Импульсные источники энергии: Импульсные преобразователи напряжения: принцип работы, выбор

Содержание

Импульсные источники питания — полный список схем и документации на QRZ.RU

1 Источники питания импульсные 1849126.04.2002
2 Источники питания параметрические 638126.04.2002
3 Преобразователи 908926.04.2002
4 Регуляторы 592326.04.2002
5 Теория построения и расчеты 727426.04.2002
6AIWA VX-T2020. Принципиальная схема99711112.03.2001
7AKAI CT-1407, CT-2005E, CT-1407D. Принципиальная схема601511112.03.2001
8Astron SS-30 Scheme320466731.03.2008
9ATEC TV 1402MK9. Принципиальная схема86444312.03.2001
10DAEWOO DTG2596TK, DTG2597TK, DTG97TK. Принципиальная схема50468512.03.2001
11DC-DC преобразователь на микросхеме DPA2893706.11.2006
12Diamond GSV-3000 схема109230314.11.2014
13ELEKTA CRT-20T. Принципиальная схема94497212.03.2001
14FSP OSP550-80GLN Active PFC3274450022.12.2011
15FUNAI 2000 MK7/TV-2008GL. Принципиальная схема93715312.03.2001
16FUNAI TV-2000A MK8. Принципиальная схема922034012.03.2001
17FUNAI TV-2003/TV-20MS. Принципиальная схема92433812.03.2001
18FUNAI VIP5000. Принципиальная схема90502412.03.2001
19GOLDSTAR CF-1480V, 20A80V, 21A80V. Принципиальная схема61521512.03.2001
20GOLDSTAR PC-04. Принципиальная схема35434412.03.2001
21GOLDSTAR PC-0X8. Принципиальная схема95408212.03.2001
22GOLDSTAR PC-12. Принципиальная схема46428312.03.2001
23GRUNDIG CUC-4400. Принципиальная схема42457112.03.2001
24GZV-2500 Схема140491615.08.2007
25GZV-4000 Схема107459815.08.2007
26GZV-4000 Схема198413715.08.2007
27HAPPI. Принципиальная схема84265112.03.2001
28HITACHI CMT 2141/CMT 1450. Принципиальная схема65369212.03.2001
29HITACHI CMT-2598, 2998. Принципиальная схема47242612.03.2001
30JVC 14 592-3911501-05. Принципиальная схема68249412.03.2001
31MFJ-4125 источник питания123959411.07.2016
32MITSUBISHI ELECTRIC_CT-2125EET, CT-2525EET. Принципиальная схема89192512.03.2001
33NEC FS-1530SK/1530SU. Принципиальная схема80204112.03.2001
34NOKIA 7142EE. Принципиальная схема49214412.03.2001
35NOKIA 7164EE. Принципиальная схема68197412.03.2001
36NOKIA. Принципиальная схема68250112.03.2001
37NORMENDE. Принципиальная схема98141912.03.2001
38ORION 20AH. Принципиальная схема85179312.03.2001
39ORION 4800. Принципиальная схема65175912.03.2001
40PANASONIC NV-J35. Принципиальная схема83194312.03.2001
41PHILIPS 14GX, 20GX, 21GX. Принципиальная схема92322612.03.2001
42PS-304 схема231143214.11.2014
43RECOR 4002/4021. Принципиальная схема96298412.03.2001
44SABA. Принципиальная схема72178612.03.2001
45SAMSUNG CK-3351A. Принципиальная схема64391812.03.2001
46SAMSUNG PC04A. Принципиальная схема43192412.03.2001
47SANYO CEM-2511 VSU-00. Принципиальная схема47259812.03.2001
48SANYO CEM2130 PX-20. Принципиальная схема74174712.03.2001
49SANYO CEM2130, 3011, 1454 PV-20. Принципиальная схема48188212.03.2001
50SANYO CMM3024, CMM3024A. Принципиальная схема85136212.03.2001
51SANYO CMX3310C-05. Принципиальная схема91154512.03.2001
52SHARP 20B-SC. Принципиальная схема95284412.03.2001
53SHARP 21B-N21. Принципиальная схема99216212.03.2001
54SHARP 29N212-E3. Принципиальная схема88138912.03.2001
55SHARP CV-2131CK1. Принципиальная схема78361712.03.2001
56SHARP SV-2142S. Принципиальная схема87433312.03.2001
57SHARP SV-2152U. Принципиальная схема80180012.03.2001
58SONY KV-1485, 1487, 2167, 2187, 21DK2. Принципиальная схема79330012.03.2001
59SONY KV-2584, 2965MT. Принципиальная схема69227412.03.2001
60SONY KV-M 1400. Принципиальная схема80228312.03.2001
61SONY KV-X2931K/RM-816. Принципиальная схема98204412.03.2001
62SONY KV2182 M9. Принципиальная схема57198012.03.2001
63SONY2541D. Принципиальная схема37141712.03.2001
64SUPRA STV 2910MS. Принципиальная схема94193012.03.2001
65SUPRA STV-2924MS. Принципиальная схема81217812.03.2001
66TEC 5181. Принципиальная схема38150512.03.2001
67TENSAI P-58SC, RM109. Принципиальная схема40145412.03.2001
68THOMSON TX-90. Принципиальная схема83218812.03.2001
69THOMSON TX-91. Принципиальная схема89231612.03.2001
70TOSHIBA 285 D8D. Принципиальная схема42185912.03.2001
71TOSHIBA. Принципиальная схема83245812.03.2001
72WALTHAM TS 3350. Принципиальная схема55302112.03.2001
73WALTHAM TS3341. Принципиальная схема42176712.03.2001
74Адаптер питания для систем стандарта PoE.722206.11.2006
75Бестрансформаторный блок питания, В. Карлащук, С. Карлащук525517.09.2001
76Блок питания 13,8В 25А43529129.10.2007
77Двухканальный источник питания мощностью 20W для высокотемпературных применений.359406.11.2006
78Двухканальный неизолированный промышленный источник питания на микросхеме TNY266P.465006.11.2006
79Зарядно-питающее устройство для портативной аудио / mp3 аппаратуры.237106.11.2006
80Зарядное устройство 2W на базе микросхемы серии LinkSwitch-LP.254006.11.2006
81Зарядное устройство для мобильного телефона на микросхеме LNK520P.3507906.11.2006
82Импульсный блок питания для лампового усилителя1525603.02.2003
83Импульсный блок питания из сгоревшей энергосберегающей лампочки441130.07.2015
84Импульсный блок питания с регулятором напряжения 1….32 V мощностью 200ватт1395528.05.2001
85Импульсный БП мощного УМЗЧ28577314.11.2000
86Импульсный источник питания 12W на микросхеме TNY278P (TinySwitch-III).714206.11.2006
87Импульсный источник питания 20 Bт531315.10.2002
88Импульсный источник питания 5V 5A542315.10.2002
89Импульсный источник питания ATX1563708.10.2002
90Импульсный источник питания мощностью 32W/81W(пиковая) на микросхеме PKS606 от Power Integrations.353706.11.2006
91Импульсный источник питания на микросхеме LNK562P мощностью 1.6 W с напряжением пробоя 10 kV.383706.11.2006
92Импульсный источник питания УМЗЧ560114.10.2002
93Импульсный маломощный источник питания 5V 0.5A414415.10.2002
94Использование блоков питания старых ПК для питания трансиверов564612.12.2010
95Источник питания 14В 12А (завод «Фотон», Ташкент)132186611.07.2016
96Источник питания для УНЧ на TOPSwitch520406.11.2006
97Источники питания конструктива ATX для компьютеров5595001.08.2006
98Источники питания стандарта ATX (250-450 Вт)402803.11.2009
99Компьютерный блок питания в качестве источника напряжения для современных импортных трансиверов1389027.08.2003
100Компьютерный источник питания на микросхемах TOP249Y и TNY266P компании Power Integrations.777606.11.2006
101Компьютерный источник питания на микросхемах TOP249Y и TNY266P компании Power Integrations.562206.11.2006
102КОМПЬЮТЕРНЫЙ. Принципиальная схема33741812.03.2001
103Критерии надежности источника питания на микросхемах Power Integrations.205206.11.2006
104КРП-501. Принципиальная схема50280912.03.2001
105КРП-525. Принципиальная схема72210712.03.2001
106Мощный DC-DC преобразователь на микросхеме DPA959006.11.2006
107МП-405. Принципиальная схема61500212.03.2001
108МП-407-2. Принципиальная схема44358512.03.2001
109МП-41. Принципиальная схема66296512.03.2001
110МП-420-2. Принципиальная схема46215512.03.2001
111МП-44. Принципиальная схема39199312.03.2001
112Мультиклассовый Power-over-Ethernet источник питания 6.6W на микросхеме DPA423G (отладочный набор DA187606.11.2006
113Недорогой вариант импульсного источника питания для электросчетчика.738406.11.2006
114Неизолированные повышающие преобразователи мощностью 20W и 30W с постоянным выходным током на микрос165106.11.2006
115Неизолированный BUCK-BOOST преобразователь 0,5Вт на микросхеме LNK302P315906.11.2006
116Переделка блока питания для ПК POWER MAN IW-P350 в блок питания для трансивера 13,8V 22А3936404.01.2006
117Переделка источника питания ATX в AT618107.03.2006
118Преобразователь 12/220В TESLA ПН-22300734119806.10.2015
119Преобразователь напряжения c низкой выходной частотой на феррите172130529.04.2013
120Простое зарядное устройство для сотового телефона.3275206.11.2006
121Простой и высокоэффективный промышленный источник питания на микросхеме LNK520P.4634106.11.2006
122Резервный источник питания 21W на микросхеме TNY280P (TinySwitch-III).881306.11.2006
123Ремонт блока питания монитора SAMSUNG SyncMaster 710N44170830.06.2019
124Сетевой адаптер с выходной мощностью 2 Вт на микросхеме LNK362P.291206.11.2006
125Сетевой стабилизированный импульсный преобразователь напряжения357217.08.2001
126Схема импульсного блока питания 220V >> 9.2V421618723.10.2014
127Трехканальный источник питания 10.5 W для телевизионной приставки.222406.11.2006

Импульсные источники питания | Электрознайка. Домашний Электромастер.

Здравствуйте уважаемые коллеги!!

     Как построить импульсный трансформатор на ферритовом кольце я уже рассказывал в своих уроках здесь. Теперь  расскажу как я изготавливаю трансформатор на Ш — образном ферритовом сердечнике. Использую я для этого подходящие по размеру ферриты от старого «советского»оборудования, старых компьютеров, от телевизоров и другой электротехнической аппаратуры, которое у меня в углу валяется «до востребования».

     Для ИБП по схеме двухтактного полумостового генератора,  напряжение на первичной обмотке трансформатора, согласно схемы составляет 150 вольт, под нагрузкой примем 145 вольт. Вторичная обмотка выполнена по схеме двухполупериодного выпрямления со средней точкой.
Смотреть схему ИБП здесь.

     Приведу примеры расчета и изготовления трансформаторов для ИБП небольшой мощности 20 — 50 ватт для этой схемы. Трансформаторы такой мощности я применяю в импульсных блоках питания  для своих светильников на светодиодах. Схема трансформатора ниже. Необходимо обратить внимание, чтобы сложенный из двух половинок, Ш — сердечник не имел зазора.   

Магнитопровод с зазором используется только в однотактных  ИБП.

     Вот два примера расчета типичного трансформатора для различных нужд. В принципе, все трансформаторы на разные мощности имеют одинаковый способ расчета, почти одинаковые диаметры провода и одинаковые способы намотки.  Если вам нужен трансформатор для ИБП мощностью до 30 ватт, то это первый пример расчета. Если нужен ИБП мощностью до 60 ватт, то второй пример. 

        Первый пример.

Выберем из таблицы ферритовых сердечников №17,  Ш — образный сердечник Ш7,5×7,5. Площадь сечения среднего стержня Sк = 56 мм.кв. = 0,56 см.кв.
Окно Sо = 150 мм.кв. Расчетная  мощность 200 ватт.
Количество витков на 1 вольт у этого сердечника будет: n = 0,7/Sк = 0,7 / 0,56 = 1,25 витка.
     Количество витков в первичной обмотке трансформатора будет: w1 = n х 145 = 1,25 х 145 = 181,25.  Примем 182 витка.
     При выборе толщины провода для обмоток, я исходил из таблицы «Диаметр провода — ток».
В своем трансформаторе я применил, в первичной обмотке, провод  диаметром 0,43 мм. (провод   большим диаметром  не  умещается в окне). Он имеет площадь сечения S = 0.145 мм.кв.  Допустимый ток  (смотреть в таблице) I = 0,29 A.
Мощность первичной обмотки будет: Р = V x I = 145 х 0,29 = 42 ватта.
     Поверх первичной обмотки необходимо расположить обмотку связи. Она должна выдавать напряжение v3 = 6 вольт.    Количество витков ее будет: w3 = n x v3 = 1,25 x 6 = 7,5 витка. Примем 7 витков.  Диаметр провода 0,3 — 0,4 мм.
Затем мотается вторичная обмотка w2. Количество витков вторичной обмотки зависит от необходимого нам напряжения.       Вторичная обмотка, например на 30 вольт, состоит из двух равных полуобмоток, w3-1 и w3-2 (смотреть по схеме).
     Ток во вторичной обмотке, с учетом КПД (k=0,95) трансформатора:  I = k xР/V = 0,95 x 42 ватта / 30 вольт = 1,33 А ;
     Подберем провод под этот ток. Я применил провод, нашедшийся у меня в запасе, диаметром 0,6 мм.  Его площадь сечения  S = 0,28 мм.кв.
Допустимый ток каждой из двух полуобмоток  I = 0,56 А. Так, как эти две вторичные полуобмотки работают вместе, то общий ток равен 1,12 А, что немного отличается от расчетного тока 1,33 А.
Количество витков в каждой полуобмотке для напряжения 30 вольт: w2.1 = w2.2 = n х 30 = 1,25 х 30 = 37,5 вит.
     Возьмем по 38 витков в каждой полуобмотке.
Мощность на выходе трансформатора:  Рвых = V x I = 30 В х 1,12 А = 33,6 Ватт, что с учетом потерь в проводе и сердечнике, вполне нормально.

     Все обмотки: первичная, вторичная и обмотка связи вполне уместились в окне Sо = 150 мм.кв.  

     Вторичную обмотку можно таким образом рассчитать на любое напряжение и ток, в пределах заданной мощности.

                Второй пример.
    Теперь поэкспериментируем. Сложим два одинаковых сердечника №17,  Ш 7,5 х 7,5 . 

     При этом площадь поперечного сечения магнитопровода «Sк», увеличится вдвое. Sк = 56 х 2 = 112 мм.кв. или 1,12 см.кв.

Площадь окна останется та же «Sо» = 150 мм.кв.     Уменьшится показатель n (число витков на 1 вольт). n = 0,7 / Sк = 0,7 /1,12 = 0,63 вит./вольт.
Отсюда, количество витков в первичной обмотке трансформатора будет:
w1 = n х 145 = 0,63 х 145 = 91,35.    Примем 92 витка.

     В обмотке обратной связи w3, для  6-ти вольт, будет: w3 = n x v3 = 0,63 х 6 = 3,78 витка. Примем 4 витка.
     Напряжение вторичной обмотки примем также как и в первом примере равным 30 вольт.
Количество витков вторичных полуобмоток, каждая по 30 вольт:     w2.1 = w2.2 = n х 30 = 0,63 х 30 = 18,9. Примем по 19  витков.
Провод для первичной обмотки я использовал диаметром 0,6 мм. : сечение провода 0,28 мм.кв.,  ток 0,56 А.

     С этим проводом мощность первичной обмотки будет:    Р1 = V1 x I = 145 В х 0,56 А = 81 Ватт.
Вторичную обмотку я мотал проводом диаметром 0,9 мм. Сечением  0,636 мм.кв. на ток 1,36 ампера.  Для двух полуобмоток  ток во вторичной  обмотке равен 2,72 ампера.
Мощность вторичной обмотки Р2 = V2 x I = 30 x 2,72 = 81,6 ватт.
Провод диаметром 0,9 мм. немного великоват, подходит с большим запасом, это не плохо.

     Провод  для обмоток я применяю из расчета 2 А на миллиметр квадратный (так он меньше греется, и падение напряжения на нем будет меньше), хотя все «заводские» трансформаторы мотают из расчета 3 — 3,5 А на мм.кв. и ставят вентилятор для охлаждения обмоток.

     Общий вывод из этих расчетов таков:
— при сложении двух одинаковых Ш — образных сердечников увеличивается площадь «Sк»  в два раза при той же площади окна «Sо».
     — число витков в обмотках (в сравнении с первым вариантом) изменяется.
     — первичная обмотка w1   с 182 витков уменьшается до 92 витка;
     — вторичная обмотка w2  с 38 витков уменьшается до 19 витков.

     Это значит, что в том же окне «Sо», с уменьшением количества витков в обмотках, можно разместить более толстый провод обмоток, то есть увеличить реальную мощность трансформатора в два раза.

     Я наматывал такой трансформатор, со сложенными сердечниками № 17, изготавливал под них каркас.

     Нужно иметь в виду, что трансформаторы,  по первому и второму примеру, можно использовать под меньшую нагрузку, вплоть от 0 ватт.  ИБП вполне хорошо и стабильно держат напряжение.

     Сравните внешний вид трансформаторов: пример-1, c одним сердечником  и пример-2, с двумя сложенными сердечниками. Реальные размеры трансформаторов разнятся незначительно.

Анализ ферритовых сердечников №18 и №19 подобен предыдущим примерам.

     Все наши выполненные расчеты — это теоретические прикидки. На самом деле, получить такие мощности от ИБП на трансформаторах этих размеров довольно сложно. Вступают в силу особенности построения схем самих импульсных блоков питания. Схему ИБП смотрите здесь.
Выходное напряжение (а следовательно и выходная мощность) зависят от многих причин:
     — емкости сетевого электролитического конденсатора С1,
     — емкостей С4 и С5,
     — падения мощности в проводах обмоток и в самом ферритовом сердечнике;
     — падения мощности на ключевых транзисторах в генераторе и на выходных выпрямительных диодах.

Общий коэффициент полезного действия «k» таких импульсных блоков питания около 85%.
Этот показатель все же лучше, чем у выпрямителя с трансформатором на стальном сердечнике, где  k = 60%. При том, что размеры и вес ИБП на феррите существенно меньше.

Порядок сборки ферритового  Ш — трансформатора.

            Используется готовый или собирается — изготавливается новый каркас под размеры сердечника.
Как изготовить «Каркас для Ш — образного трансформатора» смотрите здесь. Хотя в этой статье и говорится про каркас для трансформатора со стальным сердечником, описание вполне подходит и к нашему случаю.

     Каркас нужно поставить на деревянную оправку. Намотка трансформатора производится вручную.
      На каркас сначала  мотается первичная обмотка. Виток к витку заполняется первый ряд, затем слой тонкой бумаги, лакоткани, далее второй ряд провода и т.д.  На начало и конец провода надевается  тонкая ПВХ трубочка (можно изоляцию с монтажного провода) для жесткости провода, чтоб не обломился.
      Поверх первичной обмотки наносится два слоя бумаги (межобмоточная изоляция), затем нужно намотать витки обмотки связи  w3. Обмотка  w3 имеет  мало витков, а потому ее располагают скраю на каркасе. Затем наносятся витки вторичной обмотки.  Здесь желательно поступить таким образом, чтобы витки вторичной обмотки w2 не располагались поверх витков w3. Иначе могут возникнуть сбои в работе импульсного блока питания.
     Намотка ведется сразу двумя проводами (две полуобмотки), виток к витку в ряд, затем слой бумаги или скотч и второй ряд двух проводов. ПВХ трубку на концы провода можно не надевать, т.к. провод толстый и ломаться не будет.  Готовый каркас снимается с оправки и надевается на ферритовый сердечник. Предварительно проверьте сердечник на отсутствие зазора.
     Если каркас туго одевается на сердечник, будьте очень осторожны, феррит очень легко ломается.  Сломанный сердечник можно склеить. Я клею клеем ПВА, с последующей просушкой.
     Собранный ферритовый трансформатор, для крепости,  стягивается по торцу скотчем. Нужно проследить, чтобы  торцы половинок сердечника совпали без зазора и сдвига.

Методы снижения пусковых токов импульсных источников питания

18 мая

Александр Русу (г. Одесса)

Одна из главных проблем использования импульсных источников питания в светодиодных осветительных системах – ограничение пусковых токов, способных вывести эти системы из строя. Модульные решения, предусматриваюшие ограничение этих токов, предлагает компания Mean Well, а дискретные – для малосерийной продукции или индивидуальной разработки – сам автор статьи.

Маломощные импульсные источники питания (ИП) всегда пользовались стабильным спросом на рынке электроники – в системах промышленной автоматики, контроля доступа, пожарной безопасности и многих других. В последнее время этот список пополнился устройствами интернета вещей, умного дома и домашней автоматизации.

До недавнего времени использование ИП, независимо от того, являлись ли они универсальными блоками общего применения или разрабатывались для конкретного устройства, не вызывало особых технических проблем, но с началом эпохи светодиодного освещения ситуация изменилась не в лучшую сторону. Активное использование недорогих 12-вольтовых светодиодных лент увеличило число ИП в системах освещения, в результате чего стали появляться сбои в системах электроснабжения, вплоть до выхода оборудования из строя.

Суть проблемы заключается в значительной величине пускового тока (Inrush Current), возникающего в момент подключения блока питания к сети. Несмотря на то, что в каждом ИП приняты меры для его ограничения, все равно в большинстве устройств его величина может в десятки раз превышать ток, потребляемый при максимальной нагрузке. В результате одновременное включение нескольких ИП может приводить к срабатыванию защиты от короткого замыкания и вынуждает устанавливать автоматические выключатели либо с большим током, либо с большим временем срабатывания. Кроме того, при частом включении осветительных приборов резко уменьшается срок службы коммутирующих устройств – выключателей или реле, поскольку из-за чрезвычайно большого коммутируемого тока у них быстро прогорают контакты.

Хотя эта проблема не нова, до недавнего времени каких-либо готовых, а главное – доступных решений практически не было. Это и послужило поводом рассмотреть имеющиеся на рынке устройства для уменьшения пусковых токов, а также несколько доступных способов самостоятельного устранения этой проблемы. 

Технические характеристики источников питания

На сегодняшний день создать ИП мощностью до 1 кВт не является сложной технической задачей. Доступность элементной базы и большое количество наработок в этой области позволяют в сжатые сроки наладить производство источников питания на основе известных компонентов и по известным рекомендациям. Неудивительно, что схемотехника, технические характеристики и внешний вид недорогих выпрямительных устройств как ведущих мировых производителей, так и малоизвестных компаний очень схожи.

Одними из недорогих источников питания, часто используемыми для питания светодиодных лент, являются модули серии LRS производства компании Mean Well (рисунок 1). При разработке данной линейки были использованы как последние достижения в области производства импульсных источников питания, так и самая современная элементная база, что позволило вывести ИП семейства LRS на современный технический уровень и обеспечить хорошее соотношение «цена/качество».

Рис. 1. Выпрямитель из семейства LRS

Ключевыми особенностями семейства LRS (таблица 1) являются возможность работы в универсальном диапазоне входных напряжений (85…264 B AC), компактный размер (высота профиля 1U – 30 мм), высокий КПД (до 91,2%) и малое потребление при отключении нагрузки (0,2…0,75 Вт). ИП семейства LRS имеют множество сертификатов, среди которых IEC/EN 60335-1 (PD3) и IEC/EN61558-1, 2-16. Все источники питания LRS проходят тестирование при 100% нагрузки и имеют трехлетнюю гарантию.

Таблица 1. Основные технические характеристики выпрямителей семейства LRS

Наименование Номинальная  выходная мощность, Вт Выходное напряжение, В Входное напряжение В AC Потребляемый ток при 230 В АС, А Стартовый ток при 230 В АС, А
LRS-35 35 5…48 85…264 0,42 45
LRS-50 50 3,3…48 85…264 0,56 45
LRS-75 75 5…48 85…264 0,85 65
LRS-100 100 3,3…48 85…264 1,2 50
LRS-150 150 12…48 85…132/170…264 1,7 60
LRS-150F 150 5…48 85…264 1,7 60
LRS-200 200 3,3…48 90…132/180…264 2,2 60
LRS-350 350 3,3…48 90…132/180…264 3,4 60

Одной из специфических особенностей светодиодного освещения является возможность установки оборудования в специализированных электрических шкафах, поэтому наряду с ИП в перфорированных корпусах на практике может возникнуть реальная потребность в модулях с форм-фактором, рассчитанном на установку на DIN-рейку. В этом случае следует обратить внимание на семейство HDR производства компании Mean Well, выпускаемое в малогабаритных пластмассовых корпусах (рисунок 2).

Рис. 2. Внешний вид выпрямителей семейства HDR производства Mean Well

Несмотря на то, что выпрямители HDR изначально были спроектированы для использования в автоматизированных системах управления и имеют изоляцию с электрической прочностью вплоть до Class II, сфера их применения не ограничивается питанием только промышленных контроллеров. Благодаря широкому диапазону входных напряжений, хорошему уровню электробезопасности, высокому КПД и малому энергопотреблению при отключении нагрузки (не более 0,3 Вт) эти модули (таблица 2) можно с успехом применить в самых разнообразных приложениях, начиная от питания элементов сложных технологических линий и заканчивая тем же светодиодным освещением.

Таблица 2. Основные технические характеристики выпрямителей семейства HDR

Наименование Максимальная выходная мощность, Вт Выходное напряжение, В Входное напряжение, В AC Потребляемый ток при 230 В АС, А Стартовый ток при 230 В АС, А
HDR-15 15 5…48 85…264 0,25 45
HDR-30 36 5…48 85…264 0,48 25
HDR-60 60 5…48 85…264 0,8 60
HDR-100 100 12…48 85…264 1,6 70
HDR-150 150 12…48 85…264 1,6 70

Анализируя данные таблиц 1 и 2, можно увидеть, что у всех рассмотренных ИП пусковой ток в десятки раз превышает ток, потребляемый при максимальной нагрузке. Причем чем меньше мощность источника питания, тем больше это соотношение. Например, для самой маломощной из рассмотренных моделей – ИП HDR-15 пусковой ток (45 А), согласно технической документации, в 180 раз превышает максимальное значение во время работы (0,25 А). Для мощных выпрямителей это соотношение хоть и немного меньше, но все равно является достаточно большим. Абсолютный рекорд по величине пускового тока (70 А) принадлежит моделям HDR-150. При таком пусковом токе в момент включения устройства хоть и кратковременно, но будет потребляться около 15 кВт, что достаточно много даже для промышленного оборудования.

Ситуацию не спасает и введение в ИП корректора коэффициента мощности (ККМ). Если проанализировать технические характеристики модулей семейства RSP производства Mean Well (рисунок 3), отличающихся от рассмотренных выше выпрямителей LRS наличием активного корректора коэффициента мощности, то окажется, что их пусковые токи также превышают номинальные значения в 15…70 раз (таблица 3). Это, конечно, меньше, чем в модулях без ККМ, однако все равно много, даже несмотря на высокий коэффициент мощности (не менее 0,93).

Рис. 3. Выпрямитель семейства RSP производства Mean Well

Таблица 3. Основные технические характеристики выпрямителей семейства RSP

Наименование Максимальная выходная мощность, Вт Выходное напряжение, В Входное напряжение, В АС Потребляемый ток при 230 В АС, А Стартовый ток при 230 В АС, А
RSP-75 75 3,3…48 85…264 0,5 35
RSP-100 100 3,3…48 85…264 0,55 30
RSP-150 150 3,3…48 85…264 0,8 45
RSP-200 200 2,5…48 88…264 1,1 40
RSP-320 320 2,5…12 88…264 1,5 40
RSP-500 500 3,3…48 85…264 2,65 40

Причины появления пусковых токов

На сегодняшний день большинство ИП изготавливается по схеме с бестрансформаторным входом. Ключевыми элементами данной схемы являются выпрямитель, реализуемый чаще всего по мостовой схеме, и входной сглаживающий конденсатор (рисунок 4).

Рис. 4. Типовая схема входной цепи выпрямительного устройства с бестрансформаторным входом

До включения блока питания конденсатор C1 полностью разряжен и напряжение на нем равно нулю, в то время как в рабочем режиме оно достигает амплитудного значения напряжения сети, равного, при входном напряжении 220 В, около 310 В. Поскольку напряжение на конденсаторе измениться мгновенно не может, то в момент включения схемы обязательно должен произойти бросок тока из-за необходимости заряда конденсатора фильтра.

Максимальное значение пускового тока зависит не только от электрических характеристик элементов схемы, но и от момента включения ее в сеть. Наихудшим случаем считается подключение к сети в моменты, когда ее напряжение равно амплитудным значениям. В этом случае к диодам выпрямителя VD1…VD4 прикладывается прямое напряжение около 310 В, и их ток ограничивается лишь активными сопротивлениями кристаллов, соединительных проводников и внутренним последовательным сопротивлением конденсатора. Очевидно, что если не принимать никаких мер, то начальное значение пускового тока может превысить 100 А даже при небольшой емкости конденсатора C1.

Несмотря на то, что выпрямительные полупроводниковые диоды VD1…VD4 обычно выдерживают подобные перегрузки, столь высокое значение тока может значительно сократить срок их службы и вывести из строя. Для предотвращения этого пусковой ток даже в маломощных схемах обычно ограничивается с помощью резистора, сопротивление которого выбирается таким, чтобы ток через диоды выпрямителя в самом худшем случае не превышал максимально допустимое значение для данного режима работы.

Однако последовательное включение сопротивления приводит к увеличению потерь, величина которых может оказаться недопустимо большой. Для исключения этого в выпрямителях вместо резистора чаще всего устанавливают термистор с отрицательным температурным коэффициентом сопротивления. В момент включения, когда сопротивление термистора велико, пусковой ток мал. После запуска источника питания ток, протекающий через термистор, разогревает его, что приводит к снижению его сопротивления и, как следствие, к уменьшению влияния на работу схемы. Несмотря на простоту, у такого способа есть один серьезный недостаток – при частой коммутации, например, когда ИП включается сразу после выключения, термистор не успевает остыть и ограничение пускового тока происходит не так эффективно.

Таким образом, в импульсных ИП, построенных по классическим схемам, пусковой ток ограничивается лишь на уровне, обеспечивающем безопасный режим работы выпрямительных диодов, поскольку использование иного решения приведет или к уменьшению КПД системы в целом, или к ее существенному удорожанию. Очевидно, что проблему пусковых токов в большинстве случаев необходимо решать другими способами.

Методы ограничения пусковых токов

При анализе схемотехники импульсных выпрямительных устройств с бестрансформаторным входом становится понятно, что одним из наилучших методов уменьшения пусковых токов является кратковременное увеличение сопротивления входной цепи в момент включения. Именно по такому пути пошла компания Mean Well, представив на рынке серию ограничителей пусковых токов семейства ICL (рисунок 5).

Рис. 5. Ограничители пусковых токов производства компании Mean Well

На сегодняшний день Mean Well предлагает своим клиентам четыре модели ограничителей с максимальным пусковым током 23 А (ICL-16R/L) и 48 А (ICL-28R/L), предназначенные для установки на DIN-рейку (модели с суффиксом R) или на шасси (модели с суффиксом L). Основными элементами модулей являются мощные токоограничивающие резисторы, реле и схема управления (рисунок 6). В момент включения контакты реле разомкнуты, и входной ток выпрямительных устройств протекает через резистор с сопротивлением R. Через некоторое время, определяемое схемой управления, на обмотку реле подается напряжение, и его контакты замыкают токоограничивающий резистор, подключая выпрямительные устройства непосредственно к сети.

Рис. 6. Структурная схема ограничителей ICL

Время срабатывания реле определяется схемой управления и составляет 300 мс для моделей ICL-16R/L и 150 мс для ICL-28R/L (таблица 4), что равно, соответственно, 15 и 7,5 периодам изменения напряжения сети с частотой 50 Гц. Этого времени вполне достаточного для заряда конденсаторов входных фильтров, поскольку в большинстве случаев напряжение на них достигает необходимой величины в течение 1…3 периодов (20…60 мс).

Таблица 4. Основные технические характеристики ограничителей ICL

Параметры Наименование
ICL-16R/L ICL-28R/L
Входное напряжение, В AC 180…264 180…264
Ограничение пускового тока, А 23 48
Максимальный выходной ток (продолжительный), А 16 28
Потребляемая мощность при 264 В, Вт < 1,5 < 2
Длительность ограничения тока, мс 300 ± 50 150 ± 50
Диапазон рабочих температур, °С -30…70 -30…70

Ключевым преимуществом ограничителей ICL является возможность работы с несколькими ИП (рисунок 7). Действительно, при наличии последовательно включенного резистора максимальный ток в цепи не может превысить определенное значение даже при коротком замыкании выхода ограничителя. В этом случае максимальное количество подключаемых источников питания ограничивается максимально допустимым током контактов реле, равным 16 А для ICL-16R/L и 28 А для ICL-28R/L. Таким образом, пусковой ток в системе с использованием ограничителей тока будет превышать ток при полной нагрузке не более чем в два раза.

Рис. 7. Типовая схема включения ограничителей ICL

Еще одним преимуществом такого решения является его универсальность, поскольку проблема пусковых токов существует не только у импульсных ИП. Например, такая же проблема может возникнуть при включении мощных трансформаторов. И хоть в этом случае причина появления пускового тока имеет иную физическую природу (наличие остаточной намагниченности ферромагнитного материала магнитопровода), тем не менее, ее теоретически можно также решить с помощью ограничителей пусковых токов производства компании Mean Well.

Особенности самостоятельного изготовления ограничителей пусковых токов

Как и любая продукция компании Mean Well, ограничители пусковых токов серии ICL отличаются высоким качеством. Однако они все еще являются новинкой на рынке и их доступность некоторое время будет недостаточной для широкого использования. Тем не менее, простота метода ограничения пусковых токов позволяет изготовить такое устройство самостоятельно из компонентов, имеющихся в любом радиомагазине.

Один из вариантов такого решения показан на рисунке 8. В качестве токоограничивающих резисторов были использованы два соединенных параллельно 5-ваттных проволочных резистора R3 и R4, замыкаемые с помощью контактов реле K1. Элементы R1, R2, VD1, VD2, C1 являются простейшим стабилизированным источником питания, предназначенным для включения реле. Время срабатывания системы зависит от скорости заряда конденсатора C1 и при данных номиналах компонентов приблизительно равно 0,5 с, что вполне достаточно для заряда конденсаторов фильтров подсоединенных выпрямительных устройств. Максимальное значение пускового тока определяется сопротивлением резисторов R3 и R4. При использовании элементов с сопротивлением 47 Ом ток в момент включения системы не должен превышать 12 А во всем диапазоне рабочих напряжений.

Рис. 8. Принципиальная схема и внешний вид самостоятельно изготовленного ограничителя тока

Для надежного срабатывания реле, способного коммутировать токи более 1 А, необходимо около 0,5 Вт мощности, поэтому чем больше напряжение обмотки, тем меньше энергопотребление системы, ведь формирование напряжения для обмотки реле производится простейшей схемой на основе резистивного делителя, КПД которого катастрофически падает с уменьшением коэффициента передачи. В данной схеме было использовано стандартное реле SRD-24VDC-SL-C с обмоткой, рассчитанной на напряжение 24 В, поэтому потребляемая мощность данной схемы достаточно высока – около 4 Вт.

Для уменьшения энергопотребления можно заменить резисторы R1 и R2 на конденсатор, имеющий на частоте 50 Гц аналогичное сопротивление. Однако наилучшим решением в данной ситуации будет использование специализированных маломощных источников питания, которые не только сформируют нужное напряжение с малыми потерями, но и обеспечат работоспособность схемы в широком диапазоне входных напряжений.

Небольшое количество компонентов позволило поместить данную схему в компактном корпусе KLS24-JG4-01, рассчитанном на установку на DIN-рейку. Практические испытания схемы с пятью подключенными к выходу ИП мощностью от 50…150 Вт показали хорошее ограничение пусковых токов, проявляющееся в отсутствии срабатываний защиты от коротких замыканий, которая до этого активизировалась в среднем при каждом третьем включении.

Основным недостатком рассмотренной выше схемы является высокое энергопотребление, проявляющееся в достаточно сильном нагреве корпуса во время работы. Поэтому было решено применить более простой способ питания реле напряжением, формируемым непосредственно выпрямительным устройством (рисунок 9). Использование такого подхода позволило, во-первых, значительно упростить схему, а во-вторых, максимально уменьшить пусковой ток, ведь при таком подходе реле сработает уже после запуска источника питания, то есть, когда заряд конденсатора фильтра гарантированно закончится.

Рис. 9. Принципиальная схема и внешний вид ограничителя тока с питанием реле от выпрямительного устройства

В новой схеме в качестве токоограничивающих резисторов были использованы два параллельно соединенных резистора сопротивлением 1 кОм и мощностью 3 Вт. При таких номиналах максимальное значение пускового тока не будет превышать 2 A. Очевидно также, что для этой схемы рабочее напряжение реле должно быть равно выходному напряжению выпрямительного устройства, в данном случае – 12 В.

Поскольку столь высокое сопротивление во входной цепи теоретически может привести к нестабильной работе блока питания, для проверки работоспособности системы была собрана экспериментальная установка на основе импульсного ИП мощностью 60 Вт (рисунок 10). Для измерения тока был использован резистивный шунт с сопротивлением 0,1 Ом, включенный последовательно с выпрямительным устройством. Напряжение сети контролировалось с помощью штатного делителя напряжения с коэффициентом передачи 1:10, встроенного в щуп цифрового осциллографа SIGLENT SDS 1072CML+.

Рис. 10. Принципиальная схема измерительной установки

Согласно технической документации на выпрямительное устройство, его ток в момент включения не должен превышать 45 А. Но, поскольку фактическое значение пускового тока сильно зависит от момента включения (по отношению к началу периода сети), то включить систему при максимуме напряжения сети без использования специализированного оборудования достаточно тяжело. Тем не менее, на рисунке 11 показаны осциллограммы, полученные при включении системы менее чем за 1 мс до момента достижения амплитудного напряжения сети. Как видно из результатов измерений, величина пускового тока составила приблизительно 25 А, что почти в 17 раз больше амплитудного значения тока, потребляемого при выходном токе 5 А (амплитудное значение входного тока при этом равно 1,5 А), составляющем более 80% от максимальной нагрузки (рисунок 12).

Рис. 11. Диаграммы напряжения сети (фиолетовый канал) и потребляемого тока (желтый канал) в момент включения выпрямительного устройства при отсутствии ограничителя пусковых токов

Рис. 12. Диаграммы напряжения сети (фиолетовый канал) и потребляемого тока (желтый канал) при работе выпрямительного устройства в режиме 80% мощности

После подключения ограничителя пусковой ток уменьшился до нескольких ампер (рисунок 13), при этом видно, что заряд конденсатора фильтра теперь занимает значительно больше времени. Однако это не влияет на стабильность запуска системы, поскольку к моменту включения импульсного преобразователя выпрямительного устройства количества энергии в конденсаторе фильтра хватит для поддержания выходного напряжения в течение нескольких сотен миллисекунд, что вполне достаточно для включения реле.

Рис. 13. Диаграммы напряжения сети (фиолетовый канал) и потребляемого тока (желтый канал) в момент включения выпрямительного устройства с ограничителем пусковых токов

Очевидно, что при таком подходе к ограничению входного тока самой сложной ситуацией для системы будет режим перегрузки по току ИП. В этом случае выходного напряжения блока питания может оказаться недостаточно для срабатывания реле, и токоограничивающие резисторы останутся включенными до момента устранения перегрузки. Однако благодаря тому, что большинство ИП имеет встроенную защиту от перегрузки по току, при срабатывании которой они переходят в прерывистый («икающий») режим работы, входной ток при этом значительно снижается (рисунок 14) и мощность, выделяемая на токоограничивающих резисторах, не достигает опасных значений. Так, после часа работы системы в режиме короткого замыкания ИП температура перегрева корпусов резисторов R1 и R2, измеренная контактным способом с помощью термопары, не превысила 60°С.

Рис. 14. Диаграммы тока, потребляемого выпрямительным устройством в режиме короткого замыкания выхода

Несмотря на то, что увеличение сопротивления токоограничивающих резисторов позволяет полностью исключить возникновение экстратоков в момент включения, сильно увеличивать их сопротивление не нужно. При большом сопротивлении этих компонентов и возможной аварии во входной цепи выпрямительного устройства, например, при пробое входных диодов, встроенная плавкая вставка не сработает, и к токоограничивающим резисторам будет постоянно приложено все напряжение сети, что, скорее всего, приведет к их перегреву, а возможно – к возгоранию. Поэтому пусковой ток в системе должен быть, с одной стороны, не особо большим, по причинам, изложенным в начале статьи, а с другой – не особо малым, чтобы обеспечить надежную работу защит при аварии выпрямительных устройств. По этой же причине температуру корпусов токоограничивающих резисторов лучше всего контролировать термопредохранителем, разрывающим цепь при перегреве.

Как и все рассмотренные перед этим способы, схема, изображенная на рисунке 9, может ограничивать ток как одного, так и нескольких ИП. В последнем случае реле можно подключить как к одному блоку питания, так и к нескольким, объединив их, например, по схеме монтажного ИЛИ. 

Заключение

Проблема пусковых токов выпрямительных устройств не нова. Отрадно осознавать, что ведущие мировые производители источников питания начали выпускать на рынок профессиональные решения, позволяющие минимизировать значение этого параметра. При этом вполне возможно, что в ближайшем будущем наряду с традиционными ИП общего назначения появятся специализированные семейства для осветительного оборудования, в которых данная защита уже будет интегрирована, а следовательно, системы светодиодного освещения станут еще проще и надежнее.

•••

Наши информационные каналы

Узнать | OpenEnergyMonitor

Контроль энергии с помощью импульсного выхода счетчика коммунальных услуг

Введение

Многие счетчики имеют импульсные выходы, например: однофазные и трехфазные счетчики электроэнергии, счетчики газа, счетчики воды.

Импульсный выход может представлять собой мигающий светодиод, переключающее реле (обычно твердотельное) или и то, и другое.

В случае электросчетчика импульсный выход соответствует определенному количеству энергии, проходящей через счетчик (кВтч / Втч).Для однофазных бытовых счетчиков электроэнергии (например, Elster A100c) каждый импульс обычно равен одному Втч (1000 импульсов на кВтч). В измерителях большей мощности (часто трехфазных) каждый импульс соответствует большему количеству энергии, например 2 или даже 10 Втч на импульс.

Пример счетчика

Что такое пульс?

Рисунок 1

На рисунке 1 показан импульсный выход. Ширина импульса T_high варьируется в зависимости от измерителя. Некоторые измерители импульсного выхода позволяют устанавливать T_high.T_high остается постоянным во время работы. Для измерителя A100c T_high составляет 50 мс. Время между импульсами T_low — это то, что показывает мощность, измеренную измерителем.

Расчет энергии Для счетчика A100c каждый импульс представляет 1/1000 кВтч, то есть 1 Втч энергии, проходящей через счетчик.

Расчетная мощность 3600 секунд в час = 3600 Дж на импульс, т.е. 1 Втч = 3600 Дж следовательно, мгновенная мощность P = 3600 / T , где T — время между задним фронтом каждого импульса.

Оптический счет импульсов: мигающие светодиоды

Многие счетчики электроэнергии не имеют соединений с импульсным выходом или соединения недоступны из-за ограничений, налагаемых коммунальной компанией. Все современные счетчики имеют светодиоды оптического импульсного выхода. В таких случаях для сопряжения с измерителем можно использовать оптический датчик.

Красный светодиод импульсного выхода можно увидеть на изображении A100c выше. Для обнаружения импульсов от светодиода вам понадобится датчик освещенности. В Интернете есть множество документации по использованию Arduino для обнаружения импульсного выхода светодиода.

Примечания к оптическим датчикам (результаты первичных испытаний)

Преобразователь света в напряжение TLS257, подключенный напрямую к цифровому входу Arduino с понижающим резистором 10 кОм, смог обнаружить световой импульс от измерителя Reporter 5193B. TLS257 обнаруживает свет в видимом диапазоне. Сильно подвержен влиянию окружающего освещения. Необходимо хорошее экранирование окружающего света вокруг датчика. Датчик имеет преимущество встроенного операционного усилителя для обеспечения хорошего колебания напряжения и прямого подключения Arduino.Низкая стоимость 1,31 фунта стерлингов (22/10/10).

Также был протестирован фотодиод TLS261. Поскольку этот датчик является инфракрасным, на него не так сильно влияет окружающий свет. Удалось обнаружить импульсы яркого светодиода, но не измерителя Reporter 5193B.

Обнаружение импульсов проводного / переключаемого выхода

Многие счетчики также имеют проводные / переключаемые импульсные выходы. У многих есть схемы подключения, аналогичные той, что поставляется с A100c. Два меньших отверстия — это соединения импульсного выхода.Я добавил V в и V из меток , чтобы было немного понятнее. V в обеспечивается внешним источником питания. V out — это выходной сигнал измерителя, созданный переключением внутреннего твердотельного реле (например, переключение между V на и V на выходе )

Проводное / переключаемое выходное напряжение питания

Насколько я понимаю, 24 В — довольно стандартный источник питания для таких систем счетчиков, но обычно можно использовать и другие напряжения.Счетчики часто имеют довольно широкий диапазон выходного импульсного напряжения питания от 3 до 35 В. Таким образом, можно было использовать питание 5 В от Arduino. Более высокие напряжения желательны, когда в окружающей среде больше шума и длина кабеля длиннее.

Безопасность

Остерегайтесь импульсных выходов, подключенных к сети: Убедитесь, что импульсный выход вашего счетчика не подключен к сети высокого напряжения (внутри счетчика). Некоторые счетчики имеют один из разъемов импульсного выхода, подключенного к нейтрали.Если ваш измеритель является одним из них, вам понадобится схема изоляции для взаимодействия с Arduino.

Близость провода под напряжением: Импульсные выходы обычно находятся очень близко к проводам под напряжением, поэтому будьте осторожны и с ними!

Схема

Схема подключения измерителя импульсного выхода к Arduino:

Резистор 10 кОм удерживает цифровой вход на GND (цифровой уровень 0), когда «переключатель» импульсного выхода разомкнут.

Дополнительная литература

Узнать | OpenEnergyMonitor

Контроль газа


На этой странице собрана информация по мониторингу газовых счетчиков своими руками с использованием методов подсчета импульсов.

Если вам очень повезло, у вашего газового счетчика есть разъем, который обеспечивает доступ к импульсному выходу счетчика, что позволяет вам определять потребление газа посредством подсчета импульсов, см. Введение в подсчет импульсов.

Безопасность

Насколько можно установить, единственное правило (в Великобритании стандарты других стран могут отличаться) для электрических и газовых установок заключается в том, что счетчик газа должен быть разделен более чем 150 мм от электросчетчика, потребителя, выключателя или розетки.

Несмотря на это, выходящий газ может воспламениться от искры, поэтому полностью удалить любой опасности, крайне важно, чтобы в случае неисправности контрольного оборудования нет источника тепла, который достигает достаточно высокой температуры, и любой искры, которая может возникнуть не имеет достаточной энергии, чтобы зажечь газ. Ограничение температуры — 500 ° C в в случае с водородом — обычно можно без труда решить с помощью соответствующих характеристик устройства и защита цепи, и предотвращение воспламенения от искры достижимо на практике известная как «Искробезопасность», которая определяет напряжения и токи, ниже которых зажигание это невозможно.Фактические значения зависят от рассматриваемого газа. В Великобритании природный газ подаваемый в дома состоит преимущественно из метана, но водород легко воспламеняется.

Из этого ясно, что, как правило, напряжения и токи, необходимые для импульсного монитора будет намного ниже даже водородной линии. Обычный способ убедиться в этом — использовать an «I.S. Барьер »:

Стабилитроны, обычно неактивные, должны перегорать предохранитель, если входное напряжение подниматься в условиях неисправности.Резистор ограничивает ток до безопасного значения.

Также не должно быть значительного накопителя энергии, конденсатора или катушки индуктивности. сторона резистора во взрывоопасной зоне. Всего 0,02 мДж (это энергия, запасенная в 400 нФ конденсатор заряжен до 10 В), требуется для зажигания водорода.

Нет необходимости устанавливать I.S. барьер в домашних условиях, но если вы это сделаете, либо для душевного спокойствия, либо потому, что вы думаете, что это необходимо, тогда обратите внимание, что барьер требуется для каждого незаземленного провода, проходящего во взрывоопасную зону.Если вы это сделаете соблюдать I.S. правил, вы можете быть уверены, что были приняты все меры предосторожности, чтобы свести к минимуму любую опасность.

Артикул:

Счетное кольцо с вращающимся кольцом

Используемый метод подсчета оборотов шкалы для определения объема потребляемого газа.

Хотя большинство счетчиков не имеют такой возможности, многие счетчики газа имеют уникальное «пятно» на вращающемся диске, которое можно считать с помощью подходящего датчика и электроники. Это может быть:

  1. Небольшой магнит, встроенный в диск.Датчик на эффекте Холла или герконовый переключатель могут обнаружить вращение диска.
  2. Отражающее пятно на циферблате, которое может быть обнаружено инфракрасным датчиком отражения.
  3. Цифра уникального цвета, которая может быть обнаружена инфракрасным датчиком отражения. (может быть сложно)

Магнитный счет

Эффект Холла

Датчики на эффекте Холла могут обнаруживать магнитное поле. Выход датчика — это напряжение, которое изменяется в зависимости от магнитного поля. Микроконтроллер с датчиком Холла, подключенным к линии прерывания, может считать каждое полное вращение диска.

На изображении ниже показан счетчик газа Actaris, подходящий для мониторинга с помощью этого метода. Магнитная точка видна в виде небольшого серебряного овала на крайней правой цифре. Датчик на эффекте Холла может быть расположен на нижней стороне выреза, направлен вверх, или прикреплен непосредственно к циферблату.

Так как газовый счетчик обычно не имеет подключения к сети, расположенного поблизости, желательно, чтобы датчик на эффекте Холла был устройством с низким энергопотреблением. Низкое энергопотребление позволяет использовать emonTx или JeeNode с батарейным питанием.

Пол Аллен (MarsFlyer) успешно использовал датчик Холла Melexis MLX

. Средний ток потребления составляет 10 мкА. Этот датчик будет реагировать либо на северный, либо на южный магнитный полюс (многополярный), что упрощает установку. Датчик поставляется в виде корпуса SOT23 для поверхностного монтажа, который необходимо припаять к коммутационной плате для подключения проводов.

Вышеупомянутый датчик сложно найти в Великобритании, его не продают ни компания RS, ни электроника Farnell.Подходящая замена, Diodes Ah280N, имеет очень похожие характеристики, легко доступна и очень невысока. Ah280N также находится в корпусе SOT23, имеет среднее потребление тока 8–16 мкА и работает от 2,5 до 5,5 В.

Геркон

Герконовый магнитный переключатель имеет преимущество перед датчиком на эффекте Холла в том, что он не требует блок питания для работы. В остальном очень похоже. Герконовые переключатели обычно (но некоторые могут не реагировать одинаково на магнитные поля любой полярности, но они могут чувствителен к ориентации.Контакты переключателя герметизированы внутри стеклянной трубки, поэтому в нормальном при эксплуатации исключена опасность искры, которая может привести к утечке газа.

Оптический счет

Если младшая значащая цифра «регистра» имеет отражающее пятно, часто в центре цифра «0», это можно обнаружить с помощью света, либо в видимом диапазоне, либо чаще в инфракрасном диапазоне. Вот подробности успешной реализации этого метода.

Датчик

Используемый датчик — отражающий фотопрерыватель OPB732WZ, произведенный Optek. Technology и доступен в компании Farnell Element 14 под кодом заказа 1678639.Это состоит из инфракрасного излучателя и фототранзистора, интегрированных в один корпус, таким образом облегчение проблем с выравниванием. Это отражающий переключатель на большом расстоянии, и в нем используется непрозрачный корпус для снижения чувствительности датчика к внешнему освещению. Излучатель и датчик защищен прозрачным окном, благодаря чему устройство может работать в пыльной среде.

Датчик установлен в специальном корпусе с трехмерной печатью, так что он находится прямо перед отражающее пятно. Очевидно, что способ монтажа необходимо будет адаптировать для каждой конструкции метр.

Интерфейс датчика

Интерфейс сенсора — это модифицированная версия дизайна, опубликованного на Github: https://github.com/Bra1nK/HomeMonitor/tree/master/Gas%20Meter%20Pulse%20Creator.

В нынешнем виде эта конструкция не является искробезопасной, но ее можно довольно легко изменить, чтобы сделай это так. Предлагаются две версии, обе изменены для работы на более низком напряжение питания 5 В или 3,3 В, оба дают импульсный выход 3 В. Оригинал автора Система мониторинга использует процессор PIC, работающий на 3.3 В, но проблем быть не должно сопрягая это с любой системой 3,3 В (emonTx или emonPi), хотя требуемая мощность означает, что emonTx должен питаться от источника постоянного тока 5 В, а не переменного тока. адаптер.

Версия на 5 В, питание напрямую от 5 В постоянного тока. поставка, предпочтительнее при использовании этого схему с emonTx, emonTH или emonPi. Маловероятно, что заряд батареи будет Реалистичные способы привести это в действие, поскольку I.R. излучатель в датчике постоянно включен.

5 В Версия:

3.3 В Версия:

Регулировка

Самая важная регулировка — точное совмещение датчика на приводном кольце с отражающее пятно. Яркость светодиода должна быть достаточно высокой, тогда порог уменьшается до тех пор, пока отражающее пятно не будет только захвачено. Затем выключите яркость светодиода пока светодиодный индикатор не погаснет, когда отражающее пятно не начнет двигаться.

[Детали и фотографии отражающего оптического датчика были предоставлены членом, который желает остаться анонимный.]

Ресурсы

Импульс энергии

Изображение предоставлено Ником Перротта

У нас есть три категории или основные типы атомных форм на этой планете:

Животное — это особый вид энергии и биологической формы, уникальное сознание, сравнимое с человеческим. Из-за своей инстинктивной природы животные сливаются с царством стихий Земли, Воздуха, Огня и Воды и закреплены из 3-го измерения во 2-м измерении.Это дает животным врожденную стабильность, потому что они чувствуют и знают, что являются важной и важной частью жизненного потока. Они знают, что им здесь место. Та же самая инстинктивная природа позволяет им обходить слои личности, фокусируя свою идентичность на первичных паттернах очень стабильной энергии, охватывающих огромные циклы времени. Парадокс животной формы заключается в ее способности простираться между противоположностями, между элементарной природой огня, воздуха, воды и земли на одном конце спектра (дающей им страсть, свободу, заботу и стабильность) и безусловностью любви. на другом конце (обеспечивая им универсальную связанность).

Физические животные Земли могут поддерживать электромагнитные схемы наших энергетических полей и наших тел, поскольку они сами учатся тому, что значит быть животным на Земле. С нефизическими энергетическими животными, существующими на астральном и других уровнях, можно работать как с тотемами, хранителями и проводниками. Архетипы животных, используемые в астрологии и во многих культурах в церемониях и в качестве божеств, по сути являются концептуальными системами, способными уравновешивать, поддерживать, исцелять, ободрять, запускать и воодушевлять.Поскольку животные не задают себе вопросов (они не задаются вопросом, кто они такие), они от природы более чисты и, как кристалл, более последовательны в том, как они передают свое сознание. Мы, люди, получаем огромную пользу и здравомыслие, живя вместе с этими удивительными существами, как физическими, так и энергетическими. Когда вам нужна помощь в преодолении трудностей, присущих жизни здесь, в царстве дуальности, проявите мудрость и обратитесь за поддержкой к животному.

11 различных источников альтернативной энергии

Потенциальные проблемы, связанные с использованием ископаемого топлива, особенно с точки зрения изменения климата, были рассмотрены раньше, чем вы думаете.Шведский ученый Сванте Аррениус был первым, кто заявил, что использование ископаемого топлива может способствовать глобальному потеплению еще в 1896 году.

Этот вопрос стал горячей темой в последние несколько десятилетий. Сегодня наблюдается общий сдвиг в сторону экологической осведомленности, и источники нашей энергии становятся предметом более пристального внимания.

Это привело к увеличению количества альтернативных источников энергии. Хотя жизнеспособность каждого из них можно оспаривать, все они вносят положительный вклад по сравнению с ископаемым топливом.

Меньшие выбросы, более низкие цены на топливо и уменьшение загрязнения — все это преимущества, которые часто может обеспечить использование альтернативных видов топлива.

Здесь мы исследуем одиннадцать наиболее известных альтернативных источников топлива и смотрим на преимущества, которые они предлагают, и потенциал для увеличения потребления в ближайшие годы.

Лучшие образцы альтернативных источников энергии

11. Водородный газ

В отличие от других видов природного газа, водород является полностью экологически чистым топливом.После производства водородные газовые ячейки при использовании выделяют только водяной пар и теплый воздух.

Основная проблема, связанная с этой формой альтернативной энергии, заключается в том, что она в основном происходит за счет использования природного газа и ископаемого топлива. Таким образом, можно утверждать, что выбросы, созданные для его извлечения, противодействуют выгодам от его использования.

Процесс электролиза, который необходим для расщепления воды на водород и кислород, делает эту проблему менее важной. Однако электролиз по-прежнему уступает ранее упомянутым методам получения водорода, хотя исследования продолжают делать его более эффективным и рентабельным.

10. Приливная энергия

В то время как приливная энергия использует энергию воды для выработки энергии, как и в случае с гидроэлектрическими методами, во многих случаях ее применение имеет больше общего с ветряными турбинами.

Хотя это довольно новая технология, ее потенциал огромен. Согласно отчету, подготовленному в Соединенном Королевстве, приливная энергия может удовлетворить до 20% текущих потребностей Великобритании в электроэнергии.

Наиболее распространенной формой производства приливной энергии является использование генераторов приливных потоков.Они используют кинетическую энергию океана для питания турбин, не производя отходов ископаемого топлива и не будучи столь же восприимчивыми к элементам, как другие формы альтернативной энергии.

9. Энергия биомассы

Энергия биомассы бывает разных форм. Сжигание древесины использовалось в течение тысяч лет для создания тепла, но в результате недавних достижений также были обнаружены отходы, например, на свалках, и спиртовые продукты, используемые для аналогичных целей.

Если говорить о сжигании дров, выделяемое тепло может быть эквивалентно теплу в системе центрального отопления.Кроме того, связанные с этим затраты, как правило, ниже, а количество углерода, выделяемого этим видом топлива, становится ниже количества, выделяемого ископаемым топливом.

Однако есть ряд проблем, которые необходимо учитывать при использовании этих систем, особенно если они установлены дома. Важным фактором может быть техническое обслуживание, к тому же вам может потребоваться разрешение местных властей на его установку.

8. Ветровая энергия

Этот вид производства энергии становится все более популярным в последние годы.Он предлагает те же преимущества, что и многие другие альтернативные источники топлива, поскольку в нем используется возобновляемый источник и не образуются отходы.

Текущие ветроэнергетические установки приводят в действие примерно двадцать миллионов домов в Соединенных Штатах в год, и это число растет. В большинстве штатов страны в настоящее время в той или иной форме установлены ветроэнергетические установки, и инвестиции в эту технологию продолжают расти.

К сожалению, эта форма производства энергии также сопряжена с проблемами. Ветровые турбины ограничивают обзор и могут быть опасны для некоторых видов диких животных.

7. Геотермальная энергия

По сути, геотермальная энергия — это извлечение энергии из земли вокруг нас. Он становится все более популярным, и в 2015 году в этом секторе в целом наблюдался пятипроцентный рост.

По оценке Всемирного банка, около сорока стран могут удовлетворить большую часть своих потребностей в электроэнергии с помощью геотермальной энергии.

Этот источник энергии обладает огромным потенциалом, но мало что делает, чтобы разрушить землю. Однако высокие первоначальные затраты на создание геотермальных электростанций привели к более медленному внедрению, чем можно было ожидать от столь многообещающего источника топлива.

6. Природный газ

Источники природного газа использовались в течение нескольких десятилетий, но благодаря прогрессу технологий сжатия он становится более жизнеспособным альтернативным источником энергии. В частности, он используется в автомобилях для снижения выбросов углерода.

Спрос на этот источник энергии растет. В 2016 году 48 нижних штатов США достигли рекордных уровней спроса и потребления.

Несмотря на это, природный газ имеет некоторые проблемы.Потенциал загрязнения выше, чем при использовании других альтернативных источников топлива, и природный газ по-прежнему выделяет парниковые газы, даже если их количество меньше, чем при использовании ископаемого топлива.

5. Биотопливо

В отличие от источников энергии биомассы, в биотопливе для производства энергии используются животные и растения. По сути, это топливо, которое можно получить из какой-либо формы органического вещества.

Их можно возобновлять в тех случаях, когда используются растения, так как их можно выращивать ежегодно.Однако им действительно требуется специальное оборудование для добычи, которое может способствовать увеличению выбросов, даже если самого биотоплива нет.

Биотопливо находит все большее применение, особенно в Соединенных Штатах. На их долю приходилось примерно семь процентов расхода топлива на транспорте по состоянию на 2012 год.

4. Волновая энергия

Вода снова доказывает, что вносит ценный вклад в альтернативные источники энергии с преобразователями энергии волн. Они имеют преимущество перед источниками энергии приливов, поскольку их можно размещать в океане в различных ситуациях и местах.

Как и в случае с приливной энергией, преимущества заключаются в отсутствии отходов. Он также более надежен, чем многие другие виды альтернативной энергии, и при правильном использовании имеет огромный потенциал.

Опять же, стоимость таких систем является основным фактором, замедляющим их внедрение. У нас также пока недостаточно данных, чтобы выяснить, как преобразователи волновой энергии влияют на природные экосистемы.

3. Гидроэнергетика

Гидроэлектрические методы на самом деле являются одними из самых первых способов получения энергии, хотя их использование начало сокращаться с ростом использования ископаемого топлива.Несмотря на это, они по-прежнему составляют примерно семь процентов энергии, производимой в Соединенных Штатах.

Гидроэнергетика имеет ряд преимуществ. Это не только чистый источник энергии, что означает, что он не создает загрязнений и множества связанных с этим проблем, но и является возобновляемым источником энергии.

Более того, он также предлагает ряд дополнительных преимуществ, которые не сразу очевидны. Плотины, используемые для производства гидроэлектроэнергии, также способствуют борьбе с наводнениями и ирригационным технологиям.

2. Атомная энергетика

Атомная энергия — одна из самых распространенных форм альтернативной энергии. Это создает ряд прямых преимуществ с точки зрения выбросов и эффективности, а также способствует росту экономики за счет создания рабочих мест при создании и эксплуатации заводов.

Тринадцать стран полагались на ядерную энергию для производства не менее четверти своей электроэнергии по состоянию на 2015 год, и в настоящее время в мире насчитывается 450 действующих станций.

Недостаток в том, что, когда что-то идет не так с атомной электростанцией, существует вероятность катастрофы.Ситуации в Чернобыле и Фукусиме — тому примеры.

1. Солнечная энергия

Когда большинство людей думают об альтернативных источниках энергии, они обычно используют солнечную энергию в качестве примера. С годами эта технология претерпела значительные изменения и теперь используется для крупномасштабного производства энергии и выработки электроэнергии для отдельных домов.

Ряд стран выступили с инициативами по развитию солнечной энергетики. «Льготный тариф» Соединенного Королевства является одним из примеров, так же как и «налоговый кредит на инвестиции в солнечную энергию» в Соединенных Штатах.

Этот источник энергии полностью возобновляем, и затраты на установку перевешиваются деньгами, сэкономленными на счетах за электроэнергию от традиционных поставщиков. Тем не менее солнечные элементы склонны к износу в течение длительного времени и не так эффективны в неидеальных погодных условиях.

Заключение

По мере того, как проблемы, возникающие в результате использования традиционных ископаемых видов топлива, становятся все более заметными, альтернативные источники топлива, подобные упомянутым здесь, вероятно, будут приобретать еще большее значение.

Их преимущества устраняют многие проблемы, вызванные использованием ископаемого топлива, особенно когда речь идет о выбросах. Однако развитие некоторых из этих технологий замедлилось из-за количества инвестиций, необходимых для их жизнеспособности.

Объединив их все, мы сможем положительно повлиять на такие проблемы, как изменение климата, загрязнение и многие другие.

Пожалуйста, внесите свой вклад в обсуждение ниже и поделитесь с нами своими мыслями об альтернативных источниках энергии в разделе комментариев или поделившись этой статьей в социальных сетях.

Ресурсы

Семь основных источников электроэнергии, о которых вы должны знать

Сама мысль о мире без электричества кажется невозможной. Это один из величайших даров, которые наука дала человечеству. Почти все в нашем мире сегодня зависит от электроэнергии.

Ожидается, что электрическая зависимость со временем будет только расти. По оценкам, в 2018 году мировой спрос на электроэнергию вырос до 23000 ТВтч, и это число, вероятно, будет увеличиваться с каждым годом.Этот стремительно растущий спрос отвечает за половину роста потребностей в энергии и составляет 20%, долю в общем потреблении энергии во всем мире.

СВЯЗАННЫЕ: 3+ РАЗНЫХ ТИПА ЭЛЕКТРОСТАНЦИЙ, ГЕНЕРИРУЮЩИХ ЭЛЕКТРОЭНЕРГИЮ ДЛЯ США

Эти статистические данные ясно показывают, что электричество — это генератор будущего. Тем не менее, как мы можем генерировать такое ошеломляющее количество электроэнергии для удовлетворения постоянно растущих потребностей? Давайте узнаем!

Определение электричества

Электричество можно определить как форму энергии, которая вырабатывается в результате потока электронов из положительных и отрицательных точек внутри проводника.Мы рассматриваем электричество как вторичный источник энергии.

Это связано с тем, что он не является готовым продуктом, а должен быть получен из первичных источников, таких как ветер, солнечный свет, уголь, природный газ, реакции ядерного деления и гидроэнергетика.

Вот несколько основных способов, с помощью которых мы можем производить электричество, и как это можно сделать!

1. Электричество через трение

Первые наблюдения электрических явлений были сделаны в Древней Греции.Это произошло, когда философ Фалес Милетский (640–546 гг. До н.э.) обнаружил, что когда янтарные бруски натирают о загорелую кожу, они приобретают привлекательные характеристики, которыми раньше не обладали.

Это тот же эксперимент, который теперь можно провести, протерев пластиковый стержень тканью. Поднося его ближе к маленьким кусочкам бумаги, он притягивает их, как это характерно для наэлектризованных тел.

Все мы знакомы с эффектами статического электричества. Некоторые люди более подвержены влиянию статического электричества, чем другие.Некоторые пользователи автомобилей ощущают его воздействие при нажатии на ключ или прикосновении к пластине автомобиля.

Мы создаем статическое электричество, когда протираем ручку одеждой. То же самое происходит, когда мы натираем стекло о шелк или янтарь с шерсти.

Следовательно, понятия заряда и подвижности необходимы при изучении электричества, и без них электрический ток не мог бы существовать.

2. Электроэнергия за счет химического воздействия

Все батареи состоят из электролита (который может быть жидким, твердым или полутвердым), положительного электрода и отрицательного электрода.Электролит — это ионный проводник.

Один из электродов производит электроны, а другой электрод принимает их. Когда электроды подключены к питаемой цепи, они производят электрический ток.

Батареи, в которых химическое вещество не может вернуться в свою первоначальную форму после преобразования химической энергии в электрическую, называются первичными или гальваническими батареями.

Батареи или аккумуляторы двусторонние.В этих типах батарей химическое вещество, которое реагирует в электродах с образованием электрической энергии, может быть восстановлено путем пропускания через него электрического тока в направлении, противоположном нормальному режиму работы батареи.

3. Электричество под действием света

Когда солнечный свет становится более интенсивным, напряжение, генерируемое между двумя слоями фотоэлектрического элемента, увеличивается. Но как работает фотоэлемент?

При отсутствии света система не вырабатывает энергию.Когда солнечный свет попадает на пластину, клетка начинает функционировать. Фотоны солнечного света взаимодействуют с доступными электронами и увеличивают их энергетические уровни.

Таким образом, электричество вырабатывается за счет солнечной энергии.

4. Тепловая электроэнергия за счет теплового воздействия

Тепловая генерирующая установка — это тип установки, в которой турбина, приводимая в действие паром под давлением, используется для перемещения оси электрогенераторов. Обычные тепловые электростанции и атомные тепловые электростанции используют энергию, содержащуюся в сжатом паре.

Самый простой пример — подключить чайник, полный кипятка, к лопаточному колесу, которое, в свою очередь, соединено с генератором. Струя пара из котла перемещает ротор.

Следовательно, мы можем получать пар разными способами, например, сжигая уголь, нефть, газ, городские отходы или используя большое количество тепла, выделяемого реакциями ядерного деления. Вы даже можете производить пар, концентрируя энергию солнца.

Не будет ошибкой сказать, что тепловая энергия — один из самых распространенных способов производства электроэнергии.

5. Электричество за счет магнетизма

В 1819 году датский физик Ганс Кристиан Эрстед сделал необычайное открытие, обнаружив, что можно отклонить магнитную стрелку электрическим током. Это открытие, показавшее связь между электричеством и магнетизмом, было разработано французским ученым Андре Мари Ампером.

Ампер изучал силы между проводами, по которым циркулируют электрические токи. В том же духе французский физик

RP Photonics Encyclopedia — энергия импульса

Энциклопедия> буква P> энергия импульса

Определение: энергия оптического импульса

Немецкий: Pulsenergie

Категории: обнаружение и определение характеристик света, оптическая метрология, световые импульсы

Обозначение формулы: E p

Единиц: J

Как цитировать статью; предложить дополнительную литературу

Автор: Dr.Rüdiger Paschotta

Энергия импульса E p — это просто полное содержание оптической энергии в импульсе, то есть интеграл его оптической мощности во времени.

Для импульсов с не слишком высокой частотой повторения, например от лазера с модуляцией добротности энергия импульса может быть измерена, например, с пироэлектрическим детектором.

Для регулярных серий импульсов энергия импульса часто вычисляется путем деления средней мощности (измеренной, например, измерителем мощности) на частоту следования импульсов.Однако это действительная процедура, только если энергия, выделяемая между импульсами, незначительна. Есть случаи, когда, например, лазер с синхронизацией мод излучает серию импульсов вместе с фоновым излучением низкого уровня. Даже если уровень фоновой мощности намного ниже пиковой мощности, фон может значительно влиять на среднюю мощность. Если, например, фотодетектор имеет недостаточный динамический диапазон для проверки этого, может быть полезно проверить эффективность преобразования удвоителя частоты в тщательно контролируемой ситуации в режиме низкого преобразования.

Энергия импульса вместе с длительностью импульса часто используется для оценки пиковой мощности импульсов. И наоборот, временное интегрирование оптической мощности приводит к энергии импульса.

Типичная энергия импульсов лазеров с модуляцией добротности составляет от микроджоулей до миллиджоулей, а для больших систем — до нескольких джоулей или даже килоджоулей. Лазеры с синхронизацией мод достигают гораздо более низких энергий импульса (пикоджоули, наноджоули или иногда несколько микроджоулей) из-за их высокой частоты следования импульсов, а иногда и из-за ограничивающих нелинейных эффектов в лазерном резонаторе.Гораздо более высокие энергии ультракоротких импульсов могут быть достигнуты за счет усиления импульсов с более низкой частотой повторения, как, например, с датчиком импульсов или рекуперативным усилителем.

Вопросы и комментарии пользователей

Здесь вы можете оставлять вопросы и комментарии. Если они будут приняты автором, они будут отображаться над этим абзацем вместе с ответом автора. Автор принимает решение о приеме на основании определенных критериев. По сути, вопрос должен представлять достаточно широкий интерес.

Пожалуйста, не вводите здесь личные данные; в противном случае мы бы скоро удалили его. (См. Также нашу декларацию о конфиденциальности.) Если вы хотите получить личный отзыв или консультацию от автора, пожалуйста, свяжитесь с ним, например по электронной почте.

Отправляя информацию, вы даете согласие на потенциальную публикацию ваших материалов на нашем веб-сайте в соответствии с нашими правилами. (Если вы позже откажетесь от своего согласия, мы удалим эти данные.) Поскольку ваши материалы сначала рассматриваются автором, они могут быть опубликованы с некоторой задержкой.

См. Также: импульсы, характеристика импульсов, счетчики оптической энергии
и другие статьи в категориях: обнаружение и определение характеристик света, оптическая метрология, световые импульсы

Если вам нравится эта страница, поделитесь ссылкой с друзьями и коллегами, например через соцсети:

Эти кнопки обмена реализованы с учетом конфиденциальности!

Код для ссылок на других сайтах

Если вы хотите разместить ссылку на эту статью на каком-либо другом ресурсе (например,грамм. ваш веб-сайт, социальные сети, дискуссионный форум, Википедия), вы можете получить здесь необходимый код.

HTML-ссылка на эту статью:

   
Статья об энергии импульса

в
RP Photonics Encyclopedia

С изображением для предварительного просмотра (см. Рамку выше):

   
alt =" article ">

Для Википедии, например в разделе «== Внешние ссылки ==»:

  * [https://www.rp-photonics.com/pulse_energy.html 
, статья «Энергия импульса» в энциклопедии RP Photonics]
.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *