Как рассчитать сопротивление для светодиодов: Расчёт резистора для светодиода | Онлайн калькулятор

Содержание

Расчет резистора для светодиода и различные подключения LEDs

Подключать светодиоды — дело не из сложных. Для правильного подключения достаточно знать школьный курс физики и соблюсти ряд правил.

Сегодня рассмотрим как правильно рассчитать резистор для светодиода и подключить его, чтобы он горел долго и на радость потребителю. Самые дешевые и качественные резисторы поштучно и наборами можно купить тут с бесплатной доставкой.

Главный параметр у любого светодиода — ток, а не напряжение, как считают многие. Светодиод необходимо питать стабилизированным током, величина которого всегда указана производителем на упаковке или в datasheet.

[contents]

Ток на светодиодах ограничивается резистором — это самый дешевый вариант. Но есть и более «продвинутый» — использовать светодиодный драйвер. По факту, использование резисторов — пережиток прошлого, ведь на сегодняшний день драйверов на любой вкус и цвет полным-полно и по самой привлекательной цене. К примеру, самые дешевые можно приобрести тут. Драйверы обеспечивают стабильный ток на светодиодах независимо от изменения напряжения на его входе.

Правильное подключение светодиода к драйверу следует так: сперва необходимо подключить светодиод к драйверу, только после этого включаем драйвер.

Существует несколько типов подключения светодиодов:

Расчет резистора для светодиода


Недавно мы открыли новую рубрику «калькуляторы», где Вы можете быстро и самостоятельно рассчитать резистор для одного светодиода с помощью онлайн-калькулятора, если не желаете читать дальше много букв.

Вспомним закон Ома:

U=I*R

R=U/I где,

R — сопротивление — измеряется в Омах

U — напряжение-  измеряется в вольтах (В)

I — ток- измеряется в амперах (А)

Пример расчета резистора для светодиода:

Допустим, источник питания выдает 12 В: Vs=12 В

Светодиод — 2 В и 20 мА

Чтобы рассчитать резистор нам необходимо преобразовать миллиамперы в амперы:

20 мА=0,02 А.

R=10/0.02=500 Ом

На сопротивление рассеивается 10 В (12-2)

Посчитаем мощность сопротивления:

P=U*I

P=10*0.02 A=0.2 Вт

Необходимый резистор — R=500 Ом и Р=0,2 Вт

Расчет резистора для светодиода при последовательном соединение светодиодов


Минус светодиода подключается с плюсом последующего. Так соединить можно до бесконечности. При таком соединении падение напряжения на светодиоде умножается на количество диодов в цепи. Т.е. если у нас 5 светодиодов с номинальным током 700 мА и падением напряжения 3,4 Вольта, то и драйвер нам необходим на 700 мА 3,4*5=17В

Это мы рассмотрели какие можно подбирать драйверы, а теперь вернемся непосредственно к тому, как произвести расчет резистора для светодиода при таких соединениях. Однако, можно рассчитать резистор при последовательном соединении светодиодов и в автоматическом режиме на нашем новом калькуляторе.

Выше мы рассмотрели расчет резистора для светодиода (одного). Пр последовательном соединении расчет аналогичный, но необходимо учитывать, что падение напряжения на резисторе меньше. Если «на пальцах», то от источника питания Мы отнимается суммарное падение напряжения на светодиодах Vl=3*2=6В. При условии, что у нас источник выдает 12В, то 12-6=6В.

R=6/0.02=300 Ом.

Р=6*0,02=0,12Вт

Т.е. нам нужен резистор на 300 Ом и 0,125 Вт.

Характеристики светодиода и источника питания аналогичные предыдущему примеру. 

Расчет резистора для светодиода при параллельном соединении


При таком соединении плюс светодиода соединяется с плюсом другого, минус с минусом. При таком соединении ток суммируется, а падение остается неизменным. Т.е. если мы имеем 3 светодиода 700 мА и падением 3,4 В, то 0,7*3=2,1А, то нам потребуется драйвер с параметрами 4-7 В и не менее 2,1А.

Расчет резистора для светодиода в этом случае аналогичен первому случаю.

Расчет резистора для светодиода при последовательно-параллельное соединении


Интересное соединение. При таком расположении диодов несколько последовательных цепочек соединяются параллельно. Необходимо знать, что количество светодиодов в цепочках должно быть равным. Драйвер подбирается с учетом падения напряжения на одной цепочке и произведению тока на количество цепочек. Т.е. 3 последовательные цепи с параметрами 12В и 350 мА подключаются параллельно, напряжение остается 12В, а ток 350*3=1,05А. Для долгой работы чипов нам нужен светодиодный драйвер с 12-15В и током 1050мА.

Расчет резистора для светодиода в этом случае будет таким:

Резистор аналогичен при последовательном соединении, однако, стоит учитывать, что потребление от источника питания увеличится в три раза (0,2+0,2+0,2=0,06А).

При подключении светодиодов через резистор нужен стабилизированный источник питания, т.к. при изменении напряжения будет изменяться и ток, идущий через диод.

Существует еще один способ соединения светодиодов — параллельно-последовательное с перекрестным соединением. но это достаточно сложная тема в расчетах, поэтому не буду ее тут раскрывать. Если потребуется, конечно, опишу, но думаю это нужно только узкому кругу специалистов.

В сети можно найти много онлайн-калькуляторов, которые Вам рассчитают сразу резисторы. Но слепо верить им не стоит, а лучше перепроверить, следуя поговорке: «Хочешь сделать это хорошо, сделай это сам».

Видео на тему правильного расчета резисторов для LEDs


Как рассчитать резистор для светодиода

Часто при изготовлении разнообразных устройств возникает необходимость использовать светодиоды и светодиодные индикаторы. Подключение светодиода к источнику питания выполняется, как правило, через ограничивающий ток резистор (гасящий резистор). Ниже описаны принципы и формулы для расчета гасящего резистора, а также небольшой калькулятор для быстрого подсчета.

Расчет гасящего резистора для светодиода

Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания.

Рис. 1. Схема подключения светодиода к источнику питания через резистор.

Как видим из схемы, ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники.

Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

  • красный — 1,8. 2В;
  • зеленый и желтый — 2. 2,4В;
  • белые и синие — 3. 3,5В.

Допустим что мы будем использовать синий светодиод , падение напряжения на нем — 3В.

Производим расчет напряжения на гасящем резисторе:

Uгрез = Uпит — Uсвет = 5В — 3В = 2В.

Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

R = U / I = 2В / 0,02А = 100 Ом.

В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести

расчет мощности резистора:

P = U * I = 2В * 0,02А = 0,04 Вт.

Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт).

Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).

Uгрез = Uпит — Uсвет = 5В — 2В = 3В.

R = U / I = 3В / 0,015А = 200 Ом.

P = U * I = 3В * 0,015А = 0,045 Вт.

Простой калькулятор для расчета гасящего резистора

Теперь вы знаете как по формулам рассчитать гасящий резистор для питания светодиода. Для облегчения расчетов написан несложный онлайн-калькулятор:

Форму прислал Михаил Иванов.

Заключение

При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр.

Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте. В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (U

R) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство: или его интерпретация

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), RLED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение RLED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода. На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего R

LED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора: ULED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (U

LED). В итоге все данные для расчета сопротивления получены.

Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.

Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (I

max), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление: Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Примеры расчетов сопротивления и мощности резистора

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое ULED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

Пример с LED SMD 5050

По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.

Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А. Ближайшее стандартное значение – 30 Ом.

Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Дополняя вышесказанное стоит отметить, что если прямое напряжение светодиода значительно ниже напряжения питания, то схемы включения через резистор малоэффективны. Вся лишняя энергия впустую рассеивается резистором, существенно занижая КПД устройства.

Светоизлучающие диоды, характеризуются рядом эксплуатационных параметров:

  • Номинальный (рабочий) ток – Iн;
  • падение напряжения при номинальном токе – Uн;
  • максимальная рассеиваемая мощность – Pmax;
  • максимально допустимое обратное напряжение – Uобр.

Самым важным из перечисленных параметров является рабочий ток.

При протекании через светодиод номинального рабочего тока – номинальный световой поток, рабочее напряжение и номинальная рассеиваемая мощность устанавливаются автоматически. Для того чтобы задать рабочий режим LED, достаточно задать номинальный ток светодиода.

В теории светодиоды нужно подключать к источникам постоянного тока. Однако, на практике, LED подключают к источникам постоянного напряжения: батарейки, трансформаторы с выпрямителями или электронные преобразователи напряжения (драйверы).

Для задания рабочего режима светодиода, применяют простейшее решение – последовательно с LED включают токоограничивающий резистор. Их еще называют гасящими или балластными сопротивлениями.

Рассмотрим, как выполняется расчет сопротивления резистора для светодиода.

Расчет резистора светодиода (по формулам)

При расчете вычисляют две величины:

  • Сопротивление (номинал) резистора;
  • рассеиваемую им мощность P.

Источники напряжения, питающие LED, имеют разное выходное напряжение. Для того чтобы выполнить подбор резистора для светодиода нужно знать напряжение источника (Uист), рабочее падение напряжения на диоде и его номинальный ток. Формула для расчета выглядит следующим образом:

При вычитании из напряжения источника номинальное падение напряжения на светодиоде – мы получаем падение напряжения на резисторе. Разделив получившееся значение на ток мы, по закону Ома, получаем номинал токоограничивающего резистора. Подставляем напряжение, выраженное в вольтах, ток – в амперах и получаем номинал, выраженный в омах.

Электрическую мощность, рассеиваемую на гасящем сопротивлении, вычисляют по следующей формуле:

P = (Iн) 2 ⋅ R

Исходя из полученного значения, выбирается мощность балластного резистора. Для надежной работы устройства она должна быть выше расчетного значения. Разберем пример расчета.

Пример расчета резистора для светодиода 12 В

Рассчитаем сопротивление для LED, питающегося от источника постоянного напряжения 12В.

Допустим в нашем распоряжении имеется популярный сверхяркий SMD 2835 (2.8мм x 3.5мм) с рабочим током 150мА и падением напряжения 3,2В. SMD 2835 имеет электрическую мощность 0,5 ватта. Подставим исходные значения в формулу.

R = (12 — 3,2) / 0,15 ≈ 60

Получаем, что подойдет гасящий резистор сопротивлением 60 Ом. Ближайшее значение из стандартного ряда Е24 – 62 ома. Таким образом, для выбранного нами светодиода можно применить балласт сопротивлением 62Ом.

Теперь вычислим рассеиваемую мощность на сопротивлении.

P = (0,15) 2 ⋅ 62 ≈ 1,4

На выбранном нами сопротивлении будет рассеиваться почти полтора ватта электрической мощности. Значит, для наших целей можно применить резистор с максимально допустимой рассеиваемой мощностью 2Вт.

Осталось купить резистор с подходящим номиналом. Если же у вас есть старые платы, с которх можно выпаять детали, то по цветовой маркировке можно выполнить подбор резистора. Воспользуйтесь формой ниже.

На заметку! В приведенном выше примере на токоограничительном сопротивлении рассеивается почти в три раза больше энергии, чем на светодиоде. Это означает, что с учетом световой отдачи LED, КПД нашей конструкции меньше 25%.

Чтобы снизить потери энергии лучше применить источник с более низким напряжением. Например, для питания можно применить преобразователь постоянного напряжения AC/AC 12/5 вольт. Даже с учетом КПД преобразователя потери будут значительно меньше.

Параллельное соединение

Довольно часто требуется подключить несколько диодов к одному источнику. Теоретически, для питания нескольких параллельно соединенных LED, можно применить один токоограничивающий резистор. При этом формулы будут иметь следующий вид:

P = (n ⋅ Iн) 2 ⋅ R

Где n – количество параллельно включенных ЛЕДов.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Даже в «китайских» изделиях производители для каждого светодиода устанавливают отдельный токоограничивающий резистор. Дело в том, что в случае общего балласта для нескольких LED многократно возрастает вероятность выхода из строя светоизлучающих диодов.

В случае обрыва одного из полупроводников, его ток перераспределится через оставшиеся LED. Рассеиваемая на них мощность увеличится и они начнут интенсивно нагреваться. Вследствие перегрева следующий диод выйдет из строя и дальше процесс примет лавинообразный характер.

Совет. Если по какой-то причине нужно обойтись одним гасящим сопротивлением, увеличьте его номинал на 20-25%. Это обеспечит большую надежность конструкции.

Можно ли обойтись без резисторов?

Действительно, в некоторых случаях можно не использовать токоограничивающий резистор. Рассмотренный нами светодиод можно напрямую запитать от двух батареек 1,5В. Так как его рабочее напряжение составляет 3,2В, то протекающий через него ток будет меньше номинального и балласт ему не потребуется. Конечно, при таком питании светодиод не будет выдавать полный световой поток.

Иногда в цепях переменного тока в качестве токоограничивающих элементов вместо резисторов применяют конденсаторы (подробнее про расчет конденсатора). В качестве примера можно привести выключатели с подсветкой, в которых конденсаторы являются «безваттными» сопротивлениями.

Помогите рассчитать сопротивление.

 
Дмитрий С ©   (2010-06-12 17:20) [0]

Нужно рассчитать сопротивление, которое нужно включить последовательно с светодиодом, чтобы тот работал от 12V.
Параметры светодиода:
• Потребляемый ток (I): 20 mA;
• Рабочее напряжение (U) от 2.8 до 3.6 V (возьмем 3 V).

Я рассуждаю так:
1. Сопротивление диода (по закону Ома)
R = U / I = 3 / 0.020 = 150 Ом

2. От 12 V нормально будут работать 4 светодиода подключенных последовательно (по какому закону не помню, но помню что это так). Поэтому для подключения 1 светодиода нужно добавить в цепь сопротивление 3х светодиодов.
R3 = 3 * R = 450 Ом.

3. Получаем схему:

(+) —|◄—|450Ом|— (-)

С пониманием физики электрического тока у меня плохо, а тут, как известно знают всё. Поправьте меня, если где ошибся.


 
Владислав ©   (2010-06-12 17:33) [1]

Не-не-не.
По закону Ома берем подаваемое напряжение (12 В), берем необходимый ток (20 мА), считаем сопротивление. R = 12/0.020 = 600 (Ом).

Подключаем, наслаждаемся.


 
Дмитрий С ©   (2010-06-12 17:35) [2]


> Владислав ©   (12.06.10 17:33) [1]

600 Ом — это сопротивление всей цепи, диода вместе с резистором, разве нет?


 
Anatoly Podgoretsky ©   (2010-06-12 17:50) [3]

> Дмитрий С  (12.06.2010 17:35:02)  [2]

Если твое рассуждение насчет 3 вольт правильно, то расчет верный, надо
погасить 9 вольт, что ток был 20 ма


 
Pavia ©   (2010-06-12 17:53) [4]

450Ом хватит можно меньше и больше.

> • Рабочее напряжение (U) от 2.8 до 3.6 V (возьмем 3 V).

Скорее всего диапозон гораздо шире.
Главное что-бы он на обратное не светился и напряжение постоянно.


 
Дмитрий С ©   (2010-06-12 18:01) [5]


> Anatoly Podgoretsky ©   (12.06.10 17:50) [3]

Так по закону Ома тоже получается 450 Ом, что логично. Спасибо


> Pavia ©   (12.06.10 17:53) [4]

> Скорее всего диапозон гораздо шире.

Такой диапазон указан в описании светодиода.

> Главное что-бы он на обратное не светился и напряжение постоянно.

Что значит «на обратное не светился»?

Кстати, это хорошее замечание. Напряжение может меняться от 10 до 14,5 V (бортовая сеть авто). В этом случае нужно рассчитать сопротивление для максимального напряжения?


 
Владислав ©   (2010-06-12 18:07) [6]

Вспоминаем физику и диод.
В нормальных условиях в одну сторону сопротивление близко к нулю, в другую близко к бесконечности.
именно это свойство диода применяется в диодном мосте для преобразования переменного тока в постоянный.


 
Anatoly Podgoretsky ©   (2010-06-12 18:08) [7]

> Дмитрий С  (12.06.2010 18:01:05)  [5]

> Что значит «на обратное не светился»?

Что бы дым с него не шел, и сам он не светился при этом.


 
NailMan ©   (2010-06-12 18:11) [8]

Чтобы не разрывать себе мозг есть интернет
http://www.novomoskovsk.ru/andreev/led_calc.html


 
Дмитрий С ©   (2010-06-12 20:03) [9]


> Anatoly Podgoretsky ©   (12.06.10 18:08) [7]

ну примерно понял:)


> NailMan ©   (12.06.10 18:11) [8]

Спасибо.

Еще один вопрос встал, подскажите хороший интернет магазин для радиолюбителей, где можно заказать необходимые принадлежности и радиодетали?


 
begin…end ©   (2010-06-12 20:26) [10]

Uпит — напряжение источника питания (12 В)
Uраб — рабочее напряжение светодиода (3 В)
I — ток в цепи (0,02 А — через светодиод, сопротивление и источник питания ток течёт одинаковый)
R — сопротивление светодиода
R» — искомое сопротивление

Падение напряжения на светодиоде и резисторе, вместе взятых:
I * (R + R») = Uпит

Падение напряжения на светодиоде:
I * R = Uраб

Вычитая из 1-го уравнения 2-е, получим: I * R» = Uпит — Uраб, отсюда:
R» = (Uпит — Uраб) / I = (12 — 3) / 0,02 = 450 Ом

Мощность, выделяемая на резисторе:
P» = R» * Sqr(I) = 450 * Sqr(0,02) = 0,18 Вт


 
begin…end ©   (2010-06-12 20:28) [11]

> Дмитрий С ©   (12.06.10 20:03) [9]

http://chip-dip.ru/


 
Дмитрий С ©   (2010-06-12 21:07) [12]


> http://chip-dip.ru/

Тоже то что нужно.


> Мощность, выделяемая на резисторе:
> P» = R» * Sqr(I) = 450 * Sqr(0,02) = 0,18 Вт

Резистор можно брать мощнее, в случае если нет точно такого?
И еще такой вопрос. В том же магазине есть, например,
— Резисторы постоянные выводные 0.25Вт 5-10%
А что означают эти 5-10% ? (ссылка: http://www.chip-dip.ru/search.aspx?tmpl=results&searchtext=%F0%E5%E7%E8%F1%F2%EE%F0 )

В рамках этой же темы хотелось бы спросить, как подбирать сопротивление резистора для подключения транзистора.
Хочу собрать по схеме «индикатор мощности для звуковой колонки».
Нашел вот такую схему:
http://cxem.net/sound/raznoe/indikators2-2.gif
(источник с описанием: http://www.remexpert.com/ipb/topic907.html?mode=threaded&pid=3695)

Для нее по описанию подобрал такой транзистор:
Макс. напр. к-б при заданном обратном токе к и разомкнутой цепи э.(Uкбо макс),В   60
Макс. напр. к-э при заданном токе к и разомкнутой цепи б.(Uкэо макс),В  40
Максимально допустимый ток к ( Iк макс.А)  0.1
Статический коэффициент передачи тока h31э мин  110
Граничная частота коэффициента передачи тока fгр.МГц  150
Максимальная рассеиваемая мощность ,Вт  0.25

http://www.chip-dip.ru/product1/35670756.aspx

На схеме указаны резисторы сопротивлением 470 Ом, но там транзистор кт315в — не такой, какой я выбрал. На российском меня смутил маленький «Статический коэффициент передачи тока h31э мин», равный 30, тогда как в описании рекомендовался более 100.

До диодов и конденсаторов пока не дошел.


 
Anatoly Podgoretsky ©   (2010-06-12 21:16) [13]

> Дмитрий С  (12.06.2010 21:07:12)  [12]

Ни одна деталь не критично, можно практически использользовать близкие
детали.


 
Дмитрий С ©   (2010-06-12 21:54) [14]


> Anatoly Podgoretsky ©   (12.06.10 21:16) [13]
>
> > Дмитрий С  (12.06.2010 21:07:12)  [12]
>
> Ни одна деталь не критично, можно практически использользовать
> близкие
> детали.

Это хорошо.

Про конденсаторы вопрос:
У них есть параметр «Рабочее напряжение». Какое выходное напряжение усилителя я, естественно, не знаю. Можно использовать с заведомо большим параметром, например 35В ? Нормальный ли Допуск номинальной емкости, равный 20%?
И какой лучше выбрать «Алюминиевый электролитический» или «Танталовый электролитический»?


 
инспектор   (2010-06-12 21:55) [15]

У светодиода нет сопротивления. У него есть падение напряжения при заданном токе.


> На российском меня смутил маленький «Статический коэффициент
> передачи тока h31э мин», равный 30, тогда как в описании
> рекомендовался более 100

Так это min. На этот коэффициент не стоит рассчитывать, он меняется во время работы. Хотя скорее вместо буквы в лучше взять букву г


 
NailMan ©   (2010-06-12 22:54) [16]

> [9] Дмитрий С ©   (12.06.10 20:03)
> Еще один вопрос встал, подскажите хороший интернет магазин
> для радиолюбителей, где можно заказать необходимые принадлежности
> и радиодетали?

Если нужны ценики с «номерами телефонов» — в чипдип. а я как разработчик-любитель беру детали в www.megachip.ru или www.smd.ru посредством инет-покупок. Паяльное оборудование итрасходники в чипедипе или в www.radiodelo.ru. Детальки в чипедипе брать — разоришься. Правда я беру десятками-сотнями — все равно дешевле чем в чиподипе взять даже десятками-штуками %-)


 
KilkennyCat ©   (2010-06-12 22:58) [17]


> http://chip-dip.ru/

питерская версия данного магазина отличается мерзостным обслуживанием и дикими ценами.

http://www.micronika.ru/
http://www.terraelectronica.ru/
http://www.megachip.ru


 
гость   (2010-06-13 03:18) [18]

Последнее, что я паял руками был игрушечный светофор на светодиодах для 5-ти летнего сына… Светофор работал, как на автомате, так и в ручном режиме. Сынишка вжигал на игрушечных авто вокруг этого светофора…
А щаз…  Уже начал забывать, как держать в руках паяльник. Дешевле купить китайский ширпотреб… 🙁

Вот значит какие сложности сейчас возникают… включить светодиод в бортовую сеть авто… Проценты на резисторах обозначают возможный процент отклонения сопротивления от номинала. Самые грубые и самые дешевые 20%. т.е. конкретный экземпляр резистора может быть от 360 до 540 Ом. Наиболее часто ювелирное соответствие номиналу резистора не требуется. В вашем случае тоже т.к. напряжение бортовой сети «гуляет». Главное чтобы при пиковых значениях напряжения ток не превысил максимально допустимого для светодиода (20 мА)

Но если уж приспичило подобрать с точностью до ома… берите тестер и подбирайте нужный резистор из партии. Или покупайте претезенционный (0,1%) который к тому же еще имеет небольшой температурный коэффициент изменения сопротивления (такие детали применяются например в измерительных приборах, где требуется высокая точность).

Кстати! Не забудьте расчитать рассееваемую на резисторе мощность. Р = падение напряжения на резисторе * ток = 9 * 0,02 = 0,18 Вт. т.е. нужно брать 0,25 Вт-ный, а не 0,125 Вт-ный.

Совершенно аналогично и с конденсаторами. Напряжение электролита всегда должно быть выбрано с запасом, берите как минимум с 50% запасом по напряжению, а там ставьте хоть на 1500 вольт если место позволяет.

А «какой выбрать алюминиевый или танталовый?» Если критично время наработки на отказ схемы (надо лет экак 20 кряду при круглосуточной эксплуатации) — ставьте танталовые, если таких требований к надежности нет — ставьте что есть под рукой или что дешевле.

А там ставьте в схему то, к чему душа лежит… у меня же при мысли о танталовых конденсаторах и претезенционных резисторах для того, чтобы погасить 9 вольт на светодиоде сразу возникла ассоциация использования золотых гвоздей для столярных работ. 🙂


 
Германн ©   (2010-06-13 03:36) [19]


> Параметры светодиода:
> • Потребляемый ток (I): 20 mA;
> • Рабочее напряжение (U) от 2.8 до 3.6 V (возьмем 3 V).
>

Бред.
Или я очень отстал от жизни.
У диода (любого диода включая светодиод нет и не может быть такого параметра. Точнее «таких параметров»)!
Боже, куда мы катимся!?


 
silver ©   (2010-06-13 09:48) [20]

Удалено модератором


 
Virgo_Style ©   (2010-06-13 18:22) [21]


> Или я очень отстал от жизни.

Похоже на то 🙂


Чип-и-дип и у меня оставил неприятные впечатления. Хотя в конечном итоге я все получил, но времени это заняло — словно из Китая везли.


 
Германн ©   (2010-06-14 02:21) [22]


> Virgo_Style ©   (13.06.10 18:22) [21]
>
>
> > Или я очень отстал от жизни.
>
>
> Похоже на то 🙂
>

И в чём именно? Если не секрет. 🙂

> Чип-и-дип и у меня оставил неприятные впечатления. Хотя
> в конечном итоге я все получил, но времени это заняло —
> словно из Китая везли.
>

Во всех магазинах можно нарваться на подобную ситуацию. Все они в своих прайс листах стараются публиковать всё что могут найти в И-нете. Но всегда нужно интересоваться сроками поставки конкретной продукции. Ибо она (продукция) может:
1. быть на складе магазина;
2. быть заказана у поставщика;
3. вообще не существовать, ибо производитель только анонсировал такой продукт.


 
Virgo_Style ©   (2010-06-14 11:22) [23]


> И в чём именно? Если не секрет. 🙂

в том, что


> нет и не может быть такого параметра. Точнее «таких параметров»

🙂
Не, если Земля не имеет форму шара — то эти параметры будут называться, наверное, «номинальный ток» и «падение напряжения на диоде при номинальном токе».
Это если «по науке». А если хочется продать побольше — тогда «потребляемый ток» и «напряжение питания» — самое оно 🙂


> Но всегда нужно интересоваться сроками поставки конкретной
> продукции.

В практически всех подобных магазинах сроки поставки написаны на страничке товара.
Вот только иногда они не имеют ничего общего с реальностью 🙁


 
абизяна   (2010-06-14 12:45) [24]


> Virgo_Style ©   (14.06.10 11:22) [23]

Нормальный, не перегретый диод, почти, не потребляет ток, так-что такая характеристика, как «потребляемый ток» для диода представляет этот самый диод в виде электроплиты. Кстати, падение напряжения на диоде почти не зависит от протекающего через него тока — это одно из отличительных свойств полупроводниковых приборов от пассивных сопротивлений — резисторов. Когда-то, за отсутствием стабилитронов на малые напряжения использовали диоды при прямом включении по несколько штук последовательно и они отлично справлялись со стабилизацией напряжения, что, определённо, доказывает независимость падения напряжения на диоде от величины протекающего через него тока.


 
Virgo_Style ©   (2010-06-14 23:55) [25]


> абизяна   (14.06.10 12:45) [24]

Все это очень интересно и познавательно, но не имеет к светодиодам ровно никакого отношения.

Потребление 3Вт — норма жизни (а бывает и 30), и ВАХ параболическая.


 
Дмитрий С ©   (2010-06-15 07:27) [26]


> почти, не потребляет ток

А за счет чего он светиться должен тогда?


 
Inovet ©   (2010-06-15 07:47) [27]

> [25] Virgo_Style ©   (14.06.10 23:55)
> параболическая

Эээ. Может не совсем? Сравним наш диод (или для пущей наглядности стабилитрон, как говорилось выше) с вакуумным диодом (подкинем там резисторами напруги) и куском провода на одной установке из одного генератора напряжения и трёх осциллографов (опять же для пущей наглядности).


 
Inovet ©   (2010-06-15 07:48) [28]

> [26] Дмитрий С ©   (15.06.10 07:27)
> А за счет чего он светиться должен тогда?

А вот и заметим это ещё на четвёртом.


 
Inovet ©   (2010-06-15 07:52) [29]

Да. Наш генератор напряжения будет нам выдавать +- относительно 0 — который будет масса, хе. По-моему школьный курс физики, но могу чуть ошибаться.


 
Inovet ©   (2010-06-15 08:06) [30]

Сформулирую точнее постановку эксперимента.
Есть: четыре коробочки (возможно чёрных), на каждой написана сила тока +-. Задача: снять ВАХ со всех. Выоводы: сравнить и сделать предположения о содержимом. Работа: сделать измерительную установку для решения задачи.


 
Inovet ©   (2010-06-15 08:10) [31]

> [30] Inovet ©   (15.06.10 08:06)
> сила тока +-.

И напряжение, пожалуй не лишним будет.


 
Virgo_Style ©   (2010-06-15 09:20) [32]


> Может не совсем?

Ну, если быть точным — то скорее экспонента. Однако рабочий участок настолько невелик, что imho вполне сойдет за параболу 🙂


 
Anatoly Podgoretsky ©   (2010-06-15 09:38) [33]

http://www.lumenhouse.ru/index.php?option=com_content&task=view&id=59&Itemid=21


 
Jeer ©   (2010-06-15 10:35) [34]

Мда.. инженерами и не пахнет, увы.

Диод, как впрочем и любой другой двухполюсный электроэлемент, имеет такую двухпараметрическую  зависимость, как вольт-амперная характеристика.
Кроме того, имеются предельные параметры напряжения и тока.

Для простейшего расчета ( без учета дестабилизирующих факторов ), достаточно знать номинальный ток и падение напряжения на светодиоде — это и есть рабочая точка на ВАХ.
Разность напряжения питания и падения напряжения на светодиоде в рабочей точке, поделенная на рабочий ток, дает значение сопротивления резистора.


 
Inovet ©   (2010-06-15 12:07) [35]

> [34] Jeer ©   (15.06.10 10:35)
> Мда.. инженерами и не пахнет, увы.

Мы тут уже перешли к исследованию неизвестного прибора с двумя клеммами. Будем считать, что образцы есть в запасе, иначе значительно сложнее исследовать, хотя начнём тогда от нуля на нашем генераторе напряжения что ли, и будем по чуть-чуть добавлять в обе стороны на каждом замере, пока не увидим неповторяющиеся показания, тут сделаем вывод о разрушении образца и его предельных параметрах — тогда и надписей не надо на корбках.

> [33] Anatoly Podgoretsky ©   (15.06.10 09:38)

Там не показаны ещё несколько важных участков, но для сабжа, естественно, даже больше чем надо.

> [34] Jeer ©   (15.06.10 10:35)
> в рабочей точке

Вот

Смайликов выше, как обычно, не наставил.:)


 
абизяна   (2010-06-15 18:20) [36]


> Virgo_Style ©   (14.06.10 23:55) [25]
>
> > абизяна   (14.06.10 12:45) [24]
>
>
> Все это очень интересно и познавательно, но не имеет к светодиодам
> ровно никакого отношения.
>
> Потребление 3Вт — норма жизни (а бывает и 30), и ВАХ параболическая.
>
> <Цитата>

Вот сходи по ссылке в [33]. Ну и гду здесь парабола на рабочем участке?
И, как писали выше «ток потребления 0,02А при 3В». Каким это образом получается 3Вт?
ВАХ светодиода отличается от обычного диода тем, что рабочий участок сдвинут вправо и несколько более пологая, т.е. падение напряжения на светодиоде раз в 10 больше чем на диоде, но, всё-таки слабо зависит от величины тока.
http://www.radiodetali.com/article/all/led-faq.htm


> Дмитрий С ©   (15.06.10 07:27) [26]
>
> > почти, не потребляет ток
>
> А за счет чего он светиться должен тогда?

почти Т.е. светит так же, как и протребляет. Хотя, конечно, есть и помощнее, к примеру, как утверждал Чубайс:»На основе нанотехнологий российские учёные … .»  Просто речь шла о 20мА и 3В, что означает 60мВ.


 
Jeer ©   (2010-06-15 18:26) [37]


> почти Т.е. светит так же, как и протребляет

Ерунда. КПД обычных светодиодов 20..50%


 
абизяна   (2010-06-15 18:44) [38]

http://moto.w6.ru/obshee/poleznoe/199-svetodiody-i-ikh-primenenie.html


Светодиоды и их применение | OPPOZIT.RU | мотоциклы Урал, Днепр, BMW

Данная статья призвана немного прояснить принципы использования светодиодов на практике.
Светодиоды обладают многими достоинствами, так то : долговечность,виброустойчивость,экономичность,малые габариты. Эти несомненные плюсы привлекают,но зачастую не реализуются на практике в виду не совсем полного понимания работы этих устройств.

Светодиод-в первую очередь необходимо рассматривать как нелинейный полупроводниковый прибор,а не как обычный аналог лампы накаливания.

Полупроводниковые диоды имеют нелинейную зависимость прямого тока от напряжения на его выводах. До достижения порогового напряжения на его выводах-ток через прибор минимален, диод закрыт.но по достижению порогового напряжения диод открывается, ток резко возрастает.

Для наглядности приведены вольт-амперные характеристики (ВАХ) обычного кремниевого диода и светодиодов

Эта характеристика даёт понять нам,что светодиод имеет малое дифференциальное сопротивление в диапазоне рабочих токов. Небольшое приращение напряжения приводит к резкому росту тока через прибор. Отличия от ламп накаливания, имеющих чисто активное сопротивление (как следствие-практически прямую ВАХ) ,как говорится –налицо.

Поэтому использование светодиодов напрямую от источника напряжения, без токоограничительных или токостабилизирующих устройств настоятельно не рекомендуется. Не лишним будет упомянуть и зависимость порогового напряжения от температуры,с повышением температуры оно снижается.

На рис1 приведена простейшая схема включения светодиода с ограничением тока через светодиод резистором. Расчёт схемы довольно прост. Зная (справочные данные) номинальный рабочий ток через светодиод и падение напряжения на нём нетрудно рассчитать номинал резистора R1 и его мощность.

Мощность рассеивания резистора=(Uвх-Uпад)*Iном

Iном-номинальный рабочий ток светодиода.

Практически выбор резистора выглядит так

— Имеем красный «среднестатистический» светодиод, с падением напряжения ~1.9в,рабочим током 10ма,максимальным-20ма ,источник питания-бортовая сеть автомобиля,мотоцикла(12-14.2в). оговоримся-точность расчёта на результат при одиночном включении светодиода фактически не влияет.округлим для простоты расчёта падение напряжения до 2в.

Итак: (12в-~2в):0.01А=1000ом(1Ком), мощность(12в-~2в)*0.01А =0.1вт

Проверяем не выйдет ли за пределы допустимого рабочего тока при максимальном напряжении в бортсети : (14.2в- ~2в):1000=0.0122А(12.2 ма), что много меньше максимально допустимого 20ма. Следовательно выбираем резистор 1к, 0.125вт(или больше)

При необходимости использования нескольких светодиодов в качестве группового излучателя света целесообразно их последовательное включение-сокращается кол-во резисторов,возрастает общий кпд схемы. Прямое параллельное включение нескольких светодиодов с одним резистором нежелательно.

При параллельном соединении токи светодиодов складываются,при последовательном-складывается падение напряжений на светодиоде.

При последовательном включении в изначальную формулу проставляем не падение напряжения одиночного светодиода, а сумму падений на группе последовательно включённых светодиодов.

R1=(Uвх-Uпад*N):Iном где N-количество последовательно включённых светодиодов.

Но тут необходимо небольшое отступление-на практике,как в вышеописанном примере,питающие напряжения редко бывают стабильны,увлекатся большим количеством последовательно включённых светодиодов (для бортсети 12в-это на мой взгляд более 4 шт красных, (с падением ~2в)) нецелесообразно, ибо приведёт к увеличению нижнего диапазона питающих напряжений, большому колебанию тока и соответственно яркости свечения светодиодов.

Пример с бортсетью 12в мы рассмотрели выше,при колебаниях напряжения 12-14.2в ток через светодиод составил 10-12.2ма.

Например взять крайний случай-использование 4-х светодиодов в подобной бортсети,включенных последовательно с токоограничительным резистором.

Имеем выходные расчётные данные такими: сопротивление резистора 400ом,ток 10-15.5ма. колебания тока уже составят более 50%,это уже будет визуально довольно заметно

Как вариант-использование вместо токоограничительных резисторов-источника тока.

Намеренно не будем рассматривать стабилизаторы тока на дискретных элементах,ибо выйдем за рамки одной статьи

Современные микросхемы стабилизаторов напряжения (LM317 и её клоны-кр142ен12,ен22,ld1083-ld1085 итд) превосходно справляются с этой задачей.

Использование данной микросхемы (DA1) в таком режиме отображено на рис2.

Резистор R1 задаёт общий ток светодиодов. Расчёт схемы прост.R1=1.25(это напряжение стабилизации мс):I. I-тут общий ток нескольких веток светодиодов.

для запитки одной «ветки» cветодиодов с током 10 ма R1 cоставит 1.25:0.01=125ом.

Двух=62ом,трёх-41 итд.

Хорошо подходит данный стабилизатор для питания «сверхярких» светодиодов с током потребления от 20 ма и выше. Но не лишён и недостатков. Их надо учесть.

Первое, падение напряжение на стабилизаторе такого плана не должно быть меньше 2.5-3-х вольт. Ниже — теряет свои стабилизирующие свойства, ток падает. Неприятно,но не смертельно.

Второе: применяется смешанное соединение светодиодов. Тут есть даже пара подводных камней.точнее в параллельном включении веток светодиодов. Расчёт ведётся по сумме токов нескольких веток. В случае повреждения одной из ветки последовательно соединенных светодиодов-их ток распределяется на остальные ветви.

Не следует использовать светодиоды в таком включении на максимальном токе (если, естественно, количество веток больше 1 😉 ), использовать надо строго одинаковые светодиоды и желательно из одной партии. естественно количество последовательно соединённых должно также совпадать. Но и тут может быть разница в токах разных ветвей. Разброс параметров ,при максимальных токах, приведёт к увеличению сверх расчётного тока через ту ветку, где будет наименьшее суммарное падение напряжения.

Светодиоды, особенно мощные – греются. И как мы знаем — с разогревом уменьшается их пороговое напряжение, что приводит к увеличению тока этой ветви. Выход один — вводить дополнительно последовательно с каждой цепью последовательно включённых светодиодов — резистор, номиналом единицы-десятки Ом (на схеме 2 R2`).

Если таки выходит необходимость использования резисторов с каждой веткой последовательно включённых светодиодов-то выходит использование стабилизатора тока не является необходимым. На схеме №3 DA1-обычный стабилизатор напряжения серий кр142ен5, LM7805-7808 или же регулируемые 317,1083-1085 со своими резисторами задающими вых напряжение. расчёт R1 производится как и по схеме №1,исходя из выходного стабилизированного питания мс.

При использовании микросхемных стабилизаторов напряжения и общем потребляемым током свыше 300ма –микросхемы требуют использования радиатора. Даб не углублятся в эти дебри-воспользуйтесь данными производителя этих микросхем (datasheets), оттуда же подчерпнёте и много другой полезной информации по этим микросхемам. Так то –максимальное напряжение на входе устройства,максимальный ток,рассеиваемая мощность итд.

От себя могу лишь вкратце охарактеризовать и дать рекомендации по использованию схем.

По рис 1 плюсы: начинает работать фактически от напряжения ,едва превышающего пороговое светодиода(ов,если последовательно),подходит к использованию на низких напряжениях питания,просто,примитивно.

Минусы… стабилизация тока отсутствует.

По рис 2 плюсы-стабилизация тока ,верхние значения входных напряжений могут быть весма большими-37в+сумма падений на светодиодах. Схема может содержать 1 мс и 1 резистор.и это при работе на … скажем 30 светодиодов 😉

По рис 3. стабилизация тока косвенная.недостатки-использование и мс и резистора на каждую последовательную ветвь светодиодов. На 78й серии стаб имеет большое мин.падение напряжение(до 2.5в),фиксированные вых напряжения.Предпочтительнее 1083 с обвязкой.

В заключении хотелось бы напомнить-светодиоды ,микросхемы боятся статики,неправильного подключения и перегрева.пайка этих деталей должна быть максимально быстрая,не более 2 сек.

Было бы некорректно обойти вниманием светодиоды с интегрированным резистором,рассчитанные на подключение напрямую к источнику напряжения. Но в виду их малораспространенности ,дороговизны ,небольшой яркости- практическое использование под вопросом. Разве что в схемах индикации,где проблематично разместить доп внешний резистор.

Также не лишним будет упомянуть что разработаны и специальные микросхемы-драйвера светодиодов,осуществляющие стабилизацию тока светодиодов. Среди них есть как линейные стабилизаторы(мало отличающиеся по принципу действия от схемы №2),так и импульсные,имеющие повышенный кпд.

Но опять таки –имеют или узкую специализацию или малораспростаненны и дороги.

Для повышения кпд возможно использование неспециализированных распространённых микросхем импульсных стабилизаторов напряжения.например,таких как MC34063.схему включения можно почерпнуть из технической документации. Использование её в качестве источника тока не документировано,но вполне осуществимо.

Рекомендовал бы её включение, как понижающий стабилизатор, нагруженный на группу светодиодов с общим резистором,с которого берется напряжение обратной связи.








Дополнительно будут полезны для ознакомления пара практических схем.

На рис №4 использование одной матрицы из 12 сверхярких светодиодов в качестве габарита и стоп сигнала.

Примененные светодиоды имели параметр в рабочей точке 30ма падение напряжения в 2.2в

R3=10ом 0.125вт(можно исключить,если светодиоды не «Китай» 😉 )

R2=75 ом 1-2вт

R1=270 ом 1вт

VD1-обычный кремниевый диод с максимальным током 1и более ампер(1n4001-1n4007 итд)

На рис №5 приведена схема замены лампы накаливания в цепи контроля генератора светодиодом.R1 подбор в пределах 1-4.7кОм . зависит от расположения светодиода,от его типа.дабы и «считывание» летним днём обеспечить и ночью не ослепнуть.

Схемы включения светодиодов

Светодиод — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Светодиод является прибором токовым, т.е. ток через него должен быть ограничен с помощью резистора. Как рассчитать этот резистор, было уже рассказано, повторяться здесь не будем, но формулу, на всякий случай, приведем еще раз.

Рисунок 1.

Здесь Uпит. – напряжение питания, Uпад. – падение напряжение на светодиоде, R – сопротивление ограничивающего резистора, I – ток через светодиод.

Однако, несмотря на всю теорию, китайская промышленность выпускает всевозможные сувениры, брелоки, зажигалки, в которых светодиод включен без ограничительного резистора: просто две-три дисковых батарейки и один светодиод. В этом случае ток ограничивается внутренним сопротивлением батареи, мощности которой просто не хватает, чтобы спалить светодиод.

Но тут, кроме перегорания, есть и еще одно неприятное свойство – деградация светодиодов, более всего присущее светодиодам белого и синего цветов: через некоторое время яркость свечения становится совсем незначительной, хотя ток через светодиод протекает вполне достаточный, на уровне номинального.

Нельзя сказать, что не светит вовсе, свечение еле заметно, но это уже не фонарик. Если при номинальном токе деградация происходит не ранее, чем через год непрерывного свечения, то при завышенном токе дождаться этого явления можно через полчаса. Такое включение светодиода следует назвать плохим.

Подобную схему можно объяснить лишь стремлением сэкономить на одном резисторе, припое, и трудозатратах, что при массовых масштабах производства, видимо, оправдано. Кроме того, зажигалка или брелок вещь одноразовая, копеечная: кончился газ или села батарейка — сувенир просто выкинули.

Рисунок 2. Схема плохая, но применяется достаточно часто.

Очень интересные вещи получаются (конечно, случайно), если по такой схеме подключить светодиод к блоку питания с выходным напряжением 12В и током не менее 3А: происходит ослепительная вспышка, раздается достаточно громкий хлопок, дымок, и остается удушливый запах. Так и вспоминается вот такая притча: «Можно ли посмотреть на Солнце в телескоп? Да, но только два раза. Один раз левым глазом, другой правым». Кстати, подключение светодиода без ограничительного резистора наиболее распространенная ошибка у начинающих, и о ней хотелось бы предупредить.

Чтобы исправить это положение, продлить срок службы светодиода, схему следовало бы чуточку изменить.

Рисунок 3. Хорошая схема, правильная.

Именно такую схему следует считать хорошей или правильной. Чтобы проверить, правильно ли указан номинал резистора R1, можно воспользоваться формулой, показанной на рисунке 1. Будем считать, что падение напряжения на светодиоде 2В, ток 20мА, напряжение питания 3В обусловлено применением двух пальчиковых батареек.

А вообще не надо стремиться ограничить ток на уровне предельно допустимых 20мА, можно запитать светодиод меньшим током, ну, хотя бы, миллиампер 15…18. При этом произойдет совсем незначительное уменьшение яркости, который глаз человека, в силу особенностей устройства, не заметит совсем, а вот срок службы светодиода намного увеличится.

Еще один пример плохого включения светодиодов можно встретить в различных фонариках, уже более мощных, нежели брелоки и зажигалки. В этом случае некоторое количество светодиодов, иногда достаточно большое, просто включено параллельно, и тоже без ограничительного резистора, в роли которого опять же выступает внутреннее сопротивление батареи. Такие фонарики достаточно часто попадают в ремонт именно по причине выгорания светодиодов.

Рисунок 4. Совсем плохая схема включения.

Казалось бы, исправить положение может схема, показанная на рисунке 5. Всего один резистор, и дело, казалось бы, пошло на поправку.

Рисунок 5. Так уже немного лучше.

Но и такое включение поможет мало. Дело в том, что в природе просто не найти двух одинаковых полупроводниковых приборов. Именно поэтому, например, транзисторы одного типа имеют различный коэффициент усиления, даже если они из одной производственной партии. Тиристоры и симисторы тоже бывают разные. Некоторые открываются легко, а другие настолько тяжко, что от их применения приходится отказаться. То же можно сказать и о светодиодах – двух абсолютно одинаковых, тем более трех или целой кучи, найти просто невозможно.

Замечание на тему. В DataSheet на светодиодную сборку SMD-5050 (три независимых светодиода в одном корпусе) включение, показанное на рисунке 5, не рекомендуется. Мол, из-за разброса параметров отдельных светодиодов, может быть заметна разница в их свечении. А казалось бы, в одном корпусе!

Никакого коэффициента усиления у светодиодов, конечно же, нет, зато есть такой важный параметр, как прямое падение напряжения. И если даже светодиоды взяты из одной технологической партии, из одной упаковки, то двух одинаковых в ней просто не будет. Поэтому ток у всех светодиодов будет разный. Тот светодиод, у которого ток будет больше всех, и рано или поздно превысит номинальный, сгорит раньше всех.

В связи с этим прискорбным событием весь возможный ток пойдет через два оставшихся в живых светодиода, естественно, превышая номинальный. Ведь резистор-то рассчитывался «на троих», на три светодиода. Повышенный ток вызовет и повышенный нагрев кристаллов светодиодов, и тот, который окажется «слабее», тоже сгорает. Последнему светодиоду также не остается ничего иного, как последовать примеру своих товарищей. Такая вот цепная реакция получается.

В данном случае под словом «сгорит» подразумевается просто разрыв цепи. Но может произойти, что в одном из светодиодов получится элементарно короткое замыкание, шунтирующее остальные два светодиода. Естественно, что они обязательно погаснут, хотя и останутся в живых. Резистор при такой неисправности будет усиленно греться и в конце концов, может быть, сгорит.

Чтобы такого не произошло, схему надо немного изменить: для каждого светодиода установить свой резистор, что и показано на рисунке 6.

Рисунок 6. А вот так светодиоды прослужат очень долго.

Здесь все, как требуется, все по правилам схемотехники: ток каждого светодиода будет ограничен своим резистором. В такой схеме токи через светодиоды не зависят друг от друга.

Но и это включение не вызывает особого восторга, поскольку количество резисторов равно количеству светодиодов. А хотелось бы, чтобы светодиодов было побольше, а резисторов поменьше. Как же быть?

Выход из этого положения достаточно простой. Каждый светодиод надо заменить цепочкой последовательно включенных светодиодов, как показано на рисунке 7.

Рисунок 7. Параллельное включение гирлянд.

Платой за такое усовершенствование будет увеличение напряжения питания. Если для одного светодиода достаточно всего трех вольт, то даже два светодиода, включенных последовательно, от такого напряжения уже не зажечь. Так какое же напряжение понадобится для включения гирлянды из светодиодов? Или по-другому, сколько светодиодов можно подключить к источнику питания с напряжением, например, 12В?

Замечание. Под названием «гирлянда» здесь и далее следует понимать не только елочное украшение, но также любой осветительный светодиодный прибор, в котором светодиоды соединены последовательно или параллельно. Главное, что светодиод не один. Гирлянда, она и в Африке гирлянда!

Чтобы получить ответ на этот вопрос, достаточно напряжение питания просто разделить на падение напряжения на светодиоде. В большинстве случаев при расчетах это напряжение принимается 2В. Тогда получается 12/2=6. Но не надо забывать, что какая-то часть напряжения должна остаться для гасящего резистора, хотя бы вольта 2.

Получается, что на светодиоды остается только 10В, и количество светодиодов станет 10/2=5. При таком положении дел, чтобы получить ток 20мА, ограничительный резистор должен иметь номинал 2В/20мА=100Ом. Мощность резистора при этом составит P=U*I=2В*20мА=40мВт.

Такой расчет вполне справедлив, если прямое напряжение светодиодов в гирлянде, как было указано, 2В. Именно это значение часто принимается при расчетах, как некоторое среднее. Но на самом деле это напряжение зависит от типа светодиодов, от цвета свечения. Поэтому при расчетах гирлянд следует ориентироваться на тип светодиодов. Падения напряжения для светодиодов разных типов приведены в таблице, показанной на рисунке 8.

Рисунок 8. Падение напряжения на светодиодах разных цветов.

Таким образом, при напряжении источника питания 12В, за вычетом падения напряжения на токоограничивающем резисторе, всего можно подключить 10/3,7=2,7027 белых светодиодов. Но кусочек от светодиода не отрежешь, поэтому подключить возможно только два светодиода. Такой результат получается если из таблицы взять максимальное значение падения напряжения.

Если же в расчет подставить 3В, то совершенно очевидно, что подключить возможно три светодиода. При этом каждый раз придется кропотливо пересчитывать сопротивление ограничительного резистора. Если реальные светодиоды окажутся с падением напряжения 3,7В, а может выше, три светодиода могут и не зажечься. Так что лучше остановиться на двух.

Принципиально не важно, какого цвета будут светодиоды, просто при расчете придется учитывать разные падения напряжений в зависимости от цвета свечения светодиода. Главное, чтобы они были рассчитаны на один ток. Нельзя собрать последовательную гирлянду из светодиодов, часть которых с током 20мА, а другая часть из 10-ти миллиамперных.

Понятно, что при токе 20мА светодиоды с номинальным током 10мА попросту сгорят. Если же ограничить ток на уровне 10мА, то 20-ти миллиамперные засветятся недостаточно ярко, примерно как в выключателе со светодиодом: ночью видно, днем нет.

Чтобы облегчить себе жизнь, радиолюбители разрабатывают различные программы-калькуляторы, облегчающие всевозможные рутинные расчеты. Например, программы для расчета индуктивностей, фильтров различного типа, стабилизаторов тока. Есть такая программа и для расчета светодиодных гирлянд. Скриншот такой программы приведен на рисунке 9.

Рисунок 9. Скриншот программы «Расчет_сопротивления_резистора__Ledz_».

Программа работает без установки в системе, просто ее надо скачать и пользоваться. Все настолько просто и понятно, что никаких пояснений к скриншоту совсем не требуется. Естественно, что все светодиоды должны быть одного цвета и с одинаковым током.

Ограничительные резисторы это, конечно, хорошо. Но только тогда, когда известно, что вот эта гирлянда будет питаться от стабилизированного источника постоянного напряжения 12В, и ток через светодиоды не превысит расчетного значения. А как быть, если просто нет источника с напряжением 12В?

Такая ситуация может возникнуть, например, в грузовом автомобиле с напряжением бортовой сети 24В. Выйти из такой кризисной ситуации поможет стабилизатор тока, например, «SSC0018 — Регулируемый стабилизатор тока 20..600мА». Его внешний вид показан на рисунке 10.

Рисунок 10. Регулируемый стабилизатор тока SSC0018

Технические характеристики стабилизатора показаны на рисунке 11.

Рисунок 11. Технические характеристики стабилизатора тока SSC0018

Изначально стабилизатор тока SSC0018 был разработан для применения в светодиодных светильниках, но может также применяться для зарядки малогабаритных аккумуляторов. Пользоваться устройством SSC0018 достаточно просто.

Сопротивление нагрузки на выходе стабилизатора тока может быть нулевым, попросту можно замкнуть накоротко выходные клеммы. Ведь стабилизаторы и источники тока не боятся коротких замыканий. При этом ток на выходе будет номинальным. Уж если установили 20мА, то столько и будет.

Из сказанного можно сделать вывод, что к выходу стабилизатора тока можно «напрямую» подключить миллиамперметр постоянного тока. Начинать такое подключение следует с самого большого предела измерений, ведь какой там отрегулирован ток никому не известно. Далее простым вращением подстроечного резистора установить требуемый ток. При этом, конечно, не забыть подключить стабилизатор тока SSC0018 к блоку питания. На рисунке 12 показана схема включения SSC0018 для питания светодиодов, соединенных параллельно.

Рисунок 12. Подключение для питания светодиодов, соединенных параллельно

Здесь все понятно из схемы. Для четырех светодиодов с током потребления 20мА на каждый на выходе стабилизатора надо выставить ток 80мА. При этом на входе стабилизатора SSC0018 потребуется напряжение чуть большее, чем падение напряжения на одном светодиоде, о чем было сказано выше. Конечно, подойдет и большее напряжение, но это приведет только к дополнительному нагреву микросхемы стабилизатора.

Замечание. Если для ограничения тока с помощью резистора напряжение источника питания должно превышать общее напряжение на светодиодах незначительно, всего вольта на два, то для нормальной работы стабилизатора тока SSC0018 это превышение должно быть несколько выше. Никак не меньше, чем 3…4В, иначе попросту не откроется регулирующий элемент стабилизатора.

На рисунке 13 показано подключение стабилизатора SSC0018 при использовании гирлянды из нескольких последовательно соединенных светодиодов.

Рисунок 13. Питание последовательной гирлянды через стабилизатор SSC0018

Рисунок взят из технической документации, поэтому попробуем рассчитать количество светодиодов в гирлянде и постоянное напряжение, потребное от блока питания.

Указанный на схеме ток, 350мА, позволяет сделать вывод, что гирлянда собрана из мощных белых светодиодов, ведь как было сказано чуть выше, основное назначение стабилизатора SSC0018 это источники освещения. Падение напряжения на белом светодиоде находится в пределах 3…3,7В. Для расчета следует взять максимальное значение 3,7В.

Максимальное входное напряжение стабилизатора SSC0018 составляет 50В. Вычитаем из этого значения 5В, необходимых для работы самого стабилизатора, остается 45В. Этим напряжением можно «засветить» 45/3,7=12,1621621… светодиодов. Очевидно, что это надо округлить до 12.

Количество светодиодов может быть и меньше. Тогда входное напряжение придется уменьшить (при этом выходной ток не изменится, так и останется 350мА как был отрегулирован), зачем на 3 светодиода, пусть даже мощных, подавать 50В? Такое издевательство может закончиться плачевно, ведь мощные светодиоды отнюдь недешевы. Какое потребуется напряжение для подключения трех мощных светодиодов желающие, а они всегда найдутся, могут посчитать сами.

Регулируемый стабилизатор тока SSC0018 устройство достаточно хорошее. Но весь вопрос в том, всегда ли оно нужно? Да и цена девайса несколько смущает. Каков же может быть выход из создавшегося положения? Все очень просто. Прекрасный стабилизатор тока получается из интегральных стабилизаторов напряжения, например, серии 78XX или LM317.

Для создания такого стабилизатора тока на базе стабилизатора напряжения потребуется всего 2 детали. Собственно сам стабилизатор и один единственный резистор, сопротивление и мощность которого поможет рассчитать программа StabDesign, скриншот которой показан на рисунке 14.

Рисунок 14. Расчет стабилизатора тока с помощью программы StabDesign.

Особых пояснений программа не требует. В выпадающем меню Type выбирается тип стабилизатора, в строке Iн задается требуемый ток и нажимается кнопочка Calculate. В результате получается сопротивление резистора R1 и его мощность. На рисунке расчет проведен для тока 20мА. Это для случая, когда светодиоды соединены последовательно. Для параллельного соединения ток подсчитывается так же, как показано на рисунке 12.

Светодиодная гирлянда подключается вместо резистора Rн, символизирующего нагрузку стабилизатора тока. Возможно даже подключение всего одного светодиода. При этом катод подключается к общему проводу, а анод к резистору R1.

Входное напряжение рассмотренного стабилизатора тока находится в пределах 15…39В, поскольку применен стабилизатор 7812 с напряжением стабилизации 12В.

Ранее ЭлектроВести писали, что в городе Эссен (Германия) возле городской филармонии и театра Аалто установили 15 интеллектуальных уличных фонарей, которые позволят подзарядить автомобиль, а также предоставлять данные о качестве окружающего воздуха и доступ в Интернет.

По материалам: electrik.info.

какой резистор нужен для светодиода как рассчитать резистор для светодиода

Светодиодное освещение прочно вошло в нашу жизнь. Основные достоинства – низкое энергопотребление, высокая яркость, минимальные размеры. Светодиод представляет собой полупроводниковый элемент с электронно-дырочной проводимостью. При пропускании через него электрического тока в прямом направлении он создает оптическое излучение в узком диапазоне. Собственное низкое сопротивление и чувствительность к величине силы тока, является основной причиной того что при включении данного элемента в электрическую цепь необходимо использовать токоограничивающий резистор. Как рассчитать и правильно подобрать данную деталь для конкретных условий применения рассмотрим более подробно.

Расчет токоограничивающего резистора для светодиода

В интернете можно встретить множество калькуляторов с помощью которого можно рассчитать необходимое сопротивление резистора для эффективной и длительной работы любого светодиода. Но не всегда компьютер может быть под рукой, а токоограничивающий резистор необходимо установить именно в данный момент. Вот для этого и нужно знание элементарных правил.

Светодиоды, как и все элементы могут быть включены в цепь параллельно или последовательно. Первый вариант не является надежным в принципе. Суть в следующем: при таком виде включения, напряжение на светодиодах будет одинаковым, но так как практически невозможно подобрать полупроводниковые приборы с идеальными идентичными характеристиками, сила тока на светодиодах может оказаться разной по величине. Один будет светить вполнакала, а второй может работать при удвоенной нагрузке и быстро выйдет из строя. Данное неудобство исключено при последовательном включении светодиодов (или его одиночной установке).

Подбор резистора для светодиода необходимо начинать с выяснения характеристик самого светодиода, а именно значение падения напряжения на светодиоде (U св) и номинальный ток (I св) при нормальной работе. Эти данные можно найти в соответствующей сопроводительной документации или в специальных каталогах. Также необходимо будет знать напряжение источника питания (U).

Расчет сопротивления (R) токоограничивающего резистора для конкретного светодиода производится по формуле: R = (U– Uсв)/ Iсв, что собственно следует из закона Ома.

Рассмотрим наглядно какой резистор нужен для светодиода КИПД06А-1К при напряжении источника питания 220 В. Из соответствующих справочников выясняем, что номинальный ток (I св) для данного источника света составляет 25 мА, а падение напряжения (U св) при этом равно 5,5 В.

Используя вышеприведенную формулу можем рассчитать сопротивление резистора (R) для обеспечения нормальной работы данного светодиода.

R = 220-5,5/0,025 = 8580 Ом = 8,58 кОм.

Далее, после получения необходимой величины сопротивления в омах, переходим к непосредственно к подбору резистора для светодиода соответствующей марки. Возвращаясь к параллельному соединению светодиодов нужно уточнить, что оно возможно, если в дополнение к каждому источнику света будет идти собственный токоограничивающий резистор.

Подбор токоограничивающего резистора для светодиода

После того как необходимое сопротивление резистора было вычислено, необходимо определиться с выбором соответствующей детали. Здесь могут возникнуть некоторые сложности. Дело в том, что не всегда можно подобрать резистор для светодиода, полностью соответствующий по вычисленным параметрам.

Проблема решается двумя способами:

Первый способ.

Необходимо подобрать резистор для светодиода, сопротивление которого будет выше необходимого. При этом не стоит сильно завышать этот параметр. Дело в том, что при увеличении сопротивления, будет теряться световая мощность источника, т.е. он будет менее ярким, но при этом прослужит значительно дольше. Оптимальным является превышение необходимого значение в пределах 20-30%.

Второй способ.

Второй способ основан на законе Ома, согласно которому при последовательном соединении резисторов их собственное сопротивление суммируется. Таким образом, при невозможности подбора для светодиода токоограничивающего резистора сопротивлением 8,58 кОм (как в нашем случае), можно взять несколько деталей с необходимыми параметрами. Это в принципе является оптимальным вариантом, вследствие более точного результата. Естественно ограничением будет являться сама возможность установки нескольких резисторов в электрической цепи.

Также при подборе резистора необходимо обращать внимание на его мощность. Это обусловлено тем, что при работе выделяется тепло и при недостаточной мощности данная деталь может просто перегореть. Это в свою очередь приведет к разрыву цепи и отключению светодиодных источников света.

КАК ПОДКЛЮЧИТЬ СВЕТОДИОД

Светодиоды (LED — англ. Light-emitting diode, светящиеся диоды) используются во многих электронных проектах. Но не все могут правильно подключить или выбрать резистор для светодиода, и тогда его можно вывести из строя за доли секунды. Давайте разберёмся в этом и узнаем как всё делается.

Вначале стоит напомнить, что резистор обязательно должен сопровождать светодиод. Независимо от того, подключаете ли вы его к батарейке, Arduino или к чему-то еще, резистор необходим всегда, потому что светоизлучающий диод управляется током! Срок службы питаемого светодиода без резистора невелик, даже если поначалу он вроде бы светится.

Всё потому что LED элементы хотят потреблять как можно больше электроэнергии. Пока не начнет нагреваться, что приведет к перегреву и повреждению его структуры. Следовательно, необходим своеобразный предохранитель в виде резистора, который будет ограничивать количество тока, потребляемого светодиодом.

Какой ток светодиода

По принципу действия светодиоды очень похожи на обычные выпрямительные диоды. Только конструктивное исполнение другое. И первое существенное отличие — это полупроводниковый материал. В случае выпрямительных диодов это чаще кремний. Светодиоды же изготавливаются из разных полупроводников, в зависимости от цвета которым они светятся. Материал определяет прямое напряжение, то есть напряжение, которое прикладывается к светодиоду при прохождении прямого тока через него.

Прямое напряжение — напряжение, равное или превышающее то, при котором ток (прямой ток) начинает течь через диод, и он начинает светиться.

Прямое напряжение и прямой ток

Каждый диод имеет разное прямое напряжение, что важно при выборе ограничительного резистора.

Прямое напряжение зависит от таких факторов, как:

  1. температура окружающей среды,
  2. величина протекающего тока (чем она выше, тем большее напряжение прикладывается к диоду),
  3. используемого производителем полупроводникового материала.

Какой ток может течь через светодиод

Популярные в продаже светодиоды обычно работают с максимальным постоянным током 20-30 мА. Более подробную информацию по этому вопросу можно найти в документации (даташиту) к конкретному LED. Но чаще всего на этих элементах нет маркировки типа и производителя.

К счастью, производимые в настоящее время светодиоды ярко светят даже при гораздо меньшем токе (от 1–3 мА), поэтому нет необходимости подавать на них максимальный ток.

Запитывать типичные 3-5 мм светодиоды (с цветной линзой) током более 10 мА не имеет смысла. Интенсивность их свечения всё-равно существенно не увеличится! Чем больше ток протекает через светодиод (в пределах безопасного диапазона), тем ярче он будет светить. Но во многих случаях разница в яркости не будет иметь большого значения.

Какое напряжение идёт на диод

Производители указывают номинальное прямое напряжение. Это значение будет различным для каждого типа светодиода. Но не нужно каждый раз проверять значения в документации. Достаточно использовать примерную таблицу, содержащую безопасные диапазоны напряжения:

Прямое напряжение LED в зависимости от цвета

Приведенная таблица содержит значения, которые были записаны из даташитов наиболее популярных производителей светодиодов. Конечно есть исключения, например сверх-яркие или мощные светодиоды. Но в случае с обычными, можно смело пользоваться этой таблицей.

А это ещё одна, аналогичная.

Так почему важно контролировать именно ток, протекающий через диод? Правильно задать работу светодиода, задав на нем определенное напряжение, практически невозможно. Придется следить за изменениями температуры и структурными изменениями, что непросто. Поэтому используется постоянный ток.

В общем когда пропускаем через LED ток желаемой интенсивности (например 20 мА), то прямое напряжение на нем устанавливается само. 

Как выбрать резистор для LED

Всё что нужно для питания светодиода, — это источник питания и токоограничивающий элемент, то есть резистор. Предположим, что есть батарея на 9 В и красный светодиод, через который должно протекать 7 мА, или по грамотному говоря 0,007 Ампера. Схема подключения с обозначением напряжения LED и резистора показана далее.

Простейшее светодиодное соединение

Ток течет от «+» клеммы батареи, проходит через резистор, светодиод, а затем возвращается обратно к источнику питания. Подключение резистора последовательно со светодиодом необходимо, чтобы не повредить его протекающим слишком большим током. Можно сказать, что резистор действует как ограничитель тока.

По правилам электроники, напряжение от аккумулятора будет распределяться между резистором и светодиодом:

Нам известен ток протекающий в этой цепи (7 мА), поэтому будем использовать закон Ома:

Приведенная формула позволяет рассчитать номинал резистора, через который следует запитать светодиод.

Какое прямое напряжение на диоде? Известно допустим, что он светится красным цветом, маркировки на нем естественно нет. Значит промежуточное значение из таблицы, которое составляет 1,9 В, будет подходящим.

Расчетное значение резистора:

R = (9 В — 1,9 В) / 0,007 А = 1014 Ом

Сразу замечу, что такого резистора мы не найдем в продаже. Все исходит из определенного стандарта, по которому производятся элементы. Тогда будем использовать ближайший по номиналу доступный резистор в 1000 Ом, то есть 1 кОм.

0.1 Ом 1 Ом 10 Ом 100 Ом 1 кОм 10 кОм 100 кОм 1 МОм 10 МОм
0.11 Ом 1.1 Ом 11 Ом 110 Ом 1.1 кОм 11 кОм 110 кОм 1.1 МОм 11 МОм
0.12 Ом 1.2 Ом 12 Ом 120 Ом 1.2 кОм 12 кОм 120 кОм 1.2 МОм 12 МОм
0.13 Ом 1.3 Ом 13 Ом 130 Ом 1.3 кОм 13 кОм 130 кОм 1.3 МОм 13 МОм
0.15 Ом 1.5 Ом 15 Ом 150 Ом 1.5 кОм 15 кОм 150 кОм 1.5 МОм 15 МОм
0.16 Ом 1.6 Ом 16 Ом 160 Ом 1.6 кОм 16 кОм 160 кОм 1.6 МОм 16 МОм
0.18 Ом 1.8 Ом 18 Ом 180 Ом 1.8 кОм 18 кОм 180 кОм 1.8 МОм 18 МОм
0.2 Ом 2 Ом 20 Ом 200 Ом 2 кОм 20 кОм 200 кОм 2 МОм 20 МОм
0.22 Ом 2.2 Ом 22 Ом 220 Ом 2.2 кОм 22 кОм 220 кОм 2.2 МОм 22 МОм
0.24 Ом 2.4 Ом 24 Ом 240 Ом 2.4 кОм 24 кОм 240 кОм 2.4 МОм 24 МОм
0.27 Ом 2.7 Ом 27 Ом 270 Ом 2.7 кОм 27 кОм 270 кОм 2.7 МОм 27 МОм
0.3 Ом 3 Ом 30 Ом 300 Ом 3 кОм 30 кОм 300 кОм 3 МОм 30 МОм
0.33 Ом 3.3 Ом 33 Ом 330 Ом 3.3 кОм 33 кОм 330 кОм 3.3 МОм 33 МОм
0.36 Ом 3.6 Ом 36 Ом 360 Ом 3.6 кОм 36 кОм 360 кОм 3.6 МОм 36 МОм
0.39 Ом 3.9 Ом 39 Ом 390 Ом 3.9 кОм 39 кОм 390 кОм 3.9 МОм 39 МОм
0.43 Ом 4.3 Ом 43 Ом 430 Ом 4.3 кОм 43 кОм 430 кОм 4.3 МОм 43 МОм
0.47 Ом 4.7 Ом 47 Ом 470 Ом 4.7 кОм 47 кОм 470 кОм 4.7 МОм 47 МОм
0.51 Ом 5.1 Ом 51 Ом 510 Ом 5.1 кОм 51 кОм 510 кОм 5.1 МОм 51 МОм
0.56 Ом 5.6 Ом 56 Ом 560 Ом 5.6 кОм 56 кОм 560 кОм 5.6 МОм 56 МОм
0.62 Ом 6.2 Ом 62 Ом 620 Ом 6.2 кОм 62 кОм 620 кОм 6.2 МОм 62 МОм
0.68 Ом 6.8 Ом 68 Ом 680 Ом 6.8 кОм 68 кОм 680 кОм 6.8 МОм 68 МОм
0.75 Ом 7.5 Ом 75 Ом 750 Ом 7.5 кОм 75 кОм 750 кОм 7.5 МОм 75 МОм
0.82 Ом 8.2 Ом 82 Ом 820 Ом 8.2 кОм 82 кОм 820 кОм 8.2 МОм 82 МОм
0.91 Ом 9.1 Ом 91 Ом 910 Ом 9.1 кОм 91 кОм 910 кОм 9.1 МОм 91 МОм

Таблица номиналов резисторов

Будет ли это иметь большое влияние на источник питания светодиодов? Давайте проверим, рассчитав ток, протекающий через светодиод, предполагая что знаем напряжение питания, напряжение приложенное к диоду, и точное значение резистора используя преобразованный закон Ома:

  • I max1 = (9 В — 1,9 В) / 1014 Ом = 7,0019 мА
  • I max2 = (9 В — 1,9 В) / 1000 Ом = 7,1 мА

Разница настолько мала (0,09 мА), что не о чем беспокоиться!

На самом деле мы даже не знаем точно, какое прямое напряжение на светодиоде. Так давайте проверим, как этот параметр повлияет на ток, протекающий через LED. Предположим, что сопротивление резистора равно 1000 Ом, а напряжение батареи 9 В. Вместо прямого напряжения диода подставим в формулу крайние значения из таблицы.

  • I макс = (9 В — 1,6 В) / 1000 Ом = 0,0074 А = 7,4 мА
  • I мин = (9 В — 2,2 В) / 1000 Ом = 0,0068 А = 6,8 мА

Отклонение от запланированных 7 мА не может превышать 0,4 мА, т.е. всего 6%. Это подтверждает, что нет смысла использовать очень точные данные о прямом напряжении на диоде для расчетов — любое отклонение в любом случае будет минимальным.

Напряжение питания не должно быть слишком низким. Теперь проверим что будет, если запитать тот же красный диод от источника напряжением 2,5 В. Для начала нужно рассчитать резистор. Предположим светодиод U = 1,9 В.

R = (2,5 В — 1,9 В) / 0,007 А = 85 Ом

В этом случае понадобится резистор на 85 Ом, конечно такое значение нигде не найдём. Но оставим это для дальнейших расчетов. Теперь оценим диапазон, в котором будет находиться прямой ток, если прямое напряжение диода достигнет экстремальных значений:

  • I макс = (2,5 В — 1,6 В) / 85 Ом = 10,5 мА
  • I мин = (2,5 В — 2,2 В) / 85 Ом = 3,5 мА

Здесь отклонение может составить 3,5 мА от принятого значения 7 мА, то есть до 50%! Ну и чем вызваны эти несоответствия? Изменилось только напряжение питания: оно уменьшилось с 9 В до 2,5 В. Это и привело к снижению напряжения на резисторе. Затем небольшие колебания прямого напряжения вызывали резкое изменение тока диода.

Поэтому по возможности на токоограничивающем резисторе должно падать максимально возможное напряжение. Это положительно скажется на стабилизации прямого тока диода.

Имейте ввиду, что чем больше напряжения подается на резистор, тем больше энергии потребляемой источником питания теряется. Особенно позаботимся об экономии энергии при работе от батарей. Так что всегда должен быть разумный компромисс.

Допуск точности резисторов

Каждый изготовленный радиоэлемент отличается определенной точностью исполнения, называемой допуском. Чем меньше допуск, выраженный в процентах, тем лучше. Фактическое сопротивление резистора может тогда отличаться меньше от номинального сопротивления, указанного на корпусе. Допуск можно прочитать на корпусе резистора, информация об этом закодирована в виде цвета последней полоски:

На практике, два резистора номиналом 1 кОм при измерении омметром вообще не будут равны 1000 Ом!

После расчета резистора нужно посмотреть в таблицу стандартов номиналов и найти значение, наиболее близкое к искомому. Безопаснее всего выбирать значение выше расчетного.

Вернемся к примеру, где нужно запитать красный светодиод от источника питания 2,5 В. Расчеты показали, что нужен резистор 85 Ом. Меньший резистор 82 Ом будет ближайшим в стандарте. Проверим, можно ли его безопасно использовать:

  • I макс = (2,5 В — 1,6 В) / 82 Ом = 10,9 мА
  • I мин = (2,5 В — 2,2 В) / 82 Ом = 3,6 мА

Даже в худшем случае максимальный ток будет далеко от предельного (20-30 мА), поэтому легко можете использовать этот радиоэлемент с меньшим сопротивлением.

Как питать несколько светодиодов

Предположим, есть 4 светодиода для подключения. Первый и самый простой вариант, — подключить каждый из них через отдельный резистор:

Независимое питание каждого светодиода

С точки зрения стабилизации рабочих параметров диодов это лучший подход: каждый из них запитан отдельно и не влияет на остальные. Проблемы с одним не повлияют на остальных. К сожалению, такой способ питания связан с большими потерями энергии. Вот пример питания 4-х красных светодиодов — каждый из них подключен через отдельный резистор 330 Ом. При таком подключении на каждый резистор подается напряжение, необходимое для правильного питания одного светодиода. С каждым последующим LED и его резистором потребление тока всей схемы соответственно увеличивается/

Параллельное соединение светодиодов

Светодиоды имеют две ножки, поэтому их можно успешно подключать параллельно или последовательно. Если бы все диоды были соединены параллельно, схема выглядела бы так:

Но это недопустимое решение!

Каждый светодиод имеет прямое напряжение, которое может незначительно отличаться от одного светодиода к другому — даже в пределах одной и той же серии. Ток для всех 4 LED течет от резистора и распределяется между диодами. В этом случае на светодиодах будет выставлено одно напряжение, потому что они включены параллельно. Сколько это будет? Неизвестно.

Ведь может оказаться, что на одном светодиоде прямое напряжение будет намного ниже, чем на остальных. Тогда почти весь ток, пропускаемый резистором, будет проходить именно через него. Светодиоды станут светить неравномерно, и со временем могут быть повреждены.

Так что стоит помнить: подключение нескольких светодиодов параллельно с использованием одного резистора недопустимо, потому что нет контроля над током, протекающим через каждый из диодов!

Что еще хуже, когда один из светодиодов выходит из строя и перестает светить, его ток будет распространяться на другие диоды. Таким образом, вместо 4 светодиодов, через которые протекает, например 10 мА (всего 40 мА), в схеме будет уже 3 светодиода, через которые протекает ~ 13 мА (ведь всего 40 мА). А если сразу 3 LED повреждены, весь ток (40 мА) будет проходить через последний, что приведет к его гарантированному повреждению!

Если светодиоды не идентичны, одни светятся ярче, другие — темнее. Этот эффект особенно заметен, когда берем светодиоды разного цвета.

Последовательное соединение светодиодов

Один и тот же по величине ток всегда течет через последовательно соединенные компоненты.

Питание светодиодов, соединенных последовательно

При таком подключении получим такой ток, как если бы питали только один светодиод. А вот количество энергии, затрачиваемой на резистор, будет уменьшено, потому что падение напряжения на светодиодах будет большим.

Но напряжение, подаваемое на резистор — уменьшилось. Из 9 В, обеспечиваемых батареей, около 8 В должны быть выделены на диоды, включенные последовательно. Как мы знаем, меньший ток, подаваемый на резистор, ухудшит стабильность тока светодиода. Посчитаем насколько. Сначала выберем соответствующий токоограничивающий резистор для этих LED элементов. Предположим, надо чтобы в цепи протекало только около 4 мА.

R = (9 В — 4,19 В) / 0,004 А = 350 Ом

Расчетный резистор лучше всего округлить до ближайшего стандартного из серии — 330 Ом. Теперь оценим, какой ток будет протекать в наихудших возможных условиях, то есть когда прямое напряжение всех LED будет самым низким и самым высоким:

  • I макс = (9 В — 4 · 1,6 В) / 330 Ом = ~ 8 мА
  • I мин = (9 В — 4 · 2,2 В) / 330 Ом = ~ 1 мА

Всегда полезно проводить такой анализ наихудшего случая. Благодаря этому можно проверить, будет ли схема работать должным образом во всех возможных условиях.

Расчеты показали, что в зависимости от прямого напряжения на светодиоде ток, протекающий по цепи, может изменяться в широких пределах (1-8 мА). Конечно таких значений достаточно, чтобы светодиоды нормально светились. Но гораздо безопаснее будет их комбинировать следующим образом:

Питание светодиодов соединенных параллельно и последовательно

Давайте подсчитаем, насколько ток может колебаться в каждой ветви приведенной схемы. Предположим, что используем красные светодиоды и резисторы 330 Ом.

Что если подключим последовательно 4 белых светодиода с прямым напряжением 3 В? Это дает в сумме 4 х 3 В = 12 В, что выше чем напряжение источника питания (9 В). Значит такое соединение невозможно. Потребовалось бы найти источник питания с более высоким напряжением или подключить светодиоды в другой конфигурации.

Многие новички в электронике задаются вопросом, можно ли поменять местами компоненты в ряду — например разместить резистор позади светодиода, а не перед ним. Они опасаются что такая замена может повредить компоненты. Так что должно быть первым: светодиод или резистор? Важен ли порядок последовательного подключения?

На самом деле одинаковый ток протекает через последовательно соединенные компоненты. Так что никакой разницы в работе вышеперечисленных схем не будет. Элементы соединенные последовательно, можно перемещать между собой любым способом. Ток, протекающий через такую ??схему, будет одинаковым! Единственное условие — соблюдать полярность таких элементов как диоды, электролитические конденсаторы и так далее.

Простые примеры расчётов

1) Рассчитаем резистор, которым хотим запитать один зеленый светодиод от батареи 9 В. Диод предполагается использовать как сигнализатор, поэтому достаточно, чтобы он светился несильно.

  • U пит = 9 В
  • U диода = 2,85 В
  • I диода = 2 мА

Идеальное значение резистора: (9 — 2,85) / 0,002 = 3075 Ом. Соответствующий резистор по стандарту: 3 кОм.

2) Рассчитаем резисторы, которыми хотим запитать два желтых светодиода, соединенных последовательно. Источник — блок питания 6 В. Светодиоды должны светиться достаточно ярко.

  • U пит = 6 В
  • U диода = 2,15 В, итого 2 х 2,15 = 4,3 В
  • I диода = 7 мА

Идеальное значение резистора: (6 — 4,3) / 0,007 = 242 Ом. Соответствующий резистор: 240 Ом.

Источник питания для схемы

В приведенных рассуждениях специально упущен тот факт, что источник питания является еще одним ограничением. Имейте в виду, что батарейки вообще не обеспечивают стабильного напряжения. Не всегда на выходе батареи Крона мы получим 9 В. Может быть больше у свежей, а может быть меньше у подсевшей. Этот параметр также необходимо учитывать при подробных расчетах.

Выше для наглядности таблица с параметрами напряжения на свинцовой батарее при разной степени разряда.

Подведём итоги

Правильный выбор резистора — дело несложное, всего несколько простых формул и вольт-амперных зависимостей. Помните, что расчеты никогда не покажут идеальное значение, которое обычно недостижимо. Следовательно их результаты необходимо корректировать в зависимости от того, что есть в распоряжении по деталям. Главное, ни в коем случае не подключать светодиод без резистора!

И в дополнение несколько практических материалов о работе со светодиодами:

   Форум по LED

   Форум по обсуждению материала КАК ПОДКЛЮЧИТЬ СВЕТОДИОД

Что произойдет, если не использовать резистор со светодиодом? Важное руководство по светодиодам — ​​Siytek

Допускается использование светодиода без резистора, но необходимо использовать некоторый метод ограничения тока, чтобы предотвратить разрушение устройства. Несоблюдение ограничения тока может привести к перегоранию устройства, преждевременному выходу из строя или даже взрыву.

Я определенно взорвал несколько светодиодов в мои молодые и более неопытные годы, в результате чего часть корпуса поразительно разлетелась по комнате!

Во многих приложениях самый простой способ регулировать ток через светодиод — это использовать резистор, хотя существуют более сложные методы, такие как использование драйвера постоянного тока.

В этом уроке мы рассмотрим , почему необходимо ограничить ток, протекающий через светодиод, и как мы можем выбрать правильный резистор, чтобы ваш проект не превратился в дым.

Что такое светодиод?

Если вы еще не знали, светодиод обозначает светоизлучающий диод . Это полупроводниковое устройство, которое может превращать электрический ток в свет.

Использование различных полупроводниковых материалов позволяет изготавливать светодиоды разных цветов.Однако до середины 90-х светодиоды имели ограниченный диапазон цветов, таких как красный, зеленый и желтый. В частности, было невозможно произвести синий цвет.

Развитие светодиодной технологии и внедрение новых материалов в производственный процесс расширили диапазон доступных цветов. Одним из величайших достижений в светодиодной технологии стало введение нитрида индия-галлия.

Это позволило производить синие светодиоды, дополняющие диапазон доступных основных цветов: красный, зеленый и синий.Тогда стало возможно производить светодиоды RGB, которые могут воспроизводить весь цветовой спектр. Это открыло множество приложений, с которыми мы уже познакомились.

Вслед за этой разработкой последовали улучшения в яркости, а также в использовании белого светодиода. Как только технология зашла так далеко, светодиодные лампы стали реальностью, и вместо лампы накаливания было установлено светодиодное освещение.

Сейчас доступен широкий спектр различных типов светодиодов, содержащих различные типы материалов.Поскольку в них используются разные материалы, некоторые электрические характеристики отличаются.

Важно понимать основные характеристики, чтобы рассчитать номинал токоограничивающего резистора и разработать схему, которая будет правильно питать ваш светодиод.

Характеристики светодиода

Светодиод — это красивый простой компонент, требующий минимальных знаний в области электроники для использования, и в то же время дает впечатляющие конечные результаты для самых простых проектов в области электроники.

Одноцветный вариант имеет только два контакта и для работы требуется только один другой компонент, токоограничивающий резистор. Он также выглядит круто, потому что … это светодиод!

Каждый светодиод имеет два контакта: положительный вывод анода и отрицательный вывод катода. Поскольку светодиод представляет собой диод , полярность должна быть правильной для протекания тока. Схематический символ светодиода из Википедии

Есть три основных момента, которые нам необходимо понять, чтобы рассчитать размер резистора ограничения тока.

  1. Закон Ома
  2. Закон Ватта
  3. Прямое напряжение и ток

Как только мы поймем эти принципы и сможем рассчитать размер нашего ограничивающего резистора, мы сможем понять , почему необходимо использовать резистор (предполагая, что простая схема, в которой не используется драйвер постоянного тока).

Закон Ома

Закон Ома, вероятно, является наиболее фундаментальным принципом в электронике. Он описывает соотношение между напряжением, током и сопротивлением.

Если вы новичок в электронике, иногда бывает трудно представить себе, что именно происходит «внутри проводов», но этот хорошо известный рисунок в карикатуре прекрасно резюмирует это.

Мы можем описать этот принцип в основных математических терминах, напряжение равно току, умноженному на сопротивление.

 напряжение (В) = ток (I) x сопротивление (R) 

В случае нашей светодиодной схемы мы можем использовать Ом для расчета значения нашего ограничивающего резистора, используя известные значения напряжения и тока.

Закон Ватта

Закон Ватта описывает взаимосвязь между мощностью, напряжением и током. Это измерение количества энергии, используемой с течением времени.

 1 Ватт = 1 Джоуль в секунду 

Простыми математическими терминами мы можем сказать, что мощность равна напряжению, умноженному на ток.

 мощность (Вт) = напряжение (В) x ток (I) 

Обратите внимание, что можно заменить закон Ома на закон Ватта. Вы заметите, что оба закона имеют ток (I) и напряжение (V).Например, вы можете заменить напряжение в законе Ватта на ток, умноженный на сопротивление из закона Ома, так как ток, умноженный на сопротивление, равняется напряжению .

 В = I x R
P = I x  V  

, следовательно,

 P = I x  (I x R)  

В случае нашей светодиодной схемы нам нужно использовать закон Ватта для расчета мощности, рассеиваемой резистором.

Когда ток течет через резистор, мощность рассеивается в виде тепла, поэтому мы должны убедиться, что наш резистор способен рассеивать достаточно большое количество энергии в виде тепла, не разрушаясь и не становясь чрезмерно горячим.

Прямое напряжение и ток

Прямое напряжение и прямой ток светодиода — это два свойства, которые нам нужны для расчета необходимого сопротивления.

При подаче напряжения на светодиод, часть напряжения «теряется» из-за характеристик светодиода. Мы называем это падение напряжения , и величина падения напряжения зависит от материалов, используемых в его конструкции, и, следовательно, от цвета. Это напряжение известно как прямое напряжение и обозначается как Vf .

Прямой ток — это значение, используемое для описания величины тока, который мы должны подавать на светодиод, чтобы он светился с оптимальной яркостью. Мы должны ограничить ток, протекающий через него, с помощью внешнего компонента, в нашем случае токоограничивающего резистора.

Оба эти значения приведены в таблице данных, техническом документе, обычно поставляемом со всеми компонентами, которые разработчик схем может использовать для получения технических деталей, необходимых для разработки схемы с использованием конкретного компонента.

В нашем примере мы будем использовать стандартный красный светодиод. Как показано в следующей таблице данных, мы видим, что он имеет прямое напряжение 2,1 вольт и прямой ток 25 мА (то же самое, что 0,025 ампер). Эти значения довольно распространены для стандартного красного светодиода.

Рассчитайте сопротивление

Из таблицы данных мы знаем, что прямой ток должен составлять 25 мА, и мы будем использовать его в качестве желаемого значения сопротивления в уравнении закона Ома. Однако прямое напряжение не дает нам необходимого значения для значения напряжения по закону Ома, и мы также должны учитывать напряжение источника питания.

В этом примере мы будем использовать 5 вольт для источника питания светодиодов, поскольку это обычное напряжение, используемое микроконтроллерами, и, вероятно, вы захотите использовать его для управления своими светодиодами. Конечно, вы можете выбрать любое подходящее напряжение для вашего приложения.

Мы подключим наши компоненты последовательно так, чтобы ток протекал от положительной клеммы нашего источника питания через резистор, затем светодиод и затем на землю. Не имеет значения, расположен ли резистор до или после светодиода, поскольку ток остается постоянным для компонентов, подключенных последовательно.

Как упоминалось ранее, на светодиодах будет падение напряжения, равное прямому напряжению. Прямое напряжение указано в таблице данных светодиодов.

 Vf = 2,1 В 

Остающееся напряжение появляется на резисторе, поэтому, если мы вычтем прямое напряжение из напряжения питания, мы можем вычислить напряжение на резисторе, Vr.

 Vr = V - Vf 
Vr = 5 - 2,1
Vr = 2,9

Мы хотим снабдить светодиод значением прямого тока, указанным в таблице данных, 25 мА.Поскольку резистор ограничивает ток, мы должны использовать напряжение на резисторе и желаемый прямой ток в уравнении закона Ома.

Теперь мы можем рассчитать сопротивление, переписав уравнение закона Ома в терминах сопротивления (косая черта означает «деленное на»). Помните, что мы должны преобразовать миллиампер в амперы, просто разделите на 1000.

  25 мА = 0,025 А  
 R = Vr / I
R = 2,9 / 0,025
R = 116 Ом 

Теперь мы знаем, что для того, чтобы обеспечить светодиод 25 мА, мы должны использовать резистор номиналом 116 Ом.Всегда лучше проявлять небольшую осторожность, поскольку значения сопротивления имеют допуск и могут незначительно отличаться от заданного значения.

На практике мы должны округлить это значение до ближайшего значения общего резистора. Важно округлять в большую, а не в меньшую сторону, так как если бы мы округляли в меньшую сторону, мы подавали бы на светодиод ток, превышающий рекомендованный.

Мы будем использовать значение из значений резистора E12, что даст нам ближайшее большее значение, равное 120 Ом.

Резистор Рассеивание тепла

В отличие от светодиода, который преобразует электрический ток в свет (и некоторое количество тепла), резистор почти полностью преобразует электрический ток в тепло.

Нам известно напряжение на резисторе и ток, протекающий через него (и светодиода). Мы можем использовать закон Ватта для расчета мощности, рассеиваемой резистором.

 P = I x V 
P = 0,025 x 2,9
P = 0,0725

Резистор будет рассеивать 0,0725 Вт мощности в виде тепла, также обозначаемого как 72,5 милливатт (мВт).

Поэтому, когда мы выбираем резистор, нам нужно проверить техническое описание, чтобы увидеть, может ли он рассеивать 72,5 мВт тепла без повреждений.

Стандартные резисторы меньшего размера обычно могут рассеивать 125 мВт (также указывается как 1/8 ватта), поэтому наша комбинация светодиода, резистора и источника питания будет работать хорошо.

Мне

ДЕЙСТВИТЕЛЬНО нужен резистор?

Один вопрос, который я задавал несколько раз, но тот, который редко объясняется в подобных руководствах, касается сценария, в котором прямое напряжение равно напряжению питания.

Давайте посчитаем, как это выглядит на бумаге. В этом примере мы будем использовать синий светодиод с прямым напряжением 3,3 В и прямым током 25 мА. В качестве источника питания мы будем использовать 3,3 В, обычное напряжение питания, встречающееся в схемах микроконтроллеров.

Сначала рассчитываем напряжение на резисторе.

 Vr = V - Vf
Vr = 3,3 - 3,3
Vr = 0V 

Теперь мы можем снова использовать закон Ома, чтобы вычислить необходимое значение сопротивления для известного напряжения на резисторе и желаемого тока.

 R = Vr / I 
R = 0 / 0,025
R = 0 Ом

Что ?! Разве мы не доказали с помощью закона Ома, что значение сопротивления не требуется и, следовательно, резистор не требуется, если напряжение питания и прямое напряжение равны?

Легко понять, почему так много людей приходят к такому выводу, используя базовые принципы электроники.Я сам однажды задал такой же вопрос!

На самом деле я недавно видел, как кто-то задавал этот вопрос на форуме, что и вдохновило меня на написание этой статьи.

Реальное приложение

Первое, что нужно запомнить, это то, что мы имеем дело с абсолютными числами в наших расчетах, но в реальном мире ваш источник питания 3,3 В, вероятно, не будет точно 3,3 В. Это может быть 3,34 В, и точно так же прямое напряжение не будет точным, это может быть 3,28 В.

Далее нам нужно рассмотреть сценарий, в котором в цепи нет резистора.В этом случае сопротивление, определяющее прохождение тока через светодиод, будет внутренним сопротивлением внутри самого светодиода.

Обратите внимание, что на практике внутреннее сопротивление светодиода суммируется со значением сопротивления, выбранным для токоограничивающего резистора. Однако значение настолько мало, что его почти всегда игнорируют, поскольку оно не оказывает заметного влияния на расчет.

Внутреннее сопротивление

Итак, что произойдет, если мы будем полагаться на внутреннее сопротивление внутри светодиода? Сначала мы должны рассчитать внутреннее сопротивление.Это можно сделать, используя данные о прямом токе и прямом напряжении из таблицы.

Сначала выберем две точки напряжения на графике в линейной области. Мы выберем 3,25 В и 3,5 В. Затем давайте запомним их текущие значения, 10 мА и 20 мА соответственно.

Разница между этими значениями составляет 0,25 В и 10 мА. Мы можем использовать эти значения с законом Ома для расчета внутреннего сопротивления.

 R = V / I
R = 0,2 / 0,015
R = 25 Ом 

Далее нам нужно рассчитать собственное напряжение светодиодов, Vint.Это напряжение на светодиоде, которое можно вычесть из напряжения питания, чтобы получить напряжение на внутреннем сопротивлении.

 Vint = Vf - (Если x Rint)
Винт = 3,25 - (0,01 x 25)
Vint = 3 V 

Не волнуйтесь, если вы не усвоили все это, это немного более продвинуто, чем объем этого руководства, но я подумал, что все равно включу его.

Позвольте мне немного прояснить ситуацию. Здесь важны два значения: собственное напряжение Vint и внутреннее сопротивление Rint .Это то же самое, что и в нашем предыдущем примере, только напряжение и сопротивление для внутреннего сопротивления светодиода, а не внешнего резистора.

 Винт = 3 В
Rint = 25 Ом 

Расчет тока, протекающего через светодиод, такой же, как и раньше, мы используем закон Ома для расчета значения тока с использованием значений выше.

Давайте попробуем это с произвольным напряжением питания V = 3,5 В. Сначала мы вычтем Vint из V, чтобы получить Vr = 0,5 В. Затем мы можем использовать это напряжение с внутренним сопротивлением для расчета тока.

 I = Vr / Rint
I = 0,5 / 25
I = 0,02 A 

Как и ожидалось, получаем 20 мА, что соответствует графику. Однако в реальном мире напряжение питания не будет точным. Поэтому давайте рассчитаем для 3,4 В разность 100 мВ.

Сначала мы вычитаем Vint, чтобы получить 0,4 В, затем снова вычисляем ток, используя внутреннее сопротивление.

 I = Vr / Rint
I = 0,4 / 25
I = 0,016 A 

Как вы можете видеть, мы видим заметное изменение тока только при небольшом изменении напряжения.

Сравнение

Наконец, мы можем сравнить результат с резистором и без него. Мы знаем, что падение напряжения на 100 мВ может уменьшить ток, протекающий через светодиод без внешнего резистора, на 4 мА.

Внешний резистор и питание 12 В

Сначала мы рассчитаем размер резистора, необходимого для достижения 20 мА тока через светодиод, используя типичное прямое напряжение 3,3 В, указанное в таблице данных. Мы можем использовать произвольное напряжение источника питания 12 В.

 R = (V - Vf) / I
R = (12 - 3.3) / 0,02
R = 435 Ом 

Теперь мы можем смоделировать такое же падение напряжения питания. Прямое напряжение светодиода фиксировано, поэтому падение 100 мВ повлияет на напряжение на резисторе. Это, в свою очередь, повлияет на ток, протекающий через светодиод, и рассчитывается следующим образом.

 I = ((V - Vf) - 100 мВ) / R
I = 8,6 / 435
I = 0,0198 

Результат показывает, что мы наблюдаем снижение тока только на 200 наноампер на , или на 0,2 мА.

Внешний резистор и источник питания 24 В

Также стоит отметить, что чем больше напряжение на резисторе, тем меньше разница в напряжении питания.Например, если мы увеличим напряжение питания до 24 В, падение напряжения питания на 100 мВ изменит ток следующим образом.

 R = (V - Vf) / I
R = (24 - 3,3) / 0,02
R = 1035 Ом 
 I = ((V - Vf) - 100 мВ) / R
I = 20,6 / 1035
I = 0,0199 

Теперь мы видим, что при питании 24 В мы видим разницу в токе только в 100 нА или 0,1 мА!

Не забывайте о тепловыделении!

Значит, чем выше напряжение питания, тем лучше? Ну, не совсем потому, что вам все же нужно учитывать тепловыделение.Использование источника питания 24 В со светодиодом, который имеет падение напряжения 3,3 В, будет означать, что на резисторе будет 20,7 В. Сколько тепла он должен рассеять?

 P = I x V 
P = 0,02 x 20,7
P = 0,414 Вт

Наш резистор должен быть рассчитан как минимум на 500 мВт или 1/2 Вт. Даже это довольно близко к требованию, и поэтому резистор будет нагреваться.

Как и во многих случаях в электронике, всегда есть компромисс, и вы должны выбрать правильные значения компонентов, чтобы получить лучший компромисс.

Заключение

Важно регулировать ток, протекающий через светодиод, чтобы он работал стабильно и правильно. Совершенно приемлемо ограничивать ток с помощью резистора или другого устройства регулирования тока.

Теоретически можно было бы ограничить ток, используя внутреннее сопротивление светодиода, но на самом деле это просто нецелесообразно. Напряжение должно быть очень точным.

Также необходимо настроить каждый светодиод, чтобы он соответствовал точной характеристике прямого напряжения, которая также будет отличаться для каждого светодиода из-за производственных допусков, связанных с производством светодиода.

Самый простой способ предотвратить преждевременную смерть светодиода или даже его взрыв — это использовать токоограничивающий резистор!

Я надеюсь, что этот урок был информативным и дал вам некоторые новые и полезные знания о скромных и вездесущих светодиодах! Пожалуйста, найдите время, чтобы посетить некоторые из моих других интересных руководств!

Расчет минимального сопротивления резистора для светодиода

Вы когда-нибудь задумывались, почему мы обычно видим резисторы на 330 Ом, используемые для подключения светодиодов к цифровой электронике? Давайте разберемся, почему это так.

Почему имеет значение минимальный размер резистора? Потому что, если сопротивление слишком мало, мы можем повредить светодиод или, что еще хуже, окружающие схемы. Это заставит нас либо тратить время на устранение неполадок, почему что-то не работает должным образом, либо, что еще хуже, вызвать небольшое облако дыма на нашем рабочем месте, вынуждающее нас покупать новые компоненты или целые платы для разработки.

Во-первых, нам нужно понять электрическую среду, в которой будет использоваться резистор. Это включает в себя знание максимальных и минимальных значений для различных напряжений, токов и т. Д.что встретит резистор.

Цифровая электроника обычно имеет напряжение питания V s , которое находится в диапазоне от 4,5 до 5,5 В.

Прямое напряжение, V f , светодиода часто падает где-то между 1,2 В и 4,0 В в зависимости от типа светодиода.

Опять же, в зависимости от типа светодиода, максимальный рекомендуемый прямой ток, I f , обычно находится в диапазоне 15-80 мА.

И, наконец, допуски резистора T r обычно составляют от 1% до 10%.Это означает, что резистор с заданным значением 330 Ом и допуском 10% на самом деле может иметь сопротивление от 297 Ом (330–10%) или до 363 (330 + 10%) Ом.

Суммируем:

  • Напряжение питания: В с = 5 ± 0,5 В
  • Прямое напряжение светодиода: В f = 1,2-4,0 В
  • Максимальный рекомендуемый прямой ток светодиода: I f = 15-80 мА
  • Допуск резистора : T r = 1-10%

Для расчета значения сопротивления, необходимого для резистора, включенного последовательно со светодиодом, мы воспользуемся законом Ома

. \ (\ большой V = IR \)

, которое можно переписать как

\ (\ large R = \ frac {V} {I} \)

и введите напряжение на резисторе и ток через резистор для значений V и I.

Чтобы определить минимальное необходимое значение сопротивления, нам нужно знать максимально возможное падение напряжения на резисторе вместе с наименьшим максимальным током через резистор. Кроме того, мы хотим учитывать наименьшее возможное значение сопротивления на основе его допуска. Принимая все это во внимание, предыдущее уравнение становится

. \ (\ large R = \ frac {V_ {s (max)} — V_ {f (min)}} {I_ {f (min)} (1-T_ {r (max)})} \)

Вводя фактические значения в уравнение, получаем

\ (\ большой R = \ frac {5.5-1.2} {0,015 (1-0,1)} \ Approx318.5 \ hspace {0,25em} \ Omega \)

Поскольку это нестандартный размер резистора, мы хотим округлить до следующего наибольшего стандартного значения, которое дает 330 Ом.

Это наименьшее значение резистора, которое можно безопасно использовать почти со всеми светодиодами без повреждения светодиода или цифровой схемы, к которой он подключен. Однако значение резистора может быть меньше, чтобы обеспечить достаточную мощность для некоторых из более экзотических типов светодиодов. Кроме того, вам может потребоваться меньшее сопротивление резистора, чтобы получить более яркий светодиод, но будьте осторожны, так как многие цифровые электронные устройства имеют максимальный ток 20 мА.

Давайте посмотрим на несколько реальных примеров:

Для стандартного красного светодиода 5 мм:

\ (\ large R = \ frac {5.5-1.7} {0.018 (1-0.1)} \ приблизительно234.6 \ hspace {0.25em} (240) \ hspace {0.25em} \ Omega \)

Для сверхяркого белого светодиода 10 мм:

\ (\ large R = \ frac {5.5-3.0} {0.07 (1-0.1)} \ приблизительно39.7 \ hspace {0.25em} (43) \ hspace {0.25em} \ Omega \)

Эти значения относятся к определенным светодиодам и могут быть слишком маленькими для некоторых светодиодов. Также обратите внимание, что для сверхяркого белого светодиода требуется ток, намного превышающий максимальный ток 20 мА, упомянутый ранее.

Следовательно, именно поэтому мы обычно видим резисторы на 330 Ом, используемые при подключении светодиодов к широкому спектру цепей.

Как всегда, сверьтесь с техническими описаниями компонентов, используемых в вашем конкретном приложении, чтобы определить наилучшие значения резисторов, необходимых для вашей схемы.

Какой резистор мне использовать со светодиодом? — Kitronik Ltd

Выбор резистора для работы со светодиодом довольно прост, но требует некоторых знаний о светодиодах и небольшого количества математических расчетов.Некоторые светодиоды, такие как светодиоды с изменяющимся цветом, мигающие светодиоды и светодиоды на 5 В, рассчитаны на работу от источника питания 5 В и поэтому не нуждаются в резисторе. Для всех остальных стандартных и ярких светодиодов потребуется резистор, ограничивающий ток. LED расшифровывается как Light Emitting Diode, и, как следует из названия, это диод, который излучает свет. Когда диод включен в цепь, на него падает 0,7 В. Точно так же на светодиодах падает напряжение, известное как прямое напряжение, хотя оно отличается для каждого светодиода. Для стандартного светодиода прямое напряжение обычно составляет 2 В, а для сверхяркого светодиода — около 3.5В. Часть напряжения батареи падает на светодиод (прямое напряжение), а остальная часть напряжения падает на резистор. Это показано на диаграмме вверху справа. Поэтому мы можем записать это как:

Сопротивление можно рассчитать по закону Ома:

Светодиоды

обычно требуют от 10 до 20 мА, это подробно описано в спецификации светодиода вместе с прямым падением напряжения. Например, сверхяркий синий светодиод с батареей 9 В имеет прямое напряжение 3.2 В и номинальный ток 20 мА.

Значит, сопротивление резистора должно быть 290 Ом или как можно более близким к нему.

Пусть ваш компьютер сделает всю работу

Мы добавили на веб-сайт Kitronik отличный инструмент, позволяющий упростить расчет резистора ограничения тока. Просто выберите, какой светодиод вы используете, из раскрывающегося списка. Введите напряжение аккумулятора, и он скажет вам, какой резистор использовать. Он даже сообщает вам, какие цветные полосы будут на резисторе. Нажмите здесь, чтобы перейти на страницу калькулятора

Подробнее об авторе подробнее »

© Kitronik Ltd — Вы можете распечатать эту страницу и ссылку на нее, но не должны копировать страницу или ее часть без предварительного письменного согласия Kitronik.

LED Circuit Design — Как разработать светодиодные схемы

Светодиодная схема. Узнайте, как проектировать светодиодные схемы. Как рассчитать размер резистора, как защитить светодиод, сколько времени батарея будет питать цепь, как рассчитать номинальную мощность резистора, как подключить светодиод и многое другое.

Прокрутите вниз, чтобы посмотреть руководство YouTube.

LED

Это светодиоды или светодиоды. Если мы пропустим ток через один, он будет светить. Но если мы превысим его предельное напряжение и ток, он будет немедленно уничтожен.У светодиода есть крошечный провод внутри, он может выдерживать только определенное количество тока, проходящего через него. Когда мы смотрим на разрушаемый светодиод под микроскопом, мы видим, как внутри взрывается крошечный провод. Итак, как нам подключить светодиоды, как уменьшить ток, чтобы светодиоды были в безопасности, и как долго батарея будет питать нашу схему. Это то, о чем мы подробно расскажем в этой статье.

Светодиодная защита

Для защиты наших светодиодов мы используем резистор. Резистор затруднит прохождение электронов.Электроны столкнутся, и это приведет к выделению тепла. Резистор нагревается, и мы можем увидеть это с помощью тепловизора. Например, у этого есть более 150 градусов Цельсия при всего 12 В с током 6 миллиампер, поэтому мы определенно не хотим касаться этого.

Резистор можно разместить с любой стороны светодиода. Хотя мы традиционно устанавливаем это на положительную сторону. Причина, по которой его можно установить с любой стороны, заключается в том, что резистор ограничивает количество электронов, протекающих в этой простой последовательной цепи.Резистор действует как пробка, уменьшая количество протекающих электронов. Большинство людей ошибочно полагают, что это действует как лежачий полицейский, и что электроны должны замедляться непосредственно перед резистором, а затем снова ускоряться. Скорость электронов остается постоянной, меняется количество протекающих электронов.

Чем выше номинал резистора, тем ниже будет ток и, следовательно, тем меньше будет светиться светодиод.

Нам нужно помнить, что светодиоды позволяют току течь только в одном направлении.Положительный полюс подключен к длинному проводу, а отрицательный — к короткому. Если мы подключим светодиод наоборот, он просто заблокирует ток, и светодиод не включится. Вы можете проверить схему самостоятельно, взять КРАСНЫЙ светодиод, батарею на 9 В, резистор от 360 до 390 Ом, другой резистор более высокого номинала от 3 до 9,1 кОм и мультиметр.

Подключите последовательно низкоомный резистор и светодиод к батарее, и светодиод загорится.Я использую для этого макетную плату, которая позволяет очень быстро и легко проверять электрические схемы, но вы также можете просто скрутить провода вместе, вы можете их припаять или использовать некоторые разъемы, и все это отлично подойдет для этого простого эксперимента. .

Обратите внимание, что если мы повернем светодиод, мы увидим, что он блокирует ток, поэтому он не загорится. Это работает только в одном направлении. Если мы заменим резистор на резистор высокого сопротивления 9,1 кОм, мы увидим, что светодиод очень тусклый. Мы также можем соединить их параллельно, чтобы сравнить яркость.Итак, теперь, последовательно подключив резистор на 360 Ом и светодиод, мы можем подключить наш мультиметр к цепи, убедившись, что мультиметр переведен в режим считывания тока. Мы должны видеть где-то между 17 и 20 миллиампер в зависимости от того, какой светодиод и резистор вы использовали. Мы можем переключить положение светодиода и резистора, он будет работать нормально и давать то же значение тока.

Теперь отключите мультиметр от цепи и переведите мультиметр в режим постоянного напряжения.

Измерьте на двух дальних концах цепи, и мы должны увидеть около 9 вольт.Это то, что батарея обеспечивает нашей цепи, и это также равно общему падению напряжения в цепи. Теперь измерьте напряжение на светодиоде, и мы должны увидеть около 2 вольт. Это падение напряжения светодиода, которое удаляет два вольта из нашей схемы. Теперь измерьте сопротивление резистора, и мы должны увидеть падение напряжения на оставшихся 7 вольт. Итак, 2 вольта плюс 7 вольт — это 9 вольт, что соответствует нашей батарее. Вы могли заметить, что измеренные значения были не совсем 2, 7 или даже 9 вольт.Всегда будет разница между дизайном и фактическим размером. Например, этот резистор был рассчитан на 390 Ом, но когда мы его измерили, на самом деле он был 386 Ом. Каждый компонент, включая ваш мультиметр, будет иметь допуск на погрешность, он будет близок к расчетному значению, но никогда не будет точно таким же. Для большинства схем, подобных этим простым, это не имеет значения. Можно предположить, что расчетные значения верны. Просто помните, что значения, которые мы рассчитываем, всегда будут немного отличаться от наших фактических измерений.

Нам также нужно знать о прямом напряжении. По сути, это просто падение напряжения, которое мы измерили ранее.

Производитель предоставит диаграмму, подобную этой, которая показывает прямой ток при заданном прямом напряжении. Итак, если мы подключим источник напряжения к выводам и подадим 2 В, мы увидим ток в 20 миллиампер. Если мы подадим 1,6 В, то увидим 0 мА, потому что светодиод будет выключен. График для этого светодиода начинается примерно с 1,7 вольт, поэтому мы знаем, что нам нужно обеспечить минимум 1.7 вольт, чтобы светодиод загорелся.

Мы можем проверить минимальное напряжение открытия светодиода с помощью мультиметра. Если вы выберете диодный режим на своем мультиметре, а затем подключите красный провод к длинному аноду, а черный провод к короткому катоду красного светодиода, мы должны увидеть что-то вроде 1,7 В, так что это минимальное напряжение, необходимое для включения Светодиод горит.

Большинство стандартных светодиодов рассчитаны на ток 20 миллиампер или 0,02 ампера. Мы хотим стараться придерживаться этого значения. Если мы опустимся ниже этого значения, светодиод будет тусклым, если мы перейдем слишком далеко, светодиод будет разрушен.Мы можем превысить 20 мА, но по мере того, как мы поднимаемся выше, срок службы светодиода сокращается. Мы увидим, как это вычислить, чуть позже в статье.

КРАСНЫЙ светодиод обычно имеет падение напряжения или прямое напряжение 2 В, и это приведет к 20 миллиамперному току в нашей цепи. Мы можем проверить это с помощью источника питания постоянного тока, когда я установил напряжение на постоянное значение 2 вольта, мы увидим ток 20 миллиампер. Но не все светодиоды созданы одинаково, этот не достигает 20 мА до тех пор, пока не будет подано 2,1 В, а этот не достигает 20 мА до 3.Подается 7 вольт. Это расхождение связано с используемыми материалами, а также с производственным процессом. Таким образом, вам следует попробовать использовать светодиоды из одной партии, а также от надежных производителей.

Светодиоды

бывают разных цветов, и каждый цвет также имеет разное падение напряжения, поэтому вам нужно будет проверить это или вы можете просто посмотреть это на диаграмме типичных значений, подобных этой.

Светодиоды

также бывают разных цветов, и каждый цвет также имеет разное падение напряжения.Таким образом, вам нужно будет найти эти значения на основе данных производителей, или вы также можете проверить их самостоятельно, или вы можете использовать эти типичные значения из этих стандартных диаграмм, но они могут не совпадать с светодиодом, который у вас действительно есть.

Хорошо, это основы, поэтому давайте продолжим и сделаем несколько примеров схем.

Простые светодиодные схемы

Допустим, у нас есть источник питания 3 В, и мы хотим подключить этот единственный КРАСНЫЙ светодиод. Какой резистор нам нужен? Что ж, мы знаем, что этот провод на 3 вольта, а это наш заземляющий провод, который будет на 0 вольт.

На светодиоде падение напряжения составляет около 2 вольт. И поэтому нашему резистору нужно снять оставшееся напряжение. Итак, 3 вольта минус 2 вольта = 1 вольт. Мы знаем, что светодиоду требуется ток около 20 миллиампер, поэтому 1 вольт, разделенный на 0,02 ампера, равняется 50 Ом сопротивления. Убедитесь, что для этого расчета вы преобразовали миллиамперы в амперы. Чтобы упростить задачу, у нас есть калькулятор на нашем веб-сайте, где вы можете просто ввести свои значения, проверьте это ЗДЕСЬ .

Хорошо, теперь ты попробуй решить эту проблему раньше меня.Допустим, у нас есть батарея на 9 вольт, и мы хотим подключить желтый светодиод, который имеет падение напряжения 2 вольта и требует 20 миллиампер тока. Итак, какой размер резистора требуется? Итак, у нас есть питание 9 вольт, поэтому вычтите 2 вольта для светодиода, и у нас останется падение на 7 вольт для резистора. Сила тока составляет 20 миллиампер, поэтому 7 разделенных на 0,02 ампер равняются сопротивлению 350 Ом.

Проблема в том, что у нас нет резистора на 350 Ом. У нас есть только 330 Ом или 390 Ом, так какой из них мы должны использовать? Как мы видели ранее, нам нужно убедиться, что ток не превышает 20 миллиампер, поэтому мы должны рассчитать, какой резистор нам подходит лучше всего.

Для этого мы просто разделим необходимое падение напряжения 7 В на значение резистора 330 Ом, чтобы получить 0,021 А, а затем, если мы сделаем то же самое для резистора 390 Ом, мы получим 0,018 А. Оба эти значения очень близки, и оба будут работать, но на всякий случай мы выбираем резистор на 390 Ом, так как поэтому наш светодиод прослужит дольше. Мы также можем комбинировать резисторы, чтобы получить точное значение, которое нам нужно, и я объясню это позже в статье.

Нам также нужно будет выбрать номинальную мощность резистора.Мы можем рассчитать это по формуле: Мощность = ток в квадрате X на сопротивление — таким образом, 0,018 А в квадрате, умноженное на 390 Ом, дает нам 0,126 Вт, поэтому для этой схемы подойдет резистор номиналом Вт.

Как долго батарея будет питать нашу схему? Допустим, эта батарея рассчитана на типичные 500 миллиампер-часов, мы просто делим это на наш общий ток цепи, который в данном случае составляет 18 миллиампер. Таким образом, 500 миллиампер часов разделить на 18 миллиампер, и мы получим около 27 часов. Хотя это тот самый максимум, на который он может запитать нашу схему, на самом деле он, вероятно, этого не достигнет.

Хорошо, а что, если нам нужно несколько светодиодов? Один из вариантов — соединить их последовательно.

В этой конструкции падение напряжения каждого светодиода складывается. Таким образом, общее падение напряжения в цепи не должно превышать напряжение аккумулятора.

Следовательно, батарея на 3 В может обеспечить достаточное питание только для 1 светодиода при токе 20 мА, а батарея на 9 В может обеспечить достаточное питание для 4 светодиодов.

Если мы подключим 4 светодиода и подключим их к нашему настольному источнику питания постоянного тока, мы увидим, что они не включаются, пока их суммарное минимальное прямое напряжение не будет достигнуто на отметке около 6.3 вольта, однако оптимальная сила тока в 20 миллиампер будет достигнута только при напряжении около 8,6 вольт. При 9 В ток составляет около 35 мА, что явно слишком много, поэтому нам понадобится резистор.

Если мы подключим 5 светодиодов, они не загорятся, пока не будет около 8,3 вольт. При напряжении 9 В все они включены, но ток очень низкий, поэтому светодиоды тусклые, потому что напряжения недостаточно для полного питания светодиодов. Оптимальные 20 миллиампер в этом примере достигаются только при напряжении 10,7 В.

Таким образом, мы можем использовать этот метод, но мы ограничены напряжением батареи.

Что, если нам нужно больше светодиодов? Что ж, нам нужно соединить их параллельно.

Мы можем установить резистор на каждый светодиод или использовать один резистор для питания всех светодиодов. Начнем с первого примера.

Отдельные резисторы параллельной цепи

Такая конструкция позволяет использовать светодиоды разного цвета. Хотя легче рассчитать, все ли они одного цвета.

Допустим, мы хотим подключить 6 светодиодов к этой 9-вольтовой батарее. Каждый светодиод имеет падение напряжения 2 вольта и требует 20 миллиампер.Вся эта шина составляет 9 вольт, а вся эта шина — 0 вольт. Таким образом, на каждый светодиод будет подаваться напряжение 9 В. Это явно слишком много, поэтому нам нужно поставить резистор напротив каждого светодиода. Итак, у нас есть 9 вольт за вычетом 2 вольт для светодиода, что оставляет нам 7 вольт. Значит нам нужно сбросить 7 вольт на ветку. Мы рассчитываем номинал резистора на 7 вольт, разделенных на 0,02 ампера, что равняется 350 Ом. Затем мы находим номинальную мощность: 0,02 ампера в квадрате, умноженное на 350 Ом, дает нам 0,14 Вт, поэтому будет использоваться резистор Вт.

Затем нам нужно сложить все токи в каждой ветви. Таким образом, 0,02 ампера, умноженные на 6 светодиодов, дают нам 0,12 ампер.
Емкость 9-вольтовой батареи составляет около 500 миллиампер-часов, а в нашей схеме используется 120 миллиампер, поэтому 500, разделенное на 120, дает нам около 4 часов автономной работы.

Мы видим, что на каждой ветви все еще достаточно напряжения для подключения дополнительных светодиодов. Допустим, мы размещаем по 3 светодиода на каждой ветви. Таким образом, каждая ветвь имеет снижение на 6 вольт, поэтому 9 вольт за вычетом 6 вольт равняются падению на резисторе 3 вольт.Таким образом, 3 вольта, разделенные на 0,02 ампер, дают резистор 150 Ом. Обратите внимание, что общий ток в каждой ветви не увеличился, поэтому мы можем добавить больше светодиодов, пока не будет достигнуто максимальное напряжение.

Если мы хотим использовать светодиоды разного цвета, мы размещаем разные светодиоды на разных ветвях и находим подходящий резистор. Например, у нас могут быть красный, синий и зеленый светодиоды.
Каждый светодиод имеет одинаковую потребность в токе 20 миллиампер, но красный светодиод имеет падение напряжения 2 вольта, синий — 3,4 вольт, а зеленый — 3 вольта.Следовательно, резистор для красного светодиода составляет 9 вольт, вычитая 2 вольта, что дает нам 7 вольт, 7 вольт, разделенные на 0,02 ампер, приведут нас к резистору 350 Ом. На синем светодиоде 9 вольт вычитают 3,4 вольта, что оставляет нам 5,6 вольт, поэтому 5,6 вольт, разделенное на ток 0,02 ампер, оставляет нам резистор 280 Ом. И зеленый светодиод будет 9 вольт, вычесть 3 вольта, что оставляет нам 6 вольт, 6 вольт, разделенных на ток, дает нам резистор 300 Ом. Таким образом, общий ток составляет 60 мА. Таким образом, заряда батареи хватит примерно на 8 часов.

Коммунальные резисторы параллельной цепи

Другой способ подключения светодиодов — это их параллельное соединение, а затем использование одного резистора для ограничения общего тока. Для этой конструкции вы должны использовать только светодиоды того же цвета или одного и того же рейтинга, мы увидим, почему это в ближайшее время, в этой статье.

Допустим, у нас есть батарея на 9 вольт и 3 красных светодиода с падением напряжения 2 вольта, и каждому из них требуется ток 20 миллиампер. Итак, мы просто складываем токи вместе, чтобы получить 60 мА, этот ток должен протекать через этот резистор.

Теперь, когда они подключены параллельно, все они будут иметь одинаковую разницу напряжений на них. Поэтому мы рассчитываем резистор на 9 Вольт, вычитаем 2 Вольта и получаем 7 Вольт. Затем, поскольку весь ток протекает через этот резистор, нам нужно будет разделить 7 вольт на 60 миллиампер, и мы получим резистор на 116 Ом. Расчет мощности составляет 0,49 Вт, поэтому будет использоваться резистор на половину Вт.

Причина, по которой нам нужно использовать светодиоды с одинаковым номиналом, заключается в том, что разница напряжений здесь составляет всего 2 вольта.Поэтому, если мы используем одинаковые индикаторы рейтинга, они все загорятся. Но если мы поместим синий светодиод в схему, это потребует более высокого напряжения, которое он не сможет получить, поэтому этот светодиод не будет включаться.

Резисторные хитрости

Теперь, когда мы имеем дело с этими схемами, мы часто обнаруживаем, что рассчитанное нами значение резистора не существует или его просто нет в наличии. Итак, мы можем комбинировать резисторы, чтобы получить нужное нам значение. Например, если нам нужен резистор на 200 Ом, мы могли бы разместить два резистора 100 Ом последовательно или мы могли бы разместить 2 резистора по 50 Ом и резистор 100 Ом.Значения резисторов просто складываются последовательно, что позволяет очень легко увеличить номинал резистора.

Чтобы уменьшить номинал резистора, мы просто помещаем их параллельно. Затем мы производим математические вычисления, чтобы найти эквивалентное сопротивление.

Допустим, у нас есть два резистора на 10 Ом, мы рассчитываем их по этой формуле. Это намного проще, чем кажется, просто введите это в свой калькулятор, и мы увидим, что он дает нам 5 Ом эквивалентного сопротивления.

Два резистора 5 Ом дадут нам 2.Общее сопротивление 5 Ом.

Резистор на 200 Ом и 50 Ом даст нам сопротивление 40 Ом.

Три резистора по 10 Ом дадут нам сопротивление 3,33 Ом.

Считывание значений резистора

Как определить номинал резистора? Эти цветные полосы на теле подскажут нам значение, но нам нужно найти его на диаграмме. Обычно мы можем получить 4- или 5-полосные резисторы, поэтому давайте рассмотрим их несколько примеров.

Для 4-полосного типа первые 2 полосы — это цифры, которые мы объединяем, третья полоса — это множитель, а полоса 4 -ая полоса — это допуск.

Например, этот 4-полосный резистор коричневый, черный, коричневый, золотой. Диапазон 1 равен 1, диапазон 2 равен 0, что дает нам 10. Диапазон 3 — это множитель, который равен 10, поэтому 10, умноженное на 10, дает 100 Ом. Тогда допуск золота составляет 5%. Таким образом, оно может быть от 95 Ом до 105 Ом. Когда мы измеряем это с помощью мультиметра, мы видим 98,2 Ом, что находится в пределах допуска. Итак, мы увидели, что предыдущий резистор не был очень точным.

Если мы хотим большей точности, нам нужен меньший допуск, такой как этот допуск 1%, тип 5 полос.В этом типе первые 3 полосы представляют собой цифры, 4 — это множитель, а 5 — это допуск.

Это оранжевый, оранжевый, черный, черный, коричневый. Итак, это 3, это 3, это 0 с множителем, равным единице, что дает нам 330 Ом и допуск 1%. Таким образом, это может быть от 327 Ом до 333 Ом. Когда я измеряю его мультиметром, мы видим, что он показывает 329,9 Ом, так что это идеально.


Почему мы используем резистор 330 Ом для подключения светодиода?

Предназначено для ограничения тока через светодиод, без резистора светодиод будет потреблять ток, пока не расплавится.

Падение напряжения на светодиоде зависит от его цвета, например, для синего светодиода — 3,4В. Поэтому, если у вас есть источник питания 5 В и вам нужен ток 5 мА через светодиод (5 мА обычно дает хорошую видимость), вам понадобится резистор (5–3,4 В) / 0,005 А = 320 Ом. (То есть это сопротивление даст падение напряжения на резисторе 1,6 В, оставшиеся 3,4 В упадут на светодиоде => всего 5 В)

Красные светодиоды обычно имеют меньшее падение напряжения (~ 2 В), поэтому у вас будет немного более высокий ток с тем же резистором, но все, что ниже 20 мА, обычно нормально.Также допустимы немного меньшие токи, светодиоды на 1 мА хорошо видны.

PS. несколько дополнительных вещей:

1) Световой поток светодиода линейно пропорционален току до тех пор, пока не превосходит технические характеристики. Вот почему все говорят о токе через светодиоды.

2) Лично я добавляю 220 Ом в цепи 5В, чтобы было действительно ярко 🙂

Но в моем недавнем проекте, где у меня было питание 3,3 В и светодиоды разного цвета (зеленый, красный, синий), мне пришлось более тщательно рассчитать сопротивления, и они составили 68 Ом для синего и 220 Ом для зеленого и красного.

Обзор решения:

  • Последовательный резистор ограничивает ток до значения, которое может быть рассчитано, если вы знаете, напряжение питания V, падение напряжения светодиода при желаемом токе и желаемый ток. См. Лист технических данных светодиодов для получения информации о типичном Vled при заданном токе. Затем —

    • Iled = (Vsupply-Vled) / Rseries или
    • Reseries = (Vsupply — Vled) / Iled.
  • Многие маленькие светодиоды рассчитаны на максимальный ток 20 мА.

  • Последовательное использование 330 Ом — это не требующий вычислений и продуманный метод «ленивого человека», гарантирующий, что светодиод сможет безопасно работать от источника питания 5 В, но при этом будет иметь достаточно большой процент выходного сигнала, который он мог бы есть при 20 мА.

  • Счетчики тока светодиодов или резисторов можно найти
    здесь — от Джереми Керра
    и здесь — от @AndrejaKo
    также см. Диаграмму напряжения / цвета здесь — от Endolith


Деталь:

330 Ом может использоваться некоторыми людьми в качестве «полезного» значения, которое во многих случаях работает «достаточно хорошо».

Назначение резистора — «сбрасывать» напряжение, которое не требуется для работы светодиода, когда светодиод работает при желаемом токе.Поскольку прямое напряжение светодиодов зависит как от цвета, так и от химического состава, а также от тока, и поскольку «желаемый» ток зависит от потребностей пользователя, единого правильного значения НЕТ. См. «Процедура : » в конце для пошагового применения этого.

Однако:

Светодиод белый, прямое напряжение = Vf = ОМ 3,3В.
На резисторе питания 5 В напряжение = Vr = напряжение 5 светодиодов = 5-3,3 = 1,7 В.
Ток = холостой ход будет V / R = 1,7 / 330 = 5,15 ~ = 5 мА

Красный светодиод.Vf = ОКО 2.2V.
Vr = 5-2,2 = 2,8 В.
Iled = 2,8 / 330 = 8,4848 … ~ + 8,5 мА.

ИК-светодиод. Vf = 1,8 В. Iled = ~ 10 мА.

В вышеупомянутых случаях Iled варьируется от ОКОЛО 5 мА до ОКОЛО 10 мА.
Коэффициент 2: 1.

На самом деле токи будут несколько выше, так как типичные Vfs, которые я использовал, обычно составляют 20 мА.
При меньших токах Vf ниже (см. Спецификации светодиодов), и поэтому R имеет большее падение напряжения, поэтому ток больше, поэтому ….

________________________________________

ПРОЦЕДУРА:

  • Укажите желаемый ток = I_LED Укажите напряжение питания = Vs

  • Используйте лист данных для определения типичного падения напряжения на светодиодах «вперед» при заданном токе = Vf

  • Падение напряжения на резисторе = Vr — это часть напряжения Vs, которая не падает на светодиод.т.е. Vr = Vs — Vf

  • Номинал резистора = R определяется законом Ома: R = V / I

    , где V — напряжение на резисторе, а
    I — ток, последовательно проходящий через светодиод + резистор.

  • Итак: R = V / I = Vr / I_LED = (Vs-Vf) / I_LED

Вернуться в блог

Написано Эли в понедельник, 6 августа 2018 г.

 Первоначально это сообщение было написано 8 ноября 2012 года. 

Запуск светодиода RGB на 12 В постоянного тока аналогичен запуску любого другого светодиода, за исключением того, что вам нужно 3 токоограничивающих резистора вместо 1.

Несмотря на то, что у светодиода RGB есть 4 вывода, это все еще «простой» вопрос использования закона Ома и некоторой информации из таблицы данных светодиода для расчета правильного значения и размера для токоограничивающих резисторов. Это может показаться не таким простым, если вы новичок в электронике или имеете ограниченный опыт работы со светодиодами, но не волнуйтесь — требуемые математические вычисления могут быть выполнены вашим сыном или дочерью 5 -го класса .

В этом примере я буду использовать сверхъяркий светодиод RGB Vetco VUPN6563 (общий катод).- Поставляется в упаковке из 3-х светодиодов по очень доступной цене . Следующие шаги будут работать для светодиодов с общим катодом или общим анодом.

Зачем нужен резистор:

Светодиод потребляет больше тока по мере увеличения напряжения, используемого для его работы.

Ток вызывает нагрев светодиода; высокий ток приводит к слишком большому нагреву. Если вы потребляете больше тока, чем максимальный, указанный в таблице данных «прямой ток», светодиод самоуничтожится при менее впечатляющей вспышке света с большим количеством дыма, чем вы хотите вдохнуть.Токоограничивающий резистор подходящего размера будет рассеивать дополнительный ток (в виде тепла), который обычно протекает через светодиод, когда его напряжение превышает номинальное прямое напряжение.

Когда дело доходит до ограничения тока, рекомендуется предусмотреть запас прочности. Работа светодиода на максимальном заданном прямом токе может привести к сокращению срока службы и снижению светоотдачи с течением времени. Уменьшение тока до уровня чуть ниже максимального прямого тока дает светодиоду немного меньшую светоотдачу, но гораздо более длительный срок службы.

Как рассчитать номинал и размер резистора:

Чтобы выбрать правильный резистор, нужно выполнить 2 шага:

1) Рассчитайте номинал резистора (в омах)

2) Рассчитайте мощность, рассеиваемую резистором (в ваттах)

Шаг 1: Расчет номинального сопротивления резистора (Ом)

Чтобы рассчитать номинал резистора (в омах) и размер (в ваттах), нам необходимо знать следующее:

  1. Светодиодный ток в прямом направлении (мА)
  2. Прямое напряжение светодиода (вольт)
  3. Рабочее напряжение (В)

В техническом описании светодиода с общим катодом RGB указано, что прямое напряжение равно 2.0 вольт для красного сегмента, 3,0 вольт для зеленого сегмента и 3,0 вольт для синего сегмента. Прямой ток указан как 20 мА для всех 3 сегментов.

Обратите внимание, что перечислены 3 отдельных значения напряжения. Значит ли это, что нам нужно 3 отдельных резистора? Да — интересные вещи произойдут, если на катоде используется только один резистор, например, зеленый и синий будут иметь немного меньшую светоотдачу, а красный будет казаться ярче, чем если бы мы использовали 3 отдельных резистора. Если вы решите использовать только 1 резистор, выберите его для наименьшего значения напряжения и тока, но обязательно увеличьте размер резистора, чтобы он мог рассеивать достаточно тепла для всех 3 элементов (умножьте рассеиваемую мощность на 3).

В этом примере мы собираемся вычислить номинал резистора, необходимого для сегмента красного светодиода.

Вот данные, которые у нас есть сейчас:

  1. Светодиодный ток в прямом направлении (если) (мА) = 20 мА (0,020 А)
  2. Светодиодное прямое напряжение (Vf) (Вольт) = 2,0 Вольт
  3. Рабочее напряжение (Вс) (Вольт) = 12 Вольт

Это формула закона Ома, которую мы будем использовать для расчета номинала резистора:

Номинал резистора (Ом) = (Рабочее напряжение — Прямое напряжение светодиода) / Прямой ток светодиода
Номинальное сопротивление резистора (Ом) = (12-2.0) / 0,020

Номинал резистора нам нужен — 500 Ом. Поскольку резисторы на 500 Ом обычно не доступны, мы выберем следующее ближайшее значение: 560 Ом. Всегда выбирайте большее из двух значений замыкающего резистора. Это поможет гарантировать, что светодиодный индикатор будет оставаться ниже номинального значения If (максимального прямого тока).

Шаг 2: Расчет мощности резистора (ватт)

Теперь нам нужно выяснить, какой размер резистора использовать (1/8 Вт, 1/4 Вт, 1 Вт и т. Д.). Это тоже очень простая математика с использованием закона Ома:

  • Рассеиваемая мощность резистора (Вт) = напряжение (в квадрате) / номинал резистора

Мы знаем из шага 1, что напряжение составляет 10 Вольт (12 Вольт — 2.2/560 = 0,178

Резистор будет рассеивать 0,178 Вт или 178 мВт. Резистор на 1/4 Вт (250 мВт) справится с этим безопасно. Мы должны выбрать резистор 1/4 Вт, 560 Ом, номер детали Vetco NTE-QW156 — хороший выбор.

Затем мы выполняем те же вычисления в шагах 1 и 2 для зеленого и синего сегментов (Vf = 3,0, If = 20 мА). Значение резистора для зеленого и синего цветов: 470 Ом. Номер детали Vetco NTE-QW147 — резистор 470 Ом, 1/4 Вт.

В собранном виде наша светодиодная схема RGB выглядит как на схеме ниже.Если вы подключите к источнику питания все 3 анода одновременно, светодиод будет светиться белым.

[Принципиальная схема светодиодов RGB + резисторы]

Альтернативы использованию токоограничивающих резисторов: Резисторы

— простой способ ограничить ток, но они неэффективны. Избыточная мощность тратится в виде тепла. Лучшей альтернативой токоограничивающим резисторам является использование широтно-импульсной модуляции (ШИМ) для отправки на светодиод импульсов напряжения, рассчитанных по времени и определенной длительности.PWM позволит вам управлять яркостью отдельных светодиодных сегментов, создавая великолепный массив различных цветовых комбинаций. ШИМ-управление RGB-светодиодами с помощью микроконтроллера Arduino будет обсуждаться в одном из следующих постов блога.

PS: Не хотите делать математику самостоятельно? Попробуйте этот крутой калькулятор светодиодного резистора: http://ledcalc.com/

Вернуться в блог

Калькулятор светодиодных резисторов | Потребность в последовательном резисторе

В этом руководстве мы узнаем об одной из основных концепций, которые необходимы новичкам в электронике i.е. калькулятор светодиодного резистора. Вы увидите, почему выбор подходящего резистора для светодиода имеет решающее значение для его работы, а также факторы, которые необходимо учитывать при выборе конкретного резистора, чтобы светодиод не горел.

Введение

Если вы только начали с электроники, например, поделок или Arduino, то, вероятно, первым проектом или схемой, которую вы могли бы создать, было бы мигание светодиода.

Преимущество Arduino заключается в том, что он имеет встроенный светодиод, подключенный к выводу 13 цифрового ввода-вывода, и все, что вам нужно сделать, это просто подключить плату Arduino UNO к компьютеру и загрузить Blink Sketch .Светодиод начинает мигать.

Но если вы остановитесь на этом, то не поймете «аппаратную» часть проекта. Если вы посмотрите на схему Arduino Uno Rev 3, то заметите, что светодиод не подключен напрямую к выводу ввода-вывода микроконтроллера ATmega328P (точнее, вывод 5 порта B). Но скорее он подключен через резистор 1 кОм последовательно с ним.

Этот резистор — интересная вещь для дальнейшего обсуждения этого руководства. Но для получения базовой информации о светоизлучающих диодах (светодиодах) вы можете обратиться к следующему посту.

«Светоизлучающие диоды (светодиоды)»

Зачем нужен светодиодный резистор?

Если вы читали руководство по светодиодам, упомянутое выше, то, возможно, уловили, что любой светодиод имеет две основные характеристики, которые определяют работу светодиода. Это прямой ток и прямое напряжение.

Все светодиоды, независимо от формы, размера или форм-фактора, имеют заранее определенный допустимый рабочий ток. Этот ток обычно определяется в таблицах как непрерывный прямой ток.

Это абсолютный максимальный ток, который может подаваться на светодиод без каких-либо повреждений. Например, 5-миллиметровый белый светодиод имеет абсолютный максимальный прямой ток 30 мА.

Таким образом, абсолютно необходимо контролировать количество тока, протекающего через светодиод, и самый простой способ ограничить ток — использовать последовательный резистор.

Другой важной характеристикой светодиода является его прямое напряжение. Мы увидим его влияние, когда поймем уравнение калькулятора светодиодного резистора, а также при выборе последовательного резистора.

Вычислитель светодиодного резистора

Уравнение

Давайте теперь перейдем к важному аспекту учебного пособия, то есть к уравнению для калькулятора светодиодного резистора. Для простоты рассмотрим простую схему, состоящую из одного светодиода, одного последовательного резистора и источника питания.

На следующем изображении показана простая схема светодиода, состоящая из светодиода, резистора R S и источника питания V S .

Используя простую теорию цепей, вы получите следующее уравнение:

V S = R S * I R + V LED , где

В S — напряжение питания,

R S — номинал последовательного резистора,

I R — ток через последовательный резистор,

V LED — прямое напряжение или падение напряжения на светодиоде (обычно обозначается как V F ).

Поскольку последовательный резистор R S и светодиод включены последовательно, ток, протекающий через них, будет одинаковым, и, согласно нашим предыдущим обсуждениям, этот ток должен быть прямым током светодиода (I LED или просто I F ).

Таким образом, мы можем переписать приведенное выше уравнение следующим образом:

R S = (V S — V F ) / I F

Это уравнение для калькулятора светодиодного резистора.Здесь важно отметить, что значение последовательного резистора зависит как от прямого тока светодиода, так и от прямого напряжения светодиода. Следовательно, важно следить за обоими этими значениями светодиода из его таблицы данных.

Светодиоды разных цветов и типов имеют разные номинальные значения прямого тока и прямого напряжения. Например, в следующей таблице представлен обзор значений прямого тока и прямого напряжения некоторых из обычно используемых 5-миллиметровых светодиодов.

ПРИМЕЧАНИЕ: Следующие значения относятся к производителю и не могут быть обобщены. Чтобы получить точные значения, вам обязательно нужно ознакомиться с таблицей данных, предоставленной вашим производителем.

Цвет светодиода Прямой ток (I F ) прямое напряжение (В F )

Белый

30 мА

3.6 В

Красный

20 мА

2 В

Синий

20 мА

3,9 В

Зеленый

20 мА

2,4 В

Желтый

20 мА

2 В

Янтарь 20 мА

2.4 В

Оранжевый

50 мА

2,1 В

Инфракрасный

100 мА

1,4 В

Если два светодиода соединены последовательно, то уравнение для расчета последовательного резистора будет следующим:

R S = (V S — V F * 2) / I F

Фактически, если имеется N одинаковых светодиодов, соединенных последовательно, то уравнение для расчета резисторов светодиодов может быть записано следующим образом:

R S = (V S — V F * N) / I F

Пример

Давайте теперь посмотрим на простой пример схемы и вычислим значение последовательного резистора, чтобы светодиод работал правильно, не взрываясь.

На приведенном выше изображении напряжение питания V S составляет 5 В, в качестве светодиода используется белый светодиод диаметром 5 мм. Из приведенной выше таблицы типичный белый светодиод диаметром 5 мм имеет следующие характеристики:

Прямой ток I F = 30 мА и

Прямое напряжение В F = 3,6 В.

Подставляя эти значения в приведенное выше уравнение, мы получаем следующее:

R S = (5 В — 3,6 В) / 30 мА

R S = 46,6 Ом.

Ближайшее значение — резистор 47 Ом.Но если вы хотите быть в безопасности, я бы посоветовал вам использовать следующее большое значение, и в данном случае это будет резистор 56 Ом.

Рассеиваемая мощность резистора

Одной из важных характеристик последовательного резистора для светодиода, которой часто пренебрегают или игнорируют, является рассеиваемая мощность резистора.

Если падение напряжения светодиода составляет V F , то падение напряжения на резисторе составляет V S — V F .

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *