Качественный фильтр сетевых помех для аудио + своими руками
В последние годы ваш HiFi или даже High-End аудио комплекс всё меньше радует детальностью, сочностью и прозрачностью звучания? Вы подумываете обновить всю систему? Или вы уже подыскиваете качественный сетевой фильтр? Если последнее — вы на верном пути 😉
Посчитаем?
В этом веке количество источников электромагнитных помех в наших домах растёт по экспоненте. Оглядитесь, попробуйте посчитать, сколько на вид безобидных лёгких и маленьких зарядных устройств, экономичных ламп, «электронных трансформаторов» для галогенок, компьютеров, принтеров, и прочей электроники с питанием от сети и/или всевозможными «зарядниками» пришло в ваш дом за последнее десятилетие? Пальцев не хватило, даже вместе с ногами, женой и… то-то! 🙂
Сегодня пожалуй 95% источников сетевого питания построены на базе высокочастотного преобразователя и не используют старые громоздкие и тяжёлые, гудящие трансформаторы на 50 (60) Герц. Ура, партия зелёных торжествует: большинство таких преобразователей весьма экономичны, компактны и… каждый такой
В по-настоящему качественных (и дорогих) импульсных источниках питания с помехами борются весьма успешно, но всё равно недостаточно, чтобы весь производимый ими электромусор остался незаметным для чувствительных ушей меломана. Да что там меломаны… У нас в доме старый добрый 39-мегагерцовый радио-телефон. Постепенно он начал гудеть и жужжать так, что я серьёзно собирался сменить аппарат. Но пользуемся мы им относительно редко и проблема однажды решилась сама собою, когда я в погоне за красивым звуком повырубал к чертям все импульсные блоки питания вкупе с компьютерами в доме. После того эксперимента, кстати, и появились у нас вот эти бочёнки.
Так что же покупить?
В этой статье я не подскажу, какой сетевой фильтр надо покупать. Причины две: за разумные деньги я не встречал адекватных фильтров; а те фильтры, что я мог бы порекомендовать — стоили совершенно несообразно, да и места занимали много больше, чем выполняемая ими функция того требует. Тем не менее решение существует: для умелых рук — собирать фильтры самому, и я постараюсь разъяснить его работу настолько, что любой, кто дружен с паяльником, сможет снабдить свою аппаратуру адекватной защитой от электромагнитных помех, проникающих из питающей сети. Если же вы не имеете возможности, либо желания дышать канифолью — покажите статью товарищу, который сможет вам помочь.
Грамотные производители должны были всё предусмотреть!
Фиг-вам! (изба такая индейская (с) кот Матроскин)
За работу!
Скажи мне, кто твой враг
1) Дифференциальное напряжение помехи. Это такой «вредный» сигнал, который приходит вместе с «полезным» напряжением питания (или сигналом), его измеряют между двумя соединительными проводниками, «горячим» и «общим» проводами, или проще говоря — между двумя шинами питания.
2) Синфазное напряжение помехи. Этот сигнал измеряется между корпусом прибора (землей) и любым соединительным проводником. Особенность этой помехи в том, что она будет идентична на обоих проводах питания, т.е. в отличие от дифференциальной помехи её не поймать между проводами и она просачивается внутрь в обход обычных фильтров.
Блокировочный конденсатор
Конденсатор шунтирует дифференциальные ВЧ помехи и не пускает их дальше в аппарат. Надо не забыть разрядить его при выключении аппарата, а то взявшись нечаянно за вилку можно получить весьма ощутимую «мотивацию». Для этого ставим резистор, мирно греющийся в нормальном режиме работы. Ох не водить мне дружбы с «зелёными»…
Дроссель
Индуктивность (обыкновенный небольшой дроссель) формирует уже Г-образный LP фильтр с совместно с конденсатором. Конкретная частота среза фильтра нас не очень интересует. Дроссель потолще (лишь бы был рассчитан на _постоянный_ ток в несколько раз выше тока, потребляемого аппаратом), конденсатор побольше на напряжение не менее 310 вольт — и все довольны.
Синфазный трансформатор
Обмотки в таком трансформаторе идентичны и включены встречно, таким образом он беспрепятственно пропускает всё, что приходит как разница потенциалов между L и N. Иначе можно объяснить так: нормальный ток нагрузки создаёт встречные идентичные поля в сердечнике, которые взаимно компенсируются. Тогда зачем это всё — спросите вы?
Два маленьких компаньона
Антизвон
Антизвонная цепочка, или RC-цепь Цобеля. Несколько мистический зверёк, но очень полезный. Тут совместно с первичной обмоткой трансформатора в аппарате мы формируем колебательный контур с низкой добротностью, чтобы «поймать» то, что «выскочит» из первички при отключении питания. Искрогаситель. Защита остального фильтра и самого трансформатора от ЭДС самоиндукции при отключении в неудачный момент (при большом токе через первичку). Он так же вносит свою лепту в перевод ВЧ помех в тепло.
Не было бы конденсатора — такой низкоомный резистор просто взорвался бы от напряжения сети. Не было бы резистора — получили бы относительно высокодобротный контур совместно с первичкой и/или дросселем фильтра.
Другой взгляд: привносим чисто резистивную и весьма низкоомную составляющую импеданса нагрузки на ВЧ… Кто может объяснить лучше — милости прошу, помещу «в книжку» с сохранением авторства 😉
#ground_loop
Разрываем контур заземления
Резистор в параллель со встречно включенными диодами. В другой версии это мог бы быть дроссель. Включено это дело между защитным заземлением и корпусом прибора. Зачем, спросите вы — это, вроде, к фильтрации помех никакого отношения не имеет? Давайте разбираться.
Встречно включенные диоды успешно закоротят любую сильноточную утечку внутри корпуса прибора (коротыш какой, пробой) на защитное заземление. Тем самым мы соблюдаем требования техники безопасности: в случае аварии на корпусе прибора не должно появится опасного для жизни и здоровья человека напряжения. При этом диоды «разрывают» цепь для небольших напряжений.
Резистор создаёт путь для небольших токов. Если бы его не было, а внутренности прибора неплохо отвязаны от земли, то даже небольшие утечки создавали бы избыточный размах напряжения на корпусе относительно земли, и через емкостные связи это всё проникало бы в прибор.
Так для чего же всё-таки «отвязывать» защитную землю от корпуса? Дело в том, что на защитном заземлении могут наводиться напряжения: например той самой синфазной помехой, что мы отфильтровываем. Так же, увы, нередко встречается такая разводка сети, когда защитное заземление одновременно является и возвратным проводом для собственно напряжения сети. В этом случае даже на небольшом сопротивлении проводки немалый ток потребления создаёт ощутимое падение напряжения. Все эти факторы могут «разогнать» в нормальных условиях до десятков и даже сотен милливольт разницы потенциалов между защитными заземлениями разных агрегатов. Теперь, если мы передаём аудио-сигнал через соединения, заведённые одним проводом на корпус (RCA разъёмы «колокольчики», к сожалению так популярные в бытовом HiFi), то эта самая разность потенциалов между корпусами приборов будет напрямую замешана в сигнал.
Итого, отвязывая корпус прибора (а в большинстве случаев это значит — и сигнальную землю оного) от защитного заземления, мы тем самым ощутимо уменьшаем замешивание любых «чудачеств», что могут случиться в розетке — прямиком в сигнал. Конечно же, уважающий себя любитель качественного звуковоспроизведения будет использовать исключительно балансные соединения, иммунные к синфазной помехе. Только, увы, у меня ещё не все аппараты соединены исключительно балансными кабелями. А как с этим дело обстоит у вас, дорогой читатель? 😉
Собираем
Выключатель питания пристроен по принципу — где меньше искра будет. В остальном фильтр не сильно отличается от того, что ставят в дорогих компьютерных блоках питания. Кстати, оттуда же можно и детальками разжиться.
Тот фирменный аппарат, что я упомянул вначале статьи, тоже получил свою дозу фильтрации, подробности здесь.
А ещё лучше — можно?
Можно! Экстремалы включают «встречно» огромные трансформаторы и фильтруют всё в низковольтной части. Результат несколько лучше, бюджет — на порядки выше.
Так же мы опустили MOV (варисторы) «искрогасители» и прочие устройства защиты от импульсных перенапряжений. Этим как раз занимаются все подряд сетевые фильтры за десять баксов. Опять же можно из компьютерного БП вытащить и поставить на входе, сразу за предохранителем. Качества звука это не добавит, но может спасти аппарат в грозу. Так же варистор способен уберечь конденсаторы фильтра от деградации, хоть бы они и были «самовосстанавливающимися». Постепенная деградация фильтров связана с нефатальными пробоями, вызванными кратковременными бросками напряжения сети, неизбежными при наличии коммутируемой индуктивной нагрузки, и кстати, совсем не обязательно в самом защищаемом аппарате.
Если аппарат очень мощный — нелишним будет терморезистор или более сложная схема плавного старта, чтобы не поубивать проводку во всём доме в момент включения аппарата током заряда огромных банок фильтров питания…
Если знаете, как сделать ещё лучше — напишите в комментариях!
Что дальше?
Неужели вы добрались так далеко? 😉 Значит статья чем-то заинтересовала. Тогда может и кто-то из друзей и знакомых скажет Вам спасибо за ссылочку на эту статью, или «лайк» в любимой соц-сети…
Если же вы действительно цените качественное звуковоспроизведение, не омрачаемое всевозможными помехами из электросети — у нас есть готовое решение для вас: набор для самостоятельной сборки качественного сетевого фильтра для аудио-аппаратуры.
Или возможно, вы захотите подарить своему лучшему другу — меломану недорогой подарок, за который он будет вам искренне благодарен? 😉 Взвесьте все за и против, и примите верное решение! Сетевой фильтр в вопросах и ответах.
промышленные фильтры для одно- и трехфазных сетей
23 декабря 2013
Импульсные источники питания, тиристорные регуляторы, коммутаторы, мощные радиопередатчики, электродвигатели, подстанции, любые электроразряды вблизи линии электропередач (молнии, сварочные аппараты, и т.д.) генерируют узкополосные и широкополосные помехи различной природы и спектрального состава. Это затрудняет функционирование слаботочной чувствительной аппаратуры, вносит искажения в результаты измерений, вызывает сбои и даже выход из строя как узлов приборов, так и целых комплексов оборудования.
По характеру возникновения помехи подразделяют на противофазные и синфазные. Первые образуются как паразитное напряжение между прямым и обратным проводами сети. Они возникают, например, при большой паразитной емкости между полупроводниковым элементом и землей и при быстрых изменениях сигнала с большой амплитудой напряжения. Ток противофазной помехи в сигнальных проводах совпадает по направлению с током полезного сигнала. Напряжение синфазной помехи возникает как разность потенциалов между фазным проводом, обратным проводом (так называемая масса или нейтральный провод) и землей (корпус прибора, радиатор и т.п.). Ток синфазной помехи имеет одинаковое направление в прямом и обратном проводах сети.
В симметричных электрических цепях (незаземленные цепи и цепи с заземленной средней точкой) противофазная помеха проявляется в виде симметричных напряжений (на нагрузке) и называется симметричной, в иностранной литературе она называется «помехой дифференциального типа» (differential mode interference). Синфазная помеха в симметричной цепи называется асимметричной или «помехой общего типа» (common mode interference).
Симметричные помехи в линии обычно преобладают на частотах до нескольких сотен кГц. На частотах же выше 1 МГц преобладают асимметричные помехи.
Довольно простым случаем являются узкополосные помехи, устранение которых сводится к фильтрации основной (несущей) частоты помехи и ее гармоник. Гораздо более сложный случай — высокочастотные импульсные помехи, спектр которых занимает диапазон до десятков МГц. Борьба с такими помехами представляет собой довольно сложную задачу.
Устранить сильные комплексные помехи поможет только системный подход, включающий в себя перечень мер по подавлению нежелательных составляющих питающего напряжения и сигнальных цепей: экранирование, заземление, правильный монтаж питающих и сигнальных линий и, конечно же, фильтрацию. Огромное количество фильтрующих устройств различных конструкций, добротности, области применения и т.д. выпускаются и используются во всем мире.
В зависимости от типа помех и области применения, различаются и конструкции фильтров. Но, как правило, устройство представляет собой комбинацию LC-цепей, образующих фильтрующие каскады и фильтры П-типа.
Важной характеристикой сетевого фильтра является максимальный ток утечки. В силовых приложениях этот ток может достигать опасной для человека величины. Исходя из значений тока утечки, фильтры классифицируются по уровням безопасности: применения, допускающие контакт человека с корпусом устройства и применения, где контакт с корпусом нежелателен. Важно помнить, что корпус фильтра требует обязательного заземления.
Компания TE-Connectivity, основываясь на более чем 50-летнем опыте компании Corcom в проектировании и разработке электромагнитных и радиочастотных фильтров, предлагает широчайший спектр устройств для применения в различных отраслях промышленности и узлах аппаратуры. На российском рынке представлен ряд популярных серий от этого производителя.
Фильтры общего назначения серии B
Фильтры серии В (рисунок 1) — надежные и компактные фильтры по доступной цене. Большой диапазон рабочих токов, хорошая добротность и богатый выбор типов присоединения обеспечивают широкую область применения этих устройств.

Рис. 1. Внешний вид фильтров серии B
Серия B включает в себя две модификации — VB и EB, технические характеристики которых приведены в таблице 1.
Таблица 1. Основные технические характеристики сетевых фильтров серии B
Наименование | Максимальный ток утечки, мА |
Рабочий диапазон частот, МГц | Электрическая прочность изоляции (в течение 1 минуты), В | Номинальное напряжение, В | Номинальный ток, А | ||
---|---|---|---|---|---|---|---|
~120 В 60 Гц | ~250 В 50 Гц | «проводник-корпус» | «проводник-проводник» | ||||
VB | 0,4 | 0,7 | 0,1…30 | 2250 | 1450 | ~250 | 1…30 |
EB | 0,21 | 0,36 |
Электрическая схема фильтра приведена на рисунке 2.

Рис. 2. Электрическая схема фильтра серии B
Ослабление сигнала помехи в дБ приведено на рисунке 3.

Рис. 3. Ослабление сигнала помехи фильтрами серии B
Фильтры серии T
Фильтры этой серии (рисунок 4) — высокопроизводительные радиочастотные фильтры для силовых цепей импульсных источников питания. Преимуществами серии являются превосходное подавление противофазных и синфазных помех, компактные размеры. Малые токи утечки позволяют применять серию T в устройствах с низким энергопотреблением.

Рис. 4. Внешний вид фильтра серии Т
Серия включает две модификации — ET и VT, технические характеристики которых приведены в таблице 2.
Таблица 2. Основные технические характеристики сетевых фильтров серии T
Наименование | Максимальный ток утечки, мА |
Рабочий диапазон частот, МГц | Электрическая прочность изоляции (в течение 1 минуты), В | Номинальное напряжение, В | Номинальный ток, А | ||
---|---|---|---|---|---|---|---|
~120 В 60 Гц для токов 3; 6; 10 А (15; 20 А) | ~250 В 50 Гц для токов 3; 6; 10 А (15; 20 А) | «проводник-корпус» | «проводник-проводник» | ||||
ET | 0,3 | 0,5 | 0,01…30 | 2250 | 1450 | ~250 | 3…20 |
VT | 0,75 (1,2) | 1,2 (2,0) |
Электрическая схема фильтра серии T приведена на рисунке 5.

Рис. 5. Электрическая схема фильтра серии T
Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 6.

Рис. 6. Ослабление сигнала помехи фильтрами серии T
Фильтры серии К
Фильтры серии К (рисунок 7) — силовые фильтры радиочастотного диапазона общего назначения. Они ориентированы на применение в силовых цепях с высокоомной нагрузкой. Отлично подходят для случаев, когда на линию наводится импульсная, непрерывная и/или пульсирующая помеха радиочастотного диапазона. Модели с индексом EK соответствуют требованиям стандартов для применения в портативных устройствах, медицинском оборудовании.

Рис. 7. Внешний вид сетевых фильтров серии К
Фильтры с индексом С оснащены дросселем между корпусом и заземляющим проводом. Основные электрические параметры сетевых фильтров серии К приведены в таблице 3.
Таблица 3. Основные электрические параметры сетевых фильтров серии К
Наименование | Максимальный ток утечки, мА |
Рабочий диапазон частот, МГц | Электрическая прочность изоляции (в течение 1 минуты), В | Номинальное напряжение, В | Номинальный ток, А | ||
---|---|---|---|---|---|---|---|
~120 В 60 Гц | ~250 В 50 Гц | «проводник-корпус» | «проводник-проводник» | ||||
VK | 0,5 | 1,0 | 0,1…30 | 2250 | 1450 | ~250 | 1…60 |
EK | 0,21 | 0,36 |
Электрическая схема фильтра серии К приведена на рисунке 8.

Рис. 8. Электрическая схема фильтра серии К
Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 9.

Рис. 9. Ослабление помехи фильтрами серии K
Фильтры серии EMC
Фильтры этой серии (рисунок 10) — компактные и эффективные двухступенчатые силовые фильтры радиочастотного диапазона. Обладают рядом преимуществ: высоким коэффициентом ослабления синфазных помех в области низких частот, высоким коэффициентом ослабления противофазных помех, компактными размерами. Серия EMC ориентирована на применение в устройствах с импульсными источниками питания.

Рис. 10. Внешний вид фильтров серии EMC
Основные технические характеристики приведены в таблице 4.
Таблица 4. Основные электрические параметры сетевых фильтров серии EMC
Номинальные токи фильтра, А | Максимальный ток утечки, мА |
Рабочий диапазон частот, МГц | Электрическая прочность изоляции (в течение 1 минуты), В | Номинальное напряжение, В | Номинальный ток, А | ||
---|---|---|---|---|---|---|---|
~120 В 60 Гц для токов 3; 6; 10 А (15; 20 А) | ~250 В 50 Гц для токов 3; 6; 10 А (15; 20 А) | «проводник-корпус» | «проводник-проводник» | ||||
3; 6; 10 | 0,21 | 0,43 | 0,1…30 | 2250 | 1450 | ~250 | 3…30 |
15; 20; 30 | 0,73 | 1,52 |
Электрическая схема фильтра серии EMC приведена на рисунке 11.

Рис. 11. Электрическая схема двухступенчатых фильтров серии EMC
Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 12.

Рис. 12. Ослабление сигнала помехи фильтрами серии EMC
Фильтры серии EDP
Фильтры серии EDP (рисунок 13) — радиочастотные фильтры общего назначения для монтажа на печатные платы. Обладают миниатюрными габаритами и улучшенной фильтрацией синфазных помех при низкой себестоимости и малых токах утечки.

Рис. 13. Внешний вид сетевых фильтров серии EDP
Основные электрические параметры сетевых фильтров серии представлены в таблице 5.
Таблица 5. Основные электрические параметры сетевых фильтров серии EDP
Максимальный ток утечки, мА | Рабочий диапазон частот, МГц | Электрическая прочность изоляции (в течение 1 минуты), В | Номинальное напряжение, В | Номинальный ток, А | ||
---|---|---|---|---|---|---|
~120 В 60 Гц для токов 3; 6; 10 А (15; 20 А) | ~250 В 50 Гц для токов 3; 6; 10 А (15; 20 А) | «проводник-корпус» | «проводник-проводник» | |||
0,22 | 0,38 | 0,1…30 | 2250 | 1450 | ~250 | 1…10 |
Электрическая схема фильтра серии EDP приведена на рисунке 14.

Рис. 14. Электрическая схема сетевых фильтров серии EDP
Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 15.

Рис. 15. Ослабление сигнала помехи фильтрами серии EMC
Фильтры серии FC
Однофазный сетевой фильтр для частотных преобразователей применим в условиях повышенных электромагнитных помех, защищает программируемые логические контроллеры (ПЛК) от негативных воздействий со стороны питающей сети переменного тока (рисунок 16).

Рис. 16. Внешний вид фильтра серии FC
Особая конструкция соединительных клемм обеспечивает безопасность подключения и эксплуатации. Серия нашла широкое применение в области промышленной автоматики. Основные технические характеристики приведены в таблице 6.
Таблица 6. Основные электрические параметры сетевых фильтров серии FC
Тип фильтра | Максимальный ток утечки, мА |
Рабочий диапазон частот, МГц | Электрическая прочность изоляции (в течение 1 минуты), В | Номинальное напряжение, В | Номинальный ток, А | ||
---|---|---|---|---|---|---|---|
~120 В 60 Гц для токов 3; 6; 10 А (15; 20 А) | ~250 В 50 Гц для токов 3; 6; 10 А (15; 20 А) | «проводник-корпус» | «проводник-проводник» | ||||
Без индекса | 3,80 | 6,70 | 0,01…30 | 2250 | 1450 | ~250 | 6…50 |
Индекс B | 3,90 | 7,00 |
Электрическая схема фильтра серии FC приведена на рисунке 17.

Рис. 17. Электрическая схема сетевых фильтров серии FC
Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 18.

Рис. 18. Ослабление сигнала помехи фильтрами серии FC
Фильтры серии AYO
Компактные трехфазные слаботочные сетевые фильтры предназначены для фильтрации сетевых помех в трехфазных общепромышленных сетях с нейтральным проводом (рисунок 19).

Рис. 19. Внешний вид трехфазного сетевого фильтра серии AYO
Особенностью силовых фильтров серии AYO является наличие цепей фильтрации как силовых линий, так и нейтрали. Характеризуются малыми токами утечки, небольшими габаритными размерами, что позволяет использовать их в компактной аппаратуре. Фильтр обеспечивает эффективное подавление помех в широком диапазоне частот от 100 кГц. Основные технические характеристики сетевых фильтров серии AYO рассмотрены в таблице 7.
Таблица 7. Основные технические характеристики сетевых фильтров серии AYO
Номинальные токи фильтра, А | Максимальный ток утечки, мА |
Рабочий диапазон частот, МГц | Электрическая прочность изоляции (в течение 1 минуты), В | Номинальное напряжение, В | Номинальный ток, А | ||
---|---|---|---|---|---|---|---|
~120 В 60 Гц для токов 3; 6; 10 А (15; 20 А) | ~250 В 50 Гц для токов 3; 6; 10 А (15; 20 А) | «проводник-корпус» | «проводник-проводник» | ||||
3; 6; 10 | 2,00 | 3,00 | 0,1…30 | 1500 | 1450 | ~440 | 3…20 |
20 | 3,50 | 5,50 |
Электрическая схема фильтра серии AYO приведена на рисунке 20.

Рис. 20. Электрическая схема трехфазного сетевого фильтра серии AYO
Ослабление сигнала помехи в дБ при нагрузке линии на согласующий резистор сопротивлением 50 Ом приведено на рисунке 21.

Рис. 21. Ослабление сигнала помехи фильтрами серии AYO
При выборе сетевого фильтра необходимо учитывать его рабочее напряжение, номинальный ток и полосу рабочих частот. Показателем эффективности является коэффициент ослабления помехи как отношение сигнала помехи на входе фильтра к его уровню на выходе.
Характерная рабочая температура для всех рассмотренных серий лежит в пределах -10…40°С. При температуре окружающей среды выше 40°С максимально допустимый рабочий ток рассчитывается по формуле:
Компания КОМПЭЛ поддерживает на складе наиболее востребованные модели рассмотренных сетевых фильтров производства компании TE Connectivity. Эти позиции и их краткие характеристики показаны в таблице 8.
Таблица 8. Складские позиции КОМПЭЛ
Наименование | Серия | Количество фаз нагрузки |
Номинальное напряжение фильтра, В | Номинальный ток, А | Размеры ДхШхВ, мм |
---|---|---|---|---|---|
1EB1 | B | 1 | 250 | 1 | 57х64х17 |
5EB1 | B | 1 | 250 | 5 | 66х64х19 |
6ET1 | T | 1 | 250 | 6 | 90х85х46 |
10ET1 | T | 1 | 250 | 10 | 119х113х45 |
15VT1 | T | 1 | 250 | 15 | 138х100х55 |
15VT6 | T | 1 | 250 | 15 | 151х100х55 |
10VK6 | K | 1 | 250 | 10 | 87х71х29 |
20VK6 | K | 1 | 250 | 20 | 87х85х38 |
40VK6 | K | 1 | 250 | 40 | 135х106х38 |
3EMC1 | EMC | 1 | 250 | 3 | 85х70х29 |
10EMC1 | EMC | 1 | 250 | 10 | 97х85х38 |
15EMC1 | EMC | 1 | 250 | 15 | 126х113х45 |
20EMC1 | EMC | 1 | 250 | 20 | 126х113х45 |
3EDP | EDP | 1 | 250 | 3 | 36х31х24 |
6EDP | EDP | 1 | 250 | 6 | 36х31х24 |
10EDP | EDP | 1 | 250 | 10 | 36х31х24 |
6AYO1 | AYO | 3 | 440 | 6 | 85х85х38 |
10AYO1 | AYO | 3 | 440 | 10 | 85х85х38 |
20AYO1 | AYO | 3 | 440 | 20 | 85х85х38 |
6FC10 | FC | 1 | 250 | 6 | 116х78х45 |
12FC10 | FC | 1 | 250 | 12 | 139х100х55 |
16FC10 | FC | 1 | 250 | 16 | 139х100х55 |
Заключение
Все сетевые фильтры производства TE Connectivity соответствуют стандартам UL, имеют сертификацию CSA и рекомендации по применению VDE, что свидетельствует о безопасности, эффективности и качестве изделий.
Следует еще раз отметить, что борьба с помехами — это комплекс мер. Применение одних только фильтров не гарантирует успеха, но является одним из эффективных способов подавления или значительного снижения наводимых и излучаемых помех для улучшения электромагнитной совместимости оборудования. Следует также помнить, что применимость конкретной модели фильтра для конечной задачи можно оценить только экспериментально. Наличие складских позиций у компании КОМПЭЛ дает возможность получить образцы и оценить их эффективность в кратчайшие сроки.
Литература
1. http://www.compel.ru/
2. Corcom Product Guide, General purpose RFI filters for high impedance loads at low current B Series, TE Connectivity, 1654001, 06/2011, p. 15
3. Corcom Product Guide, PC board mountable general purpose RFI filters EBP, EDP & EOP series, TE Connectivity, 1654001, 06/2011, p. 21
4. Corcom Product Guide, Compact and cost-effective dual stage RFI power line filters EMC Series, TE Connectivity, 1654001, 06/2011, p. 24
5. Corcom Product Guide, Single phase power line filter for frequency converters FC Series, 1654001, 06/2011, p. 30
6. Corcom Product Guide, General purpose RFI power line filters — ideal for high-impedance loads K Series, 1654001, 06/2011, p. 49
7. Corcom Product Guide, High performance RFI power line filters for switching power supplies T Series, 1654001, 06/2011, p. 80
8. Corcom Product Guide, Compact low-current 3-phase WYE RFI filters AYO Series, 1654001, 06/2011, p. 111.
Получение технической информации, заказ образцов, поставка — e-mail: [email protected]

Сетевые и сигнальные EMI/RFI-фильтры от TE Connectivity. От платы до промышленной установки
Компания TE Connectivity занимает лидирующие позиции в мире по разработке и производству сетевых фильтров для эффективного подавления электромагнитных и радиочастотных помех в электронике и промышленности. Модельный ряд включает в себя более 70 серий устройств для фильтрации как цепей питания от внешних и внутренних источников, так и сигнальных цепей в широчайшей сфере применений.
Фильтры имеют следующие варианты конструктивного исполнения: миниатюрные для установки на печатную плату; корпусные различных размеров и типов присоединения питающих линий и линий нагрузки; в виде готовых разъемов питания и коммуникационных разъемов сетевого и телефонного оборудования; индустриальные, выполненные в виде готовых промышленных шкафов.
Сетевые фильтры выпускаются для AC и DC приложений, одно- и трехфазных сетей, перекрывают диапазон рабочих токов 1…1200 А и напряжений 120/250/480 VAC, 48…130 VDC. Все устройства характеризуются низким падением напряжения — не более 1% от рабочего. Ток утечки, в зависимости от мощности и конструкции фильтра, составляет 0,2…8,0 мА. Усредненный частотный диапазон по сериям — 10 кГц…30 МГц. Серия AQ рассчитана на более широкий диапазон частот: 10 кГц…1 ГГц. Расширяя области применения своих устройств, TE Connectivity выпускает фильтры для цепей нагрузки с низким и высоким импедансом. Например, высокоимпедансные фильтры серий EP, H, Q, R и V для низкоимпедансных нагрузок и низкоимпедансные серии B, EC, ED, EF, G, K, N, Q, S, SK, T, W, X, Y и Z для высокоимпедансных нагрузок.
Коммуникационные разъемы со встроенными сигнальными фильтрами выпускаются в экранированном, спаренном и низкопрофильном исполнении.
Каждый фильтр производства TE Connectivity подвергается двойному тестированию: на этапе сборки и уже в виде готового изделия. Вся продукция соответствуют международным стандартам качества и безопасности.
•••
Наши информационные каналы
DIY: Борьба с помехами на радио от блоков питания видеорегистраторов/навигаторов | Видеорегистраторы | Блог
Текстом ниже не пытаюсь «открыть Америку» для читателей, просто решил поделиться своим опытом…
Все началось приблизительно, год назад, когда я обратил внимание, что, при прослушивании радио в автомобиле, появились шумы, причем проявлялись они не всегда, а только в определенных точках города, где раньше проблем с приемом никогда не было. В тот момент подумал, что это связанно с работами на радиопередающей вышке, да и сам радиоэфир слушаю редко, все больше музыку с дисков, поэтому особого внимания проблеме не уделял.
Но вот, совсем недавно, в сервисе «Вопрос-ответ» DNS встретил несколько вопросов по проблемам со штатными блоками питания видеорегистраторов и навигаторов и, при активном «гуглении», наткнулся на упоминание некачественной продукции, от которой идут наводки на автомагнитолы при прослушивании радио, и более того, помехи для GPS приемников навигаторов. «Шуметь» может как блок питания, так и устройство к нему подлюченное. Сопоставив данные факты с датой приобретения видеорегистратора Explay DVR-004 (как раз год назад), начали закрадываться подозрения, не он ли источник помех радио.
Покатался по городу, нашел точку, в которой начались помехи, вытащил блок питания видеорегистратора из прикуривателя и …
помехи пропали, радио стало слышно просто отлично!
Проблема локализована, пора заняться ее устранением 🙂
Снова изучение форумов, и приблизительный список решений:
- * Заменить некачественный блок питания на качественный.
- * Убрать импульсный блок питания и поставить стабилизатор на базе кр142ен5 или аналогов.
- * Запитать видеорегистратор от отдельного источника питания.
- * Экранировать корпус видеорегистратора и провод его питания.
- * Поставить на провод питания видеорегистратора ферритовые кольца.
- * Поставить сглаживающие фильтры по питанию на вход и/или выход блока питания регистратора.
Первый вариант я для себя отсек сразу, т.к. вскрытие блока питания моего видеорегистратора показало, что, схема, в принципе, достаточно грамотная, по крайней мере, соответствует типовой для микросхемы MC34063.
Второй вариант плох тем, что «кренки» сильно греются и их нужно хорошо охлаждать (радиатор площадью не меньше 10 см2), что достаточно пожароопасно.
Третий вариант для автомобиля совсем не подходит, не возить же с собой два аккумулятора.
Четвертый вариант, особенно в части корпуса видеорегистратора или навигатора, труднореализуем.
Для себя решил пробовать 5 или 6 вариант, т.е. ставить фильтр по питанию.
Под рукой, как раз был неисправный блок питания персонального компьютера, на входе у которого отдельной платкой стоял фильтр по питанию, решил попробовать его.
Замеры шумов при его подключении показали, что они «живее всех живых» 🙂
Тогда решил собрать из подручных средств П-образный сглаживающий фильтр, не заморачиваясь его расчетами.
Приблизительная схема:
Под рукой, как раз, были необходимые компоненты, а именно:
- * Конденсаторы 25V 1000uF (продаются в любом радиомагазине за сущие копейки).
- * Дроссель (выпаял из неисправного блока питания).
- * Штекер в прикуриватель автомобиля (позаимствован с неисправного автомобильного компрессора).
Первым делом поставил в штекер предохранитель, чтобы, в случае короткого замыкания, не спалить электронику автомобиля или блок питания видеорегистратора. Именно отсутствие предохранителя и стало причиной мучительной смерти компрессора, когда на морозе лопнула оплетка его провода и произошло короткое замыкание. Второй раз на эти грабли решил не вставать.
Для быстрой проверки изготовил «прототип» — распаял схемку «навесом». Получилась такая конструкция.
Первое же испытание «в поле» показало неплохой результат, уровень шумов снизился существенно, небольшие помехи остались, но их можно списать на действительно низкий уровень сигнала в некоторых местах нашего города. Также, не стал ставить ферритовые кольца на провод питания, т.к. их под рукой не оказалось, а полученный эффект меня устроил 🙂
Следующим шагом – облагородил схемку в небольшой корпус из под мышки Logitech, уж очень не хотелось снимать часть панели в авто и припаивать получившийся фильтр непосредственно к разъему «прикуривателя».
Для этого разобрал блок питания видеорегистратора
отпаял пружинку и минусовой контакт
Выкинул «потроха» мышки и разместил фильтр и блок питания внутри ее корпуса, закрепив элементы с помощью клеевого термопистолета.
Результат получился вполне симпатичный
На этом все, надеюсь мой опыт пригодится кому-нибудь еще.
Фильтр для подавления помех от питающей сети
Для предотвращения помех от электро — и радиоприборов необходимо снабдить их фильтром для подавления помех от питающей сети, расположенным внутри аппаратуры, что позволяет бороться с помехами в самом их источнике.
В настоящее время отечественные и зарубежные предприятия предлагают целый ряд таких фильтров, как простых, одно- и двухкаскадных, так и многокаскадные фильтры, способные обеспечить максимальный уровень защиты от помех. Фильтры выполнены по всем правилам конструирования радиоаппаратуры, имеют защитные экраны и специальные проходные конденсаторы, предотвращающие прямое прохождение помех и паразитные магнитные помехи самого фильтра.
Если не удастся отыскать готовый фильтр, его можно сделать самостоятельно. Схема помехоподавляющего фильтра представлена на рисунке ниже:

Фильтр двухкаскадный. Первый каскад выполнен на основе продольного трансформатора (двухобмоточного дросселя) Т1, второй представляет собой высокочастотные дроссели L1 и L2. Обмотки трансформатора Т1 включены последовательно с линейными проводами питающей сети. По этой причине низкочастотные поля частотой 50 Гц в каждой обмотке имеют противоположные направления и взаимно компенсируют друг друга. При воздействии помехи на провода питания, обмотки трансформатора оказываются включенными последовательно, а их индуктивное сопротивление XL растет с увеличением частоты помех: XL = ωL = 2πfL, f — частота помех, L — индуктивность включенных последовательно обмоток трансформатора.
Сопротивление конденсаторов C1, С2, наоборот, уменьшается с ростом частоты (Хс =1/ωС =1/2πfC), следовательно, помехи и резкие скачки напряжения «закорачиваются» на входе и выходе фильтра. Такую же функцию выполняют конденсаторы СЗ и С4.Дроссели LI, L2 представляют еще одно последовательное дополнительное сопротивление для высокочастотных помех, обеспечивая их дальнейшее ослабление. Резисторы R2, R3 уменьшают добротность L1, L2 для устранения резонансных явлений.
Резистор R1 обеспечивает быстрый разряд конденсаторов C1—С4 при отключении сетевого шнура от питающей сети и необходим для безопасного обращения с устройством.
Детали сетевого фильтра размещены на печатной плате, показанной на рисунке ниже:

Резисторы MЛT, С2-33, С1 — 4 мощностью 0,25 или 0,125 Вт. Конденсаторы C1 — С4 на рабочее напряжение не ниже 400 В. Лучше всего подходят отечественные конденсаторы К78-2 или зарубежные класса X или Х2. Емкость конденсаторов С1 и С2 может находиться в диапазоне 0,1…0,47 мкФ, а конденсаторов СЗ и С4 — от 2200 пФ до 0,022 мкФ.
Плату фильтра для подавления помех от питающей сети лучше всего разместить в металлическом корпусе. В случае если устройство не имеет металлический корпус, желательно выделить устройство подавления помех металлической перегородкой. При монтаже необходимо минимизировать длину проводников, подходящих к фильтру.Применение помехоподавляющих входных фильтров — Электромагнитная совместимость в электронике
Введение
Как и прежде, входные фильтры являются необходимым средством для успешной сертификации конечных изделий на соблюдение требований к электромагнитной совместимости (ЭМС). Эта сертификация, в первую очередь, касается устройств на базе импульсных источников питания, причем независимо от мощности компонента, используемого для преобразования напряжения переменного тока. Импульсные преобразователи генерируют промышленные и электромагнитные помехи при наводке напряжения переменного тока на линии подключения и излучение независимо от индивидуальной топологии и области применения. Некоторые изготовители компонентов, предназначенных для импульсного преобразования напряжения, оптимизируют силовые модули, чтобы уменьшить помехи в линиях подключения и излучаемые помехи.
Поскольку остаточные пульсации по выходным цепям этих модулей обычно имеют крайне малые значения, в большинстве приложений выходной фильтр может быть рассредоточен. Однако поскольку входной ток понижающего преобразователя тоже является импульсным, в конечном приложении могут возникать кондуктивные и радиочастотные помехи.
Для уменьшения пульсаций входного тока сильноточных приложений используются многофазные преобразователи, в которых фазы рабочей частоты сдвинуты на 360°/N (N — число фаз). Такая мера помогает уменьшить пульсации, но не избавляет от коммутационных помех, которые проникают в провода питающей сети. Разработчик оборудования с использованием импульсных преобразователей должен принять взвешенное решение, куда установить входной фильтр — непосредственно перед силовым модулем или вблизи точек ввода напряжения.
В первую очередь, мы обсудим, как возникают шумы и помехи в дифференциальном режиме — в системе с симметричным прямым и обратным током между источником и нагрузкой в линиях подключения импульсного преобразователя (рис. 1).

Рис. 1. Симметричная система
Частота пульсаций напряжения во входной цепи совпадает с рабочей частотой преобразователя, а форма входного тока — с током через накопительную индуктивность (дроссель) силового модуля. Входной ток протекает через конденсатор CIN. Реальные конденсаторы, как известно, обладают резистивным (ESR) и индуктивным компонентами (ESL) (рис. 2). Из-за ESR входного конденсатора и конечного импеданса линий подключения силового модуля наличие компонента переменного тока приводит к возникновению на них нежелательного падения напряжения.

Рис. 2. Эквивалентная полная схема для определения напряжения помех
В этой модели напряжение шума проявляется как дифференциальный сигнал. Амплитуда напряжения помех, возникающая на входном конденсаторе, существенно зависит от значения ESR используемого конденсатора. Электролитические конденсаторы имеют относительно высокий уровень ESR, величина которого может варьироваться от нескольких мОм до нескольких Ом. Как следствие, напряжение помех находится в диапазоне между несколькими мВт и несколькими Вт. С другой стороны, у керамических конденсаторов ESR очень мал — всего несколько мОм и, следовательно, шумовое напряжение не превышает нескольких мВт. Кроме того, большое влияние на напряжение помех оказывает расчет печатной платы силового модуля.
Для уменьшения дифференциального шума на входе преобразователя устанавливается, по крайней мере, один простейший LC-фильтр, который минимизирует составляющую переменного тока в линии. В высокоимпедансных системах, т. е. в случае, когда входной импеданс каскада не влияет на выходной импеданс предыдущего каскада, такой входной фильтр теоретически обеспечивает ослабление напряжения в полосе затухания 40 дБ/декаду. Но на практике достигаются меньшие уровни подавления. Так происходит, во‑первых, потому, что нагрузка фильтра имеет малый импеданс и влияет на передаточную характеристику фильтра. Во‑вторых, компоненты такого фильтра неидеальны и имеют собственные неизбежные потери.
При определении параметров LC-фильтра частота среза fC выбирается так, чтобы она была ниже коммутационной частоты fSW силового модуля. Если отношение этих частот составляет 1/10, теоретически на частоте переключения, амплитуда которой является основной в общем спектре помех, уровень вносимых потерь достигает 40 дБ. Таким образом, будем исходить из следующего условия:
Частота среза LC-фильтра определяется так:
В качестве примера для расчета фильтра примем индуктивность равной 10 мкГн. В этом случае:
При принятии решения о размещении элементов фильтра, который показан на рис. 3, конденсатор фильтра устанавливается со стороны источника напряжения или силового модуля. При этом, если используется несколько включенных параллельно конденсаторов, конденсатор с лучшими частотными свойствами следует установить ближе к источнику помех. Решающим фактором для ослабления тока импульсного источника напряжения является индуктивность катушки индуктивности фильтра.

Рис. 3. Размещение элементов фильтра
Если добротность фильтра слишком велика, в случае резкого изменения входного напряжения могут появиться паразитные колебания, подлежащие подавлению. Примем, что для обеспечения стабильности выходной импеданс входного фильтра ZOUT, FILTER в широком частотном спектре должен быть ниже полного входного сопротивления силового модуля ZIN, CONVERTER:
Кроме того, частота среза fC входного фильтра должна быть намного ниже частоты fCO среза силового модуля:
Из рис. 4 видно, что это достигается путем установки шунтирующего звена — керамического многослойного конденсатора, параллельного входу силового модуля.

Рис. 4. Увеличение затухания входного фильтра
Шунтирующий элемент уменьшает добротность входного фильтра и, следовательно, его выходное сопротивление на резонансной частоте. Формула (6) применяется для расчета сопротивления затуханию RD при добротности фильтра QF = 1:
Величина емкости шунтирующего конденсатора CD, снижающего добротность фильтра до вполне приемлемого значения, находится в диапазоне между пяти- и десятикратными значениями номинальной емкости конденсатора фильтра CF:
В качестве альтернативного варианта ослабления фильтра можно выбрать электролитический конденсатор, установив его параллельно выходу фильтра вместо шунтирующего звена. Как правило, величины ESR электролитного конденсатора достаточно для ослабления добротности фильтра.
Выбор компонентов LC-фильтра
Оба элемента фильтра — и конденсатор, и катушка индуктивности в действительности обладают не только емкостными, но и индуктивными свойствами. Как известно, фильтрующий эффект катушек индуктивности в наибольшей мере проявляется на их собственной резонансной частоте SRF (Self-Resonant Frequency). Значение SRF катушек в большой мере зависит от их индуктивности и конструкции, которая определяет емкостную связь между витками обмотки. Довольно подробно особенности выбора дросселей описаны в [2–3].
Конденсаторы тоже имеют собственную резонансную частоту SRF. Она, в свою очередь, в значительной мере зависит от емкости, технологии, конструктивного исполнения и, особенно, от длины выводов конденсатора. Следовательно, при выборе компонентов фильтра желательно удостовериться, что SRF обоих компонентов находится в самой верхней части частотного диапазона, в котором напряжение радиочастотных помех имеет максимальный уровень, или, соответственно, в той полосе частот спектра, в которой фильтр должен быть активным. Некоторые особенности работы конденсаторов в импульсных цепях и выбора этих компонентов рассматриваются, например, в [4].
Определяющим компонентом для уменьшения дифференциального шума является катушка индуктивности, поскольку именно она противодействует быстрому нарастанию и падению тока во входной цепи. На рис. 5 показаны графики зависимости полного сопротивления от частоты для трех индуктивностей, выполненных на стержневых сердечниках, из семейства WE-SD компании Würth Elektronik.

Рис. 5. Пример зависимости импеданса от частоты и конструктивного исполнения трех катушек индуктивности серии WE-SD компании Würth Elektronik
Поскольку чем выше индуктивность, тем меньше SRF, рекомендуется выбирать катушку, численное значение индуктивности которой меньше емкости конденсатора фильтра. На практике максимальное значение индуктивности фильтра выбирается равным 10 мкГн, т. к. в зависимости от конструкции собственная резонансная частота этой индуктивности достигает 30 МГц. По существующим стандартам это максимальная частота для оценки кондуктивных помех.
Кроме того, необходимо учитывать, что большой рабочий ток, значительно превышающий номинальный ток катушки индуктивности фильтра, может привести к повреждению изоляции провода ее обмотки. Если КПД импульсного преобразователя обозначить как η, эффективный входной ток силового модуля можно вычислить с помощью уравнения (8):
Из соображений безопасности в качестве номинального тока катушки фильтра следует выбрать большее значение тока. В качестве конденсатора фильтра можно задействовать электролитический конденсатор с жидким электролитом, полимерный или даже керамический конденсатор. При этом необходимо, чтобы добротность фильтра на частоте среза была достаточно малой, как уже упоминалось.
При использовании π-фильтра следует принимать дополнительные меры. В оптимальном случае входной фильтр требуется устанавливать как можно ближе к входу силового модуля. Если этот фильтр расположен дальше, исходя из геометрических и других соображений, на высоких частотах линии подключения могут работать как антенна между входным фильтром и силовым модулем. Однако индуктивность этих линий связи можно также использовать вместе с керамическим конденсатором как дополнительный LC-фильтр с более высокой частотой среза (рис. 6). Из-за его ничтожно малого ESR керамический многослойный конденсатор может закорачивать токи, возникающие от высокочастотных помех, на землю.

Рис. 6. Входной π-фильтр
Собственная резонансная частота конденсатора должна находиться примерно в области спектра рабочей частоты силового модуля. На рис. 7 показаны кривые полного сопротивления керамических конденсаторов WCAP-CSGP типоразмера 0805 от компании Würth Elektronik.

Рис. 7. Пример зависимости импеданса от частоты конденсаторов WCAP-CSGP типоразмера 0805 от компании Würth Elektronik
Из компонентов, характеристики которых показаны на рис. 7, на тактовой частоте 2 МГц для рассматриваемой задачи подходит, например, конденсатор емкостью 1 мкФ (кривая красного цвета). Даже керамический конденсатор емкостью 100 нФ (кривая оранжевого цвета), который используется в качестве блокирующего конденсатора во многих электронных схемах, является вполне подходящим кандидатом для указанных целей. Однако заметим, что по сравнению с конденсатором емкостью 1 мкФ, у 100‑нФ конденсатора величина ESR в девять раз выше.
Выбор выходного фильтра и его особенности
Поскольку силовые модули MagI3C от компании Würth Elektronik характеризуются ничтожно малыми остаточными пульсациями выходного напряжения, необходимость в выходном фильтре в таких случаях отсутствует. Однако если компоненты с питанием от импульсного преобразователя используют коммутируемые интерфейсы (например, мультиплексоры датчиков, аналоговые коммутационные схемы и т. д.), то для фильтрации выходного напряжения требуется выходной фильтр.
Схема выходного фильтра, представленная на рис. 6, сопоставима со схемой на рис. 8. Однако, как правило, невозможно сделать окончательный вывод о необходимости и эффективности такого выходного фильтра, поскольку для каждого конкретного приложения требуется свой расчет. Выходной фильтр позволяет уменьшить остаточные пульсации выходного напряжения силового модуля до минимума или подавить нежелательные субгармонические колебания. Фильтр рассчитывается тем же способом, которым мы воспользовались выше, но принимать меры для ухудшения его добротности уже не требуется.

Рис. 8. Выходной фильтр
Измерение напряжения шумов и помех в цепях питания и излучаемых радиопомех
Измерение напряжения шумов и помех выполняется в соответствии с основным стандартом IEC CISPR 16-2-1 [5]. В этом стандарте описываются типы измеряемых помех, оборудование, которое должно использоваться для разных измерений, и измерительная установка для настольных и напольных устройств. Уровень помех в проводах питающей сети оценивается в диапазоне частот 9 кГц…30 МГц. К измерительным приборам помимо приемника электромагнитных помех относятся схемы стабилизации полного сопротивления линии LISN (Line Impedance Stabilizing Network), пробники напряжения, токовые клещи и емкостные пробники напряжения. Длина кабеля между тестируемым устройством и LISN не должна превышать 80 см. Приемник электромагнитных помех оценивает асимметричное шумовое напряжение, которое разделяется в LISN для отдельных проводов кабеля.
Метод измерения излучаемых радиопомех с частотой выше 30 МГц описан в базовом стандарте IEC CISPR16-2-3 [6]. Измерительная среда представляет собой полностью безэховую комнату с токопроводящим полом или в меньших масштабах — полностью безэховую камеру.
Анализ результатов измерения шумов и помех
В этом разделе мы опишем измерение напряжения шумов и помех на примере оценочной платы семейств MagI3C модулей питания WPMDh2200601JEV от компании Würth Elektronik (рис. 9). Плата оснащена модулем понижающего DC/DC-пре-образователя стабилизатора напряжения WPMDh2200601JT [1] с диапазоном рабочего входного напряжения 6–42 В и током нагрузки до 2 A при регулируемом выходном напряжении в пределах 0,8–6 В.

Рис. 9. Структурная схема оценочной платы WPMDh2200601JEV для модуля питания MagI3C от компании Würth Elektronik
Уже на предварительном этапе можно измерить с помощью осциллографа составляющую переменного тока на входе силового модуля. Таким образом, выполняя анализ во временной области, спектр помех можно оценить перед расчетом фильтра.
На рис. 10 показана составляющая — переменное напряжение величиной 80 мВ, измеренное при входном напряжении силового модуля 7,5 В, среднем входном токе 1,2 А и среднем токе нагрузки 2 А. Известно, что импульсные преобразователи представляются по отношению к источнику питания как отрицательное дифференциальное сопротивление, поскольку при постоянной нагрузке их входной ток возрастает с уменьшением входного напряжения. По этой причине напряжение шума измеряется для «наихудшего случая», т. е. при минимальном входном напряжении и максимальном токе нагрузки.

Рис. 10. Сигнал во временной области с широкополосным спектральным наполнением, характерный для понижающего DC/DC-преобразователя WPMDh2200601JT семейства MagI3C от компании Würth Elektronik
Однако определяющим фактором при анализе помех остается измерение, которое выполняется только в лаборатории, специализирующейся на проблемах ЭМС. На рис. 11 показан результат измерения напряжения кондуктивных помех модуля без входного фильтра. Целью измерения было установить соответствие оценочной платы требованиям Class В стандарта EN55022 (CISPR‑22) относительно кондуктивных помех, который дает частичную презумпцию соответствия Европейской директиве 2014/30/ЕС (2004/108/EC) по электромагнитной совместимости.

Рис. 11. Уровень кондуктивных помех понижающего DC/DC-преобразователя WPMDh2200601JT семейства MagI3C от компании Würth Elektronik без входного LC-фильтра. Измерения выполнялись согласно EN55022 (CISPR-22)
Рассматриваемый в качестве примера силовой модуль работает на тактовой частоте 370 кГц. В общем спектре помех максимальная амплитуда (пик красного цвета: 68 дБ (мкВ)) достигается именно на этой частоте. Амплитуда плотности шумового напряжения падает со скоростью около 40 дБ/декаду, что означает отсутствие значительного уровня помех выше 15‑й гармоники от тактовой частоты преобразователя. Однако видно, что только выше 9‑й гармоники уровень помех падает более чем на 10 дБ ниже предела при измерении с помощью среднеквадратичного детектора (синяя линия).
Для расчета подходящего входного LC-фильтра воспользуемся уравнением (3). Учитывая относительно низкую рабочую частоту преобразователя, выбираем катушку индуктивности с малым значением SRF, индуктивностью 4,7 мкГн и рассчитываем емкость конденсатора нашего фильтра:
Выбираем емкость конденсатора фильтра равной 10 мкФ, чтобы учесть допустимые отклонения и технологический запас. Максимальный входной ток рассчитывается с помощью уравнения (8). Для этого вычисления требуется учесть КПД оценочной платы, который определяется путем измерения и в этом случае равен 91%. Входной ток с учетом КПД равен:
На основе выбранной индуктивности фильтра и входного тока можно определить подходящую катушку индуктивности. С этой целью выбираем неэкранированную катушку индуктивности 744 774 50 47 типоразмера 5820 из серии PD2 от Würth Elektronik. На рис. 12 показан результат измерения уровня радиопомех с учетом согласованного фильтра.

Рис. 12. Уровень кондуктивных помех понижающего DC/DC-преобразователя WPMDh2200601JT семейства MagI3C от Würth Elektronik с входным фильтром. Измерения согласно EN55022 (CISPR-22) выполнялись с помощью оценочной платы с входным LC-фильтром (4,7 мкГн + 10 мкФ)
Величина радиопомех, измеренных на рабочей частоте переключения 370 кГц, составила 30 дБ (мкВ). Уровни всех гармоник находятся ниже 20 дБ (мкВ), так что они достаточно ослаблены. Средний уровень на частоте 370 кГц соответствует пиковому значению и на 18 дБ ниже среднего предела 47 дБ (мкВ). С точки зрения величины отношения сигнал/шум, это вполне удовлетворительные результаты, чтобы подтвердить соответствие изделия требованиям к ЭМС.
Цель измерения напряжения шума состоит в том, чтобы показать применимость анализа потенциала помех во временной области. Однако анализ в частотной области по-прежнему остается необходимым.
Наконец, требуется определить шунтирующее звено фильтра RD–CD (рис. 4). С этой целью для определения RD используется уравнение (6). Сопротивление RD, необходимое для уменьшения добротности рассчитанного нами фильтра, определяется следующим образом:
Как уже упоминалось, чем выше значение шунтирующего резистора, тем выше частота, на которой обеспечивается критическое затухание резонанса фильтра. В данном случае можно выбрать следующее более высокое сопротивление номиналом 1 Ом из ряда E12.
Учитывая уравнение (7), для подавления резонанса воспользуемся конденсатором CD номиналом 47 мкФ. В качестве этого компонента можно выбрать, например, керамический конденсатор eiCap (885 012 108 004) серии WCAP-CSGP от Würth Elektronik.
Особенности измерений на соответствие требованиям IEC CISPR 22
Указанные измерения проводились в соответствии со стандартом IEC CISPR16-2-1. Использование LISN позволило развязать асимметричное напряжение и приравнять к асимметричному (синфазному) напряжению, которое затем сравнивалось с предельными значениями, установленными стандартом IEC CISPR 22 для устройств частного и коммерческого применения (Class B). Для компонентов электропитания, к которым относятся все типы импульсных преобразователей, нет прямого стандарта, устанавливающего требования к ЭМС. Таким образом, любое приложение, в котором применяется такой преобразователь, должно быть отнесено к определенной категории устройств, а уже затем протестировано в соответствии со стандартом, действующим применительно к конкретному семейству изделий. В рассматриваемом случае мы воспользовались стандартом IEC CISPR 22 для ИТ-устройств с учетом предельных уровней, которые также приведены в общем стандарте IEC 610006-3. Общие стандарты могут применяться в случаях, если не существует конкретного стандарта для типа рассматриваемого устройства.
Выводы
Как и прежде, входные фильтры независимо от уровня переменной составляющей являются необходимым средством для успешной сертификации конечных изделий на соответствие требованиям к электромагнитной совместимости (ЭМС). Для самостоятельного расчета такого входного фильтра можно использовать достаточно простые формулы. Грамотный подход к проектированию фильтра с учетом его импедансов и импульсного преобразователя позволяет избежать возникновения паразитных колебаний, а также обеспечивает стабильность контура управления и самого импульсного преобразователя.
Поскольку целенаправленный выбор компонентов фильтра закладывает основы для его оптимальной конструкции, входной фильтр, созданный с учетом всех требований, гарантирует определенный успех при тестировании конечного оборудования на соответствие ЭМС. Разработчик конечного оборудования может при необходимости создать собственный импульсный преобразователь и с помощью несложной методики расчета, представленной в этой статье, скорректировать фильтр для решения конкретной задачи.
Литература- Ranjith Bramanpalli. Input Filters — The Key to Successful EMC Validation.
- Алексей Чистяков. Некоторые особенности обмоток дросселей и трансформаторов для преобразователей//Электронные компоненты. 2016. № 1.
- Александр Герфер, Ранжит Браманпалли, Джокен Байер. Высокоточный расчет силового дросселя для энергоэффективных приложений // Электронные компоненты. 2016. № 10.
- Алексей Чистяков. Конденсаторы для источников питания и преобразователей // Электронные компоненты. 2016. № 10.
- ГОСТ CISPR 16-2-1-2015. Требования к аппаратуре для измерения радиопомех и помехоустойчивости и методы измерения. Часть 2–1. Методы измерения помех и помехоустойчивости. Измерения кондуктивных помех.
- ГОСТ CISPR 16-2-3-2016. Требования к аппаратуре для измерения радиопомех и помехоустойчивости и методы измерения. Часть 2–3. Методы измерения радиопомех и помехоустойчивости. Измерения излучаемых помех.
- ГОСТ 30805.22-2013 (CISPR 22:2006). Совместимость технических средств электромагнитная. Оборудование информационных технологий. Радиопомехи индустриальные. Нормы и методы измерений.
выбираем сетевые фильтры и стабилизаторы / Блог компании М.Видео-Эльдорадо / Хабр
Причины, по которым старое доброе электричество в домашней розетке выходит за пределы допустимых отклонений, бывают разные. Порой это временные скачки напряжений и всплески помех, иногда это систематические отклонения за пределы ГОСТов. В конечном итоге за это расплачивается домашняя техника, мгновенно или медленно умирая от «электрической интоксикации».В этом посте мы расскажем о простых и недорогих способах «электрической гигиены» в зависимости от типа проблем в вашей электросети.
Зачем все это нужно
Лишь в идеальном мире ток в электрической розетке имеет только два состояния: он есть или его нет. В реальности «поведение» электрического питания имеет «аналоговый» непредсказуемый характер, неприятно удивляющий каждый раз, когда этого ждешь меньше всего.
Существует множество причин, по которым «питание от сети» может отклониться от нормы и даже выйти за пределы стандартных отклонений. Так, вечернее напряжение в сети – когда в каждой розетке каждой квартиры по включенному чайнику, телевизору или компьютеру — значительно отличается от напряжения в ночные или дневные часы с минимальной нагрузкой.
Другой пример: гражданин подключил к домашней сети промышленный сварочный аппарат, и все соседи по подъезду или дому наслаждаются импульсными помехами в виде полосок на экранах и треска в акустике.
В большинстве случаев снижение качества электропитания непредсказуемо и неизбежно из-за внешнего характера источника – как, например, импульсные скачки напряжения во время грозы. Иногда проблема известна очень даже хорошо – например, мощный фен, чайник или старинный холодильник, периодически рассылающие «электроикоту» по хлипкой домашней или офисной электропроводке, избавиться от которой выше наших сил, хотя в некоторых случаях вопрос решается простой подтяжкой контактов на всем пути.
Список возможных источников проблем с электричеством можно продолжить и дальше. Но будь то искрящие контакты в подъезде или регулярные перепады на подстанции – для владельца «внезапно» сгоревшей не по гарантии техники итог один.
Фильтр фильтру рознь
В самом названии устройства – «сетевой фильтр» — заложен ключевой принцип защиты: путем пассивной фильтрации входного напряжения. Простейшие недорогие варианты могут фильтровать высокочастотные помехи с помощью встроенных индуктивно-емкостных элементов (LC-фильтров) или бороться с импульсными помехами с помощью варисторных фильтров. Более дорогие экземпляры включают в себя оба вида фильтров.
Входное сетевое напряжение с высокочастотными и импульсными помехами
Напряжение после фильтрации импульсных помех варисторами
Выходное напряжение после LC-фильтрации высокочастотных помех
В действительно хорошем сетевом фильтре есть дополнительные средства защиты. Например, автоматический предохранитель, отключающий питание при определенной токовой перегрузке. Или специальные метал-оксидные варисторы, срабатывающие при экстремальных пиках напряжения во время грозы или в случае короткого замыкания.
ЭРА SF-6es-2m-B: типичный сетевой фильтр
Некоторые сетевые фильтры предлагают дополнительные «сопутствующие услуги», например, обеспечивают фильтрацию и защиту для телефонной линии / факса, Ethernet-сети и телевизионной антенны. Возникновение подобных помех — не такая уж большая редкость в старых зданиях, кабельная разводка в которых за многие годы эксплуатации превратилась в многослойное и порой даже хаотичное переплетение силовых и сигнальных проводов с ветхими и проржавевшими контактами. Функции подобной фильтрации с равным успехом могут быть востребованы как в офисе, так и в домашних условиях.
Стабилизатор: полет нормальный
В отличие от сетевого фильтра, сглаживающего импульсные и высокочастотные искажения (помехи) пассивными средствами, сетевой стабилизатор активно воздействует на ключевой параметр электропитания – напряжение, компенсируя его отклонения.
До недавнего времени в России нормой для однофазной сети считалось напряжение 220 В ±10% (ГОСТ 5651-89), то есть нормальным считалось любое напряжение переменного тока в пределах от 198 до 244 вольт. С недавнего времени в силу вступил приведенный к европейским нормам межгосударственный стандарт ГОСТ 29322-2014 (IEC 60038:2009), по которому стандартным считается сетевое напряжение 230 В ±10%, или от 207 до 253 В. Старые добрые 220 В, впрочем, пока никто не отменял – стандарты действуют параллельно, так что в целом можно учитывать примерный диапазон 200-250 В.
Почти вся современная компьютерная и бытовая электроника оснащается импульсными блоками питания, которые сами себе — прекрасные стабилизаторы и способны работать в широком диапазоне питающих напряжений. Так, например, подавляющее большинство компьютерных блоков питания – как встраиваемых в ПК, так и внешних, для ноутбуков и планшетов — рассчитаны на глобальное использование в большинстве стран мира с номинальным напряжением сети от 110 В до 240 В. В некоторых случаях такая техника «запускается» даже при напряжении всего 90-100 В. Соответственно, снижение напряжения в розетке по любым причинам для них не помеха, повышающая компенсация происходит автоматически.
Defender AVR Typhoon 1000: компактный стабилизатор на 320 Вт и 2 розеткиС повышенным напряжением немного сложнее: даже самая современная электроника рассчитана максимум на 250-260 В, но если такое напряжение в питающей сети почему-то стало нормой (в городских условиях в это трудно поверить), конечно же, лучше его стабилизировать внешними средствами.
Вне зависимости от повышенного или пониженного напряжения в особую группу риска попадают все любители теплого лампового звука – раритетных виниловых вертушек, плееров, усилителей и другой старинной техники. В этом случае применение стабилизаторов, как говорится, не обсуждается.
В настоящее время наиболее популярными и многочисленными представителями класса бытовых стабилизаторов напряжения являются электронные, где входящий ток с частотой 50 Гц преобразуется в высокочастотные импульсы с частотой в десятки килогерц и управляется с помощью широтно-импульсной модуляции (ШИМ). Из существенных минусов таких стабилизаторов можно отметить лишь то, что синусоида на выходе таких стабилизаторов далека от идеала. Список плюсов гораздо длиннее: компактность, небольшой вес, огромный рабочий диапазон, универсальность, устойчивость к перегрузкам, и, главное, невероятно доступная цена.
Помимо этого, в рознице изредка также можно встретить «классику»: внушительных размеров блоки, ступенчато снижающие или поднимающие выходное напряжение за счет электронного или релейного переключения обмоток размещенного внутри полноценного автотрансформатора. Такие стабилизаторы громоздки, имеют изрядный вес, но при этом практически не искажают синусоиду входного тока. Как правило, стабилизаторы этого класса ориентированы на питание целого дома или выполнение специфической задачи – вроде питания газового котла, однако при определенных условиях именно такое устройство может оказаться идеальным выбором аудиофила.
PowerCom TCA-2000: стабилизатор на 2000 ВА (1000 Вт) и 4 розеткиХороший стабилизатор, как правило, оснащается всеми пассивными фильтрами, характерными для сетевых фильтров, а также имеет все мыслимые виды защиты, в том числе от перенапряжения, перегрузки, перегрева, короткого замыкания и т.д.
Что надо знать при выборе сетевого фильтра
При выборе любого промежуточного сетевого устройства – удлинителя, сетевого фильтра, стабилизатора или источника бесперебойного питания, прежде всего следует помнить главное правило: «электротехника – наука о контактах». Красивые надписи, громкие имена брендов, многочисленные индикаторы и USB-порты не должны отвлекать от главной проблемы: включая что-либо между сетью и устройством, мы добавляем лишние контакты в и без того длинную и неравномерную цепь.
- Даже самые совершенные схемотехнические решения для стабилизации, фильтрации и защиты попросту бессмысленны, если контакты в розетках вырезаны из консервной банки и болтаются по чем зря, а пайка разъемов сделана некачественно. В таких условиях любые перепады нагрузки в сети будут автоматически создавать многочисленные помехи.
Сетевой фильтр Power Cube PROПри покупке надо обратить внимание на качество исполнения розеток, вилок, кабелей и контактов. Вилки должны максимально плотно входить в розетки, кабель устройства, если имеется, должен быть надежным, из многожильного провода, с качественной изоляцией, рассчитанным на достаточно большую пиковую силу тока в синфазном режиме. Очень хорошо, если розетки устройства оснащены защитными шторками, это внесет дополнительную безопасность в доме с дошкольниками.
- Просчитайте заранее количество необходимых розеток для подключения техники, чтобы впоследствии не пришлось городить огород ненужных дополнительных контактов из удлинителей и других переходников.
Хороший сетевой фильтр или стабилизатор может обладать индикацией наличия заземления или режима перегрузки, это полезный бонус. Что касается встроенного в сетевой фильтр зарядного устройства с одним или несколькими портами USB – это, скорее, приятная мелочь, несколько влияющая на цену, но никак не связанная с основной функцией устройства.
- В процессе выбора сетевого фильтра важно обратить внимание на суммарную энергию пиковых выбросов паразитного напряжения (в джоулях), которую устройство теоретически в состоянии отфильтровать и погасить в каждый момент времени без саморазрушения. Впрочем, максимальное число джоулей в спецификации фильтра – тоже не истина в последней инстанции, поскольку правильно спроектированный фильтр способен «заземлять» часть энергии через варисторы. Тем не менее, в процессе выбора маркировку фильтра в джоулях не стоит сбрасывать со счетов.
- Следующий важный параметр – максимальный ток помехи, на который рассчитан фильтр, в амперах. В дополнение, сетевой фильтр также может быть промаркирован по максимальной нагрузке, при этом она может быть указана как в амперах, так и в ваттах.
- Некоторые производители также добавляют в список характеристик сетевых фильтров максимально допустимое напряжение (в вольтах) уровень ослабления высокочастотных помех для разных частот (в децибелах) и наличие защиты от перегрузки – например, от перегрева.
Наконец, ряд параметров фильтра, определяющий его выбор в каждом отдельном случае: длина кабеля, количество розеток, возможность настенного монтажа, наличие дополнительных фильтров для телефонной линии и витой пары, наличие портов USB и так далее.
Вариант 1: новостройка
Рассмотрим для начала наиболее оптимистичный сценарий: только что сданная в эксплуатацию новостройка с новенькой подстанцией; проводка выполнена исключительно медью с идеальным монтажом, высококачественными, еще не окислившимися контактами и автоматическими предохранителями на соответствующий ток.
Казалось бы, напряжение в розетке должно быть максимально близким к идеальной синусоиде. Увы, даже такую идиллию легко может испортить на пару месяцев приглашенная соседом на ремонт гоп-группа с раздолбанным инструментом: каждый электродвигатель в каждой помирающей болгарке, дрели или отбойнике будет искрить из последних сил до финальной своей черты, рассылая по проводке дома «импульсы смерти».
Это еще цветочки: наиболее активные и неугомонные жильцы периодически будут подключать к домашней сети промышленные сварочные аппараты, чтобы все соседи по подъезду или дому смогли «насладиться» импульсными помехами в виде полосок на экранах ТВ и ПК и забористым треском в колонках и наушниках.
Итак, даже жители относительно новых микрорайонов в крупных городах и мегаполисах с относительно новой инфраструктурой не защищены от импульсных и высокочастотных помех силового питания – по крайней мере, локального происхождения.
Как минимум, несколько первых лет жизни нового дома неизбежно будут посвящены различным ремонтам и перестройкам. В такой ситуации, возможно, покупка самого «мощного» сетевого фильтра не нужна, но совсем без фильтрации силового напряжения никак не обойтись.
Из недорогих вариантов можно присмотреться к сетевым фильтрам отечественной компании «Эра». В ее ассортименте много моделей, отличающихся по уровню защиты и наличию дополнительных функций.
Наиболее доступным и простым решением для фильтрации сетевого напряжения можно назвать недорогой сетевой фильтр ЭРА SF-5es-2m-I. Устройство выполнено в пожаробезопасном корпусе, имеет кабель длиной 2 м и оснащено пятью розетками формата EURO с заземляющим контактом.
Максимальная нагрузка фильтра составляет 2200 Вт (10 А), максимальный ток помехи заявлен на уровне 7000 А, а максимальная рассеивающая энергия – на уровне 300 Дж при максимальном отклонении напряжения нагрузки 275 В.
Сетевой фильтр ЭРА SFU-5es-2m-W
Этот фильтр оснащен индикатором включения, фильтром импульсных помех, защитой от короткого замыкания и перегрева. В дополнение устройство ослабляет высокочастотные помехи (0,1 – 10 МГц) на 10-40 дБ.
Те, кому высокочастотная фильтрация некритична, могут обратить внимание на сетевой фильтр ЭРА USF-5es-1.5m-USB-W: при схожих характеристиках по нагрузке, максимальному току (за вычетом ВЧ-фильтра) это устройство оснащено выключателем и обеспечивает максимальное рассеивание энергии до 125 Дж, а также оснащено двумя встроенными портами USB для зарядки портативной техники и имеет настенный крепеж.
Несколько более дорогой вариант – сетевой фильтр ЭРА SFU-5es-2m-B, объединяет все преимущества двух названных выше фильтров, включая ВЧ-фильтр, порты USB, настенный монтаж, выключатель и максимальное рассеивание энергии до 300 Дж, но при этом выполнен в надежном корпусе из поликарбоната стильного черного цвета.
Тем, кому необходимы длинные кабеля, есть смысл присмотреться к сетевым фильтрам серии Sven Optima на шесть розеток, поставляемым в розницу с 1,8-метровым, 3-метровым или 5-метровым сетевым кабелем. Эти фильтры рассчитаны на максимальную нагрузку до 2200 Вт, максимальный ток помехи до 2500 А и максимальное рассеивание энергии до 150 Дж при отклонении напряжения нагрузки до 250 В.
Несмотря на небольшую цену они оснащены встроенным выключателем, индикатором включения, фильтром импульсных помех, защитой от короткого замыкания и автоматической защитой от перегрузки.
К этому же классу устройств можно отнести сетевой фильтр Pilot L 1,8 m от ZIS Company. Особенностью этого фильтра является наличие пяти розеток стандарта EURO плюс одной дополнительной розетки российского образца, а также поддержка максимального тока помехи до 2500 А и максимальной рассеиваемой энергии до 800 Дж.
Особняком в ряду сетевых фильтров стоят однорозеточные решения, которые сегодня присутствуют в ассортименте большинства производителей. На эти фильтры в обязательном порядке стоит обратить внимание владельцам Hi-Fi и Hi-End техники, особенно той, что выпущена 20 и более лет назад. «Индивидуальный» сетевой фильтр позволит оградить слушателя от щелчков и других фоновых звуков, а любимые усилители, вертушки, фонокорректоры и деки – от преждевременного старения без того уже «не молодых» компонентов.
Сетевой фильтр Pilot S-Max
Например, однорозеточный сетевой фильтр Pilot BIT S с максимальной нагрузкой до 3500 Вт, максимальным током помехи до 10000 А и рассеиваемой энергией до 150 Дж обеспечит полную защиту техники с помощью фильтра импульсных помех, защиты от короткого замыкания и перегрузки.
Еще одно интересное однорозеточное решение – сетевой фильтр APC Surge Arrest P1-RS от компании Schneider Electric, несмотря на свои компактные размеры, гарантирует максимальную нагрузку до 16 А, максимальный ток помехи до 26000 А и рассеивание энергии до 903 Дж. Такая мощная защита с успехом может использоваться в качестве фильтра-переходника на обычный многорозеточный удлинитель.
Сетевой фильтр APC P1-RSВариант 2: для дачи
От «почти идеальных» условий городских новостроек перейдем к менее удачливым примерам – домам с видавшей виды проводкой, офисам, пригородным домам и другим случаям с нестабильным электропитанием. В особой «группе риска» здесь оказываются именно офисы, поскольку ко всевозможным источникам помех, типичным для домашних пользователей, в офисах добавляются помехи от мощных промышленных кондиционеров, а в некоторых случаях — от промышленных холодильников и другого силового оборудования с огромными импульсными выбросами пусковых токов.
У того же APC для таких случаев имеются сетевые фильтры на четыре или пять розеток, такие как APC P43-RS или APC PM5-RS из серии Essential. При максимальной нагрузке до 10 А, они обеспечивают напряжение отключения нагрузки до 300 В при максимальном токе помехи до 36000 А и максимальной рассеиваемой энергии до 918 Дж.
Сетевой фильтр APC SurgeArrest PM5B-RS
В дополнение к пожаробезопасному корпусу, фильтрации импульсных помех и защите от короткого замыкания, эти фильтры оснащены выключателями и евро-розетками с механической защитой.
Интересным решением вопроса фильтрации и защиты также может стать сетевой фильтр Sven Platinum 1,8 м Black. Уникальность этого фильтра в том, что, помимо общего механического выключателя, каждая из его пяти розеток оборудована индивидуальным выключателем с индикатором работы. Устройство рассчитано на нагрузку до 2200 Вт, максимальный ток помехи до 2500 А и максимальную рассеиваемую энергию до 350 Дж.
Сетевой фильтр Sven Platinum 1,8 м Black
Для перфекционистов сегодня в России доступны уникальные сетевые фильтры компании Monster. Цена на изделия этой марки в два-три раза выше схожих предложений от других брендов, однако применение керамических варисторов, технология Clean Power для снижения электромагнитного излучения, цепи дополнительной защиты и уникальный внешний вид вполне компенсируют эту разницу.
Самый универсальный сетевой фильтр Monster – Core Power 800 USB, оснащен восемью евро-розетками, двумя портами USB для зарядки портативной техники, а также входом и выходом LAN для дополнительной защиты Ethernet-кабеля от импульсных помех. Он держит нагрузку до 16 А и обеспечивает рассеивание помех с энергией до 1440 Дж. Фильтр имеет индикацию включения и заземления, защиту от короткого замыкания и перегрузки, а также механическую защиту розеток.
Сетевой фильтр Monster Core Power 800 USB
«Ближайший родственник» этой модели — сетевой фильтр Monster Core Power 600 USB, рассчитан на шесть розеток и не имеет LAN-фильтра, но при этом обеспечивает максимальное рассеивание энергии помех до 1836 Дж.
Список достойных сетевых фильтров можно продолжить несколькими заслуживающими доверия торговыми марками – такими как InterStep, Uniel, Ippon, IEK, Defender, Powercom, ExeGate и др.
При выборе фильтра самое главное – правильно оценить ситуацию с качеством электропитания в вашем доме или офисе, а также определиться с потребностями и количеством электроники и бытовой техники, которая будет подключена к фильтру. Например, тем, кто получает в дом интернет по оптике или витой паре, совершенно не нужен фильтр для телефонной линии, чего не скажешь о тех, кто подключен к Сети по ADSL.
В любом случае выбор сетевого фильтра заслуживает особого внимания, поскольку от этого, казалось бы, малозначительного устройства иногда зависит срок службы техники, цена которой в десятки и сотни раз превышает стоимость этого фильтра.
Выбираем стабилизатор напряжения
Сетевой стабилизатор — устройство специфическое и значительно более сложное, нежели сетевой фильтр, поэтому и список производителей значительно короче.
Тем не менее, имена наиболее популярных торговых марок здесь практически те же, а выбор несколько упрощается благодаря тому, что ключевых параметров для определения наиболее подходящего решения значительно меньше.
Да, большинство сетевых стабилизаторов содержат встроенные фильтры помех и также могут быть промаркированы по максимальной энергии рассеивания, но наиболее важными параметрами при выборе все же являются максимальная нагрузка и диапазон стабилизации входных напряжений.
Классифицировать сетевые стабилизаторы лучше всего по максимально допустимой нагрузке, и уже после этого смотреть диапазон стабилизации напряжений.
В России допустимая максимальная нагрузка обычно нормируется в ваттах (Вт) или киловаттах (кВт), в других странах – в частности, в Китае, принята маркировка в вольт-амперах (ВА) или киловольт-амперах (кВА).
Ватты активной мощности и вольт-амперы полезной мощности – величины отнюдь не тождественные, последние для достижения примерного равенства необходимо умножать на так называемый коэффициент мощности, который у бытовой техники и электроники колеблется в пределах 0,6-1,0.
На практике обычно просчитывают примерную суммарную мощность нагрузки, и затем, чтобы узнать искомую полезную мощность в вольт-амперах, умножают ее на 1,4. И наоборот: при необходимости выяснить примерную нагрузку стабилизатора в ваттах полезную мощность умножают на коэффициент 0,7.
И еще один полезный практический совет: высчитав суммарную максимальную мощность предполагаемой нагрузки стабилизатора, добавьте к результату еще 25%, небольшой запас позволит не только избежать перегрузки в будущем, при подключении новых устройств, но также избавит стабилизатор от работы в предельном режиме, где у него заметно падает КПД.
Выбирая стабилизатор, также стоит обратить внимание на наличие «умного» режима Bypass («обход»): при номинальном напряжении сети такое устройство не будет попусту расходовать энергию и включится в работу только тогда, когда в этом действительно появится необходимость.
Определяясь с максимально допустимой мощностью нагрузки сетевого стабилизатора напряжения, следует смотреть на его характеристики, а не на название: совсем не факт, что цифры в наименовании имеют хоть какое-либо практическое отношение к мощности устройства.
Для стабилизации сетевого напряжения при относительно небольшой нагрузке — в пределах до 300 Вт — есть очень интересные решения у Sven. Компактные стабилизаторы выполнены в необычном «кубическом» дизайне и имеют достаточно широкий диапазон стабилизации напряжения – как правило, в пределах от 150 до 280-295 В.
Здесь как раз тот случай, когда не следует доверять цифрам в названии и особо внимательно читать характеристики: у стабилизатора Sven VR-V 600 максимальная нагрузка составляет 200 Вт, у Sven Neo R 600 — не более 300 Вт.
Оба «кубика» имеют защиту от перегрузки и короткого замыкания, рассчитаны на максимальный ток помехи до 6500 А и рассеиваемую энергию до 220 Дж, и оба оснащены розетками с механической защитой.
Для более мощных нагрузок компания выпускает стабилизатор Sven VR-V1000, обеспечивающий подключение техники мощностью до 500 Вт. К такому «кубику» уже можно подключить не только домашнюю аудиосистему, но также дополнительные устройства, такие как телевизор, игровая приставка, персональный компьютер.
Стабилизатор напряжения Sven VR-V1000
В модельном ряду стабилизаторов напряжения производства Schneider Electric представлены две популярные модели APC LS1000-RS Line-R и APC LS1500-RS Line-R, рассчитанные на нагрузку до 500 Вт и 750 Вт, соответственно. Оба стабилизатора работают с входными напряжениями в диапазоне 184-248 В, оснащены индикаторами рабочего напряжения и перегрузки, фильтрами импульсных помех, защитой от короткого замыкания и перегрузки.
Стабилизатор напряжения APC LS1000-RS Line-RНе поленитесь перед покупкой также проверить максимальное рабочее напряжение стабилизатора — если этот параметр действительно критичен для вашей сети. Так, например, стабилизатор APC LS1500-RS Line-R рассчитан на диапазон входных рабочих напряжений 184-248 В, в то время как модель APC Line-R 600VA Auto, хоть и рассчитана на меньшую мощность, до 600 Вт, в то же время обеспечивает значительно более широкий диапазон стабилизации входных напряжений, от 150 до 290 В, чем, в частности, и объясняется его более высокая цена.
Стабилизатор напряжения APC Line-R 600VA AutoСтабилизаторы напряжения от 1000 Вт (1 кВт) и выше следует выделять в отдельную категорию, рассчитанную на обслуживание мощной офисной техники, бытового оборудования для домов (например, для отопительных котлов) или стабилизации напряжения во всем доме. Для таких целей часто применяют мощные системы с автотрансформаторами.
Sven — одна из немногих компаний, кто производит и продает в России стабилизаторы с автотрансформатором, рассчитанные на значительную нагрузку и при этом обладающие доступной ценой. Так, например, модель Sven AVR PRO LCD 10000 справляется с нагрузкой до 8 кВт в диапазоне стабилизации от 140 до 260 В — отличный выбор для подключения всего загородного жилого дома.
Стабилизатор напряжения Sven AVR PRO LCD 10000
Очень большой ассортимент мощных компактных стабилизаторов выпускает ранее упомянутая «Эра».
Стабилизатор напряжения ЭРА СНК-1000-М
Обратите внимание на маркировку ее изделий: в названии стабилизаторов, как правило, указывается полезная мощность в ватт-амперах. Например, стабилизатор ЭРА СНК-1000-М рассчитан на 1000 ВА, то есть, с ним можно смело закладывать максимальную активную нагрузку до 700 Вт.
Стабилизатор напряжения ЭРА STA-3000
Для питания мощной домашней нагрузки – от 3000 Вт и более, также отлично подходят стабилизаторы с релейной регулировкой нагрузки. Они доступны по цене, компактны, обладают широким диапазоном стабилизации – от 140 до 270 В и оснащены всеми мыслимыми видами защиты.
Стабилизатор напряжения ЭРА STA-3000
Наиболее доступная модель этой серии – ЭРА STA-3000 — выдержит нагрузку до 3 кВт, при этом автоматически отключится при длительном стабильном напряжении сети. Вдобавок, устройство оснащено многоцветным ЖК-дисплеем для наглядной индикацией текущего режима работы.
По сути мы прошлись по всем основным проблемным случаям, связанным с электропитанием, и подобрали модели для каждого из них. Надеемся, с ее помощью вы сможете выбрать наиболее подходящий именно вам вариант защиты.
Фильтр от помех для автомагнитолы: как сделать своими руками


Как сделать фильтр радиопомех для автомагнитолы своими руками
В данной статье мы обсудим, как устранить помехи на автомагнитоле воспроизводящей радиосигнал.
Секрет качественного радиосигнала
Несмотря на то, что в настоящее время число радиостанций в большинстве населённых пунктов нашей необъятной страны существует просто неимоверное количество, качество принимаемого сигнала иногда желает лучшего.
Причины, вызывающие ухудшение качества приёма радиоволны можно условно разделить на два вида:
Причины | Параметры причин |
Объективные | Это причины, от которых зависим мы, и которые мы изменить не в силах. То есть такие как холмистость местности, погодные условия, высоковольтные провода и т. п. |
Субъективные | Это те причины, исправление и устранение которых нам по силам. То есть это качество тюнера автомагнитолы, принимающая антенна и радиопомехи, создаваемые непосредственно электрооборудованием самого автомобиля. |
Устраняем помехи радиосигнала
Объективные причины
Так как в данном случае мы не в силах для усиления радиосигнала сравнять окружающие нас холмы, разогнать тучи и обесточить высоковольтную линию электропередач, устранить помехи автомагнитолы можно лишь одним способом – выключить её или же переключиться на автономное проигрывание аудиофайла, то есть диски(см.Как записать диск для автомагнитолы, чтобы потом не возникло проблем), флешка и т. д.
Субъективные причины
Причина №1
В первую очередь необходимо проверить фильтр помех для автомагнитолы, а именно его наличие и плотный контакт его соединительных штекеров.
Причина №2
Как правило, в старых автомобилях с недорогой автомагнитолой и на автомагнитолах бывших в употреблении сей девайс просто отсутствует. В случае со старым автомобилем вы его не обнаружите в силу того, что в недалёком прошлом производители автомагнитол как-то особо и не задумывались о том, как устранить помехи в автомагнитоле с помощью фильтра радиопомех.
Ну а в случае с уже бывшей в употреблении магнитолой зачастую этот фильтр остаётся в автомобиле прежнего хозяина на обрезанных проводах, и вам остаётся только удивляться, почему же в отличие от него, в вашем автомобиле так сильно ухудшился радиоприём.
Внимание! Не рекомендуется при поездках вдали от передающих станций (самый сильный сигнал, как правило, находится в черте города) пользоваться режимом «местного приёма» который включатся клавишей «LOC». В этом случае качество радиоэфира значительно ухудшается, так как слабые и нестабильные радиосигналы тюнером автомагнитолы просто игнорируются.
Причина№3
Как вы, наверное, уже догадались, техническая часть автомобильной магнитолы и условия местности сильно влияют на качество преобразования радиосигнала в акустический, они отвечают примерно за восемьдесят процентов уверенного приёма радиоволны.
А это значит, что мы не можем не отметить устройство, которое отвечает за оставшиеся двадцать процентов от общей мощности принимаемого сигнала — это антенна радиоприёмника. Качество радиоприёма внешних штыревых антенн и активных внутри салонных ни чем не отличается. Их сравнение показывает, что хорошая внутри салонная активная антенна принимает ничуть не хуже чем двухметровая штыревая.
В общем, не цена антенны, а её правильная установка являются важным фактором, влияющим на чистоту приёма радиосигнала. Всё их различие в том, что в салоне автомобиля антенна не мешается и не привлекает к себе внимания, а вот со штыревой могут происходить незапланированные приключения (въезд в низкий гараж, хулиганы и т. п.).
Диагностика неисправностей и их причины
«Вычислить» неисправность фильтра радиопомех можно по следующим признакам:
- «Сбой» радиоволны при нагреве тюнера автомагнитолы, что требует постоянных дополнительных подстроек радиоканала;
- Посторонние шумы как от работающего двигателя и генератора, так и от вентилятора системы охлаждения, дворников, да в принципе от всех потребителей тока автомобиля, что провоцируется неправильным запитыванием автомагнитолы, не оборудованной фильтром.
Совет! Приобретая фильтр помех для автомагнитолы, не перепутайте с внешне похожим на него конвертером, у которого совсем другая задача – перевести диапазон радиоволны с российского «УКВ» (65…74 МГц) на европейский «FM» (87,5…108 МГц).
Так же не стоит забывать, что причинами радиопомех могут являться неполадки в самом электрооборудовании автомобиля, и которые невозможно убрать какими бы то не было фильтрами.
Дефекты | Причина неисправности |
Посторонний шум, напоминающий сигнал зуммера и который меняет свою частоту в зависимости от оборотов двигателя. | Выход из строя конденсатора в электрической схеме генератора, который является самым главным фильтром в автомобиле предусмотренный в нём конструктивно. |
Звук похожий на цокот, который меняется вместе с тактовой частотой работы цилиндров. | Неисправность (пробой) высоковольтного провода или же свечи системы зажигания. |
Как устранить в автомагнитоле помехи в более же тяжелых случаях (проверка щёток генератора, реле-регулятора и подобных неприятностей) вам подскажет грамотный автоэлектрик.
Изготавливаем фильтр радиопомех
Очень часто покупая фильтр помех для автомагнитолы, мы остаёмся мягко скажем, не довольны полученным результатом. При вскрытии приобретённого фильтра, как правило, мы можем наблюдать такую картину.


Видео как устранить помехи в автомагнитоле
То есть за символичную цену мы имеем конденсатор и намотанный на ферритовое кольцо дроссель. Понятно, что изучая данное чудо техники, ответ на вопрос о том, как устранить помехи на автомагнитоле мы найти не сможем.
Также понятно и то, что нам потребуется более качественный фильтр. Ну а так как мы с вами «сами с усами», предлагаю своими руками изготовить фильтр радиопомех для автомагнитолы.
Инструкция по самостоятельному изготовлению фильтра не представляет собой ни чего сложного.
В конструкции фильтра от радиопомех обычно применяется Т-образная схема:
- В положительной цепи устанавливается предохранитель;
- Затем, следуя по схеме, устанавливается катушка с отводом на конденсатор соединённый в свою очередь с корпусом;
- И из этой же точки отвода на конденсатор, перед подключением к автомагнитоле устанавливается ещё одна катушка;
- Питание лучше всего подключать от штатного разъёма.


Фото фильтр радиопомех для автомагнитолы
На этом инструкция о том, как устранить помехи на автомагнитоле подошла к своему логическому концу.
В завершении хотелось бы ещё раз заострить ваше внимание на том факте, что все работы по диагностике и установке фильтров начинаются только после того, как появляются какие то проблемы связанные с посторонними шумами в динамиках автомагнитолы (треск, щелчки и т. п.) именно во время работы двигателя автомобиля. И пока перечисленные неисправности электрооборудования автомобиля не устранить никакой фильтр вас от радиопомех не спасёт!
У вас точно нет проблем с автомобилем?


шумовой фильтр — это … Что такое шумовой фильтр?
шумовой фильтр — triukšmo filtras statusas T sritis fizika atitikmenys: angl. шумовой фильтр вок. Geräuschfilter, рус. шумовой фильтр, m pranc. filter de bruit, m… Fizikos terminų žodynas
Формирование шума — это метод, обычно используемый в цифровой обработке звука, изображения и видео, обычно в сочетании с дизерингом, как часть процесса квантования или уменьшения глубины цвета цифрового сигнала.Его цель — увеличить видимый сигнал…… Wikipedia
Шум, воздействие на здоровье — это последствия повышенного уровня шума для здоровья. Поднятие рабочего места или другой шум может вызвать нарушение слуха, гипертонию, ишемическую болезнь сердца, раздражение, нарушение сна и снижение успеваемости в школе. Изменения в иммунной…… Википедия
Дизайн фильтра — это процесс разработки фильтра (в том смысле, в котором этот термин используется в обработке сигналов, статистике и прикладной математике), часто инвариантный фильтр с линейным сдвигом, который удовлетворяет ряду требований, некоторые из которых противоречивы… Wikipedia
Шум (аудио) — Шум в системах звука, записи и вещания относится к остаточному низкоуровневому звуку (обычно шипению и гудению), который слышен в тихие периоды программы.В аудиотехнике это может относиться либо к акустическому шуму из динамиков, либо к… Wikipedia
Измерение шума — проводится в различных областях. В акустике это может быть для измерения шума окружающей среды, или часть процедуры тестирования с использованием белого шума, или какой-либо другой специализированной формы тестового сигнала. В электронике это относится к чувствительности… Wikipedia
Снижение шума — Для звукоизоляции см. Звукоизоляция.Чтобы узнать о научных аспектах снижения шума машин и продуктов, см. Контроль шума. Подавление шума — это процесс удаления шума из сигнала. Все записывающие устройства, как аналоговые, так и цифровые, имеют…… Wikipedia
Noise-shaping — Der Begriff Rauschformung (англ. Noise Shaping) bezeichnet ein Verfahren, in dem das Quantisierungsrauschen eines digitalen Сигналы в лучшей немецкой системе Frequenzbereichen stärker konzentriert wirdchebner derchformung … 9
Noise Shaping — Der Begriff Rauschformung (англ.шумоподавление) bezeichnet ein Verfahren, in dem das Quantisierungsrauschen eines digitalen Сигналы в лучшем случае Frequenzbereichen stärker konzentriert wird und es dadurch zu einer Verschiebung der Rauschenergie…… Deutsch Wikipedia
Уровень шума — Das Signal Rausch Verhältnis (auch Störabstand a bzw. (Signal) Rauschabstand aR, oft auch abgekürzt als SRV beziehungsweise SNR or S / N vom Englischen signal to noise ratio) ist e einer Quelle…… Deutsch Wikipedia
Микрофон с шумоподавлением — Микрофон с шумоподавлением — это микрофон, предназначенный для фильтрации окружающего шума из желаемого звука, особенно полезен в шумной среде.Содержание 1 Технические детали 2 Альтернативные технологии 3 Приложения… Wikipedia
шумовой фильтр — это … Что такое шумовой фильтр?
шумовой фильтр — triukšmo filtras statusas T sritis fizika atitikmenys: angl. шумовой фильтр вок. Geräuschfilter, рус. шумовой фильтр, m pranc. filter de bruit, m… Fizikos terminų žodynas
Формирование шума — это метод, обычно используемый в цифровой обработке звука, изображения и видео, обычно в сочетании с дизерингом, как часть процесса квантования или уменьшения глубины цвета цифрового сигнала.Его цель — увеличить видимый сигнал…… Wikipedia
Шум, воздействие на здоровье — это последствия повышенного уровня шума для здоровья. Поднятие рабочего места или другой шум может вызвать нарушение слуха, гипертонию, ишемическую болезнь сердца, раздражение, нарушение сна и снижение успеваемости в школе. Изменения в иммунной…… Википедия
Дизайн фильтра — это процесс разработки фильтра (в том смысле, в котором этот термин используется в обработке сигналов, статистике и прикладной математике), часто инвариантный фильтр с линейным сдвигом, который удовлетворяет ряду требований, некоторые из которых противоречивы… Wikipedia
Шум (аудио) — Шум в системах звука, записи и вещания относится к остаточному низкоуровневому звуку (обычно шипению и гудению), который слышен в тихие периоды программы.В аудиотехнике это может относиться либо к акустическому шуму из динамиков, либо к… Wikipedia
Измерение шума — проводится в различных областях. В акустике это может быть для измерения шума окружающей среды, или часть процедуры тестирования с использованием белого шума, или какой-либо другой специализированной формы тестового сигнала. В электронике это относится к чувствительности… Wikipedia
Снижение шума — Для звукоизоляции см. Звукоизоляция.Чтобы узнать о научных аспектах снижения шума машин и продуктов, см. Контроль шума. Подавление шума — это процесс удаления шума из сигнала. Все записывающие устройства, как аналоговые, так и цифровые, имеют…… Wikipedia
Noise-shaping — Der Begriff Rauschformung (англ. Noise Shaping) bezeichnet ein Verfahren, in dem das Quantisierungsrauschen eines digitalen Сигналы в лучшей немецкой системе Frequenzbereichen stärker konzentriert wirdchebner derchformung … 9
Noise Shaping — Der Begriff Rauschformung (англ.шумоподавление) bezeichnet ein Verfahren, in dem das Quantisierungsrauschen eines digitalen Сигналы в лучшем случае Frequenzbereichen stärker konzentriert wird und es dadurch zu einer Verschiebung der Rauschenergie…… Deutsch Wikipedia
Уровень шума — Das Signal Rausch Verhältnis (auch Störabstand a bzw. (Signal) Rauschabstand aR, oft auch abgekürzt als SRV beziehungsweise SNR or S / N vom Englischen signal to noise ratio) ist e einer Quelle…… Deutsch Wikipedia
Микрофон с шумоподавлением — Микрофон с шумоподавлением — это микрофон, предназначенный для фильтрации окружающего шума из желаемого звука, особенно полезен в шумной среде.Содержание 1 Технические детали 2 Альтернативные технологии 3 Приложения… Wikipedia