Определение цоколевки и типа транзистора
Иногда возникает необходимость определить тип транзистора (p-n-p или n-p-n), выводы эмиттера, коллектора и базы (при стертой маркировке, для импортных транзисторов и т.д). Это можно сделать с помощью омметра.
В качестве испытуемого возмем транзистор КТ 3107 рис. 1.
Рис.1
Сначала определяем вывод базы по прямым и обратным сопротивлениям переходов эмиттера и коллектора. Поскольку вывод базы как правило расположен либо посередине, либо справа, то начнем с этих выводов. Подсоеденим красный и черный щуп таким образом рис. 2.
Рис. 2
Индикатор показывает бесконечно большое сопротивление т.е «1» рис. 3.
Рис. 3
Перепробовав всевозможные комбинации получили что база у нас посередине т.к на индикаторе 725 Ом рис. 4-5.
Рис. 4
Рис. 5
Поскольку к выводу базы подсоеденен черный щуп, то тип транзистора p-n-p. Теперь подсоеденим щупы вот так: рис. 6.
Рис. 6
Индикатор показывает сопротивление 728 Ом рис. 7.
Рис. 7
Так как у перехода эмиттера прямое сопротивление больше чем у перехода коллектора (728 > 725 в нашем случае) то вывод коллектора слева, а эммитера справа. Для достоверности проверим его на спец. разъеме для определения коэффициента передачи. Индикатор показавает 94 рис. 8 значит выводы мы определили правильно рис. 9.
Рис. 8
Рис. 9
Схематически это можно изобразить вот так: рис. 10 .
Рис. 10
Данная статья является собственностью сайта «Схематехник». Перепечатка запрещена!
©Савицкий А. 2007 г.
NPN, PNP без выпаивания с платы
Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра.
Содержание статьи
Необходимый минимум сведений
Виды транзисторов и принцип работы
Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.
Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.
Цоколевка
У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.
Внешний вид биполярного транзистора средней мощности и его цоколевка
То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.
Как проверить транзистор мультиметром со встроенной функцией
Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.
Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.
Мультиметр с функцией проверки транзисторов
Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.
Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.
Проверка на плате
Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).
Как проверить транзистор мультиметром не выпаивая
Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.
Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять
Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.
Проверка биполярного транзистора PNP типа
Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:
- Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
- Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.
- Если щупами касаемся эмиттера и коллектора, показаний никаких нет, в обеих вариантах переходы оказываются запертыми.
Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.
Тестируем исправность NPN транзистор
Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:
- Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
- Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
- При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.
Проверка работоспособности биполярного NPN транзистора мультиметром
Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.
И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.
Как определить базу, коллектор и эмиттер
Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.
Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять
Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.
Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.
Проверка биполярного транзистора — Основы электроники
Приветствую всех любителей электроники, и сегодня в продолжение темы применение цифрового мультиметра мне хотелось бы рассказать, как проверить биполярный транзистор с помощью мультиметра.
Биполярный транзистор представляет собой полупроводниковый прибор, который предназначен для усиления сигналов. Так же транзистор может работать в ключевом режиме.
Транзистор состоит из двух p-n переходов, причем одна из областей проводимости является общей. Средняя общая область проводимости называется базой, крайние эмиттером и коллектором. Вследствие этого разделяют n-p-n и p-n-p транзисторы.
Итак, схематически биполярный транзистор можно представить следующим образом.
Рисунок 1. Схематическое представление транзистора а) n-p-n структуры; б) p-n-p структуры.
Для упрощения понимания вопроса p-n переходы можно представить в виде двух диодов, подключенных друг к другу одноименными электродами (в зависимости от типа транзистора).
Рисунок 2. Представление транзистора n-p-n структуры в виде эквивалента из двух диодов, включенных анодами друг к другу.
Рисунок 3. Представление транзистора p-n-p структуры в виде эквивалента из двух диодов, включенных катодами друг к другу.
Конечно же для лучшего понимания желательно изучить как работает p-n переход, а лучше как работает транзистор в целом. Здесь лишь скажу, что чтобы через p-n переход тек ток его необходимо включить в прямом направлении, то есть на n – область (для диода это катод) подать минус, а на p-область (анод).
Это я вам показывал в видео для статьи «Как пользоваться мультиметром» при проверке полупроводникового диода.
Так как мы представили транзистор в виде двух диодов, то, следовательно, для его проверки необходимо просто проверить исправность этих самых «виртуальных» диодов.
Итак, приступим к проверке транзистора структуры n-p-n. Таким образом, база транзистора соответствует p- области, коллектор и эмиттер — n-областям. Для начала переведем мультиметр в режим проверки диодов.
В этом режиме мультиметр будет показывать падение напряжения на p-n переходе в милливольтах. Падение напряжения на p-n переходе для кремниевых элементов должно быть 0,6 вольта, а для германиевых – 0,2-0,3 вольта.
Сначала включим p-n переходы транзистора в прямом направлении, для этого на базу транзистора подключим красный (плюс) щуп мультиметра, а на эмиттер черный (минус) щуп мультиметра. При этом на индикаторе должно высветиться значение падения напряжения на переходе база-эмиттер.
Далее проверяем переход база-коллектор. Для этого красный щуп оставляем на базе, а черный подключаем к коллектору, при этом прибор покажет падение напряжения на переходе.
Здесь необходимо отметить, что падение напряжения на переходе Б-К всегда будет меньше падения напряжения на переходе Б-Э. Это можно объяснить меньшим сопротивлением перехода Б-К по сравнению с переходом Б-Э, что является следствием того, что область проводимости коллектора имеет большую площадь по сравнению с эмиттером.
По этому признаку можно самостоятельно определить цоколевку транзистора, при отсутствии справочника.
Так, половина дела сделана, если переходы исправны, то вы увидите значения падения напряжения на них.
Теперь необходимо включить p-n переходы в обратном направлении, при этом мультиметр должен показать «1», что соответствует бесконечности.
Подключаем черный щуп на базу транзистора, красный на эмиттер, при этом мультиметр должен показать «1».
Теперь включаем в обратном направлении переход Б-К, результат должен быть аналогичным.
Осталось последняя проверка – переход эмиттер-коллектор. Подключаем красный щуп мультиметра к эмиттеру, черный к коллектору, если переходы не пробитые, то тестер должен показать «1».
Меняем полярность (красный-коллектор, черный— эмиттер) результат – «1».
Если в результате проверки вы обнаружите не соответствие данной методике, то это значит, что транзистор неисправен.
Эта методика подходит для проверки только биполярных транзисторов. Перед проверкой убедитесь, что транзистор не является полевым или составным. Многие изложенным выше способом пытаются проверить именно составные транзисторы, путая их с биполярными (ведь по маркировки можно не правильно идентифицировать тип транзистора), что не является правильным решением. Правильно узнать тип транзистора можно только по справочнику.
При отсутствии режима проверки диодов в вашем мультиметра, осуществить проверку транзистора можно переключив мультиметр в режим измерения сопротивления на диапазон «2000». При этом методика проверки остается неизменной, за исключением того, что мультиметр будет показывать сопротивление p-n переходов.
А теперь по традиции поясняющий и дополняющий видеоролик по проверке транзистора:
Определение цоколевки транзистора | ldsound.ru
Если обозначение транзистора, нанесенное на его корпусе, стерлось или нет под рукой справочника по полупроводниковым приборам, то цоколевку транзистора и структуру его проводимости можно определить с помощью тестера.
Сначала находят базовый вывод транзистора. Для этого плюсовой щуп тестера (в режиме измерения малых сопротивлений) подключают к одному из выводов транзистора, а минусовый – поочередно к двум остальным. Если тестер в обоих случаях показывает высокое сопротивление или в одном случае низкое, а в другом высокое, то его плюсовой щуп нужно подключить к другому выводу и снова измерить сопротивление между ним и остальными двумя выводами, пока не удастся найти вывод, имеющий малое сопротивление относительно двух других выводов. Найденый таким образом вывод является базовым, а транзистор имеет структуру n-p-n.
Если приведенным выше способом найти базовый вывод не удается, значит, транзистор имеет структуру p-n-p. Необходимо изменить полярность подключения тестера, т.е. к одному из выводов подключить минусовый щуп тестера и затем найти базовый вывод.
Определение базового вывода у большинства широкого распространенных низкочастотных транзисторов упрощается, если помнить, что они выполнены с выводом базы на корпус.
С помощью тестера можно определить и выводы эмиттера и коллектора маломощных транзисторов. Для этого между предполагаемым выводом коллектора и базовым выводом подключают резистор сопротивлением 1 кОм. Затем плюсовой щуп тестера подключают к предполагаемому выводу коллектора, а минусовой – к предполагаемому выводу эмиттера n-p-n транзистора и определяют сопротивление по прибору. После этого предполагают ионное расположение выводов коллектора и эмиттера и снова измеряют сопротивление. Плюсовой щуп тестера будет соединен с коллектором, когда сопротивление между выводами окажется меньшим.
У транзисторов со структурой p-n-p коллекторный и эмиттерный выводы можно определить таким же способом, но сопротивление между эмиттером и коллектором окажется меньшим, когда с коллектором будет соединен минусовый щуп тестера.
При этом нужно помнить, что у всех мощных транзисторов, предназначенных для крепления на радиаторах, коллектор выведен на корпус. У всех высокочастотных транзисторов, кроме экранированных и коаксиальной конструкции, вывод коллектора тоже соединен с корпусом.
Как определить неисправный транзистор — Морской флот
Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов,…
Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.
Проверка транзисторов — обязательный шаг при диагностике и ремонте микросхем
Что такое транзистор
Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.
Транзистор один из основных компонентов микросхем и электрических схем
Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.
Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).
Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.
Принцип работы полевого транзистора
Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.
Как проверить мультиметром транзистор
Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.
Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.
Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.
Чтобы определить состояние транзистора, необходимо протестировать каждый его элемент
Важно! Данная процедура возможна лишь для исправного транзистора.
Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.
Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.
Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.
Схема проверки транзисторов с помощью мультиметра
Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.
Как прозвонить мультиметром транзистор
Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:
- соединение «база-коллектор» должно проводить электрический ток в одном направлении;
- соединение «база-эмиттер» проводит электрический ток в одном направлении;
- соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.
Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.
Точки проверки транзистора p-n-p
Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.
Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.
Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.
О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.
Принцип работы биполярного транзистора
Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.
Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.
Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.
Схема проверки тиристора мультиметром
Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.
Как проверить мультиметром транзистор IGBT
Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.
Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.
IGBT-транзисторы с напряжением коллектор-эмиттер
Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.
Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.
Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.
Проверка транзистора мультиметром без выпаивания из микросхемы
Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.
Как проверить мультиметром полевой транзистор
Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.
Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.
Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали типа MOSFET имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.
Полезный совет! Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее.
Устройство полевого транзистора с N-каналом
Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:
- Необходимо снять с транзистора статическое электричество.
- Переключить измерительный прибор в режим проверки полупроводников.
- Подключить красный щуп к разъему прибора «+», а черный «-».
- Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
- Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
- Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
- Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
- Изменив полярность проводов, показания напряжения должны остаться неизменными.
- Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.
Пошаговая проверка полевого транзистора мультиметром
Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время. Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения (см. п.7 и 8).
Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального. Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную.
Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.
Как проверить мультиметром транзистор: видео инструкция
Как” определить базу, коллектор и эмиттер
Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.
Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять
Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.
Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.
>
Как проверить работоспособность разных видов биполярных транзисторов мультиметром? Как проверить биполярный транзистор
Опытные электрики и электронщики знают, что для полной проверки транзисторов существуют специальные пробники.
С помощью них можно не только проверить исправность последнего, но и его коэффициент усиления — h31э .
Необходимость наличия пробника
Пробник действительно нужный прибор, но, если вам необходимо просто проверить транзистор на исправность вполне подойдет и .
Устройство транзистора
Прежде, чем приступить к проверке, необходимо разобраться что из себя представляет транзистор.
Он имеет три вывода, которые формируют между собой диоды (полупроводники).
Каждый вывод имеет свое название: коллектор, эмиттер и база. Первые два вывода p-n переходами соединяются в базе.
Один p-n переход между базой и коллектором образует один диод, второй p-n переход между базой и эмиттером образует второй диод.
Оба диода подсоединены в схему встречно через базу, и вся эта схема представляет собой транзистор.
Ищем базу, эмиттер и коллектор на транзисторе
Как сразу найти коллектор.
Чтобы сразу найти коллектор нужно выяснить, какой мощности перед вами транзистор, а они бывают средней мощности, маломощные и мощные.
Транзисторы средней мощности и мощные сильно греются, поэтому от них нужно отводить тепло.
Делается это с помощью специального радиатора охлаждения, а отвод тепла происходит через вывод коллектора, который в этих типах транзисторов расположен посередине и подсоединен напрямую к корпусу.
Получается такая схема передачи тепла: вывод коллектора – корпус – радиатор охлаждения.
Если коллектор определен, то определить другие выводы уже будет не сложно.
Бывают случаи, которые значительно упрощают поиск, это когда на устройстве уже есть нужные обозначения, как показано ниже.
Производим нужные замеры прямого и обратного сопротивления.
Однако все равно торчащие три ножки в транзисторе могу многих начинающих электронщиков ввести в ступор.
Как же тут найти базу, эмиттер и коллектор?
Без мультиметра или просто омметра тут не обойтись.
Итак, приступаем к поиску. Сначала нам нужно найти базу.
Берем прибор и производим необходимые замеры сопротивления на ножках транзистора.
Берем плюсовой щуп и подсоединяем его к правому выводу. Поочередно минусовой щуп подводим к среднему, а затем к левому выводам.
Между правым и среднем у нас, к примеру, показало 1 (бесконечность), а между правым и левым 816 Ом.
Эти показания пока ничего нам не дают. Делаем замеры дальше.
Теперь сдвигаемся влево, плюсовой щуп подводим к среднему выводу, а минусовым последовательно касаемся к левому и правому выводам.
Опять средний – правый показывает бесконечность (1), а средний левый 807 Ом.
Это тоже нам ничего не говорить. Замеряем дальше.
Теперь сдвигаемся еще левее, плюсовой щуп подводим к крайнему левому выводу, а минусовой последовательно к правому и среднему.
Если в обоих случаях сопротивление будет показывать бесконечность (1), то это значит, что базой является левый вывод.
А вот где эмиттер и коллектор (средний и правый выводы) нужно будет еще найти.
Теперь нужно сделать замер прямого сопротивления. Для этого теперь делаем все наоборот, минусовой щуп к базе (левый вывод), а плюсовой поочередно подсоединяем к правому и среднему выводам.
Запомните один важный момент, сопротивление p-n перехода база – эмиттер всегда больше, чем p-n перехода база – коллектор.
В результате замеров было выяснено, что сопротивление база (левый вывод) – правый вывод равно 816 Ом, а сопротивление база – средний вывод 807 Ом.
Значит правый вывод — это эмиттер, а средний вывод – это коллектор.
Итак, поиск базы, эмиттера и коллектора завершен.
Как проверить транзистор на исправность
Чтобы проверить транзистор мультиметром на исправность достаточным будет измерить обратное и прямое сопротивление двух полупроводников (диодов), чем мы сейчас и займемся.
В транзисторе обычно существуют две структуру перехода p-n-p и n-p-n .
P-n-p – это эмиттерный переход, определить это можно по стрелке, которая указывает на базу.
Стрелка, которая идет от базы указывает на то, что это n-p-n переход.
P-n-p переход можно открыть с помощью минусовое напряжения, которое подается на базу.
Выставляем переключатель режимов работы мультиметра в положение измерение сопротивления на отметку «200 ».
Черный минусовой провод подсоединяем к выводу базы, а красный плюсовой по очереди подсоединяем к выводам эмиттера и коллектора.
Т.е. мы проверяем на работоспособность эмиттерный и коллекторный переходы.
Показатели мультиметра в пределах от 0,5 до 1,2 кОм скажут вам, что диоды целые.
Теперь меняем местами контакты, плюсовой провод подводим к базе, а минусовой поочередно подключаем к выводам эмиттера и коллектора.
Настройки мультиметра менять не нужно.
Последние показания должны быть на много больше, чем предыдущие. Если все нормально, то вы увидите цифру «1» на дисплее прибора.
Это говорит о том, что сопротивление очень большое, прибор не может отобразить данные выше 2000 Ом, а диодные переходы целые.
Преимущество данного способа в том, что транзистор можно проверить прямо на устройстве, не выпаивая его оттуда.
Хотя еще встречаются транзисторы где в p-n переходы впаяны низкоомные резисторы, наличие которых может не позволить правильно провести измерения сопротивления, оно может быть маленьким, как на эмиттерном, так и на коллекторном переходах.
В данном случае выводы нужно будет выпаять и проводить замеры снова.
Признаки неисправности транзистора
Как уже отмечалось выше если замеры прямого сопротивления (черный минус на базе, а плюс поочередно на коллекторе и эмиттере) и обратного (красный плюс на базе, а черный минус поочередно на коллекторе и эмиттере) не соответствуют указанным выше показателям, то транзистор вышел из строя.
Другой признак неисправности, это когда сопротивление p-n переходов хотя бы в одном замере равно или приближено к нулю.
Это указывает на то, что диод пробит, а сам транзистор вышел из строя. Используя данные выше рекомендации, вы легко сможете проверить транзистор мультиметром на исправность.
Радиолюбители знают, что зачастую много времени приходится тратить на поиск неисправностей, возникающих в электронных схемах по различным причинам. Если схема собирается самостоятельно, то заключительным этапом работы будет проверка её работоспособности. А начинать необходимо с подбора заведомо исправных электронных компонентов. В радиолюбительских конструкциях широкое применение находят полупроводниковые приборы. Проверка транзистора, как прозвонить транзистор мультиметром — это немаловажные вопросы.
Типы транзисторов
Разновидностей этого вида полупроводниковых приборов по мере развития электроники появляется всё больше и больше. Появление каждой новой группы обусловлено повышением требований, предъявляемых к работе электронных устройств и к их техническим характеристикам.
Биполярные приборы
Биполярные полупроводниковые транзисторы являются наиболее часто встречающимися элементами электронных схем. Даже если рассмотреть построение различных больших микросхем, можно увидеть огромное количество представителей полупроводников этого вида.
Определение «биполярные» произошло от видов носителей электрического тока, которые в них присутствуют. Этот ток определяется движением отрицательных и положительных зарядов в теле полупроводника.
Каждая область трёхслойной структуры имеет свой металлический вывод, с помощью которого прибор подключается к другим элементам электронной схемы. Эти выводы имеют свои названия: эмиттер, база, коллектор. Эмиттер и коллектор — это внешние области . Внутренняя область — база.
Биполярные транзисторы образуют две группы в зависимости от типа полупроводника. Они обозначаются «p — n — p» и «n — p — n» Области соприкосновения полупроводников различных типов носят название «p — n» переходов.
Область базы является самой тонкой. Её толщина определяет частотные свойства прибора, то есть максимальную частоту радиосигнала, на которой может работать транзистор в качестве усилительного элемента. Область коллектора имеет максимальную площадь, так как при больших токах необходимо отводить избыточную тепловую энергию с помощью внешнего радиатора для исключения перегрева прибора.
На схемах вывод эмиттера обозначается стрелкой , которая определяет направление основного тока через прибор. Основным является ток на участке коллектор — эмиттер (или эмиттер — коллектор, в зависимости от направления стрелки). Но он возникает только в случае протекания управляющего тока в цепи базы. Соотношение этих токов определяет усилительные свойства транзистора. Таким образом, биполярный транзистор — это токовый прибор.
Полевые транзисторы
Транзисторы этого типа существенно отличаются от биполярных приборов. Если последние являются устройствами, управляемыми слабым током базы определённой полярности, то полевым приборам для протекания тока через полупроводник требуется наличие управляющего напряжения (электрического поля).
Электроды имеют названия: затвор, исток, сток. А напряжение, открывающее канал «n» типа или «p» типа, прикладывается к области затвора и определяет интенсивность тока при правильной его полярности. Эти приборы ещё называют униполярными .
Проверка мультиметром
Транзисторы являются активными элементами электронной схемы. Их исправность определяет её правильную работу. Как проверить тестером транзистор — этот вопрос является важным. При знании принципов его работы эта задача не представляет большого труда.
Приборы биполярного типа
Их схему упрощённо можно представить в виде двух полупроводниковых диодов, включённых навстречу друг другу. Для приборов «p — n — p» проводимости соединены будут катоды, а для «n — p — n» структуры общую точку будут иметь аноды диодов. В любом случае точка соединения будет выводом электрода базы, а два других вывода, соответственно, эмиттером и коллектором.
Для структуры «p — n — p» на схеме стрелка эмиттера направлена к выводу базы. Соответственно, для проводимости «n — p — n» стрелка эмиттера изменит своё направление на противоположное. Для определения состояния полупроводникового транзистора большое значение имеет информация о его типе и, соответственно, о маркировке его электродов. Эту информацию можно узнать из многочисленных справочников или из общения на тематических форумах.
Для биполярных приборов «p — n — p» проводимости открытому состоянию будет соответствовать подключение «минусового» (чёрного) щупа тестера к выводу базы. «Положительный» (красный) наконечник поочерёдно подключается к коллектору и эмиттеру. Это будет прямым включением «p — n» переходов.
При этом сопротивление каждого будет находиться в диапазоне (600−1200) Ом. Конкретное значение зависит от производителя электронных компонентов. Сопротивление коллекторного перехода будет иметь величину немного меньшую, чем эмиттерного.
Так как биполярный транзистор представлен в виде встречного включения двух полупроводниковых диодов с односторонней проводимостью, то при смене полярности щупов тестера сопротивления «p — n» переходов у нормально работающих транзисторов будет в идеале стремиться к бесконечности.
Такая же картина должна наблюдаться при измерении сопротивления между выводами эмиттера и коллектора. Причём это большое значение не зависит от смены полярности измерительных щупов. Всё это относится к исправным транзисторам.
Процесс проверки исправности (или неисправности) биполярного полупроводникового элемента с помощью мультиметра сводится к следующему:
- определение типа прибора и схемы его выводов;
- проверка сопротивлений его «p — n» переходов в прямом направлении;
- смена полярности щупов и определение сопротивлений переходов при таком подключении;
- проверка сопротивления «коллектор — эмиттер» в обоих направлениях.
Определение исправности приборов «n — p — n» структуры отличается только тем, что для прямого включения переходов к выводу базы необходимо подключить красный «положительный» провод мультиметра, а к выводам эмиттера и коллектора поочерёдно подсоединять чёрный (отрицательный). Картина с величинами сопротивлений для этой проводимости должна повториться.
К признакам неисправности биполярных транзисторов можно отнести следующие:
- «прозвонка» «p — n» переходов показывает слишком малые значения сопротивлений;
- «p — n» переход не «прозванивается» в обе стороны.
В первом случае можно говорить об электрическом пробое перехода, а то и вовсе о коротком замыкании.
Второй случай показывает внутренний обрыв в структуре прибора.
В обоих случаях данный экземпляр не может быть использован для работы в схеме.
Полевые транзисторы
Для проверки работоспособности этого элемента используем тот же мультиметр, что и для биполярного прибора. Необходимо помнить, что полевики могут быть n-канальными и p-канальными.
Для проверки элемента первого типа необходимо выполнить следующие действия:
Для определения сопротивления закрытого прибора с n-каналом производят касание красным проводом вывода «исток», а чёрным — «сток».
Открытие полевого прибора производится подачей на его «затвор» положительного потенциала (красный провод).
Для проверки открытого состояния транзистора повторно измеряется сопротивление участка «сток — исток» (чёрный провод — сток, красный — исток). Сопротивление приоткрытого n-канала немного уменьшается по сравнению с первым замером.
Закрытие прибора достигается подачей на его «затвор» отрицательного потенциала (чёрный провод мультиметра). После этого сопротивление участка «сток — исток» вернётся к своему первоначальному значению.
При проверке p-канального прибора повторяют все предыдущие действия, переменив полярность измерительных щупов тестера.
Необходимо перед проверками полевых приборов принять меры, защищающие от воздействия статических зарядов, которые могут внести значительные сложности в процесс проверки, а то и вовсе вывести проверяемое изделие из строя. К таким проверенным мерам можно отнести простое касание рукой батареи центрального отопления. Специалисты применяют браслет, обладающий антистатическими свойствами.
При проверках транзисторов большой мощности этого типа часто при полностью запертом полупроводниковом канале можно определить наличие сопротивления. Это означает, что между «истоком» и «стоком» включён защитный диод, встроенный в корпус прибора. Убедиться в этом помогает смена полярности выводов тестера.
Проверка приборов в схеме
Как мультиметром проверить транзистор, не выпаивая, как проверить полевой транзистор — эти вопросы возникают у радиолюбителей довольно часто. Извлечение полупроводникового прибора из схемы требует большой аккуратности и опыта работы. Необходимо иметь в своём арсенале низковольтный паяльник с тонким жалом, браслет, защищающий от статических разрядов. Проводники печатной платы в процессе работы можно перегреть, а то и случайно замкнуть между собой.
Хотя при наличии опыта в такой работе — задача вполне решаемая. Конечно, необходимо уметь читать электрические схемы и представлять работу каждого из её компонентов.
Оценка работоспособности биполярных транзисторов малой и средней мощности мало отличается от проверки этих элементов «на столе», когда все выводы прибора находятся в доступном для проверки положении.
Сложнее проходит проверка непосредственно в схеме приборов большой мощности, применяемых в схемах выходных каскадов усилителей, импульсных блоках питания. В этих схемах присутствуют элементы, защищающие транзисторы от выхода последних на максимально допустимые режимы. При проверке состояний «p — n» переходов в этих случаях можно получить абсолютно не верные результаты. Как выход — выпаивание вывода базы.
Проверка полевых приборов может дать результат, далёкий от реального положения дел. Причина — наличие в схемах большого количества элементов коррекции работы транзисторов, включая катушки индуктивности низкого сопротивления.
Существует ещё большое количество различных типов транзисторов, для оценки состояния которых приходится применять различные специальные пробники. Но это тема для отдельного материала.
Транзистор является наиболее популярным активным компонентом, входящим в состав электрических схем. У любого, кто интересуется электроникой, время от времени возникает необходимость проверить подобный элемент. Особенно часто проверку приходится делать начинающим радиолюбителям, которые в своих схемах используют транзисторы, бывшие в употреблении, например, выпаянные из старых плат. Для «прозвонки» можно использовать специальные приборы-тестеры, позволяющие измерять параметры транзисторов, чтобы потом их можно было сравнить их с указанными в справочнике. Однако для элементов, входящих в любительскую схему достаточно выполнить проверку по правилу: «исправен, неисправен». Эта статья рассказывает, как проверить транзистор мультиметром именно по такому методу тестирования.
Подготовка инструментов
У каждого современного радиолюбителя есть универсальный инструмент под названием цифровой мультиметр. Он позволяет измерять постоянные и переменные токи и напряжение, сопротивление элементов. Он также позволяет проверить работоспособность элементов схемы. Рядом с переключателем в режим «прозвонки», как правило, нарисован диод и динамик (см. фото на рис. 1).
Рисунок 1 – Лицевая панель мультиметра
Перед проверкой элемента необходимо убедиться в работоспособности самого мультиметра:
- Батарея должна быть заряжена.
- При переключении в режим проверки полупроводников дисплей должен отображать цифру 1.
- Щупы должны быть исправны, т. к. большинство приборов – китайские, и разрыв провода в них является очень частым явлением. Проверить их нужно, прислонив кончики щупов друг к другу: в этом случае на дисплее отобразятся нули и раздастся писк – прибор и щупы исправны.
- Щупы подключаются согласно цветовой маркировке: красный щуп — в красный разъем, черный – в черный разъем с надписью COM.
Технологии проверки
Биполярный
Структура биполярного транзистора (БТ) включает в себя 2 p-n или 2 n-p перехода. Выводы этих переходов называются эмиттером и коллектором. Вывод срединного слоя называется базой. Упрощенно БТ можно представить как два включенных встречно диода, как изображено на рисунке 2.
Проверить биполярный транзистор мультиметром не сложно, в чем Вы сейчас и убедитесь. Как известно основным свойством p-n перехода является его односторонняя проводимость. При подключении положительного (красный) щупа к аноду, а черного к катоду на дисплее мультиметра будет отображена величина прямого напряжения на переходе в милливольтах. Величина напряжения зависит от типа полупроводника: для германиевых диодов это напряжение будет порядка 200–300 мВ, а для кремниевых от 600 до 800 мВ. В обратном направлении диод ток не пропускает, поэтому если поменять щупы местами, то на дисплее будет отображена 1, свидетельствующая о бесконечно большом сопротивлении.
Если же диод «пробит», то скорей всего раздастся звуковой сигнал, причем в обоих направлениях. В случае если диод «в обрыве», то на индикаторе, так и будет отображаться единица.
Таким образом, суть проверки исправности транзистора заключается в «прозвонке» p-n переходов база-коллектор, база-эмиттер и эмиттер-коллектор в прямом и обратном включении:
- База-коллектор: Красный щуп подключается к базе, черный к коллектору. Соединение должно работать как диод и проводить ток только в одном направлении.
- База-эмиттер: Красный щуп остается подключенным к базе, черный подключается к эмиттеру. Аналогично предыдущему пункту соединение должно проводить ток только при прямом включении.
- Эмиттер-коллектор: У исправного перехода сопротивление данного участка стремится к бесконечности, о чем будет говорить единица на индикаторе.
При проверке работоспособности pnp типа «диодный» аналог будет выглядеть также, но диоды будут подключены наоборот. В этом случае черный щуп подключается к базе. Переход эмиттер-коллектор проверяется аналогично.
На видео ниже наглядно показывается проверка биполярного транзистора мультиметром:
Полевой
Полевые транзисторы (ПТ) или «полевики» используются в блоках питания, мониторах, аудио и видеотехнике. Поэтому с необходимостью проверки более часто сталкиваются мастера по ремонту аппаратуры. Самостоятельно проверить такой элемент в домашних условиях можно также с помощью обычного мультиметра.
На рисунке 3 представлена структурная схема ПТ. Выводы Gate (затвор), Drain (сток), Source (исток) могут располагаться по-разному. Очень часто производители маркируют их буквами. Если маркировка отсутствует, то необходимо свериться со справочными данными, предварительно узнав наименование модели.
Рисунок 3 – Структурная схема ПТ
Стоит иметь в виду, что при ремонте аппаратуры, в которой стоят ПТ, часто возникает задача проверки работоспособности и целостности без выпаивания элемента из платы. Чаще всего выходят из строя мощные полевые транзисторы, устанавливаемые в импульсные блоки питания. Также следует помнить, что «полевики» крайне чувствительны к статическим разрядам. Поэтому перед тем, как проверить полевой транзистор не выпаивая, необходимо надеть антистатический браслет и соблюдать технику безопасности.
Рисунок 4 – Антистатический браслет
Проверить ПТ мультиметром можно по аналогии с прозвонкой переходов биполярного транзистора. У исправного «полевика» между выводами бесконечно большое сопротивление вне зависимости от приложенного тестового напряжения. Однако, имеются некоторые исключения: если приложить положительный щуп тестера к затвору, а отрицательный – к истоку, то зарядится затворная емкость, и переход откроется. При замере сопротивления между стоком и истоком мультиметр может показать некоторое значение сопротивления. Неопытные мастера часто принимают подобное явление как признак неисправности. Однако, это не всегда соответствует реальности. Необходимо перед проверкой канала сток-исток замкнуть накоротко все выводы ПТ, чтобы разрядились емкости переходов. После этого их сопротивления снова станут большими, и можно повторно проверить работает транзистор или нет. Если подобная процедура не помогает, то элемент считается нерабочим.
«Полевики», стоящие в мощных импульсных блоках питания часто имеют внутренний диод на переходе сток-исток. Поэтому этот канал при проверке ведет себя как обычный полупроводниковый диод. Во избежание ложной ошибки необходимо перед тем, как проверить транзистор мультиметром, удостовериться в наличии внутреннего диода. Следует поменять местами щупы тестера. В этом случае на экране должна отобразиться единица, что свидетельствует о бесконечном сопротивлении. Если этого не происходит, то, скорее всего, ПТ «пробит».
Технология проверки полевого транзистора показана на видео:
Составной
Типовой составной транзистор или схема Дарлингтона изображена на рисунке 5. Эти 2 элемента расположены в одном корпусе. Внутри также находится нагрузочный резистор. У такой модели аналогичные выводы, что и у биполярного. Нетрудно догадаться, что проверить составной транзистор мультиметром можно точно также, как и БТ. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв в цепи.
Перед тем как собрать какую-то схему или начать ремонт электронного устройства необходимо убедиться в исправности элементов, которые будут установлены в схему. Даже если эти элементы новые, необходимо быть уверенным в их работоспособности. Обязательной проверке подлежат и такие распространенные элементы электронных схем как транзисторы.
Для проверки всех параметров транзисторов существуют сложные приборы. Но в некоторых случаях достаточно провести простую проверку и определить годность транзистора. Для такой проверки достаточно иметь мультиметр.
В технике используются различные виды транзисторов – биполярные, полевые, составные, многоэмиттерные, фототранзисторы и тому подобные. В данном случае будут рассматриваться наиболее распространенные и простые — биполярные транзисторы.
Такой транзистор имеет 2 р-n перехода. Его можно представить как пластину с чередующимися слоями с разными типами проводимости. Если в крайних областях полупроводникового прибора преобладает дырочная проводимость (p), а в средней – электронная проводимость (n), то прибор называется транзистор р-n-p. Если наоборот, то прибор называется транзистором типа n-p-n. Для разных видов биполярных транзисторов меняется полярность источников питания, которые подключаются к нему в схемах.
Наличие в транзисторе двух переходов позволяет представить в упрощенном виде его эквивалентную схему как последовательное соединение двух диодов.
При этом для p-n-p прибора в эквивалентной схеме между собой соединены катоды диодов, а для n-p-n прибора – аноды диодов.
В соответствии с этими эквивалентными схемами и производится проверка биполярного транзистора мультиметром на исправность.
Порядок проверки устройства — следуем по инструкции
Процесс измерений состоит из следующих этапов:
- проверка работы измерительного прибора;
- определение типа транзистора;
- измерение прямых сопротивлений эмиттерного и коллекторного переходов;
- измерение обратных сопротивлений эмиттерного и коллекторного переходов;
- оценка исправности транзистора.
Перед тем, как проверить биполярный транзистор мультиметром, необходимо убедиться в исправности измерительного прибора. Для этого вначале надо проверить индикатор заряда батареи мультиметра и, при необходимости, заменить батарею. При проверке транзисторов важна будет полярность подключения. Надо учитывать, что у мультиметра на выводе «COM» имеется отрицательный полюс, а на выводе «VΩmA» – плюсовой. Для определенности к выводу «COM» желательно подключить щуп черного цвета, а к выводу «VΩmA» -красного.
Чтобы к выводам транзистора подключить щупы мультиметра правильной полярности, необходимо определить тип прибора и маркировку его выводов. С этой целью необходимо обратиться к справочнику или найти описание транзистора в Интернете.
На следующем этапе проверки переключатель операций мультиметра устанавливается в положение измерения сопротивлений. Выбирается предел измерения в «2к».
Перед тем, как проверить pnp транзистор мультиметром, надо минусовой щуп подключить к базе устройства. Это позволит измерить прямые сопротивления переходов радиоэлемента типа p-n-p. Плюсовой щуп подключается по очереди к эмиттеру и коллектору. Если сопротивления переходов равны 500-1200 Ом, то эти переходы исправны.
При проверке обратных сопротивлений переходов к базе транзистора подключается плюсовой щуп, а минусовой по очереди подключается к эмиттеру и коллектору.
Если эти переходы исправны, то в обоих случаях фиксируется большое сопротивление.
Проверка npn транзистора мультиметром происходит по такой же методике, но при этом полярность подключаемых щупов меняется на противоположную. По результатам измерений определяется исправность транзистора:
- если измеренные прямое и обратное сопротивления перехода большие, то это значит, что в приборе имеется обрыв;
- если измеренные прямое и обратное сопротивления перехода малы, то это означает, что в приборе имеется пробой.
В обоих случаях транзистор является неисправным.
Оценка коэффициента усиления
Характеристики транзисторов обычно имеют большой разброс по величине. Иногда при сборке схемы требуется использовать транзисторы, у которых имеется близкий по величине коэффициент усиления по току. Мультиметр позволяет подобрать такие транзисторы. Для этого в нем имеется режим переключения «hFE» и специальный разъем для подключения выводов транзисторов 2 типов.
Подключив в разъем выводы транзистора соответствующего типа можно увидеть на экране величину параметра h31.
Выводы :
- С помощью мультиметра можно определить исправность биполярных транзисторов.
- Для проведения правильных измерений прямого и обратного сопротивлений переходов транзистора необходимо знать тип транзистора и маркировку его выводов.
- С помощью мультиметра можно подобрать транзисторы с желаемым коэффициентом усиления.
Видео о том, как проверить транзистор мультиметром
Как проверить биполярный транзистор мультиметром?
Биполярный транзистор состоит из двух . Существуют два вида биполярных транзисторов: PNP-транзистор и NPN-транзистор.
На рисунке ниже структурная схема PNP-транзистора:
Схематическое обозначение PNP-транзистора в схеме выглядит так:
где Э — это эмиттер, Б — база, К — коллектор.
Существует также другая разновидность биполярного транзистора: NPN-транзистор. Здесь уже материал P заключен между двумя материалами N.
Вот его схематическое изображение на схемах
Так как диод состоит из одного PN-перехода, а транзистор из двух, то значит можно представить транзистор, как два диода! Эврика!
Теперь же мы с вами можем проверить транзистор, проверяя эти два диода, из которых, грубо говоря, состоит транзистор. Как проверить диод мультиметром, можно прочитать .
Проверяем транзистор с помощью мультиметра
Ну что же, давайте на практике определим работоспособность нашего транзистора. А вот и наш пациент:
Внимательно читаем, что написано на транзисторе: С4106. Теперь открываем поисковик и ищем документ-описание на этот транзистор. По-английски он называется datasheet. Прямо так и вбиваем в поисковике «C4106 datasheet». Имейте ввиду, что импортные транзисторы пишутся английскими буквами.
Нас больше всего интересует распиновка контактов и какого он типа: NPN или PNP. То есть нам нужно узнать, какой вывод что из себя представляет. Для этого транзистора нам нужно узнать, где у него база, где эмиттер, а где коллектор.
А вот и схемка распиновки:
Теперь нам понятно, что первый вывод — это база, второй вывод — это коллектор, ну а третий — эмиттер.
Возвращаемся к нашему рисунку
Наш подопечный — это NPN-транзистор.
Ставим на прозвонку и начинаем проверять «диоды» транзистора. Для начала ставим «плюс» к базе, а «минус» к коллектору
Все ОК, прямой PN-переход должен обладать небольшим падением напряжения для кремниевых транзисторов 0,5-0,7 Вольт, а для германиевых 0,3-0,4 Вольта. На фото 543 милливольта или 0,54 Вольта.
Проверяем переход база-эмиттер, поставив на базу «плюс» , а на эмиттер «минус».
Видим снова падение напряжения прямого PN перехода. Все ОК.
Меняем щупы местами. Ставим «минус» на базу, а «плюс» на коллектор. Сейчас мы замеряем обратное падение напряжения на PN переходе.
Все ОК, так как видим единичку.
Проверяем теперь обратное падение напряжения перехода база-эмиттер.
Здесь у нас мультиметр также показывает единичку. Значит можно дать диагноз транзистору — здоров.
Давайте проверим еще один транзистор. Он подобен транзистору, который мы вами рассмотрели. Его распиновка (то есть положение и значение выводов) такая же, как у нашего первого героя. Также ставим мультиметр на прозвонку и цепляемся к нашему подопечному.
Нолики… Это не есть хорошо. Это говорит о том, что PN-переход пробит. Можно смело выкидывать такой транзистор в мусор.
Очень удобно проверять транзисторы, имея
Заключение
В заключении статьи, хотелось бы добавить, что лучше всегда находить даташит на проверяемый транзистор. Бывают так называемые составные транзисторы. Что это значит? Это значит, что в одном конструктивном корпусе транзистора могут быть вмонтированы два или даже больше транзисторов. Имейте также ввиду, что некоторые радиоэлементы имеют такой же корпус, как и транзисторы. Это могут быть тиристоры, стабилизаторы, преобразователи напряжения или даже какая-нибудь заморская микросхема. Поэтому, не ленитесь пользоваться интернетом.
Как проверить транзистор | Электрик
Часто в ремонте разной электронной техники возникает подозрение в неисправности биполярных или полевых (Mosfet) транзисторов. Помимо специализированных приборов и пробников для проверки транзисторов, существуют способы доступные всем, из минимума нам подойдет самый простой тестер или мультиметр.
Как мы знаем транзисторы, в основном, бывают двух разновидностей: биполярные и полевые, принцип работы их похож но способы проверки существенно отличаются, поэтому мы рассмотрим разные методы проверки для каждых транзисторов по отдельности.
Проверка биполярных транзисторов
Способы проверки биполярных транзисторов достаточно просты и для удобства нужно помнить что биполярный транзистор условно представляет из себя два диода с точкой по середине, по сути из двух p-n переходов.
Биполярные транзисторы существуют двух типов проводимости: p-n-p и n-p-n что необходимо помнить и учитывать при проверке.
А диод как мы знаем, пропускает ток только в одну сторону, что мы и будем проверять.
Если так получится что ток проходит в обе стороны перехода то это явно указывает на то что транзистор «пробит» но это все условности, в реальности же при замере сопротивления ни в какой из позиций проверяемых переходов не должно быть «нулевого» сопротивления — поэтому это и есть самый простой способ выявления поломки транзистора.
Ну а теперь рассмотрим более достоверные способы проверки и поподробней.
И так выставляем тестер или мультиметр в режим прозвонки (проверка диодов), дальше нужно убедится в том что щупы вставлены в правильные разъемы (красный и черный), а на дисплее нет значка «разряжен». На дисплее должна быть единица а при замыкание щупов должны высветится нули (или близкие к нулям значения), также должен прозвучать звуковой сигнал. И так мы убедились в выборе правильного режима мультиметра, можем приступать к проверке.
И так поочередно проверяем все переходы транзистора:
- База — Эмиттер — исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
- База — Коллектор — исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
- Эмиттер — Коллектор — в исправном состояние сопротивление перехода должно быть «бесконечное», то есть переход не должен пропускать ток или прозваниватmся ни в одном из положений полярности.
В зависимости от полярности транзистора (p-n-p или n-p-n) будит зависить лишь направление «прозвонки» переходов база-эмиттер и база-коллектор, с разной полярностью транзисторов направление будет противоположное.
Как определяется «пробитый» переход?
Если мультиметр обнаружит что какой ли бо из переходов (Б-К или Б-Э) в обоих из включений полярности имеет «нулевое» сопротивление и пищит звуковая индикация то такой переход пробит и транзистор неисправен.
Как определить обрыв p-n перехода?
Если один из переходов в обрыве — он не будит пропускать ток и прозваниватся ни в одну из сторон полярности как бы вы не меняли при этом полярность щупов.
Думаю всем понятно как проверять переходы транзистора, суть проверки такая же как у диодов, черный (минусовой) щуп ставим например на коллектор, а красный щуп (плюсовой) на базу и смотрим показания на дисплее. Затем меняем щупы тестера местами и смотрим показания снова. В исправного транзистора в одном случае должно быть какое то значение, как правило больше 100, в другом случае на дисплее должна быть единица «1» что говорит о «бесконечном» сопротивление.
Проверка транзистора стрелочным тестером
Принцип проверки все тот же, мы проверяем переходы (как диоды)
Отличие лишь в том что такие «омметры» не имеют режима прозвонки диодов и «бесконечное» сопротивление у них находится в начальном состояние стрелки, а максимальное отклонение стрелки будит уже говорить о «нулевом» сопротивление. К этому нужно просто привыкнуть и помнить о такой особенности при проверке.
Измерения лучше всего производить в режиме «1Ом» (можно пробовать и до *1000Ом пределе).
Для проверки в схеме (не выпаивая) стрелочным тестером можно даже более точно определить сопротивление перехода если он в схеме зашунтирован низкоомным резистором, например показания сопротивления в 20 Ом будет уже указывать о том что сопротивление перехода не «нулевое» а значит большая вероятность что переход исправен. С мультиметром же в режиме прозвонки диодов будит такая картина что он попросту будет показывать «кз» и пищать (тоже конечно зависит от точности прибора).
Если не известно где база, а где эмиттер и коллектор. Цоколевка транзистора?
У транзисторов средней и большой мощности вывод коллектора всегда на корпусе который переиначенный для закрепления на радиатора, так что с этим проблем не будит. А уже зная расположение коллектора, найти базу и эмиттер будит намного проще.
Ну а если транзистор малой мощности в пластмассовом корпусе где все выводы одинаковы будим применять такой способ:
Все что нам нужно — поочередно замерить все комбинации переходов прикасаясь щупами поочередно к разным выводам транзистора.
Нам нужно найти два перехода которые покажут бесконечность «1». Например: мы нашли бесконечность между правим-левим и правим-среднем, то есть по сути мы нашли и измеряли обратное сопротивления двух p-n переходов (как диодов) из этого размещение базы стает очевидным — база справа.
Дальше ищем где коллектор а где эмиттер, для этого от базы уже измеряем прямое сопротивление переходов и здесь все стает ясно так как сопротивление перехода база-Коллектор всегда меньше по сравнению с переходом база-Эмиттер.
Быстрая точная проверка транзистора
Если под руками есть мультиметр с функцией тестирования коэффициента усиления транзисторов — замечательно, проверка займет несколько секунд, здесь лишь надо будет определить правильную цоколевку (если конечно она не известна).
У таких мультиметров проверочные гнезда состоят из двух отделов p-n-p и n-p-n, а кроме того каждый отдел имеет три комбинации как можно вставить туда транзистор, то есть вместе не более 6 комбинаций, и только лишь одна правильная которая должна показать коэффициент усиления транзистора, за условий что он исправен.
Простой пробник
В данной схеме транзистор будет работать как ключ, схема очень простая и удобная если нужно часто и много проверять транзисторы.
Если транзистор рабочий — при нажатие кнопки светодиод светится, при отпускание гаснет.
Схема представлена для n-p-n транзисторов, но она универсальна, все что нужно сделать, это поставить параллельно к светодиоду еще один светодиод в обратной полярности, а при проверке p-n-p транзистора — просто менять полярность источника питания.
Если по данной методике что то идет не так, задумайтесь, а транзистор ли перед вами и случайно быть может он не биполярный, а полевой или составной.
Часто бывает путают при проверке составные транзисторы пытаясь их проверить стандартным способом, но нужно в первую очередь смотреть справочник или «даташит» со всем описанием транзистора.
Как проверить составной транзистор Чтобы проверить такой транзистор его необходимо «запустить» то есть он должен как бы работать, для создания такого условия есть простой но интересный способ.
Стрелочным тестером, выставленным в режим проверки сопротивления (предел *1000?) подключаем щупы, плюсовой на коллектор, минусовой на эмиттер — для n-p-n (для p-n-p наоборот) — стрелка тестера не двинется сместа оставаясь в начале шкалы «бесконечность» (для цифрового мультиметра «1»)
Теперь если послюнявить палиц и замкнуть им прикоснувшысь к выводам базы и коллектора то стрелка сдвинется с места от того что транзистор немного приоткроется.
Таким же способом можно проверить любой транзистор даже не выпаивая з схемы.
Но следует помнить что некоторые составные транзисторы имеют в своем составе защитные диоды в переходе эмиттер-коллектор что дает им преимущество в работе с индукционной нагрузкой, например с электромагнитным реле.
Проверка полевых транзисторов
Здесь есть один отличительный момент при проверке таких транзисторов — они очень чувствительны к статическому электричеству которое способно вывести из строя транзистор если не соблюдать методы безопасности при проверке а также выпайке и перемещению. И в большей мере подвержены статике именно маломощные и малогабаритные полевые транзисторы.
Какие методы безопасности?
Транзисторы должны находится на столе на металлическом листе который подключен к заземлению. Для того чтобы снять с человека предельный статический заряд — применяют антистатический браслет который надевают на запястье.
Кроме того хранение и транспортировка особо чувствительных полевиков должна быть з закорочеными выводами, как правило выводы просто обматывают тонкой медной проволкой.
Полевой транзистор в отличие от биполярного управляется напряжением, а не током как у биполярного, поэтому прикладывая напряжение к его затвору мы его или открываем (для N-канального) или закрываем (для P-канального).
Проверить полевой транзистор можно как стрелочным тестером так и цифровым мультиметром.
Все выводы полевого транзистора должны показывать бесконечное сопротивление, независимо от полярности и напряжения на щупах.
Но если поставить положительный щуп тестера к затвору (G) транзистора N-типа, а отрицательный — к истоку (S), зарядится емкость затвора и транзистор откроется. И уже измеряя сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое зависит от ряда факторов, например емкости затвора и сопротивления перехода.
Для P-канального типа транзистора полярность щупов обратная. Также для чистоты эксперимента, перед каждой проверкой необходимо закорачивать выводы транзистора пинцетом чтобы снять заряд с затвора после чего сопротивление сток-исток должно снова стать «бесконечным» («1») — если это не так то транзистор скорее всего неисправен.
Особенностью современных мощных полевых транзисторов (MOSFET’ов) есть то что канал сток-исток прозванивается как диод, встроенный диод в канале полевого транзистора есть особенностью мощных полевиков (явление производственного процесса).
Чтобы не посчитать такую «прозвонку» канала за неисправность просто следует помнить о диоде.
В исправном состояние переход сток-исток MOSFETа должен в одну сторону звониться как диод а в другую показывать бесконечность (в закрытом состояние — после закорачивания выводов) Если переход прозваниваеться в обе стороны с «нулевым» сопротивлением то такой транзистор «пробит» и неисправен
Наглядный способ (экспресс проверка)
- Необходимо замкнуть выводы транзистора
- Тестером в режиме прозвонки (диод) ставим плюсовой щуп к истоку, а минусовой к стоку (исправный покажет 0.5 — 0.7 вольта)
- Теперь меняем щупы местами (исправный покажет «1» или по другому говоря бесконечное сопротивление)
- Минусовой щуп ставим к истоку, а плюсовой на затвор (открываем транзистор)
- Минусовой щуп оставляем на истоке, а плюсовой сразу ставим на сток, исправный транзистор будет открыт и покажет 0 — 800 милливольт
- Теперь можем поменять плюсовой и минусовой щупы местами, в обратной полярности переход сток-исток должен иметь такое же сопротивление.
- Плюсовой щуп ставим к истоку, а минусовой на затвор — транзистор закроется
- Можем снова проверить переход сток-исток, он должен показывать снова «бесконечное» сопротивление так как транзистор уже закрыт (но помним про диод в обратной полярности)
Большая емкость затвора некоторых полевых транзисторов (особенно мощных) позволяет некоторое продолжительное время сохранять транзистор открытим, что позволяет нам открыв его проверять сопротивление сток-исток уже убрав плюсовой щуп с затвора. Но у транзисторов с малой емкостью затвора необходимо очень быстро перемещать щупы что бы зафиксировать правильную работу транзистора.
Примечание: для проверки P-канального полевого транзистора, процесс выглядит также но щупы мультиметра должны быть противоположной полярности. Для удобства можно перекинуть их местами (красный на минус, а черный на плюс) и использовать все туже описану выше инструкцию.
Проверяя транзистор по такой методике канал сток-исток можно открывать и закрывать даже пальцем, например чтобы открыть достаточно прикоснутся пальцем к затвору держась при этом второй рукой за плюс, а чтобы закрыть нужно все также прикоснутся к затвору но уже держась другим пальцем или второй рукой за минус. Интересный опыт который дает понимание того что транзистор управляется не током (как у биполярных) а напряжением.
Простая схема пробника для проверки полевых транзисторов
Можно собрать простую и эффективную схему проверки полевиков которая достаточно ясно даст понять о состояние транзистора, к тому же достаточно быстро можно перекидать транзисторы если их предстоит проверять часто и много. В некоторых схемах можно проверить транзистор даже полностью не выпаивая его с платы.
Схема универсальна как для P-канальных так и для N-канальных полевых транзисторов в ней присутствует два светодиода включенных в обратной полярности друг к другу (каждый для своего типа) и все что остается при смене типа проверяемого полевого транзистора — просто поменять полярность источника питания.
Типы транзисторов— переходные транзисторы и полевые транзисторы
Транзистор стал важным компонентом современной электроники, и мы не можем представить мир без транзисторов. В этом уроке мы узнаем о классификации и различных типах транзисторов. Мы узнаем о BJT (NPN и PNP), JFET (N-Channel и P-Channel), MOSFET (Enhancement and Depletion), а также о транзисторах на основе их приложений (слабый сигнал, быстрое переключение, мощность и т. Д.).
Введение
Транзистор — это полупроводниковое устройство, которое используется либо для усиления сигналов, либо в качестве переключателя с электрическим управлением.Транзистор представляет собой устройство с тремя выводами, и небольшой ток / напряжение на одном выводе (или выводе) будет управлять большим потоком тока между двумя другими выводами (выводами).
С давних пор электронные лампы заменяются транзисторами, потому что транзисторы имеют больше преимуществ перед электронными лампами. Транзисторы малы по размеру и требуют для работы небольшого количества энергии, а также имеют низкую рассеиваемую мощность. Транзистор является одним из важных активных компонентов (устройство, которое может производить выходной сигнал большей мощности, чем входной).
Транзистор является важным компонентом почти каждой электронной схемы, такой как усилители, переключатели, генераторы, регуляторы напряжения, источники питания и, что наиболее важно, микросхемы цифровой логики.
Со времени изобретения первого транзистора до наших дней транзисторы подразделяются на различные типы в зависимости от их конструкции или работы. Следующая древовидная диаграмма объясняет базовую классификацию различных типов транзисторов.
Древовидная диаграмма транзисторов
Классификацию транзисторов можно легко понять, просмотрев приведенную выше древовидную диаграмму.Транзисторы в основном делятся на два типа. Это биполярные переходные транзисторы (BJT) и полевые транзисторы (FET). BJT снова подразделяются на транзисторы NPN и PNP. Полевые транзисторы подразделяются на JFET и MOSFET.
Junction FET транзисторы подразделяются на JFET с N-каналом и JFET с P-каналом в зависимости от их конструкции. МОП-транзисторы подразделяются на режим истощения и режим улучшения. Опять же, транзисторы режима обеднения и улучшения дополнительно классифицируются на соответствующие N-канал и P-канал.
Типы транзисторов
Как упоминалось ранее, в более широком смысле, основные семейства транзисторов — это биполярные и полевые транзисторы. Независимо от того, к какому семейству они принадлежат, все транзисторы имеют правильное / специфическое расположение различных полупроводниковых материалов. Обычно используемые полупроводниковые материалы для изготовления транзисторов — это кремний, германий и арсенид галлия.
В основном транзисторы классифицируются в зависимости от их конструкции. У каждого типа транзисторов есть свои особенности, достоинства и недостатки.
Говоря физически и структурно, разница между BJT и FET заключается в том, что в BJT для работы требуются как основные, так и неосновные носители заряда, тогда как в случае полевых транзисторов требуются только основные носители заряда.
Исходя из их свойств и характеристик, некоторые транзисторы в основном используются для целей переключения (MOSFET), а с другой стороны, некоторые транзисторы используются для целей усиления (BJT). Некоторые транзисторы предназначены как для усиления, так и для переключения.
Переходные транзисторыПереходные транзисторы
обычно называют биполярными переходными транзисторами (BJT). Термин «биполярный» означает, что для проведения тока требуются и электроны, и дырки, а термин «переход» означает, что он содержит PN-переход (фактически, два перехода).
BJT имеют три терминала с именами эмиттер (E), база (B) и коллектор (C). Транзисторы BJT подразделяются на транзисторы NPN и PNP в зависимости от конструкции.
BJT — это, по сути, устройства с управлением по току.Если через базу BJT-транзистора протекает небольшой ток, это вызывает протекание большого тока от эмиттера к коллектору. Биполярные переходные транзисторы имеют низкий входной импеданс, что приводит к протеканию через транзистор большого тока.
Биполярные переходные транзисторы включаются только входным током, который подается на клемму базы. БЮТ могут работать в трех регионах. Это:
- Область отсечки: Здесь транзистор находится в состоянии «ВЫКЛ» i.е., ток, протекающий через транзистор, равен нулю. По сути, это открытый переключатель.
- Активная область: здесь транзистор действует как усилитель.
- Область насыщения: здесь транзистор находится в полностью «ВКЛЮЧЕННОМ» состоянии, а также работает как замкнутый переключатель.
NPN-транзистор
NPN — это один из двух типов биполярных переходных транзисторов (BJT). Транзистор NPN состоит из двух полупроводниковых материалов n-типа, разделенных тонким слоем полупроводника p-типа.Здесь основными носителями заряда являются электроны, а неосновными носителями заряда являются дырки. Поток электронов от эмиттера к коллектору контролируется током в клемме базы.
Небольшой ток на выводе базы вызывает протекание большого тока от эмиттера к коллектору. В настоящее время наиболее часто используемым биполярным транзистором является транзистор NPN, поскольку подвижность электронов выше подвижности дырок. Стандартное уравнение для токов, протекающих в транзисторе:
I E = I B + I C
Символы и структура для NPN-транзисторов приведены ниже.
PNP-транзистор
PNP — это еще один тип биполярных переходных транзисторов (BJT). Транзисторы PNP содержат два полупроводниковых материала p-типа и разделены тонким слоем полупроводника n-типа. Основными носителями заряда в транзисторах PNP являются дырки, а электроны — неосновные носители заряда. Стрелка на выводе эмиттера транзистора указывает протекание обычного тока. В транзисторе PNP ток течет от эмиттера к коллектору.
Транзистор PNP включен, когда клемма базы подтягивается НИЗКОМ по отношению к эмиттеру. Символ и структура транзистора PNP показаны ниже.
FET (Полевой транзистор)
Полевой транзистор (FET) — еще один основной тип транзисторов. По сути, у полевого транзистора также есть три терминала (как у BJT). Три терминала: ворота (G), слив (D) и источник (S). Полевые транзисторы подразделяются на полевые транзисторы с переходным эффектом (JFET) и полевые транзисторы с изолированным затвором (IG-FET) или полевые транзисторы с металлооксидным полупроводником (MOSFET).
Для соединений в цепи мы также рассматриваем четвертую клемму под названием Base или Substrate. Полевые транзисторы контролируют размер и форму канала между источником и стоком, который создается напряжением, приложенным к затвору.
Полевые транзисторы являются однополярными устройствами, поскольку для их работы требуется только большинство носителей заряда (в отличие от BJT, которые являются биполярными транзисторами).
JFET (Соединительный полевой транзистор)
Соединительный полевой транзистор (JFET) — это самый ранний и простой тип полевого транзистора.Полевые транзисторы JFET используются в качестве переключателей, усилителей и резисторов. Этот транзистор представляет собой устройство, управляемое напряжением. Ему не нужен ток смещения.
Напряжение, приложенное между затвором и истоком, управляет потоком электрического тока между истоком и стоком транзистора. Транзисторы JFET доступны как в N-канальном, так и в P-канальном исполнении.
Полевой транзистор с N-каналом
В полевом транзисторе с N-каналом протекание тока происходит за счет электронов. Когда между затвором и истоком подается напряжение, между истоком и стоком образуется канал для протекания тока.Этот канал называется N – Channel. В настоящее время JFET с N-каналом являются более предпочтительным типом, чем JFET с P-каналом. Обозначения для N-канального JFET-транзистора приведены ниже.
P – Channel JFET
В этом типе JFET ток протекает из-за дыр. Канал между истоком и стоком называется P-каналом. Обозначения для полевых транзисторов с P-каналом приведены ниже. Здесь стрелки указывают направление тока.
MOSFET
Металлооксидный полупроводниковый полевой транзистор (MOSFET) является наиболее часто используемым и самым популярным типом среди всех транзисторов.Название «Оксид металла» указывает на то, что область затвора и канал разделены тонким слоем оксида металла (обычно SiO 2 ).
Следовательно, полевой МОП-транзистор также известен как полевой транзистор с изолированным затвором, поскольку область затвора полностью изолирована от области истока-стока. Существует дополнительный вывод, известный как подложка или тело, который является основным полупроводником (кремнием), в котором изготовлен полевой транзистор. Итак, полевой МОП-транзистор имеет четыре вывода: сток, исток, затвор и корпус или подложку.
MOSFET имеет много преимуществ перед BJT и JFET, в основном он предлагает высокий входной импеданс и низкий выходной импеданс.Он используется в коммутационных и силовых цепях и является основным компонентом технологий проектирования интегральных схем.
MOSFET-транзисторы доступны в версиях с истощением и расширением. Кроме того, типы истощения и улучшения подразделяются на типы с N-каналом и P-каналом.
N-канальный MOSFET
MOSFET, имеющий N-канальную область между истоком и стоком, называется N-канальным MOSFET. Здесь выводы истока и затвора сильно легированы материалами n-типа, расположенными в сильно легированном полупроводниковом материале p-типа (подложке).
Ток между истоком и стоком возникает из-за электронов. Напряжение затвора контролирует ток в цепи. MOSFET с N-каналом используется чаще, чем MOSFET с P-каналом, поскольку подвижность электронов выше, чем подвижность дырок.
Символы и структуры для N-канальных MOSFET-транзисторов приведены ниже (как в режиме улучшения, так и в режиме истощения).
MOSFET с P-каналом
MOSFET, имеющий область P-канала между истоком и стоком, называется MOSFET с P-каналом.Здесь выводы истока и стока сильно легированы материалом P-типа, а подложка легирована материалом N-типа. Ток между истоком и стоком обусловлен концентрацией дырок. Приложенное напряжение на затворе будет управлять потоком тока через область канала.
Символы и структуры для P-канальных MOSFET-транзисторов приведены ниже (как в режиме улучшения, так и в режиме истощения).
Транзисторы в зависимости от функции
Транзисторы также классифицируются в зависимости от выполняемых ими функций (операций или приложений).Ниже описаны различные типы транзисторов в зависимости от их функции.
Малосигнальные транзисторы
Основная функция малосигнальных транзисторов заключается в усилении слабых сигналов, но иногда эти транзисторы также используются для переключения. Малосигнальные транзисторы доступны на рынке в виде транзисторов NPN и PNP. Обычно мы можем увидеть какое-то значение, напечатанное на корпусе малосигнального транзистора, которое указывает на hFE транзистора.
В зависимости от этого значения hFE мы можем понять способность транзистора усиливать сигнал.Обычно доступные значения hFE находятся в диапазоне от 10 до 500. Значение тока коллектора этих транзисторов составляет от 80 до 600 мА. Этот тип транзисторов работает в диапазоне частот от 1 до 300 МГц. Само название транзистора указывает на то, что эти транзисторы усиливают слабые сигналы, которые используют небольшие напряжения и токи, такие как несколько милливольт и миллиампер тока.
Малосигнальные транзисторы используются почти во всех типах электронного оборудования, а также эти транзисторы используются в нескольких приложениях, некоторые из них являются переключателями ВКЛ или ВЫКЛ для общего использования, драйвером светодиодного диода, драйвером реле, функцией отключения звука, таймером схемы, инфракрасный диодный усилитель, цепи питания смещения и т. д.
Малые переключающие транзисторы
Малые переключающие транзисторы — это те транзисторы, которые в основном используются для переключения, а иногда и для усиления. Как и малосигнальные транзисторы, небольшие переключающие транзисторы также доступны в форме NPN и PNP, и эти типы транзисторов также имеют значения hFE.
Диапазон значений hFE для этих транзисторов составляет от 10 до 200. При значении hFE 200 транзисторы не являются хорошими усилителями, но они действуют как лучшие переключатели.Диапазон значений тока коллектора от 10 до 1000 мА. Эти транзисторы используются в основном в коммутационных устройствах.
Силовые транзисторы
Транзисторы, которые используются в мощных усилителях и источниках питания, называются силовыми транзисторами. Коллекторный вывод этого транзистора подключен к основанию металлического устройства, и эта структура действует как теплоотвод, который рассеивает избыточную мощность для приложений.
Эти типы транзисторов доступны в виде транзисторов NPN, PNP и Дарлингтона.Здесь значения тока коллектора находятся в диапазоне от 1 до 100 А. Диапазон рабочих частот от 1 до 100 МГц. Значения мощности этих транзисторов находятся в диапазоне от 10 до 300 Вт. Само название транзистора указывает на то, что силовые транзисторы используются в приложениях, где требуются высокая мощность, высокое напряжение и большой ток.
Высокочастотные транзисторы
Высокочастотные транзисторы используются для небольших сигналов, которые работают на высоких частотах, и они используются в приложениях для высокоскоростной коммутации.Высокочастотные транзисторы также называют РЧ-транзисторами.
Эти транзисторы имеют максимальные значения частоты около 2000 МГц. Значение тока коллектора (I C ) колеблется от 10 до 600 мА. Эти типы транзисторов также доступны в форме NPN и PNP. Они в основном используются в приложениях с высокочастотными сигналами, а также эти транзисторы должны быть включены или выключены только на высоких скоростях. Эти транзисторы используются в схемах генераторов и усилителей HF, VHF, UHF, CATV и MATV.
Фототранзистор
Фототранзисторы — это транзисторы, которые работают в зависимости от света, то есть эти транзисторы светочувствительны. Простой фототранзистор — это не что иное, как биполярный транзистор, который содержит светочувствительную область вместо клеммы базы.
Фототранзисторы имеют только 2 вывода вместо 3 (в BJT). Когда светочувствительная область темная, тогда в транзисторе не течет ток, то есть транзистор находится в состоянии ВЫКЛ.
Когда светочувствительная область подвергается воздействию света, на выводе базы генерируется небольшой ток, который вызывает протекание большого тока от коллектора к эмиттеру. Фототранзисторы доступны как в типах транзисторов BJT, так и на полевых транзисторах. Они называются фото-BJT и фото-FET.
В отличие от фото-BJT, фото-полевые транзисторы генерируют напряжение затвора с помощью света, который контролирует ток между выводами стока и истока. Фото-полевые транзисторы более чувствительны к свету, чем фото-полевые транзисторы.Символы фото-BJT и фото-полевых транзисторов показаны выше.
Однопереходные транзисторы (UJT)
Однопереходные транзисторы (UJT) используются только в качестве переключателей с электрическим управлением. Эти транзисторы не имеют каких-либо усилительных характеристик из-за своей конструкции. Обычно это трехпроводные транзисторы, в которых два называются базовыми клеммами, а третий — эмиттером.
Теперь посмотрим на работу однопереходного транзистора.Если нет разницы потенциалов между эмиттером и любым из выводов базы (B1 или B2), то между B1 и B2 протекает небольшой ток.
Если на вывод эмиттера подается достаточное напряжение, то на выводе эмиттера генерируется большой ток, который добавляется к небольшому току между B1 и B2, что затем вызывает протекание большого тока в транзисторе.
Здесь ток эмиттера является основным источником тока для управления полным током в транзисторе.Ток между выводами B1 и B2 очень мал, и по этой причине эти транзисторы не подходят для целей усиления.
Вернуться в блог
Написано Эли в четверг, 4 мая 2017 г.
Спросите любого полевого техника или специалиста по стендовым испытаниям, какое у них наиболее часто используемое испытательное оборудование, и он, вероятно, скажет, что это цифровой мультиметр (цифровой мультиметр). Эти универсальные устройства могут использоваться для тестирования и диагностики широкого спектра цепей и компонентов.В крайнем случае, цифровой мультиметр может даже заменить дорогое специализированное испытательное оборудование. Один особенно полезный навык — это умение проверять транзистор с помощью цифрового мультиметра. Для решения этой задачи существуют специализированные анализаторы компонентов, но для среднего хобби может быть трудно оправдать расходы.
Распиновка транзистора
К счастью, использование цифрового мультиметра для получения базовых показаний типа «годен / не годен» с подозреваемого неисправного двухполюсного транзистора NPN или PNP — это простая и быстрая задача.Некоторые мультиметры имеют встроенную функцию тестирования транзисторов, если она у вас есть, вы можете пропустить этот пост в блоге — просто вставьте свой транзистор в гнездо на мультиметре и установите измеритель в правильный режим. Вы, вероятно, получите такую информацию, как коэффициент усиления (hFE), который можно будет проверить по таблице данных, а также показания пройден / не пройден. Если ваш измеритель не имеет функции тестирования транзисторов, не бойтесь — транзисторы можно легко проверить с помощью настройки тестирования «Диод». (Некоторые счетчики имеют функцию проверки диодов в сочетании с проверкой целостности цепи — это нормально).
Проверка транзистора
Удалите транзистор из схемы для получения точных результатов.
Шаг 1: (от базы к эмиттеру)
Подсоедините плюсовой провод мультиметра к BASE (B) транзистора. Подсоедините отрицательный вывод измерителя к ЭМИТЕРУ (E) транзистора. Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 до 0,9 В. Если вы тестируете транзистор PNP, вы должны увидеть «OL» (Over Limit).
Шаг 2: (от базы к коллектору)
Держите положительный провод на ОСНОВАНИИ (B) и вставьте отрицательный провод в КОЛЛЕКТОР (С).
Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 до 0,9 В. Если вы тестируете транзистор PNP, вы должны увидеть «OL» (Over Limit).
Шаг 3: (от эмиттера к базе)
Подсоедините плюсовой провод мультиметра к ЭМИТТЕРУ (E) транзистора. Подсоедините отрицательный вывод измерителя к BASE (B) транзистора.
Для исправного транзистора NPN вы должны увидеть «OL» (Превышение предела). Если вы проверяете транзистор PNP, измеритель должен показывать падение напряжения между 0.45 В и 0,9 В.
Шаг 4: (от коллектора к базе)
Подсоедините плюсовой провод мультиметра к КОЛЛЕКТОРУ (С) транзистора. Подсоедините отрицательный вывод измерителя к BASE (B) транзистора.
Для исправного транзистора NPN вы должны увидеть «OL» (превышение предела). Если вы проверяете транзистор PNP, измеритель должен показать падение напряжения между 0,45 и 0,9 В.
Шаг 5: (от коллектора к эмиттеру)
Подсоедините положительный провод измерителя к КОЛЛЕКТОРУ (C), а отрицательный провод измерителя к ЭМИТТЕРУ (E) — исправный транзистор NPN или PNP покажет на измерителе «OL» / превышение предела.Поменяйте местами выводы (положительный на эмиттер и отрицательный на коллектор). Еще раз, хороший транзистор NPN или PNP должен показывать «OL».
Если размеры вашего биполярного транзистора противоречат этим шагам, считайте это плохим.
Вы также можете использовать падение напряжения, чтобы определить, какой вывод является эмиттером на немаркированном транзисторе, поскольку переход эмиттер-база обычно имеет немного большее падение напряжения, чем переход коллектор-база.
Помните: этот тест проверяет только то, что транзистор не закорочен или не открыт, он не гарантирует, что транзистор работает в пределах своих расчетных параметров.Его следует использовать только для того, чтобы решить, нужно ли вам «заменить» или «перейти к следующему компоненту». Этот тест работает только с биполярными транзисторами — вам нужно использовать другой метод для тестирования полевых транзисторов.
В качестве особой благодарности нашим клиентам и читателям блогов мы хотели бы предложить 10% скидку на весь ваш заказ, используя КОД: «BLOG1000»
Чтобы получить месяц признательности нашим клиентам, все, что вам нужно сделать, это использовать код «BLOG1000» при оформлении заказа в вашей карточке покупок.
И когда появится окошко, введите соответствующий текущий активный промокод.В данном случае это: BLOG1000
И продолжаем проверять!
Спасибо, что являетесь клиентом Vetco!
Вернуться в блог
Как читать транзисторы | Sciencing
Транзисторы — это полупроводниковые устройства с как минимум тремя выводами. Небольшой ток или напряжение через одну клемму используется для управления током, протекающим через другие. Поэтому их можно рассматривать как клапаны.Их наиболее важные области применения — это переключатели и усилители. Транзисторы бывают нескольких типов. Биполярные имеют слои npn или pnp, к каждому из которых прикреплен вывод. Выводы — это база, эмиттер и коллектор. База используется для управления током, протекающим через два других. Эмиттер испускает свободные электроны в базу, а коллектор собирает свободные электроны с базы. У npn-транзистора база является средним p-слоем, а эмиттер и коллектор — двумя n-слоями, расположенными между базой.Транзисторы моделируются как встречные диоды. Для npn-типа база-эмиттер ведет себя как диод с прямым смещением, а база-коллектор — как диод с обратным смещением. Одна широко используемая транзисторная схема известна как CE или соединение с общим эмиттером, где земля источника питания соединена с эмиттером.
-
Транзисторы — хрупкие компоненты. Не тяните провода слишком далеко друг от друга, когда вставляете один в печатную плату.
Не превышайте рекомендованный максимальный ток или напряжение на выводах.
Никогда не подключайте транзистор назад.
Всегда соблюдайте осторожность при построении электрических цепей, чтобы не получить ожогов и не повредить оборудование.
Измерьте сопротивление между коллектором и эмиттером. Сделайте это, поместив мультиметр на установку сопротивления и поместив щуп на соответствующую клемму.Если вы не уверены, какой вывод является коллектором, а какой — эмиттером, обратитесь к упаковке транзистора или к спецификациям на веб-сайте производителя. Переверните щупы и снова измерьте сопротивление. Он должен показывать значения в мегаомах в любом направлении. В противном случае транзистор поврежден.
Измерьте прямое и обратное сопротивление проводов база-эмиттер. Сделайте это, поместив красный щуп на основание, а черный щуп на эмиттер, а затем переверните.Рассчитайте обратное отношение к прямому. Если это не более 1000: 1, транзистор поврежден.
Повторите шаг 2 для прямого и обратного сопротивлений проводов коллектор-база.
Подключите цепь CE. Используйте базовое напряжение 3 В, подключенное к резистору 100 кОм. Поместите резистор 1 кОм на коллектор и подключите другой его конец к 9-вольтовой батарее. Излучатель должен уйти на землю.
Измерьте «Vce» — напряжение между коллектором и эмиттером.
Измерьте «Vbe» — напряжение между эмиттером и базой. В идеале это должно быть около 0,7 В.
Рассчитать Vce. Vce = Vc — Ve Поскольку это обычная схема подключения эмиттера, Ve = 0, и, следовательно, Vce должно приблизительно соответствовать номиналу второй батареи. Как результат вычисления соотносится со значением измерения на шаге 5?
Вычислите «Vr» базовое напряжение на резисторе. Источник напряжения базы Vbb = 3 В, которым является аккумулятор. Vbe колеблется от 0,6 до 0.7 В для кремниевого транзистора. Предположим, что Vbe = Vb = 0,7 В. Используя закон Кирхгофа для левого базового контура, Vr = Vbb — Vbe = 3 В — 0,7 В = 2,3 В.
Вычислите «Ib», ток через резистор базы. Используйте закон Ома V = IR. Уравнение: Ib = Vbb — Vbe / Rb = 2,3 В / 100 кОм = 23 мкА (микроампер).
Рассчитайте ток коллектора Ic. Для этого используйте коэффициент усиления dc beta Bbc. Bbc — это коэффициент усиления по току, поскольку слабый сигнал на базе создает больший ток на коллекторе.Предположим, Bbc = 200. Используя Ic = Bbc * Ib = 200 * 23 мкА, ответ будет 4,6 мА.
Найдите клеммы транзистора с помощью мультиметра
Этот пост посвящен транзистору и его тестированию с помощью мультиметра.
Транзистор
Транзистор представляет собой комбинацию двух PN-диодов, расположенных вплотную друг к другу, в которой полупроводниковый сэндвич P-типа или N-типа находится между другим типом полупроводникового материала. В основном есть два типа транзисторов, NPN и PNP, с разными символами схемы. Буквы транзисторов (PNP и NPN) относятся к слоям полупроводникового материала P-типа или N-типа, используемых для формирования транзистора.
NPN-транзисторы в основном используются в наши дни, потому что их проще всего сделать из полупроводникового материала кремниевого типа.Этот пост в основном связан с идентификацией выводов NPN-транзисторов. Если вы не знаете об этом, то лучше всего сначала научиться их определять. Транзистор NPN имеет три ножки, которые обозначены как эмиттер (E), база (B) и коллектор (C). Транзисторы NPN представляют собой транзисторы с биполярным переходом (BJT). В котором присутствуют два слоя полупроводника N-типа, которые разделены тонким слоем полупроводника P-типа. В этом большинстве транзисторов носителями заряда являются электроны, а неосновными носителями заряда — дырки.
Изображение транзистора Аналогично, транзистор PNP также является BJT. В этом транзисторе полупроводниковый сэндвич N-типа между двумя полупроводниками P-типа. В PNP основными носителями заряда являются дырки, а неосновными носителями заряда — электроны.
Существует очень много методов идентификации выводов транзисторов, но мы обсуждаем только один метод, который выполняется с помощью мультиметра.
В цифровых мультиметрах (DMM) есть контрольная точка диода или точка целостности. Символ этой точки представляет собой что-то вроде диода (изобразите знак «больше» в виде черного треугольника, указывающего на черную линию и касающегося нее).Во-первых, вы должны знать о хорошем транзисторе, чтобы вы могли определить, есть ли у вас плохой транзистор.
Изображение цифрового мультиметраЭтапы тестирования транзистора
- Прежде всего, убедитесь, что транзистор, который будет тестировать, находится вне цепи.
- Теперь вставьте вилку красного провода в гнездо «V» миллиметров, а вилку черного провода — в гнездо «COM».
- Установите цифровой мультиметр на контрольную точку диода на целостность цепи.
- Теперь подключите положительный или красный и отрицательный или черный щупы к любым двум выводам транзистора, пока мы не получим на экране мультиметра показание, отличное от бесконечности.
- Когда мы получим показание, отличное от бесконечности, оставьте один из щупов на одной из ножек транзистора (не имеет значения, какой именно).
- Теперь подключите другой щуп к третьей ножке транзистора. Если следующее показание будет отличным от бесконечности, повторите шаг 4.
- Теперь оставьте другой датчик на ножке транзистора, который был подключен ранее, когда мы получили показание, отличное от бесконечности.
- После этого возьмите другой датчик и подключите его к третьей ноге, тогда на экране будет отображаться отличное от бесконечности показание.
- Та же самая бесконечность отображается на экране, затем повторите 3-6, но начните с 2 разных отведений, пока мы не сможем оставить одну ногу на месте и получить показание, отличное от бесконечности на двух других ногах.
- Если мы разместим положительный щуп в центральной ножке транзистора, то это будет NPN-транзистор. Если оставить отрицательный пробник на центральной ножке, то получится PNP-транзистор.
- Центральная ножка транзистора называется базой.
- Когда мы меняем, тестовые щупы-
- Ножка с более низким показанием сопротивления — это коллектор.
- Ножка с более высоким показанием сопротивления — это эмиттер.
Как проверить транзистор с помощью мультиметра (DMM + AVO) — NPN и PNP
Как определить базу, коллектор, эмиттер, направление и состояние транзистора с помощью мультиметра
Как запомнить направление PNP и идентификация транзисторов и контактов NPN, проверьте, хорошо это или плохо.
Если вы выберете эту простую тему с помощью цифрового (DMM) или аналогового (AVO) мультиметра, вы сможете:
- Запомнить направление транзисторов NPN и PNP
- Определить базу, коллектор и эмиттер Транзистор
- Проверьте транзистор, исправен он или нет.
Запомните направление транзисторов PNP и NPN
PNP = заостренный
NPN = не заостренный.
, если вы думаете, что это немного сложно, попробуйте этот..это проще.
Щелкните изображение, чтобы увеличить.
PNP NPN
P = Точки N = Никогда
N = IN P = Точки
P = Постоянно N = iN
Проверить транзистор с цифровым мультиметром в диодном или непрерывном режиме
Сделать Итак, следуйте инструкциям, приведенным ниже.
- Удалите транзистор из цепи, т.е. отключите питание от транзистора, который необходимо проверить. Разрядите весь конденсатор (закоротив выводы конденсатора) в цепи (если есть).
- Установите измеритель в режим «Проверка диодов», повернув поворотный переключатель мультиметра.
- Подключите черный (общий или -Ve) измерительный провод мультиметра к 1-й клемме транзистора, а красный (+ Ve) измерительный провод ко 2-й клемме (рис. Ниже). Вам необходимо выполнить 6 тестов, подключив черный (-Ve) измерительный провод и красный (+ Ve) измерительный провод к 1–2, 1–3, 2–1, 2–3, 3–1, 3–2 соответственно. просто замените измерительные провода мультиметра или переверните клеммы транзистора, чтобы подключить, проверить, измерить и записать показания в таблице (показанной ниже).Цифры красного цвета — это красный измерительный провод, а номера черного цвета подключены к черному (-Ve) измерительному проводу мультиметра.
- Проверьте, измерьте и запишите показания дисплея мультиметра в таблице ниже.
У нас есть следующие данные из приведенной ниже таблицы.
Из 6 тестов мы получили данные и результаты только по двум тестам, то есть точкам со 2 по 1 и со 2 по 3. Если мы получили точки со 2 по 1, это 0,733 В постоянного тока, а с 2 по 3 0,728 В постоянного тока. Теперь мы можем легко найти тип транзистора, а также их коллектор, базу и эмиттер.
- Точка 2 — база транзистора в транзисторе BC55.
- BC 557 — это PNP-транзистор, в котором 2 nd (средняя клемма — база) подключены к красному (+ Ve) измерительному проводу мультиметра.
- Вообще, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзистор BC 557 PNP), потому что результат теста для 2-1 = 0,733 В постоянного тока и 2-3 = 0,728 В постоянного тока, т. Е. 2-1 > 2-3.
BC 557 PNP | Точки измерения | Результат |
1-2 | OL | |
1-3 | OL | .733 В постоянного тока|
2-3 | 0,728 В постоянного тока | |
3-1 | OL | |
3-2 | OL |
Определение базы для транзистора 951 Как указано В приведенном выше руководстве общее число, найденное в приведенных выше тестах, является базовым. В нашем случае 2 терминала и являются базовыми, а 2 — обычными из 1-2 и 2-3.
2
nd Метод с использованием цифрового мультиметра для поиска базы транзистора.Если вы следуете той же схеме и способу подключения выводов мультиметра и клемм транзисторов один за другим на рисунке, показанном выше, на рисунках «c» и «d», красный (+ Ve) измерительный провод подключается к среднему. я.е. Клемма 2 nd и черный (-Ve) измерительный провод подключаются к 1 клемме транзистора 1 st .
Опять же, красный (+ Ve) измерительный провод подключается к среднему, т.е. 2 клеммы и провода, а черный (-Ve) измерительный провод подключается к одной клемме транзистора 3 rd , и мультиметр показывает некоторое показание, например 0,717 В постоянного тока и 0,711 В постоянного тока соответственно в случае BC 547 NPN.
Общий провод — это 2 провода и , подключенный к красному (+ Ve) измерительному проводу (т.е.е. P и да, два других вывода — это N), который является базовым. В случае транзистора BC 557 PNP все наоборот.
NPN или PNP?
Все просто. Если черный (-Ve) измерительный провод мультиметра подключен к базе транзистора (в нашем случае 2 клеммы и ), то это PNP-транзистор , а когда красный (+ Ve) измерительный провод подключен к База клеммы, это NPN транзистор .
Эмиттер или коллектор?
Прямое смещение EB (эмиттер — база) больше, чем CB (коллектор — база) i.е. EB> CB в транзисторе PNP, например BC 557 NPN. Следовательно, это резистор типа PNP. В транзисторе NPN прямое смещение BE (база — эмиттер) больше, чем BC (база — коллектор), то есть BE> BC, например BC 547 PNP.
Вот вывод.
- Точка 2 — база транзистора в транзисторе BC547.
- BC 547 — это транзистор NPN, где 2 nd (средняя клемма — база) подключена к красному (+ Ve) измерительному проводу мультиметра.
- Вообще, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзистор BC 547 NPN), потому что результат теста для 1-2 = 0.717 В постоянного тока и 2-3 = 0,711 В постоянного тока, т.е. 1-2> 2-3.
BC 547 NPN | Точки измерения | Результат |
1-2 | 0,717 VDC | |
1-2 | 904 9047 9047 9047 9047 OL||
1-3 | OL | |
2-3 | OL | |
2-3 | 0,711 В постоянного тока |
Проверить транзистор с аналоговым или цифровым мультиметром в Ом (Ом) Режим диапазона:
Шаги:
- Отключите источник питания от цепи и удалите транзистор из схемы.
- Поверните селекторный переключатель и установите ручку мультиметра в положение Ом.
- Подключите черный (общий или -Ve) измерительный провод мультиметра к 1-й клемме транзистора, а красный (+ Ve) измерительный провод ко 2-й клемме ( Рис. 1 (a). (Вы должны выполнить 6 тестов, подключив черный (-Ve) измерительный провод к 1–2, 1–3, 2–1, 2–3, 3–1, 3–2 соответственно, всего лишь замените измерительные провода мультиметра или переверните клеммы транзистора, чтобы подключить, проверить, измерить и записать показания в таблице (показанной ниже).(Цифры красного цвета показывают выводы транзистора, подключенные к измерительному выводу Red (+ Ve) мультиметра, а числа в черном цвете показывают выводы транзистора, подключенные к измерительному выводу Black (-Ve) мультиметра (лучше). объяснение в таблице и на рис. ниже)
- Если мультиметр показывает высокое сопротивление как в первом, так и во втором тестах, изменив полярность транзистора или мультиметра, как показано на рис. 1 (a) и (b) (обратите внимание, что результат будет показан только для 2 тестов из 6, как указано выше).т.е. в нашем случае клемма 2 nd транзистора является BASE, потому что она показывает высокое сопротивление в обоих тестах с 2 по 3 и с 3 по 2, где тестовый провод Red (+ Ve) мультиметра подключен к 2 nd Вывод транзистора. Другими словами, обычное число в тестах — это Base, что составляет 2 из 1, 2 и 3.
Щелкните изображение, чтобы увеличить
PNP или NPN?
Теперь это транзистор NPN, потому что он показывает чтение только тогда, когда КРАСНЫЙ (+ Ve) измерительный провод (т.е.е. Клемма P, где P = положительный) подключена к базе транзистора (см. Рис. Ниже). Если вы сделаете обратное, то есть черный (-Ve) измерительный провод (т.е. N = где N = отрицательный) мультиметра подключен к клемме транзистора в последовательности (от 1 до 2 и от 2 до 3) и покажет показания в обоих тестах, как указано выше. , Клемма 2 nd по-прежнему является BASE, но транзистор — PNP (см. Рис. Ниже).
Проверить транзистор в цифровом мультиметре с транзистором или hFE или бета-режимом
hFE, также известный как beta, означает усиление постоянного тока, что означает «коэффициент усиления прямого тока гибридного параметра, общий эмиттер», используемый для измерения hFE транзистора, который можно найти по следующей формуле.
h FE = β DC = I C / I B
Его также можно использовать для проверки транзистора и его выводов, как показано на рис. 1.
Для проверки транзистор в режиме hFE, в мультиметре есть 8-контактный разъем, обозначенный PNP и NPN, а также ECB (эмиттер, коллектор и база). Просто вставьте три контакта транзистора в слот мультиметра один за другим в разные разъемы, например, ECB или CBE (поворотная ручка должна находиться в режиме hFE).
Если они отображают показания (это будет показание транзистора h FE ), в нашем примере мы использовали транзистор BC548, который показывает бета-значение 368 (положение CBE), текущее положение на C, B, Слот E — это точные выводы транзистора (т. Е. Коллектор, база и эмиттер), а транзистор находится в хорошем положении, в противном случае замените его новым.
Похожие сообщения:
Как проверить транзистор и диод »Электроника
Очень быстро и легко научиться тестировать транзистор и диод с помощью аналогового мультиметра — обычно этого достаточно для большинства приложений.
Учебное пособие по мультиметру Включает:
Основы работы с измерителем
Аналоговый мультиметр
Как работает аналоговый мультиметр
Цифровой мультиметр DMM
Как работает цифровой мультиметр
Точность и разрешение цифрового мультиметра
Как купить лучший цифровой мультиметр
Как пользоваться мультиметром
Измерение напряжения
Текущие измерения
Измерения сопротивления
Тест диодов и транзисторов
Диагностика транзисторных цепей
В то время как многие цифровые мультиметры в наши дни имеют особые возможности для тестирования диодов, а иногда и транзисторов, не все это делают, особенно старые аналоговые мультиметры, которые все еще широко используются.Однако по-прежнему довольно легко выполнить простой тест «годен / не годен», используя простейшее оборудование.
Этот вид тестирования позволяет определить, работает ли транзистор или диод, и, хотя он не может предоставить подробную информацию о параметрах, это редко является проблемой, потому что эти компоненты проверяются при изготовлении, и производительность сравнительно редко меняется. упадут до точки, в которой они не работают в цепи.
Большинство отказов являются катастрофическими, в результате чего компонент становится полностью неработоспособным.Эти простые тесты мультиметра позволяют очень быстро и легко обнаружить эти проблемы.
Таким способом можно тестировать диодыбольшинства типов — силовые выпрямительные диоды, сигнальные диоды, стабилитроны / опорные диоды, варакторные диоды и многие другие типы диодов.
Как проверить диод мультиметром
Базовый тест диодов выполнить очень просто. Чтобы убедиться, что диод работает удовлетворительно, необходимо провести всего два теста мультиметра.
Тест диода основан на том факте, что диод будет проводить только в одном направлении, а не в другом.Это означает, что его сопротивление будет отличаться в одном направлении от сопротивления в другом.
Измеряя сопротивление в обоих направлениях, можно определить, работает ли диод, а также какие соединения являются анодом и катодом.
Поскольку фактическое сопротивление в прямом направлении зависит от напряжения, невозможно дать точные значения ожидаемого прямого сопротивления, так как напряжение на разных измерителях будет разным — оно будет даже различным в разных диапазонах измерителя.
… полоса на корпусе диода представляет катод ….
Метод проверки диода аналоговым измерителем довольно прост.
Пошаговая инструкция:
- Установите измеритель на его диапазон Ом — подойдет любой диапазон, но, вероятно, лучше всего подойдет средний диапазон Ом, если их несколько.
- Подключите катодную клемму диода к клемме с положительной меткой на мультиметре, а анод — к отрицательной или общей клемме.
- Установите измеритель на показания в омах, и должны быть получены «низкие» показания.
- Поменяйте местами соединения.
- На этот раз должно быть получено высокое значение сопротивления.
Примечания:
- На шаге 3 выше фактическое показание будет зависеть от ряда факторов. Главное, чтобы счетчик отклонялся, возможно, до половины и более. Разница зависит от многих элементов, включая батарею в глюкометре и используемый диапазон.Главное, на что следует обратить внимание, это то, что счетчик сильно отклоняется.
- При проверке в обратном направлении кремниевые диоды вряд ли покажут какое-либо отклонение измерителя. Германиевые, которые имеют гораздо более высокий уровень обратного тока утечки, могут легко показать небольшое отклонение, если измеритель установлен на высокий диапазон Ом.
Этот простой аналоговый мультиметр для проверки диода очень полезен, потому что он очень быстро показывает, исправен ли диод.Однако он не может тестировать более сложные параметры, такие как обратный пробой и т. Д.
Тем не менее, это важный тест для обслуживания и ремонта. Хотя характеристики диода могут измениться, это случается очень редко, и очень маловероятно, что произойдет полный пробой диода, и это будет сразу видно с помощью этого теста.
Соответственно, этот тип теста чрезвычайно полезен в ряде областей тестирования и ремонта электроники.
Проверка диодов мультиметромКак проверить транзистор мультиметром
Тест диодов с помощью аналогового мультиметра может быть расширен, чтобы обеспечить простую и понятную проверку достоверности биполярных транзисторов. Опять же, тест с использованием мультиметра дает только уверенность в том, что биполярный транзистор не перегорел, но он все еще очень полезен.
Как и в случае с диодом, наиболее вероятные отказы приводят к разрушению транзистора, а не к небольшому ухудшению характеристик.
Испытание основано на том факте, что биполярный транзистор можно рассматривать как состоящий из двух встречных диодов, и при выполнении теста диодов между базой и коллектором и базой и эмиттером транзистора с использованием аналогового мультиметра, большая часть можно установить базовую целостность транзистора.
Эквивалентная схема транзистора с диодами для проверки мультиметром.Требуется еще один тест. Транзистор должен иметь высокое сопротивление между коллектором и эмиттером при разомкнутой цепи базы, так как имеется два встречных диода.Тем не менее, возможно, что коллектор-эмиттерный тракт перегорел, и между коллектором и эмиттером был создан путь проводимости, при этом все еще выполняя диодную функцию по отношению к базе. Это тоже нужно проверить.
Следует отметить, что биполярный транзистор не может быть функционально воспроизведен с использованием двух отдельных диодов, потому что работа транзистора зависит от базы, которая является переходом двух диодов, являясь одним физическим слоем, а также очень тонкой.
Пошаговая инструкция:
Инструкции даны в основном для транзисторов NPN, поскольку они являются наиболее распространенными в использовании.Варианты показаны для разновидностей PNP — они указаны в скобках (.. .. ..):
- Установите измеритель на его диапазон Ом — подойдет любой диапазон, но, вероятно, лучше всего подойдет средний диапазон Ом, если их несколько.
- Подключите клемму базы транзистора к клемме с маркировкой «плюс» (обычно красного цвета) на мультиметре
- Подключите клемму с маркировкой «минус» или «общий» (обычно черного цвета) к коллектору и измерьте сопротивление.Он должен читать обрыв цепи (для транзистора PNP должно быть отклонение).
- Когда клемма с маркировкой «положительный» все еще подключена к базе, повторите измерение с положительной клеммой, подключенной к эмиттеру. Показание должно снова показать обрыв цепи (мультиметр должен отклоняться для транзистора PNP).
- Теперь поменяйте местами подключение к базе транзистора, на этот раз подключив отрицательную или общую (черную) клемму аналогового измерительного прибора к базе транзистора.
- Подключите клемму с маркировкой «плюс» сначала к коллектору и измерьте сопротивление. Затем отнесите к эмиттеру. В обоих случаях измеритель должен отклониться (указать обрыв цепи для транзистора PNP).
- Далее необходимо подключить отрицательный или общий вывод счетчика к коллектору, а положительный полюс счетчика — к эмиттеру. Убедитесь, что счетчик показывает обрыв цепи. (Счетчик должен показывать обрыв цепи для типов NPN и PNP.
- Теперь поменяйте местами соединения так, чтобы отрицательный или общий вывод измерителя был подключен к эмиттеру, а положительный полюс измерителя — к коллектору.Еще раз проверьте, что прибор показывает обрыв цепи.
- Если транзистор проходит все тесты, значит, он в основном исправен и все переходы целы.
Примечания:
- Заключительные проверки от коллектора до эмиттера гарантируют, что база не «продувалась». Иногда возможно, что между коллектором и базой и эмиттером и базой все еще присутствует диод, но коллектор и эмиттер закорочены вместе.
- Как и в случае с германиевым диодом, обратные показания для германиевых транзисторов не будут такими хорошими, как для кремниевых транзисторов. Допускается небольшой уровень тока, поскольку это является следствием присутствия неосновных носителей в германии.
Обзор аналогового мультиметра
Хотя большинство мультиметров, которые продаются сегодня, являются цифровыми, тем не менее, многие аналоговые счетчики все еще используются. Хотя они могут и не быть новейшими технологиями, они по-прежнему идеальны для многих применений и могут быть легко использованы для измерений, подобных приведенным выше.
Хотя описанные выше тесты предназначены для аналоговых измерителей, аналогичные тесты могут быть проведены с цифровыми мультиметрами, цифровыми мультиметрами.
Часто цифровые мультиметры могут включать специальную функцию тестирования биполярных транзисторов, и это очень удобно в использовании. Общие характеристики тестирования с помощью специальной функции тестирования биполярных транзисторов часто очень похожи на упомянутые здесь, хотя некоторые цифровые мультиметры могут давать значение для текущего усиления.
Использование простого теста для диодов и транзисторов очень полезно во многих сценариях обслуживания и ремонта.Очень полезно иметь представление о том, работает ли диод или транзистор. Поскольку тестеры транзисторов широко не продаются, возможность использования любого мультиметра для обеспечения этой возможности особенно полезна. Это даже удобнее, потому что тест выполнить очень просто.
Другие темы тестирования:
Анализатор сети передачи данных
Цифровой мультиметр
Частотомер
Осциллограф
Генераторы сигналов
Анализатор спектра
Измеритель LCR
Дип-метр, ГДО
Логический анализатор
Измеритель мощности RF
Генератор радиочастотных сигналов
Логический зонд
Тестирование и тестеры PAT
Рефлектометр во временной области
Векторный анализатор цепей
PXI
GPIB
Граничное сканирование / JTAG
Получение данных
Вернуться в меню тестирования.. .
метров проверки транзистора (BJT) | Биполярные переходные транзисторы
Биполярные транзисторы состоят из трехслойного полупроводникового «сэндвича» PNP или NPN. Таким образом, транзисторы регистрируются как два диода, подключенных друг к другу при тестировании с помощью функции «сопротивления» или «проверки диода» мультиметра, как показано на рисунке ниже. Показания низкого сопротивления на базе с черными отрицательными (-) выводами соответствуют материалу N-типа в базе транзистора PNP.На символе на материал N-типа «указывает» стрелка перехода база-эмиттер, которая является базой для этого примера. Эмиттер P-типа соответствует другому концу стрелки перехода база-эмиттер, эмиттеру. Коллектор очень похож на эмиттер и также является материалом P-типа PN-перехода.
Проверка счетчика транзисторов PNP: (a) прямые B-E, B-C, сопротивление низкое; (б) обратные B-E, B-C, сопротивление ∞.
Здесь я предполагаю использование мультиметра с функцией только одного диапазона (сопротивления) для проверки PN-переходов.Некоторые мультиметры оснащены двумя отдельными функциями проверки целостности цепи: сопротивлением и «проверкой диодов», каждая из которых имеет собственное назначение. Если ваш измеритель имеет назначенную функцию «проверки диодов», используйте ее, а не диапазон «сопротивления», и измеритель будет отображать фактическое прямое напряжение PN-перехода, а не только то, проводит ли он ток.
Показания счетчика, конечно, будут прямо противоположными для NPN-транзистора, с обоими PN-переходами, обращенными в другую сторону. Показания низкого сопротивления с красным (+) выводом на базе являются «противоположным» состоянием для NPN-транзистора.
Если в этом тесте используется мультиметр с функцией «проверки диодов», будет обнаружено, что переход эмиттер-база имеет немного большее прямое падение напряжения, чем переход коллектор-база. Эта прямая разница напряжений возникает из-за несоответствия в концентрации легирования между эмиттерной и коллекторной областями транзистора: эмиттер представляет собой гораздо более легированный кусок полупроводникового материала, чем коллектор, в результате чего его соединение с базой создает более высокое прямое напряжение. уронить.
Зная это, становится возможным определить, какой провод какой на немаркированном транзисторе. Это важно, потому что упаковка транзисторов, к сожалению, не стандартизирована. Конечно, все биполярные транзисторы имеют три провода, но расположение этих трех проводов на физическом корпусе не организовано в каком-либо универсальном стандартизированном порядке.
Предположим, технический специалист находит биполярный транзистор и приступает к измерению целостности цепи с помощью мультиметра, установленного в режиме «проверки диодов».Измеряя между парами проводов и записывая значения, отображаемые измерителем, технический специалист получает данные, показанные на рисунке ниже.
|
Неизвестный биполярный транзистор.Какие терминалы являются эмиттерным, базовым и коллекторным? Показания омметра между клеммами.
Единственными комбинациями контрольных точек, дающими показания измерителя, являются провода 1 и 3 (красный измерительный провод на 1 и черный измерительный провод на 3) и провода 2 и 3 (красный измерительный провод на 2 и черный измерительный провод на 3). Эти два показания должны указывать на значение прямого смещения перехода эмиттер-база (0,655 В) и перехода коллектор-база (0,621 В).
Теперь мы ищем один провод, общий для обоих наборов показаний проводимости.Это должно быть базовое соединение транзистора, потому что база является единственным слоем трехслойного устройства, общим для обоих наборов PN-переходов (эмиттер-база и коллектор-база). В этом примере этот провод имеет номер 3 и является общим для комбинаций контрольных точек 1-3 и 2-3. В обоих наборах показаний измерителя черный измерительный провод (-) касался провода 3, что говорит нам о том, что база этого транзистора сделана из полупроводникового материала N-типа (черный = отрицательный). Таким образом, транзистор представляет собой PNP с базой на проводе 3, эмиттером на проводе 1 и коллектором на проводе 2, как показано на рисунке ниже.
|
Клеммы BJT, идентифицируемые омметром.
Обратите внимание, что базовый провод в этом примере — это , а не — средний вывод транзистора, как можно было бы ожидать от трехслойной «сэндвич-модели» биполярного транзистора.Это довольно частый случай, который сбивает с толку новичков, изучающих электронику. Единственный способ узнать, какой именно провод — это проверить счетчик или обратиться к документации производителя на этот конкретный номер детали транзистора.
Знание того, что биполярный транзистор ведет себя как два встречных диода при тестировании с помощью измерителя проводимости, полезно для идентификации неизвестного транзистора исключительно по показаниям измерителя. Это также полезно для быстрой функциональной проверки транзистора.Если бы техник должен был измерить непрерывность в более чем двух или любых менее чем двух из шести комбинаций испытательных проводов, он или она немедленно узнал бы, что транзистор неисправен (или что это не биполярный транзистор, а скорее что-то еще — отличная возможность, если для точной идентификации нельзя сослаться на номера деталей!). Однако модель транзистора с «двумя диодами» не может объяснить, как и почему он действует как усилительное устройство.
Чтобы лучше проиллюстрировать это, давайте рассмотрим одну из схем транзисторного переключателя, используя физическую схему на рисунке ниже, а не схематический символ, представляющий транзистор.Таким образом будет легче увидеть два PN-перехода.
Небольшой ток базы, протекающий в переходе база-эмиттер с прямым смещением, позволяет протекать большому току через переход база-коллектор с обратным смещением.
Диагональная стрелка серого цвета показывает направление тока через переход эмиттер-база. Эта часть имеет смысл, поскольку ток течет от базы P-типа к эмиттеру N-типа: переход явно смещен в прямом направлении.А вот переход база-коллектор — совсем другое дело. Обратите внимание, как толстая стрелка серого цвета указывает в направлении потока тока (вниз) от коллектора к базе. С основанием из материала P-типа и коллектором из материала N-типа. База и коллектор имеют обратное смещение, которое препятствует прохождению тока. Однако насыщенный транзистор очень мало противодействует току на всем пути от коллектора до эмиттера, о чем свидетельствует свечение лампы!
Очевидно, что здесь происходит что-то, что противоречит простой объяснительной модели биполярного транзистора «с двумя диодами».Когда я впервые узнал о работе транзисторов, я попытался построить свой собственный транзистор из двух последовательно включенных диодов, как показано на рисунке ниже.
Пара встречных диодов не работает как транзистор, и ток не может протекать через лампу!
В транзисторе обратное смещение перехода база-коллектор предотвращает ток коллектора, когда транзистор находится в режиме отсечки (то есть, когда ток базы отсутствует). Если соединение база-эмиттер смещено в прямом направлении управляющим сигналом, нормально блокирующее действие перехода база-коллектор отменяется, и ток разрешается через коллектор, несмотря на тот факт, что ток идет «неправильным путем» через этот PN соединение.Это действие зависит от квантовой физики полупроводниковых переходов и может иметь место только тогда, когда два перехода правильно разнесены и концентрации легирования трех слоев правильно пропорциональны. Два диода, соединенные последовательно, не соответствуют этим критериям; верхний диод никогда не может «включиться» при обратном смещении, независимо от того, сколько тока проходит через нижний диод в контуре базового провода. См. Раздел «Биполярные переходные транзисторы», глава 2, для получения более подробной информации.
То, что концентрации легирования играют решающую роль в особых возможностях транзистора, также подтверждается тем фактом, что коллектор и эмиттер не являются взаимозаменяемыми.Если рассматривать транзистор просто как два соединенных друг с другом PN перехода или просто как простой сэндвич из материалов N-P-N или P-N-P, может показаться, что любой конец транзистора может служить коллектором или эмиттером. Однако это не так. При подключении «в обратном направлении» в цепи ток база-коллектор не сможет управлять током между коллектором и эмиттером. Несмотря на то, что эмиттерный и коллекторный слои биполярного транзистора имеют одно и то же легирование типа (N или P), коллектор и эмиттер определенно не идентичны!
Переход база-эмиттер допускает ток, поскольку он смещен в прямом направлении, в то время как переход база-коллектор имеет обратное смещение.Действие базового тока можно представить как «открытие затвора» для тока через коллектор. Более конкретно, любая заданная величина тока между базой и эмиттером допускает ограниченную величину тока между базой и коллектором.
В следующем разделе это ограничение тока транзистора будет исследовано более подробно.
ОБЗОР:
- При тестировании мультиметром в режимах «сопротивление» или «проверка диода» транзистор ведет себя как два встречных PN (диодных) перехода.
- PN-переход эмиттер-база имеет немного большее прямое падение напряжения, чем PN-переход коллектор-база, из-за более сильного легирования полупроводникового слоя эмиттера.
- Переход база-коллектор с обратным смещением обычно блокирует прохождение любого тока через транзистор между эмиттером и коллектором. Однако этот переход начинает проводить, если ток проходит через базовый провод. Базовый ток можно рассматривать как «открытие затвора» для определенного ограниченного количества тока через коллектор.
СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:
.