Небольшая доработка лабораторного БП на LM317. Регулировка величины ограничения тока.
Всем хорош мой лабораторный блок питания на LM317, описанный здесь.
удобен в работе, надёжен, т.к. имеет хорошую защиту, как от перегрева, так и от перегрузки по току и короткого замыкания в нагрузке. И не сосчитать уж сейчас сколько раз реально это выручало меня в практической работе. Но порог срабатывания штатной защиты от перегрузки по току, как и ток короткого замыкания, у LM317 достаточно большой и достигает 2…3А – в зависимости от падения напряжения на стабилизаторе и никак не регулируется, так что эффективно защищая себя, LM317 никак не защищает слаботочную схему (нагрузку) от перегрузки по току.
Предлагаю вашему вниманию очень простой и надёжно работающий вариант защиты от перегрузки по току (далее – просто схемы защиты) с возможностью ступенчатой регулировки в широких пределах величины ограничения тока нагрузки LM317.
Упрощенная схема защиты для типового включения стабилизатора напряжения на LM317 представлена на рис. 1. Вновь вводимые детали схемы защиты показаны красным цветом. Она состоит из датчика тока на резисторе R3 и регулирующего кремниевого транзистора VT1, включённых в отрицательный провод цепи питания стабилизатора. Резисторы R1 и R2 защищают транзистор от перегрузки по току соответственно по цепи базы и коллектора. При работе стабилизатора в штатном режиме по резистору R3 протекает ток нагрузки. Как только падение на нём достигнет напряжения открывания транзистора VТ1 (примерно 0,6 В), он откроется и через коллектор начнёт «притягивать» вывод 1 микросхемы к отрицательному (по отношению к общему проводу) потенциалу эмиттера, величина которого равна напряжению база/эмиттер за вычетом напряжения насыщения коллектор/эмиттер (т.е. 0.6В-0.1В)=0.5В. Схема переходит в режим стабилизации выходного тока на заданном уровне. Поскольку для полного запирания LM317 на её управляющий вывод 1 нужно подать отрицательное напряжение 1,25В, перед схемой защиты включен прямосмещённый кремниевый диод VD3, обеспечивающий дополнительный сдвиг уровня отрицательного напряжения на 0.
7…0.8В.
Величина сопротивления резистора R3 задаёт порог срабатывания защиты и переход в режим стабилизации тока и может быть выбрана по формуле R[Ом]=0,6/I[А]. Для большей точности при выборе малых пределов срабатывания не забываем учесть ток потребления самой LM317 (примерно 5-6 мА), также протекающий через датчик тока. Например, показанный на схеме резистор 1.2 Ом задаёт порог 500 мА.
Полная принципиальная схема доработанного лабораторного блока питания представлена на рис.2. Схема защиты показана отдельно и имеет нумерацию деталей со знаком апострофа. В исходную схему БП она включается в разрыв отрицательно провода питания (точки. А и В) и к выводу 1 LM317 (точка С). Как видно, дополнительно к описанному выше введён переключатель пределов, обеспечивающий ступенчатую регулировку величины ограничения тока нагрузки LM317. В данном случае применён малогабаритный галетный переключатель на 6 положений и 2 направления. Пределы по току выбраны 20,50,100, 200, 500мА и 2А. Токовый датчик наименьшего предела 20 мА (резистор R3) во избежание скачкой выходного напряжения при переключении пределов подключён постоянно, а остальные резисторы-датчики тока подключаются параллельно нему. Поэтому расчёт их сопротивлений под свои требования должен учитывать эту особенность.
Номинал R3 рассчитываем так же как, как показано выше R3=0,6/(0,02+0,005)=24 Ома, а для остальных пределов сначала определяем требуемое сопротивление шунта Rтр[Ом]=0,6/I[А], а затем вычисляем номинал реального резистора Rn с учётом параллельно включённого R3:
Rn= (R3*Rтр)/ (R3-Rтр).
Диод должен быть кремниевый, рассчитанный на максимальный прямой ток не менее 3А, кроме указанного на схеме подойдут 1N5404, КД202, Д242 и т.п. В принципе можно поставить и Шоттки, но только 2 штуки последовательно. Транзистор любой с с усилением по току не менее 100 и допустимым током коллектора не менее 500 мА 2N2222, 2N5551 и т.п.
Всё детали схемы защиты смонтированы на галетном переключателе. Для большей надёжности обе группы контактов переключателя соединены параллельно.
Вид на монтаж сбоку
Вид на монтаж сзади
В качестве примера на фото показа реакция БП с установленным выходным напряжением +12. 6В на замыкание выхода пинцетом на пределах защиты по току 200
Короткое замыкание на пределе 200 мА
и 500 мА
Короткое замыкание на пределе 500 мА
Как видим, сопротивление пинцета примерно 0,3 Ома. Таким же образом теперь можно очень просто измерять номинал низкоомных резисторов. Да и вообще теперь, при наличии режима стабилизации тока, многие виды измерений существенно упрощаются: при токе 20 мА можно тестировать стабилитроны напряжением стабилизации до 24 В, заряжать аккумуляторы и многое другое.
.Беленецкий, US5MSQ май 2020г. г.Киев, Украина
Самодельный стабилизатор тока для зарядного устройства
Опубликовал admin | Дата 13 июля, 2017В этой статье пойдет речь о небольшой и простенькой приставке – стабилизаторе тока, для импульсного блока питания, предназначенного в прошлом для питания ЖКИ монитора. С ее помощью можно будет подзаряжать автомобильные аккумуляторы. Эта идея и просьба принадлежит одному из посетителей сайта.
Выходные данные блока питания можно увидеть на фотографии. Двадцать вольт на выходе при токе 3,25 А, это вполне достаточно не только для подзарядки, но и неспешной полной зарядки аккумуляторов.
А если убрать родной корпус, то улучшится тепловой режим платы ИИП, это даст возможность увеличить ток заряда. Схема стабилизатора тока представлена на рисунке 1.
Стабилизатор тока реализован на микросхеме LM317, отечественный аналог указан на схеме – КР142ЕН12А. Для увеличения тока заряда применен дополнительный транзистор структуры p-n-p, в данном случае, я испытывал схему с транзистором
Работа схемы
Аналогичный стабилизатор тока был описан в предыдущей статье «Зарядное устройство для гелиевых аккумуляторов на кр142ЕН12А». В данной статье меня попросили наиболее подробно описать алгоритм работы устройства. И так, схема работает следующим образом. На вход приставки подано напряжение, к выходу подключен заряжаемый аккумулятор. Через устройство начинает течь ток заряда. На резисторе R1, при прохождении тока происходит падение напряжения, равное Iзаряда • R1. Как только это падение напряжения, приложенное к переходу база – эмиттер транзистора VT1, превысит порог в 0,7 вольта, мощный транзистор начнет открываться и весь основной ток заряда, будет течь через переход коллектор – эмиттер этого транзистора. Далее сумма токов, протекающих через регулирующую микросхему и транзистор, будет протекать через резистор R2, от величины которого зависит максимально возможный зарядный ток, когда движок переменного резистора находится в верхнем по схеме положении. На резисторе R2 также создается падение напряжения, которое приложено между выводами 2 и 1 данной микросхемы, т.е. между выходом и управляющим выводами. В данной микросхеме имеется ИОН с величиной в 1,25 вольта естественно с небольшим разбросом этого параметра и все регулировки в ней происходят относительно этой величины. Таким образом, при увеличении падения напряжения на резисторе R2 выше напряжения ИОН – 1,25 В, микросхема отрабатывает таким образом, что ее выходной транзистор начинает закрываться, удерживая выходной ток схемы на определенном уровне.
Далее ток течет через диод VD1, так как падение напряжения на прямо смещенном переходе диода мало зависит от проходящего через него тока, то диод в нашем случае играет роль стабилизатора напряжения, часть которого через переменный резистор плюсуется к падению напряжения на резисторе R2. Таким образом, имея возможность изменять напряжение на управляющем выводе микросхемы относительно ее выхода, мы можем управлять величиной тока стабилизации. В моей схеме ток регулировался от 1,16 А до 3,16 А. Минимальный ток можно еще уменьшить, включив последовательно с диодом VD1, еще такой же диод. В этом случае минимальный ток будет равен примерно 0,1… 0,2 А.
Микросхема, транзистор и диод установлены на одном теплоотводе, через слюдяные прокладки.
Транзистор можно применить любой с током коллектора не менее 8 А и более. Можно применить КТ825 или импортные транзисторы типа TIP107.
Диод тоже любой с прямым током 10А и более.
Вроде все. Успехов и удачи. К.В.Ю.
Чуть не забыл, чтобы не усложнять схему, вместо амперметра можно просто для переменного резистора сделать шкалу установки тока заряда.
Скачать статью
Скачать “reguliruemyj-stabilizator-toka-na-lm317” reguliruemyj-stabilizator-toka-na-lm317.rar – Загружено 1587 раз – 65 КБ
Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».
Просмотров:4 799
Компараторы, как они работают? — Начинающим — Теория
Общие сведения.
Компаратор — это операционный усилитель без обратной связи с большим коэффициентом усиления.
Поэтому, если подать на один его вход (например инверсный) какой то постоянный уровень опорного напряжения, а на другой вход (прямой) изменяющийся сигнал — выходное напряжение у него изменится скачком, от минимального до максимального в тот момент, когда уровень входного сигнала превысит уровень сигнала опорного напряжения, установленного на другом входе, и наоборот.
Компараторы имеют два входа, прямой и инверсный, и в зависимости от желаемого результата, опорное и сравниваемое напряжения, могут подключаться к любому входу.
Если входное напряжение на прямом входе, превысит напряжение инверсного входа, выходной транзистор компаратора открывается, если станет ниже — закрывается. То есть компаратор сравнивает напряжения.
Вот мы и подошли к сути основного назначения компаратора — сравнивать между собой два напряжения (сигнала), и выдавать на выходе напряжение (сигнал) в том случае, когда сигнал на одном входе, стал больше или меньше уровня, установленного опорным напряжением другого входа.
На компараторах можно собирать различные устройства, такие как терморегуляторы, стабилизаторы, различные устройства автоматики — используя для изменения входного сигнала различные датчики, такие как, терморезисторы, фоторезисторы, индикаторы влажности и т.д. и т.п.
Выходные каскады компараторов рассчитаны таким образом, чтобы их выходное напряжение соответствовало бы входному логическому уровню многих цифровых микросхем, поэтому их ещё могу называть формирователями.
Рассмотрим самый распространённый компаратор К554СА3, (зарубежные аналоги LM-111, LM-211, LM-311).
На выходе этого компаратора включен транзистор с открытыми коллектором и эмиттером, и в зависимости от необходимого результата на выходе, его можно подключать по схеме с общим эмиттером или эмиттерным повторителем.
Схема включения компаратора для одно-полярного питания изображена на рисунке 1, для двух-полярного питания на рисунке 2.

Рисунок 1.
Схема включения компаратора в одно-полярное питание.
Напряжение питания +5 вольт указано для уровня логики ТТЛ микросхем.
Для согласования выхода с логическими уровнями КМОП микросхем, напряжение питания соответственно может быть 9-15 вольт.
Рисунок 2.
Схема включения компаратора в двух-полярное питание.
а — с общим эмиттером; б — эмиттерным повторителем.
В качестве нагрузки компаратора можно использовать любую нагрузку с током потребления не более 50 мА. Это могут быть непосредственно обмотки реле, резисторы, светодиоды индикации и оптронов исполнительных устройств, с ограничивающими ток резисторами. Индуктивные нагрузки желательно шунтировать диодами от обратного выброса напряжения.

Процессы переключения компараторов.
Если входной сигнал будет изменяться очень медленно, то при достижении уровня входного сигнала опорному, выход компаратора может многократно с большой частотой менять свое состояние под действием незначительных помех (так называемый «дребезг»).
Для устранения этого явления в схему компаратора вводят положительную обратную связь (ПОС), которая обеспечивает характеристике компаратора небольшой гистерезис, то есть небольшую разницу между входными напряжениями включения и отключения компаратора. Некоторые типы компараторов уже имеют встроенную, упомянутую выше ПОС.
Рисунок 3.
Схема включения в компаратор ПОС (гистерезиса).
На рисунке 3 приведена схема включения компаратора с открытым коллектором на выходе, переходная характеристика которой имеет гистерезис (рис. 3б).
Пороговые напряжения для этой схемы определяются по формулам;
Хотя гистерезис вносит небольшую задержку в переключении компаратора, но благодаря ему, существенно уменьшается или даже устраняется полностью «дребезг» выходного напряжения.
Для того, кто желает более полного и подробного знакомства с компараторами, рекомендую прочитать статью Б. Успенского в ВРЛ № 97 стр.49.
LM317 или KA317 Pspice модель
Меню- Форумы Новые сообщения Искать на форумах
- Какие новости Новые сообщения Новые средства массовой информации Комментарии в новых СМИ Новые ресурсы Последние действия
- Статьи Лучшие статьи Поиск ресурсов
- Члены Текущие посетители
-
EE ресурсы
ДизайнБыстрый
Электронные книги / Технические советы
FAQs
Награды LEAP
Поиск продукции осциллографов
Подкасты EE
Вебинары EE
Информационные документы EE
Калькуляторы EE
Калькулятор сопротивления термистора
Калькулятор таймера 555 (нестабильный режим)
LM3914 Калькулятор
Калькулятор импеданса конденсатора
Калькулятор импеданса конденсатора
Калькулятор LM317
Все калькуляторы
EE Видео Блоги
Схемы подключения | ||
Двигатели трехфазные с короткозамкнутым ротором; КП 0001 с одной скоростью; Подключение: Delta-Star | DE | EN |
Трехфазные двигатели с короткозамкнутым ротором; КП 0003 с 2 скоростями и 1 обмоткой; Подключение: треугольник-двойная звезда | DE | EN |
Трехфазные двигатели с короткозамкнутым ротором; КП 0007 с 2 скоростями и 1 обмоткой; Подключение: звезда-двойная звезда | DE | EN |
Трехфазные двигатели с короткозамкнутым ротором; КП 0006 с 2 скоростями и 2 обмотками; Подключение: Star-Star | DE | EN |
Трехфазные двигатели с короткозамкнутым ротором; КП 0005 с 2 скоростями и 2 обмотками; Подключение: Звезда-Треугольник | DE | EN |
Трехфазные двигатели с короткозамкнутым ротором; КП 0032 с 3 скоростями и 2 обмотками; Подключение: звезда-треугольник-двойная звезда | DE | EN |
Трехфазные двигатели с короткозамкнутым ротором; КП 0034 с 3 скоростями и 2 обмотками; Подключение: Delta-Star-double Star | DE | EN |
Трехфазные двигатели с короткозамкнутым ротором; КП 0044 с 4 скоростями и 2 обмотками; Подключение: треугольник-треугольник-двойная звезда-двойная звезда | DE | EN |
Трехфазные двигатели с короткозамкнутым ротором; КП 0037 с 3 скоростями и 2 обмотками; Подключение: Delta double Star Delta | DE | EN |
Трехфазные двигатели с короткозамкнутым ротором; КП 0040 с 3 скоростями и 2 обмотками; Подключение: звезда-звезда-двойная звезда | DE | EN |
Трехфазные двигатели с короткозамкнутым ротором; КП 0041 с 3 скоростями и 2 обмотками; Подключение: Дельта-двойная звезда-звезда | DE | EN |
Трехфазные двигатели с короткозамкнутым ротором; КП 0038 с 3 скоростями и 2 обмотками; Подключение: звезда-двойная звезда-звезда | DE | EN |
Трехфазные двигатели с короткозамкнутым ротором; КП 0043 с 3 скоростями и 2 обмотками; Подключение: звезда-звезда-двойная звезда | DE | EN |
Трехфазные двигатели с короткозамкнутым ротором; КП 0042 с 3 скоростями и 2 обмотками; Подключение: звезда-двойная звезда-треугольник | DE | EN |
Трехфазные двигатели с короткозамкнутым ротором; КП 0036 с 3 скоростями и 2 обмотками; Подключение: треугольник-двойная звезда-треугольник | DE | EN |
Трехфазные двигатели с фазным ротором; KP 0002 | DE | EN |
Введение в LM317 — Инженерные проекты
Привет всем! Я надеюсь, что вы все будете в полном порядке и весело проведете время.

Введение в LM317
LM317 — стабилизатор положительного напряжения с тремя разными клеммами: Adjust, Vout и Vin соответственно. Он может обеспечивать выходное напряжение в диапазоне 1,25-37 В и ток более 1,5 А. По сравнению с общими регуляторами, он имеет передовые стандарты регулирования линии и нагрузки. У него много приложений в жизни, например контроллеры двигателей, решения для аккумуляторов, гидравлический клапан, выключатель Ethernet, зарядные устройства и т. д.Загрузить LM317 Datasheet
1. Распиновка LM317
- LM 317 имеет всего три (3) контакта Adjust, Vout и Vin соответственно.
- Каждый из контактов имеет свои собственные функции, все контакты вместе с их именами и номерами показаны в таблице ниже.
2. Конфигурация контактов LM317
- Конфигурации контактов LM 317 вместе с правильно обозначенной схемой показаны на рисунке ниже.
- Анимированный LM317, его символическое представление и изображение реального LM317 — все это показано на рисунке выше.
3. Принцип работы LM317
LM 317 работает по очень простому принципу. Это регулятор переменного напряжения, то есть поддерживает различные уровни выходного напряжения для постоянного подаваемого входного напряжения. Переменный резистор подключен к его клемме Adjustment (Adj) , чтобы управлять уровнем выходного напряжения в соответствии с требованиями схемы. Другими словами, мы можем сказать, что LM 317 может понижать напряжение с 12 В, до нескольких различных более низких уровней.4. Пакеты и размеры LM317
- Многие упаковки LM 317 и их размеры указаны вместе с их единицами Международной системы единиц (SI) в таблице, показанной ниже.
- Описание упаковок и их размеры приведены в таблице выше.
5. Технические характеристики LM317
- Различные технические характеристики, связанные с LM 317, представлены в таблице ниже.
6. Приложения LM317
LM 317 имеет очень широкий спектр применения, некоторые из которых приведены ниже.
- Стиральная машина.
- Генератор сигналов.
- Холодильник.
- Программируемый логический контроллер (ПЛК).
- Измеритель качества электроэнергии.
- Контроллеры двигателей.
- Отпечатки пальцев.
- Коммутатор Ethernet.
- Частная телефонная станция.
- Регуляторы постоянного тока.
- Принадлежности для микропроцессоров.
- Светодиодное автомобильное освещение.
- Зарядные устройства аккумуляторов, правильная конструкция схемы показана на рисунке ниже.
7. LM317 Proteus Simulation
- Я провел симуляцию в Proteus ISIS для регулятора напряжения.
- Снимок экрана моделирования показан на рисунке ниже.
- Текущая форма вышеуказанного моделирования показана на рисунке ниже.
- Вход, выход и переменный резистор обведены кружком на рисунке выше.
- Так как это регулятор переменного напряжения, поэтому, изменяя значение переменного резистора, вы можете получить разные уровни напряжения на выходе.
- На приведенном выше рисунке для сопротивления 61% выходное напряжение составляет 7,88 В.
- Теперь я собираюсь проверить уровень напряжения для различных значений переменного резистора, которые в данном случае составляют 54%.
- Результат моделирования показан на рисунке ниже.
- Для другого значения переменного резистора выходное напряжение также изменилось с 7,88 В на 8,27 В.
- Это было подробное описание моделирования регулятора напряжения.
- Вам также стоит взглянуть на регулятор напряжения LM 317 в Proteus.
- Вам также следует прочитать Введение в 7805, который также является регулятором напряжения и используется для преобразования 12 В в 5 В.
- Вы можете загрузить это моделирование LM317 Proteus, нажав кнопку ниже:
[dt_button link = «https://www.theengineeringprojects.com/ElectronicComponents/Introduction to LM317.rar» target_blank = «false» button_alignment = «default» animation = «fadeIn» size = «medium» bg_color_style = «default» bg_hover_color_style = «default» text_color_style = «default» text_hover_color_style = «default» icon = «fa fa-chevron-circle-right» icon_align = «left»] Загрузить Proteus Моделирование [/ dt_button]
- В видео ниже я показал вам, как моделировать LM317 в Proteus: