хорошим «эмиттером», поэтому реверсивно-активный режим не так широко используется, как прямой активный режим.

Вывод: когда электроны переходят из N-области эмиттера в базу P-области, они не рекомбинируют с дырками немедленно. Они становятся миноритарными перевозчиками. В качестве неосновных носителей они могут пересекать переход база-коллектор, даже если коллектор может иметь более низкое напряжение, чем база.

Двойной комплементарный транзистор общего назначения

% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj > эндобдж 2 0 obj > эндобдж 3 0 obj > транслировать application / pdf

  • NST3946DP6 — Двойной комплементарный транзистор общего назначения
  • ОН Полупроводник
  • Устройство NST3946DP6T5G является продолжением нашего популярного трехпроводного устройства SOT-23 / SOT-323 / SOT-563. Он разработан для применения в усилителях общего назначения и размещен в шестиконтактном корпусе SOT-963 для поверхностного монтажа. Благодаря размещению двух дискретных устройств в одном корпусе это устройство идеально подходит для маломощных приложений для поверхностного монтажа, когда пространство на плате ограничено.
  • 2017-06-16T13: 58: 38 + 02: 00BroadVision, Inc.2020-10-23T14: 12: 44 + 08: 002020-10-23T14: 12: 44 + 08: 00Acrobat Distiller 10.0.0 (Windows) uuid: 5b5a680e-8104-4612-8f4c-6655edd24420uuid: 7121feee-6a51-4562-b807-d5b5aa0f6a2d конечный поток эндобдж 4 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект > транслировать HWnF7 ~ Ihie3H8ywv) ٵ Es9s (/ «gfnQ> | ŌU6% D7hF0D2E0_ (3hV, z = ϣ32FDfBAIʳuD s?% (p * ³ID (e̮y] -yW7p \ 7ueҶpʲ2 \ j5 *.

    Оставить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *