Гете родина: Гетеродин — это… Что такое Гетеродин?

Содержание

Гетеродин — Карта знаний

  • Гетероди́н (от греч. ἕτερος — иной; δύναμις — сила) — маломощный генератор электрических колебаний, применяемый для преобразования частот сигнала в супергетеродинных радиоприёмниках, приёмниках прямого преобразования, волномерах и пр.

    Изначально гетеродином называли радиоприёмник, в котором имелся дополнительный генератор высокой частоты, настроенный на частоту, близкую к частоте принимаемого сигнала, что повышало чувствительность радиоприёмника. В дальнейшем, после изобретения супергетеродина, гетеродином стали называть этот генератор.

    Гетеродин создаёт колебания вспомогательной частоты, которые в блоке смесителя смешиваются с поступающими извне колебаниями высокой частоты. В результате смешения двух частот, входной и гетеродина, образуются ещё две частоты (суммарная и разностная). Разностная частота используется как промежуточная частота, на которой происходит основное усиление сигнала.

    К гетеродинам устанавливаются высокие требования по стабильности частоты и амплитуды, а также спектральной чистоте гармонических колебаний. Чем выше эти требования, тем сложнее конструктивное исполнение гетеродина: стабилизируют напряжение питания, применяют сложные схемы, исключающие влияние внешних факторов на частоту генератора, компоненты со специальными свойствами, гетеродин помещают в термостат, используют системы автоматической подстройки частоты и т. д. Если гетеродин работает на фиксированной частоте, применяют стабилизацию с помощью кварцевого резонатора. В современной радиоаппаратуре в качестве перестраиваемых гетеродинов всё чаще применяют цифровые синтезаторы частоты, которые обладают рядом важных преимуществ.

Источник: Википедия

Связанные понятия

Автоматическая подстройка частоты (АПЧ) — устройство или метод автоматического изменения и удержания необходимой частоты электрических колебаний генератора. Метод заключается в автоматической дополнительной регулировке частоты генератора, по информации о рассогласовании частоты из цепи обратной связи. Тем самым осуществляется отрицательная обратная связь по частоте. Сигнал рассогласования по частоте может вырабатываться дискриминатором по различным характеристикам сигнала, получаемого в радиотехническом… Преобразователь частоты — электрическая цепь, осуществляющая преобразование частоты и включающая гетеродин, смеситель и полосовой фильтр (в отдельных случаях полосовой фильтр может отсутствовать). Фильтр в электронике — устройство для выделения желательных компонентов спектра электрического сигнала и/или подавления нежелательных. Фа́зовый дете́ктор, фазовый компара́тор (ФД) — электронное устройство, сравнивающее фазы двух входных сигналов равных или близких частот. Детектор, демодулятор (фр. demodulateur) — элемент электрической цепи, в котором происходит обнаружение электромагнитных колебаний. Детекторы могут работать в инфракрасных, видимых, ультрафиолетовых и радиодиапазонах. Детектирование происходит отделением полезного (модулирующего) сигнала от несущей составляющей. Частотоме́р — радиоизмерительный прибор для определения частоты периодического процесса или частот гармонических составляющих спектра сигнала. Фильтр ве́рхних часто́т (ФВЧ) — электронный или любой другой фильтр, пропускающий высокие частоты входного сигнала, при этом подавляя частоты сигнала ниже частоты среза. Степень подавления зависит от конкретного типа фильтра. Гетеродинный индикатор резонанса (ГИР) — электронный измерительный прибор, предназначенный для определения резонансной частоты колебательных контуров в радиотехнике. Синтезатор частот — устройство для генерации электрических гармонических колебаний с помощью линейных повторений (умножением, суммированием, разностью) на основе одного или нескольких опорных генераторов. Синтезаторы частот служат источниками стабильных (по частоте) колебаний в радиоприёмниках, радиопередатчиках, частотомерах, испытательных генераторах сигналов и других устройствах, в которых требуется настройка на разные частоты в широком диапазоне и высокая стабильность выбранной частоты. Стабильность… Фильтр ни́жних часто́т (ФНЧ) — электронный или любой другой фильтр, эффективно пропускающий частотный спектр сигнала ниже некоторой частоты (частоты среза) и подавляющий частоты сигнала выше этой частоты. Степень подавления каждой частоты зависит от вида фильтра. Демодуляция (Детектирование сигнала) — процесс, обратный модуляции колебаний, выделение информационного (модулирующего) сигнала из модулированного колебания высокой (несущей) частоты. Усили́тель постоя́нного то́ка (УПТ) — усилитель электрических сигналов, обычно электронный усилитель, диапазон усиливаемых частот которого включает нулевую частоту («постоянный» ток). Супергетеродинный радиоприёмник (супергетеродин) — один из типов радиоприёмников, основанный на принципе преобразования принимаемого сигнала в сигнал фиксированной промежуточной частоты (ПЧ) с последующим её усилением. Основное преимущество супергетеродина перед радиоприёмником прямого усиления в том, что наиболее критичные для качества приёма части приёмного тракта (узкополосный фильтр, усилитель ПЧ и демодулятор) не должны перестраиваться по частоте, что позволяет выполнить их со значительно лучшими… Ква́рцевый генера́тор — автогенератор электромагнитных колебаний с колебательной системой, в состав которой входит кварцевый резонатор. Предназначен для получения колебаний постоянной частоты с высокой температурной и временно́й устойчивостью, низким уровнем фазовых шумов. Дифференциа́льный усили́тель — электронный усилитель с двумя входами, выходной сигнал которого равен разности входных напряжений, умноженной на константу. Применяется в случаях, когда необходимо выделить небольшую разность напряжений на фоне значительной синфазной составляющей. Модуля́тор (лат. modulator — соблюдающий ритм) — устройство, изменяющее параметры несущего сигнала в соответствии с изменениями передаваемого (информационного) сигнала. Этот процесс называют модуляцией, а передаваемый сигнал модулирующим. Измери́тельный генера́тор (генератор сигналов, от лат. generator — производитель, сигнал-генератор) — электронное устройство, мера для воспроизведения электромагнитного сигнала (синусоидального, импульсного, шумового или специальной формы). Генераторы применяются для проверки и настройки радиоэлектронных устройств, каналов связи, при поверке и калибровке средств измерений и в других целях. Автогенератор — электронный генератор с самовозбуждением.Автогенератор вырабатывает электрические (электромагнитные) колебания, поддерживающиеся подачей по цепи положительной обратной связи части переменного напряжения с выхода автогенератора на его вход. Это будет обеспечено тогда, когда нарастание колебательной энергии будет превосходить потери (когда петлевой коэффициент усиления больше 1). При этом амплитуда начальных колебаний будет нарастать. Генератор сигналов — это устройство, позволяющее получать сигнал определённой природы (электрический, акустический и т. д.), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.). Генераторы широко используются для преобразования сигналов, для измерений и в других областях. Состоит из источника (устройства с самовозбуждением, например, усилителя, охваченного цепью положительной обратной связи) и формирователя (например, электрического фильтра). Модуля́ция (лат. modulatio — размеренность, ритмичность) — процесс изменения одного или нескольких параметров модулируемого несущего сигнала при помощи модулирующего сигнала. Амплиту́дно-часто́тная характери́стика (АЧХ) — зависимость амплитуды выходного сигнала некоторой системы от частоты её входного гармонического сигнала. Иногда эту характеристику называют «частотным откликом системы» (frequency response). Следящий генератор (СГ, tracking generator) в измерительной технике — генератор гармонических сигналов высокой или сверхвысокой частоты, управляемый анализатором спектра. Мгновенная частота колебаний на выходе СГ точно равна частоте, на которую в данный момент времени настроен полосовой фильтр анализатора спектра. Конструктивно, СГ представляет собой двух- или трёхступенчатый синтезатор частоты. В нём реализуется функция преобразования частоты, обратная функции преобразования частоты в анализаторе… Ква́рцевый резона́тор (жарг. «кварц») — электронный прибор, в котором пьезоэлектрический эффект и явление механического резонанса используются для построения высокодобротного резонансного элемента электронной схемы. Мультивибра́тор — релаксационный генератор электрических прямоугольных колебаний с короткими фронтами. Измери́тельный усилитель — электронный усилитель, применяемый в процессе измерений и обеспечивающий точную передачу электрического сигнала в заданном масштабе. Клистро́н — электровакуумный прибор, в котором преобразование постоянного потока электронов в переменный происходит путём модуляции скоростей электронов электрическим полем СВЧ (при пролёте их сквозь зазор объёмного резонатора) и последующей группировки электронов в сгустки (из-за разности их скоростей) в пространстве дрейфа, свободном от СВЧ-поля. Переменный конденсатор (конденсатор переменной ёмкости, КПЕ) — конденсатор, электрическая ёмкость которого может изменяться механическим способом, либо электрически, под действием изменения приложенного к обкладкам напряжения. Переменные конденсаторы применяются в колебательных контурах и других частотозависимых цепях для изменения их резонансной частоты — например, во входных и гетеродинных цепях радиоприёмников, в цепях коррекции АЧХ усилителей, генераторах, антенных устройствах. Ёмкость переменных… Усилитель — устройство для усиления входного сигнала (например, напряжения, тока или механического перемещения, колебания звуковых частот, давления жидкости или потока света), но без изменения вида самой величины и сигнала, до уровня достаточного для срабатывания исполнительного механизма (или регистрирующих элементов), за счёт энергии вспомогательного источника. Элемент системы управления (или регистрации и контроля). Усили́тель звуково́й частоты́ (УЗЧ), усилитель ни́зкой частоты (УНЧ), усилитель мо́щности звуковой частоты (УМЗЧ) — электронный прибор (электронный усилитель), предназначенный для усиления электрических колебаний, соответствующих слышимому человеком звуковому диапазону частот, таким образом к данным усилителям предъявляется требование усиления в диапазоне частот от 20 до 20 000 Гц по уровню −3 дБ, лучшие образцы УЗЧ имеют диапазон от 0 Гц до 200 кГц, простейшие УЗЧ имеют более узкий диапазон воспроизводимых…

Подробнее: Усилитель низкой частоты

Часто́тный компара́тор — средство сравнения частот двух высокостабильных источников. Частным видом частотных компараторов являются фазовые компараторы, существуют также приёмники-компараторы, позволяющие сравнивать частоту поверяемой, калибруемой меры с частотой, передаваемой с помощью эталонного радиосигнала. Предусили́тель-корре́ктор, или усилитель-корректор (УК), или фо́нокорре́ктор — специализированный электронный усилитель тракта воспроизведения граммофонной записи, восстанавливающий исходный спектр записанного на пластинке звукового сигнала и усиливающий выходное напряжение головки звукоснимателя до типичного уровня линейного выхода — от 0,775 В (0 dBu) в бытовой аналоговой аппаратуре до 2 В (8 dBu) в цифровой и радиотрансляционной аппаратуре). Исторически звукозаписывающая промышленность использовала…

Подробнее: Фонокорректор

Радиоприёмник прямого усиления — радиоприёмник, в котором отсутствуют промежуточные преобразования частоты, а отфильтрованный от соседних каналов и усиленный сигнал принимаемой радиостанции поступает непосредственно на детектор. Измери́тельный усили́тель, инструмента́льный усилитель, электрометри́ческий вычитатель — разновидность дифференциального усилителя с улучшенными параметрами, пригоден для использования в измерительном и тестирующем оборудовании. Автоматическая регулировка усиления, АРУ (англ. Automatic Gain Control, AGC) — процесс, при котором выходной сигнал некоторого устройства, как правило электронного усилителя, автоматически поддерживается постоянным по некоторому параметру (например, амплитуде простого сигнала или мощности сложного сигнала), независимо от амплитуды (мощности) входного сигнала. В аппаратуре, использующейся для прослушивания радиовещательного эфира, АРУ также называют устарелым термином автоматическая регулировка громкости… Цифровая шкала — цифровой частотомер специальной конструкции, использующийся для отображения рабочей частоты радиоприёмника, радиопередатчика, трансивера, измерительного генератора вместо обычной механической шкалы или вместе с ней. Умножи́тель напряже́ния ба́за-эми́ттер (умножитель Vбэ) — двухвыводной электронный источник опорного напряжения, пропорционального напряжению на прямо смещённом эмиттерном переходе биполярного транзистора (Vбэ). Простейший умножитель Vбэ состоит из резистивного делителя напряжения, задающего коэффициент умножения, и управляемого им биполярного транзистора. При подключении умножителя Vбэ к источнику тока падение напряжения на умножителе, как и само Vбэ, комплементарно абсолютной температуре: с ростом… Тахогенера́тор (от др.-греч. τάχος — «быстрый», «скорость» и лат. generator «производитель») — электрическая микромашина, измерительный генератор постоянного или переменного тока, предназначенный для преобразования мгновенного значения частоты (угловой скорости) вращения вала в однозначно связанный со скоростью электрический сигнал. Частота́ — физическая величина, характеристика периодического процесса, равна количеству повторений или возникновения событий (процессов) в единицу времени. Рассчитывается, как отношение количества повторений или возникновения событий (процессов) к промежутку времени, за которое они совершены. Стандартные обозначения в формулах — ν, f или F. Стереодеко́дер (от др.-греч. στερεός — твёрдый, объёмный и «декодер») — узел радиоприемника или телевизора, предназначенный для выделения сигналов левого и правого канала звуковых частот из комплексного стереосигнала (КСС). Ваттметр (ватт + др.-греч. μετρεω — «измеряю») — измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала. Аттенюа́тор (фр. attenuer — смягчить, ослабить) — устройство для плавного, ступенчатого или фиксированного понижения интенсивности электрических или электромагнитных колебаний, как средство измерений является мерой ослабления электромагнитного сигнала, но также его можно рассматривать и как измерительный преобразователь. ГОСТ 28324-89 определяет аттенюатор как элемент для снижения уровня сигналов, обеспечивающий фиксированное или регулируемое затухание. Синхронизация колебаний (фазовая синхронизация) — процесс установления и поддержания режима колебаний двух и более связанных осцилляторов, при котором частоты этих осцилляторов близки друг к другу (или их отношение близко к отношению двух небольших целых чисел). Синхронизация колебаний возможна только в случае нелинейных осцилляторов. При этом осциллятор может быть как естественно нелинейным, например струна, колебательный контур с нелинейной индуктивностью, мультивибратор, поперечные колебательные… Гетеродини́рование — преобразование частоты сигнала в пару различных сигналов с разными частотами, эти сигналы принято называть сигналами промежуточных частот, причём исходная фаза сигнала сохраняется в порождённых сигналах. Измери́тель нелине́йных искаже́ний, ИНИ, (измеритель коэффициента гармоник) — прибор для измерения коэффициента нелинейных искажений, КНИ (коэффициента гармоник) сигналов в радиотехнических и электронных устройствах.

ГЕТЕРОДИН • Большая российская энциклопедия

  • рубрика
  • родственные статьи
  • image description

    В книжной версии

    Том 7. Москва, 2007, стр. 38

  • image description

    Скопировать библиографическую ссылку:


Авторы: С. Л. Мишенков

ГЕТЕРОДИ́Н (от ге­те­ро… и греч. δύνα­μις  – си­ла), ма­ло­мощ­ный ге­не­ра­тор элек­трич. ко­ле­ба­ний, при­ме­няе­мый гл. обр. в пре­об­ра­зо­ва­те­лях час­то­ты в разл. уст­рой­ст­вах свя­зи и из­ме­ри­тель­ной тех­ни­ки (напр., в ра­дио­пе­ре­даю­щих и ра­диопри­ём­ных уст­рой­ст­вах, ана­ли­за­то­рах спек­тра, час­то­то­ме­рах). Г. соз­да­ёт ко­ле­ба­ния вспо­мо­га­тель­ной час­то­ты, взаи­мо­дей­ст­вую­щие с по­сту­паю­щи­ми из­вне сиг­на­ла­ми, в ре­зуль­та­те че­го воз­ни­ка­ют ко­ле­ба­ния, спектр час­тот ко­то­рых со­дер­жит ком­би­на­ци­он­ные (в т. ч. сум­мар­но-раз­но­ст­ные) со­став­ляю­щие. Для даль­ней­шей об­ра­бот­ки сиг­на­лов на вы­хо­де пре­об­ра­зо­ва­те­ля из по­лу­чае­мо­го час­тот­но­го спек­тра при по­мо­щи элек­трич. фильт­ра вы­де­ля­ют не­об­хо­ди­мые по­ло­сы час­тот. В за­ви­си­мо­сти от на­зна­че­ния при­ме­ня­ют­ся Г., ге­не­ри­рую­щие сиг­на­лы фик­си­ро­ван­ной или из­ме­няю­щей­ся в оп­ре­де­лён­ных пре­де­лах час­то­ты.

Ста­биль­ность час­то­ты и спек­траль­ная чис­то­та (от­сут­ст­вие по­боч­ных ко­ле­ба­ний и шу­мов) сиг­на­лов Г. оп­ре­де­ля­ют та­кие па­ра­мет­ры уст­ройств свя­зи, как ди­на­ми­че­ский диа­па­зон, ста­биль­ность при­ни­мае­мых и ге­не­ри­руе­мых час­тот, по­ло­са про­пус­ка­ния и др. В совр. ап­па­ра­ту­ре свя­зи в ка­че­ст­ве Г. ши­ро­ко при­ме­ня­ют­ся син­те­за­то­ры час­то­ты, в ко­то­рых час­то­та опор­но­го ге­не­ра­то­ра ста­би­ли­зи­ру­ет­ся квар­це­вым ре­зо­на­то­ром или объ­ём­ным ре­зо­на­то­ром СВЧ. Не­ста­биль­ность час­то­ты та­ких Г. в ус­ло­ви­ях тер­мо­ста­ти­ро­ва­ния со­став­ля­ет 10–8– 10–10. При бо­лее вы­со­ких тре­бо­ва­ни­ях к ста­биль­но­сти час­то­ты Г. в ка­че­ст­ве опор­ных ге­не­ра­то­ров при­ме­ня­ют це­зие­вые или во­до­род­ные эта­ло­ны час­то­ты.

ГЕТЕРОДИН — это… Что такое ГЕТЕРОДИН?

  • гетеродин — гетеродин …   Орфографический словарь-справочник

  • ГЕТЕРОДИН — (от гетеро… и греч. dynamis сила) маломощный генератор, используемый как источник колебаний вспомогательной частоты при преобразовании по частоте высокочастотных сигналов (напр., в супергетеродинном радиоприемнике) …   Большой Энциклопедический словарь

  • ГЕТЕРОДИН — (Heterodyne) маломощный ламповый генератор, применяемый для возбуждения вспомогательных незатухающих колебаний при гетеродинном приеме. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 …   Морской словарь

  • гетеродин — сущ., кол во синонимов: 2 • генератор (63) • супергетеродин (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • гетеродин — а, м. hétérodyne < гр. heteres другой + dynamis сила. Маломощный вспомогательный генератор электрических колебаний высокой частоты, прим. гл. обр. в преобразователях частоты. Крысин 1998. Лекс. СИС 1954: гетероди/н …   Исторический словарь галлицизмов русского языка

  • гетеродин — Генератор гармонических колебаний, используемый для преобразования частоты в радиоприемнике. [ГОСТ 24375 80] Тематики радиосвязь Обобщающие термины радиопередатчики EN local oscillatoroscillator …   Справочник технического переводчика

  • ГЕТЕРОДИН — маломощной вспомогательный (см.) гармонических электрических колебаний с самовозбуждением на транзисторе или электронной лампе, служит для преобразования (смешения) несущей частоты сигналов в радиоаппаратуре и радиоизмерительных устройствах …   Большая политехническая энциклопедия

  • Гетеродин — (от греч. ἕτερος  иной; δύναμις  сила)  маломощный генератор электрических колебаний, применяемый для преобразования частот сигнала в супергетеродинных радиоприёмниках, приемниках прямого преобразования, волномерах и пр. Изначально …   Википедия

  • гетеродин — (гетеро… гр. dynamis сила) маломощный вспомогательный генератор электрических колебаний высокой частоты, применяемый гл. обр. в преобразователях частоты (напр., в супергетеродинных радиоприемниках, измерительных устройствах). Новый словарь… …   Словарь иностранных слов русского языка

  • гетеродин — (от гетеро… и греч. dýnamis  сила), маломощный генератор, используемый как источник колебаний вспомогательной частоты при преобразовании по частоте ВЧ сигналов (например, в супергетеродинном радиоприёмнике). * * * ГЕТЕРОДИН ГЕТЕРОДИН (от гетеро …   Энциклопедический словарь

  • Супергетеродинный приемник принцип работы

    Принцип супергетеродинного приемника

    Существует несколько схем построения радиоприемных устройств.

    Существуют супергетеродинные приемники и прямого усиления. 

    Особенности супергетеродинов

    Вследствие того, что могут возникать паразитные колебания, происходит ограничение возможности усиления высокочастотных колебаний в небольших пределах. Особенно это актуально при построении коротковолновых приемников. В качестве усилителя высоких частот лучше всего использовать резонансные конструкции. Но в них нужно производить полную перенастройку всех колебательных контуров, которые имеются в конструкции, при смене частоты.

    Вследствие этого существенно усложняется конструкция радиоприемника.

    Но недостатки эти можно устранить, используя метод преобразования принимаемых колебаний в одну стабильную и фиксированную частоту. Причем частота обычно пониженная, это позволяет добиться высокого уровня усиления. Именно на эту частоту происходит настройка резонансного усилителя.

    Такая методика используется в современных супергетеродинных приемниках. 

    Способ преобразования частоты

    А теперь нужно рассмотреть упомянутый выше способ преобразования частоты в радиоприемниках.

    Допустим, есть два вида колебаний, частоты у них различные. При сложении этих колебаний появляется биение.

    Сигнал при сложении то увеличивается по амплитуде, то уменьшается.

    Если обратить внимание на график, который характеризует это явление, то можно увидеть совершенно другой период.

    И это период совершения биений. Причем этот период намного больше, чем аналогичная характеристика любого из колебаний, которые складывались.

    Соответственно, с частотами все наоборот – у суммы колебаний она меньше.

    Частоту биений вычислить достаточно просто. Она равна разности частот колебаний, которые складывались. Причем с увеличением разности повышается частота биений. Отсюда следует, что при выборе относительно большой разницы слагаемых частот получаются высокочастотные биения. Например, есть два колебания – 300 метров (это 1 МГц) и 205 метров (это 1, 46 МГц). При сложении окажется, что частота биения будет 460 кГц или 652 метра.

    Детектирование

    Но в приемниках супергетеродинного типа обязательно имеется детектор. Биения, которые получаются в результате сложения двух различных колебаний, имеют период. И он полностью соответствует промежуточной частоте. Но это не гармонические колебания промежуточной частоты, чтобы их получить, необходимо осуществить процедуру детектирования. Обратите внимание на то, что из модулированного сигнала детектор выделяет только колебания с модуляционной частотой. А вот в случае с биениями все немного иначе – происходит выделение колебаний так называемой разностной частоты. Она равна разности частот, которые складываются. Такой способ преобразований именуется методом гетеродинирования или смешения.

    Реализация метода при работе приемника

    Допустим, в контур радиоприемника приходят колебания от радиостанции. Чтобы осуществить преобразования, необходимо создать несколько вспомогательных высокочастотных колебаний. Далее подбирается частота гетеродина. При этом разность слагаемых частот должна быть, например, 460 кГц. Далее нужно произвести сложение колебаний и подать их на лампу-детектор (или полупроводник). При этом получаются разностной частоты колебания (значение 460 кГц) в контуре, соединенном с анодной цепью. Нужно обратить внимание на то, что этот контур настраивается на работу при разностной частоте.

    Используя усилитель высоких частот, можно произвести преобразование сигнала. Амплитуда его существенно увеличивается. Усилитель, используемый для этого, сокращенно называют УПЧ (усилитель промежуточной частоты). Его можно встретить во всех приемниках супергетеродинного типа.

    Практическая схема на триоде

    Для того чтобы произвести преобразование частоты, можно использовать простейшую схему на одной лампе-триоде. Колебания, которые приходят с антенны, посредством катушки попадают на управляющую сетку лампы-детектора. От гетеродина поступает отдельный сигнал, он накладывается поверх основного. В анодной цепи детекторной лампы устанавливается колебательный контур – он настраивается на разностную частоту. При детектировании получаются колебания, которые в дальнейшем усиливаются в УПЧ.

    ПЧ на гептодах

    Гептод – это лампа с несколькими сетками, катодами и анодами. По сути, это две радиолампы, заключенные в один стеклянный баллон. Электронный поток у этих ламп также общий. В первой лампе происходит возбуждение колебаний – это позволяет избавиться от использования отдельного гетеродина. А вот во второй смешиваются колебания, поступающие от антенны, и гетеродинные. Получаются биения, из них происходит выделение колебаний с разностной частотой.

    Обычно лампы на схемах разделяются пунктирной линией. Две нижние сетки соединяются с катодом посредством нескольких элементов – получается классическая схема с обратной связью. А вот управляющая сетка непосредственно гетеродина соединяется с колебательным контуром. При наличии обратной связи происходит возникновение тока и колебаний.

    Ток проникает через вторую сетку и происходит перенос колебаний во вторую лампу. Все сигналы, которые приходят от антенны, поступают на четвертую сетку. Сетки № 3 и № 5 между собой соединены внутри цоколя и на них постоянное напряжение. Это своеобразные экраны, расположенные между двумя лампами. В результате получается, что вторая лампа является полностью экранированной. Настройка супергетеродинного приемника, как правило, не требуется. Главное — произвести настройку полосовых фильтров.

    Процессы, протекающие в схеме

    Ток совершает колебания, создаются они первой лампой. При этом происходит изменение всех параметров второй радиолампы. Именно в ней смешиваются все колебания – от антенны и гетеродина. Происходит генерация колебаний с разностной частотой. В цепь анода включается колебательный контур – он настраивается именно на эту частоту. Далее происходит выделение из тока анода колебаний. И уже после этих процессов происходит подача сигнала на вход УПЧ.

    При помощи специальных преобразовательных ламп происходит существенное упрощение конструкции супергетеродина. Количество ламп уменьшается, устраняется несколько трудностей, которые могут возникнуть при работе схемы с использованием отдельного гетеродина. Все, рассмотренное выше, относится к преобразованиям немодулированного колебания (без речи и музыки). Так намного проще рассматривать принцип работы устройства.

    Модулированные сигналы

    В том случае, когда происходит преобразование модулированного колебания, все делается немного иначе. У колебаний гетеродина постоянная амплитуда. Колебания ПЧ и биения промодулированы, равно как и у несущей. Для превращения модулированного сигнала в звук необходимо произвести еще одно детектирование. Именно по этой причине в супергетеродинных КВ приемниках после осуществления усиления происходит подача сигнала на второй детектор. И только после него сигнал модуляции подается на головной телефон или вход УНЧ (усилителя низкой частоты).

    В конструкции УПЧ присутствует один или два каскада резонансного типа. Как правило, применяются настроенные трансформаторы. Причем производится настройка сразу двух обмоток, а не одной. Благодаря этому можно достичь более выгодной формы кривой резонанса. Повышается чувствительность и избирательность приемного устройства. Эти трансформаторы, у которых обмотки настроены, называются полосовыми фильтрами. Они настраиваются при помощи регулируемого сердечника или подстроечного конденсатора. Они настраиваются один раз и в процессе эксплуатации приемника их трогать не нужно.

    Частота гетеродина

    А теперь давайте рассмотрим простой супергетеродинный приемник на лампе или транзисторе. Можно изменить частоты гетеродина в необходимом диапазоне. И ее нужно подбирать таким образом, чтобы с любыми по частоте колебаниями, которые приходят из антенны, получалось одинаковое значение промежуточной частоты. Когда осуществляется настройка супергетеродина, происходит подгонка частоты усиливаемого колебания под конкретный резонансный усилитель. Получается явное преимущество – нет необходимости настраивать большое количество междуламповых колебательных контуров. Достаточно настроить гетеродинный контур и входной. Происходит существенное упрощение настройки.

    Промежуточная частота

    Для получения фиксированной ПЧ при работе на любой частоте, которая находится в рабочем диапазоне приемника, необходимо сдвигать колебания гетеродина. Как правило, в супергетеродинных радиоприемниках используется ПЧ, равная 460 кГц. Намного реже используется 110 кГц. Эта частота показывает, на какое значение отличаются диапазоны гетеродина и входного контура.

    При помощи резонансного усиления происходит увеличение чувствительности и избирательности устройства. И благодаря использованию преобразования приходящего колебания удается улучшить показатель избирательности. Очень часто две радиостанции, работающие относительно близко (по частоте), мешают друг другу. Такие свойства нужно учитывать, если планируете собрать самодельный супергетеродинный приемник.

    Как происходит прием станций

    Теперь можно рассмотреть конкретный пример, чтобы понять принцип работы супергетеродинного приемника. Допустим, используется ПЧ, равная 460 кГц. А станция работает на частоте 1 МГц (1000 кГц). И ей мешает слабая станция, которая вещает на частоте 1010 кГц. Разница частот у них 1 %. Для того чтобы добиться ПЧ, равной 460 кГц, необходимо произвести настройку гетеродина на 1,46 МГц. В этом случае мешающая радиостанция выдаст ПЧ, равное всего 450 кГц.

    И вот теперь можно увидеть, что сигналы двух станций различаются более чем на 2 %. Два сигнала разбежались, это произошло с помощью применения преобразователей частоты. Прием основной станции упростился, улучшилась избирательность радиоприемника.

    Теперь вы знаете все принципы супергетеродинных приемников. В современных радиоприемниках все намного проще — нужно использовать для построения всего одну микросхему. И в ней на кристалле полупроводника собрано несколько устройств — детекторы, гетеродины, усилители ВЧ, НЧ, ПЧ. Остается только добавить колебательный контур и несколько конденсаторов, резисторов. И полноценный приемник собран.

    Структурная схема супергетеродинного радиоприемника. Принцип действия схемы

    Основным недостатком приемника прямого усиления является сложность перестройки с одной частоты на другую. Выполнить фильтр со стабильными параметрами при его перестройке в диапазоне частот практически невозможно.

    При усилении высокочастотного сигнала тоже возникают определенные трудности. Чем выше частота принимаемого сигнала, тем сложнее выполнить усилитель высокой частоты. Его широкополосность тоже приводит к определенным трудностям. Естественно, при развитии микроэлектроники цена этих затрат постепенно снижается, но одновременно осваиваются все более высокочастотные диапазоны.

    В качестве второго и основного недостатка приемника прямого усиления можно назвать необходимость построения перестраиваемого узкополосного фильтра, настраиваемого на рабочий сигнал. Требования к этому фильтру получаются противоречивыми. С одной стороны, этот фильтр должен ослаблять соседний канал приема, а с другой стороны не искажать принимаемый сигнал. В результате при необходимости перестройки частоты требуется изменять относительную полосу пропускания фильтра.

    где — полоса частот полезного сигнала

    fпс — несущая частота полезного сигнала

    При увеличении центральной частоты настройки фильтра для сохранения той же самой абсолютной полосы частот приходится одновременно уменьшать относительную полосу пропускания фильтра. Это достигается увеличением добротности входящих в состав фильтра контуров. Учитывая, что при этом необходимо строго следить за соотношением добротностей этих контуров между собой, а также то, что чем выше частота, тем труднее реализовать высокую добротность резонансной цепи, задача становится практически невыполнимой.

    Даже в том случае, когда приемник разрабатывается на одну фиксированную частоту, очень трудно обеспечить параметры узкополосного фильтра. На частоте 450 МГц очень трудно (практически невозможно) обеспечить полосу пропускания фильтра, равную 10 кГц при полосе непропускания 25 кГц. При этом минимальная добротность требуется:

    Но это для фильтра первого порядка! А нужно как минимум фильтр 8-го порядка. Естественно, что добротность избирательной цепи, равную нескольким сотням тысяч единиц технически выполнить невозможно!

    Для того чтобы решить эту проблему, стали разбивать задачу на два этапа — перестройка по диапазону частот, и обеспечение избирательности по соседнему каналу. Для перестройки по частотному диапазону стали использовать перенос спектра на определенную (обычно достаточно низкую) промежуточную частоту. Перенос спектра принимаемых частот осуществляется при помощи следующего тригонометрического преобразования:

    тогда напряжение на выходе перемножителя, который часто называется смесителем будет записываться:

    Узкополосный фильтр на выходе умножителя легко подавляет одну из этих компонент. Оставшаяся частотная компонента выходного сигнала называется промежуточной частотой. Радиоприемник, работающий по данному принципу получил название супергетеродин. Обычно на выходе смесителя такого радиоприемника выделяется разностная компонента. В этом случае на входе усилителя промежуточной частоты (УПЧ) формируется сигнал, с частотой:

    Получается, что при помощи смесителя можно легко перемещать спектр входного сигнала по частоте, изменяя частоту местного генератора — гетеродина.

    Процесс перемещения частоты входного сигнала на промежуточную частоту в супергетеродине иллюстрируется рисунком 1.

    Рисунок 1 Перенос спектра принимаемого сигнала на промежуточною частоту.

    На данном рисунке трапецией показан спектр сигнала, передаваемого в радиоканале. Число, изображенное в трапеции означает номер радиоканала, принятый в системе мобильной радиосвязи. Приемники, выполненные по схеме с переносом полосы радиочастот на промежуточную частоту, получили название супергетеродинов или супергетеродинных приемников. Если перенос осуществляется на нулевую частоту, то такой приемник будет уже называться приемником прямого преобразования. Структурная схема радиоприемника, построенного по схеме супергетеродина с одним преобразованием частоты, приведена на рисунке 2

    Рисунок 2. Структурная схема супергетеродинного радиоприемника

    В этой схеме гетеродин осуществляет перестройку в диапазоне частот, поэтому его часто выполняют в виде синтезатора частоты, который может настраиваться на ряд фиксированных частот и обладает стабильностью частоты, соответствующей кварцевому генератору или в особенно ответственных случаях атомному эталону частоты.

    Для уменьшения требований к фильтру основной избирательности тракт промежуточной частоты выбирается достаточно низкочастотным. Это позволяет обеспечить значительную относительную расстройку частоты соседнего канала по отношению к полосе принимаемого сигнала.

    То, что промежуточная частота супергетеродинного приемника является фиксированной, позволяет применить в качестве фильтра промежуточной частоты кварцевый, электромеханический или пьезоэлектрический фильтр. Это обеспечивает высокие электрические характеристики фильтра основной избирательности и высокую стабильность характеристик во времени и в диапазоне температур. Кроме того, такие фильтры в настоящее время являются высокотехнологическими, что позволяет снизить стоимость и уменьшить габариты приемника в целом.

    К сожалению, промежуточная частота может быть образована при помощи двух уравнений. При этом результат невозможно отличить друг от друга:

    Это приводит к тому, что супергетеродинным приемником могут одновременно приниматься сразу два частотных канала, отстоящих друг от друга на величину 2fпч. Один из этих каналов называется рабочим каналом, а другой — зеркальным. Описанная ситуация иллюстрируется рисунком 3.

    Рисунок 3 Процесс образования зеркального канала в супергетеродинном приемнике

    Основной способ избавиться от зеркального канала — это подавить его сигнал во входной цепи радиоприемника, иначе говоря, подавление зеркального канала зависит от избирательности входной цепи супергетеродина и относитеьлной расстройки частоты зеркального канала:

    Дополнительное подавление зеркального канала может быть обеспечено в смесителе с подавлением зеркального канала. Этот преобразователь частоты реализует одну из следующих тригонометрических формул:

    В ряде случаев это схемотехническое решение может позволить уменьшить конкретное значение промежуточной частоты, увеличить глубину подавления зеркального канала или расширить диапазон частот, в котором может быть применена схема супергетеродинного приемника с одним преобразованием частоты.

    Требования к избирательности полосового фильтра входной цепи супергетеродинного приемника значительно ниже требований к полосовому фильтру приемника прямого усиления. Это связано с тем, что зеркальный канал отстроен от принимаемой частоты значительно дальше соседнего канала. Чем выше выбирается значение промежуточной частоты, тем ниже будут требования к полосовому фильтру входной цепи. При этом будут возрастать требования к полосовому фильтру промежуточной частоты. Конкретный выбор значения промежуточной частоты позволяет оптимизировать требования, как к тракту промежуточной частоты, так и требования к входной частоте.

    При расчете структурной схемы очень важно правильно распределить коэффициенты усиления каждого блока. Как это уже обсуждалось выше, чувствительность приемника определяется уровнем шума каждого из каскадов, однако наибольшее влияние на этот параметр оказывает первый каскад приемника. Для того чтобы последующие каскады не оказывали существенного влияния на чувствительность приемника, можно поднять усиление первого каскада, однако это приведет к возрастанию интермодуляционных искажений, поэтому в большинстве случаев приходится ограничиваться компенсацией потерь в последующих каскадах. Пример распределения коэффициента усиления по каскадам супергетеродинного приемника приведен на рисунке 4.

    Рисунок 4 Пример распределения уровней сигнала в структурной схеме супергетеродинного приемника

    Разработка структурной схемы является ответственным этапом проектирования радиоприемного устройства. В каждом конкретном случае приходится учитывать особенности принимаемого сигнала и требования к параметрам устройства в целом.

    Мы рассматриваем схему приемника цифровых методов модуляции, поэтому при разработке супергетеродинного приемника цифровых видов модуляции следует учитывать особенности переноса полезного сигнала на промежуточную частоту. Полезная информация цифрового сигнала обычно содержится в относительном изменении фазы несущего колебания, но оно приводит к соответствующему приращению частоты:

    При этом положительное приращение фазы будет увеличивать частоту принимаемого сигнала, а отрицательное — уменьшать. При преобразовании частоты в супергетеродинном приемнике приращение частоты может, как не изменяться — при преобразовании , так и становиться противоположным — при преобразовании . Этот эффект иллюстрируется рисунком 3. На нем стрелочкой показано, что верхняя и нижняя боковые частоты принимаемого сигнала при переносе на промежуточную частоту меняются местами. При этом знак приращения фазы становится противоположным и передаваемое сообщение искажается. Восстановление переданного сообщения на выходе такого радиоприемника становится невозможным.

    Рассмотренное явление может быть учтено на выходе супергетеродинного приемника в квадратурном детекторе. Если поменять местами квадратурные сигналы I и Q, то вращение вектора частоты на выходе квадратурного детектора меняется на прямо противоположное. Теперь переданное сообщение будет принято правильно.

    Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

    Проголосовавших: 2 чел.
    Средний рейтинг: 5 из 5.

    Гетеродин — Википедия (с комментариями)

    Материал из Википедии — свободной энциклопедии

    Гетероди́н (от греч. ἕτερος — иной; δύναμις — сила) — маломощный генератор электрических колебаний, применяемый для преобразования частот сигнала в супергетеродинных радиоприёмниках, приёмниках прямого преобразования, волномерах и пр.

    Изначально гетеродином называли радиоприёмникК:Википедия:Статьи без источников (тип: не указан)[источник не указан 2035 дней], в котором имелся дополнительный генератор высокой частоты, настроенный на частоту, близкую к частоте принимаемого сигнала, что повышало чувствительность радиоприёмника. В дальнейшем, после изобретения супергетеродина, гетеродином стали называть этот генератор.

    Гетеродин создаёт колебания вспомогательной частоты, которые в блоке смесителя смешиваются с поступающими извне колебаниями высокой частоты. В результате смешения двух частот, входной и гетеродина, образуются ещё две частоты (суммарная и разностная). Разностная частота используется как промежуточная частота, на которой происходит основное усиление сигнала.

    К гетеродинам устанавливаются высокие требования по стабильности частоты и амплитуды, а также спектральной чистоте гармонических колебаний. Чем выше эти требования, тем сложнее конструктивное исполнение гетеродина: стабилизируют напряжение питания, применяют сложные схемы, исключающие влияние внешних факторов на частоту генератора, компоненты со специальными свойствами, гетеродин помещают в термостат, используют системы автоматической подстройки частоты и т. д. Если гетеродин работает на фиксированной частоте, применяют стабилизацию с помощью кварцевого резонатора. В современной радиоаппаратуре в качестве перестраиваемых гетеродинов всё чаще применяют цифровые синтезаторы частоты, которые обладают рядом важных преимуществ.

    См. также

    Напишите отзыв о статье «Гетеродин»

    Ссылки

    Отрывок, характеризующий Гетеродин

    – Vous savez, que je ne suis pas bonapartiste, mon prince. [Вы знаете, князь, что я не бонапартистка.]
    – «Dieu sait quand reviendra»… [Бог знает, вернется когда!] – пропел князь фальшиво, еще фальшивее засмеялся и вышел из за стола.
    Маленькая княгиня во всё время спора и остального обеда молчала и испуганно поглядывала то на княжну Марью, то на свекра. Когда они вышли из за стола, она взяла за руку золовку и отозвала ее в другую комнату.
    – Сomme c’est un homme d’esprit votre pere, – сказала она, – c’est a cause de cela peut etre qu’il me fait peur. [Какой умный человек ваш батюшка. Может быть, от этого то я и боюсь его.]
    – Ax, он так добр! – сказала княжна.

    Князь Андрей уезжал на другой день вечером. Старый князь, не отступая от своего порядка, после обеда ушел к себе. Маленькая княгиня была у золовки. Князь Андрей, одевшись в дорожный сюртук без эполет, в отведенных ему покоях укладывался с своим камердинером. Сам осмотрев коляску и укладку чемоданов, он велел закладывать. В комнате оставались только те вещи, которые князь Андрей всегда брал с собой: шкатулка, большой серебряный погребец, два турецких пистолета и шашка, подарок отца, привезенный из под Очакова. Все эти дорожные принадлежности были в большом порядке у князя Андрея: всё было ново, чисто, в суконных чехлах, старательно завязано тесемочками.
    В минуты отъезда и перемены жизни на людей, способных обдумывать свои поступки, обыкновенно находит серьезное настроение мыслей. В эти минуты обыкновенно поверяется прошедшее и делаются планы будущего. Лицо князя Андрея было очень задумчиво и нежно. Он, заложив руки назад, быстро ходил по комнате из угла в угол, глядя вперед себя, и задумчиво покачивал головой. Страшно ли ему было итти на войну, грустно ли бросить жену, – может быть, и то и другое, только, видимо, не желая, чтоб его видели в таком положении, услыхав шаги в сенях, он торопливо высвободил руки, остановился у стола, как будто увязывал чехол шкатулки, и принял свое всегдашнее, спокойное и непроницаемое выражение. Это были тяжелые шаги княжны Марьи.
    – Мне сказали, что ты велел закладывать, – сказала она, запыхавшись (она, видно, бежала), – а мне так хотелось еще поговорить с тобой наедине. Бог знает, на сколько времени опять расстаемся. Ты не сердишься, что я пришла? Ты очень переменился, Андрюша, – прибавила она как бы в объяснение такого вопроса.

    Принцип супергетеродинного приемника

    Существует несколько схем построения радиоприемных устройств. Причем не имеет значения, для какой цели они используются – в качестве приемника радиовещательных станций или сигнала в комплекте системы управления. Существуют супергетеродинные приемники и прямого усиления. В схеме приемника прямого усиления используется только один вид преобразователя колебаний – порой даже простейший детектор. По сути, это детекторный приемник, только немного усовершенствованный. Если обратить внимание на конструкцию радиоприемника, то можно увидеть, что сначала происходит усиление высокочастотного сигнала, а после – низкочастотного (для вывода на динамик).

    Особенности супергетеродинов

    Вследствие того, что могут возникать паразитные колебания, происходит ограничение возможности усиления высокочастотных колебаний в небольших пределах. Особенно это актуально при построении коротковолновых приемников. В качестве усилителя высоких частот лучше всего использовать резонансные конструкции. Но в них нужно производить полную перенастройку всех колебательных контуров, которые имеются в конструкции, при смене частоты.

    Ламповый супергетеродинный приемник

    Вследствие этого существенно усложняется конструкция радиоприемника, равно как и пользование им. Но недостатки эти можно устранить, используя метод преобразования принимаемых колебаний в одну стабильную и фиксированную частоту. Причем частота обычно пониженная, это позволяет добиться высокого уровня усиления. Именно на эту частоту происходит настройка резонансного усилителя. Такая методика используется в современных супергетеродинных приемниках. Только фиксированную частоту называют промежуточной.

    Способ преобразования частоты

    А теперь нужно рассмотреть упомянутый выше способ преобразования частоты в радиоприемниках. Допустим, есть два вида колебаний, частоты у них различные. При сложении этих колебаний появляется биение. Сигнал при сложении то увеличивается по амплитуде, то уменьшается. Если обратить внимание на график, который характеризует это явление, то можно увидеть совершенно другой период. И это период совершения биений. Причем этот период намного больше, нежели аналогичная характеристика любого из колебаний, которые складывались. Соответственно, с частотами все наоборот – у суммы колебаний она меньше.

    Супергетеродин Сони

    Частоту биений вычислить достаточно просто. Она равна разности частот колебаний, которые складывались. Причем с увеличением разности повышается частота биений. Отсюда следует, что при выборе относительно большой разницы слагаемых частот получаются высокочастотные биения. Например, есть два колебания – 300 метров (это 1 МГц) и 205 метров (это 1, 46 МГц). При сложении окажется, что частота биения будет 460 кГц или 652 метра.

    Детектирование

    Но в приемниках супергетеродинного типа обязательно имеется детектор. Биения, которые получаются в результате сложения двух различных колебаний, имеют период. И он полностью соответствует промежуточной частоте. Но это не гармонические колебания промежуточной частоты, чтобы их получить, необходимо осуществить процедуру детектирования. Обратите внимание на то, что из модулированного сигнала детектор выделяет только колебания с модуляционной частотой. А вот в случае с биениями все немного иначе – происходит выделение колебаний так называемой разностной частоты. Она равна разности частот, которые складываются. Такой способ преобразований именуется методом гетеродинирования или смешения.

    Реализация метода при работе приемника

    Допустим, в контур радиоприемника приходят колебания от радиостанции. Чтобы осуществить преобразования, необходимо создать несколько вспомогательных высокочастотных колебаний. Далее подбирается частота гетеродина. При этом разность слагаемых частот должна быть, например, 460 кГц. Далее нужно произвести сложение колебаний и подать их на лампу-детектор (или полупроводник). При этом получаются разностной частоты колебания (значение 460 кГц) в контуре, соединенном с анодной цепью. Нужно обратить внимание на то, что этот контур настраивается на работу при разностной частоте.

    Колебания с разной частотой

    Используя усилитель высоких частот, можно произвести преобразование сигнала. Амплитуда его существенно увеличивается. Усилитель, используемый для этого, сокращенно называют УПЧ (усилитель промежуточной частоты). Его можно встретить во всех приемниках супергетеродинного типа.

    Практическая схема на триоде

    Для того чтобы произвести преобразование частоты, можно использовать простейшую схему на одной лампе-триоде. Колебания, которые приходят с антенны, посредством катушки попадают на управляющую сетку лампы-детектора. От гетеродина поступает отдельный сигнал, он накладывается поверх основного. В анодной цепи детекторной лампы устанавливается колебательный контур – он настраивается на разностную частоту. При детектировании получаются колебания, которые в дальнейшем усиливаются в УПЧ.

    Но конструкции на радиолампах используются на сегодняшний день очень редко – эти элементы устарели, достать их проблематично. Но на них удобно рассматривать все физические процессы, которые протекают в конструкции. нередко применяют в качестве детектора гептоды, триод-гептоды, пентоды. Схема на полупроводниковом триоде очень похожа на ту, в которой используется лампа. Напряжение питания меньше и намоточные данные катушек индуктивности.

    ПЧ на гептодах

    Гептод – это лампа с несколькими сетками, катодами и анодами. По сути, это две радиолампы, заключенные в один стеклянный баллон. Электронный поток у этих ламп также общий. В первой лампе происходит возбуждение колебаний – это позволяет избавиться от использования отдельного гетеродина. А вот во второй смешиваются колебания, поступающие от антенны, и гетеродинные. Получаются биения, из них происходит выделение колебаний с разностной частотой.

    Схема супергетеродинного приемника на двух лампах

    Обычно лампы на схемах разделяются пунктирной линией. Две нижние сетки соединяются с катодом посредством нескольких элементов – получается классическая схема с обратной связью. А вот управляющая сетка непосредственно гетеродина соединяется с колебательным контуром. При наличии обратной связи происходит возникновение тока и колебаний.

    Ток проникает через вторую сетку и происходит перенос колебаний во вторую лампу. Все сигналы, которые приходят от антенны, поступают на четвертую сетку. Сетки № 3 и № 5 между собой соединены внутри цоколя и на них постоянное напряжение. Это своеобразные экраны, расположенные между двумя лампами. В результате получается, что вторая лампа является полностью экранированной. Настройка супергетеродинного приемника, как правило, не требуется. Главное — произвести настройку полосовых фильтров.

    Процессы, протекающие в схеме

    Ток совершает колебания, создаются они первой лампой. При этом происходит изменение всех параметров второй радиолампы. Именно в ней смешиваются все колебания – от антенны и гетеродина. Происходит генерация колебаний с разностной частотой. В цепь анода включается колебательный контур – он настраивается именно на эту частоту. Далее происходит выделение из тока анода колебаний. И уже после этих процессов происходит подача сигнала на вход УПЧ.

    Процессы, протекающие в приемнике

    При помощи специальных преобразовательных ламп происходит существенное упрощение конструкции супергетеродина. Количество ламп уменьшается, устраняется несколько трудностей, которые могут возникнуть при работе схемы с использованием отдельного гетеродина. Все, рассмотренное выше, относится к преобразованиям немодулированного колебания (без речи и музыки). Так намного проще рассматривать принцип работы устройства.

    Модулированные сигналы

    В том случае, когда происходит преобразование модулированного колебания, все делается немного иначе. У колебаний гетеродина постоянная амплитуда. Колебания ПЧ и биения промодулированы, равно как и у несущей. Для превращения модулированного сигнала в звук необходимо произвести еще одно детектирование. Именно по этой причине в супергетеродинных КВ приемниках после осуществления усиления происходит подача сигнала на второй детектор. И только после него сигнал модуляции подается на головной телефон или вход УНЧ (усилителя низкой частоты).

    В конструкции УПЧ присутствует один или два каскада резонансного типа. Как правило, применяются настроенные трансформаторы. Причем производится настройка сразу двух обмоток, а не одной. Благодаря этому можно достичь более выгодной формы кривой резонанса. Повышается чувствительность и избирательность приемного устройства. Эти трансформаторы, у которых обмотки настроены, называются полосовыми фильтрами. Они настраиваются при помощи регулируемого сердечника или подстроечного конденсатора. Они настраиваются один раз и в процессе эксплуатации приемника их трогать не нужно.

    Частота гетеродина

    А теперь давайте рассмотрим простой супергетеродинный приемник на лампе или транзисторе. Можно изменить частоты гетеродина в необходимом диапазоне. И ее нужно подбирать таким образом, чтобы с любыми по частоте колебаниями, которые приходят из антенны, получалось одинаковое значение промежуточной частоты. Когда осуществляется настройка супергетеродина, происходит подгонка частоты усиливаемого колебания под конкретный резонансный усилитель. Получается явное преимущество – нет необходимости настраивать большое количество междуламповых колебательных контуров. Достаточно настроить гетеродинный контур и входной. Происходит существенное упрощение настройки.

    Промежуточная частота

    Для получения фиксированной ПЧ при работе на любой частоте, которая находится в рабочем диапазоне приемника, необходимо сдвигать колебания гетеродина. Как правило, в супергетеродинных радиоприемниках используется ПЧ, равная 460 кГц. Намного реже используется 110 кГц. Эта частота показывает, на какое значение отличаются диапазоны гетеродина и входного контура.

    Структурная схема супергетеродинного приемника

    При помощи резонансного усиления происходит увеличение чувствительности и избирательности устройства. И благодаря использованию преобразования приходящего колебания удается улучшить показатель избирательности. Очень часто две радиостанции, работающие относительно близко (по частоте)

    Принципы работы супергетеродинного приемника

    В схемах приемников прямого усиления применяется только один тип преобразователя колебаний — детектор, выделяющий из модулированных колебаний высокой частоты колебания низкой частоты. В соответствии с этим в таких приемниках осуществляется усиление колебаний высокой частоты (частоты принимаемой станции) и усиление колебаний низкой (звуковой) частоты.

    Но возможность усиления колебаний высокой частоты ограничена сравнительно небольшими пределами (из-за опасности возникновения паразитных колебаний), особенно если частота лежит в коротковолновой части радиовещательного диапазона, а тем более в области коротких волн.

    С другой стороны, единственный пригодный для высоких частот тип усилителя — резонансный. Но необходимость перестройки всех контуров при переходе от одной станции к другой очень усложняет конструкцию усилителя и обращение с ним.

    Обе эти трудности могут быть устранены одним и тем же методом— преобразованием принимаемых колебаний любой частоты в колебания одной и той же фиксированной частоты. Эта частота выбирается пониженной, чтобы можно было получить достаточно большое усиление, и на нее настраивается резонансный усилитель.

    Такой метод применен в супергетеродинных приемниках. Фиксированная частота, которая получается в супергетеродине, называется обычно промежуточной частотой.

    Способ, который применяется для преобразования колебаний любой принимаемой частоты в колебание одной промежуточной частоты, состоит в следующем.

    Если взять два колебания различной частоты и сложить их, то в результате получаются сложные колебания, так называемые биения. Графически этоі процесс сложения колебаний изображен на рис. 1.

    Кривые А и Б соответствуют двум гармоническим колебаниям разной частоты, а кривая В изображает биения, полученные в результате сложения этих двух колебаний: А и Б.

    У кривой В легко заметить новый период, а именно период биений, который на рисунке отмечен буквами Т. Сразу видно, что период этих биений больше, чем период каждого из слагаемых колебаний, и, следовательно, частота биений меньше, чем частота каждого из слагаемых колебаний.

    При сложении двух колебаний с разными частотами амплитуда результирующего колебания периодически изменяется

    Рис. 1. При сложении двух колебаний с разными частотами амплитуда результирующего колебания периодически изменяется.

    Частота биений равна разности частот двух слагаемых колебаний. Чем больше разность между этими частотами, тем больше частота биений; поэтому, выбрав достаточно большую разницу между слагаемыми частотами, мы можем получить биения высокой частоты.

    Так, если мы возьмем слагаемые колебания с частотами 1 000 кгц (волна 300 м) и 1460 кгц (волна 205 м), то биения, полученные в результате сложения этих колебаний, будут иметь частоту 460 кгц 1460—1000= 460), что соответствует волне 652 м.

    Однако хотя полученные биения и имеют уже период, соответствующий промежуточной частоте, они не представляют собой гармонических колебаний промежуточной частоты.

    Чтобы получить эти колебания, нужно биения продетектировать. Так же. как из модулированных колебаний при детектировании выделяются колебания с частотой модуляции, из биений при детектировании выделяются колебания разностной частоты (равной разности двух слагаемых частот). Этот метод преобразования частоты называют методом смешения или методом гетеродинирования.

    Как же осуществить этот метод при приеме радиостанций?

    Пусть кривая А (рис. 1) изображает колебания, приходящие в контур приемника от передающей станции. Создадим в нашем приемнике вспомогательные колебания высокой частоты (кривая Б на рис. 1) при помощи специального гетеродина и подберем частоту гетеродина так, чтобы разность частот колебаний А и Б составляла, например, 460 кгц.

    Сложим полученные колебания и пропустим их через детекторную лампу. Тогда в контуре, включенном в анодную цепь лампы и настроенном на разностную частоту, мы получим колебания этой разностной частоты 460 кгц.

    Полученные ко

    Рассказ: Гете как человек и как памятник

    Goethe als Person und als Denkmal

    Гете

    Die Büste des deutschen Dichters, Prosaikers und Dramatikers Иоганн Вольфганг фон Гёте вурде 1883, 50 Яхре нахом Адольф Гёте в Тоде und ursprünglich в Карлсбаде (верхняя часть Карловых Вар) vor dem Pupp Grand Hotel zur Erinnerung an dreizehn Besuche des Dichters aufgestellt. Dort stand er 100 Jahre.

    Goethe reiste, wie viele andere berühmte Persönlichkeiten auch aus Russland, sehr gern nach Karlsbad.Er sagte, dass er gerne nur in drei Städten leben würde: Weimar, Rom und Karlsbad. Hier hatte er bei seinem letzten Besuch eine ernsthafte Affäre mit einem jungen Mädchen namens Ulrike. Der ältere Goethe machte einen Heiratsantrag, erhielt aber eine entscheidende Absage.

    Bei der feierlichen Eröffnung des Denkmals im Jahr 1833 hielt ein deutscher Prosaiker und Dramatiker, Heinrich Laube, eine Rede.

    1938 гериет Карлсбад унтер Гитлерс Герршафт.

    Während des Zweiten Weltkriegs wurde die Stadt durch Bombenangriffe schwer beschädigt.

    Der junge Goethe schrieb einmal, dass selbst starke Felsen einstürzen.

    Goethes-Denkmal blieb jedoch erhalten und wurde ohne Sockel ins Museum gestellt.

    Nach dem Krieg errichteten die tschechischen Behörden während der politischen Kampagne zur Säuberung von Allem Deutschen im Jahr 1952 erneut eine Büste für den Schriftsteller auf einem neuen Sockel, eindere nichtrans, einem neuen Sockel, eindexe nichtrans der Nähe der Kunstgalerie.

    Da das alte antike Podest verloren gegangen war, musste man einen neuen Sockel bauen, das den früheren ersetzte, aber kleiner und nicht aus Marmor, wie der erste, война.

    Aber die neue Stelle des Denkmals am Damm verletzte seine architektonische Harmonie.

    Viele Jahre später wurde während der Bauarbeiten ein großes Stück Marmor entdeckt, auf dem die Inschrift Стенд «Goethe». Ein weiteres Denkmal wurde darauf gesetzt, für den tschechischen Politiker Thomas Mazaryk.

    Перевод

    Бюст немецкого поэта, прозаика и драматурга Иоганна Вольфганга фон Гете был создан скульптором Адольфом фон Дондорфом в 1883 году, через 50 лет после смерти Гете, и установлен в Карлсбаде (теперь Карловы Вары) перед гранд-отелем Pupp в память о тринадцати посещениях поэтом курортного города. Там он простоял 100 лет.

    Гете, как и многие другие известные люди, также из России, очень любил ездить в Карлсбад. Он говорил, что хотел бы жить в трех городах: Веймаре, Риме и Карлсбаде.Здесь, в последний приезд у него разыгрался серьезный роман с молодой девушкой по имени Ульрике. Престарелый Гете сделал предложение, но получил решительный отказ.

    Во время торжественного открытия памятника в 1833 г. с речью о гениальном писателе, выступил немецкий прозаик и драматург Генрих Лаубе.

    В 1938 году город Карлсбад перешел под власть Гитлера.

    Во время 2-й мировой войны город сильно пострадал от бомбежек.

    Молодой Гете в свое время писал, что даже прочные скалы рушатся.

    Но памятник Гете остался цел и был размещен в музее, без постамента.

    После войны чешские власти, во время политической компании очищения от всего немецкого, в 1952 г. снова установили бюстателю на новом постаменте, но не на центральном месте, а на соседней улице от Галереи искусств.

    Так как старый античный пьедестал пропал, пришлось делать новый постамент, заменивший бывший, но не из мрамора и меньше размером.

    Новое место памятника на набережной нарушило его архитектурную гармонию.

    Через много лет в ходе строительных работ был обнаружен большой кусок мрамора, на нем была надпись «Гете».

    На него поставили другой памятник, чешскому политике Томасу Мазарику.

    .

    Родина (Homeland) 1 ~ 8 сезон смотреть сериал онлайн в HD качестве

    Родина

    Сериал «Родина» стал отличным примером того, как необходимо снимать многосерийные психологические триллеры. Именно к данному жанру можно отнести этот продукт. Вышел он в октябре 2011 года и с тех пор пользуется очень популярностью у зрителей по всему миру. Прототипом «Родины» стал сериал, снятый в Израиле под названием «Военнопленные». Создателем его был Гидеон Рафф. Сюжет «Родина» (оригинальное название сериала) воплотили в жизнь Алекс Ганса и Говард Гордон.

    videocam

    Все сезоны


    Сериал «Родина» демонстрируется на известном телеканале Showtime, который славится кинематографическими творениями самых разных жанров, что называется по умолчанию для многих критерием высокого качества демонстрируемого продукта. Особенностью сериала «Родина» перед его премьерой стало то, что пилотная серия была выложена в сети еще за несколько дней до ее показа на телевидении. Благодаря выполнению различных несложных задач пользователи получили возможность просмотреть эпизод раньше остальных зрителей.При помощи такого оригинального подхода разработчикам удалось повысить уровень его применения уже на старте.

    Homeland Ключевые роли в «Родине» доверили играть таким актерам, как Дэмиэн Льюис (персонаж Николас Броуди) и Клэр Дэйнс (персонаж Кэрри Мэтисон). Клэр играет служащую ЦРУ с непростым диагнозом под названием «биполярное расстройство личности». Дэмиэну досталась роль морского пехотинца, который специализируется на разведке и стрельбе. Офицер Центрального разведовательного управления США Мэтисон убежена, что Николас Броуди сливает информацию врагам государства, чем являет прямую власть национальной безопасности страны.Такие мысли у нее возникли по причине, что Броуди провел определенное время в плену террористической группировки Аль-Каида. Весь сюжет сериала разворачивается после этой завязки, Мэтисон постоянно взаимодействует с Броуди и работает под прикрытием.

    play_epizod

    Новые серии

    Сериал «Родина» был по достоинству оценен не только зрителями, но и телевизионными критиками. За историю своего показа на ТВ он завоевал несколько статуэток популярной в телевизионной индустрии рекламы «Эмми».Он был признан лучшим драматическим проектом в 2012 году. Также свои статуэтки получили и исполнители главных ролей в номинациях лучшая женская и мужская роль в сериале этого жанра. Актеры, исполнившие роли второго плана, также были представлены представители оргкомитета данной услуги.

    .

    Оставить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *