Расчёт шунтирующего сопротивления амперметра. Супер онлайн калькулятор. :: АвтоМотоГараж
Для контроля величины тока применяется прибор называемый амперметром. Из практики могу сказать, что не всегда под рукой оказывается прибор с нужным диапазоном измерения. Как правило, диапазон либо мал, либо велик. Здесь мы разберем, как изменить рабочий диапазон амперметра. Амперметры на большие токи от 20 ампер и выше имеют в своём составе внешний шунтирующий резистор. Он подключается параллельно амперметру. На рисунке 1 приведена схема включения амперметра с шунтирующем резистором.
В качестве примера в экспериментах будет использован амперметр M367 со шкалой до 150 ампер, соответственно при таком токе амперметр используется с внешним шунтирующим сопротивлением.
Если убрать шунтирующий резистор, то амперметр станет миллиамперметром с максимальным током отклонения стрелки 30 мА (далее будет пояснение, откуда это значение взялось). Таким образом, используя разные шунтирующие сопротивления можно сделать амперметр практически с любым диапазоном измерения.
Рассмотрим подробнее имеющийся измерительный прибор. Из его маркировок можно узнать следующее. Маркировка в верхнем правом углу (цифра 1 на изображении). Модель измерительной головки М367. Сделан на краснодарском заводе измерительных приборов (это можно определить по ромбику с буковками ЗИП). Год выпуска 1973. Серийный номер 165266.
Маркировка в нижнем левом углу (цифра 2 на изображении). Слева на право. Прибор предназначен для измерения постоянного тока. Магнитоэлектрический прибор с подвижной рамкой. Напряжение между корпусом и мангнитоэлектрической системой не должно превышать 2 КВ. Рабочее положение шкалы прибора вертикальное. Класс точности прибора в процентах 1,5. ГОСТ8711-60. Измерительная головка рассчитана на измерения силы тока до 150 ампер с использованием внешнего шунтирующего сопротивления рассчитанного на падение на нём напряжения номиналом в 75 милливольт.
Итак, это максимум что удалось узнать из маркировки амперметра. Теперь перейдём к расчетам. Сопротивление шунта определяется по формуле:
где :
Rш — сопротивление шунтирующего резистора;
Rприб — внутреннее сопротивление амперметра;
Iприб — максимально измеримый ток амперметром без шунта;
Iраб — максимально измеримый ток с шунтом (требуемое значение)
Если все данные для расчёта имеются, то можно приступать к самому расчёту. Для упрощения можно воспользоваться онлайн калькулятором ниже:
В нашем случае из формулы видно, что данных не достаточно. Нам известен только максимальный измеряемый ток с шунтом. То есть, то, что мы хотим видеть в случае максимального отклонения стрелки амперметра.
Из маркировки прибора удалось узнать падение напряжения на шунтирующем сопротивлении. И это уже что-то. Из этого параметра ясно, что при подаче на прибор напряжения номиналом 0,075 вольт (75мВ) стрелка отклониться до крайнего значения на шкале 150 ампер. Таким образом, получается, что максимальное отклонение стрелки прибора достигается подачей напряжения 75 мВ. Вроде как данных для расчета по-прежнему не хватает. Необходимо узнать сопротивление прибора и ток, при котором стрелка откланяется до максимального значения без шунтирующего резистора. Далее предлагаю несколько способов для определения нужных параметров и решения задачи.
Способ первый. При помощи блока питания выясняем максимальное отклонение стрелки по току и напряжению без шунта. В нашем случае напряжение уже известно. Его замерять не будем. Измеряем ток и отклонение стрелки. Так как блока питания под рукой не оказалось, то пришлось воспользоваться очень разряженой батарейкой типа АА. Ток, который батарейка могла ещё отдать, составил 12 мА (по показаниям мультиметра). При этом токе стрелка прибора отклонилась до значения на циферблате 60А. Далее определяем цену деления и рассчитываем полное (максимальное) отклонение стрелки. Поскольку шкала циферблата амперметра размечена равномерно, то не составит труда узнать (рассчитать) ток максимального отклонения стрелки.
Цена деления прибора рассчитывается по формуле:
где:
х1 – меньшее значение,
х2 – большее значение,
n – количество промежутков (отрезков) между значениями
Для упрощения можно воспользоваться онлайн калькулятором ниже:
Расчёт показал, что цена деления прибора штатной шкалы составляет 5 ампер. При токе 12 мА стрелка отклонялась до показания 60А. Таким образом, цена одного деления без шунта составляет 1 мА. Всего делений 30, соответственно максимальное отклонение стрелки до значения 150А без шунта составляет 30 мА.
Далее при помощи закона Ома находим сопротивление прибора. 0,075/0,03=2,5 Ом
Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(10-0,03)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(5-0,03)=0,01509 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(3-0,03)=0,02525 Ом для шкалы 3А мах
Для упрощения можно воспользоваться онлайн калькулятором расчёта сопротивления шунтирующего сопротивления выше.
Второй вариант. При помощи прецизионного мультиметра замеряем сопротивление амперметра и далее при помощи закона Ома (зная напряжение максимального отклонения стрелки) находим ток максимального отклонения стрелки. Измерения выполнялись прецизионными мультиметрами Mastech MS8218 и Uni-t UT71E. При измерении сопротивления амперметра значение составило 2,50-2,52 Ом прибором UT71E и 2,52-2,53 прибором MS8218.
Формула для расчёта тока отклонения стрелки до максимального значения:
Расчёт: 0.075/2.52=0.02976А
Для упрощения вычислений максимального тока отклонения стрелки амперметра можно воспользоваться калькулятором ниже:
Далее, как и в первом варианте выполняем расчёт сопротивления шунтирующего резистора (калькулятор выше). Для расчёта было принято среднее показание измеренного сопротивления амперметра двумя мультиметрами Rприб = 2,52Ом
Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(10-0,02976)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(3-0,02976)=0,02524 Ом для шкалы 3А мах
Если сравнить расчёты двух методик между собой, то получились совпадение данных до четвёртого знака после запятой, а в некоторых случаях даже до пяти знаков.
О тонкостях изготовления шунтирующего сопротивления расскажу в следующей статье: Как сделать шунт (шунтирующий резистор) для амперметра. Самый простой метод подбора.
И ещё одно продолжение этой тематики: Как изменить предел измерения амперметра. Как переделать амперметр постоянного тока на переменный.
Подключение, расчет и выбор шунта для амперметра
Шунт нужен для того, чтобы измерять ток больший за максимально измеряемый ток прибора. Ток разделяется на две ветви, и меньшая величина тока протекает по амперметру, а большая – по шунту.
Шунт представляет собой проводник, катушку или резистор. Если шунт необходим для измерения тока меньше 30А, то его встраивают в сам амперметр. При больших токах шунт делают выносной, чтобы он не нагревал сам прибор.
Шунтирование – это процесс параллельного подключения одного элемента к другому. Шунт подключают параллельно амперметру для расширения шкалы прибора.
При подключенном шунте часть тока, протекает мимо прибора по шунту и тем самым уменьшается нагрузка на прибор.
Расчет шунта для амперметра
Ниже приведена формула для расчета необходимого сопротивления шунта, подключаемого к амперметру для увеличения шкалы измерения.
Где :
- RА, IA – сопротивление и ток амперметра
- RШ – сопротивление шунта
- I – ток, который необходимо измерить
Если измеряемый ток значительно больше максимального измеряемого тока амперметра, то этой величиной в формуле выше можно пренебречь по причине её малого влияния на результат. И мы получим отношение RШ/RА=IА
Если необходимо увеличить предел измеряемого тока в m раз, то можно воспользоваться следующим соотношением – RШ=(m-1)/RА
Разберем пример, где все цифры взяты из головы и не имеют под собой справочной обоснованности.
Задача. Амперметр имеет внутреннее сопротивление 10 Ом и максимальный измеряемый ток 1 А. Какое должно быть сопротивление шунта, чтобы можно было измерить ток 100А. Как его рассчитать?
Решение. При увеличении шкалы по амперметру будет течь ток в 1А как и раньше, а по шунту потечет ток 100-1=99А. Получится, что ток будет делиться в отношении 1:99, а сопротивления будут обратно пропорциональны.
Воспользуемся формулой выше и получим R
Сохраните в закладки или поделитесь с друзьями
Самое популярное
виды, сфера применения, принцип действия, последовательность подключения, обзор популярных моделей, их плюсы и минусы
Амперметр используют, чтобы снять замеры силы тока в электроцепи. Его подключают последовательно к тому участку, в котором снимаются замеры. Внутреннее сопротивление прибора слишком маленькое, чтобы как-то влиять на результаты замеров.
Особенности прибора
Приборы классифицируют в зависимости от силы измеряемого тока – амперметры, микро- и миллиамперметры.
Амперметры различаются в зависимости от того, насколько подробно представлена шкала с долями ампера:
- для измерения в микроамперах – микроамперметры;
- для измерения в миллиамперах – миллиамперметры и т.д.
Пределы измерений можно расширить, если в цепь к амперметру добавить магнитный усилитель, трансформатор тока или шунт. Если использовать шунт, то нужно выбрать такой, чтобы сопротивление в рабочей катушке и в нем было 10:1, 100:1 или 1000:1.
Шунт крепится к амперметру с помощью специальных гаек.
Отключите питание электросети перед подключением шунта к амперметру.
Подключая оборудования к сети важно учитывать его полярность – если подключить неправильно, прибор будет показывать отрицательные значения.
Принцип действия
На оси кронштейна располагается якорь из стали и постоянный магнит. Стрелка прибора находится на нуле, когда на якорь воздействует только постоянный магнит.
При подключении прибора к цепи, магнитный поток от протекающего по шине тока тоже начинает воздействовать на якорь, вследствие чего стрелка стремиться отклониться на 90°. Чем выше сила тока, тем сильнее сможет отклониться стрелка – именно этот параметр и замеряет амперметр.
Виды
В зависимости от способа отображения результатов измерений различают цифровые (когда результат выводится на дисплей) и аналоговые приборы (результат отображается колебаниями стрелки на шкале).
Ферродинамический
Самый точный вид аналоговых амперметров. Устойчив к влиянию магнитного поля окружающих предметов, можно использовать без специальной защиты.
Конструкция представляет собой ферромагнитный провод (замкнутый), плотно зафиксированную катушку и сердечники. Используется в различных отраслях тяжелой и военной промышленности.
Плюсы:
- точность замеров;
- легкость в эксплуатации;
- надежность.
Электромагнитный
Имеет довольно простую конструкцию. Состоит из одного или нескольких сердечников и специального устройства. Точность измерения параметров ниже, чем у остальных видов приборов. Применяются для снятия параметров в стандартных электроустановках переменного тока, у которых частота 50 Гц.
Из плюсов – это универсальный прибор, которым можно измерять силу как переменного, так и постоянного тока.
Термоэлектрический
Устройство замеряет силу тока на основании взаимодействия подвижной катушки и магнитного поля магнита.
Состоит из проводника (магнитоэлектрического механизма), к которому припаяна термопара. Она фиксирует момент, когда механизм нагревается под силой тока, проходящего по проводку. Из-за повышения температуры образуется излучение, которое влияет непосредственно на стрелку прибора – она отклоняется на угол, пропорциональный силе тока.
Используется для измерения постоянного тока в лабораторных условиях и разных сферах промышленности. Более чувствителен, чем электромагнитный.
Плюсы:
- потребляет мало электричества при использовании;
- показывает точный результат;
- высокочувствителен.
Минусы:
- ограниченная сфера применения;
- наличие подвижной детали;
- сложная конструкция.
Электродинамический
В корпусе амперметра находятся две катушки – подвижная и плотно зафиксированная. Используются для измерения силы тока в цепях с частотой до 200 Гц.
Плюсы – это универсальный амперметр, который может работать как с постоянным, так и с переменным током.
Минусы – слишком высокая чувствительность прибора. Поля от находящихся поблизости предметов могут создавать для него существенные помехи. Чтобы получить максимально правдивые показатели, нужно использовать электродинамический амперметр вместе с защитным экраном.
Высокая точность прибора позволяет использовать его для поверки новых амперметров других видов.
Цифровой
Все большей популярности набирают цифровые амперметры. Их широко используют как в быту, так и в разных сферах промышленности. Устройство имеет аналого-цифровой преобразователь (компаратор), который выводит результат замеров на ЖК-дисплей.
Погрешность показателей варьируется от 0,2% до 0,5% в зависимости от типа устройства и производителя. На рынке встречаются устройства, адаптированные для работы в разных сетях.
Плюсы:
- прост в эксплуатации;
- компактные размеры;
- минимальная погрешность;
- невосприимчивость к вибрациям;
- результат измерений выводится сразу на экран, без задержки, как в аналоговых устройствах.
- устойчивость к механическим ударам.
Минусы:
- нуждается в собственном источнике питания;
- высокая стоимость относительно аналоговых вариантов.
Цифровые амперметры могут быть разной конструкции – зафиксированные на DIN-рейке либо в щитовом исполнении.
Есть еще один, отдельный вид амперметров – демонстрационное устройство, используемое в классах учебных заведений и лабораториях. Обладает режимом гальванометра и характеризуется широким диапазоном измерений (от 0,91 до 9,99 А).
Сфера применения
Каким амперметром пользуетесь Вы?
ЦифровымЭлектромагнитным
Амперметры используют в быту и в разных сферах промышленности – например, в компаниях, связанных с продуцированием и распределением тепловой или электрической энергии:
- строительстве;
- исследовательских институтах;
- электролабораториях;
- автомобильной промышленности.
Амперметром пользуются многие автомобилисты – для контроля величины силы тока в бортовой сети машины, для определения энергопотребления узлов машины и т.д.
В быту чаще всего используются однофазные приборы, для промышленных сетей – трехфазные.
Как выбрать
Самые удобные и точные амперметры – цифровые. В последнее время им на смену пришли более универсальные приборы – мультиметры, которые в числе прочих функций умеют и замерять ток.
Мнение эксперта
Торсунов Павел Максимович
Амперметр нельзя подключать к цепи с большим напряжением, чем он рассчитан – из-за этого может сгореть резистор. Диапазон напряжений, в котором может работать амперметр обычно нанесен на корпус прибора.
При выборе прибора нужно обращать внимание на следующие критерии:
- Покрытие зажимов контактов. Зажимы с антикоррозионным слоем будут служить гораздо дольше.
- Более точные показатели будут у прибора с сопротивлением до 0,5 Ом.
- Желательно, чтобы корпус был герметичным – это защитит его функциональные детали от влаги.
- При проведении замеров нельзя дотрагиваться к неизолированным элементам устройства – они могут проводить ток.
Последовательность подключения
Что такое амперметр? — Определение, типы, шунтирующий амперметр и сопротивление заболачиванию
Определение: Измеритель , используемый для измерения тока, известен как амперметр . Ток — это поток электронов, единицей измерения которого является ампер. Следовательно, прибор, который измеряет потоки тока в амперах, известен как амперметр или амперметр.
Идеальный амперметр имеет нулевое внутреннее сопротивление . Но практически амперметр имеет небольшое внутреннее сопротивление.Диапазон измерения амперметра зависит от величины сопротивления.
Символическое представление
Заглавная буква A обозначает амперметр в цепи.
Подключение амперметра в цепи
Амперметр соединен последовательно с цепью , так что все электроны измеряемого тока проходят через амперметр. Потери мощности в амперметре возникают из-за измеряемого тока и их внутреннего сопротивления.Цепь амперметра имеет низкое сопротивление , поэтому в цепи возникает небольшое падение напряжения.
Сопротивление амперметра остается низким по двум причинам.
- Через амперметр проходит весь ток измеряемой величины.
- Низкое падение напряжения на амперметре.
Типы амперметров
Классификация амперметров зависит от их конструкции и типа тока, протекающего через амперметр.Ниже приведены типы амперметров в зависимости от конструкции.
- Амперметр с постоянной подвижной катушкой.
- Амперметр с подвижным железом.
- Электродинамический амперметр.
- Амперметр выпрямительного типа.
По току амперметры делятся на два типа.
1. Амперметр PMMC — В приборе PMMC проводник помещается между полюсами постоянного магнита. Когда ток течет через катушку, она начинает отклоняться.Прогиб катушки зависит от величины тока, протекающего через нее. Амперметр PMMC используется только для измерения постоянного тока.
2. Амперметр с подвижной катушкой (MI) — Амперметр MI измеряет как переменный, так и постоянный ток. В амперметрах этого типа катушка свободно перемещается между полюсами постоянного магнита. Когда ток проходит через катушку, она начинает отклоняться под определенным углом. Прогиб катушки пропорционален току, протекающему через катушку.
3. Электродинамометр Амперметр — Он используется для измерения переменного и постоянного тока. Точность прибора выше, чем у приборов PMMC и MI. Калибровка прибора одинакова как для переменного, так и для постоянного тока, то есть, если постоянный ток калибрует прибор, то без повторной калибровки он используется для измерения переменного тока.
4. Выпрямительный амперметр — используется для измерения переменного тока. Приборы, использующие выпрямительный прибор, который преобразует направление тока и передает его на прибор PMMC.Такой тип прибора используется для измерения тока в цепи связи.
Прибор, который измеряет постоянный ток, известен как амперметр постоянного тока, а амперметр, который измеряет переменный ток, известен как амперметр переменного тока,
Шунт амперметра
Высокомощный ток напрямую проходит через амперметр, что приводит к повреждению его внутренней цепи. Для устранения этой проблемы параллельно с амперметром подключено сопротивление шунта.
Если через цепь проходит большой ток измеряемой величины, большая часть тока проходит через шунтирующее сопротивление .Сопротивление шунта не повлияет на работу амперметра, т.е. движение катушки останется прежним.
Влияние температуры в амперметре
Амперметр — это чувствительное устройство, на которое легко влияет окружающая температура. Изменение температуры вызывает ошибку в считывании. Это можно уменьшить за счет сопротивления заболачиванию. Сопротивление, имеющее нулевой температурный коэффициент, известно как сопротивление заболачиванию. Он подключается последовательно с амперметром. Устойчивость к заболачиванию снижает влияние температуры на счетчик.
Амперметр имеет встроенный предохранитель, который защищает амперметр от сильного тока. Если через амперметр будет протекать значительный ток, предохранитель сломается. Амперметр не сможет измерить ток, пока новый не заменит предохранитель.
Часто задаваемые вопросы: Руководство по измерению сопротивления
При измерении сопротивления точность — это все. Это руководство — это то, что мы знаем о достижении максимально возможного качества измерений.
Индекс
- Введение в измерение сопротивления
- Приложения
- Сопротивление
- Принципы измерения сопротивления
- Способы 4-х клеммного подключения
- Возможные ошибки измерения
- Выбор подходящего инструмента
- Примеры применения
- Полезные формулы и диаграммы
- Узнать больше
1.Введение
Измерение очень больших или очень малых величин всегда затруднено, и измерение сопротивления не является исключением. Значения выше 1 ГОм и значения ниже 1 Ом представляют проблемы для измерения.
Cropico — мировой лидер в области измерения низкого сопротивления; мы производим широкий ассортимент омметров низкого сопротивления и принадлежностей, которые подходят для большинства измерительных приложений. В этом справочнике дается обзор методов измерения низкого сопротивления, объясняются распространенные причины ошибок и способы их предотвращения.Мы также включили полезные таблицы с характеристиками проводов и кабелей, температурными коэффициентами и различными формулами, чтобы вы могли сделать наилучший выбор при выборе измерительного прибора и техники измерения. Мы надеемся, что вы найдете это руководство ценным дополнением к вашему набору инструментов.
2. Приложения
Производители компонентов
Резисторы, катушки индуктивности и дроссели — все должны подтвердить, что их продукция соответствует указанному допуску по сопротивлению, окончанию производственной линии и контролю качества.
Производители переключателей, реле и соединителей
Требуется проверка того, что контактное сопротивление ниже установленных пределов. Это может быть достигнуто в конце тестирования производственной линии, обеспечивая контроль качества.
Производители кабелей
Необходимо измерять сопротивление медных проводов, которые они производят, слишком высокое сопротивление означает, что токонесущая способность кабеля снижается; слишком низкое сопротивление означает, что производитель слишком великодушен в отношении диаметра кабеля, используя больше меди, чем ему нужно, что может быть очень дорогим.
Установка и обслуживание силовых кабелей, распределительных устройств и устройств РПН
Для этого требуется, чтобы кабельные соединения и переключающие контакты имели минимально возможное сопротивление, что позволяет избежать чрезмерного нагрева стыка или контакта, плохого кабельного стыка или контакта переключателя. вскоре выходят из строя из-за этого теплового эффекта. Регулярное профилактическое обслуживание с регулярными проверками сопротивления обеспечивает максимально возможный срок службы.
Производители электродвигателей и генераторов
Требуется определить максимальную температуру, достигаемую при полной нагрузке.Для определения этой температуры используется температурный коэффициент медной обмотки. Сопротивление сначала измеряется при холодном двигателе или генераторе, то есть при температуре окружающей среды, затем блок работает с полной нагрузкой в течение определенного периода времени, а сопротивление измеряется снова. По изменению значения сопротивления можно определить внутреннюю температуру двигателя / генератора. Наши омметры также используются для измерения отдельных катушек обмотки двигателя, чтобы убедиться, что нет коротких или разомкнутых витков цепи и что каждая катушка сбалансирована.
Автомобильная промышленность
Требование к измерению сопротивления сварочных кабелей для роботов, чтобы гарантировать, что качество сварки не ухудшается, т.
Производители предохранителей
Для контроля качества, измерения сопротивления соединений на самолетах и военных транспортных средствах необходимо обеспечить, чтобы все оборудование, установленное на самолетах, было электрически подключено к раме, включая оборудование камбуза.Те же требования предъявляются к танкам и другой военной технике.
Как измерить сопротивление и как определить сопротивление?
I Введение
Существует множество способов измерения сопротивления: омметр, вольт-ампер, вольт-вольт, ампер-ампер, мост, подстановка, сравнение, полувеличина отклонения и так далее. Независимо от метода, экспериментальный принцип — это не что иное, как закон Ома частичной цепи и закон Ома замкнутой цепи, а также основной закон последовательной и параллельной цепей.Измерение каждой физической величины должно быть гибким в применении.
Измерение сопротивления цифровым мультиметром
Каталог
II Измерение сопротивления с помощью омметра
2.1 Устройство и принцип действия омметра
Его схема показана на рисунке ниже. Он состоит из трех компонентов: G — амперметр с внутренним сопротивлением Rg и полным током смещения Ig .R — это переменный резистор, также называемый резистором с регулировкой нуля. Батарея имеет электродвижущую силу E и внутреннее сопротивление r .
Принцип действия омметра выполнен по закону Ома замкнутой цепи. Когда красный и черный тестовые ручки подключены к проверяемому сопротивлению Rx, здесь можно получить согласно закону Ома замкнутой цепи:
R, Rg и r — резисторы с фиксированным номиналом
Существует взаимно однозначная функциональная связь между током I и измеряемым сопротивлением Rx, поэтому цель измерения сопротивления может быть достигнута путем измерения тока.Отметьте непосредственно на шкале значение сопротивления Rx, соответствующее току I. Значение сопротивления измеренного сопротивления можно прочитать прямо с шкалы. Поскольку I и Rx нелинейны, масштаб не является однородным, а поскольку это вычитающая функция, направление масштабирования противоположно текущему диапазону.
Рисунок 1. Схема омметра
2.2 Измерение M ethod и S teps
1) Механическая регулировка нуля: проверьте, останавливается ли стрелка многоцелевого счетчика электроэнергии на нулевой шкале шкалы.Если он не указывает на ноль, можно использовать небольшую отвертку, чтобы повернуть установочный винт, чтобы указатель указывал на нулевую шкалу левого тока.
2) Выберите правильную передачу: поскольку среднее сопротивление омметра составляет десятки Ом, а датчик омметра используется для измерения сопротивления, когда указатель указывает на центральное показание, является более точным, поэтому выбранное соотношение составляет один порядок величина меньше расчетного значения измеряемого сопротивления.
3) Нулевой омметр: замкните накоротко красную и черную измерительную ручку.Отрегулируйте ручку нулевого сопротивления так, чтобы указатель указывал на нулевую шкалу омметра. Если кнопку «Ом ноль» все-таки не удается повернуть вправо, батарею в счетчике следует заменить.
4) Измерение: прижмите ручку счетчика к обоим концам измеряемого сопротивления. Если указатель находится близко к центру, номер стрелки счетчика умножается на коэффициент, который является значением сопротивления измеряемого сопротивления. Если указатель находится близко к левому и правому концам, можно выбрать соответствующий множитель и сбросить его до нуля в соответствии с правилом «большой диапазон и большое отклонение угла, малый диапазон и небольшое отклонение угла».Выполните шаги 3 и 4.
5) После того, как универсальный счетчик израсходован, установите переключатель выбора в положение «ВЫКЛ.» Или самое высокое напряжение переменного напряжения и вытащите счетчик и ручку.
2.3 Примечания
① При измерении сопротивления установите переключатель в положение Ом .
② Выберите соответствующий механизм увеличения так, чтобы стрелка находилась на ближе к середине шкалы .
③ Обнуление ома необходимо сбрасывать после каждого переключения передачи.
④ Перед измерением сопротивления измеряемое сопротивление должно быть отключено от других цепей.
⑤ Не держите металлических частей двух измерительных проводов обеими руками, чтобы одновременно измерить сопротивление.
⑥ При измерении сопротивления, если стрелка находится справа, измерение следует изменить на , более высокую передачу ; если указатель находится над левым уголком, измерение следует изменить на , а на более низкую передачу .
⑦ После измерения сопротивления вытащите измерительные провода и установите переключатель в положение OFF или максимальное напряжение переменного тока.
II I Вольт-амперный метод
3.1 Определение и принцип
Вольт-амперный метод (также известный как вольт-амперный метод, метод измерения ампер) является распространенным методом измерения сопротивления. используя закон Ома для частичной цепи: R = U / I для измерения значения сопротивления.С помощью амперметра измерьте ток через неизвестный резистор при этом напряжении, а затем вычислите сопротивление неизвестного резистора. Измерение вольт-амперного сопротивления — это распространенный метод прямого измерения сопротивления проводника с помощью амперметра и вольтметра. Его можно условно разделить на два типа: взаимосвязанные и внешние.
3.2 Эксплуатация S teps для M измерение R Сопротивление V olt-ampere M ethod
900 Connect
а.Выбрать электросчетчик подходящего диапазона — скользящий реостат;
г. Выберите схему частичного ограничения напряжения или тока;
г. Определите, подключаться ли внутреннее или внешнее;
г. Подключите схему;
(2) Эксплуатация
Отрегулируйте скользящий реостат, поочередно снимите показания амперметра и вольтметра и запишите таблицу.
(3) Обработка данных
Метод А . Рассчитайте каждое сопротивление математическим расчетом, а затем вычислите среднее значение, чтобы получить значение сопротивления.
Метод B . Путем записи показаний I и U соответственно на координатной бумаге и определения координатной оси u-I значение сопротивления R было определено путем расчета наклона.
3.3 Выбор E lectricity M eter и S liding R heostat
- Основа для выбора скользящего реостата — напряжение то есть попробуйте использовать скользящий реостат с меньшим общим сопротивлением.
- Когда максимальное сопротивление скользящего реостата примерно равно сопротивлению измеряемого резистора, необходимо выбрать схему делителя напряжения.
- При измерении с помощью вольтметра (амперметра) необходимо убедиться, что измеряемые данные не могут превышать максимальное значение измерения вольтметра (амперметра), а второе — обеспечить максимальную точность измерения с целью обеспечения безопасности прибора. вольтметр (амперметр), поэтому в соответствии с величиной измеряемого напряжения (тока) выбирается диапазон работы вольтметра (амперметра).
- При измерении максимальное измеренное значение амперметра или вольтметра должно быть выше фактического значения тестируемой цепи, иначе легко выйдет из строя амперметр или вольтметр; но если оно намного выше, чем фактическое значение тестируемой цепи, ошибка чтения будет очень большой. На примере стрелочного прибора угол поворота ограничен. При измерении той же цепи, чем больше фактическое максимальное значение измерения амперметра или вольтметра выше, чем фактическое значение цепи, тем меньше амплитуда качания указателя, поэтому ошибка считывания будет больше.
3.4 Выбор В напряжения D ivider и C тока L имитируя C характеристики схемы
10002 ограничения тока и ограничения тока деление напряжения
Принципиальная схема:
Рисунок 2. Отдел ограничения тока и напряжения
Скользящая головка перемещается от a к b Диапазон изменения напряжения на R0 (установить r = 0)
Рисунок 3.Диапазон изменения напряжения
Когда электрический ключ включен, начальное положение скользящей головки в обеих цепях должно быть в конце.
(2) Метод выбора
① Способ подключения с ограничением тока (обычно)
- Ток и напряжение могут достигать необходимого диапазона регулировки
- Не выходите за пределы диапазона измерительного прибора
- Не превышайте максимальный ток, разрешенный каждым компонентом
②Метод раздельного подключения давления (три особых условия)
а.Напряжение или ток в части цепи должны плавно регулироваться от нуля.
б. Независимо от того, как отрегулировать скользящий реостат при использовании метода подключения с ограничением тока, ток (напряжение) в цепи будет превышать диапазон счетчика или максимальный ток, разрешенный компонентом.
c. Сопротивление электрического прибора намного больше, чем сопротивление скользящего реостата, что не способствует измерению и получению нескольких наборов данных.
3.5 Выбор из I внутренний C подключение M этод и E внешний C подключение
Метод выбора
- При выборе внешнего метода вольтметр и сопротивление подключаются параллельно. Показания вольтметра — это напряжение на сопротивлении, но амперметр измеряет общий ток через сопротивление и вольтметр, поэтому измеренное значение меньше истинного значения, фактическое измеренное сопротивление. Значение представляет собой сопротивление сопротивления и сопротивление параллельно в вольтметре.Если значение сопротивления намного меньше внутреннего сопротивления вольтметра, ток, деленный на вольтметр, очень мал, тогда ток, измеренный амперметром, близок к току через резистор, поэтому внешний метод подходит для измерение малого сопротивления.
- Когда выбран метод внутреннего подключения, амперметр подключается последовательно с сопротивлением. Показание амперметра — это текущее значение сопротивления, но вольтметр измеряет общее напряжение сопротивления и амперметра, поэтому измеренное значение больше истинного.Общее значение сопротивления последовательно с сопротивлением в амперметре. Если значение сопротивления намного больше, чем внутреннее сопротивление амперметра, напряжение, деленное на амперметр, очень мало, тогда напряжение, измеренное вольтметром, близко к напряжению на резисторе, поэтому подходит метод внутреннего подключения для измерения большого сопротивления.
- Принципиальные схемы токоограничения и деления напряжения, внутреннего и внешнего подключения
Рисунок 4.Взаимосвязанная и внешняя цепь
IV Electric M eter H alf-bias M ethod for M easuring R
У измерителя есть свой волшебный аспект — когда он подключен к цепи, он может отображать собственное показание, поэтому мы можем использовать его собственные изменения показаний (например, полусмещение), чтобы умело измерить его внутреннее сопротивление. Метод полусмещения часто используется для измерения внутреннего сопротивления электросчетчика.Для метода полусмещения для измерения внутреннего сопротивления измерителя существуют следующие два метода настройки: 4.1 Амперметр H alf-bias M ethod
(1) Экспериментальный шаги
① Подключите экспериментальную схему, как показано на рисунке;
② Откройте S 2 , закройте S 1 , отрегулируйте R 1 , сделайте показание амперметра равным его диапазону I м ;
③ Оставить R 1 без изменений, закрыть S 2 , отрегулировать R 2 так, чтобы показание амперметра было равно I m, а затем показало стоимость R 2 .Если R 1 ≫ R A удовлетворяется, то R A = R 2 .
(2) Условия эксперимента: R 1 ≫ R A
(3) Результат измерения: R A измерено = R 2 < R A
(4) Анализ ошибок
Когда S 2 замкнут, общее сопротивление уменьшается, а общий ток увеличивается, что превышает полный ток смещения исходного амперметра.В это время амперметр находится в полусмещенном состоянии, поэтому ток, протекающий через R 2 , больше, чем ток в ветви, где расположен амперметр. Сопротивление R 2 больше, чем у амперметра. Сопротивление мало, и мы считаем показание R 2 внутренним сопротивлением амперметра, поэтому измеренное внутреннее сопротивление амперметра слишком мало.
4,2 Вольтметр H alf-bias M ethod
(1) Экспериментальные шаги
Рисунок 5.Вольтметр Метод полусмещения
① Подключите экспериментальную схему, как показано на рисунке;
② Установите значение R 2 на ноль, замкните S, отрегулируйте скользящий контакт R 1 так, чтобы показание вольтметра было равно его диапазону U м ;
③ Удерживая скользящий контакт R1 неподвижным, отрегулируйте R2 так, чтобы показание вольтметра было равным 2 (1) U м , а затем считайте значение R 2 .Если R 1 ≪ R V , R V = R 2 .
(2) Условия эксперимента: R 1 ≪ R V
(3) Результат измерения: R V измерено = R 2 > R V
(4) Анализ ошибок
Когда значение R2 постепенно увеличивается от нуля, напряжение на R2 и вольтметр также будет постепенно увеличиваться, поэтому, когда показание вольтметра равно Um, напряжение на R2 будет больше, чем Um, в результате чего R2> RV, в результате измерение RV Значение слишком велико.Очевидно, что метод напряжения полусмещения подходит для измерения сопротивления вольтметра с большим внутренним сопротивлением.
В Несколько специальных методов измерения сопротивления
5.1 Метод A-A и метод V-V
Принцип эксперимента
1. Метод A-A (метод разности амперметра)
(1) Как показано на рисунке a, два амперметра подключены параллельно, и внутреннее сопротивление r 1 (или r 2 ) амперметра A 1 (или A 2 ) получается из I. 1 r 1 = I 2 r 2
(2) Как показано на рисунке b, амперметр A 1 подключается параллельно резистору фиксированного значения R 0 , а затем последовательно с амперметром A 2 . Согласно I 1 r 1 = ( I 2 — I 1 ) R 0 , внутреннее сопротивление r 1 1 Получается 1 (этот метод еще называют методом разности амперметра для измерения внутреннего сопротивления амперметра).
2. Метод V-V (метод разности вольтметров)
(1) Как показано на рисунке C, два вольтметра соединены последовательно, и в соответствии с r1 (U1) = r2 (U2) получается внутреннее сопротивление вольтметра V1 (или V2).
(2) Как показано на рисунке D, вольтметр V1 соединен последовательно с резистором фиксированного значения R 0 , а затем подключен параллельно вольтметру V2. По U 2 = U 1 + r1 (U1) R 0 получается внутреннее сопротивление вольтметра V1 (этот метод также называется разностным методом вольтметра для измерения вольтметра Внутреннее сопротивление ).
Метод анализа
Метод
Схема
Условия эксперимента
Результат эксперимента
Метод A-A
Рисунок
①Полные напряжения смещения A1 и A2 равны или почти одинаковы
② r 1 или r 2 известно
r 1 = I1 (I2) r 2 или r 2 = I2 (I1) r 1
Рисунок b
①Диапазон A1 больше диапазона A1
② R 0 известно
r 1 = I1 ((I2 - I1) R0)
Метод V-V
Рисунок c
①Полные токи смещения V1 и V2 равны или почти одинаковы
② r 1 или r 2 известно
r 1 = U2 (U1) r 2 或 r 2 = U1 (U2) r 1
Фигурка d
①Диапазон V2 больше, чем диапазон V1
② R 0 известно
r 1 = U2 - U1 (U1) R 0
5.2 Метод расчета по формуле
Он в основном применяет характеристики последовательно-параллельной цепи и знания всей цепи для анализа и расчета значения сопротивления, которое необходимо измерить. На рисунке 18 представлена схема измерения сопротивления Rx. Rx — сопротивление, которое необходимо измерить, R — защитное сопротивление, и его значение сопротивления неизвестно. R1 — известное фиксированное сопротивление. Электродвижущая сила источника питания неизвестна. S1 и S2 — однополюсные двухпозиционные переключатели.A — измеритель тока без внутреннего сопротивления.
Рисунок 6. Метод расчета формулы
(1) Измерение Rx: S2 замыкается на d, S1 замыкается на a, и записывают показание амперметра I1; затем S2 замыкается на c, S1 замыкается на b и записывает показание амперметра I2.
(2) Формула для расчета Rx составляет
:
Когда S2 подключен к d, а S1 подключен к a, напряжение Rx равно: Ux = I1Rx.
Когда S2 подключен к c, а S1 подключен к b, напряжение U1 = I2R2 на R1 не изменяет сопротивление R, Ux = U1
Итак, I1Rx = I2R1
Так
5.3 Сопротивление M Измерение E quivalent R Замена M ethod
[Интерпретация метода] Эквивалент при измерении сопротивления (при замене метода измерения сопротивления: внутреннее сопротивление амперметра или вольтметра), замените измеряемое сопротивление коробкой сопротивлений, если они одинаково влияют на цепь (например, равный ток или напряжение)), проверяемое сопротивление эквивалентно сопротивлению коробка.
(1) Текущий эквивалент замены
Экспериментальные шаги этого метода следующие:
① Подключите цепь, как показано на принципиальной схеме, и отрегулируйте сопротивление коробки сопротивлений R 0 до максимума, а ползунок P скользящего варистора разместите на конце a .
Рисунок7. Текущий метод замены
② Замкните переключатели S 1 и S 2 , отрегулируйте ползун P так, чтобы указатель амперметра находился в правильном положении, и обратите внимание, что показание амперметра в это время составляет I .
③ Разомкните переключатель S 2 , а затем замкните переключатель S 3 , сохраняя положение ползунка реостата P неизменным, отрегулируйте коробку сопротивления так, чтобы показание амперметра оставалось I .
④ В это время значение сопротивления R 0 блока сопротивлений, подключенного к цепи, эквивалентно значению сопротивления неизвестного резистора R x , то есть R x = R 0 .
(2) Эквивалентная замена напряжения
Экспериментальные шаги этого метода следующие:
Рисунок 8. Эквивалентная замена напряжения
① Подключите цепь, как показано на принципиальной схеме, и отрегулируйте значение сопротивления коробки сопротивлений R 0 до максимума, а ползунок P скользящего реостата поместите на конец и .
② Замкните переключатели S 1 и S 2 , отрегулируйте ползун P так, чтобы указатель вольтметра находился в правильном положении, и запишите показания вольтметра как U в это время.
③ Откройте S 2 , а затем закройте S 3 , сохраняя положение скользящего ползунка реостата P неизменным, регулируя коробку сопротивления так, чтобы показание вольтметра оставалось U .
④ В это время значение сопротивления R 0 блока сопротивлений, подключенного к цепи, эквивалентно значению сопротивления неизвестного резистора R x , то есть R x = R 0 .
5.4 Измерение сопротивления с помощью мостовой схемы
(1) Принцип:
Схема, показанная на рисунке ниже, называется мостовой схемой. Обычно через гальванометр протекает ток, но при соблюдении определенного условия ток через гальванометр не течет. В этом случае это называется мостовым балансом. Когда мост сбалансирован, два потенциала A и B равны, поэтому структуру схемы можно рассматривать как: R1R2 и R3R4 соединены последовательно, а затем соединены параллельно; или R1R3 и R2R4 соединяются параллельно, а затем соединяются последовательно.
Рисунок 9. Мостовая схема
условие баланса моста: R1 × R4 = R2 × R3
(2) Метод измерения:
Как показано на рисунке 20, подключите цепи, возьмите R1, R2 в качестве резистора с фиксированным значением, R3 — это блок переменного сопротивления (может напрямую считывать значение), а Rx — это сопротивление, которое необходимо проверить. Отрегулируйте R3 так, чтобы показание амперметра было равно нулю, и примените условие равновесия, чтобы получить значение Rx.
Примечание: Следует обратить внимание на два момента при измерении сопротивления мостовым методом.Один из них — уточнить структуру схемы. В схеме последовательно соединены четыре резистора по два на два, затем в средней цепочке подключается амперметр, затем часть последовательного амперметра — «Мост», вторая — для уточнения условий баланса электрического моста.
В I Методы обнаружения различных резисторов
(1) Обнаружение постоянного резистора
① Фактическое значение сопротивления можно определить, подключив два тестовых стержня (не положительных или отрицательных) к двум концам резистора.Для повышения точности измерения диапазон следует выбирать в соответствии с номинальным значением измеряемого сопротивления. Из-за нелинейной зависимости омической шкалы ее средняя часть более мелкая. Следовательно, значение индикации указателя должно быть уменьшено до средней части шкалы, насколько это возможно, в диапазоне 20% -80% радиан в начале полной шкалы, чтобы сделать измерение более точным. Он варьируется в зависимости от уровня ошибки сопротивления. Ошибки между показаниями и номинальным сопротивлением могут составлять (+ 5%), (+ 10%) или (+ 20%) соответственно.Если нет, то выход за пределы диапазона ошибок означает, что значение сопротивления изменилось.
②Примечание: во время тестирования, особенно при измерении сопротивлений со значениями сопротивления более десятков кОм, не касайтесь токопроводящих частей пера и резисторов; обнаруженное сопротивление припаяно к цепи, по крайней мере одна головка должна быть припаяна, чтобы избежать других компонентов в цепи. Это влияет на тест и вызывает ошибку измерения. Хотя сопротивление цветного кольцевого резистора можно определить по метке цветного круга, при его использовании лучше проверять фактическое значение сопротивления с помощью мультиметра.
Связанное сообщение : Чип фиксированные резисторы
(2) Обнаружение цементного резистора
Метод и меры предосторожности при испытании сопротивления цемента точно такие же, как и при испытании обычных постоянных резисторов.
Связанное сообщение : Вы можете узнать больше о цементных резисторах в другой статье о типах резисторов.
(3) Обнаружение резистора предохранителя
В схеме, когда плавкий предохранительный резистор расплавлен и отсоединен, об этом можно судить по опыту: если поверхность предохранительного резистора окажется черной или обгоревшей, можно сделать вывод, что его нагрузка слишком велика, и ток, проходящий через него, многократно превышает номинальное значение; если поверхность открыта без каких-либо следов, это означает, что протекающий ток просто равен или немного больше, чем его номинальное значение обдува.Оценка плавкого резистора без следов на поверхности может быть измерена шестерней Rx1 мультиметра. Чтобы обеспечить точность измерения, один конец предохранительного резистора следует припаять к цепи. Если измеренное сопротивление бесконечно, это означает, что в предохранительном резисторе вышел из строя разрыв цепи. Если измеренное значение сопротивления далеко от номинального значения, это означает, что значение сопротивления не подходит для повторного использования. При техническом обслуживании обнаруживается, что есть также несколько перегоревших резисторов, которые закорочены в цепи, поэтому на обнаружение следует обратить внимание.
Рисунок 10. Омметр
(4) Обнаружение потенциометра
При проверке потенциометра сначала поверните ручку, чтобы увидеть, плавно ли вращается ручка, является ли переключатель гибким, слышен ли звук щелчка при включении или выключении переключателя, и послушайте внутренний контакт. точка потенциометра и трение корпуса резистора. Если слышен «шелестящий» звук, значит качество плохое.При проверке с помощью мультиметра сначала выберите соответствующее положение электрической блокировки мультиметра в соответствии с сопротивлением проверяемого потенциометра, а затем выполните обнаружение следующим образом.
①Используйте омическую шестерню мультиметра для определения концов «1» и «2». Показание должно соответствовать номинальному сопротивлению потенциометра. Если стрелка мультиметра не двигается или значение сопротивления другое, это свидетельствует о повреждении потенциометра.
②Проверьте, находится ли подвижный рычаг потенциометра в хорошем контакте с резистором.Обнаружение концов «1», «2» (или «2», «3») с помощью омической шестерни мультиметра и поворот оси потенциометра против часовой стрелки в положение, близкое к кнопке «выключено», меньшее значение сопротивления, тем лучше.
(5) Обнаружение термистора с положительным температурным коэффициентом
①Обнаружение комнатной температуры (температура в помещении близка к 25 ℃): измеряется фактическое значение сопротивления двух контактов, контактирующих с термистором PTC, и по сравнению с номинальным значением сопротивления разница между ними нормальная в пределах ± 2 Ом.Если фактическое значение сопротивления слишком отличается от номинального значения сопротивления, характеристики фактического значения сопротивления плохие или повреждены.
② Обнаружение нагрева: на основе теста нормальной температуры может быть проведен второй этап обнаружения теста-нагрева, и источник тепла (например, электрический паяльник) может быть нагрет рядом с термистором PTC. В то же время мультиметр используется для отслеживания увеличения значения сопротивления с повышением температуры. Если термистор исправен и значение сопротивления не меняется, это означает, что его характеристики ухудшаются и его нельзя использовать в дальнейшем.Будьте осторожны, чтобы не держать источник тепла слишком близко или непосредственно в контакте с термистором PTC, чтобы предотвратить его возгорание.
(6) Обнаружение термистора с отрицательным температурным коэффициентом
① Метод измерения термистора NTC с помощью мультиметра такой же, как и метод измерения обычного постоянного резистора, то есть фактическое значение Rt может быть измерено напрямую путем выбора соответствующего электрического барьера в соответствии с номинальным значением сопротивления NTC. термистор.Однако, поскольку термистор NTC очень чувствителен к температуре, при испытании следует обратить внимание на следующие моменты:
- Rt измеряется производителем при температуре окружающей среды 25 ° C. Следовательно, при измерении Rt с помощью мультиметра его также следует проводить при температуре окружающей среды, близкой к 25 ° C, чтобы гарантировать надежность испытания.
- Измеренная мощность не должна превышать указанное значение, чтобы избежать ошибок измерения, вызванных текущими тепловыми эффектами.
- Обратите внимание на правильность работы: при тестировании не держите корпус термистора руками, чтобы температура тела не влияла на тест.
②Сначала измеряется значение сопротивления Rt1 при комнатной температуре t1, затем электрический утюг используется в качестве источника тепла, а значение сопротивления RT2 измеряется рядом с термистором Rt. При этом средняя температура t2 поверхности термистора RT измеряется термометром.
(7) Обнаружение варистора
Установите мультиметр на передачу 10K и подсоедините перо к обоим концам резистора. Мультиметр должен показывать значение сопротивления, указанное на варисторе. Если значение превышает это значение, это означает, что варистор поврежден.
Варистор может быть изменен с МОм (мегаом) на мОм (миллиом) при увеличении приложенного к нему напряжения. Когда напряжение низкое, варистор работает в области тока утечки, показывает большое сопротивление, а ток утечки невелик.Когда напряжение возрастает до нелинейной области, ток изменяется в относительно большом диапазоне, и напряжение не меняется сильно. Обладает лучшими характеристиками ограничения напряжения; напряжение снова возрастает, и варистор входит в область насыщения, показывая небольшое линейное сопротивление. Из-за большого тока и длительного времени варистор перегреется и сгорит или даже лопнет.
(8) Обнаружение фоторезистора
①Чёрная световая пленка закрывает светопропускающее окно фоторезистора.В это время стрелка мультиметра в основном держится, а сопротивление приближается к бесконечности. Чем больше значение, тем лучше характеристики фоторезистора. Если это значение мало или близко к нулю, фоторезистор сгорел и больше не может использоваться.
②Источник света совмещен со светопропускающим окном фоторезистора, стрелка мультиметра должна иметь большой размах амплитуды, а значение сопротивления значительно снижается. Чем меньше значение, тем лучше характеристики фоторезистора.Если значение велико или бесконечно, это указывает на то, что обрыв цепи фоторезистора поврежден и его больше нельзя использовать.
③Окно приема света фоторезистора совмещено с падающим светом, и небольшая черная бумага встряхивается на верхней части светозащитного окна фоторезистора, чтобы периодически принимать свет. В это время стрелка мультиметра должна качаться влево и вправо при встряхивании черной бумаги. Если стрелка мультиметра всегда останавливается в определенном положении и не колеблется при тряске бумаги, это означает, что светочувствительный материал фоторезистора поврежден.
Вопрос:
Для моста Уитстона с внешним напряжением V, моста сопротивления с сопротивлениями P, Q, R, S и гальванометра G. Каково состояние балансировки моста?
a) P⁄Q = S⁄R
b) P⁄S = R⁄Q
c) P = R⁄Q
d) S = R⁄Q
Ответ:
Пояснение: Мост Уитстона считается сбалансированным, если гальванометр показывает нулевое отклонение, т.е. нулевой ток, протекающий по этому пути.
Использование мультиметра, вольтметра, амперметра и омметра
Что такое мультиметр? Мультиметр — это инструмент, способный измерять два или более электрических параметра.Почти все они способны измерять напряжение, силу тока и сопротивление. Раньше счетчики могли измерять только один тип электрических величин, поэтому человеку приходилось носить с собой счетчик для каждой единицы, которую он должен был измерить. Более поздние измерители были разработаны с поворотным переключателем, чтобы они могли измерять несколько единиц стоимости, отсюда и термин мультиметр.
В чем разница между мультиметром, вольтметром, амперметром и омметром? В наше время эти термины используются как синонимы, и все они относятся к мультиметру.Вольтметры измеряют напряжение, амперметры измеряют токи, омметры измеряют сопротивление, а мультиметры измеряют комбинацию двух или более из них.
A аналоговые счетчики, устарели?
Аналоговый измеритель перемещает стрелку по шкале. Аналоговые мультиметры с переключаемым диапазоном очень дешевы, но новичкам сложно читать их точно, особенно на шкалах сопротивления. Движение глюкометра тонкое, и его падение может повредить его!
У каждого типа счетчиков есть свои преимущества.Цифровой измеритель, используемый в качестве вольтметра, обычно лучше, потому что его сопротивление намного выше, 1 МОм или 10 МОм, по сравнению с 200 Ом для аналогового мультиметра в аналогичном диапазоне. С другой стороны, легче следить за медленно меняющимся напряжением, наблюдая за стрелкой на аналоговом дисплее.
Аналоговый мультиметр, используемый в качестве амперметра, имеет очень низкое сопротивление и очень чувствителен, со шкалой до 50 мкА. Более дорогие цифровые мультиметры могут сравняться или даже лучше.
Аналоговые счетчики все еще находят применение в некоторых приложениях, однако новичку или даже опытному электрику я бы порекомендовал цифровой счетчик, поэтому аналоговых счетчиков здесь вы не найдете.
Использование мультиметра для измерения силы тока, напряжения и сопротивления
Прежде чем подробно описывать мультиметры, важно иметь четкое представление о том, как счетчики соединяются в цепи.
Измерительные амперы. На схемах A, и B ниже показана схема до и после подключения амперметра:
А
Б
Для измерения тока цепь должна быть разомкнута, чтобы амперметр
можно было подключить последовательно
Амперметры должны иметь НИЗКОЕ сопротивление
Подумайте об изменениях, которые необходимо внести в практическую схему, чтобы включить в нее амперметр.Для начала нужно разомкнуть цепь , чтобы амперметр можно было подключить последовательно. Весь ток, протекающий в цепи, должен проходить через амперметр. Измерители не должны изменять поведение схемы, или, по крайней мере, незначительно, и из этого следует, что амперметр должен иметь очень НИЗКОЕ сопротивление.
Измерение напряжения. Схема C показывает ту же схему после подключения вольтметра:
А
Как работают счетчики с подвижной катушкой
Реклама
Криса Вудфорда.Последнее изменение: 2 ноября 2019 г.
Необходимо выследить проблему, скрывающуюся в
электрическая цепь?
Вам понадобится какой-нибудь измеритель, может быть, даже осциллограф. Большинство людей используют цифровые счетчики
в наши дни показания тока, напряжения и сопротивления на ЖК-дисплее
(их иногда называют твердотельными или электронными счетчиками). Но многие из нас
по-прежнему предпочитаю старый вид измерителя со стрелкой, которая отводит назад
и вперед на циферблате. Счетчики с подвижной катушкой, как их называют, все еще
широко используется во всех видах различного оборудования, начиная с самолета
от приборов из кабины до измерителей уровня звука (VU) в студиях звукозаписи.Давайте принимать
посмотрим, как они работают!
Фото: Типичный сильноточный амперметр на автомобильном зарядном устройстве. Это может указывать приблизительную величину тока до 6 ампер (А), хотя шкала не помечена достаточно точно для точных измерений.
Электричество создает магнетизм
Счетчики с подвижной спиралью работают аналогично электродвигателям.
Если вы знаете, как работает один из них, разобраться в счетчике несложно. В любом случае, давайте начнем с
начало.Если вы проведете электрический ток по металлическому проводу, вы создадите
магнитное поле вокруг провода одновременно. Ты не можешь
видите, но тем не менее он там — и вы можете заставить его сделать очень
интересные вещи. Поднеси компас к проводу, включи ток,
и вы увидите, как стрелка поворачивается, когда вы это делаете. Отключите ток
и игла снова вернется в исходное положение. Грубо говоря, это наука, работающая над измерителем с подвижной катушкой:
электрический ток, проходящий по проводу, создает магнитное поле, которое
заставляет иглу толкаться в сторону.Но как именно это происходит?
Анимация: наденьте на компас кусок провода и подключите его к батарее. Когда вы переключаетесь
на токе вокруг провода создается магнитное поле, заставляющее стрелку компаса двигаться. Обратный ток
стрелка компаса движется в противоположном направлении. Используйте более сильный ток, и стрелка компаса переместится дальше.
Этот эксперимент показывает, что электрические токи создают магнитные поля, и он был впервые проведен датским физиком.
Ганс Эрстед в 1820 году.Это фундаментальная наука, лежащая в основе счетчиков с подвижной катушкой.
Внутри счетчика плотный моток медной проволоки, намотанный
вокруг железного сердечника, устанавливается между полюсами постоянного
магнит. Катушка имеет соединения на обоих концах, так что вы можете
через него проходит электрический ток, и к нему прикреплен длинный указатель
который проходит через шкалу счетчика. Когда вы подключаете счетчик к
цепь и включите ток, ток создает магнитное
поле в катушке. Поле отталкивает магнитное поле, создаваемое
постоянный магнит, заставляющий катушку вращаться и поворачивающий указатель вверх
циферблат.Чем больше тока проходит через катушку, тем больше
магнитное поле, которое он создает, чем больше отталкивание, тем больше
катушка поворачивается, и чем дальше вверх по шкале, тем выше идет стрелка. Итак
указатель показывает, сколько тока проходит через катушку.
При соответствующей калибровке вы можете использовать шкалу для непосредственного измерения силы тока.
Как работают счетчики с подвижной спиралью
- С отсоединенными зондами счетчик похож на цепь, разорванную разомкнутым переключателем: ток не может течь в счетчик или катушку внутри него.
- При отсутствии тока катушка не создает магнитного поля, и стрелка остается на нуле.
- Подключите измерительные щупы к чему-либо, что вы тестируете (например, к печатной плате), и ток немедленно начнет течь через измеритель и катушку внутри него.
- Движущийся ток создает временное магнитное поле вокруг катушки, которое отталкивает магнитное поле, создаваемое постоянным магнитом. Сила магнитного поля напрямую связана с величиной тока, протекающего через катушку.
- Чем больше ток, тем больше магнитное поле, создаваемое катушкой, и тем выше циферблат перемещается стрелкой.
Вкратце стоит отметить, что указатель действует как рычаг, увеличивая движение на
катушка и вызывает большее отклонение циферблата. Другими словами, если катушка перемещается только на незначительную величину, указатель переместится вверх по шкале на гораздо большую величину, которую легче измерить. Это помогает нам проводить более точные измерения.
Счетчики различных типов
Вы можете использовать измерители с подвижной катушкой для измерения напряжения, тока или сопротивления, но
в каждом случае вы должны соединять их по-разному.
Вольтметры
Для измерения напряжения вы подключаете счетчик параллельно через
две точки контура, которые вы хотите измерить. Измерители напряжения называются, что неудивительно,
вольтметры.
Амперметры
Чтобы измерить ток, вы устанавливаете свой измеритель последовательно (вставляйте его прямо в тракт
цепь). Счетчики тока обычно называются амперметрами.
(поскольку они измеряются в амперах)
или гальванометры (по Луиджи Гальвани,
итальянец, который открыл электрический ток, заставляя лягушачьи лапы подергиваться).Если измеряются большие токи,
амперметрам обычно требуется дополнительное сопротивление, называемое шунтом.
установлены параллельно их клеммам. Большинство текущих потоков
через шунт, оставляя лишь небольшую часть, протекающую через
саму катушку счетчика (защищая механизм). Некоторые амперметры имеют
циферблаты на их коробке, чтобы вы могли измерить широкий диапазон различных
токи. Поворот диска эффективно переключает
сопротивление в измерительную цепь, с меньшими шунтами
(с меньшим сопротивлением) используются для измерения больших токов.
Фото: Измерители с подвижной катушкой, которые могут измерять как вольты, так и амперы, практически не изменились. Это вольт-амперметр с прямым считыванием, разработанный Эдвардом Уэстоном из Ньюарка, штат Нью-Джерси, и датируемый концом 19 века. Слева: вы можете видеть отдельные латунные разъемы для измерения вольт и ампер внизу и две шкалы вверху: верхняя шкала измеряет 0–150 вольт, а нижняя — 0–1,5 ампер. Справа: крупный план движущейся магнитной катушки.Фото любезно предоставлено
Цифровые коллекции Национального института стандартов и технологий, Гейтерсбург, Мэриленд 20899.
Как работает шунт?
Изображение: амперметр (A) — это чувствительный прибор, который измеряет только относительно небольшие токи. Если вы хотите измерить большие токи, вам нужно отвести большую их часть на «шунтирующий» резистор (Ω). Поскольку измеритель и шунт включены параллельно, у них одинаковое напряжение. Мы можем использовать это, чтобы рассчитать размер шунтирующего резистора, который нам нужен для измерения тока любой величины.
Есть максимальное количество тока, которое вы можете пропустить через счетчик с подвижной катушкой; если вы хотите измерить токи
чем это больше, вам нужно использовать шунт — резистор, который «шунтирует» большую часть тока по параллельной цепи.
С помощью закона Ома легко рассчитать, какой большой шунт вам нужен (V = I × R).
Предположим, у вас есть амперметр (показан здесь в виде круга с буквой A), который имеет внутреннее сопротивление 10 Ом (Ом), а его стрелка показывает максимальное значение (так называемое «отклонение полной шкалы» или FSD), когда через него протекает ток 10 миллиампер (мА) или 10/1000 А.Когда стрелка отклоняется на всю шкалу, закон Ома говорит нам, что напряжение на измерителе должно быть V = (10/1000) × 10 = 0,1 В (показано серой пунктирной линией).
Шунтирующий резистор (показан синим цветом и обозначен знаком Ω) и измеритель включены параллельно, поэтому напряжение на шунте должно быть таким же, как напряжение на измерителе (0,1 вольт).
Теперь предположим, что вы хотите измерить токи величиной до 2 А (чтобы измеритель показал отклонение на полную шкалу при 2 А). В этом случае через счетчик по-прежнему будет протекать 10 миллиампер (больше он не может) и подавляющее большинство тока (1990 миллиампер или 1.99 ампер) необходимо будет отвести через шунт.
Используя закон Ома второй раз, мы можем вычислить, что сопротивление шунта должно быть R = V / I = 0,1 / 1,99 = 0,05 Ом.
Обратите внимание, что сопротивление шунта намного ниже, чем сопротивление измерителя , поэтому большая часть тока проходит через него. Чем ниже сопротивление шунта по сравнению с сопротивлением счетчика, тем больше тока будет проходить через него. Поэтому, если вы хотите измерить еще большие токи, вам нужно будет использовать даже меньших шунтирующих сопротивления , чтобы отвести больший ток от чувствительного измерителя с подвижной катушкой.
Шунтирующие резисторы обычно имеют сопротивление менее 1 Ом, что намного меньше
чем обычные резисторы (которые измеряют от нескольких Ом до миллионов Ом или МОм). Вы часто слышите шунтирующие резисторы, называемые резисторами в миллиомах, и измеряемые таким же образом. Так, например, шунтирующий резистор 0,05 Ом может быть обозначен как 50 мОм (50 мОм).
Фото: Гальванометры имеют много общего с компасами, в которых также используется магнитная стрелка, движущаяся в магнитном поле.В этой ранней конструкции гальванометра 1880-х годов, запатентованной Исааком Чисхолмом в 1888 году, сходство очевидно: вместо современной стрелки и шкалы у нас есть стрелка компаса, которая вращается, когда вы подаете ток на два провода на фронт. Под иглой, в большом синем круглом ящике, находится электромагнит, к которому подключены провода. Вы можете узнать больше об этом измерителе в патенте США 390,067: Гальванометр. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.
Омметры
Сопротивление цепи можно измерить тремя способами.Вы можете использовать амперметр и
вольтметр для измерения силы тока и напряжения, а затем воспользуйтесь законом Ома. Или вы можете измерить
сопротивление за одну операцию с использованием немного другой конструкции
измерителя с подвижной катушкой, называемого омметром, который эффективно
амперметр с собственной встроенной батареей.
Батарея обеспечивает напряжение известного размера. Когда вы помещаете измерительные щупы через сопротивление
вы хотите измерить, замыкаете цепь и течет ток. В
метр измеряет величину этого тока, но
показывает это как сопротивление (циферблат откалиброван в омах на основе
фиксированное напряжение батареи внутри счетчика).Вы можете сделать больше
точные измерения сопротивления с помощью немного более сложного
Тип схемы называется мостом Уитстона.
Узнать больше
На этом сайте
На других сайтах
- Измерители с подвижной катушкой: больше о теории измерительных цепей и различиях между амперметрами, вольтметрами и омметрами с отличного сайта Hyperphysics.
- Измерения сопротивления: четкое объяснение различных способов измерения сопротивления, включая мост Уитстона.
Книги для старших читателей
- Электрические схемы Джеймса Уильяма Нильссона и Сьюзен А. Ридель. Prentice Hall, 2011. Давно установленное подробное руководство по схемам, в основном предназначенное для студентов, изучающих электротехнику и информатику.
- Введение в электрические схемы Ричарда Дорфа и Джеймса А. Свободы. Wiley, 2013. Еще один классический учебник по электротехнике, рассчитанный на аналогичную аудиторию.
Книги для младших читателей
Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты
статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.
Авторские права на текст © Крис Вудфорд 2009, 2018. Все права защищены. Полное уведомление об авторских правах и условиях использования.
Следуйте за нами
-
-
Сохранить или поделиться этой страницей
Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:
Цитировать эту страницу
Вудфорд, Крис.(2009/2018) Счетчики с подвижной спиралью. Получено с https://www.explainthatstuff.com/movingcoilmeters.html. [Доступ (укажите дату здесь)]
Больше на нашем сайте …
Калибровка амперметра, вольтметра и ваттметра с использованием потенциометра
Мы знаем, что напряжение, ток и мощность измеряются в вольтах, амперах, а для измерения этих параметров используются ваттметры, амперметры и ваттметры. Хотя эти измерительные приборы изготовлены с особой тщательностью, они все же могут давать показания ошибок на стороне клиента.Таким образом, эти инструменты откалиброваны, чтобы минимизировать ошибку. В этой статье мы объясним , как откалибровать вольтметр, амперметр и ваттметр с помощью потенциометра .
Прежде чем вдаваться в подробности, давайте сначала обсудим важную концепцию, используемую в этой статье.
Если у нас есть два источника напряжения одинакового значения, подключенные параллельно, как показано ниже, то между ними не будет тока. Это связано с тем, что потенциальные значения обоих источников одинаковы, и ни один из источников не может передавать заряд другому.Так что в схеме гальванометр не показывает никаких отклонений.
Мы будем использовать то же явление уравновешивания двух источников напряжения в процессе калибровки.
Калибровка потенциометра
На рисунке выше показана принципиальная схема для калибровки потенциометра.
На рисунке используется стандартный элемент с напряжением 1,50 В, который при нагрузке не вызывает колебаний напряжения даже в милливольтах. Такой стабильный источник необходим для безошибочной калибровки потенциометра.
Токопроводящая шкала точно масштабирована, чтобы избежать ошибок при измерении. Электропроводящая шкала также имеет гладкую поверхность с четко очерченными размерами для равномерного распределения сопротивления по всей ее длине.
Реостат предназначен для регулировки потока тока в контуре цепи, и, таким образом, мы можем регулировать падение напряжения на единицу длины по проводящей шкале. Сюда также подключается гальванометр для визуализации неисправности, которая возникает в случае протекания тока между стандартной петлей ячейки и проводящей петлей шкалы.Неизвестная ЭДС здесь подключена к гальванометру для измерения после калибровки потенциометра.
Рабочий:
Сначала включите питание и отрегулируйте реостат, чтобы позволить току в несколько сотен миллиампер течь по контуру основной цепи. Поскольку проводящая шкала также находится в основном контуре, через нее протекает тот же ток, что и вызывает падение напряжения. Хотя падение напряжения появляется на металлической шкале, она будет равномерно распределена по всему ее телу.
После появления падения напряжения по проводящей шкале, если мы возьмем скользящий контакт и переместимся по металлической шкале от нуля, то ток потечет из вторичной цепи в первичную из-за разбаланса цепи. И по мере того, как скользящий контакт перемещается дальше от нуля, величина этого тока уменьшается. Это связано с тем, что по мере увеличения площади контакта падение напряжения на масштабированной площади приближается к напряжению стандартной ячейки. Таким образом, в определенный момент падение напряжения на масштабируемой области будет равно напряжению стандартной ячейки, и в этот момент между двумя цепями не будет протекать ток.
Теперь, когда гальванометр подключен к вторичной цепи, он покажет отклонение на своем дисплее из-за протекания тока, и чем больше ток, тем больше отклонение. Исходя из этого, гальванометр не будет показывать отклонения только тогда, когда обе цепи сбалансированы, и это состояние, которого мы будем пытаться достичь при калибровке потенциометра.
Для лучшего понимания рассмотрим схему, показанную ниже, которая показывает состояние баланса.
Если принять сопротивление металлического контакта длиной от 0 до 100 см как «R», то падение напряжения на всем металлическом контакте длиной 100 см составит V = IR.Поскольку мы использовали симметричную схему , это падение напряжения «V» должно быть равно напряжению стандартной ячейки, и в показаниях гальванометра будет нулевое отклонение.
Теперь, измерив эту точную длину, на которой гальванометр показывает ноль, мы можем откалибровать шкалу потенциометра на основе стандартного значения напряжения элемента.
Таким образом, длина шкалы составляет 1 см = 1,5 В / 100 см = 0,005 В = 5 мВ.
Зная падение напряжения на сантиметр по шкале потенциометра, подключите неизвестное напряжение ко вторичной цепи и сдвиньте контакт, чтобы измерить длину, при которой у нас будет нулевое отклонение.Зная этот масштаб, на котором имеет место баланс, мы можем измерить значение неизвестной ЭДС как
.
V = (длина контакта) x (5 мВ).
Применение потенциометров
Помимо измерения неизвестного напряжения, потенциометр также можно использовать для измерения силы тока и мощности, для их измерения требуется всего лишь пара дополнительных компонентов.
Помимо измерения напряжения, тока и мощности, потенциометры в основном используются для калибровки вольтметров, амперметров и ваттметров .Кроме того, поскольку потенциометр является устройством постоянного тока, калибруемые инструменты должны быть типа подвижного железа постоянного тока или электродинамометра.
Калибровка вольтметра с помощью потенциометра
В схеме наиболее важным компонентом процесса калибровки является подходящий стабильный источник постоянного напряжения. Это связано с тем, что любые колебания напряжения питания вызовут ошибку в калибровке вольтметра, что приведет к полному провалу эксперимента.Таким образом, стандартный элемент напряжения со стабильным конечным значением берется в качестве источника и подключается параллельно с вольтметром, который необходимо откалибровать. Две потенциометры «RV1» и «RV2» используются для регулировки напряжения, которое должно появляться на вольтметре, как показано на рисунке.
Коробка соотношения напряжений также подключается параллельно вольтметру, чтобы разделить напряжение на вольтметре и получить соответствующее значение, подходящее для подключения потенциометра.
Со всей установкой мы готовы к проверке точности вольтметра .Итак, для начала просто подайте питание на схему, чтобы получить показания вольтметра и неизвестное напряжение на выходе коробки соотношения напряжений. Теперь мы будем использовать откалиброванный потенциометр для измерения этого неизвестного напряжения.
После получения показаний потенциометра проверьте, совпадают ли показания потенциометра с показаниями вольтметра. Поскольку потенциометр измеряет истинное значение напряжения, если показание потенциометра не совпадает с показанием вольтметра, то отображается отрицательная или положительная ошибка.А для коррекции можно построить калибровочную кривую с помощью показаний вольтметра и потенциометра.
Также для точности измерений необходимо, насколько это возможно, измерять напряжения вблизи максимального диапазона потенциометра.
Калибровка амперметра с помощью потенциометра
Как упоминалось выше, мы будем использовать подходящее стабильное напряжение питания постоянного тока, чтобы избежать ошибок при калибровке, которые не вызывают колебаний напряжения в течение всего эксперимента.Реостат используется для регулировки величины тока, протекающего по всей цепи. Кроме того, стандартное сопротивление «R» подходящего значения с достаточной допустимой нагрузкой по току подключается последовательно с амперметром (который находится в процессе калибровки) для получения параметра напряжения, который относится к току, протекающему в цепи.
Теперь, после включения питания, через всю цепь протекает ток «I», и с этим показанием тока будет генерироваться амперметр, присутствующий в контуре.Кроме того, из-за протекания тока на стандартном сопротивлении «R» произойдет падение напряжения.
Теперь мы воспользуемся потенциометром для измерения напряжения на стандартном резисторе, а затем воспользуемся законом Ома для вычисления тока через стандартное сопротивление.
То есть ток I = V / R
куда
V = напряжение на стандартном резисторе, измеренное потенциометром,
А R = сопротивление стандартного резистора.
Поскольку мы используем стандартный резистор, сопротивление будет точно известно, а напряжение на стандартном резисторе измеряется потенциометром.Рассчитанное значение будет точным значением тока, протекающего через контур. Затем сравните это рассчитанное значение с показаниями амперметра, чтобы проверить точность амперметра. Если есть какие-либо ошибки, мы можем внести необходимые корректировки в амперметр, чтобы исправить ошибки.
Калибровка ваттметра с помощью потенциометра
Как упоминалось выше, для точного процесса калибровки мы будем использовать два подходящих источника постоянного напряжения постоянного тока в качестве источников.Обычно источник низкого напряжения подключается последовательно к катушке тока ваттметра, а источник умеренного напряжения подключается к катушке потенциала ваттметра. Реостат в верхней цепи используется для регулировки величины тока, протекающего через токовую катушку, а регулировочный потенциометр в нижней цепи используется для регулировки напряжения на катушке потенциала.
Помните, что регулировочный потенциометр предпочтительнее для регулировки напряжения, а реостат предпочтительнее для регулировки тока в цепи.
Кроме того, стандартное сопротивление «R» подходящего значения и достаточной допустимой нагрузки по току помещается последовательно с токовой катушкой ваттметра. И это стандартное сопротивление будет вызывать падение напряжения на нем, когда ток течет в цепи катушки тока.
После включения питания мы получим два неизвестных значения напряжения, одно на выходе делителя напряжения, а другое на стандартном сопротивлении «R». Теперь, если для измерения напряжения на стандартном резисторе используется потенциометр, мы можем использовать закон Ома для расчета тока через стандартное сопротивление.Поскольку токовая катушка включена последовательно со стандартным сопротивлением, вычисленное значение также представляет ток, протекающий через токовую катушку. Аналогичным образом используйте потенциометр второй раз, чтобы измерить напряжение на катушке потенциала ваттметра.
Теперь, когда мы измерили ток через токовую катушку и напряжение на потенциальной катушке с помощью потенциометра, мы можем рассчитать мощность как
Мощность P = значение напряжения x текущее значение.
После расчета мы можем сравнить это рассчитанное значение с показаниями ваттметра, чтобы проверить наличие ошибок.Как только ошибки будут обнаружены, произведите необходимые настройки ваттметра, чтобы скорректировать ошибки.
Вот как можно использовать потенциометр для калибровки вольтметра, амперметра и ваттметра для получения точных показаний.
.
Метод выбора
- При выборе внешнего метода вольтметр и сопротивление подключаются параллельно. Показания вольтметра — это напряжение на сопротивлении, но амперметр измеряет общий ток через сопротивление и вольтметр, поэтому измеренное значение меньше истинного значения, фактическое измеренное сопротивление. Значение представляет собой сопротивление сопротивления и сопротивление параллельно в вольтметре.Если значение сопротивления намного меньше внутреннего сопротивления вольтметра, ток, деленный на вольтметр, очень мал, тогда ток, измеренный амперметром, близок к току через резистор, поэтому внешний метод подходит для измерение малого сопротивления.
- Когда выбран метод внутреннего подключения, амперметр подключается последовательно с сопротивлением. Показание амперметра — это текущее значение сопротивления, но вольтметр измеряет общее напряжение сопротивления и амперметра, поэтому измеренное значение больше истинного.Общее значение сопротивления последовательно с сопротивлением в амперметре. Если значение сопротивления намного больше, чем внутреннее сопротивление амперметра, напряжение, деленное на амперметр, очень мало, тогда напряжение, измеренное вольтметром, близко к напряжению на резисторе, поэтому подходит метод внутреннего подключения для измерения большого сопротивления.
- Принципиальные схемы токоограничения и деления напряжения, внутреннего и внешнего подключения
Рисунок 4.Взаимосвязанная и внешняя цепь
IV Electric M eter H alf-bias M ethod for M easuring R
У измерителя есть свой волшебный аспект — когда он подключен к цепи, он может отображать собственное показание, поэтому мы можем использовать его собственные изменения показаний (например, полусмещение), чтобы умело измерить его внутреннее сопротивление. Метод полусмещения часто используется для измерения внутреннего сопротивления электросчетчика.Для метода полусмещения для измерения внутреннего сопротивления измерителя существуют следующие два метода настройки: 4.1 Амперметр H alf-bias M ethod
(1) Экспериментальный шаги
① Подключите экспериментальную схему, как показано на рисунке;
② Откройте S 2 , закройте S 1 , отрегулируйте R 1 , сделайте показание амперметра равным его диапазону I м ;
③ Оставить R 1 без изменений, закрыть S 2 , отрегулировать R 2 так, чтобы показание амперметра было равно I m, а затем показало стоимость R 2 .Если R 1 ≫ R A удовлетворяется, то R A = R 2 .
(2) Условия эксперимента: R 1 ≫ R A
(3) Результат измерения: R A измерено = R 2 < R A
(4) Анализ ошибок
Когда S 2 замкнут, общее сопротивление уменьшается, а общий ток увеличивается, что превышает полный ток смещения исходного амперметра.В это время амперметр находится в полусмещенном состоянии, поэтому ток, протекающий через R 2 , больше, чем ток в ветви, где расположен амперметр. Сопротивление R 2 больше, чем у амперметра. Сопротивление мало, и мы считаем показание R 2 внутренним сопротивлением амперметра, поэтому измеренное внутреннее сопротивление амперметра слишком мало.
4,2 Вольтметр H alf-bias M ethod
(1) Экспериментальные шаги
Рисунок 5.Вольтметр Метод полусмещения
① Подключите экспериментальную схему, как показано на рисунке;
② Установите значение R 2 на ноль, замкните S, отрегулируйте скользящий контакт R 1 так, чтобы показание вольтметра было равно его диапазону U м ;
③ Удерживая скользящий контакт R1 неподвижным, отрегулируйте R2 так, чтобы показание вольтметра было равным 2 (1) U м , а затем считайте значение R 2 .Если R 1 ≪ R V , R V = R 2 .
(2) Условия эксперимента: R 1 ≪ R V
(3) Результат измерения: R V измерено = R 2 > R V
(4) Анализ ошибок
Когда значение R2 постепенно увеличивается от нуля, напряжение на R2 и вольтметр также будет постепенно увеличиваться, поэтому, когда показание вольтметра равно Um, напряжение на R2 будет больше, чем Um, в результате чего R2> RV, в результате измерение RV Значение слишком велико.Очевидно, что метод напряжения полусмещения подходит для измерения сопротивления вольтметра с большим внутренним сопротивлением.
В Несколько специальных методов измерения сопротивления
5.1 Метод A-A и метод V-V
Принцип эксперимента |
1. Метод A-A (метод разности амперметра) (1) Как показано на рисунке a, два амперметра подключены параллельно, и внутреннее сопротивление r 1 (или r 2 ) амперметра A 1 (или A 2 ) получается из I. 1 r 1 = I 2 r 2 (2) Как показано на рисунке b, амперметр A 1 подключается параллельно резистору фиксированного значения R 0 , а затем последовательно с амперметром A 2 . Согласно I 1 r 1 = ( I 2 — I 1 ) R 0 , внутреннее сопротивление r 1 1 Получается 1 (этот метод еще называют методом разности амперметра для измерения внутреннего сопротивления амперметра). 2. Метод V-V (метод разности вольтметров) (1) Как показано на рисунке C, два вольтметра соединены последовательно, и в соответствии с r1 (U1) = r2 (U2) получается внутреннее сопротивление вольтметра V1 (или V2). (2) Как показано на рисунке D, вольтметр V1 соединен последовательно с резистором фиксированного значения R 0 , а затем подключен параллельно вольтметру V2. По U 2 = U 1 + r1 (U1) R 0 получается внутреннее сопротивление вольтметра V1 (этот метод также называется разностным методом вольтметра для измерения вольтметра Внутреннее сопротивление ).
|
||||||||||||||||||
Метод анализа |
|
5.2 Метод расчета по формуле
Он в основном применяет характеристики последовательно-параллельной цепи и знания всей цепи для анализа и расчета значения сопротивления, которое необходимо измерить. На рисунке 18 представлена схема измерения сопротивления Rx. Rx — сопротивление, которое необходимо измерить, R — защитное сопротивление, и его значение сопротивления неизвестно. R1 — известное фиксированное сопротивление. Электродвижущая сила источника питания неизвестна. S1 и S2 — однополюсные двухпозиционные переключатели.A — измеритель тока без внутреннего сопротивления.
Рисунок 6. Метод расчета формулы
(1) Измерение Rx: S2 замыкается на d, S1 замыкается на a, и записывают показание амперметра I1; затем S2 замыкается на c, S1 замыкается на b и записывает показание амперметра I2.
(2) Формула для расчета Rx составляет
:
Когда S2 подключен к d, а S1 подключен к a, напряжение Rx равно: Ux = I1Rx.
Когда S2 подключен к c, а S1 подключен к b, напряжение U1 = I2R2 на R1 не изменяет сопротивление R, Ux = U1
Итак, I1Rx = I2R1
Так
5.3 Сопротивление M Измерение E quivalent R Замена M ethod
[Интерпретация метода] Эквивалент при измерении сопротивления (при замене метода измерения сопротивления: внутреннее сопротивление амперметра или вольтметра), замените измеряемое сопротивление коробкой сопротивлений, если они одинаково влияют на цепь (например, равный ток или напряжение)), проверяемое сопротивление эквивалентно сопротивлению коробка.
(1) Текущий эквивалент замены
Экспериментальные шаги этого метода следующие:
① Подключите цепь, как показано на принципиальной схеме, и отрегулируйте сопротивление коробки сопротивлений R 0 до максимума, а ползунок P скользящего варистора разместите на конце a .
Рисунок7. Текущий метод замены
② Замкните переключатели S 1 и S 2 , отрегулируйте ползун P так, чтобы указатель амперметра находился в правильном положении, и обратите внимание, что показание амперметра в это время составляет I .
③ Разомкните переключатель S 2 , а затем замкните переключатель S 3 , сохраняя положение ползунка реостата P неизменным, отрегулируйте коробку сопротивления так, чтобы показание амперметра оставалось I .
④ В это время значение сопротивления R 0 блока сопротивлений, подключенного к цепи, эквивалентно значению сопротивления неизвестного резистора R x , то есть R x = R 0 .
(2) Эквивалентная замена напряжения
Экспериментальные шаги этого метода следующие:
Рисунок 8. Эквивалентная замена напряжения
① Подключите цепь, как показано на принципиальной схеме, и отрегулируйте значение сопротивления коробки сопротивлений R 0 до максимума, а ползунок P скользящего реостата поместите на конец и .
② Замкните переключатели S 1 и S 2 , отрегулируйте ползун P так, чтобы указатель вольтметра находился в правильном положении, и запишите показания вольтметра как U в это время.
③ Откройте S 2 , а затем закройте S 3 , сохраняя положение скользящего ползунка реостата P неизменным, регулируя коробку сопротивления так, чтобы показание вольтметра оставалось U .
④ В это время значение сопротивления R 0 блока сопротивлений, подключенного к цепи, эквивалентно значению сопротивления неизвестного резистора R x , то есть R x = R 0 .
5.4 Измерение сопротивления с помощью мостовой схемы
(1) Принцип:
Схема, показанная на рисунке ниже, называется мостовой схемой. Обычно через гальванометр протекает ток, но при соблюдении определенного условия ток через гальванометр не течет. В этом случае это называется мостовым балансом. Когда мост сбалансирован, два потенциала A и B равны, поэтому структуру схемы можно рассматривать как: R1R2 и R3R4 соединены последовательно, а затем соединены параллельно; или R1R3 и R2R4 соединяются параллельно, а затем соединяются последовательно.
Рисунок 9. Мостовая схема
условие баланса моста: R1 × R4 = R2 × R3
(2) Метод измерения:
Как показано на рисунке 20, подключите цепи, возьмите R1, R2 в качестве резистора с фиксированным значением, R3 — это блок переменного сопротивления (может напрямую считывать значение), а Rx — это сопротивление, которое необходимо проверить. Отрегулируйте R3 так, чтобы показание амперметра было равно нулю, и примените условие равновесия, чтобы получить значение Rx.
Примечание: Следует обратить внимание на два момента при измерении сопротивления мостовым методом.Один из них — уточнить структуру схемы. В схеме последовательно соединены четыре резистора по два на два, затем в средней цепочке подключается амперметр, затем часть последовательного амперметра — «Мост», вторая — для уточнения условий баланса электрического моста.
В I Методы обнаружения различных резисторов
(1) Обнаружение постоянного резистора
① Фактическое значение сопротивления можно определить, подключив два тестовых стержня (не положительных или отрицательных) к двум концам резистора.Для повышения точности измерения диапазон следует выбирать в соответствии с номинальным значением измеряемого сопротивления. Из-за нелинейной зависимости омической шкалы ее средняя часть более мелкая. Следовательно, значение индикации указателя должно быть уменьшено до средней части шкалы, насколько это возможно, в диапазоне 20% -80% радиан в начале полной шкалы, чтобы сделать измерение более точным. Он варьируется в зависимости от уровня ошибки сопротивления. Ошибки между показаниями и номинальным сопротивлением могут составлять (+ 5%), (+ 10%) или (+ 20%) соответственно.Если нет, то выход за пределы диапазона ошибок означает, что значение сопротивления изменилось.
②Примечание: во время тестирования, особенно при измерении сопротивлений со значениями сопротивления более десятков кОм, не касайтесь токопроводящих частей пера и резисторов; обнаруженное сопротивление припаяно к цепи, по крайней мере одна головка должна быть припаяна, чтобы избежать других компонентов в цепи. Это влияет на тест и вызывает ошибку измерения. Хотя сопротивление цветного кольцевого резистора можно определить по метке цветного круга, при его использовании лучше проверять фактическое значение сопротивления с помощью мультиметра.
Связанное сообщение : Чип фиксированные резисторы
(2) Обнаружение цементного резистора
Метод и меры предосторожности при испытании сопротивления цемента точно такие же, как и при испытании обычных постоянных резисторов.
Связанное сообщение : Вы можете узнать больше о цементных резисторах в другой статье о типах резисторов.
(3) Обнаружение резистора предохранителя
В схеме, когда плавкий предохранительный резистор расплавлен и отсоединен, об этом можно судить по опыту: если поверхность предохранительного резистора окажется черной или обгоревшей, можно сделать вывод, что его нагрузка слишком велика, и ток, проходящий через него, многократно превышает номинальное значение; если поверхность открыта без каких-либо следов, это означает, что протекающий ток просто равен или немного больше, чем его номинальное значение обдува.Оценка плавкого резистора без следов на поверхности может быть измерена шестерней Rx1 мультиметра. Чтобы обеспечить точность измерения, один конец предохранительного резистора следует припаять к цепи. Если измеренное сопротивление бесконечно, это означает, что в предохранительном резисторе вышел из строя разрыв цепи. Если измеренное значение сопротивления далеко от номинального значения, это означает, что значение сопротивления не подходит для повторного использования. При техническом обслуживании обнаруживается, что есть также несколько перегоревших резисторов, которые закорочены в цепи, поэтому на обнаружение следует обратить внимание.
Рисунок 10. Омметр
(4) Обнаружение потенциометра
При проверке потенциометра сначала поверните ручку, чтобы увидеть, плавно ли вращается ручка, является ли переключатель гибким, слышен ли звук щелчка при включении или выключении переключателя, и послушайте внутренний контакт. точка потенциометра и трение корпуса резистора. Если слышен «шелестящий» звук, значит качество плохое.При проверке с помощью мультиметра сначала выберите соответствующее положение электрической блокировки мультиметра в соответствии с сопротивлением проверяемого потенциометра, а затем выполните обнаружение следующим образом.
①Используйте омическую шестерню мультиметра для определения концов «1» и «2». Показание должно соответствовать номинальному сопротивлению потенциометра. Если стрелка мультиметра не двигается или значение сопротивления другое, это свидетельствует о повреждении потенциометра.
②Проверьте, находится ли подвижный рычаг потенциометра в хорошем контакте с резистором.Обнаружение концов «1», «2» (или «2», «3») с помощью омической шестерни мультиметра и поворот оси потенциометра против часовой стрелки в положение, близкое к кнопке «выключено», меньшее значение сопротивления, тем лучше.
(5) Обнаружение термистора с положительным температурным коэффициентом
①Обнаружение комнатной температуры (температура в помещении близка к 25 ℃): измеряется фактическое значение сопротивления двух контактов, контактирующих с термистором PTC, и по сравнению с номинальным значением сопротивления разница между ними нормальная в пределах ± 2 Ом.Если фактическое значение сопротивления слишком отличается от номинального значения сопротивления, характеристики фактического значения сопротивления плохие или повреждены.
② Обнаружение нагрева: на основе теста нормальной температуры может быть проведен второй этап обнаружения теста-нагрева, и источник тепла (например, электрический паяльник) может быть нагрет рядом с термистором PTC. В то же время мультиметр используется для отслеживания увеличения значения сопротивления с повышением температуры. Если термистор исправен и значение сопротивления не меняется, это означает, что его характеристики ухудшаются и его нельзя использовать в дальнейшем.Будьте осторожны, чтобы не держать источник тепла слишком близко или непосредственно в контакте с термистором PTC, чтобы предотвратить его возгорание.
(6) Обнаружение термистора с отрицательным температурным коэффициентом
① Метод измерения термистора NTC с помощью мультиметра такой же, как и метод измерения обычного постоянного резистора, то есть фактическое значение Rt может быть измерено напрямую путем выбора соответствующего электрического барьера в соответствии с номинальным значением сопротивления NTC. термистор.Однако, поскольку термистор NTC очень чувствителен к температуре, при испытании следует обратить внимание на следующие моменты:
- Rt измеряется производителем при температуре окружающей среды 25 ° C. Следовательно, при измерении Rt с помощью мультиметра его также следует проводить при температуре окружающей среды, близкой к 25 ° C, чтобы гарантировать надежность испытания.
- Измеренная мощность не должна превышать указанное значение, чтобы избежать ошибок измерения, вызванных текущими тепловыми эффектами.
- Обратите внимание на правильность работы: при тестировании не держите корпус термистора руками, чтобы температура тела не влияла на тест.
②Сначала измеряется значение сопротивления Rt1 при комнатной температуре t1, затем электрический утюг используется в качестве источника тепла, а значение сопротивления RT2 измеряется рядом с термистором Rt. При этом средняя температура t2 поверхности термистора RT измеряется термометром.
(7) Обнаружение варистора
Установите мультиметр на передачу 10K и подсоедините перо к обоим концам резистора. Мультиметр должен показывать значение сопротивления, указанное на варисторе. Если значение превышает это значение, это означает, что варистор поврежден.
Варистор может быть изменен с МОм (мегаом) на мОм (миллиом) при увеличении приложенного к нему напряжения. Когда напряжение низкое, варистор работает в области тока утечки, показывает большое сопротивление, а ток утечки невелик.Когда напряжение возрастает до нелинейной области, ток изменяется в относительно большом диапазоне, и напряжение не меняется сильно. Обладает лучшими характеристиками ограничения напряжения; напряжение снова возрастает, и варистор входит в область насыщения, показывая небольшое линейное сопротивление. Из-за большого тока и длительного времени варистор перегреется и сгорит или даже лопнет.
(8) Обнаружение фоторезистора
①Чёрная световая пленка закрывает светопропускающее окно фоторезистора.В это время стрелка мультиметра в основном держится, а сопротивление приближается к бесконечности. Чем больше значение, тем лучше характеристики фоторезистора. Если это значение мало или близко к нулю, фоторезистор сгорел и больше не может использоваться.
②Источник света совмещен со светопропускающим окном фоторезистора, стрелка мультиметра должна иметь большой размах амплитуды, а значение сопротивления значительно снижается. Чем меньше значение, тем лучше характеристики фоторезистора.Если значение велико или бесконечно, это указывает на то, что обрыв цепи фоторезистора поврежден и его больше нельзя использовать.
③Окно приема света фоторезистора совмещено с падающим светом, и небольшая черная бумага встряхивается на верхней части светозащитного окна фоторезистора, чтобы периодически принимать свет. В это время стрелка мультиметра должна качаться влево и вправо при встряхивании черной бумаги. Если стрелка мультиметра всегда останавливается в определенном положении и не колеблется при тряске бумаги, это означает, что светочувствительный материал фоторезистора поврежден.
Вопрос:
Для моста Уитстона с внешним напряжением V, моста сопротивления с сопротивлениями P, Q, R, S и гальванометра G. Каково состояние балансировки моста?
a) P⁄Q = S⁄R
b) P⁄S = R⁄Q
c) P = R⁄Q
d) S = R⁄Q
Ответ:
Пояснение: Мост Уитстона считается сбалансированным, если гальванометр показывает нулевое отклонение, т.е. нулевой ток, протекающий по этому пути.
Использование мультиметра, вольтметра, амперметра и омметра
Что такое мультиметр? Мультиметр — это инструмент, способный измерять два или более электрических параметра.Почти все они способны измерять напряжение, силу тока и сопротивление. Раньше счетчики могли измерять только один тип электрических величин, поэтому человеку приходилось носить с собой счетчик для каждой единицы, которую он должен был измерить. Более поздние измерители были разработаны с поворотным переключателем, чтобы они могли измерять несколько единиц стоимости, отсюда и термин мультиметр.
В чем разница между мультиметром, вольтметром, амперметром и омметром? В наше время эти термины используются как синонимы, и все они относятся к мультиметру.Вольтметры измеряют напряжение, амперметры измеряют токи, омметры измеряют сопротивление, а мультиметры измеряют комбинацию двух или более из них.
A аналоговые счетчики, устарели?
Аналоговый измеритель перемещает стрелку по шкале. Аналоговые мультиметры с переключаемым диапазоном очень дешевы, но новичкам сложно читать их точно, особенно на шкалах сопротивления. Движение глюкометра тонкое, и его падение может повредить его!
У каждого типа счетчиков есть свои преимущества.Цифровой измеритель, используемый в качестве вольтметра, обычно лучше, потому что его сопротивление намного выше, 1 МОм или 10 МОм, по сравнению с 200 Ом для аналогового мультиметра в аналогичном диапазоне. С другой стороны, легче следить за медленно меняющимся напряжением, наблюдая за стрелкой на аналоговом дисплее.
Аналоговый мультиметр, используемый в качестве амперметра, имеет очень низкое сопротивление и очень чувствителен, со шкалой до 50 мкА. Более дорогие цифровые мультиметры могут сравняться или даже лучше.
Аналоговые счетчикивсе еще находят применение в некоторых приложениях, однако новичку или даже опытному электрику я бы порекомендовал цифровой счетчик, поэтому аналоговых счетчиков здесь вы не найдете.
Использование мультиметра для измерения силы тока, напряжения и сопротивления
Прежде чем подробно описывать мультиметры, важно иметь четкое представление о том, как счетчики соединяются в цепи.
Измерительные амперы. На схемах A, и B ниже показана схема до и после подключения амперметра:
А | Б | ||
Для измерения тока цепь должна быть разомкнута, чтобы амперметр можно было подключить последовательно |
|||
Амперметры должны иметь НИЗКОЕ сопротивление |
Подумайте об изменениях, которые необходимо внести в практическую схему, чтобы включить в нее амперметр.Для начала нужно разомкнуть цепь , чтобы амперметр можно было подключить последовательно. Весь ток, протекающий в цепи, должен проходить через амперметр. Измерители не должны изменять поведение схемы, или, по крайней мере, незначительно, и из этого следует, что амперметр должен иметь очень НИЗКОЕ сопротивление.
Измерение напряжения. Схема C показывает ту же схему после подключения вольтметра:
А |
Как работают счетчики с подвижной катушкой
Реклама
Криса Вудфорда.Последнее изменение: 2 ноября 2019 г.
Необходимо выследить проблему, скрывающуюся в электрическая цепь? Вам понадобится какой-нибудь измеритель, может быть, даже осциллограф. Большинство людей используют цифровые счетчики в наши дни показания тока, напряжения и сопротивления на ЖК-дисплее (их иногда называют твердотельными или электронными счетчиками). Но многие из нас по-прежнему предпочитаю старый вид измерителя со стрелкой, которая отводит назад и вперед на циферблате. Счетчики с подвижной катушкой, как их называют, все еще широко используется во всех видах различного оборудования, начиная с самолета от приборов из кабины до измерителей уровня звука (VU) в студиях звукозаписи.Давайте принимать посмотрим, как они работают!
Фото: Типичный сильноточный амперметр на автомобильном зарядном устройстве. Это может указывать приблизительную величину тока до 6 ампер (А), хотя шкала не помечена достаточно точно для точных измерений.
Электричество создает магнетизм
Счетчики с подвижной спиралью работают аналогично электродвигателям. Если вы знаете, как работает один из них, разобраться в счетчике несложно. В любом случае, давайте начнем с начало.Если вы проведете электрический ток по металлическому проводу, вы создадите магнитное поле вокруг провода одновременно. Ты не можешь видите, но тем не менее он там — и вы можете заставить его сделать очень интересные вещи. Поднеси компас к проводу, включи ток, и вы увидите, как стрелка поворачивается, когда вы это делаете. Отключите ток и игла снова вернется в исходное положение. Грубо говоря, это наука, работающая над измерителем с подвижной катушкой: электрический ток, проходящий по проводу, создает магнитное поле, которое заставляет иглу толкаться в сторону.Но как именно это происходит?
Анимация: наденьте на компас кусок провода и подключите его к батарее. Когда вы переключаетесь на токе вокруг провода создается магнитное поле, заставляющее стрелку компаса двигаться. Обратный ток стрелка компаса движется в противоположном направлении. Используйте более сильный ток, и стрелка компаса переместится дальше. Этот эксперимент показывает, что электрические токи создают магнитные поля, и он был впервые проведен датским физиком. Ганс Эрстед в 1820 году.Это фундаментальная наука, лежащая в основе счетчиков с подвижной катушкой.
Внутри счетчика плотный моток медной проволоки, намотанный вокруг железного сердечника, устанавливается между полюсами постоянного магнит. Катушка имеет соединения на обоих концах, так что вы можете через него проходит электрический ток, и к нему прикреплен длинный указатель который проходит через шкалу счетчика. Когда вы подключаете счетчик к цепь и включите ток, ток создает магнитное поле в катушке. Поле отталкивает магнитное поле, создаваемое постоянный магнит, заставляющий катушку вращаться и поворачивающий указатель вверх циферблат.Чем больше тока проходит через катушку, тем больше магнитное поле, которое он создает, чем больше отталкивание, тем больше катушка поворачивается, и чем дальше вверх по шкале, тем выше идет стрелка. Итак указатель показывает, сколько тока проходит через катушку. При соответствующей калибровке вы можете использовать шкалу для непосредственного измерения силы тока.
Как работают счетчики с подвижной спиралью
- С отсоединенными зондами счетчик похож на цепь, разорванную разомкнутым переключателем: ток не может течь в счетчик или катушку внутри него.
- При отсутствии тока катушка не создает магнитного поля, и стрелка остается на нуле.
- Подключите измерительные щупы к чему-либо, что вы тестируете (например, к печатной плате), и ток немедленно начнет течь через измеритель и катушку внутри него.
- Движущийся ток создает временное магнитное поле вокруг катушки, которое отталкивает магнитное поле, создаваемое постоянным магнитом. Сила магнитного поля напрямую связана с величиной тока, протекающего через катушку.
- Чем больше ток, тем больше магнитное поле, создаваемое катушкой, и тем выше циферблат перемещается стрелкой.
Вкратце стоит отметить, что указатель действует как рычаг, увеличивая движение на катушка и вызывает большее отклонение циферблата. Другими словами, если катушка перемещается только на незначительную величину, указатель переместится вверх по шкале на гораздо большую величину, которую легче измерить. Это помогает нам проводить более точные измерения.
Счетчики различных типов
Вы можете использовать измерители с подвижной катушкой для измерения напряжения, тока или сопротивления, но в каждом случае вы должны соединять их по-разному.
Вольтметры
Для измерения напряжения вы подключаете счетчик параллельно через две точки контура, которые вы хотите измерить. Измерители напряжения называются, что неудивительно, вольтметры.
Амперметры
Чтобы измерить ток, вы устанавливаете свой измеритель последовательно (вставляйте его прямо в тракт цепь). Счетчики тока обычно называются амперметрами. (поскольку они измеряются в амперах) или гальванометры (по Луиджи Гальвани, итальянец, который открыл электрический ток, заставляя лягушачьи лапы подергиваться).Если измеряются большие токи, амперметрам обычно требуется дополнительное сопротивление, называемое шунтом. установлены параллельно их клеммам. Большинство текущих потоков через шунт, оставляя лишь небольшую часть, протекающую через саму катушку счетчика (защищая механизм). Некоторые амперметры имеют циферблаты на их коробке, чтобы вы могли измерить широкий диапазон различных токи. Поворот диска эффективно переключает сопротивление в измерительную цепь, с меньшими шунтами (с меньшим сопротивлением) используются для измерения больших токов.
Фото: Измерители с подвижной катушкой, которые могут измерять как вольты, так и амперы, практически не изменились. Это вольт-амперметр с прямым считыванием, разработанный Эдвардом Уэстоном из Ньюарка, штат Нью-Джерси, и датируемый концом 19 века. Слева: вы можете видеть отдельные латунные разъемы для измерения вольт и ампер внизу и две шкалы вверху: верхняя шкала измеряет 0–150 вольт, а нижняя — 0–1,5 ампер. Справа: крупный план движущейся магнитной катушки.Фото любезно предоставлено Цифровые коллекции Национального института стандартов и технологий, Гейтерсбург, Мэриленд 20899.
Как работает шунт?
Изображение: амперметр (A) — это чувствительный прибор, который измеряет только относительно небольшие токи. Если вы хотите измерить большие токи, вам нужно отвести большую их часть на «шунтирующий» резистор (Ω). Поскольку измеритель и шунт включены параллельно, у них одинаковое напряжение. Мы можем использовать это, чтобы рассчитать размер шунтирующего резистора, который нам нужен для измерения тока любой величины.
Есть максимальное количество тока, которое вы можете пропустить через счетчик с подвижной катушкой; если вы хотите измерить токи чем это больше, вам нужно использовать шунт — резистор, который «шунтирует» большую часть тока по параллельной цепи. С помощью закона Ома легко рассчитать, какой большой шунт вам нужен (V = I × R).
Предположим, у вас есть амперметр (показан здесь в виде круга с буквой A), который имеет внутреннее сопротивление 10 Ом (Ом), а его стрелка показывает максимальное значение (так называемое «отклонение полной шкалы» или FSD), когда через него протекает ток 10 миллиампер (мА) или 10/1000 А.Когда стрелка отклоняется на всю шкалу, закон Ома говорит нам, что напряжение на измерителе должно быть V = (10/1000) × 10 = 0,1 В (показано серой пунктирной линией).
Шунтирующий резистор (показан синим цветом и обозначен знаком Ω) и измеритель включены параллельно, поэтому напряжение на шунте должно быть таким же, как напряжение на измерителе (0,1 вольт).
Теперь предположим, что вы хотите измерить токи величиной до 2 А (чтобы измеритель показал отклонение на полную шкалу при 2 А). В этом случае через счетчик по-прежнему будет протекать 10 миллиампер (больше он не может) и подавляющее большинство тока (1990 миллиампер или 1.99 ампер) необходимо будет отвести через шунт.
Используя закон Ома второй раз, мы можем вычислить, что сопротивление шунта должно быть R = V / I = 0,1 / 1,99 = 0,05 Ом.
Обратите внимание, что сопротивление шунта намного ниже, чем сопротивление измерителя , поэтому большая часть тока проходит через него. Чем ниже сопротивление шунта по сравнению с сопротивлением счетчика, тем больше тока будет проходить через него. Поэтому, если вы хотите измерить еще большие токи, вам нужно будет использовать даже меньших шунтирующих сопротивления , чтобы отвести больший ток от чувствительного измерителя с подвижной катушкой.
Шунтирующие резисторы обычно имеют сопротивление менее 1 Ом, что намного меньше чем обычные резисторы (которые измеряют от нескольких Ом до миллионов Ом или МОм). Вы часто слышите шунтирующие резисторы, называемые резисторами в миллиомах, и измеряемые таким же образом. Так, например, шунтирующий резистор 0,05 Ом может быть обозначен как 50 мОм (50 мОм).
Фото: Гальванометры имеют много общего с компасами, в которых также используется магнитная стрелка, движущаяся в магнитном поле.В этой ранней конструкции гальванометра 1880-х годов, запатентованной Исааком Чисхолмом в 1888 году, сходство очевидно: вместо современной стрелки и шкалы у нас есть стрелка компаса, которая вращается, когда вы подаете ток на два провода на фронт. Под иглой, в большом синем круглом ящике, находится электромагнит, к которому подключены провода. Вы можете узнать больше об этом измерителе в патенте США 390,067: Гальванометр. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.
Омметры
Сопротивление цепи можно измерить тремя способами.Вы можете использовать амперметр и вольтметр для измерения силы тока и напряжения, а затем воспользуйтесь законом Ома. Или вы можете измерить сопротивление за одну операцию с использованием немного другой конструкции измерителя с подвижной катушкой, называемого омметром, который эффективно амперметр с собственной встроенной батареей. Батарея обеспечивает напряжение известного размера. Когда вы помещаете измерительные щупы через сопротивление вы хотите измерить, замыкаете цепь и течет ток. В метр измеряет величину этого тока, но показывает это как сопротивление (циферблат откалиброван в омах на основе фиксированное напряжение батареи внутри счетчика).Вы можете сделать больше точные измерения сопротивления с помощью немного более сложного Тип схемы называется мостом Уитстона.
Узнать больше
На этом сайте
На других сайтах
- Измерители с подвижной катушкой: больше о теории измерительных цепей и различиях между амперметрами, вольтметрами и омметрами с отличного сайта Hyperphysics.
- Измерения сопротивления: четкое объяснение различных способов измерения сопротивления, включая мост Уитстона.
Книги для старших читателей
- Электрические схемы Джеймса Уильяма Нильссона и Сьюзен А. Ридель. Prentice Hall, 2011. Давно установленное подробное руководство по схемам, в основном предназначенное для студентов, изучающих электротехнику и информатику.
- Введение в электрические схемы Ричарда Дорфа и Джеймса А. Свободы. Wiley, 2013. Еще один классический учебник по электротехнике, рассчитанный на аналогичную аудиторию.
Книги для младших читателей
Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты
статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.
Авторские права на текст © Крис Вудфорд 2009, 2018. Все права защищены. Полное уведомление об авторских правах и условиях использования.
Следуйте за нами
Сохранить или поделиться этой страницей
Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:
Цитировать эту страницу
Вудфорд, Крис.(2009/2018) Счетчики с подвижной спиралью. Получено с https://www.explainthatstuff.com/movingcoilmeters.html. [Доступ (укажите дату здесь)]
Больше на нашем сайте …
Калибровка амперметра, вольтметра и ваттметра с использованием потенциометра
Мы знаем, что напряжение, ток и мощность измеряются в вольтах, амперах, а для измерения этих параметров используются ваттметры, амперметры и ваттметры. Хотя эти измерительные приборы изготовлены с особой тщательностью, они все же могут давать показания ошибок на стороне клиента.Таким образом, эти инструменты откалиброваны, чтобы минимизировать ошибку. В этой статье мы объясним , как откалибровать вольтметр, амперметр и ваттметр с помощью потенциометра .
Прежде чем вдаваться в подробности, давайте сначала обсудим важную концепцию, используемую в этой статье.
Если у нас есть два источника напряжения одинакового значения, подключенные параллельно, как показано ниже, то между ними не будет тока. Это связано с тем, что потенциальные значения обоих источников одинаковы, и ни один из источников не может передавать заряд другому.Так что в схеме гальванометр не показывает никаких отклонений.
Мы будем использовать то же явление уравновешивания двух источников напряжения в процессе калибровки.
Калибровка потенциометра
На рисунке выше показана принципиальная схема для калибровки потенциометра.
На рисунке используется стандартный элемент с напряжением 1,50 В, который при нагрузке не вызывает колебаний напряжения даже в милливольтах. Такой стабильный источник необходим для безошибочной калибровки потенциометра.
Токопроводящая шкала точно масштабирована, чтобы избежать ошибок при измерении. Электропроводящая шкала также имеет гладкую поверхность с четко очерченными размерами для равномерного распределения сопротивления по всей ее длине.
Реостат предназначен для регулировки потока тока в контуре цепи, и, таким образом, мы можем регулировать падение напряжения на единицу длины по проводящей шкале. Сюда также подключается гальванометр для визуализации неисправности, которая возникает в случае протекания тока между стандартной петлей ячейки и проводящей петлей шкалы.Неизвестная ЭДС здесь подключена к гальванометру для измерения после калибровки потенциометра.
Рабочий:
Сначала включите питание и отрегулируйте реостат, чтобы позволить току в несколько сотен миллиампер течь по контуру основной цепи. Поскольку проводящая шкала также находится в основном контуре, через нее протекает тот же ток, что и вызывает падение напряжения. Хотя падение напряжения появляется на металлической шкале, она будет равномерно распределена по всему ее телу.
После появления падения напряжения по проводящей шкале, если мы возьмем скользящий контакт и переместимся по металлической шкале от нуля, то ток потечет из вторичной цепи в первичную из-за разбаланса цепи. И по мере того, как скользящий контакт перемещается дальше от нуля, величина этого тока уменьшается. Это связано с тем, что по мере увеличения площади контакта падение напряжения на масштабированной площади приближается к напряжению стандартной ячейки. Таким образом, в определенный момент падение напряжения на масштабируемой области будет равно напряжению стандартной ячейки, и в этот момент между двумя цепями не будет протекать ток.
Теперь, когда гальванометр подключен к вторичной цепи, он покажет отклонение на своем дисплее из-за протекания тока, и чем больше ток, тем больше отклонение. Исходя из этого, гальванометр не будет показывать отклонения только тогда, когда обе цепи сбалансированы, и это состояние, которого мы будем пытаться достичь при калибровке потенциометра.
Для лучшего понимания рассмотрим схему, показанную ниже, которая показывает состояние баланса.
Если принять сопротивление металлического контакта длиной от 0 до 100 см как «R», то падение напряжения на всем металлическом контакте длиной 100 см составит V = IR.Поскольку мы использовали симметричную схему , это падение напряжения «V» должно быть равно напряжению стандартной ячейки, и в показаниях гальванометра будет нулевое отклонение.
Теперь, измерив эту точную длину, на которой гальванометр показывает ноль, мы можем откалибровать шкалу потенциометра на основе стандартного значения напряжения элемента.
Таким образом, длина шкалы составляет 1 см = 1,5 В / 100 см = 0,005 В = 5 мВ.
Зная падение напряжения на сантиметр по шкале потенциометра, подключите неизвестное напряжение ко вторичной цепи и сдвиньте контакт, чтобы измерить длину, при которой у нас будет нулевое отклонение.Зная этот масштаб, на котором имеет место баланс, мы можем измерить значение неизвестной ЭДС как
.V = (длина контакта) x (5 мВ).
Применение потенциометров
Помимо измерения неизвестного напряжения, потенциометр также можно использовать для измерения силы тока и мощности, для их измерения требуется всего лишь пара дополнительных компонентов.
Помимо измерения напряжения, тока и мощности, потенциометры в основном используются для калибровки вольтметров, амперметров и ваттметров .Кроме того, поскольку потенциометр является устройством постоянного тока, калибруемые инструменты должны быть типа подвижного железа постоянного тока или электродинамометра.
Калибровка вольтметра с помощью потенциометра
В схеме наиболее важным компонентом процесса калибровки является подходящий стабильный источник постоянного напряжения. Это связано с тем, что любые колебания напряжения питания вызовут ошибку в калибровке вольтметра, что приведет к полному провалу эксперимента.Таким образом, стандартный элемент напряжения со стабильным конечным значением берется в качестве источника и подключается параллельно с вольтметром, который необходимо откалибровать. Две потенциометры «RV1» и «RV2» используются для регулировки напряжения, которое должно появляться на вольтметре, как показано на рисунке.
Коробка соотношения напряжений также подключается параллельно вольтметру, чтобы разделить напряжение на вольтметре и получить соответствующее значение, подходящее для подключения потенциометра.
Со всей установкой мы готовы к проверке точности вольтметра .Итак, для начала просто подайте питание на схему, чтобы получить показания вольтметра и неизвестное напряжение на выходе коробки соотношения напряжений. Теперь мы будем использовать откалиброванный потенциометр для измерения этого неизвестного напряжения.
После получения показаний потенциометра проверьте, совпадают ли показания потенциометра с показаниями вольтметра. Поскольку потенциометр измеряет истинное значение напряжения, если показание потенциометра не совпадает с показанием вольтметра, то отображается отрицательная или положительная ошибка.А для коррекции можно построить калибровочную кривую с помощью показаний вольтметра и потенциометра.
Также для точности измерений необходимо, насколько это возможно, измерять напряжения вблизи максимального диапазона потенциометра.
Калибровка амперметра с помощью потенциометра
Как упоминалось выше, мы будем использовать подходящее стабильное напряжение питания постоянного тока, чтобы избежать ошибок при калибровке, которые не вызывают колебаний напряжения в течение всего эксперимента.Реостат используется для регулировки величины тока, протекающего по всей цепи. Кроме того, стандартное сопротивление «R» подходящего значения с достаточной допустимой нагрузкой по току подключается последовательно с амперметром (который находится в процессе калибровки) для получения параметра напряжения, который относится к току, протекающему в цепи.
Теперь, после включения питания, через всю цепь протекает ток «I», и с этим показанием тока будет генерироваться амперметр, присутствующий в контуре.Кроме того, из-за протекания тока на стандартном сопротивлении «R» произойдет падение напряжения.
Теперь мы воспользуемся потенциометром для измерения напряжения на стандартном резисторе, а затем воспользуемся законом Ома для вычисления тока через стандартное сопротивление.
То есть ток I = V / R куда V = напряжение на стандартном резисторе, измеренное потенциометром, А R = сопротивление стандартного резистора.
Поскольку мы используем стандартный резистор, сопротивление будет точно известно, а напряжение на стандартном резисторе измеряется потенциометром.Рассчитанное значение будет точным значением тока, протекающего через контур. Затем сравните это рассчитанное значение с показаниями амперметра, чтобы проверить точность амперметра. Если есть какие-либо ошибки, мы можем внести необходимые корректировки в амперметр, чтобы исправить ошибки.
Калибровка ваттметра с помощью потенциометра
Как упоминалось выше, для точного процесса калибровки мы будем использовать два подходящих источника постоянного напряжения постоянного тока в качестве источников.Обычно источник низкого напряжения подключается последовательно к катушке тока ваттметра, а источник умеренного напряжения подключается к катушке потенциала ваттметра. Реостат в верхней цепи используется для регулировки величины тока, протекающего через токовую катушку, а регулировочный потенциометр в нижней цепи используется для регулировки напряжения на катушке потенциала.
Помните, что регулировочный потенциометр предпочтительнее для регулировки напряжения, а реостат предпочтительнее для регулировки тока в цепи.
Кроме того, стандартное сопротивление «R» подходящего значения и достаточной допустимой нагрузки по току помещается последовательно с токовой катушкой ваттметра. И это стандартное сопротивление будет вызывать падение напряжения на нем, когда ток течет в цепи катушки тока.
После включения питания мы получим два неизвестных значения напряжения, одно на выходе делителя напряжения, а другое на стандартном сопротивлении «R». Теперь, если для измерения напряжения на стандартном резисторе используется потенциометр, мы можем использовать закон Ома для расчета тока через стандартное сопротивление.Поскольку токовая катушка включена последовательно со стандартным сопротивлением, вычисленное значение также представляет ток, протекающий через токовую катушку. Аналогичным образом используйте потенциометр второй раз, чтобы измерить напряжение на катушке потенциала ваттметра.
Теперь, когда мы измерили ток через токовую катушку и напряжение на потенциальной катушке с помощью потенциометра, мы можем рассчитать мощность как
Мощность P = значение напряжения x текущее значение.
После расчета мы можем сравнить это рассчитанное значение с показаниями ваттметра, чтобы проверить наличие ошибок.Как только ошибки будут обнаружены, произведите необходимые настройки ваттметра, чтобы скорректировать ошибки.
Вот как можно использовать потенциометр для калибровки вольтметра, амперметра и ваттметра для получения точных показаний.
.