Esr конденсаторов: Простейший измеритель ESR электролитических конденсаторов / Хабр

Содержание

Простейший измеритель ESR электролитических конденсаторов / Хабр

Собственно, как я уже когда-то очень давно обещал, расскажу про простейший измеритель ESR. В дальнейшем буду писать не ESR, а ЭПС(эквивалентное последовательное сопротивление), поскольку лень переключать раскладку. И так, кратко, что же такое ЭПС.


ЭПС можно представить в виде резистора, включенного последовательно с кондесатором.

На данной картинке — R. Собственно, у исправного конденсатора этот показатель измеряется долями Ома, для конденсаторов малой емкости (до 100мкф) может достигать 2-3 Ом. Более подробно значения ЭПС для исправных конденсаторов можно найти в справочных данных производителей. Со временем, из-за испарения электролита, это сопротивление увеличивается, что приводит к повышению мощности потерь. Как результат конденсатор сильнее нагревается, что еще сильнее ускоряет процесс испарения электролита и приводит к потере емкости.

На практике ремонта точное измерение ЭПС не нужно.

Достаточно считать любой конденсатор с ЭПС выше 1-2 Ом неисправным. Можно считать это спорным утверждением, в интернете достаточно легко найти целые таблицы с значениями ЭПС для конденсаторов различной емкости. Однако я убеждался неоднократно, что приблизительной оценки вполне достаточно. Не говоря уже о том, что результаты измерения ЭПС одних и тех же конденсаторов(новых), одного и того же производителя сильно разнятся в зависимости от партии, времени года и фазы луны.

Я использую простой измеритель на копеечной микросхеме. Разработал его

Manfred Mornhinweg

.


Конструкция довольно простая, но привлекательна своей нетребовательностью к трансформатору. Из недостатков — шкала получается «широкая», в моем случае 0-20ом. Соответственно, нужна большая измерительная головка, т.н. «магнитофонные» (из индикаторов уровня магнитофонов), не подойдут — будет неудобно работать.

В качестве трансформатора автор намотал две обмотки 400 и 20 витков на ферритном кольце 19х16х5мм 2000НМ. Однако можно поступить значительно проще — использовать трансформатор дежурки из любого ATX блока питания. Достаточно заменить R8 на подстроечный многооборотный резистор 3296W сопротивлением 51к. При помощи этого резистора можно будет увеличить коэффициент усиления измерительного усилителя и компенсировать недостаточный коэффициент трансформации. LM7805 необходимо заменить на LM1117-5, это снизит потребляемый ток, плюс нижний порог напряжения питания опустится примерно до 6.5В. Стабилизатор обязателен, иначе шкала будет плавать в зависимости от напряжения питания. Для питания я использовал обычную «Крону». Саму микросхему обязательно поставьте в панельку!

Настройка прибора сводится к установке «нуля» и калибровке шкалы. Для калибровки шкалы используются низкоомные резисторы с допусками 0.5% и сопротивлениями от 0 до 2-5 Ом. Калибровка производится следующим образом — снимаем защитное стекло с индикаторной головки. Включаем прибор и измеряем сопротивление эталонных резисторов. Смотрим, куда отклоняется стрелка и ставим в этом месте на шкале метку с соответствующим сопротивлением.

Так размечаем шкалу.

Измеряемые низковольтные конденсаторы(до 50-80 вольт без проблем) разряжаются резисторами R5, R6 и первичной обмоткой трансформатора. «Сетевые» емкости(те, которые после диодного моста в импульсных БП) я предварительно разряжаю приспособой, сделанной из резистора 510 Ом/1Вт, иглы от шприца, крокодила и корпуса гелевой ручки. В теории цепочка R5-R6 должна разрядить и такие емкости, но на практике, выбивает TL062 🙂 Именно поэтому ее надо ставить в панельку -чтобы быстро заменить. Но надежнее — предварительно разрядить «сетевую» емкость.

В целом — очень удачный прибор — дешев, прост, не требователен к трансформатору.

Электроника НТБ — научно-технический журнал — Электроника НТБ

ОСОБЕННОСТИ КОНДЕНСАТОРОВ С НИЗКИМ ESR
До последнего времени четкое определение конденсатора с низким ESR отсутствовало. Такие стандарты, как JIS5141 и EIA395, касаются только процедур испытаний конденсаторов. Отсутствие стандартов заставило отдельных производителей самостоятельно определять, что же значит конденсатор с низким ESR. В итоге большинство поставщиков установили согласованный критерий, определяющий такие конденсаторы как элементы, у которых:
· срок службы больше, чем у стандартных конденсаторов;
· максимальный импеданс задается на частоте 100 кГц и остается неизменным в диапазоне температур +20…-10°С;
· пульсирующий ток определяется на частоте 100 кГц;
· повышенная температурная стабильность (температурный коэффициент импеданса).
Конденсаторы с низким ESR одного и того же номинала могут монтироваться в корпуса различных размеров.
Для лучшего понимания того, что же представляют собой конденсаторы с низким ESR и каковы их характеристики, необходимо сначала понять, что же значит низкое ESR и как оно влияет на рабочие характеристики схемы. Эквивалентная схема конденсатора содержит четыре основных элемента (рис.1), причем значения трех – импеданса конденсатора (Z), эквивалентного последовательного сопротивления (ESR), эквивалентной последовательной индуктивности (ESL) – зависят от частоты.
Значение Rp зависит от постоянного тока. Рассмотрим лишь зависящие от частоты характеристики конденсатора – ESL, ESR и Z.
ESL – сумма индуктивностей всех индуктивных элементов конденсатора. ESL = 2PIЧfЧL, где f – рабочая частота и L – индуктивность.
ESR, подобно ESL, – сумма всех резистивных элементов конденсатора. ESR = DF/(2PIЧfЧC)ЧХс, где DF – коэффициент рассеяния,
f – частота, С – емкость и Хс – емкостное сопротивление,

Z – импеданс конденсатора. Z = Ц(ESR)2 + (ESL – Xc)2.
Зависимости этих параметров от частоты приведены на рис.2.
Частотные зависимости параметров всех конденсаторов имеют одинаковый характер. Таким образом, для уменьшения ESR следует использовать конденсатор либо большей емкости, либо с меньшим коэффициентом рассеяния. Уменьшение ESR с увеличением емкости конденсатора хорошо понятно и не требует объяснений. Уменьшение ESR за счет применения диэлектрика с меньшим коэффициентом рассеяния наглядно иллюстрирует табл.1, из которой можно сделать несколько важных выводов.
Во-первых, если обратить внимание на частоты, для которых рассчитывалось значение ESR, можно отметить, что с увеличением частоты значение ESR уменьшается. Поэтому при задании в технических условиях на конденсатор с низким ESR требуемого значения эквивалентного последовательного сопротивления необходимо также указывать частоту, на которой ESR измеряется, в противном случае велика вероятность неправильного выбора конденсатора. На рис.3 приведена типовая зависимость ESR от частоты для танаталового конденсатора емкостью 22 мкФ на напряжение 25 В.
Важна и температура, которую необходимо учитывать при оценке конденсатора, особенно если он должен работать при минусовых температурах. Это в первую очередь существенно для алюминиевых электролитических конденсаторов. При очень низких температурах емкость этих конденсаторов может уменьшиться на 10–40%, а DF возрасти на порядок. Поэтому конденсаторы, которые должны работать при низких температурах окружающей среды, необходимо выбирать очень тщательно.

Во-вторых, у конденсаторов с различными диэлектриками различны и значения ESR. Меняя диэлектрик, можно изменять значение ESR. Следует обратить внимание на существенное различие между значениями ESR для алюминиевых электролитических и полипропиленовых конденсаторов.

ОБЛАСТИ ПРИМЕНЕНИЯ
Различны и значения ESR для пленочных и алюминиевых электролитических конденсаторов. Эти различия определяют предпочтительные области применения каждого типа. К достоинствам пленочных конденсаторов относятся, в первую очередь, независимая полярность конструкции, высокое рабочее напряжение, малые значения емкости, жесткие допуски на значение емкости, самовосстановление (только металлизированная конструкция), высокая безотказность, стойкость к большому току пульсации, разнообразие форм выводов и корпусов. Применяются пленочные конденсаторы, как правило, в системах, где требуется низкое ESR для подавления электромагнитных и радиопомех.

Алюминиевые электролитические конденсаторы широко используются в импульсных преобразователях напряжения.
Выпускаются они различных, отличающихся по своим параметрам, типов (табл.2). Так, в сравнении со стандартными, алюминиевые электролитические конденсаторы с низким ESR характеризуются большими значениями емкости, большим сроком службы (более 5 тыс. часов) и долговечностью при полной нагрузке, способностью выдерживать более высокие токи пульсации, большим разнообразием размеров корпусов.
Самые большие различия получены для таких параметров, как долговечность при полной нагрузке, импеданс (Z) и ESR на частоте 100 кГц. Конденсаторы с малыми значениями ESR и импеданса широко используются в импульсных источниках питания для обеспечения стабильности их характеристик. Конденсаторы с высокими значениями ESR будут слишком нагреваться и не позволят стабилизировать ток. Очевидно, саморазогрев конденсаторов также приводит к сокращению их срока службы и, соответственно, к ухудшению характеристик и срока службы стабилизатора на токовых ключах. К тому же, максимальное значение тока пульсации низкоимпедансных конденсаторов больше, чем у стандартных, что позволяет сократить число используемых элемнтов и, тем самым, уменьшить размеры преобразователя.

В качестве примера на рис.4 приведена зависимость напряжения пульсаций на ИС от ESR конденсатора, используемого в цепи развязки по питанию. Комментарии, как говорится, излишни.
Таким образом, если в схеме необходимо использовать конденсаторы с низким ESR, в первую очередь следует определить допустимые пределы значения эквивалентного сопротивления и выбрать компоненты, «соответствующие» требованиям. При этом важно знать условия, при которых производитель проводил испытания, поскольку их характеристики существенно влияют на работу конденсатора в схеме. Серьезную техническую поддержку при выработке требований и рекомендаций по выбору нужного типа конденсатора оказывают разработчикам такие изготовители, как Teapo Electronics и Illinois Capacitor.

ЗАКЛЮЧЕНИЕ
Ведущие мировые компании по производству конденсаторов уделяют очень большое внимание конденсаторам с низким ESR. Например, Teapo Electronic Corporation, специализирующаяся на выпуске высококачественных алюминиевых электролитических и пленочных конденсаторов, предлагает алюминиевые электролитические низкоимпедансные конденсаторы с низким ESR на рабочую температуру до 105°C серий SC (срок службы 3 тыс. ч при температуре 105°C ) и SX (5 тыс. ч при температуре 105°C ).
Но, пожалуй, нигде, кроме России, нельзя встретить столь вопиющее неcоответствие между назначением изделия и уровнем (откровенно низким) используемой элементной базы. Например, вряд ли где-либо еще в дорогой системе промышленной автоматики можно найти плохие «электролиты». И это не у одного какого-либо производителя. Это – общая беда российской электронной промышленности последних лет. Правда, сегодня ситуация меняется. Качественные конденсаторы, в том числе и с низким ESR, по цене лишь незначительно превосходящие стандартные, становятся доступными отечественному производителю. К тому же, меняется и его менталитет. И это дает надежду на то, что изделия с маркой «Сделано в России» в реальности, а не на бумаге, не будут уступать лучшим зарубежным аналогам.
Компания ПОЛИСЭТ представляет на российском рынке весь спектр высококачественных электролитических и пленочных конденсаторов фирмы Teapo Electronic, а также танталовые электролитические конденсаторы фирмы Samsung Electro-Mechanics.
Тел.: (095) 967-0591; www.poliset.ru; [email protected]

Литература
www.yageo.com
www.teapo.com.tw
www.sem.samsung.com/
Aluminium Electrolytic Capacitors Catalogue, 2001, Teapo Electronic Corporation.
R.W. Franklin, Equivalent Series Resistance of Tantalum Capacitors, AVX Limited, 2001
Passive Component Industry, September/October 2001
R.K. Keenan, Decoupling and layout of Digital Printed Circuits,198

Пролезет ли конденсатор в игольное ушко?
В конце октября 2001 года фирма Samsung Electro-Mechanics выпустила самый миниатюрный в мире многослойный керамический конденсатор для поверхностного монтажа (SMD MLCC) марки 0603MLCC. Размер конденсатора 0,6х0,3 мм, а объем составляет всего лишь одну пятую от объема его предшественника. Конденсатор столь мал, что практически не виден невооруженным глазом. Поэтому производственный процесс полностью автоматизирован. Фирма выпускает конденсатор двух типов: X7R (стандартный) и NPO (с низким эквивалентным последовательным сопротивлением).
Сейчас Samsung Electro-Mechanics ежемесячно выпускает около 30 млн. конденсаторов, в 2002 году объем их производства будет увеличен. Сегодня фирма Samsung Electro-Mechanics контролирует около 30% мирового рынка многослойных керамических конденсаторов и в ближайшее время намерена стать их крупнейшим производителем.

www.poliset.ru; www.sem.samsung.com

«Другой» анодный материал конденсаторы фирмы Vishay
Vishay Intertechnology выпустила новое семейство конденсаторов, в которых анод выполнен из ниобия, а не тантала. Переход к новому материалу был не прост. Пленки оксида ниобия более чувствительны к тепловым и электрическим воздействиям. К тому же, токи утечки ниобиевых компонентов до сих пор были выше, чем танталовых. Но в отличие от тантала, ниобий достаточно распространен в природе и, кроме того, он легче тантала, благодаря чему уменьшается масса конденсатора. Эти соображения и стимулировали разработку ниобиевых компонентов.
Фирма Vishay выпускает конденсаторы емкостью 10–100 мкФ на напряжения 6 и 10 В в разнообразных стандартных корпусах. Они рассчитаны на работу в диапазоне температур -55…85оС.

www.e-insite.net/edmag

Скорость передачи 10 Гбайт/с
По медным проводам
Утверждение, что скорость передачи 10 Гбайт/с доступна лишь для оптического волокна, опровергает соединитель модели Connector–X фирмы Winchester Electronics, способный поддерживать передачу 12 различных пар сигналов с такой скоростью. Это в три-четыре раза выше, чем у современных соединителей медных проводов. Плавкие кнопочные контакты соединителя, напоминающие миниатюрные стальные подушечки для чистки кастрюль, выдерживают 250 циклов сочленения. Для обеспечения контакта соединителя с токопроводящими линиями печатной платы (которая может выполняться на достаточно дешевом материале FC-4) не нужны отверстия, достаточны лишь две крепежные точки. Это позволяет снизить стоимость сборки, улучшить выход годных и предотвратить сбои в передаче сигнала. Цена соединителя длиной 1 дюйм (25,4 мм) – 250–300 долларов.

www.litton-wed.com

Процесс восстановления пластин GaAs
Старые не хуже новых
Фирма Exsil разработала процесс восстановления арсенидгаллиевых пластин для их повторного использования в производстве активных приборов и микросхем. Возможность применения таких пластин весьма перспективна, особенно если вспомнить, что стоимость “первичных” GaAs-пластин на порядок выше, чем кремниевых, – 350–450 долл. при диаметре150 мм. За восстановленную пластину нужно заплатить всего 85–100 долл. Линия фирмы предназначена для восстановления пластин GaAs диаметром 100 и 150 мм, которые по своим параметрами не уступают, а в некоторых случаях превосходят первичные пластины.

Electronic News, 2001, Nov.15.

Электроника движет ростом затрат на НИОКР
По данным отделения технологической политики Министерства торговли США, затраты на НИОКР в 2000 году (самые последние точные данные на сегодня) составили 162,7 млрд. долл., что на 9,3% больше, чем в предыдущем году (145, 6 млрд. долл.). Затраты на НИОКР могут служить серьезным индикатором потенциального роста экономики страны и тенденций развития технологии. Большая часть инвестиций (67%) сосредоточена в двух областях – производство и услуги информационной и электронной технологии и медицинские средства и устройства. При этом на НИОКР в области информационной и электронной технологии было затрачено 47,2% общих корпоративных средств, что на 16,3% больше, чем в 1999 году (в остальных секторах американской экономики рост составил всего 3,7%). Сократились затраты на НИОКР в области аэрокосмических исследований и химической промышленности.

www.e-insite.net

ESR ИЗМЕРИТЕЛЬ КОНДЕНСАТОРОВ

   Наиболее слабым местом в любой радиосхеме являются электролитические конденсаторы, которые подвержены постоянному высыханию. И чем большие токи проходят через них — тем этот процесс быстрее. Обычным омметром определить плохой конденсатор не получится, поэтому необходим спецприбор — esr измеритель.

Схема электрическая esr измерителя конденсаторов

Печатные платы — рисунок

   В типичной схеме, может быть 10 или даже 100 конденсаторов. Выпаивать каждый для тестирования очень утомительно и существует большой риск повреждения платы. Этот тестер использует низкое напряжение (250 мВ) высокой частоты (150 кГц), и он способен мерять ESR конденсаторов прямо в схеме. Напряжение выбрано достаточно низкими, чтобы другие окружающие радиоэлементы схемы не влияли на результаты замеров. А если вам случайно доведется испытать заряженный конденсатор — не беда. Этот измеритель выдерживает до 400В заряда на конденсаторе. Опыт показал, что ЭПС метр выявляет около 95% конденсаторов с потенциальными проблемами.

Особенности работы прибора

  • Тест электролитических конденсаторов > 1 мкФ.
  • Полярность не важна для тестирования.
  • Переносит заряд конденсаторов до 400В.
  • Низкий ток потребления от батареи — около 25 мА.
  • Легко читать данные аналогового измерителя.
  • Меряет ЭПС в диапазоне от 0-75 Ом по расширенной шкале с помощью омметра.

   Будьте осторожны, если вы тестируете высоковольтные конденсаторы. Имейте в виду, что высоковольтные конденсаторы могут нести сильный заряд в течение нескольких дней, в зависимости от схемы.

Как использовать ESR метр

   Включаете прибор. Убедитесь, что проверяемая схема находится не под напряжением. Разрядите конденсатор перед тестированием — ЭПС метр не делает этого автоматически. Замкните выводы конденсатора и удерживайте их так в течение нескольких секунд. С помощью вольтметра убедитесь, что конденсатор полностью разряжен. Вольтметр должен показывать нулевое значение. Прикоснитесь щупами ESR метра к конденсатору. Определите сопростивление ESR. Является ли значение ESR приемлемым узнаём путем сравнения измеренного ESR с эталонными данными. Посмотреть эту таблицу можно тут.

Общие сведения о ESR и ESL в конденсаторах

Наиболее часто используемыми электронными компонентами в любой электронной конструкции являются резисторы (R), конденсаторы (C) и индукторы (L). Большинство из нас знакомы с основами этих трех пассивных компонентов и с тем, как их использовать. Теоретически (в идеальных условиях) конденсатор можно рассматривать как чистый конденсатор с только емкостными свойствами, но на практике конденсатор также будет иметь некоторые резистивные и индуктивные свойства, связанные с ним , которые мы называем паразитным сопротивлением или паразитной индуктивностью. Да, как и у паразита, эти нежелательные свойства сопротивления и индуктивности находятся внутри конденсатора, не позволяя ему вести себя как чистый конденсатор.

Следовательно, при проектировании схем инженеры в первую очередь рассматривают идеальную форму компонента, в этом случае емкость, а затем вместе с ней паразитные компоненты (индуктивность и сопротивление) также считаются включенными последовательно с ней. Это паразитное сопротивление обозначается как Эквивалентное последовательное сопротивление (ESR) , а паразитная индуктивность обозначается как Эквивалентная последовательная индуктивность (ESL) Значение этой индуктивности и сопротивления будет очень маленьким, поэтому им можно пренебречь в простых конструкциях. .Но в некоторых приложениях с высокой мощностью или высокой частотой это значение может быть очень важным и, если его не учитывать, может снизить эффективность компонента или привести к неожиданным результатам.

В этой статье мы узнаем больше об этих ESR и ESL, как их измерить и как они могут повлиять на схему . Подобно этому, индуктор также будет иметь некоторые связанные с ним паразитные свойства, называемые DCR , которые мы обсудим в другой статье в другой раз.

ESR в конденсаторах

Идеальный конденсатор, соединенный последовательно с сопротивлением, называется Эквивалентное последовательное сопротивление конденсатора. Эквивалентное последовательное сопротивление или ESR в конденсаторе — это внутреннее сопротивление, которое появляется последовательно с емкостью устройства.

Давайте посмотрим на следующие символов, которые представляют ESR конденсатора . Символ конденсатора представляет идеальный конденсатор и резистор как эквивалентное последовательное сопротивление.Резистор включен последовательно с конденсатором.

Идеальный конденсатор без потерь , что означает, что конденсатор накапливает заряд и обеспечивает такое же количество заряда, как и на выходе. Но в реальном мире конденсаторы имеют небольшое значение конечного внутреннего сопротивления . Это сопротивление возникает из-за диэлектрического материала, утечки в изоляторе или сепараторе. В дополнение к этому эквивалентное последовательное сопротивление или ESR будет иметь разные значения в разных типах конденсаторов в зависимости от их значения емкости и конструкции.Следовательно, мы должны измерить значение этого ESR практически, чтобы проанализировать полные характеристики конденсатора.

Измерение ESR в конденсаторах

Измерение ESR конденсатора немного сложно, потому что сопротивление не является чистым сопротивлением постоянному току. Это связано с свойством конденсаторов. Конденсаторы блокируют постоянный ток и пропускают переменный ток. Поэтому стандартный измеритель сопротивления не может использоваться для измерения ESR. Существуют специальные измерители ESR , доступные на рынке, которые могут быть полезны для измерения ESR конденсатора. Эти измерители используют переменный ток, такой как прямоугольная волна на определенной частоте через конденсатор. На основании изменения частоты сигнала можно рассчитать значение ESR конденсатора. Преимущество этого метода заключается в том, что, поскольку ESR измеряется непосредственно на двух выводах конденсатора, его можно измерить, не снимая припайки с печатной платы.

Другой теоретический способ вычисления ESR конденсатора — это измерить напряжение пульсаций и ток пульсаций конденсатора , а затем их соотношение даст значение ESR в конденсаторе.Однако более распространенная модель для измерения ESR заключается в применении источника переменного тока через конденсатор с дополнительным сопротивлением. Примерная схема для измерения ESR показана ниже

.

Vs — это источник синусоидальной волны, а R1 — внутреннее сопротивление. Конденсатор C — это идеальный конденсатор, тогда как R2 — эквивалентное последовательное сопротивление идеального конденсатора C. Следует помнить одну вещь: в этой модели измерения ESR индуктивность выводов конденсатора игнорируется и не рассматривается как часть схема.

Передаточная функция этой схемы может быть изображена в следующей формуле —

В приведенном выше уравнении отражена характеристика схемы верхних частот; аппроксимация передаточной функции может быть далее оценена как —

  H (с) ≈ R2 / (R2 + R1) ≈ R2 / R1 
 

Приведенное выше приближение подходит для высокочастотных операций. В этот момент схема начинает ослабляться и действовать как аттенюатор.

Коэффициент затухания можно выразить как —

   = R2 / (R2 + R1)  

Этот коэффициент затухания и внутреннее сопротивление R1 генератора синусоидальных сигналов можно использовать для измерения ESR конденсаторов.

  R2 =    x R1  

Следовательно, функциональный генератор может быть полезен для расчета ESR конденсаторов.

Обычно значение ESR колеблется от нескольких миллиомов до нескольких Ом.Алюминиевые электролитические и танталовые конденсаторы имеют более высокое ESR по сравнению с коробчатыми или керамическими конденсаторами. Однако современные достижения в технологии производства конденсаторов позволяют изготавливать конденсаторы со сверхнизким ESR.

Как ESR влияет на производительность конденсатора

Значение ESR конденсатора является решающим фактором для выхода конденсатора. Конденсатор с высоким ESR рассеивает тепло. в сильноточных приложениях, и срок службы конденсатора в конечном итоге сокращается, что также способствует сбоям в электронных схемах.В источниках питания, где большой ток является проблемой, конденсаторы с низким ESR необходимы для фильтрации.

Не только для операций, связанных с источником питания, но и для высокоскоростной цепи важно низкое значение ESR. На очень высоких рабочих частотах, обычно в диапазоне от сотен МГц до нескольких ГГц, ESR конденсатора играет жизненно важную роль в факторах подачи мощности.

ЭСЛ в конденсаторе

Как и ESR, ESL также является решающим фактором для конденсаторов.Как обсуждалось ранее, в реальной ситуации конденсаторы не идеальны. Есть паразитное сопротивление, а также паразитная индуктивность. Типичная модель конденсатора ESL показана ниже. Конденсатор C — это идеальный конденсатор, а катушка индуктивности L — это последовательно включенная индуктивность с идеальным конденсатором.

Обычно ESL очень зависит от токовой петли ; Увеличение токовой петли также увеличивает ESL в конденсаторах. Расстояние между выводом вывода и точкой соединения цепи (включая контактные площадки или дорожки) также влияет на ESL в конденсаторах, поскольку увеличенное расстояние вывода также увеличивает токовую петлю, что приводит к высокой эквивалентной последовательной индуктивности.

Измерение ЭСЛ конденсатора

Измерение ESL можно легко выполнить, наблюдая за графиком зависимости импеданса от частоты, приведенным в таблице данных производителя конденсатора. Импеданс конденсатора изменяется при изменении частоты на конденсаторе. В ситуации, когда на определенной частоте емкостное реактивное сопротивление и индуктивное реактивное сопротивление равны , это называется «точкой перегиба» .

В этот момент конденсатор сам резонирует.ESR конденсатора способствует выравниванию графика импеданса до тех пор, пока конденсатор не достигнет точки «изгиба» или на частоте собственного резонанса. После точки перегиба сопротивление конденсатора начинает увеличиваться из-за ESL конденсатора.

На приведенном выше изображении показан график зависимости полного сопротивления от частоты MLCC (многослойного керамического конденсатора). Показаны три конденсатора: 100 нФ, 1 нФ класса X7R и 1 нФ конденсаторов класса NP0. Пятна «колена» можно легко определить по нижней точке V-образного графика.

После определения частоты точки перегиба ESL можно измерить по следующей формуле

  Частота = 1 / (2π√ (ESL x C))  

Как ESL влияет на выход конденсатора

Выход конденсаторов ухудшается из-за увеличения ESL, как и ESR. Повышенный ESL способствует нежелательному протеканию тока и генерирует EMI , что в дальнейшем создает сбои в высокочастотных приложениях. В системе, связанной с источником питания, паразитная индуктивность способствует высокой пульсации напряжения.Напряжение пульсаций пропорционально значению ESL конденсаторов. Большое значение ESL конденсатора также может вызвать сигналов вызывного сигнала , из-за чего схема ведет себя странно.

Практическое значение ESR и ESL

На изображении ниже представлена ​​действительная модель ESR и ESL в конденсаторе .

Здесь конденсатор C — идеальный конденсатор, резистор R — эквивалентное последовательное сопротивление, а катушка индуктивности L — эквивалентная последовательная индуктивность .Объединяя эти три, получается настоящий конденсатор.

ESR и ESL — это не очень приятные характеристики конденсатора, которые вызывают различные снижения производительности электронных схем, особенно в высокочастотных и сильноточных приложениях. Высокое значение ESR способствует снижению производительности из-за потерь мощности, вызванных ESR; потерю мощности можно рассчитать, используя степенной закон I 2 R, где R — значение ESR. Кроме того, из-за высокого значения ESR в соответствии с законом Ома возникают шумы и высокое падение напряжения.Современная технология производства конденсаторов снижает значения ESR и ESL конденсатора. Огромное улучшение можно увидеть в современных SMD-версиях многослойных конденсаторов.

Конденсаторы с более низким значением ESR и ESL предпочтительны в качестве выходных фильтров в схемах импульсного источника питания или в конструкциях SMPS, поскольку в этих случаях частота переключения высока, обычно близка к нескольким MH z в диапазоне от сотен кГц. По этой причине входной конденсатор и конденсаторы выходного фильтра должны иметь низкое значение ESR, чтобы низкочастотные пульсации не влияли на общую производительность блока питания.ESL конденсаторов также должен быть низким, чтобы сопротивление конденсатора не влияло на частоту переключения источника питания.

В источнике питания с низким уровнем шума, где шумы необходимо подавлять, а количество каскадов выходного фильтра должно быть небольшим, высококачественные конденсаторы со сверхнизким ESR и низким ESL полезны для плавного выхода и стабильной подачи мощности на нагрузку. В таком применении полимерные электролиты являются подходящим выбором и обычно предпочтительнее алюминиевых электролитических конденсаторов.

ESR конденсатора, коэффициент рассеяния, тангенс потерь, Q

К важным параметрам, связанным с конденсаторами, относятся: эквивалентное последовательное сопротивление ESR, коэффициент рассеяния, тангенс угла потерь и Q.


Емкостное руководство Учебное пособие включает:
емкость Формулы конденсатора Емкостное реактивное сопротивление Параллельные конденсаторы Последовательные конденсаторы Диэлектрическая проницаемость и относительная диэлектрическая проницаемость Коэффициент рассеяния, тангенс угла потерь, ESR Таблица преобразования конденсаторов


ESR или эквивалентное последовательное сопротивление конденсатора, его DF или коэффициент рассеяния, тангенс угла потерь и добротность или добротность — все это важные факторы в спецификации любого конденсатора.

Такие факторы, как ESR, коэффициент рассеяния, тангенс угла потерь и добротность, важны во многих аспектах работы конденсатора, и они могут определять типы применения, для которых конденсатор может использоваться.

Поскольку четыре параметра взаимосвязаны, на этой странице будут рассмотрены ESR, DF, тангенс угла потерь и Q.

ESR, DF и Q — все аспекты характеристик конденсатора, которые влияют на его характеристики в таких областях, как работа в радиочастотном диапазоне. Однако ESR и DF также особенно важны для конденсаторов, работающих в источниках питания, где высокий ESR и коэффициент рассеяния, DF приведет к рассеянию большого количества мощности в конденсаторе.

Конденсатор ESR, эквивалентное последовательное сопротивление

Эквивалентное последовательное сопротивление или ESR конденсатора влияет на многие области, в которых могут использоваться конденсаторы. Резистор действует как любой другой резистор, вызывая падение напряжения и рассеивая тепло.

ESR конденсатора отвечает за рассеиваемую энергию в виде тепла, и оно прямо пропорционально DF. При полном анализе схемы конденсатор должен быть изображен как его эквивалентная схема, включая идеальный конденсатор, но также с его последовательным ESR.

Конденсатор ESR, эквивалентное последовательное сопротивление

Конденсаторы с высокими значениями ESR будут рассеивать мощность в виде тепла. Для некоторых схем только с низкими значениями тока это может не быть проблемой, однако во многих схемах, таких как схемы сглаживания источника питания, где уровни тока высоки, уровни мощности, рассеиваемые ESR, могут привести к значительному повышению температуры. Это должно быть в рабочих пределах для конденсатора, в противном случае может произойти повреждение, и это должно быть включено в конструкцию схемы.Если повышение температуры слишком велико, конденсатор может быть поврежден или даже разрушен. Для электролитических конденсаторов значительное повышение температуры сокращает ожидаемый срок службы, даже если они не приводят к фактическому повреждению или разрушению.

Обнаружено, что когда температура конденсатора повышается, обычно увеличивается ESR, хотя и нелинейным образом. Увеличение частоты также имеет аналогичный эффект.

Коэффициент рассеяния и тангенс угла потерь

Хотя значение ESR конденсатора упоминается чаще, коэффициент рассеяния и тангенс угла потерь также широко используются и тесно связаны с ESR конденсатора.

Хотя коэффициент рассеяния и тангенс угла потерь практически одинаковы, они имеют несколько разные точки зрения, что полезно при проектировании различных типов схем. Обычно коэффициент рассеяния используется на более низких частотах, тогда как тангенс угла потерь более применим для высокочастотных приложений.

Определения коэффициента рассеяния и тангенса угла потерь

Определения коэффициента рассеяния и тангенса угла потерь могут быть определены:

  • Коэффициент рассеяния: Коэффициент рассеивания определяется как значение тенденции диэлектрических материалов поглощать часть энергии при подаче сигнала переменного тока.
  • тангенс угла потерь: тангенс угла потерь определяется как тангенс разности фазового угла между напряжением конденсатора и током конденсатора относительно ожидаемого теоретического значения 90 градусов, эта разница вызвана диэлектрическими потерями в конденсаторе. . Величина δ (греческая буква дельта) также известна как угол потерь.
Угол потерь конденсатора

Таким образом:

tanδ = DF

tanδ = 1Q

tanδ = ESRXc

Где:
δ = угол потерь (греческая буква дельта)
DF = коэффициент рассеяния
Q = добротность
ESR = эквивалентное последовательное сопротивление
X c = реактивное сопротивление конденсатора в Ом.

Конденсатор Q

Удобно определять добротность или добротность конденсатора. Это фундаментальное выражение потерь энергии в резонансной системе. По сути, для конденсатора это отношение запасенной энергии к энергии, рассеиваемой за цикл.

Далее можно сделать вывод, что Q может быть выражено как отношение емкостного реактивного сопротивления к ESR на интересующей частоте:

Поскольку Q можно довольно легко измерить и он обеспечивает повторяемость измерений, это идеальный метод для количественной оценки потерь в компонентах с низкими потерями.

Конденсатор Q — важный параметр для таких схем, как фильтры и генераторы. В этих схемах любые потери приведут к уменьшению добротности самого конденсатора и всего резонансного контура фильтра или генератора. Это может привести к снижению производительности.

ESR конденсатора, коэффициент рассеяния, тангенс угла потерь и добротность — все это важные аспекты потерь в конденсаторе. Все они связаны и по сути являются разными методами рассмотрения одной и той же проблемы. Однако они используются в различных областях схемотехники, такие как ESR конденсатора, коэффициент рассеяния, тангенс угла потерь и добротность — все они указаны в технических характеристиках, но для разных конденсаторов, используемых в разных областях..

Дополнительные основные понятия:
Напряжение ток Сопротивление Емкость Сила Трансформеры RF шум Децибел, дБ Q, добротность
Вернуться в меню «Основные понятия». . .

Лучшая цена конденсатор частоты esr — Выгодные предложения на конденсатор частоты esr от глобальных продавцов конденсаторов частоты esr

Отличные новости !!! Вы находитесь в нужном месте для конденсатора частоты esr. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как этот конденсатор с максимальной частотой esr в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели конденсатор частоты esr на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в частотном конденсаторе esr и думаете о выборе аналогичного продукта, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести конденсатор частоты esr по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Алюминиевые электролитические конденсаторы — Industrial Devices & Solutions

  • Политика в отношении файлов cookie
  • Потребитель
  • Бизнес
  • Продукты
  • Руководства по применению
  • Скачать
  • Поддержка дизайна
  • Новости
  • Свяжитесь с нами
близко
  • Конденсаторы
  • Резисторы
  • Катушки индуктивности
  • Решения для управления температурным режимом
  • Компоненты ЭМС, защита цепей
  • Датчики
  • Устройства ввода
  • Полупроводники
  • Реле, разъемы
  • FA Датчики и компоненты
  • Моторы, компрессоры
  • Промышленные устройства, носители информации
  • Пользовательские и модульные устройства
  • Завод автоматики, сварочные аппараты
  • Промышленные батареи
  • Электронные материалы
  • Материалы
  • Электролитические конденсаторы с проводящим полимером
  • Алюминиевые электролитические конденсаторы
  • Электрические двухслойные конденсаторы (золотой конденсатор)
  • Пленочные конденсаторы
  • Чип резисторы
  • Резисторы прочие
  • Силовые индукторы для автомобильного применения
  • Силовые индукторы бытовые
  • Силовые индукторы многослойного типа
  • Катушки повышения напряжения
  • Лист термозащиты (Графитовый лист (PGS) / продукты, применяемые PGS / NASBIS)
  • Термистор NTC (чип)
  • Вентилятор охлаждения с уникальным гидродинамическим подшипником
  • Материалы для печатных плат
  • Компоненты ЭМС
  • Защита цепей (электростатические разряды, скачки напряжения, предохранители и т. Д.)
  • Датчики
  • Встроенные датчики
  • Датчики для автоматизации производства
  • Переключатели
  • Емкостный датчик силы
  • Энкодеры, потенциометры
  • Микрокомпьютеры
  • Аудио и видео
  • Тег NFC и защищенная микросхема
  • Микросхемы драйверов светодиодов
  • ИС драйвера двигателя
  • МОП-транзисторы
  • Лазерные диоды
  • Датчики изображения
  • Радиочастотные устройства
  • Силовые устройства
  • Реле
  • Разъемы
  • Датчики для автоматизации производства
  • Устройства FA
  • Двигатели для FA и промышленного применения
  • Двигатели для предприятий / бытовой техники и автомобилей
  • Компрессоры
  • Насосы постоянного тока
  • Носители записи
  • Оптические компоненты
  • Пользовательские устройства
  • Модульные устройства
  • FA
  • Сварочные аппараты, промышленные роботы
  • Устройства FA
  • Вторичные батареи (аккумуляторные батареи)
  • Первичные батареи
  • Материалы печатных плат
  • Полупроводниковые герметизирующие материалы, клеи
  • Пластиковый формовочный компаунд
  • Продвинутые фильмы
  • Монокристалл оксида цинка Pana-Tetra
  • Составная смола Pana-Tetra
  • Пленка для предотвращения электрификации Pana-Tetra
  • Чистящее средство «AMTECLEAN A» для литьевых машин
  • «AMTECLEAN Z» Неорганическое противомикробное средство
  • Проводящие полимерные алюминиевые электролитические конденсаторы (SP-Cap)
  • Твердотельные конденсаторы из токопроводящего полимера и тантала (POSCAP)
  • Проводящие полимерные алюминиевые твердотельные конденсаторы (OS-CON)
  • Гибридные алюминиевые электролитические конденсаторы с проводящим полимером
  • Проводящие полимерные алюминиевые твердотельные конденсаторы (OS-CON)
  • Гибридные алюминиевые электролитические конденсаторы с проводящим полимером
  • Алюминиевые электролитические конденсаторы (поверхностного монтажа)
  • Алюминиевые электролитические конденсаторы (с радиальными выводами)
  • Двухслойные электрические конденсаторы (намотанного типа)
  • Пленочные конденсаторы (для электронного оборудования)
  • Пленочные конденсаторы (для двигателей переменного тока)
  • Пленочные конденсаторы (автомобильные, промышленные и инфраструктурные)
  • Высокоточные чип-резисторы
  • Токочувствительные чип-резисторы
  • Микро-резисторы малой и большой мощности
  • Антисульфированные чип-резисторы
  • Чип-резисторы общего назначения
  • Сетевой резистор
  • Резисторы с выводами
  • Аттенюатор
  • Силовые индукторы для автомобильного применения
  • Силовые индукторы для потребителей
  • Силовые индукторы многослойного типа
  • Катушки повышения напряжения
  • Лист термозащиты (Графитовый лист (PGS) / продукты, применяемые PGS / NASBIS)
  • Термистор NTC (чип)
  • Вентилятор охлаждения с уникальным гидродинамическим подшипником
  • Материалы печатных плат для светодиодных светильников / силовых модулей серии «ECOOL»
  • Фильтры синфазных помех
  • Пленка для защиты от электромагнитных волн
  • Подавитель ЭСР
  • Варистор микросхемы
  • Поглотители перенапряжения
.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *