С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘163 нанофарад’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘нанофарад’ или ‘нФ’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Ёмкость’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’40
Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(83 * 53) нФ’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии.3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.
Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 3,317 759 969 808 4×1026. В этой форме представление числа разделяется на экспоненту, здесь 26, и фактическое число, здесь 3,317 759 969 808 4. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 3,317 759 969 808 4E+26. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 331 775 996 980 840 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.
нанофарад (единица измерения)
Время Динамическая вязкость Кинематическая вязкость Давление, механическое напряжение Длина и расстояние Объем данных Скорость передачи данных Количество вещества Концентрация вещества Массовая концентрация Молярная концентрация Крутящий момент Магнитная индукция Магнитный поток Магнитодвижущая сила Напряженность магнитного поля Масса Момент инерции Мощность Объем, емкость Площадь Мощность поглощенной дозы ионизирующего излучения Радиация. Поглощённая доза Радиация. Экспозиционная доза Радиоактивность. Радиоактивный распад Расход массовый Расход молярный Расход объемный Свет, фотометрия Освещенность Сила света Яркость Сила Линейная скорость Угловая скорость (скорость вращения) Ускорение линейное Ускорение угловое Твердость Температура Коэффициент теплоотдачи Термическое сопротивление Удельная теплопроводность Удельная теплота сгорания (по массе) Удельная теплота сгорания топлива (по объему) Удельная теплоёмкость Энергетическая экспозиция, мощность теплового излучения Углы Уровень звука Частота Индуктивность Линейная плотность заряда Напряжённость электрического поля Объемная плотность заряда Поверхностная плотность заряда Поверхностная плотность тока Удельная электрическая проводимость Удельное электрическое сопротивление Электрическая емкость Электрическая проводимость Электрический заряд Электрический ток Электрическое сопротивление Электростатический потенциал и напряжение Энергия и работа Разрешение в компьютерной графике
Работаем с цифровым мультиметром. Часть 3
Добрый день, друзья!
Не так давно мы с вами учились работать с цифровым мультиметром и ознакомились с тем, как измерять ток и напряжение. Это две величины, с которыми чаще всего имеют дело. Но есть и другие параметры, которые могут измеряться цифровыми приборами.
Хорошо бы научиться измерять и их. Вы же хотите стать экспертом в измерениях, правда? Тогда давайте с вами посмотрим
Как измерить емкость конденсатора
Конденсаторы широко применяются в качестве накопителей энергии в источниках питания.
В компьютерном блоке питания их может быть более десятка.
И на материнской плате компьютера их натыкано видимо-невидимо.
За измерение емкости отвечает отдельная группа позиций (внизу слева, левее группы измерения тока). На корпусе вблизи этой области нанесена буква F (Farade, фарада, единица измерения емкости). Емкость измеряют в 5 поддиапазонах: 0 — 2 nF (нанофарад, нФ), 0 — 20 nF, 0 — 200 nF, 0 — 2 мкФ (микрофарад) , 0 — 20 мкФ.
Напомним, что 1 нФ = 1000 пФ (пикофарад), 1 мкФ = 1000 нФ. Отметим, что емкость в 1 Фарад очень велика. Электролитические конденсаторы в блоках питания и на материнской плате имеет емкость в сотни и тысячи микрофарад. Керамические блокировочные конденсаторы имеют емкость в десятки и сотни нанофарад.
Конденсатор при измерении емкости присоединяют не к щупам, а вставляют выводами в специальное гнездо. Это не всегда удобно, так как конденсатор (особенно выпаянный), часто имеет короткие выводы.
Если вставить в гнезда короткие металлические пластинки, удобство пользования тестером возрастает.
Теперь при измерении емкости достаточно коснуться выводами конденсатора металлических пластинок.
Отметим, что хорошо было бы в таких мультиметрах расширить пределы измерения в верхнюю сторону. Большинство электролитических конденсаторов, устанавливаемых в компьютерные блоки питания или на материнские платы, имеет гораздо большую емкость.
Существуют специальные измерители не только емкости, но и ESR (Equivalent Series Resistance, эквивалентное последовательное сопротивление) конденсаторов. Они позволяют оценить емкость в десятки и сотни тысяч микрофарад.
Измерения сопротивления
Следующая группа позиций — для измерения сопротивления (на 7 поддиаазонах): 0 — 200 Ом, 0 — 2 кОм, 0 — 20 кОм, 0 — 200 кОм, 0 — 2 МОм, 0 — 20 МОм, 0 — 200 МОм . Вблизи этой группы нанесен специальный значок (греческая буква Омега).Деление на поддиапазоны обусловлено стремлением точнее измерить величину сопротивления.
Например, сопротивление в несколько Ом лучше измерять на поддиапазоне 0 – 200 Ом, а не на верхних.
На верхних диапазонах будет либо пониженная точность, либо вообще «0» кОм (Мом). Если измерять большие значения сопротивления на нижних диапазонах, то прибор покажет превышение значения (минус и единицу в самом левом разряде).
На младшем поддиапазоне есть возможность «прозвонки» цепей, если их сопротивление не превышает некоей величины (для данного прибора — около 50 Ом).
При этом прибор издает звуковой сигнал. Это очень удобно, в частности, при поиске жил в кабельных соединениях. При этом можно не смотреть на табло прибора, что экономит время.
При измерении сопротивления на самом нижнем поддиапазоне надо учитывать, что щупы прибора также имеют некоторое сопротивление.
Если их замкнуть между собой, прибор покажет не «0» Ом, а некоторую небольшую величину (в диапазоне примерно 0,5 – 1 Ом). Эту величину надо вычесть из измеренного значения.
Отметим, что проводники из металлов имеют небольшое сопротивление. Лучшими проводниками являются медь и серебро. Поэтому, например, обмотки трансформаторов выполняют из медных проводов, а сильноточные контакты покрывают слоем серебра. Чем меньше сопротивление проводника, тем меньше он греется.
Сплавы металлов имеют повышенное сопротивление, соответственно, они сильнее греются, поэтому из них изготавливают различные нагреватели. Кстати сказать, в паяльниках, которые используют при пайке часто используется нихром (сплав НИкеля и ХРОМа).
Изоляторы, наоборот, имеют очень большое сопротивление, поэтому при прикладывании к ним напряжения ток через них практически не протекает. Пример изолятора – стеклотекстолит, из которого изготовлена материнская плата компьютера.
Заканчивая тему измерения сопротивления, отметим, что сопротивление тела человека лежит в пределах от нескольких килоом до нескольких десятков или сотен килоом и зависит от состояния его здоровья и кожных покровов.
Теперь вы знаете, как выполнять измерения и можете оценить сопротивление своего тела. И похвастаться этой величиной и своим умением перед товарищами :yes:
В заключение расскажем, как выполнить
Измерение температуры
Мультиметр может измерять и температуру.
При этом переключатель ставится напротив зеленой метки «Temp».
В гнездо выше переключателя ставится термопара типа К. Термопара — это два проводника из разных сплавов, спаянные в одной точке. При этом на противоположных концах возникает термоЭДС (электродвижущая сила).
Чем сильнее нагрето место спая, тем больше термоЭДС. Прибор измеряет это значение и выводит сразу температуру в привычных нам градусах Цельсия. Отметим, что термопара обладает некоторой инерционностью, особенно при измерении больших температур.
Термопарой можно измерить температуру жала паяльника. При этом важно обеспечить надежный тепловой контакт между нею (шариком спая) и жалом. Отметим, что паяльник в паяльных станциях имеет встроенный датчик, при этом температура жала показывается на специальном табло.
У нас осталась не рассмотренной важная тема – как проверять с помощью цифрового мультиметра полупроводниковые приборы. Этим мы займемся в следующих постах.
Всего наилучшего!
С вами бы Виктор Геронда. До встречи на блоге!
Огромный конденсатор рекомендуется в спецификации для аудио усилителя
Пример схемы имеет только 100 мкФ + 0,1 мкФ + 1000 пФ по рельсам.
Считаете ли вы, что «мф» может быть опечаткой? В одном месте в техническом описании typically 0.1 mF to 1 uF
указано значение typically 0.1 mF to 1 uF
. Интересно, они хотели набрать n и случайно нажали m. Кроме того, я скопировал символ u
из PDF, и он был напечатан как m
когда он был вставлен. В этом может быть виноват Cut & Paste, он, безусловно, используется в различных таблицах данных TI.
Кроме того, миллифарады стали почти неиспользованной единицей. Обычно это Farads -> microFarads -> (nanoFarads — несколько необычно) -> picoFarads.
Кроме того, рассмотрение оценочного комплекта TPA3111 является информативным:
Устройство обходят двумя электролитиками 100 мкФ (вместе с керамикой 0,1 мкФ и 1000 мкФ).
Кроме того, смотреть на аналогичные части из той же линии является информативным. TPA3110 (15 Вт против 10 Вт для TPA3111) просто говорит, что a larger aluminum electrolytic capacitor of 220 uF or greater placed near the audio power amplifier is recommended
. Стоит отметить, что в примерных схемах той же таблицы данных используются только две заглушки 100 мкФ для обхода.
То же примечание, что и в TPA3111, присутствует в техническом описании TPA3112.
Стоит также отметить, что у TPA3110 и TPA3113 есть идентичные параграфы «Отключение источника питания», несмотря на то, что один составляет половину мощности другого (15 Вт против 6 Вт), что еще больше склоняет меня к мысли о опечатке.
TPA3123 мощностью 25 Вт рекомендует только 470 мкФ полной емкости.
TAS5121 мощностью 100 Вт рекомендует только 1000 мкФ.
Изменить: мы увидим, если это опечатка: «Ниже то, что вы отправили на [email protected] во вторник, 26 июля 2011 года в 04:13:23; E-mail: tis-doc [email protected] Номер подсветки: SLOS618BB Номер детали: Ошибка TPA3111D1 Страница №: 19 Описание ошибки: Пожалуйста, ознакомьтесь с этой веткой: рекомендуется использовать ОГРОМНЫЙ конденсатор в спецификации для усилителя звука »
Маркировка конденсаторов пленочных 100н 100в. Маркировка конденсаторов
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов. Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре. Естественно, перед вторичным использованием необходимо проверять конденсаторы , особенно ёмкость электролитических , которые сильнее подвержены старению.
При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает.
У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.
Первое, это номинальная ёмкость конденсатора . Измеряется в долях Фарады.
Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
Третье, что указывается в маркировке конденсатора, это допустимое рабочее напряжение . Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.
Итак, разберёмся в том, как маркируют конденсаторы постоянной ёмкости.
Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от маркировки отечественных производителей.
Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Конденсаторы серии К73 и их маркировка
Правила маркировки.
Номинальная ёмкость конденсатора.
Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n .
Обозначение 100n
– это значение номинальной ёмкости конденсатора. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).
Можно встретить маркировку вида 47H C. Данная маркировка ёмкости соответствует маркировке 47n K и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.
Для того чтобы легко определять ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения.
Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М
условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость конденсатора является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что ёмкость конденсатора с маркировкой M10С равно ёмкости конденсатора с маркировкой 100nJ. Только условная маркировка чуть отличается.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M , m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код ёмкости.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220 000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах . При 221, ёмкость равна 220 пФ, при 220 – 22 пФ. Если же в маркировке конденсатора используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 – 47,2 нФ.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости для конденсатора аналогично допуску у резисторов.
Буквенный код отклонения ёмкости конденсатора (допуск).
Так если конденсатор со следующей маркировкой – M47C, то его ёмкость 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H , M , J , K . Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK , 220nM , 470nJ .
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов.
Д опуск в % | Б уквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0…+100 | P | |
-10…+30 | Q | |
± 22 | S | |
-0…+50 | T | |
-0…+75 | U | Э |
-10…+100 | W | Ю |
-20…+5 | Y | Б |
-20…+80 | Z | А |
Допустимое рабочее напряжение конденсатора.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя конденсаторов. Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения конденсатора указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.
Н оминальное рабочее напряжение , B | Б уквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Это наиболее важные параметры конденсаторов, которые стоит знать при подборе нужного конденсатора. Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Длина и расстояние Масса Меры объема сыпучих продуктов и продуктов питания Площадь Объем и единицы измерения в кулинарных рецептах Температура Давление, механическое напряжение, модуль Юнга Энергия и работа Мощность Сила Время Линейная скорость Плоский угол Тепловая эффективность и топливная экономичность Числа Единицы измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и частота вращения Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момент силы Вращающий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива (по объему) Разность температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоёмкость Энергетическая экспозиция, мощность теплового излучения Плотность теплового потока Коэффициент теплоотдачи Объёмный расход Массовый расход Молярный расход Плотность потока массы Молярная концентрация Массовая концентрация в растворе Динамическая (абсолютная) вязкость Кинематическая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость переноса пара Уровень звука Чувствительность микрофонов Уровень звукового давления (SPL) Яркость Сила света Освещённость Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Электрический заряд Линейная плотность заряда Поверхностная плотность заряда Объемная плотность заряда Электрический ток Линейная плотность тока Поверхностная плотность тока Напряжённость электрического поля Электростатический потенциал и напряжение Электрическое сопротивление Удельное электрическое сопротивление Электрическая проводимость Удельная электрическая проводимость Электрическая емкость Индуктивность Американский калибр проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Магнитодвижущая сила Напряженность магнитного поля Магнитный поток Магнитная индукция Мощность поглощенной дозы ионизирующего излучения Радиоактивность. Радиоактивный распад Радиация. Экспозиционная доза Радиация. Поглощённая доза Десятичные приставки Передача данных Типографика и обработка изображений Единицы измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева
1 нанофарад [нФ] = 0,001 микрофарад [мкФ]
Исходная величина
Преобразованная величина
фарад эксафарад петафарад терафарад гигафарад мегафарад килофарад гектофарад декафарад децифарад сантифарад миллифарад микрофарад нанофарад пикофарад фемтофарад аттофарад кулон на вольт абфарад единица емкости СГСМ статфарад единица емкости СГСЭ
Общие сведения
Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:
C = Q/∆φ
Здесь Q — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).
В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.
Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).
Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.
В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.
Использование емкости
Конденсаторы — устройства для накопления заряда в электронном оборудовании
Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор — система двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (обкладок). Конденсатор (от лат. condensare — «уплотнять», «сгущать») — двухэлектродный прибор для накопления заряда и энергии электромагнитного поля, в простейшем случае представляет собой два проводника, разделённые каким-либо изолятором. Например, иногда радиолюбители при отсутствии готовых деталей изготавливают подстроечные конденсаторы для своих схем из отрезков проводов разного диаметра, изолированных лаковым покрытием, при этом более тонкий провод наматывается на более толстый. Регулируя число витков, радиолюбители точно настраивают контура аппаратуры на нужную частоту. Примеры изображения конденсаторов на электрических схемах приведены на рисунке.
Историческая справка
Еще 275 лет назад были известны принципы создания конденсаторов. Так, в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, а обкладками служили вода в сосуде и ладонь экспериментатора, державшая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как ее изобрели, с ней часто проводили эксперименты и публичные представления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикасался к банке рукой, и получал небольшой удар током. Известно, что 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, с ужасом вскрикнули.
В Россию «лейденская банка» пришла благодаря русскому царю Петру I, который познакомился с Мушенбруком во время путешествий по Европе, и подробнее узнал об экспериментах с «лейденской банкой». Петр I учредил в России Академию наук, и заказал Мушенбруку разнообразные приборы для Академии наук.
В дальнейшем конденсаторы усовершенствовались и становились меньше, а их емкость — больше. Конденсаторы широко применяются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который может быть использован для настройки приемника на нужную частоту.
Существует несколько типов конденсаторов, отличающихся постоянной или переменной емкостью и материалом диэлектрика.
Примеры конденсаторов
Промышленность выпускает большое количество типов конденсаторов различного назначения, но главными их характеристиками являются ёмкость и рабочее напряжение.
Типичные значение ёмкости конденсаторов изменяются от единиц пикофарад до сотен микрофарад, исключение составляют ионисторы, которые имеют несколько иной характер формирования ёмкости – за счёт двойного слоя у электродов – в этом они подобны электрохимическим аккумуляторам. Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую поверхность электродов. У этих типов конденсаторов типичные значения ёмкости составляют десятки фарад, и в некоторых случаях они способны заменить в качестве источников тока традиционные электрохимические аккумуляторы.
Вторым по важности параметром конденсаторов является его рабочее напряжение . Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято применять конденсаторы с удвоенным значением рабочего напряжения.
Для увеличения значений ёмкости или рабочего напряжения используют приём объединения конденсаторов в батареи. При последовательном соединении двух однотипных конденсаторов рабочее напряжение удваивается, а суммарная ёмкость уменьшается в два раза. При параллельном соединении двух однотипных конденсаторов рабочее напряжение остаётся прежним, а суммарная ёмкость увеличивается в два раза.
Третьим по важности параметром конденсаторов является температурный коэффициент изменения ёмкости (ТКЕ) . Он даёт представление об изменении ёмкости в условиях изменения температур.
В зависимости от назначения использования, конденсаторы подразделяются на конденсаторы общего назначения, требования к параметрам которых некритичны, и на конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).
Маркировка конденсаторов
Подобно резисторам, в зависимости от габаритов изделия, может применяться полная маркировка с указанием номинальной ёмкости, класса отклонения от номинала и рабочего напряжения. Для малогабаритных исполнений конденсаторов применяют кодовую маркировку из трёх или четырёх цифр, смешанную цифро-буквенную маркировку и цветовую маркировку.
Соответствующие таблицы пересчёта маркировок по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но самым действенным и практичным методом проверки номинала и исправности элемента реальной схемы остаётся непосредственное измерение параметров выпаянного конденсатора с помощью мультиметра.
Предупреждение: поскольку конденсаторы могут накапливать большой заряд при весьма высоком напряжении, во избежание поражения электрическим током необходимо перед измерением параметров конденсатора разряжать его, закоротив его выводы проводом с высоким сопротивлением внешней изоляции. Лучше всего для этого подходят штатные провода измерительного прибора.
Оксидные конденсаторы: данный тип конденсатора обладает большой удельной емкостью, то есть, емкостью на единицу веса конденсатора. Одна обкладка таких конденсаторов представляет собой обычно алюминиевую ленту, покрытую слоем оксида алюминия. Второй обкладкой служит электролит. Так как оксидные конденсаторы имеют полярность, то принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.
Твердотельные конденсаторы: в них вместо традиционного электролита в качестве обкладки используется органический полимер, проводящий ток, или полупроводник.
Переменные конденсаторы: емкость может меняться механическим способом, электрическим напряжением или с помощью температуры.
Пленочные конденсаторы: диапазон емкости данного типа конденсаторов составляет примерно от 5 пФ до 100 мкФ.
Имеются и другие типы конденсаторов.
Ионисторы
В наши дни популярность набирают ионисторы. Ионистор (суперконденсатор) — это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред — электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых угольных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология дополнялась и улучшалась. На рынок ионисторы вышли в начале восьмидесятых годов прошлого века.
С появлением ионисторов появилась возможность использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют долгий срок службы, малый вес, высокие скорости зарядки-разрядки. В перспективе данный вид конденсаторов может заменить обычные аккумуляторы. Основными недостатками ионисторов является меньшая, чем у электрохимических аккумуляторов удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.
Ионисторы применяются в автомобилях Формулы-1. В системах рекуперации энергии, при торможении вырабатывается электроэнергия, которая накапливается в маховике, аккумуляторах или ионисторах для дальнейшего использования.
В бытовой электронике ионисторы применяются для стабилизации основного питания и в качестве резервного источника питания таких приборов как плееры, фонари, в автоматических коммунальных счетчиках и в других устройствах с батарейным питанием и изменяющейся нагрузкой, обеспечивая питание при повышенной нагрузке.
В общественном транспорте применение ионисторов особенно перспективно для троллейбусов, так как становится возможна реализация автономного хода и увеличения маневренности; также ионисторы используются в некоторых автобусах и электромобилях.
Электрические автомобили в настоящем времени выпускают многие компании, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с компанией Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионисторы вместе с химическими источниками питания, так называемое гибридное электрическое хранение энергии. Двигатели данного автомобиля питаются от аккумуляторов весом 380 килограмм. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.
Емкостные сенсорные экраны
В современных устройствах все чаще применяются сенсорные экраны, которые позволяют управлять устройствами путем прикосновения к панелям с индикаторами или экранам. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных касаний. Принцип работы емкостных экранов основывается на том, что предмет большой емкости проводит переменный ток. В данном случае этим предметом является тело человека.
Поверхностно-емкостные экраны
Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно применяется имеющий высокую прозрачность и малое поверхностное сопротивление сплав оксида индия и оксида олова. Электроды, подающие на проводящий слой небольшое переменное напряжение, располагаются по углам экрана. При касании к такому экрану пальцем появляется утечка тока, которая регистрируется в четырех углах датчиками и передается в контроллер, который определяет координаты точки касания.
Преимущество таких экранов заключается в долговечности (около 6,5 лет нажатий с промежутком в одну секунду или порядка 200 млн. нажатий). Они обладают высокой прозрачностью (примерно 90%). Благодаря этим преимуществам, емкостные экраны уже с 2009 года активно начали вытеснять резистивные экраны.
Недостаток емкостных экранов заключается в том, что они плохо работают при отрицательных температурах, есть трудности с использованием таких экранов в перчатках. Если проводящее покрытие расположено на внешней поверхности, то экран является достаточно уязвимым, поэтому емкостные экраны применяются лишь в тех устройствах, которые защищены от непогоды.
Проекционно-емкостные экраны
Помимо поверхностно-емкостных экранов, существуют проекционно-емкостные экраны. Их отличие заключается в том, что на внутренней стороне экрана нанесена сетка электродов. Электрод, к которому прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке, можно получить точные координаты касания. Проекционно-емкостный экран реагирует на касания в тонких перчатках.
Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они долговечны и достаточно прочные, поэтому их широко применяют не только в персональной электронике, но и в автоматах, в том числе установленных на улице.
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Самый простой состоит из двух металлических пластин (обкладок), разделенных тонким слоем диэлектрика (изолятора), в качестве которого может служить воздух, фарфор, слюда, керамика, бумага или другой материал, обладающий достаточно большим сопротивлением.Единицей электрической емкости конденсатора является фарада (Ф) — дань памяти великому английскому ученому Майклу Фарадею.
В радиоэлектронике используются конденсаторы, емкость которых составляет дробные единицы фарад: пикофарады (пФ), нанофарады (нФ), микрофарады (мкФ).
1 Ф (фарада) = 1000000 мкФ (микрофарад)
1 мкФ (микрофарада) = 1000 нФ (нанофарад) = 1000000 пФ (пикофарад)
1 нФ (нанофарад) = 1000 пФ (пикофарад)
Керамические конденсаторы |
Наибольшее распространение имеют керамические конденсаторы. Емкость керамических конденсаторов составляет единицы — тысячи пикофарад.
Самой большой емкостью обладают электролитические конденсаторы , у которых в качестве изолятора используется тончайший слой окисла, получаемый электролитическим способом. Емкость электролитических конденсаторов может достигать тысяч микрофарад. Электролитические конденсаторы, как правило, полярные, т. е. имеют положительный и отрицательный полюса. Нарушение правильной полярности при включении электролитического конденсатора в цепь недопустимо, так как может вывести его из строя.
На корпусе конденсаторов наряду со значением их емкости и величиной ее возможного отклонения от номинала обычно указывается значение рабочего электрического напряжения. На конденсаторах, в основном, указано номинальное рабочее напряжение при постоянном токе. Включение конденсатора в цепь, напряжение в которой превосходит его рабочее напряжение, не допускается, так как происходит разрушение изолятора, вследствие чего конденсатор выходит из строя.
Конденсаторы, емкость которых можно менять в заданных интервалах, называются конденсаторами переменной емкости и подстроечными.
Для конденсаторов постоянной емкости на схеме рядом с условным графическим обозначением указывают значение емкости. При емкости менее 0,01 мкФ (10000 пФ) ставят число пикофарад без обозначения размерности, например, 15, 220, 9100. Для емкости 0,01 мкФ и более ставят число микрофарад.
У электролитических конденсаторов возле одной из обкладок ставят плюс. Такой же знак обычно стоит и на корпусе конденсатора около соответствующего вывода. Также чаще всего указывают номинальное напряжение.
Для конденсаторов переменной емкости и подстроечных указывают пределы изменения емкости при крайних положениях ротора, например, 6…30, 10…180, 6…470.
Маркировка конденсаторов
При обозначении номинала на зарубежных керамических конденсаторах часто используется специальная кодировка, при которой последняя цифра в числе обозначает количество нулей (емкость в пикофарадах). Например:
Заряд конденсатора
Рассмотрим процесс накопления конденсатором электрической энергии. Подсоединим обкладки конденсатора к полюсам источника тока. В момент замыкания цепи на обкладках конденсатора начнет накапливаться заряд. Как только напряжение на конденсаторе уравнивается с напряжением источника, процесс заряда конденсатора закончится и ток в цепи станет равным нулю. Таким образом, по окончании заряда цепь постоянного тока окажется разомкнутой. Если теперь несколько увеличить напряжение источника, то конденсатор накопит еще некоторый заряд. Чем больше емкость конденсатора, тем больший заряд будет на его обкладках при заданном значении напряжения между обкладками.
Если цепь конденсатора и источника постоянного тока разорвать, то конденсатор остается заряженным. Заряженный конденсатор может быть использован в качестве источника энергии, которая накоплена в нем в виде энергии электрического поля зарядов на обкладках. Именно таким образом используют конденсатор в солнечных двигателях BEAM-роботов. Источником электроэнергии при этом является солнечная батарея.
Посмотрим, что произойдет, если теперь подключить заряженный конденсатор, например, к светодиоду (с учетом полярностей). В получившейся цепи снова потечет ток (ток разряда конденсатора). Этот ток имеет направление, противоположное току заряда, то есть вытекает из положительно заряженной обкладки конденсатора как из положительного полюса источника. По мере разряда напряжение на конденсаторе уменьшится, и ток в цепи начнет убывать. В момент окончания разряда энергия конденсатора окажется полностью израсходованной, и ток в цепи исчезнет.
1. Маркировка тремя цифрами .
В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
2. Маркировка четырьмя цифрами .
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:
1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ .
3. Буквенно-цифровая маркировка .
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ, 22p = 22 пФ, 2н2 = 2.2 нФ, 4n7 = 4,7 нФ, μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n».
Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:
0R5 = 0,5 пФ, R47 = 0,47 мкФ, 6R8 = 6,8 мкФ
4. Планарные керамические конденсаторы .
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
5. Планарные электролитические конденсаторы .
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:
По таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
Конденсатор можно сравнить с небольшим аккумулятором, он умеет быстро накапливать и так же быстро ее отдавать. Основной параметр конденсатора – это его емкость (C) . Важным свойством конденсатора, является то, что он оказывает переменному току сопротивление, чем больше частота переменного тока, тем меньше сопротивление. Постоянный ток конденсатор не пропускает.
Как и , конденсаторы бывают постоянной емкости и переменной емкости. Применение конденсаторы находят в колебательных контурах, различных фильтрах, для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.
Основная единица измерения емкости – фарад (Ф) – это очень большая величина, которая на практике не применяется. В электронике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ) . 1 мкФ равен одной миллионной доле фарада, а 1 пФ – одной миллионной доле микрофарада.
На электрических принципиальных схемах конденсатор отображается в виде двух параллельных линий символизирующих его основные части: две обкладки и диэлектрик между ними. Возле обозначения конденсатора обычно указывают его номинальную емкость, а иногда его номинальное напряжение.
Номинальное напряжение – значение напряжения указанное на корпусе конденсатора, при котором гарантируется нормальная работа в течение всего срока службы конденсатора. Если напряжение в цепи будет превышать номинальное напряжение конденсатора, то он быстро выйдет из строя, может даже взорваться. Рекомендуется ставить конденсаторы с запасом по напряжению, например: в цепи напряжение 9 вольт – нужно ставить конденсатор с номинальным напряжением 16 вольт или больше.
Температурный коэффициент емкости конденсатора (ТКЕ)
ТКЕ показывает относительное изменение емкости при изменении температуры на один градус. ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения на корпусе.
Маркировка емкости конденсаторов
Емкость от 0 до 9999 пФ может быть указана без обозначения единицы измерения:
22 = 22p = 22П = 22пФ
Если емкость меньше 10пФ, то обозначение может быть таким:
1R5 = 1П5 = 1,5пФ
Так же конденсаторы маркируют в нанофарадах (нФ) , 1 нанофарад равен 1000пФ и микрофарадах (мкФ) :
10n = 10Н = 10нФ = 0,01мкФ = 10000пФ
Н18 = 0,18нФ = 180пФ
1n0 = 1Н0 = 1нФ = 1000пФ
330Н = 330n = М33 = m33 = 330нФ = 0,33мкФ = 330000пФ
100Н = 100n = М10 = m10 = 100нФ = 0,1мкФ = 100000пФ
1Н5 = 1n5 = 1,5нФ = 1500пФ
4n7 = 4Н7 = 0,0047мкФ = 4700пФ
6М8 = 6,8мкФ
Цифровая маркировка конденсаторов
Если код трехзначный, то первые две цифры обозначают значение, третья – количество нулей, результат в пикофарадах.
Например: код 104, к первым двум цифрам приписываем четыре нуля, получаем 100000пФ = 100нФ = 0,1мкФ.
Если код четырехзначный, то первые три цифры обозначают значение, четвертая – количество нулей, результат тоже в пикофарадах.
4722 = 47200пФ = 47,2нФ
Электролитические конденсаторы
Для работы в диапазоне звуковых частот, а так же для фильтрации выпрямленных напряжений питания, необходимы конденсаторы большой емкости. Такие конденсаторы называются – электролитическими. В отличие от других типов электролитические конденсаторы полярны, это значит, что их можно включать только в цепи постоянного или пульсирующего напряжения и только в той полярности, которая указана на корпусе конденсатора. Не выполнение этого условия приводит к выходу конденсатора из строя, что часто сопровождается взрывом.
Маркировка конденсаторов переменной емкости. Маркировка конденсаторов
Длина и расстояние Масса Меры объема сыпучих продуктов и продуктов питания Площадь Объем и единицы измерения в кулинарных рецептах Температура Давление, механическое напряжение, модуль Юнга Энергия и работа Мощность Сила Время Линейная скорость Плоский угол Тепловая эффективность и топливная экономичность Числа Единицы измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и частота вращения Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момент силы Вращающий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива (по объему) Разность температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоёмкость Энергетическая экспозиция, мощность теплового излучения Плотность теплового потока Коэффициент теплоотдачи Объёмный расход Массовый расход Молярный расход Плотность потока массы Молярная концентрация Массовая концентрация в растворе Динамическая (абсолютная) вязкость Кинематическая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость переноса пара Уровень звука Чувствительность микрофонов Уровень звукового давления (SPL) Яркость Сила света Освещённость Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Электрический заряд Линейная плотность заряда Поверхностная плотность заряда Объемная плотность заряда Электрический ток Линейная плотность тока Поверхностная плотность тока Напряжённость электрического поля Электростатический потенциал и напряжение Электрическое сопротивление Удельное электрическое сопротивление Электрическая проводимость Удельная электрическая проводимость Электрическая емкость Индуктивность Американский калибр проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Магнитодвижущая сила Напряженность магнитного поля Магнитный поток Магнитная индукция Мощность поглощенной дозы ионизирующего излучения Радиоактивность. Радиоактивный распад Радиация. Экспозиционная доза Радиация. Поглощённая доза Десятичные приставки Передача данных Типографика и обработка изображений Единицы измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева
1 нанофарад [нФ] = 0,001 микрофарад [мкФ]
Исходная величина
Преобразованная величина
фарад эксафарад петафарад терафарад гигафарад мегафарад килофарад гектофарад декафарад децифарад сантифарад миллифарад микрофарад нанофарад пикофарад фемтофарад аттофарад кулон на вольт абфарад единица емкости СГСМ статфарад единица емкости СГСЭ
Общие сведения
Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:
C = Q/∆φ
Здесь Q — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).
В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.
Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).
Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.
В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.
Использование емкости
Конденсаторы — устройства для накопления заряда в электронном оборудовании
Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор — система двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (обкладок). Конденсатор (от лат. condensare — «уплотнять», «сгущать») — двухэлектродный прибор для накопления заряда и энергии электромагнитного поля, в простейшем случае представляет собой два проводника, разделённые каким-либо изолятором. Например, иногда радиолюбители при отсутствии готовых деталей изготавливают подстроечные конденсаторы для своих схем из отрезков проводов разного диаметра, изолированных лаковым покрытием, при этом более тонкий провод наматывается на более толстый. Регулируя число витков, радиолюбители точно настраивают контура аппаратуры на нужную частоту. Примеры изображения конденсаторов на электрических схемах приведены на рисунке.
Историческая справка
Еще 275 лет назад были известны принципы создания конденсаторов. Так, в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, а обкладками служили вода в сосуде и ладонь экспериментатора, державшая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как ее изобрели, с ней часто проводили эксперименты и публичные представления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикасался к банке рукой, и получал небольшой удар током. Известно, что 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, с ужасом вскрикнули.
В Россию «лейденская банка» пришла благодаря русскому царю Петру I, который познакомился с Мушенбруком во время путешествий по Европе, и подробнее узнал об экспериментах с «лейденской банкой». Петр I учредил в России Академию наук, и заказал Мушенбруку разнообразные приборы для Академии наук.
В дальнейшем конденсаторы усовершенствовались и становились меньше, а их емкость — больше. Конденсаторы широко применяются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который может быть использован для настройки приемника на нужную частоту.
Существует несколько типов конденсаторов, отличающихся постоянной или переменной емкостью и материалом диэлектрика.
Примеры конденсаторов
Промышленность выпускает большое количество типов конденсаторов различного назначения, но главными их характеристиками являются ёмкость и рабочее напряжение.
Типичные значение ёмкости конденсаторов изменяются от единиц пикофарад до сотен микрофарад, исключение составляют ионисторы, которые имеют несколько иной характер формирования ёмкости – за счёт двойного слоя у электродов – в этом они подобны электрохимическим аккумуляторам. Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую поверхность электродов. У этих типов конденсаторов типичные значения ёмкости составляют десятки фарад, и в некоторых случаях они способны заменить в качестве источников тока традиционные электрохимические аккумуляторы.
Вторым по важности параметром конденсаторов является его рабочее напряжение . Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято применять конденсаторы с удвоенным значением рабочего напряжения.
Для увеличения значений ёмкости или рабочего напряжения используют приём объединения конденсаторов в батареи. При последовательном соединении двух однотипных конденсаторов рабочее напряжение удваивается, а суммарная ёмкость уменьшается в два раза. При параллельном соединении двух однотипных конденсаторов рабочее напряжение остаётся прежним, а суммарная ёмкость увеличивается в два раза.
Третьим по важности параметром конденсаторов является температурный коэффициент изменения ёмкости (ТКЕ) . Он даёт представление об изменении ёмкости в условиях изменения температур.
В зависимости от назначения использования, конденсаторы подразделяются на конденсаторы общего назначения, требования к параметрам которых некритичны, и на конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).
Маркировка конденсаторов
Подобно резисторам, в зависимости от габаритов изделия, может применяться полная маркировка с указанием номинальной ёмкости, класса отклонения от номинала и рабочего напряжения. Для малогабаритных исполнений конденсаторов применяют кодовую маркировку из трёх или четырёх цифр, смешанную цифро-буквенную маркировку и цветовую маркировку.
Соответствующие таблицы пересчёта маркировок по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но самым действенным и практичным методом проверки номинала и исправности элемента реальной схемы остаётся непосредственное измерение параметров выпаянного конденсатора с помощью мультиметра.
Предупреждение: поскольку конденсаторы могут накапливать большой заряд при весьма высоком напряжении, во избежание поражения электрическим током необходимо перед измерением параметров конденсатора разряжать его, закоротив его выводы проводом с высоким сопротивлением внешней изоляции. Лучше всего для этого подходят штатные провода измерительного прибора.
Оксидные конденсаторы: данный тип конденсатора обладает большой удельной емкостью, то есть, емкостью на единицу веса конденсатора. Одна обкладка таких конденсаторов представляет собой обычно алюминиевую ленту, покрытую слоем оксида алюминия. Второй обкладкой служит электролит. Так как оксидные конденсаторы имеют полярность, то принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.
Твердотельные конденсаторы: в них вместо традиционного электролита в качестве обкладки используется органический полимер, проводящий ток, или полупроводник.
Переменные конденсаторы: емкость может меняться механическим способом, электрическим напряжением или с помощью температуры.
Пленочные конденсаторы: диапазон емкости данного типа конденсаторов составляет примерно от 5 пФ до 100 мкФ.
Имеются и другие типы конденсаторов.
Ионисторы
В наши дни популярность набирают ионисторы. Ионистор (суперконденсатор) — это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред — электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых угольных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология дополнялась и улучшалась. На рынок ионисторы вышли в начале восьмидесятых годов прошлого века.
С появлением ионисторов появилась возможность использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют долгий срок службы, малый вес, высокие скорости зарядки-разрядки. В перспективе данный вид конденсаторов может заменить обычные аккумуляторы. Основными недостатками ионисторов является меньшая, чем у электрохимических аккумуляторов удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.
Ионисторы применяются в автомобилях Формулы-1. В системах рекуперации энергии, при торможении вырабатывается электроэнергия, которая накапливается в маховике, аккумуляторах или ионисторах для дальнейшего использования.
В бытовой электронике ионисторы применяются для стабилизации основного питания и в качестве резервного источника питания таких приборов как плееры, фонари, в автоматических коммунальных счетчиках и в других устройствах с батарейным питанием и изменяющейся нагрузкой, обеспечивая питание при повышенной нагрузке.
В общественном транспорте применение ионисторов особенно перспективно для троллейбусов, так как становится возможна реализация автономного хода и увеличения маневренности; также ионисторы используются в некоторых автобусах и электромобилях.
Электрические автомобили в настоящем времени выпускают многие компании, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с компанией Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионисторы вместе с химическими источниками питания, так называемое гибридное электрическое хранение энергии. Двигатели данного автомобиля питаются от аккумуляторов весом 380 килограмм. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.
Емкостные сенсорные экраны
В современных устройствах все чаще применяются сенсорные экраны, которые позволяют управлять устройствами путем прикосновения к панелям с индикаторами или экранам. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных касаний. Принцип работы емкостных экранов основывается на том, что предмет большой емкости проводит переменный ток. В данном случае этим предметом является тело человека.
Поверхностно-емкостные экраны
Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно применяется имеющий высокую прозрачность и малое поверхностное сопротивление сплав оксида индия и оксида олова. Электроды, подающие на проводящий слой небольшое переменное напряжение, располагаются по углам экрана. При касании к такому экрану пальцем появляется утечка тока, которая регистрируется в четырех углах датчиками и передается в контроллер, который определяет координаты точки касания.
Преимущество таких экранов заключается в долговечности (около 6,5 лет нажатий с промежутком в одну секунду или порядка 200 млн. нажатий). Они обладают высокой прозрачностью (примерно 90%). Благодаря этим преимуществам, емкостные экраны уже с 2009 года активно начали вытеснять резистивные экраны.
Недостаток емкостных экранов заключается в том, что они плохо работают при отрицательных температурах, есть трудности с использованием таких экранов в перчатках. Если проводящее покрытие расположено на внешней поверхности, то экран является достаточно уязвимым, поэтому емкостные экраны применяются лишь в тех устройствах, которые защищены от непогоды.
Проекционно-емкостные экраны
Помимо поверхностно-емкостных экранов, существуют проекционно-емкостные экраны. Их отличие заключается в том, что на внутренней стороне экрана нанесена сетка электродов. Электрод, к которому прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке, можно получить точные координаты касания. Проекционно-емкостный экран реагирует на касания в тонких перчатках.
Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они долговечны и достаточно прочные, поэтому их широко применяют не только в персональной электронике, но и в автоматах, в том числе установленных на улице.
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
1. Маркировка тремя цифрами .
В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
2. Маркировка четырьмя цифрами .
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:
1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ .
3. Буквенно-цифровая маркировка .
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ, 22p = 22 пФ, 2н2 = 2.2 нФ, 4n7 = 4,7 нФ, μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n».
Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:
0R5 = 0,5 пФ, R47 = 0,47 мкФ, 6R8 = 6,8 мкФ
4. Планарные керамические конденсаторы .
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
5. Планарные электролитические конденсаторы .
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:
По таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
Длина и расстояние Масса Меры объема сыпучих продуктов и продуктов питания Площадь Объем и единицы измерения в кулинарных рецептах Температура Давление, механическое напряжение, модуль Юнга Энергия и работа Мощность Сила Время Линейная скорость Плоский угол Тепловая эффективность и топливная экономичность Числа Единицы измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и частота вращения Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момент силы Вращающий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива (по объему) Разность температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоёмкость Энергетическая экспозиция, мощность теплового излучения Плотность теплового потока Коэффициент теплоотдачи Объёмный расход Массовый расход Молярный расход Плотность потока массы Молярная концентрация Массовая концентрация в растворе Динамическая (абсолютная) вязкость Кинематическая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость переноса пара Уровень звука Чувствительность микрофонов Уровень звукового давления (SPL) Яркость Сила света Освещённость Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Электрический заряд Линейная плотность заряда Поверхностная плотность заряда Объемная плотность заряда Электрический ток Линейная плотность тока Поверхностная плотность тока Напряжённость электрического поля Электростатический потенциал и напряжение Электрическое сопротивление Удельное электрическое сопротивление Электрическая проводимость Удельная электрическая проводимость Электрическая емкость Индуктивность Американский калибр проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Магнитодвижущая сила Напряженность магнитного поля Магнитный поток Магнитная индукция Мощность поглощенной дозы ионизирующего излучения Радиоактивность. Радиоактивный распад Радиация. Экспозиционная доза Радиация. Поглощённая доза Десятичные приставки Передача данных Типографика и обработка изображений Единицы измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева
1 микрофарад [мкФ] = 1000000 пикофарад [пФ]
Исходная величина
Преобразованная величина
фарад эксафарад петафарад терафарад гигафарад мегафарад килофарад гектофарад декафарад децифарад сантифарад миллифарад микрофарад нанофарад пикофарад фемтофарад аттофарад кулон на вольт абфарад единица емкости СГСМ статфарад единица емкости СГСЭ
Микрофоны и их технические характеристики
Общие сведения
Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:
C = Q/∆φ
Здесь Q — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).
В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.
Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).
Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.
В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.
Использование емкости
Конденсаторы — устройства для накопления заряда в электронном оборудовании
Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор — система двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (обкладок). Конденсатор (от лат. condensare — «уплотнять», «сгущать») — двухэлектродный прибор для накопления заряда и энергии электромагнитного поля, в простейшем случае представляет собой два проводника, разделённые каким-либо изолятором. Например, иногда радиолюбители при отсутствии готовых деталей изготавливают подстроечные конденсаторы для своих схем из отрезков проводов разного диаметра, изолированных лаковым покрытием, при этом более тонкий провод наматывается на более толстый. Регулируя число витков, радиолюбители точно настраивают контура аппаратуры на нужную частоту. Примеры изображения конденсаторов на электрических схемах приведены на рисунке.
Историческая справка
Еще 275 лет назад были известны принципы создания конденсаторов. Так, в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, а обкладками служили вода в сосуде и ладонь экспериментатора, державшая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как ее изобрели, с ней часто проводили эксперименты и публичные представления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикасался к банке рукой, и получал небольшой удар током. Известно, что 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, с ужасом вскрикнули.
В Россию «лейденская банка» пришла благодаря русскому царю Петру I, который познакомился с Мушенбруком во время путешествий по Европе, и подробнее узнал об экспериментах с «лейденской банкой». Петр I учредил в России Академию наук, и заказал Мушенбруку разнообразные приборы для Академии наук.
В дальнейшем конденсаторы усовершенствовались и становились меньше, а их емкость — больше. Конденсаторы широко применяются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который может быть использован для настройки приемника на нужную частоту.
Существует несколько типов конденсаторов, отличающихся постоянной или переменной емкостью и материалом диэлектрика.
Примеры конденсаторов
Промышленность выпускает большое количество типов конденсаторов различного назначения, но главными их характеристиками являются ёмкость и рабочее напряжение.
Типичные значение ёмкости конденсаторов изменяются от единиц пикофарад до сотен микрофарад, исключение составляют ионисторы, которые имеют несколько иной характер формирования ёмкости – за счёт двойного слоя у электродов – в этом они подобны электрохимическим аккумуляторам. Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую поверхность электродов. У этих типов конденсаторов типичные значения ёмкости составляют десятки фарад, и в некоторых случаях они способны заменить в качестве источников тока традиционные электрохимические аккумуляторы.
Вторым по важности параметром конденсаторов является его рабочее напряжение . Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято применять конденсаторы с удвоенным значением рабочего напряжения.
Для увеличения значений ёмкости или рабочего напряжения используют приём объединения конденсаторов в батареи. При последовательном соединении двух однотипных конденсаторов рабочее напряжение удваивается, а суммарная ёмкость уменьшается в два раза. При параллельном соединении двух однотипных конденсаторов рабочее напряжение остаётся прежним, а суммарная ёмкость увеличивается в два раза.
Третьим по важности параметром конденсаторов является температурный коэффициент изменения ёмкости (ТКЕ) . Он даёт представление об изменении ёмкости в условиях изменения температур.
В зависимости от назначения использования, конденсаторы подразделяются на конденсаторы общего назначения, требования к параметрам которых некритичны, и на конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).
Маркировка конденсаторов
Подобно резисторам, в зависимости от габаритов изделия, может применяться полная маркировка с указанием номинальной ёмкости, класса отклонения от номинала и рабочего напряжения. Для малогабаритных исполнений конденсаторов применяют кодовую маркировку из трёх или четырёх цифр, смешанную цифро-буквенную маркировку и цветовую маркировку.
Соответствующие таблицы пересчёта маркировок по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но самым действенным и практичным методом проверки номинала и исправности элемента реальной схемы остаётся непосредственное измерение параметров выпаянного конденсатора с помощью мультиметра.
Предупреждение: поскольку конденсаторы могут накапливать большой заряд при весьма высоком напряжении, во избежание поражения электрическим током необходимо перед измерением параметров конденсатора разряжать его, закоротив его выводы проводом с высоким сопротивлением внешней изоляции. Лучше всего для этого подходят штатные провода измерительного прибора.
Оксидные конденсаторы: данный тип конденсатора обладает большой удельной емкостью, то есть, емкостью на единицу веса конденсатора. Одна обкладка таких конденсаторов представляет собой обычно алюминиевую ленту, покрытую слоем оксида алюминия. Второй обкладкой служит электролит. Так как оксидные конденсаторы имеют полярность, то принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.
Твердотельные конденсаторы: в них вместо традиционного электролита в качестве обкладки используется органический полимер, проводящий ток, или полупроводник.
Переменные конденсаторы: емкость может меняться механическим способом, электрическим напряжением или с помощью температуры.
Пленочные конденсаторы: диапазон емкости данного типа конденсаторов составляет примерно от 5 пФ до 100 мкФ.
Имеются и другие типы конденсаторов.
Ионисторы
В наши дни популярность набирают ионисторы. Ионистор (суперконденсатор) — это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред — электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых угольных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология дополнялась и улучшалась. На рынок ионисторы вышли в начале восьмидесятых годов прошлого века.
С появлением ионисторов появилась возможность использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют долгий срок службы, малый вес, высокие скорости зарядки-разрядки. В перспективе данный вид конденсаторов может заменить обычные аккумуляторы. Основными недостатками ионисторов является меньшая, чем у электрохимических аккумуляторов удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.
Ионисторы применяются в автомобилях Формулы-1. В системах рекуперации энергии, при торможении вырабатывается электроэнергия, которая накапливается в маховике, аккумуляторах или ионисторах для дальнейшего использования.Электромобиль А2В Университета Торонто. Под капотом
Электрические автомобили в настоящем времени выпускают многие компании, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с компанией Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионисторы вместе с химическими источниками питания, так называемое гибридное электрическое хранение энергии. Двигатели данного автомобиля питаются от аккумуляторов весом 380 килограмм. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.
Емкостные сенсорные экраны
В современных устройствах все чаще применяются сенсорные экраны, которые позволяют управлять устройствами путем прикосновения к панелям с индикаторами или экранам. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных касаний. Принцип работы емкостных экранов основывается на том, что предмет большой емкости проводит переменный ток. В данном случае этим предметом является тело человека.
Поверхностно-емкостные экраны
Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно применяется имеющий высокую прозрачность и малое поверхностное сопротивление сплав оксида индия и оксида олова. Электроды, подающие на проводящий слой небольшое переменное напряжение, располагаются по углам экрана. При касании к такому экрану пальцем появляется утечка тока, которая регистрируется в четырех углах датчиками и передается в контроллер, который определяет координаты точки касания.
Преимущество таких экранов заключается в долговечности (около 6,5 лет нажатий с промежутком в одну секунду или порядка 200 млн. нажатий). Они обладают высокой прозрачностью (примерно 90%). Благодаря этим преимуществам, емкостные экраны уже с 2009 года активно начали вытеснять резистивные экраны.
Недостаток емкостных экранов заключается в том, что они плохо работают при отрицательных температурах, есть трудности с использованием таких экранов в перчатках. Если проводящее покрытие расположено на внешней поверхности, то экран является достаточно уязвимым, поэтому емкостные экраны применяются лишь в тех устройствах, которые защищены от непогоды.
Проекционно-емкостные экраны
Помимо поверхностно-емкостных экранов, существуют проекционно-емкостные экраны. Их отличие заключается в том, что на внутренней стороне экрана нанесена сетка электродов. Электрод, к которому прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке, можно получить точные координаты касания. Проекционно-емкостный экран реагирует на касания в тонких перчатках.
Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они долговечны и достаточно прочные, поэтому их широко применяют не только в персональной электронике, но и в автоматах, в том числе установленных на улице.
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Всем привет!
Предлагаю вашему вниманию таблицу
маркировок и расшифровки керамических конденсаторов . Конденсаторы имеют определённую кодовую маркировку и, умея расшифровывать эти коды, можно узнать их ёмкость. Для чего это нужно — всем понятно.Итак,
расшифровывать коды нужно так:Например, на конденсаторе написано «104». Первые две цифры обозначают ёмкость конденсатора в пикофарадах (10 пф), последняя цифра указывает количество нулей, которое нужно прибавить к 10, т.е. 10 и четыре нуля, получится 100000 пф.
Если последняя цифра в коде «9», это значит ёмкость данного конденсатора меньше 10 пф. Если первая цифра «0», то ёмкость меньше 1 пф, например код 010 означает 1 пф. Буква в коде применяется в качестве десятичной запятой, т.е. код, например, 0R5 означает ёмкость конденсатора 0,5 пф.
Также в кодовых обозначениях конденсаторов применяется такой параметр, как температурный коэффициент ёмкости (ТКЕ). Этот параметр показывает изменение ёмкости конденсатора при изменении температуры окружающей среды и выражается в миллионных долях ёмкости на градус (10 — 6х о С). Существуют несколько ТКЕ – положительный (обозначается буквами «Р» или «П»), отрицательный (обозначается буквами «N» или «М») и ненормированный (обозначается «Н»).
Если кодовое число обозначается четырьмя цифрами, то расчёт производится по такой же схеме, но ёмкость обозначают первые три цифры.
Например код 4753=475000пф=475нф=0.475мкф
Код | Ёмкость |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Пикофарад(пФ, pF) | Нанофарад (нФ, nF) | Микрофорад (мкФ, µF) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
109 | 1.0 | 0.001 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
159 | 1.5 | 0.0015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
229 | 2.2 | 0.0022 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
339 | 3.3 | 0.0033 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
479 | 4.7 | 0.0047 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
689 | 6.8 | 0.0068 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
100 | 10 | 0.01 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
150 | 15 | 0.015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
220 | 22 | 0.022 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
330 | 33 | 0.033 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
470 | 47 | 0.047 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
680 | 68 | 0.068 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101 | 100 | 0.1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151 | 150 | 0.15 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
221 | 220 | 0.22 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
331 | 330 | 0.33 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
471 | 470 | 0.47 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
681 | 680 | 0.68 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
102 | 1000 | 1.0 | 0.001 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
152 | 1500 | 1.5 | 0.0015 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
222 | 2200 | 2.2 | 0.0022 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
332 | 3300 | 3.3 | 0.0033 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
472 | 4700 | 4.7 | 0.0047 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
682 | 6800 | 6.8 | 0.0068 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
103 | 10000 | 10 | 0.01 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
153 | 15000 | 15 | 0.015 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
223 | 22000 | 22 | 0.022 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
333 | 33000 | 33 | 0.033 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
473 | 47000 | 47 | 0.047 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
683 | 68000 | 68 | 0.068 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
104 | 100000 | 100 | 0.1 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
154 | 150000 | 150 | 0.15 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
224 | 220000 | 220 | 0.22 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
334 | 330000 | 330 | 0.33 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
474 | 470000 | 470 | 0.47 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
684 | 680000 | 680 | 0.68 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
105 | 1000000 | 1000 | 1.0 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1622 | 16200 | 16.2 | 0.0162 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов. Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре. Естественно, перед вторичным использованием необходимо проверять конденсаторы , особенно ёмкость электролитических , которые сильнее подвержены старению. При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании. Первое, это номинальная ёмкость конденсатора . Измеряется в долях Фарады. Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается. Третье, что указывается в маркировке конденсатора, это допустимое рабочее напряжение . Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях. Итак, разберёмся в том, как маркируют конденсаторы постоянной ёмкости. Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от маркировки отечественных производителей. Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.
Правила маркировки. Номинальная ёмкость конденсатора. Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n . Обозначение 100n
– это значение номинальной ёмкости конденсатора. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру: Можно встретить маркировку вида 47H C. Данная маркировка ёмкости соответствует маркировке 47n K и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ. Для того чтобы легко определять ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C. Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M , m вместо десятичной запятой, незначащий ноль опускается. Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ. На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код ёмкости.
Например, числовая маркировка 224 соответствует значению 220 000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах . При 221, ёмкость равна 220 пФ, при 220 – 22 пФ. Если же в маркировке конденсатора используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 – 47,2 нФ. Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости для конденсатора аналогично допуску у резисторов. Буквенный код отклонения ёмкости конденсатора (допуск). Так если конденсатор со следующей маркировкой – M47C, то его ёмкость 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H , M , J , K . Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK , 220nM , 470nJ . Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов.
Допустимое рабочее напряжение конденсатора. Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя конденсаторов. Не лишним будет брать конденсатор с запасом по рабочему напряжению. Обычно, значение допустимого рабочего напряжения конденсатора указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается. Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.
Это наиболее важные параметры конденсаторов, которые стоит знать при подборе нужного конденсатора. Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной. |
▶▷▶▷ как сделать конденсатор на 1 фарад своими руками
▶▷▶▷ как сделать конденсатор на 1 фарад своими рукамиИнтерфейс | Русский/Английский |
Тип лицензия | Free |
Кол-во просмотров | 257 |
Кол-во загрузок | 132 раз |
Обновление: | 10-08-2019 |
как сделать конденсатор на 1 фарад своими руками — Делаем самодельный ионистор — суперконденсатор дома — сделай techclansu27- 1 -0-664 Cached Уже раз десять видел в интернете эту статью — как сделать ионистор своими руками ! Каждый идиот который её копирует ну не может хоть капли своего идиотизма в неё вписать! Как сделать конденсатор своими руками? uznay-kakrudom-sad-i-ogorodraznoekak-sdelat Cached Каждый техник или радио-любитель хотя бы раз в жизни задавался вопросом по поводу того, как сделать конденсатор своими руками и возможно ли это вообще Как Сделать Конденсатор На 1 Фарад Своими Руками — Image Results More Как Сделать Конденсатор На 1 Фарад Своими Руками images Самодельный Конденсатор — forumcxemnet forumcxemnetindexphp?topic67286 Cached Да, в 1 Фарад это было бы круто, можно было бы создать фарад 100 и подключить 220, и тогда напряжения хватило бы надолго, как резервный аккумулятор Как сделать СТЕДИКАМ своими — YouTube wwwyoutubecom watch?vqh971deAf4I Cached Как сделать газонокосилку своими руками Триммер на колёсах — Duration: 10:12 Александр Диковинный 39,039 views Снегоход своими руками — как сделать самодельный снегоход на wwwyoutubecom watch?src_vidVzJUPAjTJZQv3Q8 Cached Видео о том, как сделать снегоход своими руками Самодельный снегоход на гусенице в движении, обзор узлов и Cамодельный ионистор — суперконденсатор делаем своими руками folegionlivejournalcom11565html Cached Этому мешают силы притяжения молекул воды и металла По сути своей двойной электрический слой не что иное, как конденсатор Сосредоточенные на его поверхности заряды выполняют роль обкладок Ионистор своими руками: особенности элемента onlineelektrikrueoborudovaniekondensatorikak-sdelat Cached Так как предмет нашего разговора это ионистр своими руками , то необходимо в первую очередь разобраться с самим элементом, то есть, что он собой представляет Do it yourself DIY — YouTube myoutubecom playlist?listPL2SWmv7hzKONnhFSBy0 Cached This playlist posted a video on the theme of DIY And a video posted absolutely any subject affecting all aspects of peoples lives, their hobbies and ski Конденсатор (накопитель) для сабвуфера, мифы и реальность clippunetthreadskondensator-nakopitel-dlja-sabvufera Cached Конденсатор (накопитель) для сабвуфера, мифы и реальность О надобности накопителя в цепи питания, о его пользе, вреде и тд в интернете ведется масса Как сделать рельсотрон своими руками? wwwbolshoyvoprosruquestions2059126-kak-sdelat Cached Берем конденсатор , подсоединяем его к дальним концам рельс через рубильник (один вывод — на один рельс, второй — на второй) и кладем на рельсы снаряд у основания рельсов Promotional Results For You Free Download Mozilla Firefox Web Browser wwwmozillaorg Download Firefox — the faster, smarter, easier way to browse the web and all of 1 2 3 4 5 Next 1,930
- Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от в
- ерсии , проверенной 22 февраля 2016; проверки требует 1 правка . В таком случае подбирается емкость 1 Ф (фарад) на 1000 В. Очень популярны на рынке конденсаторы, производимые фирмами Mundorf, Mystery
- 1 Ф (фарад) на 1000 В. Очень популярны на рынке конденсаторы, производимые фирмами Mundorf, Mystery, Prology, но их продукция имеет достаточно высокую цену. Шумоизоляция авто своими руками ВИДЕО. Безусловно, если под рукой есть мультиметр с возможностью измерения емкости или C-метр с подходящим диапазоном измерения емкостей, то проблема перестает быть таковой. Емкостное сопротивление Xc 16,28fC… 1 транзистор перехода р- n -р (он должен быть мощным и высокочастотным, например кт805. Самая простая схема приведена на рисунке 1. ) Подробности для любознательных При напряжении более 1,2 В ионистор превращается в газовый аккумулятор. Самодельный ионистор На рисунке 1 изображена конструкция ионистора. На сей раз речь пойдет о менее сенсационной разработке, а именно о конденсаторах емкостью в 1200 фарад. Первые заявления об успешных испытаниях гетероэелектриков были сделаны дубнинскими учеными еще в 2006-м году. Вследствие чего, скорость отдачи электрического заряда параллельно подключенными конденсаторами в электрическую цепь усилителя будет быстрее, и звук от усилителя будет более качественным, по сравнению, если вы подключите 1 конденсатор с емкостью 2 Фарад. Мощный и качественный усилитель своими руками. Вы видели такие кондюки когда либо ранее?Если да то почему промолчали и не помогли нам хоть 1 подсказкой? хотя это уже не имеет большого значения, разобрались сами в данной… Page cannot be displayed. Please contact your service provider for more details. (30) Как сделать навес над входом в дом своими руками. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. СВЕТОДИОДНЫЙ ФОНАРЬ НА 1 ВАТТ…
то проблема перестает быть таковой. Емкостное сопротивление Xc 16
производимые фирмами Mundorf
- 039 views Снегоход своими руками — как сделать самодельный снегоход на wwwyoutubecom watch?src_vidVzJUPAjTJZQv3Q8 Cached Видео о том
- что он собой представляет Do it yourself DIY — YouTube myoutubecom playlist?listPL2SWmv7hzKONnhFSBy0 Cached This playlist posted a video on the theme of DIY And a video posted absolutely any subject affecting all aspects of peoples lives
- можно было бы создать фарад 100 и подключить 220
Нажмите здесь , если переадресация не будет выполнена в течение нескольких секунд как сделать конденсатор на фарад своими руками Поиск в Все Картинки Ещё Видео Новости Покупки Карты Книги Все продукты КАК СДЕЛАТЬ СУПЕРКОНДЕНСАТОР ИОНИСТОР июл Купить суперконденсатор Ф Купить ион myoutubecom F фарадный конденсатор своими руками YouTube мар F фарадный конденсатор своими руками Бесплатное Электричество в Каждый дом Loading myoutubecom Как сделать ионистр своими руками onlineelektrikru kondensator ikaksde Как сделать ионистр своими руками Содержание Конструктивные особенности ионистра; Собираем Делаем самодельный ионистор суперконденсатор дома techclansusuper kondensator Рейтинг отзывов Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом Сегодня можно купить в магазине ионистор размером с монету и Самодельный ионистор На рисунке изображена конструкция ионистора Картинки по запросу как сделать конденсатор на фарад своими руками Самодельный Конденсатор Мастерская радиолюбителя Форум по Здравствуйте Собираюсь сделать конденсатор небольшой ёмкости но Фото предоставлю позже Получается чтобы создать в фарад конденсатор , то площадь пластин Ионисторы или суперконденсаторы большой мощности Ионистор своими руками необходимые материалы и порядок Емкость конденсатора единица измерения В автомагазинах можно приобрести ионисторы ёмкостью фарад , для Украинские суперконденсаторы imbg LiveJournal апр Принципиальная схема конденсатора рис из статьи в New Scientist Ru В свое время вы FAQ Конденсаторы мифы и реальность Все что я driveru Купить машину на Дроме Автотека Аксиома Конденсатор является ПОТРЕБИТЕЛЕМ в сети То есть он НЕ ВСе качает, всем хватает, все довольны усь жмет вам руку праздник Пока все впорядке ему делать нечего Как сделать накопительконденсатор для автомобильного усилителя Много чего интересного можно сделать с помощью плат, радиодеталек и паяльника!!, а можно ли своими руками Как сделать ионистор своими руками Мои статьи Каталог Рейтинг отзыва июн Гостей достаточно, чтобы сделать ионистор своими руками , электрический конденсатор , Суперконденсаторы или Ионисторы вместо аккумулятора wwwinsidecarelectronicscom Ионисторы или Суперконденсаторы это конденсаторы с очень Фарада , Ампера t , Вольта этой фирмы достигают емкости в Фарад при напряжении , Вольта Так же Характеристики, структура, ФОТО Ионисторы фарада Суперконденсаторы! MYSKUru сен Ионисторы фарада Суперконденсаторы! Надо сказать, что емкость конденсатора это Arduino MEGA в UNO памяти не хватит Проще и дешевле в данному случае купить нвоый литий Конденсатор вместо аккумулятора Статьи и обзоры Элек elecru kondensator vmest фев Причина, по которой конденсаторы были вытеснены Можно сократить время зарядки до часа, но никак не Принципиальная схема источника бесперебойного питания Может ли ионистор заменить аккумулятор? Хабр Habr май Ионистор Panasonic Вольт и емкостью фарад и общая емкость составляет фарады Фото уже через минут конденсатор зарядился до , В Взял Если сделать достаточно умную зарядку, КОНДЕНСАТОР ! головняк своими руками МагнитолаФорум Автозвука magnitolaorg kondensator Усь JL саб Rка в ЗЯ Насчет кондеров КОНДЕНСАТОР ! головняк своими руками Если все сделать хорошо, то конденсатор и не понадобится скорее всего графеновый суперконденсатор емкостью тысяч ! Фарад схема графенового суперконденсатора Быстрая зарядка конденсаторы заряжаюются примерно в Ионистор Википедия Иони́стор суперконденсатор, ультраконденсатор, двухслойный электрохимический конденсатор электрохимическое Типичная ёмкость ионистора несколько фарад при номинальном напряжении вольт Нужен ли конденсатор для сабвуфера рассмотрим подробно Рейтинг голос мар Общая информация; Установка и зарядка большую электрическую емкость, выражаемую в фарадах Если электронная схема в конденсаторе , все же, Рассмотрим подробно из чего лучше сделать короб Опыты с конденсаторами МозгоЧины mozgochinyruopyityis мар Емкость одного современного конденсатора фарады , фото слева в тысячи раз превышает Подключение конденсатора емкости к автомагнитоле конденсатор нужен для сохранения поддержания потенциала произвести по формуле фарад емкости конденсатора на киловатт мощности нагрузки На рисунке показана такая схема Что мне нужно сделать ? Конденсатор Пикабу kondensator _ фев А бывает на одну хотя бы целую фараду ? шар диаметром в Солнц имеет емкость в Фарад Конденсатор Текст, Рассказ, Реальная история из жизни, Школа, Радиолюбители У тебя на фото ионистр Самый большой конденсатор в мире что такое ионистор май Ионистор Panasonic Вольт и емкостью фарад параллельно, и общая емкость составляет фарады Фото это сделать водитель оборудованного ионисторами шт фарад конденсатор , В F мм AliExpress Рейтинг , отзывов Дешевые конденсатор , купить качество v непосредственно из Китая конденсаторы супер Поставщики шт ФОНАРИК БЕЗ БАТАРЕЕК радиосхемы Емкости в фарад xватает на ти минутное свечение светодиода фонарик на ионисторах своими руками Заряжают конденсатор очень просто двигая фонарь вверx и вниз таким Конденсатор Емкость конденсатора Заряд конденсатора beamrobotruelectronicscapacitorph В радиоэлектронике используются конденсаторы , емкость которых составляет дробные единицы фарад Ионистор устройство, применение, характеристики asutppruionistorhtml Рейтинг голосов янв Ионисторы тем отличаются от конденсаторов , что их емкость, для ее измерения используется единица Фарад Ф; купить готовое, но сделать своими руками обойдется как сделать конденсатор на фарад своими руками wwwvkprukaksdelat kondensator n мар как сделать конденсатор на фарад своими руками Yahoo Search Results Yahoo Web Search Ионистор это Что такое Ионистор? Супер конденсаторы ионисторы серии MC фирмы Maxwell Электрохимическая схема NiH водный раствор КОН NiОOH ; СН в котором ионисторы общей ёмкостью фарад заряжаются , минуты Ионисторы купить в розницу и оптом Чип и Дип chipdiprusupercapacitors Функционально ионисторы это гибриды конденсаторов и химических источников Прво Murata Емкость, Ф Ионистор Что такое и зачем нужен? Goradioru goradioruionistorhtml Ионистор это некий гибрид конденсатора и аккумулятора DBRDT ёмкостью Фарада внутреннее сопротивление на частоте кГц составлет Ω Схема резервирования питания на ионисторе Что делать ? Светодиоды Фарад У Самоделкина окт два конденсатора на Фарад ; Dпринтерах, у нас же частенько приходится делать их самому Аккумуляторный велосипедный фонарь своими руками Правильно вскрываем задний фонарь MB Электроемкость конденсаторы , виды соединений, расчет kondensator shtml Рейтинг голосов ноя Что такое конденсатор ёмкость фарада это величина такой ёмкости, на которой имеет с мостовым соединением, схема которых показана на Как сделать наручные, настольные и настенные часы Конденсатор в схеме Конденсаторы назначение Квант kondensator v работы посмотрите статью про то, как сделать простой конденсатор своими руками Но есть такой компонент который может иметь емкость даже больше Фарады его называют Суперконденсатор в электромобиле ELECTRIC CAR ноя Обычный конденсатор такой емкости можно сравнить по Сегодня можно купить в магазине ионистор размером с Параметры первого вольт фарад товарищи время идет хочу сделать кондер для Суперконденсаторы Fishki ноя Суперконденсаторы фото Электронный проводник предлагалось сделать из пористого достигать значения в вольт, а емкость единиц фарад , ведь На фото использование суперкондесаторов в Конденсатор вместо аккумулятора? Вполне возможно suvorovcastomru kondensator vmesto дек Сейчас эти конденсаторы можно купить в любом ларьке типа, ёмкость которых составляет десятки тысяч фарад ! Легковой машине с двигателем в , , кубиков, Ионистор своими руками Gaussk Narodru gaussknarodrujabionistorhtm Ионистор своими руками АвторВладислав Сейчас в продаже появились конденсаторы очень большой емкости при Поэтому я решил привести здесь способ как сделать ионистор самому ИонисторУстройство и применениеРабота Автопусковое По сути дела ионистор является своеобразным гибридом аккумулятора и конденсатора Идеальные Ёмкость конденсатора единица измерения, как измерить дек Что такое емкость? Единицей емкости конденсатора в СИ является фарад Если этого не сделать , маломощный мультиметр выйдет из строя Ответ на Измеритель емкости конденсаторов своими руками Урок Конденсаторы Мастер Кит Фарад очень большая ёмкость земной шар имеет ёмкость менее Ф, поэтому для обозначения ёмкости в Поиск по блогу Как сделать самому конденсатор для airsoundrusearch_ Как изготовить автомобильный сабвуфер своими руками поражают своей настойчивостью и периодичностью Но как отличить ионистор от конденсатора Клуб electronicclubrunokakotlichitionistor дек Но как отличить ионистор от конденсатора Может кто делал датчик дождя своими руками на авто идет на фарады , а конденсаторы редко бывают более фарада Измеритель емкости конденсаторов своими руками Рейтинг голоса дек Принцип действия измерителя, схема Как измерить емкость конденсатора своими руками Ёмкость здесь в фарадах , напряжение вольтах, заряд Для ёмкости мкФ и сопротивления кОм, постоянная Учёные испытали тонкие конденсаторы с ёмкостью батарей wwwmembranaruparticle мар Схема нового суперконденсатора Вдобавок, учёные подобрали для своих конденсаторов Графен можно дома сделать на кухне из простого Челяб Университета фарад на кубсм теперь весь Батарея ВА на суперконденсаторах Рейтинг голос апр Как сделать батарею на суперконденсаторах, Солнечная батарея из диодов своими руками у усилителя тоже есть схема заряда этих конденсаторов , и при вопервых о сечении равно? фарад как сделать накопитель для сабвуфера своими руками gomelagrocomkaksdelatnakopitel мар как сделать накопитель для сабвуфера своими руками руками часто ищут конденсатор фарад своими руками конденсатор для сабвуфера как зарядить конденсатор для Формула емкости Последовательное соединение окт Это следует делать , если расстояние между пластинами мало в сравнении с их Единицей ёмкости в системе СИ является фарад F Схема устройства конденсатора Суперконденсаторы в электрической цепи тема научной Приведена схема включения ионистора в качестве резервного Особо выделено достоинство ионисторов и их отличие от обычных конденсаторов Емкость ионисторов измеряется уже в фарадах в одном фараде млн Самодельная точечная конденсаторная сварка RC Форум forumrcdesignrufthreadhtml дек Есть такой на , фарада , заявлено до в Давно уже Надо купить провода и сделать человеческие электроды wind это не конденсатор , это ионистор, у них токи Запросы, похожие на как сделать конденсатор на фарад своими руками суперконденсатор из графена своими руками практическое применение ионисторов ионистор где взять как проверить ионистор ионистор из зажигалки как отличить ионистор от конденсатора f фарадный конденсатор своими руками автомобильный конденсатор своими руками Суперконденсаторы Феникс Ионисторы Феникс Реклама wwwultracapacitorru Продажа, Производство, Разработка Все что связано с суперконденсаторами! Ионисторы для запуска Ионисторы устройство След Войти Версия Поиска Мобильная Полная Конфиденциальность Условия Настройки Отзыв Справка
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 22 февраля 2016; проверки требует 1 правка . В таком случае подбирается емкость 1 Ф (фарад) на 1000 В. Очень популярны на рынке конденсаторы, производимые фирмами Mundorf, Mystery, Prology, но их продукция имеет достаточно высокую цену. Шумоизоляция авто своими руками ВИДЕО. Безусловно, если под рукой есть мультиметр с возможностью измерения емкости или C-метр с подходящим диапазоном измерения емкостей, то проблема перестает быть таковой. Емкостное сопротивление Xc 16,28fC… 1 транзистор перехода р- n -р (он должен быть мощным и высокочастотным, например кт805. Самая простая схема приведена на рисунке 1. ) Подробности для любознательных При напряжении более 1,2 В ионистор превращается в газовый аккумулятор. Самодельный ионистор На рисунке 1 изображена конструкция ионистора. На сей раз речь пойдет о менее сенсационной разработке, а именно о конденсаторах емкостью в 1200 фарад. Первые заявления об успешных испытаниях гетероэелектриков были сделаны дубнинскими учеными еще в 2006-м году. Вследствие чего, скорость отдачи электрического заряда параллельно подключенными конденсаторами в электрическую цепь усилителя будет быстрее, и звук от усилителя будет более качественным, по сравнению, если вы подключите 1 конденсатор с емкостью 2 Фарад. Мощный и качественный усилитель своими руками. Вы видели такие кондюки когда либо ранее?Если да то почему промолчали и не помогли нам хоть 1 подсказкой? хотя это уже не имеет большого значения, разобрались сами в данной… Page cannot be displayed. Please contact your service provider for more details. (30) Как сделать навес над входом в дом своими руками. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. СВЕТОДИОДНЫЙ ФОНАРЬ НА 1 ВАТТ…
Фарад в нанофарад преобразование (F в нФ)
Введите ниже емкость в фарадах, чтобы получить значение, преобразованное в нанофарады.
Как конвертировать фарады в нанофарады
Чтобы преобразовать измерение фарад в измерение нанофарад, умножьте емкость на коэффициент преобразования.
Поскольку один фарад равен 1000000000 нанофарад, вы можете использовать эту простую формулу для преобразования:
нанофарады = фарады × 1000000000
Емкость в нанофарадах равна фарадам, умноженным на 1 000 000 000.
Например, вот как преобразовать 5 фарад в нанофарады, используя формулу выше.5 F = (5 × 1 000 000 000) = 5 000 000 000 нФ
Сколько нанофарад в фараде?
В фараде 1000000000 нанофарад, поэтому мы используем это значение в приведенной выше формуле.
1 F = 1000000000 нФ
Фарады и нанофарады — это единицы измерения емкости.Продолжайте читать, чтобы узнать больше о каждой единице измерения.
Фарад определяется как емкость конденсатора, разность потенциалов которого составляет один вольт при зарядке одним кулоном электричества. [1] Фарад считается очень большим значением емкости, и кратные фараду обычно используются для измерения емкости в практических приложениях, хотя фарад все еще используется в некоторых приложениях.
Фарад — производная единица измерения емкости в системе СИ в метрической системе.Фарады могут быть сокращены как F ; например, 1 фарад можно записать как 1 F.
Нанофарад составляет 1/1000000000 фарада, что представляет собой емкость конденсатора с разностью потенциалов в один вольт, когда он заряжается одним кулоном электричества.
Нанофарад кратно фараду, который является производной единицей измерения емкости в системе СИ.В метрической системе «нано» является префиксом для 10 -9 . Нанофарады можно обозначить как нФ ; например, 1 нанофарад можно записать как 1 нФ.
нанофарад в фарадах (нФ в фарад)
Введите ниже емкость в нанофарадах, чтобы получить значение, преобразованное в фарады.
Как конвертировать нанофарады в фарады
Чтобы преобразовать измерение нанофарад в измерение фарад, разделите емкость на коэффициент преобразования.
Поскольку один фарад равен 1000000000 нанофарад, вы можете использовать эту простую формулу для преобразования:
фарады = нанофарады ÷ 1000000000
Емкость в фарадах равна нанофарадам, разделенным на 1000000000.
Например, вот как преобразовать 5 000 000 000 нанофарад в фарады, используя приведенную выше формулу.5 000 000 000 нФ = (5 000 000 000 ÷ 1 000 000 000) = 5 Ф
Нанофарады и фарады — это единицы измерения емкости.Продолжайте читать, чтобы узнать больше о каждой единице измерения.
Нанофарад составляет 1/1000000000 фарада, что представляет собой емкость конденсатора с разностью потенциалов в один вольт, когда он заряжается одним кулоном электричества.
Нанофарад кратно фараду, который является производной единицей измерения емкости в системе СИ. В метрической системе «нано» является префиксом для 10 -9 .Нанофарады можно обозначить как нФ ; например, 1 нанофарад можно записать как 1 нФ.
Фарад определяется как емкость конденсатора, разность потенциалов которого составляет один вольт при зарядке одним кулоном электричества. [1] Фарад считается очень большим значением емкости, и кратные фараду обычно используются для измерения емкости в практических приложениях, хотя фарад все еще используется в некоторых приложениях.
Фарад — производная единица измерения емкости в системе СИ в метрической системе. Фарады могут быть сокращены как F ; например, 1 фарад можно записать как 1 F.
Используйте следующий калькулятор для преобразования в фарадов и нанофарад .Если вам нужно перевести фарад в другие единицы, попробуйте нашу универсальную Конвертер единиц электростатической емкости. | |||||||
| |||||||
Как использовать калькулятор преобразования фарад в нанофарады |
|||||||
Загрузить преобразователь единиц электростатической емкости наша мощная программная утилита, которая поможет вам легко преобразовать более 2100 различных единиц измерения в более чем 70 категорий.Откройте для себя универсального помощника для всех ваших потребностей в преобразовании единиц измерения — скачать бесплатную демо-версию прямо сейчас! Сделайте 78 764 преобразования с помощью простого в использовании, точного и мощного калькулятора единиц измерения. |
|||||||
Мгновенно добавьте бесплатный виджет преобразователя электростатической емкости на свой веб-сайт.
Это займет меньше минуты, это так же просто, как вырезать и наклеить.Конвертер органично впишется в ваш веб-сайт, поскольку его можно полностью изменить. Щелкните здесь, чтобы просмотреть пошаговое руководство по размещению этого конвертера единиц на своем веб-сайте. |
|||||||
|
Перевести пикофарады в нанофарады
›› Перевести
нанофарады в пикофарады [международные] Пожалуйста, включите Javascript для использования
конвертер величин.
Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php
›› Дополнительная информация в конвертере величин
Сколько пикофарад в 1 нанофараде?
Ответ — 1000,4
2177.
Мы предполагаем, что вы конвертируете пикофарад [международный] и нанофарад .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
пикофарад или
нанофарад
Производная единица СИ для емкости — фарад.
1 фарад равен 10004
217,7 пикофарад, или 1000000000 нанофарад.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать пикофарады в нанофарады.
Введите ваши собственные числа в форму, чтобы преобразовать единицы!
›› Хотите другие юниты?
Вы можете произвести обратное преобразование единиц измерения из нанофарад в пикофарады, или введите любые две единицы ниже:
›› Преобразование общей емкости
пикофарад в мегафарад
пикофарад в секунду / ом
пикофарад в секунду в электромагнитном блоке
пикофарад в мкф терафарад
пикофарад в гигафарад
›› Определение: Нанофарад
Префикс SI «нано» представляет собой коэффициент 10 -9 , или в экспоненциальной записи 1E-9.
Итак, 1 нанофарад = 10 -9 фарад.
›› Метрические преобразования и др.
ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!
Конвертер фарада [Ф] в нанофарад [нФ] • Конвертер емкости • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц
Конвертер длины и расстоянияМассовый конвертерКонвертер сухого объема и общих измерений при варке Конвертер работПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер угла поворотаКонвертер топливной экономичности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращенияКонвертер удельного ускорения углового ускорения Преобразователь момента силы Преобразователь крутящего момента Преобразователь удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания (на единицу массы). Конвертер температурного интервалаКонвертер температурного интервалаКонвертер теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициентов теплопередачиКонвертер абсолютного абсолютного расходаПреобразователь массового расходаКонвертер молярного расхода Решение Конвертер массового потока Конвертер молярной концентрации Конвертер вязкостиПреобразователь поверхностного натяженияКонвертер проницаемости, проницаемости, проницаемости водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давленияПреобразователь яркостиПреобразователь световой интенсивностиКонвертер яркостиЦифровой преобразователь разрешения изображения в оптический преобразователь частоты и длины волны Мощность (диоптрия) в Ма Конвертер gnification (X) дБм, дБВ, ватт и другие единицыПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Конвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой визуализации Конвертер единиц измерения объема древесины Калькулятор молярной массы Периодическая таблица
Экран сенсора этого планшета изготовлен с использованием технологии проекции емкости
Обзор
Измерение емкости конденсатора с номинальной емкостью 10 мкФ , используя осциллограф мультиметра.
Емкость — это физическая величина, которая представляет способность проводника накапливать заряд.Он находится путем деления величины электрического заряда на разность потенциалов между проводниками:
C = Q / ∆φ
Здесь Q — электрический заряд, который измеряется в кулонах (Кл), а ∆φ — разность потенциалов, измеряемая в вольтах (В).
Емкость измеряется в фарадах (Ф) в СИ. Этот блок назван в честь британского физика Майкла Фарадея.
Один фарад представляет собой чрезвычайно большую емкость для изолированного проводника.Например, изолированный металлический шар с радиусом в 13 раз большим, чем у Солнца, будет иметь емкость в одну фарад, в то время как емкость металлического шара с радиусом Земли будет около 710 микрофарад (мкФ).
Поскольку один фарад является такой большой величиной, используются меньшие единицы, такие как микрофарад (мкФ), что соответствует одной миллионной фарада, нанофарад (нФ), равный одной миллиардной фарада, и пикофарад (пФ). , что составляет одну триллионную фарада.
В расширенной CGS для электромагнитных устройств основная единица емкости описывается в сантиметрах (см).Один сантиметр электромагнитной емкости представляет собой емкость шара в вакууме с радиусом 1 см. Система CGS расшифровывается как система сантиметр-грамм-секунда — в ней сантиметры, граммы и секунды используются в качестве основных единиц длины, массы и времени. Расширения CGS также устанавливают одну или несколько констант на 1, что позволяет упростить определенные формулы и вычисления.
Использование емкости
Конденсаторы — электронные компоненты для накопления электрических зарядов
Электронные символы
Емкость — это величина, имеющая значение не только для электрических проводников, но и для конденсаторов (первоначально называемых конденсаторами).Конденсаторы состоят из двух проводников, разделенных диэлектриком или вакуумом. Самый простой вариант конденсатора имеет две пластины, которые действуют как электроды. Конденсатор (от латинского condender — конденсировать) — это двухслойный электронный компонент, используемый для хранения электрического заряда и энергии электромагнитного поля. Самый простой конденсатор состоит из двух электрических проводников, между которыми находится диэлектрик. Энтузиасты радиоэлектроники, как известно, делают подстроечные конденсаторы для своих схем с эмалированными проводами разного диаметра.Более тонкая проволока наматывается на более толстую. Схема RLC настраивается на желаемую частоту путем изменения количества витков провода. На изображении есть несколько примеров того, как конденсатор может быть представлен на принципиальной схеме.
Параллельная RLC-цепь: резистор, катушка индуктивности и конденсатор
Немного истории
Ученые смогли изготавливать конденсаторы еще 275 лет назад. В 1745 году в Лейдене немецкий физик Эвальд Георг фон Клейст и физик из Нидерландов Питер ван Мушенбрук создали первое конденсаторное устройство, получившее название «лейденская банка».Стенки сосуда служили диэлектриком, а вода в кувшине и рука экспериментатора — проводящими пластинами. В такой банке может накапливаться заряд порядка одного микрокулона (мкКл). В то время были популярны эксперименты и демонстрации с лейденскими кувшинами. В них банку заряжали статическим электричеством за счет трения. Затем участник эксперимента касался банки и подвергался поражению электрическим током. Однажды 700 монахов в Париже провели Лейденский эксперимент. Они взялись за руки, и один из них прикоснулся к банке.В этот момент все 700 человек воскликнули в ужасе, почувствовав толчок.
«Лейденская банка» попала в Россию благодаря русскому царю Петру Великому. Он встретился с Питером ван Мушенбруком во время своего путешествия по Европе и познакомился с его творчеством. Когда Петр Великий учредил Российскую академию наук, он поручил Мушенбруку изготовить для Академии различное оборудование.
Со временем конденсаторы были усовершенствованы, и их размер уменьшался по мере увеличения емкости.Сегодня конденсаторы широко используются в электронике. Например, конденсатор и катушка индуктивности образуют цепь резистора, катушки индуктивности и конденсатора, также известную как цепь RLC, LCR или CRL. Эта схема используется для установки частоты приема на радио.
Существует несколько типов конденсаторов, различающихся постоянной или переменной емкостью, а также типом используемого диэлектрического материала.
Примеры конденсаторов
Конденсаторы электролитические в блоке питания.
Сегодня существует множество различных типов конденсаторов для различных целей, но их основная классификация основана на их емкости и номинальном напряжении.
Обычно емкость и конденсаторов находится в диапазоне от нескольких пикофарад до нескольких сотен микрофарад. Исключением являются суперконденсаторы, поскольку их емкость формируется иначе, чем у других конденсаторов — это, по сути, двухслойная емкость. Это похоже на принцип действия электрохимических ячеек.Суперконденсаторы, построенные из углеродных нанотрубок, имеют повышенную емкость из-за большей поверхности электродов. Емкость суперконденсаторов составляет десятки фарад, и иногда они могут заменить электрохимические ячейки в качестве источника электрического тока.
Вторым по важности свойством конденсатора является его номинальное напряжение . Превышение этого значения может сделать конденсатор непригодным для использования. Вот почему при построении схем обычно используются конденсаторы со значением номинального напряжения, которое вдвое превышает напряжение, приложенное к ним в цепи.Таким образом, даже если напряжение в цепи немного превышает норму, с конденсатором все будет в порядке, если увеличение не станет вдвое больше нормы.
Конденсаторы могут быть объединены в батареи для увеличения общего номинального напряжения или емкости системы. При последовательном соединении двух конденсаторов одного типа номинальное напряжение увеличивается вдвое, а общая емкость уменьшается вдвое. При параллельном подключении конденсаторов общая емкость удваивается, а номинальное напряжение остается прежним.
Третьим по важности свойством конденсаторов является их температурный коэффициент емкости . Он отражает взаимосвязь между емкостью и температурой.
В зависимости от назначения конденсаторы подразделяются на конденсаторы общего назначения, которые не должны соответствовать требованиям высокого уровня, и специальные конденсаторы. К последней группе относятся высоковольтные конденсаторы, прецизионные конденсаторы и конденсаторы с различным температурным коэффициентом емкости.
Маркировка конденсаторов
Как и резисторы, конденсаторы маркируются в соответствии с их емкостью и другими свойствами. Маркировка может включать информацию о номинальной емкости, степени отклонения от номинального значения и номинальном напряжении. Малогабаритные конденсаторы маркируются трех- или четырехзначным или буквенно-цифровым кодом, а также могут иметь цветовую маркировку.
Таблицы с кодами и соответствующими им значениями номинального напряжения, номинальной емкости и температурного коэффициента емкости доступны в Интернете, но самый надежный способ проверить емкость и выяснить, правильно ли работает конденсатор, — это удалить конденсатор из цепи. и производить измерения с помощью мультиметра.
Электролитический конденсатор в разобранном виде. Он изготовлен из двух алюминиевых фольг. Один из них покрыт изолирующим оксидным слоем и действует как анод. Бумага, пропитанная электролитом, вместе с другой фольгой действует как катод. Алюминиевая фольга протравливается для увеличения площади поверхности.
Предупреждение: конденсаторы могут хранить очень большой заряд при очень высоком напряжении. Во избежание поражения электрическим током перед выполнением измерений необходимо принять меры предосторожности.В частности, важно разряжать конденсаторы, закорачивая их выводы с помощью провода, изолированного из высокопрочного материала. В этой ситуации хорошо подойдут обычные провода измерительного прибора.
Электролитические конденсаторы: эти конденсаторы имеют большой объемный КПД. Это означает, что они имеют большую емкость для данной единицы веса конденсатора. Одна из пластин такого конденсатора обычно представляет собой алюминиевую ленту, покрытую тонким слоем оксида алюминия.Электролитическая жидкость действует как вторая пластина. Эта жидкость имеет электрическую полярность, поэтому крайне важно обеспечить правильное добавление такого конденсатора в схему в соответствии с его полярностью.
Полимерные конденсаторы: В конденсаторах этих типов в качестве второй пластины используется полупроводник или органический полимер, проводящий электричество, а не электролитическая жидкость. Их анод обычно изготавливается из металла, такого как алюминий или тантал.
3-секционный воздушный конденсатор переменной емкости
Переменные конденсаторы: емкость этих конденсаторов можно изменять механически, регулируя электрическое напряжение или изменяя температуру.
Пленочные конденсаторы: их емкость может составлять от 5 пФ до 100 мкФ.
Есть и другие типы конденсаторов.
Суперконденсаторы
Суперконденсаторы в наши дни становятся популярными. Суперконденсатор — это гибрид конденсатора и химического источника питания. Заряд сохраняется на границе, где встречаются две среды, электрод и электролит. Первый электрический компонент, который был предшественником суперконденсатора, был запатентован в 1957 году.Это был конденсатор с двойным электрическим слоем и пористым материалом, который помог увеличить емкость из-за увеличенной площади поверхности. Этот подход известен теперь как двухслойная емкость. Электроды пористые, угольные. С тех пор конструкция постоянно улучшалась, и первые суперконденсаторы появились на рынке в начале 1980-х годов.
Суперконденсаторы используются в электрических цепях как источник электрической энергии. У них много преимуществ перед традиционными батареями, включая их долговечность, небольшой вес и быструю зарядку.Вполне вероятно, что благодаря этим преимуществам суперконденсаторы в будущем заменят батареи. Основным недостатком использования суперконденсаторов является то, что они производят меньшее количество удельной энергии (энергии на единицу веса), а также имеют низкое номинальное напряжение и большой саморазряд.
В гонках Формулы 1 суперконденсаторы используются в системах рекуперации энергии. Энергия вырабатывается, когда автомобиль замедляется. Он хранится в маховике, батарее или суперконденсаторах для дальнейшего использования.
Электромобиль A2B производства Университета Торонто. Общий вид
В бытовой электронике суперконденсаторы используются для обеспечения стабильного электрического тока или в качестве резервного источника питания. Они часто обеспечивают питание во время пиков потребления энергии в устройствах, которые используют питание от батареи и имеют переменную потребность в электроэнергии, например MP3-плееры, фонарики, автоматические счетчики электроэнергии и другие устройства.
Суперконденсаторы также используются в общественном транспорте, особенно в троллейбусах, поскольку они обеспечивают более высокую маневренность и автономное движение при проблемах с внешним источником питания.Суперконденсаторы также используются в некоторых автобусах и электромобилях.
Электромобиль A2B производства Университета Торонто. Под капотом
В наши дни многие компании производят электромобили, в том числе General Motors, Nissan, Tesla Motors и Toronto Electric. Исследовательская группа из Университета Торонто вместе с компанией Toronto Electric, занимающейся дистрибьюцией электродвигателей, разработала канадскую модель электромобиля A2B. В нем используются как химические источники энергии, так и суперконденсаторы — такой способ хранения энергии называется гибридным накопителем электроэнергии.Двигатели этого электромобиля питаются от аккумуляторов массой 380 кг. Солнечные батареи также используются за дополнительную плату — они устанавливаются на крыше автомобиля.
Емкостные сенсорные экраны
В современных устройствах все чаще используются сенсорные экраны, которые управляют устройствами с помощью сенсорных панелей или экранов. Существуют различные типы сенсорных экранов, включая емкостные и резистивные, а также многие другие. Некоторые могут реагировать только на одно прикосновение, а другие реагируют на несколько прикосновений.Принцип работы емкостных экранов основан на том, что большое тело проводит электричество. Это большое тело в нашем случае и есть человеческое тело.
Поверхностные емкостные сенсорные экраны
Сенсорный экран для iPhone выполнен по технологии проецируемой емкости.
Поверхностный емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. Как правило, этот материал отличается высокой прозрачностью и низким поверхностным сопротивлением. Часто используется сплав оксида индия и оксида олова.Электроды в углах экрана подают на резистивный материал низкое колеблющееся напряжение. Когда палец касается этого экрана, возникает небольшая утечка электрического заряда. Эта утечка обнаруживается датчиками в четырех углах, и информация отправляется контроллеру, который определяет координаты касания.
Преимущество этих экранов в их долговечности. Они могут выдерживать прикосновения с частотой до одного раза в секунду в течение 6,5 лет. Это составляет около 200 миллионов касаний.Эти экраны имеют высокий коэффициент прозрачности, до 90%. Из-за своих преимуществ емкостные сенсорные экраны заменяют резистивные сенсорные экраны на рынке с 2009 года.
Недостатки емкостных экранов заключаются в том, что они плохо работают при минусовых температурах и их трудно использовать в перчатках, потому что перчатки действовать как изолятор. Сенсорный экран чувствителен к воздействию элементов, поэтому, если он расположен на внешней панели устройства, он используется только в устройствах, защищающих экран от воздействия.
Проекционные емкостные сенсорные экраны
Помимо поверхностных емкостных экранов, существуют также проекционные емкостные сенсорные экраны. Они отличаются тем, что на внутренней стороне экрана находится сетка электродов. Когда пользователь касается электрода, тело и электрод работают вместе как конденсатор. Благодаря сетке электродов легко получить координаты той области экрана, к которой прикоснулись. Этот тип экрана реагирует на прикосновения даже в тонких перчатках.
Проекционные емкостные сенсорные экраны также обладают высокой прозрачностью до 90%. Они прочные и долговечные, что делает их популярными не только в личных электронных устройствах, но и в устройствах, предназначенных для общественного использования, таких как торговые автоматы, электронные платежные системы и другие.
Эту статью написали Сергей Акишкин, Татьяна Кондратьева
У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.
определение нанофарада по The Free Dictionary
далеко · ad
(făr′əd, -ăd ′) n. Сокр. F Единица емкости в системе метр-килограмм-секунда, равная емкости конденсатора, имеющего равный и противоположный заряд 1 кулон на каждой пластине и разность потенциалов 1 вольт между пластинами. См. Таблицу при измерении.[По Майклу Фарадею .]
Словарь английского языка American Heritage®, пятое издание.Авторские права © 2016 Издательская компания Houghton Mifflin Harcourt. Опубликовано Houghton Mifflin Harcourt Publishing Company. Все права защищены.
фарад
(ˈfærəd; -d) n(Общая физика) физика производная единица измерения электрической емкости в системе СИ; емкость конденсатора, между пластинами которого создается потенциал в 1 вольт за счет заряда в 1 кулон. Символ: F
[C19: назван в честь Майкла Фарадея]
Словарь английского языка Коллинза — полное и несокращенное, 12-е издание, 2014 г. © HarperCollins Publishers 1991, 1994, 1998, 2000, 2003, 2006, 2007, 2009, 2011, 2014
дальний • объявление
(ˈfær əd, -d)n.
Единица измерения емкости в системе СИ, равная емкости конденсатора с потенциалом 1 вольт, заряженного 1 кулоном электричества. Символ: FRandom House Словарь колледжа Кернермана Вебстера © 2010 K Dictionaries Ltd. Авторские права 2005, 1997, 1991, Random House, Inc. Все права защищены.
далекий · ад
(фэрд)Единица измерения электрической емкости. Конденсатор, в котором заряд в один кулон может создавать разницу в один вольт между двумя его пластинами-накопителями, имеет емкость в один фарад.
Научный словарь для студентов American Heritage®, второе издание. Авторские права © 2014 Издательская компания Houghton Mifflin Harcourt. Опубликовано Houghton Mifflin Harcourt Publishing Company. Все права защищены.
фарад
Единица емкости. Проводник имеет емкость в одну фараду, если заряд в один кулон изменяет его потенциал на один вольт.
Словарь незнакомых слов от Diagram Group Copyright © 2008, Diagram Visual Information Limited
нанофарад — Wiktionary
См. Также: нанофарад и нанофарад
Содержание
- 1 Английский
- 1.1 Альтернативные формы
- 1.2 Этимология
- 1.3 существительное
- 1.3.1 Синонимы
- 1.3.2 Переводы
- 2 Французский
- 2.1 Этимология
- 2.2 Произношение
- 2.3 Существительное
- 3 Итальянский
- 3.1 Этимология
- 3,2 существительное
Английский [править]
Альтернативные формы [править]
- нано-фарад нормальное написание
Этимология [править]
нано- + фарад .
Существительное [править]
нанофарад ( во множественном числе нанофарад )
- (редко) (метрология) Единица электрической емкости в системе СИ, равная 10 −9 фарад. Символ: nF
Синонимы [править]
- nF
Переводы [править]
электроблок
|
|
Этимология [править]
нано- + фарад
Произношение [править]
- IPA (ключ) : / нет.nɔ.fa.ʁad /
-
Аудио (Париж) (файл)
Существительное [редактировать]
нанофарад м ( во множественном числе нанофарад )
- (физика) нанофарад
итальянский [править]
Этимология [править]
нано- + фарад
Существительное [править]
нанофарад м ( неизменно )
- нанофарад