Как выглядят транзисторы фото — Инженер ПТО
Внешний вид и обозначение транзистора на схемах
На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.
Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.
Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.
Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.
Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.
Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников — это германий и кремний, а также соединение галлия и мышьяка — арсенид галлия (
Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.
Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.
Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.
Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.
На принципиальных схемах биполярные транзисторы обозначаются вот так.
Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.
Маленький совет.
Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.
Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н-П ).
Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.
Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.
Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.
А вот это уже современный импорт.
Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector — «сборщик» (глагол Collect — «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base — «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter — «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.
В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.
Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.
Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы
Далее узнаем, как найти транзисторы на печатной плате электронного прибора.
В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.
В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.
Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.
Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента — VT
Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).
Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).
Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.
Внешний вид и обозначение транзистора на схемах
На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.
Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.
Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.
Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.
Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.
Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников — это германий и кремний, а также соединение галлия и мышьяка — арсенид галлия (
Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.
Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.
Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.
Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.
На принципиальных схемах биполярные транзисторы обозначаются вот так.
Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.
Маленький совет.
Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.
Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н-П ).
Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.
Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.
Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.
А вот это уже современный импорт.
Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector — «сборщик» (глагол Collect — «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base — «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter — «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.
В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.
Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.
Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.
Далее узнаем, как найти транзисторы на печатной плате электронного прибора.
В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.
В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.
Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.
Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента — VT
Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).
Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).
Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.
Здравствуйте, дорогие читатели. В данной статье рассмотрим виды транзисторов и область их применения. И так…
Транзистор, это радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи. Это позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.
Виды транзисторов
О том что такое транзистор, читайте в статье «Что означает слово транзистор? Назначение и устройство.» Здесь лишь отметим, в большинстве применений транзисторы заменили собой вакуумные лампы, свершилась настоящая кремниевая революция в создании интегральных микросхем. Так, сегодня в аналоговой технике чаще используют биполярные транзисторы, а в цифровой технике — преимущественно полевые.
Устройство и принцип действия полевых и биполярных транзисторов — это так же темы отдельных статей, поэтому останавливаться на данных тонкостях не будем, а рассмотрим предмет с чисто практической точки зрения на конкретных примерах.
Полевые и биполярные транзисторы
По технологии изготовления транзисторы подразделяются на два типа: полевые и биполярные. Биполярные в свою очередь делятся по проводимости на n-p-n – транзисторы обратной проводимости, и p-n-p – транзисторы прямой проводимости. Полевые транзисторы бывают, соответственно, с каналом n-типа и p-типа. Затвор полевого транзистора может быть изолированным (IGBT-транзисторы) или в виде p-n-перехода. IGBT-транзисторы бывают со встроенным каналом или с индуцированным каналом.
Виды транзисторов, p –n–p и n–p–n проводимость
Области применения транзисторов определяются их характеристиками, а работать транзисторы могут в двух режимах: в ключевом или в усилительном. В первом случае транзистор в процессе работы или полностью открыт или полностью закрыт, что позволяет управлять питанием значительных нагрузок, используя малый ток для управления. А в усилительном, или по-другому — в динамическом режиме, используется свойство транзистора изменять выходной сигнал при малом изменении входного, управляющего сигнала. Далее рассмотрим примеры различных транзисторов.
2N3055 – биполярный n-p-n-транзистор в корпусе ТО-3
Популярен в качестве элемента выходных каскадов высококачественных звуковых усилителей, где он работает в динамическом режиме. Как правило, используется совместно с комплементарным p-n-p собратом MJ2955. Данный транзистор может работать и в ключевом режиме, например в трансформаторных НЧ инверторах 12 на 220 вольт 50 Гц, пара 2n3055 управляет двухтактным преобразователем.
Примечательно, что напряжение коллектор-эмиттер для данного транзистора в процессе работы может достигать 70 вольт, а ток 15 ампер. Корпус ТО-3 позволяет удобно закрепить его на радиатор в случае необходимости. Статический коэффициент передачи тока — от 15 до 70, этого достаточно для эффективного управления даже мощными нагрузками, при том, что база транзистора выдерживает ток до 7 ампер. Данный транзистор может работать на частотах до 3 МГц.
КТ315 — легенда среди отечественных биполярных транзисторов малой мощности
Данный транзистор n-p-n – типа впервые увидел свет 1967 году, и по сей день пользуется популярностью в радиолюбительской среде. Комплементарной парой к нему является КТ361. Идеален для динамических и ключевых режимов в схемах малой мощности.
При максимально допустимом напряжении коллектор-эмиттер 60 вольт, этот высокочастотный транзистор способен пропускать через себя ток до 100 мА, а граничная частота у него не менее 250 МГц. Коэффициент передачи тока достигает 350, при том, что ток базы ограничен 50 мА.
Изначально транзистор выпускался только в пластмассовом корпусе KT-13, 7 мм в ширину и 6 мм высотой, но в последнее время можно его встретить и в корпусе ТО-92.
КП501 — полевой n-канальный транзистор малой мощности с изолированным затвором
Имеет обогащенный n-канал, сопротивление которого составляет от 10 до 15 Ом, в зависимости от модификации (А,Б,В). Предназначен данный транзистор, как его позиционирует производитель, для использования в аппаратуре связи, в телефонных аппаратах и другой радиоэлектронной аппаратуре.
Этот транзистор можно назвать сигнальным. Небольшой корпус ТО-92, максимальное напряжение сток-исток — до 240 вольт, максимальный ток стока — до 180 мА. Емкость затвора менее 100 пф. Особенно примечательно то, что пороговое напряжение затвора составляет от 1 до 3 вольт, что позволяет реализовать управление с очень-очень малыми затратами. Идеален в качестве преобразователя уровней сигналов.
irf3205 – n-канальный полевой транзистор, изготовленный по технологии HEXFET
Популярен в качестве силового ключа для повышающих высокочастотных инверторов, например автомобильных. Посредством параллельного включения нескольких корпусов представляется возможность построения преобразователей, рассчитанных на значительные токи.
Максимальный ток для одного такого транзистора достигает 75А (ограничение вносит конструкция корпуса ТО-220), а максимальное напряжение сток-исток составляет 55 вольт. Сопротивление канала при этом всего 8 мОм. Емкость затвора в 3250 пф требует применения мощного драйвера для управления на высоких частотах, но сегодня это не является проблемой.
FGA25N120ANTD мощный биполярный транзистор с изолированным затвором (IGBT-транзистор)
Способен выдержать напряжение сток-исток 1200 вольт, максимальный ток стока составляет 50 ампер. Особенность изготовления современных IGBT-транзисторов такого уровня позволяет отнести их к классу высоковольтных.
Область применения — силовые преобразователи инверторного типа, такие как индукционные нагреватели, сварочные аппараты и другие высокочастотные преобразователи, рассчитанные на питание высоким напряжением. Идеален для мощных мостовых и полумостовых резонансных преобразователей, а также для работы в условиях жесткого переключения, имеется встроенный высокоскоростной диод.
Рекомендации по эксплуатации транзисторов
Значения большинства параметров транзисторов зависят от реального режима работы и температуры, причем с увеличением температуры параметры транзисторов могут меняться. В справочнике приведены, как правило, типовые (усредненные) зависимости параметров транзисторов от тока, напряжения, температуры, частоты и т. п.
Для обеспечения надежной работы транзисторов необходимо принимать меры, исключающие длительные электрические нагрузки, близкие к предельно допустимым. Например заменять транзистор на аналогичный но меньшей мощности не стоит, это касается не только мощностей, но и других параметров транзистора. В некоторых случаях для увеличения мощности транзисторы можно включать параллельно, когда эмиттер соединяется с эмиттером, коллектор с коллектором и база – с базой. Перегрузки могут быть вызваны разными причинами, например от перенапряжения, для защиты от перенапряжения часто применяют быстродействующие диоды.
Что касается нагрева и перегрева транзисторов, температурный режим транзисторов не только оказывает влияние на значение параметров, но и определяет надежность их эксплуатации. Следует стремиться к тому, чтобы транзистор при работе не перегревался, в выходных каскадах усилителей транзисторы обязательно нужно ставить на большие радиаторы. Защиту транзисторов от перегрева нужно обеспечивать не только во время эксплуатации, но и во время пайки. При лужении и пайке следует принимать меры, исключающие перегрев транзистора, транзисторы во время пайки желательно держать пинцетом, для защиты от перегрева.
Мы рассмотрели здесь только несколько видов транзисторов, и это лишь мизерная часть из обилия моделей электронных компонентов, представленных на рынке сегодня.
Так или иначе, вы с легкостью сможете подобрать подходящий транзистор для своих целей. Документация на них доступна сегодня в сети в виде даташитов, в которых исчерпывающе представлены все характеристики. Типы корпусов современных транзисторов различны, и для одной и той же модели зачастую доступны как SMD исполнение, так и выводное.
Видео, виды транзисторов
Как выглядит транзистор на плате
Опытные электрики и электронщики знают, что для полной проверки транзисторов существуют специальные пробники.
С помощью них можно не только проверить исправность последнего, но и его коэффициент усиления — h31э.
СОДЕРЖАНИЕ (нажмите на кнопку справа):
Необходимость наличия пробника
Пробник действительно нужный прибор, но, если вам необходимо просто проверить транзистор на исправность вполне подойдет и мультиметр.
Устройство транзистора
Прежде, чем приступить к проверке, необходимо разобраться что из себя представляет транзистор.
Он имеет три вывода, которые формируют между собой диоды (полупроводники).
Каждый вывод имеет свое название: коллектор, эмиттер и база. Первые два вывода p-n переходами соединяются в базе.
Один p-n переход между базой и коллектором образует один диод, второй p-n переход между базой и эмиттером образует второй диод.
Оба диода подсоединены в схему встречно через базу, и вся эта схема представляет собой транзистор.
Ищем базу, эмиттер и коллектор на транзисторе
Как сразу найти коллектор.
Чтобы сразу найти коллектор нужно выяснить, какой мощности перед вами транзистор, а они бывают средней мощности, маломощные и мощные.
Транзисторы средней мощности и мощные сильно греются, поэтому от них нужно отводить тепло.
Делается это с помощью специального радиатора охлаждения, а отвод тепла происходит через вывод коллектора, который в этих типах транзисторов расположен посередине и подсоединен напрямую к корпусу.
Получается такая схема передачи тепла: вывод коллектора – корпус – радиатор охлаждения.
Если коллектор определен, то определить другие выводы уже будет не сложно.
Бывают случаи, которые значительно упрощают поиск, это когда на устройстве уже есть нужные обозначения, как показано ниже.
Производим нужные замеры прямого и обратного сопротивления.
Однако все равно торчащие три ножки в транзисторе могу многих начинающих электронщиков ввести в ступор.
Как же тут найти базу, эмиттер и коллектор?
Без мультиметра или просто омметра тут не обойтись.
Итак, приступаем к поиску. Сначала нам нужно найти базу.
Берем прибор и производим необходимые замеры сопротивления на ножках транзистора.
Берем плюсовой щуп и подсоединяем его к правому выводу. Поочередно минусовой щуп подводим к среднему, а затем к левому выводам.
Между правым и среднем у нас, к примеру, показало 1 (бесконечность), а между правым и левым 816 Ом.
Эти показания пока ничего нам не дают. Делаем замеры дальше.
Теперь сдвигаемся влево, плюсовой щуп подводим к среднему выводу, а минусовым последовательно касаемся к левому и правому выводам.
Опять средний – правый показывает бесконечность (1), а средний левый 807 Ом.
Это тоже нам ничего не говорить. Замеряем дальше.
Теперь сдвигаемся еще левее, плюсовой щуп подводим к крайнему левому выводу, а минусовой последовательно к правому и среднему.
Если в обоих случаях сопротивление будет показывать бесконечность (1), то это значит, что базой является левый вывод.
А вот где эмиттер и коллектор (средний и правый выводы) нужно будет еще найти.
Теперь нужно сделать замер прямого сопротивления. Для этого теперь делаем все наоборот, минусовой щуп к базе (левый вывод), а плюсовой поочередно подсоединяем к правому и среднему выводам.
Запомните один важный момент, сопротивление p-n перехода база – эмиттер всегда больше, чем p-n перехода база – коллектор.
В результате замеров было выяснено, что сопротивление база (левый вывод) – правый вывод равно 816 Ом, а сопротивление база – средний вывод 807 Ом.
Значит правый вывод — это эмиттер, а средний вывод – это коллектор.
Итак, поиск базы, эмиттера и коллектора завершен.
Как проверить транзистор на исправность
Чтобы проверить транзистор мультиметром на исправность достаточным будет измерить обратное и прямое сопротивление двух полупроводников (диодов), чем мы сейчас и займемся.
В транзисторе обычно существуют две структуру перехода p-n-p и n-p-n.
P-n-p – это эмиттерный переход, определить это можно по стрелке, которая указывает на базу.
Стрелка, которая идет от базы указывает на то, что это n-p-n переход.
P-n-p переход можно открыть с помощью минусовое напряжения, которое подается на базу.
Выставляем переключатель режимов работы мультиметра в положение измерение сопротивления на отметку «200».
Черный минусовой провод подсоединяем к выводу базы, а красный плюсовой по очереди подсоединяем к выводам эмиттера и коллектора.
Т.е. мы проверяем на работоспособность эмиттерный и коллекторный переходы.
Показатели мультиметра в пределах от 0,5 до 1,2 кОм скажут вам, что диоды целые.
Теперь меняем местами контакты, плюсовой провод подводим к базе, а минусовой поочередно подключаем к выводам эмиттера и коллектора.
Настройки мультиметра менять не нужно.
Последние показания должны быть на много больше, чем предыдущие. Если все нормально, то вы увидите цифру «1» на дисплее прибора.
Это говорит о том, что сопротивление очень большое, прибор не может отобразить данные выше 2000 Ом, а диодные переходы целые.
Преимущество данного способа в том, что транзистор можно проверить прямо на устройстве, не выпаивая его оттуда.
Хотя еще встречаются транзисторы где в p-n переходы впаяны низкоомные резисторы, наличие которых может не позволить правильно провести измерения сопротивления, оно может быть маленьким, как на эмиттерном, так и на коллекторном переходах.
В данном случае выводы нужно будет выпаять и проводить замеры снова.
Признаки неисправности транзистора
Как уже отмечалось выше если замеры прямого сопротивления (черный минус на базе, а плюс поочередно на коллекторе и эмиттере) и обратного (красный плюс на базе, а черный минус поочередно на коллекторе и эмиттере) не соответствуют указанным выше показателям, то транзистор вышел из строя.
Другой признак неисправности, это когда сопротивление p-n переходов хотя бы в одном замере равно или приближено к нулю.
Это указывает на то, что диод пробит, а сам транзистор вышел из строя. Используя данные выше рекомендации, вы легко сможете проверить транзистор мультиметром на исправность.
Любой, кто разбирал компьютер, видел как много различных элементов на материнской плате, в этой статье я постараюсь кратко описать и показать основные компоненты, устанавливаемые на материнские платы современных компьютеров.
Транзисторы
Или мосфет. Обычно используется для усиления, генерации и преобразования электрических сигналов. В общем случае транзистором называют любое устройство, которое имитирует главное свойство транзистора – изменения сигнала между двумя различными состояниями при изменении сигнала на управляющем электроде.
Резисторы
Резистор – это пассивный элемент радиоэлектронной аппаратуры, предназначенный для создания в электрической цепи требуемой величины электрического сопротивления, обеспечивающий перераспределение и регулирование электрической энергии между элементами схемы.
Электролитические конденсаторы
Электролитические конденсаторы схожи с аккумуляторами, но в отличии от которых выводят весь свой заряд в крошечные доли секунды. Используются, чтобы выровнять напряжение или блокировать постоянный ток в цепи.
Другие конденсаторы
Керамические SMD, танталовые, ниобиевые и др. Лучше для электроники, которая не требует высокой интенсивности работы.
Диоды
Диоды позволяют электричеству течь в одном направлении и обычно используются в качестве защиты и выпрямителей тока.
Светодиоды
Светодиод (LED). В основном LED – крошечные лампочки.
Индуктор
Индуктор (дроссель) – обмотка провода, катушка, используется для смягчения скачка тока при запуске. Зачастую стоят перед процессором.
Генератор тактовых частот
Генератор тактовых частот (клокер) — устройство, формирующее тактовые частоты, используемые на материнской плате и в процессоре.
Кварц
Кварц перемещает энергию назад и вперед между двумя формами в равные доли времени. Задаёт частоту работы всей электрической схемы.
SuperIO (SIO, MultiIO, MIO, «мультик»)
Третья по значимости и размеру микросхема на материнской плате – после мостов. Отвечает за порты ввода-вывода (COM, LPT, GamePort, инфракрасный порт, PS/2 для клавиатуры и мыши и др.). Является микроконтроллером (выполняет часть прошивки биос), выродился из контроллера клавиатуры, но в современных платах выполняет множество важных функций. Он например мониторит сигналы с Шим и когда убедится что всё ОК с питанием – даёт южному мосту команду «нажали на вкл, запускайся», ещё он управляет режимами S0-S5. На текущий момент это его основной функционал, а функции ввода – вывода – отмирающий придаток. Зачастую обладает дополнительным функционалом:
встроенный Hardware Monitoring
контроллер управления скоростью вентиляторов
интерфейс для подключения CompactFlash-карт.
ШИМ-контроллер
ШИМ-контроллер (от Широтно-Импульсная Модуляция) – главная микросхема, управляющая напряжением на материнской плате.
Мосты
«Мосты» главные электронные компоненты материнских плат. Подробнее здесь.
Микропроцессор (ЦП)
Микропроцессор (ЦП)- является полным механизмом вычисления.
BIOS
BIOS (Basic Input-Output System) микросхемы основной системы ввода/вывода.
Dual Bios
Технология Dual Bios на материнских платах производства Gigabyte. В случае сбоя основного bios его можно восстановить из резервной микросхемы.
Батарейка CMOS.
Батарейка CMOS. Служит для хранения настроек BIOS и для поддержания системного времени в актуальном состоянии.
Аудиокодек
Аудиокодек (англ. Audio codec; аудио кодер/декодер) — компьютерная программа или аппаратное средство, предназначенное для кодирования или декодирования аудиоданных.
Сетевой контроллер (Onboard LAN)
Сетевой контроллер (Onboard LAN) представляет собой отдельную микросхему. Как и в случае с аудио кодеком при выходе из строя может сильно греться. Ремонтируется так же заменой или демонтажем.
Сегодня мы с Вами рассмотрим, как заменить транзистор на материнской плате компьютера? Причем, естественно, не просто заменить, а так, чтобы эта плата после этого работала! Думаю, по самим транзисторам мы (кто-то из участников проекта SebeAdmin.ru) напишем отдельную статью, здесь же рассмотрим саму технику по замене неисправного элемента и продиагностируем неисправность.
Итак, оказалась у нас на ремонте вот такая старенькая материнская плата Asus A7NBX
«Диагноз» – не включается. В данном случае это значит следующее: плата крутит вентилятором на процессоре, но запуска компьютера не происходит. Звуковых сигналов нет, замена комплектующих (память, видеокарта, блок питания) ничего не дает.
Будем пробовать ремонтировать! Что для этого нужно сделать в первую очередь? Произвести как можно более тщательный визуальный осмотр неисправного устройства. Запомните этот момент! Отдельно даже выделю эту мысль в нашей статье.
Важно! Любая диагностика неисправности начинается с внимательного осмотра! Это – первый этап этой самой диагностики!
Иногда бывает так, что на этом она и заканчивается 🙂 В том смысле, что неисправность удается уверенно идентифицировать чисто визуально. Матерые ремонтники для этого дела используют, как минимум, хорошее увеличительное стекло или цифровые микроскопы. К слову простой USB микроскоп с 200 кратным увеличением можно приобрести за долларов 20-30.
Но лично я так «глубоко не копаю», да и не об этом мы сейчас говорим. Проведя осмотр платы с пристрастием, под AGP разъемом (без всяких микроскопов) была и обнаружена явная неисправность, которая мешала материнской плате стартовать.
Видите полевой транзистор между конденсатором и дросселем? Вот это и есть наша будущая «жертва» 🙂 Согласен, видно не очень, поэтому сфотографируем этот же участок под увеличительным стеклом.
Видите большой овал, частично перекрывающий маркировку транзистора? Знаете что это такое? Так выглядит банальная «дыра» в пластмассовом или металлокерамическом корпусе элемента! Если поскоблить иголкой зону повреждения, можно увидеть, как из нее посыпется мелкая крошка, похожая на графитовую.
Итак, «виновника торжества» мы обнаружили! Можно зайти на любой сайт с документацией к радиоэлектронным компонентам (я пользуюсь datasheet-pdf.com) и убедиться, что – это N-канальный силовой мосфет-транзистор (15N03H, согласно маркировке на нем).
Весьма очевидно, что транзистор нужно заменить (на такой же или аналогичный по характеристикам и исполнению корпуса). Чтобы окончательно убедиться в его неисправности, давайте «прозвоним» транзистор с помощью мультиметра. О том, как пользоваться мультиметром, у нас рассказано вот здесь.
Как видите на фото выше, мы «звонили» транзистор по всем направлениям и во всех случаях раздавался характерный писк тестера, сигнализирующий о его «пробое» (фактически – коротком замыкании внутри элемента).
Будем выпаивать и менять транзистор на аналогичный. Где можно взять аналогичный (или похожий) элемент для замены неисправного? Здесь несколько вариантов:
- выпаять с «донора» (платы, не подлежащей ремонту)
- купить на радиорынке или специализированном магазине
- заказать через Интернет
В нашем случае я воспользовался вторым вариантом. Приобрел за доллар на рынке вот такой транзистор, немного отличающийся по характеристикам, но, в целом, подходящий для замены «пробитого».
Работать мы будем, используя термовоздушную паяльную станцию, но сначала нам нужно будет подготовить место пайки. Что я имею в виду? Дело в том, что транзистор, который мы должны заменить, расположен между электролитическим конденсатором и дросселем. Очень близко к ним. И при обработке потоком горячего воздуха эти элементы могут пострадать. В подобных случаях самым простым решением является выпаивание близко расположенных элементов и установка их обратно после окончания работ.
Так мы и поступим! О том, как заменить конденсаторы на плате и о самой технологии работы с паяльником мы уже подробно говорили в отдельной статье, так что не будем повторяться. После применения паяльника будущий «фронт работ» у нас выглядит вот так:
Чтобы уберечь от оплавления пластмассовый AGP разъем, мы прикроем его куском металла, который будет забирать на себя тепло от фена. Также еще одной заслонкой можно прикрыть близко расположенные PCI слоты.
Итак, наносим на место будущей пайки флюс (я пользуюсь флюс-гелем «Amtech RMA-223»), устанавливаем на паяльной станции температуру 360-380 градусов Цельсия (вполне достаточно для такой операции, как замена транзистора) и приступаем к работе.
При подборе правильного термопрофиля (соответствия температуры поставленной задаче) и соблюдения технологии работы, транзистор должен оказаться у нас «в руках» секунд через 20-30:
Отлично! Теперь нам нужно подготовить посадочно место для нового элемента. Каким образом? Нужно залудить его (нанести на контактные площадки некоторое количество припоя, чтобы новому транзистору было чем припаиваться). Справедливости ради стоит отметить, что при аккуратном съеме детали часто ничего наносить и не нужно (на площадках остается достаточное количество припоя), но я хочу показать Вам еще один метод, поэтому специально полностью зачистим все «пятачки» от остатков припоя.
Для начала, нанесем на поверхность достаточное количество флюса.
Это нужно для того, чтобы медная оплетка, которую мы будем использовать для удаления припоя, скользила по поверхности и сама не припаялась 🙂 Оплетка бывает разной ширины (обращайте на это внимание при покупке). Я пользуюсь 2-х миллиметровой.
Площадки зачищены (на них нет олова, только металл самой подложки). Если мы сейчас попробуем просто сверху припаять транзистор, то у нас попросту не получится. Металл к металлу без припоя (материала, который их сцепляет) не паяется.
Теперь мы подходим к интересному моменту: для нанесения припоя на контактные площадки мы воспользуемся такой вещью, как паяльная паста для BGA. Вот, например, такой от фирмы «BAKU» (цена 3-5 долларов):
Посмотрел на фото и сам удивился. Кажется, что – это такая большая емкость, но на самом деле все это выглядит немного иначе:
В такой баночке всего 50 грамм «продукта». Как видим, в составе его шестьдесят три процента олова (63Sn) и тридцать семь процентов свинца (37Pb). Также в эту смесь добавлено некоторое количество флюса, который «связывает» оба компонента.
Что же такое BGA паста и для чего она используется? Основное ее предназначение – формирование BGA шариков с тыльной стороны чипа. Если сейчас не все понятно, то дальше по тексту, надеюсь, все прояснится 🙂
Что такое есть аббревиатура BGA? Расшифровывается как Ball Grid Array (массив из шариков). В отличие от SMD – Surface Mounted Device (технологии поверхностного монтажа), здесь элементы крепятся к подложке (плате) с помощью массива из маленьких шариков припоя, расположенных на тыльной стороне микросхемы.
Технология bga монтажа сейчас приобретает все большую популярность среди производителей. Таким образом на плату напаиваются мосты, на видеокарту – графические процессоры, на оперативную память – чипы DDR. Вот, например, как выглядит северный мост, только что снятый с платы ноутбука:
Видите сетку из этих самых шариков? Посмотрим на это дело поближе:
Вот именно таким образом и осуществляется электрический контакт микросхемы с печатной платой. Если хотите, можете ознакомиться с разновидностями корпусов микросхем и принципами их монтажа, скачав с нашего сайта вот этот файл.
Паяльная паста для BGA используется именно для формирования подобных шариков на «подошвах» микросхем. В процессе нанесения используются специальные трафареты. Можно купить BGA шарики и отдельно, но здесь есть нюанс: они бывают разного диаметра (в зависимости от типа микросхемы), а паяльная паста может (при помощи тех же трафаретов) сформировать массив шаров любого диаметра. Наверняка, Вы слышали такое слово, как «реболлинг» (reball или реболл)? Именно оно и обозначает процесс восстановления (нанесения) шариковых выводов припоя на чип.
Примечание: имейте в виду, что все описанное выше, относится именно к паяльной пасте для BGA. Часто в магазинах можно встретить баночки с надписями: «паяльная паста«. Это своеобразное «желе» (по типу геля), которое используется, как флюс для облегчения работы с паяльником. Бывает разного цвета и консистенции.
Здесь не содержится ни олова, ни свинца. По сути, как мы уже и говорили, – это флюс. Настоящая BGA паста, которую мы будем использовать для замены транзистора на плате, выглядит следующим образом:
Совет: хранить подобную пасту рекомендуют при небольшой минусовой температуре (идеально – на дверце холодильника). Если температура будет комнатная, паста начнет расслаиваться: флюс, как менее плотный ее компонент, постепенно выдавится вверх и будет «плавать» на поверхности. В холодильнике же субстанция сохраняет однородность и дольше – свои свойства.
Перед применением ее весьма желательно хорошенько перемешать (особенно после холодильника). Или дать постоять при комнатной температуре не менее четырех часов. Рекомендую потом все равно перемешать! Субстанция станет действительно больше похожей на пасту, а не на подзастывший обойный клей 🙂
Перемешиваю я это дело при помощи тонкого шила. С его же помощью и буду наносить паяльную пасту на контактные площадки на плате. Идея какая: наносим паяльную пасту, «сажаем» на нее транзистор и прогреваем все это дело термофеном. Олово и свинец в ней расплавляются и припаивают компонент к плате. Поскольку в субстанции содержится флюс, то отдельно не нужно наносить даже его!
По идее, микросхему (вроде мультиконтроллера) можно макнуть «ножками» прямо в паяльную пасту, установить на плату и запаять (излишки олова можно потом убрать с помощью медной оплетки).
Вопрос: знаете, как спаять два провода при помощи зажигалки? Если нет – смотрите видео в конце данной статьи 🙂
Сам опробирую подобную технологию впервые, поэтому делюсь тем, что получилось в итоге. Наносим пасту:
Как оказалось – перестарался (можно было «намазывать» гораздо меньшее количество) 🙂
Устанавливаем на все это безобразие сверху наш новый транзистор, который мы собираемся менять. Плюс еще в чем: субстанция вязкая, поэтому элемент прилипает и позиционировать его становится намного проще, да и струей воздуха от фена не сдуете.
Включаем термофен и начинаем припаивать транзистор к плате:
В процессе мы увидим, как паяльная масса, похожая на кашицу с вкраплениями мелких частиц, собирается в комок, потом из нее испаряется флюс и, в итоге, под действием высокой температуры и сил поверхностного натяжения, паяльная паста превращается в привычный нам оловянный припой, который надежно и фиксирует транзистор на плате.
Примечание: Молекулы жидкости, как и любого другого вещества, испытывают взаимное притяжение. На молекулы внутри жидкости силы притяжения соседних молекул действуют со всех сторон, что взаимно уравновешивает всю «конструкцию». Молекулы же на поверхности (на ее внешнем обводе) не имеют соседей снаружи, и общая (суммарная) сила притяжения всех ее молекул направлена внутрь самой жидкости.
В итоге, вся поверхность воды стремится, как бы, ужаться к своему центру под воздействием этих сил. Этот эффект и называют силой поверхностного (молекулярного) натяжения, которая действует вдоль всей поверхности жидкости и приводит к образованию на ней чего-то вроде упругой незримой пленки. Именно поэтому рюмку можно налить «с горкой» и, поднеся к губам, не расплескать ни капли. Расплескивать нельзя ни в коем случае! 🙂
К слову, охотничью дробь изготавливают, используя именно эту силу (силу поверхностного натяжения): расплавленным каплям металла просто дают свободно падать с достаточной высоты, что приводит к их естественному остыванию и превращению в шарики дроби. Ведь любая жидкость, если оставить ее в спокойном состоянии, стремится принять форму с наименьшей площадью. А это и будет – сфера!
Возвращаемся от теории к практике! После запайки транзистора можем взять наш мультиметр и еще раз проверить (прозвонить) элемент на короткое замыкание.
На этот раз – все нормально: КЗ нет. Как говорят паяльщики: «коротыш ушел!».
Что нам нужно сделать теперь? Правильно! Очистить место замены транзистора от следов пайки. Как и чем это делать, мы рассматривали вот здесь. Ничего нового не скажу и сейчас: зубная щетка нам в помощь 🙂
И последний «штрих» – нам нужно вернуть на место конденсатор и дроссель, которые мы спаяли с платы в самом начале. Помните? Запаиваем их обратно.
Что теперь? Собираем наш тестовый стенд, подключаем монитор и запускаем всю конструкцию!
Как видим, все работает! В завершении статьи хочу показать Вам еще один пример из моей практики. Некая материнская плата не хотела нормально работать: включалась только если на нее нажать в определенном месте и так удерживать. Примерно вот здесь:
Так сразу и не скажешь, в чем неисправность, верно? Давайте посмотрим на один из элементов под увеличительным стеклом, а именно – одну из транзисторных сборок PHKD6N2 в SOIC корпусе (Small-Outline Integrated Circuit – небольшая микросхема с выводами по длинным сторонам).
Обратите внимание на два нижних правых вывода элемента. Видите, как они почернели и, по факту, потеряли контакт («отгорели ноги», как говорят ремонтники). Это, к слову, вполне объясняет то, что при нажатии на эту область электрический контакт восстанавливался и плата начинала нормально работать.
Будем ли мы полностью заменять транзистор на материнской плате? В данном случае в этом нет необходимости: просто хорошенько пропаяем отгоревшие выводы (зальем их припоем по всей длинне) и восстановим, таким образом, соединение элемента с платой. Пайку я буду осуществлять при помощи вот такого гаджета, который называется «третья рука».
Согласитесь, гораздо удобнее работать при помощи увеличительного стекла не держа его при этом в руке 🙂 Также можно воспользоваться наголовной бинокулярной лупой с диодной подсветкой – очень удобно!
После окончания работ место пайки у нас стало выглядеть вот так:
На всякий случай, были пропаяны все четыре вывода. После этого плата успешно «завелась» и до сих пор работает, установленная в одном из многочисленных корпусов компьютеров у нас на работе.
Вот, собственно, и все что я хотел рассказать Вам сегодня о том, как заменить транзистор на плате. Стоил ли данный ремонт материнской платы одного доллара и потраченного времени? Не мне судить. Если же у Вас, уважаемые читатели, будут какие-то вопросы, пожелания или замечания – оставляйте комментарии под видео, в котором паяльная паста напомнила мне кадры из фильма про «жидкого» терминатора 🙂
Как делают процессоры и что такое техпроцесс
Самый первый коммерческий микропроцессор в истории, Intel 4004, был представлен в 1971 году. Тогда это была революция — на его площади размещалось целых 2250 транзисторов. Всего через 7 лет, в 1978-ом, был представлен Intel 8086 с 29 тысячами транзисторов. И ровно через 42 года, в 2020-м, у нас есть Apple M1 — без прикрас революционный чип с 16 миллиардами транзисторов. А всё благодаря техпроцессу.
Сегодня такие производители, как TSMC освоили производство чипов, а вернее сказать транзисторов, по 5-нанометровой технологии. Чтобы вы наглядно понимали, насколько малы такие транзисторы — волос человека имеет толщину 80 тысяч нанометров — выходит, на его разрезе в теории можно разместить 16 тысяч транзисторов. Вирус COVID-19 имеет размер 110 нм и на нём можно разместить целых 22 транзистора от Apple M1.
Однако есть теории, что производители нам немного врут и за этими значениями нанометров, как правило, скрываются другие цифры. В этом материале мы разберём с вами в том, как вообще устроен техпроцесс, что в нём измеряют, затронем производство чипов, поймём преимущества уменьшения размеров транзисторов и заглянем в будущее.
Что делают транзисторы в процессорах
Любое вычислительное устройство, будь то компьютер, смартфон или ваши AirPods, работает в двоичной системе счисления. То есть все операции записываются, просчитываются и выводятся в последовательности нулей и единиц.
Транзистор в процессоре можно представить в роли своеобразного переключателя. Если ток через него проходит — это 1, если нет — то это 0. И таких переключателей в современных процессорах миллиарды. Разная последовательность нулей и единиц образует информацию — программы, музыку, картинки, видео и даже этот текст. Раньше роль транзисторов в первых ЭВМ выполняли вакуумные лампы.
Например, в ENIAC (это первый компьютер общего назначения) использовалось 17,5 тысяч вакуумных ламп. На этом компьютере производили вычисления для создания водородной бомбы, а ещё составляли прогнозы погоды и решали задачи из математики и физики. Суммарное энергопотребление этих 17 с половиной тысяч вакуумных ламп составляло целых 150 кВт, а сама ЭВМ требовала площадь для её сборки в 167 квадратных метров при весе в 27 тонн.
Само собой, всё это очень ограничивало технические возможности таких компьютеров, благо в январе 1959 года Роберт Нойс, по совместительству один из восьми основателей легендарной компании Fairсhild Semiconductor Company в Кремниевой долине, изобрёл интегральную схему на основе кремния, принципы которой легли в основу производства всех микропроцессоров.
Почему кремний?
Все чипы, которые производятся для массового рынка, делаются на кремниевой основе. Если не углубляться совсем в какие-то страшные и непонятные цифры с формулами, то причина кроется в атомной структуре кремния, которая идеально подходит для того, чтобы делать микросхемы и процессоры практически любой конфигурации.
Получают кремний, к слову, из песка. Да, самого обычного, который у вас есть на ближайшем берегу. Но вот в чём подвох — его чистота, если говорить в цифрах, составляет 99,5% (0,5% в таком кремнии составляют разные примеси). Может показаться, что это уже суперблизко к идеальной чистоте, но нет, для процессора необходимо, чтобы кремний имел чистоту 99,9999999%. Для этого материал проводят через цепочку определённых химических реакций. После этого кремний плавят и наращивают в один большой кристалл. Весит он под сотню килограмм и выглядит следующим образом:
После этот кристалл нарезается на пластины с диаметром около 30-сантиметров, которые тщательно шлифуются, чтобы не было никаких зазубрин. Дополнительно применяется ещё химическая шлифовка. Если хотя бы на одной пластине будут шероховатости — её забракуют. А вот готовые пластины кремния отправляют на дальнейшее производство.
Как создаются транзисторы процессора?
На отполированный кремниевый диск наносится специальный фоточувствительный слой, на который затем поступает поток света — он реагирует с молекулами слоя и изменяет свойства кремниевого диска. Этот процесс называется фотолитографией. В отдельных его частях после этого ток начинает проходить иначе — где-то сильнее, где-то слабее.
Затем этот слой покрывается изолирующим веществом (диэлектриком). После на него снова наносится специальный фоточувствительный слой и данный процесс повторяется несколько раз, чтобы на площади появились миллиарды мельчайших транзисторов. Которые потом ещё соединяют между собой, тестируют, разрезают на ядра, соединяют с контактами и упаковывают в корпус процессора.
Благодаря фотолитографии у инженеров есть возможность создания мельчайших нанометровых транзисторов. Однако, как оказывается, техпроцессом в разное время называли разные вещи.
«Он вам не техпроцесс»
Изначально техпроцессом производители обозначали длину затвора у транзистора. Затвор — это один из элементов транзистора, которым контролируется поток движения электронов. То есть, он решает — будет 0 или 1.
В соответствии с законом Гордона Мура (одного из основателей Intel), количество транзисторов в чипах удваивается в два раза каждые два года. Этот закон был им выведен в 1975 году сугубо на основе личных наблюдений, но они оказались в итоге верны.
За последние годы процессоры прибавили в количестве транзисторов, производительности, но не в размерах. Когда индустрия перешла с техпроцесса 1000 нм на 700 нм, производители обратили внимание, что другие элементы транзистора не так податливы уменьшению, в отличие от затворов. Однако и уменьшать затвор тоже уже было нельзя — потому что в таком случае электроны смогли бы проходить сквозь него и вызывать нестабильную работу чипа.
В 2012 году с переходом на 22-нанометровый техпроцесс инженеры придумали новый формат проектирование транзисторов — FinFET (от «fin» — рус. «Плавник»). Потому что он действительно стал похож на плавник рыбы.
Принцип заключается в увеличении длины канала, через который проходят электроны. За счёт этого в целом увеличивается площадь поверхности канала, что даёт возможность прохождения через него большему количеству электронов. С увеличением длины производители также получили возможность упаковки транзисторов с большей плотностью на один квадратный миллиметр.
Это, кстати, повысило производительность чипов за последние несколько лет, особенно в мобильных процессорах. Однако, из-за того что транзисторы перестали быть плоскими, став трёхмерными — это усложнило измерения их размера. Простите за тавтологию.
Разные производители, как правило, по-своему производят измерения. Например, Intel берут среднее значение двух размеров от наиболее распространённых ячеек. Кто-то делает иначе, однако в целом всё равно — нанометры, о которых говорят в графе «техпроцесс» являются чем-то усреднённым, но в целом значение практически полностью соответствует размеру одного транзистора. Но ещё, что важно в процессоре — это плотность размещения транзисторов.
Что важнее — нанометры или плотность
Многие ругают Intel за то, что они ещё не смогли выпустить свой коммерческий процессор на архитектуре 5 или 7 нм, как это делают Apple и Qualcomm. Но вот по плотности размещения транзисторов — Intel безусловный лидер. На один квадратный миллиметр 10 нм процессора Intel помещается на целых 5% больше транзисторов, чем в чипах от Apple, Qualcomm или AMD. Кстати, последние поколения процессоров от этих трёх брендов производит TSMC.
В интернете я наткнулся на сравнительную табличку процессоров Intel и TSMC:
Обратите внимание на 10- и 7-нанометровые чипы у Intel и TSMC соответственно. Размеры составляющих у них почти идентичны, поэтому 10-нанометров Intel не сильно-то и уступают 7 нм у TSMC. А вот по производительности, за счёт повышенной плотности транзисторов, как я уже сказал выше, даже выигрывают.
Однако, чем больше плотность — тем больше нагрев, поэтому чипы Intel не подойдут для использования в мобильной технике. Зато TSMC выигрывает в плане меньшего энергопотребления и тепловыделения.
А вот тут вы можете сказать — «стоп, но как Intel выдаёт больше производительности, если Apple M1, который производит TSMC разносит старые десктопные процессоры в пух и прах». Да, это действительно так, на деле Apple M1 действительно превосходит в вычислениях Intel, но причина тут не сколько в количестве транзисторов или техпроцессе, сколько в том, насколько эффективно процессор работает с этими транзисторами. В Intel x86 есть много лишних блоков команд, которые TSMC в некоторых производимых чипах, не использует. Об этом более подробно мы писали в отдельном материале с разбором x86 и Apple M1.
Так что дают нанометры
В действительности, уменьшение техпроцесса и правда положительно влияет на такие показатели, как энергопотребление и производительность. Однако многие нюансы в производстве чипов компании не раскрывают, и найти в интернете их невозможно. А из того, что есть — создаётся впечатление о множестве противоречий.
В целом я бы советовал воспринимать цифры, которые говорят нам производители чипов, как среднее значение от всех составляющих. Так что заявлять, что производители нам врут — нельзя, но и что нанометры полностью соответствуют действительности тоже нельзя. Влияет также то, по какому формату производятся эти чипы и какие применяются материалы. В любом случае — чем меньше техпроцесс, тем лучше.
Новая структура транзистора
Вполне возможно, что вместо уменьшения техпроцесса начнётся работа по изменению структуры создание транзисторов. К примеру, Samsung недавно анонсировали технологию Gate-All-Around FET (GAAFET) для технормы в 5 нм. Подобная структура транзистора обеспечивает вхождение электронов со всех сторон, что более эффективно.
На картинке выше вы можете увидеть, что гребень затвора не сплошной, а разделён на несколько нитей. Если подобное будет реализовано и в других чипах, тогда можно рассчитывать на повышение производительности в процессорах и понижение энергопотребления не уменьшением техпроцесса, а доведением до ума того, что есть сейчас.
Что ждать в будущем?
Летающие автомобили, киборги, путешествие со скоростью света и перемещение во времени — это всё фантастика. Но вот 3 нм или 1,4 нм чипы, вполне возможно, нет.
На сегодня известно, что Intel к 2029 году планируют освоить 1,4 нм техпроцесс, а TSMC уже начали исследование 2 нм. Для этого компании должны разработать новое оборудование для производства, обучить персонал и сделать многое другое.
Другой вопрос, что транзистор 1,4 нм по размерам сопоставим примерно с 10 атомами и это может плохо отразиться на производительности. Случайные электроны могут менять биты по несколько раз в секунду и тогда о стабильных вычислениях может не идти и речи. Может быть закон Мура уже не актуален и его эпоха просто подходит к концу, а мы ещё этого не понимаем?
Как выглядят процессоры внутри — часть №2
Продолжаем смотреть, как выглядят внутри различные процессоры и не только они. Ознакомиться с первой частью можно здесь.
Intel 4004 — первый процессор от Intel
1971 год — именно тогда Intel выпустил свой первый микропроцессор по заказу японской компании Nippon Calculating Machine, занимающейся производством калькуляторов. Особыми характеристиками он не блистал: частота всего до 740 кГц, количество транзисторов было 2300 штук, а ширина шины — всего 4 бита. Сам процессор выглядит внутри достаточно необычно — если вы помните первую часть, то там кристаллы переливались всеми цветами радуги, а тут вполне привычные «металлические» цвета — серый, медный, черный:
Причина этого проста — длина волны видимого света лежит в диапазоне от 400 до 700 нм, а техпроцесс этого процессора — 10 мкм, то есть на порядок больше, поэтому вы видим его так, как он выглядит на самом деле.
К слову, это же означает, что через обычный световой микроскоп можно рассмотреть отдельно взятый транзистор Intel 4004 — но, увы, такой фотографии в интернете я не нашел.
Микросхема 3320А — рассматриваем транзисторы
Конечно, этой микросхеме далеко до полноценного процессора — она представляет собой два логических элемента 4И-НЕ. Дабы не вдаваться глубоко в теорию — такие микросхемы в зависимости от наличия или отсутствия напряжения на определенных ножках (то есть 0 или 1) имеют или не имеют напряжение на других ножках (тоже 0 или 1), и с помощью этого можно выполнять простейшие действия. К примеру, таблица истинности для элемента 2И-НЕ выглядит так:
4И-НЕ означает, что входов 4, а наша микросхема имеет два таких элемента. И, что самое главное, ее техпроцесс — доли миллиметра, то есть можно взглянуть, как выглядят транзисторы, просто задействовав обычную лупу:
Intel Core i9-7980XE — максимум ядер на одном кристалле
Это — топовый процессор для высокопроизводительной платформы от Intel, и он имеет аж 18 полноценных ядер на одном кристалле, размер которого превышает 300 квадратных миллиметров. Для примера — топовый 8-ядерный Core i9-9900K имеет площадь чуть меньше 200 кв мм, и это при том, что у него еще есть интегрированная графика, которой лишен 18-ядерный CPU.
И, в общем-то, фото под микроскопом подтверждают, что ядра занимают всю площадь кристалла:
Cell Broadband Engine — сердце PlayStation 3
Этот процессор имел один блок POWER Processing Element и 8 блоков Synergistic Processing Element, на частоте в 3.2 ГГц конкурировал по производительности с Intel Core 2 Quad, а максимальная рабочая частота могла быть до 5.6 ГГц — современные Intel Core достигают таких частот в лучшем случае под отличной системой водяного охлаждения, в худшем — под жидким азотом.
Увы, лучшая его фотография — только такая:
Но в интернете доступна его схема:
ST Microelectronics OS MLT 04 — сенсор оптической мыши
Да-да, это не совсем процессор и даже не микросхема, это по сути… объединение камеры с процессором:
Снаружи выглядит необычно, не правда ли? Внутри тоже:
Слева в центре, очевидно, сам фотосенсор — в данном случае он имеет разрешение 22 на 22 пикселя: да, этого более чем хватает, ибо такой «камере» нужно всего лишь улавливать движение, и делать это максимально быстро, поэтому число пикселей минимально, а сам процессор интегрирован на схеме справа.
Apple A7 — не верьте маркетинговым техпроцессам
Возьмем, к примеру, процессор Apple A7 — он создавался на заводах Samsung по 28 нм техпроцессу. Теперь посмотрим на его поперечное фото:
10 транзисторов имеют длину в 1138 нм, то есть размеры каждого транзистора… 114 нм?! Да, все именно так — сейчас производители под техпроцессом подразумевают все что угодно, только не длину затвора транзистора: к примеру, с учетом того, что транзисторы в процессорах расположены в 3D, берут площадь кристалла (то есть по сути 2D) и делят на количество транзисторов, получая при этом цифры, в разы меньше реальных размеров транзисторов. Так что когда вам со сцены говорят, что новый процессор выполнен по 7 нм техпроцессу и чуть ли не вдвое «круче» 10 нм — верить этому не стоит.
AMD Fusion — полноценный APU
В свои процессоры Intel уже второй десяток лет встраивает интегрированную графику, и она по сути играет роль эдакой графической «затычки»: интерфейс системы отрисовывает хорошо, даже видео высокой четкости декодирует, но стоит открыть игры или заняться более-менее серьезной обработкой, как сразу становится понятно, что производительность такой графики очень низкая.
AMD же пошли другим путем: ее топовые процессоры в принципе лишены интегрированной графики, зато есть процессоры слабее, которые имеют очень мощную встроенную графику, которая в разы быстрее Intel HD Graphics, и вот на такие процессоры взглянуть уже интересно.
Вот так выглядят внутри AMD Fusion:
Слева видны четыре процессорных ядра, а справа — десяток вычислительных модулей интегрированного видео. При этом, если вы вспомните фото Core i9-9900K из первой части материала, то там интегрированная графика занимала в лучшем случае четверть кристалла, а тут — добрую половину.
Процессор ARM1 — четкая логика
Архитектура ARM быстро, буквально за десяток лет, стала самой популярной в мире, оттеснив x86 на второй план. И это не удивительно — именно на ней работают все портативные устройства и различная электроника. Почему? Потому что изначально это была очень простая архитектура — так, ПО для процессора ARM1, выпущенного в 1985 году, имело всего 808 строк кода, а сам процессор выглядел очень и очень необычно:
Сравните с Intel 4004 — у него внутри, казалось бы, полная неразбериха, а у ARM1 — четко размещенные структуры и минимум пустого кремния. И именно эта простота и экономичность в итоге позволили ARM очень серьезно развиться, в конечном итоге уже посягая на области, где исконно применяются x86 процессоры.
Вот такие получились подборки фотографий — конечно, я показал лишь самые интересные на мой взгляд кремниевые чипы изнутри, и если вы нашли еще красивые или интересные фото внутренностей кристаллов CPU или GPU — делитесь ими в комментариях.
Корпус ТО-92 | Корпус ТО-220 |
Транзистор в качестве переключателя
Транзисторы можно рассматривать как электронные коммутаторы. Транзистор используется для включения различных устройств, таких как двигатели, фонари и так далее. Так же, как и выключатель света в комнате, транзистор может включать и выключать лампочку накаливания.
Это достаточно удобно, так как небольшой источник напряжения может быть использован для коммутации большого источника напряжения. Давайте рассмотрим это на простом примере с использованием обычной лампочкой.
На рисунке выше мы имеем транзистор, подключенный к лампочке и к двум различным источникам питания. Давайте сперва посмотрим на левую половину схемы:
- Минус низковольтной батареи подсоединен к истоку транзистора.
- Плюс низковольтной батареи подсоединен к затвору транзистора.
В этой конфигурации транзистор открыт. Вы можете видеть, как небольшой ток протекает через транзистор от затвора к истоку. Теперь давайте посмотрим на правую половину схемы:
- Минус высоковольтной батареи подсоединен к истоку транзистора.
- Плюс высоковольтной батареи подключен к одному из выводов лампочки.
Другой вывод лампочки подключен к стоку транзистора.
Поскольку транзистор открыт, то больший ток протекает через лампочку, далее через транзистор от стока к истоку. Если вы отключите низковольтную батарею от транзистора, то транзистор закроется, а лампочка погаснет.
Обратите внимание, что транзистор здесь работает в качестве ключа, включая и выключая лампочку под действием низковольтного напряжения.
Данная схема не особо полезна на практике. Однако, когда мы заменим низковольтную батарею другим источником напряжения, то транзисторный ключ становится намного интереснее.
Вместо того чтобы переключать транзистор с помощью низковольтной батареи, мы можем включать его и выключать с помощью других источников напряжения. В качестве примера приведем несколько источников сигнала, способных влиять на переключения транзистора:
- Микрофон, создающий переменный электрический сигнал в зависимости от уровня звука.
- Солнечная батарея, вырабатывающая постоянное напряжение при освещении ее поверхности.
- Датчик влажности.
Обратите внимание, что все перечисленные выше датчики реагирует на различные источники сигнала. Используя их слабое выходное напряжение можно управлять гораздо более мощным устройством.
Следующий пример применения транзистора
В данном примере мы имеем микрофон, соединенный с затвором полевого транзистора и лампу накаливания, подключенную к транзистору и повышенному источнику питания. Теперь при улавливании звука микрофоном, лампочка будет загораться. И чем громче будет звук, тем ярче будет светиться лампа.
Это происходит потому, что микрофон создает напряжение, поступающее на затвор полевого транзистора. При появлении сигнала на затворе происходит отпирание транзистора, в результате чего через транзистор начинает течь ток от стока к истоку.
Фактически, в этой схеме полевой транзистор играет роль усилителя сигнала. Для еще большего усиления можно использовать еще один транзистор.
Примечание: в этой схеме мы использовали громкоговоритель в качестве микрофона, так как динамик генерирует более сильное напряжение по сравнению с Электродинамическим микрофоном.
Данная схема аналогична предыдущей, только теперь вместо лампы подключен электродвигатель. Это позволяет управлять скоростью вращения электродвигателя силой звука поступающего в динамик.
Чем громче вы кричите в микрофон, тем быстрее двигатель будет вращаться.
Транзистор в режиме инвертора
До сих пор все наши примеры были основаны на включении нагрузки при подаче напряжения на затвор транзистора. Транзистор так же может работать и в инверсном режиме, это когда он проводит ток при отсутствии входного напряжения на затворе.
Рассмотрим данный режим работы транзистора на примере простой охранной сигнализации, издающей звук при обрыве тонкого провода охранного шлейфа.
Сперва, мы должны с типами полевых транзисторов. Все транзисторы бывают двух разных типов проводимости: P-канальный и N-канальный.
Транзистор заперт при подаче напряжения на затвор
Единственная разница в символьном обозначении является направление стрелки затвора.
До сих пор все наши примеры были связаны с полевым транзистором N-канальным. Транзисторы данного типа доминируют в радиоэлектронных схемах, поскольку они дешевле в производстве. Тем не менее, в следующем примере мы используем Р-канальный полевой транзистор.
Помните, что Р-канальный полевой транзистор находится в закрытом состоянии в тот момент, когда на его затворе находится управляющее напряжение. Поэтому, как видно из вышеприведенной схемы, звуковой генератор (buzzer) будет в выключенном состоянии до тех пор, пока провод цел. Как только провод будет разорван, напряжение на затворе пропадет, и транзистор начнет пропускать ток, и активирует звуковой генератор.
Пока охранный шлейф не оборван, основная аккумуляторная батарея бездействует и тем самым сохраняет свой заряд. В тоже время, для обеспечения напряжения на затворе транзистора необходимо ничтожно малый ток малой батареи, и ее хватит на очень длительный срок.
Мы так же можем оптимизировать данную схему и использовать всего один источник питания. Все, что мы должны сделать, это подключить охранный шлейф к затвору и плюсу большой батареи и исключить малую батарею.
Intel решила догнать и перегнать конкурентов, отказавшись от слова нанометр
| Поделиться Intel решила переименовать техпроцессы проивзодства чипов – старая схема, опирающаяся на физический размер транзистора, устарела и малоинформативна. Новая тоже не дает четкого представления об изделиях на ее основе, но демонстрирует, что технологическая отсталость чипмейкера от своих конкурентов не так уж велика – это важно в связи с грядущим выходом Intel на рынок контрактного производства. Intel не теряет надежд догнать и перегнать TSMC в течение четерых следующих лет. Для этого компания внедрит EUV, перейдет к полупроводниковым технологиям уровня ангстремов и начнет использовать инновационный GAA-транзистор, с разработкой которого ей, возможно, помогла IBM.Intel расписала план развития технологий до 2025 года
Intel представила дорожную карту развития технологий производства микропроцессоров до 2025 г.
Согласно анонсированному плану, корпорация изменит подход к именованию собственных технологических процессов, чтобы привести их в соответствие с принятыми в отрасли, в частности, компаниями TSMC и Samsung. Теперь в названии техпроцесса не будут фигурировать какие-либо единицы измерения длины. Вместо этого Intel будет обозначать техпроцесс, опираясь на соотношение между производительностью и энергопотреблением чипов на его базе.
Intel также представила новую архитектуру транзисторов RibbonFET – впервые за последние 10 лет, а также рассказала о технологии PowerVia, которая предлагает новый подход к подаче питания на транзисторы очень малого размера.
История и будущее инноваций в техпроцессах Intel
Кроме того, компания заявила о планах по внедрению фотолитографии в глубоком ультрафиолете (EUV) нового поколения (High-NA EUV). Intel рассчитывает завершить этот процесс первой в отрасли при помощи оборудования нидерландской ASML.
Чипмейкер рассчитывает догнать лидера отрасли TSMC к 2024 г. по показателю совершенства внедренного техпроцесса, а в 2025 г. и вовсе вернуть себе пальму первенства. Однако стоит иметь в виду, что Intel под этим понимает отношение производительности выпускаемых процессоров к потребляемой мощности, а не, например, применение самых компактных транзисторов в мире.
Новые названия техпроцессов
Итак, Intel отказывается от номенклатуры техпроцессов, которая включает слово «нанометры». 10-нанометровый процесс Enhanced SuperFin теперь называется Intel 7. По данным корпорации, у Intel 7 показатель производительности на единицу потребляемой мощности на 10–15% выше в сравнении с предшественником – 10-нм SuperFin. Intel 7 применяется при производстве новых процессоров семейств Alder Lake и Sapphire Rapids, которые предназначены для потребительского и серверного сегментов соответственно. Поставки чипов Alder Lake должны стартовать в 2021 г., Sapphire Rapids – в I квартале 2022 г.
Новая система именования техпроцессов Intel
Intel 4 (ранее Intel 7 нм) компания рассчитывает освоить ко второй половине 2022 г. Intel обещает прирост производительности на ватт на уровне по сравнению с предыдущим поколением на уровне 20%. Переход на данный техпроцесс также ознаменует полную адаптацию Intel к применению технологии EUV. Именно отставание в ее освоении называют в качестве причин задержки компании с выпуском 10-нм чипов. Технология Intel 4 будет применяться в настольных и мобильных процессорах Meteor Lake, а также серверных процессорах Granite Rapids, которые, как ожидается, появятся на рынке в 2023 г.
Техпроцесс Intel 3 (ранее Intel 7+ нм) должен обеспечить увеличить производительность на ватт примерно на 18% относительно предшественника. Процессоры на базе Intel 3 будут готовы к массовому производству во второй половине 2023 г.
Исторически в названии производственного процесса полупроводников фигурировало число, которое соответствовало длине затвора транзистора. Однако в 1994 г. производители перестали следовать этому правилу. До 2009 г. длина затвора была меньше заявленного в названии значения, а затем «нанометры» взяли на вооружение маркетологи, из-за чего цифры в названии техпроцесса стали иметь мало общего с фактическими размерами транзисторов или плотностью их расположения в интегральной схеме. Например, актуальный 10-нм процесс Intel (FinFET) по размеру и плотности размещения транзисторов примерно соответствует 7-нм процессу TSMC.
Решение отказаться от традиционного числового определения производственных норм в нанометрах, по всей видимости, связано с недавним решением Intel выйти на рынок контрактного производства. Здесь американская корпорация будет напрямую конкурировать с гигантами вроде тайваньской TSMC и южнокорейской Samsung, поэтому пересмотр принципа именования производственных норм выглядит логичным – так заказчикам будет проще ориентироваться на рынке.
Ангстремная эра, транзисторы RibbonFET и технология PowerVia
Первая половина 2024 г., согласно планам Intel, ознаменуется наступлением эры ангстрема, в которой некоторые физические характеристики чипов можно будет выразить только в десятых долях нанометра – ангстремах (десятимиллиардных долях метра).
Первый техпроцесс Intel новой эры будет иметь обозначение 20A (A – angstrom, ангстрем), однако это не значит, что транзистор обязательно будет соответствующего размера. Тем не менее, технология производства Intel 20A предусматривает использование новых транзисторов под названием RibbonFET. Это первый транзистор Intel с кольцевым затвором (GAA, Gate-all-around) и первый транзистор новой архитектуры, выпущенный Intel с 2011 г.
RibbonFET отличается от используемых сейчас FinFET тем, что в первом каждый из четырех его каналов окружен затвором не с трех, а с четырех сторон. Такая конструкция, по оценке Intel, позволяет увеличить скорость переключения устройства при использовании такого же управляющего тока.
Схематичное изображение транзистора RibbonFET с кольцевым затвором
Кроме того, в техпроцессе Intel 20A чипмейкер планирует использовать технологию PowerVia – подачу питания с обратной стороны кристалла через межкремниевые соединения. Запуск Intel 20A ожидается в 2024 г. В частности, продукция Qualcomm будет выпускаться по техпроцессу Intel 20A, однако пока не известно, что это будут за чипы.
Рынок комплектующих перекосило, а нас ждет импортозамещение. Что дальше?
ИнтеграцияНа начало 2025 г. намечено освоение техпроцесса Intel 18A. Именно тогда Intel рассчитывает внедрить EUV-литографию с высокой числовой апертурой (High-NA EUV).
Проблемы Intel и пути их решения
Intel испытала серьезные проблемы с внедрением 10-нанометрового техпроцесса, неоднократно откладывая его.
Сперва корпорация обещала начать выпуск 10-нанометровых чипов в 2015 г., после чего последовало несколько сообщений о задержке. В результате официальная дата выхода нового поколения микросхем была перенесена на 2017 г., но затем вновь сдвинута на второе полугодие 2018 г. В конце апреля 2018 г. тогдашний глава компании Брайан Кржанич (Brian Krzanich), объявил о том, что Intel сможет запустить 10-нанометровые процессоры в массовое производство не ранее 2019 г.
В конце мая 2019 г. Intel официально представила свои первые массовые 10-нанометровые процессоры – чипы Ice Lake на базе новой архитектуры Sunny Cove, предназначенные для мобильных устройств.
Пока Intel «покоряла» 10 нанометров и осуществляла реорганизацию производственного подразделения, его главный конкурент – компания AMD – успешно освоила нормы техпроцесса 7 нм.
В марте 2021 г. Intel анонсировала новую стратегию своего развития на ближайшие годы, получившую название IDM 2.0. Для ее реализации Intel вернула в штат нескольких ценных экс-сотрудников.
В рамках реализации стратегии чипмейкер планировал построить два новых завода за три года и $20 млрд, перейти на 7 нм в 2023 г. и стать партнером многих крупных производителей чипов, которые помогут ему в выпуске собственных процессоров.
В частности, Intel упоминала о партнерстве с IBM, которая в начале мая 2021 г. представила первый GAA-транзистор размером 2 нм и тестовый чип на его основе. Tom’s Hardware предполагает, что IBM могла оказать Intel помощь в разработке фирменных транзисторов RibboFET.
В начале июля 2021 г. CNews писал о том, что, по некоторым данным, Intel выпустит свой первый 3-нанометровый процессор в начале 2023 г., причем сделает это в сотрудничестве с TSMC. Также в июле 2021 г. сообщалось о возможном приобретении Intel компании GlobalFoundries, входящую в тройку крупнейших мировых производителей полупроводников, за $30 млрд. Однако позже представители последней опровергли информацию о будущей сделке.
Дмитрий Степанов
Что такое транзистор? (принцип действия, назначение и применение, как выглядит)
Радиоэлектронный элемент из полупроводникового материала с помощью входного сигнала создает, усиливает, изменяет импульсы в интегральных микросхемах и системах для хранения, обработки и передачи информации. Транзистор — это сопротивление, функции которого регулируются напряжением между эмиттером и базой или истоком и затвором в зависимости от типа модуля.
Виды транзисторов
Преобразователи широко применяются в производстве цифровых и аналоговых микросхем для обнуления статического потребительского тока и получения улучшенной линейности. Типы транзисторов различаются тем, что одни управляются изменением напряжения, вторые регулируются отклонением тока.
Полевые модули работают при повышенном сопротивлении постоянного тока, трансформация на высокой частоте не увеличивает энергетические затраты. Если говорить, что такое транзистор простыми словами, то это модуль с высокой границей усиления. Эта характеристика у полевых видов больше, чем у биполярных типов. У первых нет рассасывания носителей заряда , что ускоряет работу.
Полевые полупроводники применяются чаще из-за преимуществ перед биполярными видами:
- мощного сопротивления на входе при постоянном токе и высокой частоте, это уменьшает потери энергии на управление;
- отсутствия накопления неосновных электронов, из-за чего ускоряется работа транзистора;
- переноса подвижных частиц;
- стабильности при отклонениях температуры;
- небольших шумов из-за отсутствия инжекции;
- потребления малой мощности при работе.
Виды транзисторов и их свойства определяют назначение. Нагревание преобразователя биполярного типа увеличивает ток по пути от коллектора к эмиттеру. У них коэффициент сопротивления отрицательный, а подвижные носители текут к собирающему устройству от эмиттера. Тонкая база отделена p-n-переходами, а ток возникает только при накоплении подвижных частиц и их инжекции в базу. Некоторые носители заряда захватываются соседним p-n-переходом и ускоряются, так рассчитаны параметры транзисторов.
Полевые транзисторы имеют еще один вид преимущества, о котором нужно упомянуть для чайников. Их соединяют параллельно без выравнивания сопротивления. Резисторы для этой цели не применяются, так как показатель растет автоматически при изменении нагрузки. Для получения высокого значения коммутационного тока набирается комплекс модулей, что используется в инверторах или других устройствах.
Нельзя соединять параллельно биполярный транзистор, определение функциональных параметров ведет к тому, что выявляется тепловой пробой необратимого характера. Эти свойства связаны с техническими качествами простых p-n каналов. Модули соединяются параллельно с применением резисторов для выравнивания тока в эмиттерных цепях. В зависимости от функциональных черт и индивидуальной специфики в классификации транзисторов выделяют биполярные и полевые виды.
Биполярные транзисторы
Биполярные конструкции производятся в виде полупроводниковых приборов с тремя проводниками. В каждом из электродов предусмотрены слои с дырочной p-проводимостью или примесной n-проводимостью. Выбор комплектации слоев определяет выпуск p-n-p или n-p-n типов приборов. В момент включения устройства разнотипные заряды одновременно переносятся дырками и электронами, задействуется 2 вида частиц.
Носители движутся за счет механизма диффузии. Атомы и молекулы вещества проникают в межмолекулярную решетку соседнего материала, после чего их концентрация выравнивается по всему объему. Перенос совершается из областей с высоким уплотнением в места с низким содержанием.
Электроны распространяются и под действием силового поля вокруг частиц при неравномерном включении легирующих добавок в массе базы. Чтобы ускорить действие прибора, электрод, соединенный со средним слоем, делают тонким. Крайние проводники называют эмиттером и коллектором. Обратное напряжение, характерное для перехода, неважно.
Полевые транзисторы
Полевой транзистор управляет сопротивлением с помощью электрического поперечного поля, возникающего от приложенного напряжения. Место, из которого электроны движутся в канал, называется истоком, а сток выглядит как конечная точка вхождения зарядов. Управляющее напряжение проходит по проводнику, именуемому затвором. Устройства делят на 2 вида:
- с управляющим p-n-переходом;
- транзисторы МДП с изолированным затвором.
Приборы первого типа содержат в конструкции полупроводниковую пластину, подключаемую в управляемую схему с помощью электродов на противоположных сторонах (сток и исток). Место с другим видом проводимости возникает после подсоединения пластины к затвору. Вставленный во входной контур источник постоянного смещения продуцирует на переходе запирающее напряжение.
Источник усиливаемого импульса также находится во входной цепи. После перемены напряжения на входе трансформируется соответствующий показатель на p-n-переходе. Модифицируется толщина слоя и площадь поперечного сечения канального перехода в кристалле, пропускающем поток заряженных электронов. Ширина канала зависит от пространства между обедненной областью (под затвором) и подложкой. Управляющий ток в начальной и конечной точках регулируется изменением ширины обедненной области.
Транзистор МДП характеризуется тем, что его затвор отделен изоляцией от канального слоя. В полупроводниковом кристалле, называемом подложкой, создаются легированные места с противоположным знаком. На них установлены проводники — сток и исток, между которыми на расстоянии меньше микрона расположен диэлектрик. На изоляторе нанесен электрод из металла — затвор. Из-за полученной структуры, содержащей металл, диэлектрический слой и полупроводник транзисторам присвоена аббревиатура МДП.
Устройство и принцип работы для начинающих
Технологии оперируют не только зарядом электричества, но и магнитным полем, световыми квантами и фотонами. Принцип действия транзистора заключается в состояниях, между которыми переключается устройство. Противоположный малый и большой сигнал, открытое и закрытое состояние — в этом заключается двойная работа приборов.
Вместе с полупроводниковым материалом в составе, используемого в виде монокристалла, легированного в некоторых местах, транзистор имеет в конструкции:
- выводы из металла;
- диэлектрические изоляторы;
- корпус транзисторов из стекла, металла, пластика, металлокерамики.
До изобретения биполярных или полярных устройств использовались электронные вакуумные лампы в виде активных элементов. Схемы, разработанные для них, после модификации применяются при производстве полупроводниковых устройств. Их можно было подключить как транзистор и применять, т. к. многие функциональные характеристики ламп годятся при описании работы полевых видов.
Преимущества и недостатки замены ламп транзисторами
Изобретение транзисторов является стимулирующим фактором для внедрения инновационных технологий в электронике. В сети используются современные полупроводниковые элементы, по сравнению со старыми ламповыми схемами такие разработки имеют преимущества:
- небольшие габариты и малый вес, что важно для миниатюрной электроники;
- возможность применить автоматизированные процессы в производстве приборов и сгруппировать этапы, что снижает себестоимость;
- использование малогабаритных источников тока из-за потребности в низком напряжении;
- мгновенное включение, разогревание катода не требуется;
- повышенная энергетическая эффективность из-за снижения рассеиваемой мощности;
- прочность и надежность;
- слаженное взаимодействие с дополнительными элементами в сети;
- стойкость к вибрации и ударам.
Недостатки проявляются в следующих положениях:
- кремниевые транзисторы не функционируют при напряжении больше 1 кВт, лампы эффективны при показателях свыше 1-2 кВт;
- при использовании транзисторов в мощных сетях радиовещания или передатчиках СВЧ требуется согласование маломощных усилителей, подключенных параллельно;
- уязвимость полупроводниковых элементов к воздействию электромагнитного сигнала;
- чувствительная реакция на космические лучи и радиацию, требующая разработки стойких в этом плане радиационных микросхем.
Схемы включения
Чтобы работать в единой цепи транзистору требуется 2 вывода на входе и выходе. Почти все виды полупроводниковых приборов имеют только 3 места подсоединения. Чтобы выйти из трудного положения, один из концов назначается общим. Отсюда вытекают 3 распространенные схемы подключения:
- для биполярного транзистора;
- полярного устройства;
- с открытым стоком (коллектором).
Биполярный модуль подключается с общим эмиттером для усиления как по напряжению, так и по току (ОЭ). В других случаях он согласовывает выводы цифровой микросхемы, когда существует большой вольтаж между внешним контуром и внутренним планом подключения. Так работает подсоединение с общим коллектором, и наблюдается только рост тока (ОК). Если нужно повышение напряжения, то элемент вводится с общей базой (ОБ). Вариант хорошо работает в составных каскадных схемах, но в однотранзисторных проектах ставится редко.
Полевые полупроводниковые приборы разновидностей МДП и с использованием p-n-перехода включаются в контур:
- с общим эмиттером (ОИ) — соединение, аналогичное ОЭ модуля биполярного типа
- с единым выходом (ОС) — план по типу ОК;
- с совместным затвором (ОЗ) — похожее описание ОБ.
В планах с открытым стоком транзистор включается с общим эмиттером в составе микросхемы. Коллекторный вывод не подсоединяется к другим деталям модуля, а нагрузка уходит на наружный разъем. Выбор интенсивности вольтажа и силы тока коллектора производится после монтажа проекта. Приборы с открытым стоком работают в контурах с мощными выходными каскадами, шинных драйверах, логических схемах ТТЛ.
Для чего нужны транзисторы?
Область применение разграничена в зависимости от типа прибора — биполярный модуль или полевой. Зачем нужны транзисторы? Если необходима малая сила тока, например, в цифровых планах, используют полевые виды. Аналоговые схемы достигают показателей высокой линейности усиления при различном диапазоне питающего вольтажа и выходных параметров.
Областями установки биполярных транзисторов являются усилители, их сочетания, детекторы, модуляторы, схемы транзисторной логистики и инверторы логического типа.
Места применения транзисторов зависят от их характеристик. Они работают в 2 режимах:
- в усилительном порядке, изменяя выходной импульс при небольших отклонениях управляющего сигнала;
- в ключевом регламенте, управляя питанием нагрузок при слабом входном токе, транзистор полностью закрыт или открыт.
Вид полупроводникового модуля не изменяет условия его работы. Источник подсоединяется к нагрузке, например, переключатель, усилитель звука, осветительный прибор, это может быть электронный датчик или мощный соседний транзистор. С помощью тока начинается работа нагрузочного прибора, а транзистор подсоединяется в цепь между установкой и источником. Полупроводниковый модуль ограничивает силу энергии, поступающей к агрегату.
Сопротивление на выходе транзистора трансформируется в зависимости от вольтажа на управляющем проводнике. Сила тока и напряжение в начале и конечной точке цепи изменяются и увеличиваются или уменьшаются и зависят от типа транзистора и способа его подсоединения. Контроль управляемого источника питания ведет к усилению тока, импульса мощности или увеличению напряжения.
Транзисторы обоих видов используются в следующих случаях:
- В цифровом регламенте. Разработаны экспериментальные проекты цифровых усилительных схем на основе цифроаналоговых преобразователей (ЦАП).
- В генераторах импульсов. В зависимости от типа агрегата транзистор работает в ключевом или линейном порядке для воспроизведения прямоугольных или произвольных сигналов, соответственно.
- В электронных аппаратных приборах. Для защиты сведений и программ от воровства, нелегального взлома и использования. Работа проходит в ключевом режиме, сила тока управляется в аналоговом виде и регулируется с помощью ширины импульса. Транзисторы ставят в приводы электрических двигателей, импульсные стабилизаторы напряжения.
Монокристаллические полупроводники и модули для размыкания и замыкания контура увеличивают мощность, но функционируют только как переключатели. В цифровых устройствах применяют транзисторы полевого типа в качестве экономичных модулей. Технологии изготовления в концепции интегральных экспериментов предусматривают производство транзисторов на едином чипе из кремния.
Миниатюризация кристаллов ведет к ускорению действия компьютеров, снижению количества энергии и уменьшению выделения тепла.
Как работают полупроводники | HowStuffWorks
Устройство, которое блокирует ток в одном направлении, позволяя току течь в другом направлении, называется диодом . Диоды можно использовать по-разному. Например, устройство, которое использует батареи, часто содержит диод, который защищает устройство, если вы вставляете батареи задом наперед. Диод просто блокирует выход любого тока из батареи, если он перевернут — это защищает чувствительную электронику в устройстве.
Поведение полупроводникового диода не идеально, как показано на этом графике:
Когда имеет обратное смещение , идеальный диод будет блокировать весь ток.Настоящий диод пропускает около 10 микроампер — немного, но все же не идеально. А если вы приложите достаточное обратное напряжение (В), соединение разорвется и пропустит ток. Обычно напряжение пробоя намного больше напряжения, чем когда-либо увидит схема, поэтому это не имеет значения.
Когда смещен в прямом направлении , для работы диода требуется небольшое напряжение. В кремнии это напряжение составляет около 0,7 вольт. Это напряжение необходимо для запуска процесса комбинации дырка-электрон на переходе.
Другой важной технологией, связанной с диодом, является транзистор. У транзисторов и диодов много общего.
Транзисторы
Транзистор создается с использованием трех слоев , а не двух слоев, используемых в диоде. Вы можете создать сэндвич NPN или PNP. Транзистор может действовать как переключатель или усилитель.
Транзистор выглядит как два последовательно соединенных диода. Можно представить, что через транзистор не может протекать ток, потому что диоды, соединенные спиной к спине, блокируют ток в обоих направлениях.И это правда. Однако, когда вы прикладываете небольшой ток к центральному слою сэндвича , через сэндвич в целом может протекать гораздо больший ток. Это дает транзистору поведение при переключении . Небольшой ток может включать и выключать больший ток.
Кремниевый чип — это кусок кремния, который может содержать тысячи транзисторов. С транзисторами, действующими как переключатели, вы можете создавать логические вентили, а с логическими вентилями вы можете создавать микропроцессорные микросхемы.
Естественный переход от кремния к легированному кремнию, транзисторам и микросхемам — вот что сделало микропроцессоры и другие электронные устройства такими недорогими и повсеместными в современном обществе. Основные принципы удивительно просты. Чудо — это постоянное совершенствование этих принципов до такой степени, что сегодня десятки миллионов транзисторов можно без больших затрат собрать на одном кристалле.
Дополнительную информацию о полупроводниках, диодах, микросхемах и многом другом можно найти по ссылкам на следующей странице.
Первоначально опубликовано: 25 апреля 2001 г.
Увеличьте масштаб компьютерного чипа: посмотрите это видео, чтобы в полной мере оценить, насколько волшебны современные микрочипы.
Этот сайт может получать партнерские комиссии за ссылки на этой странице. Условия эксплуатации.Я не думаю, что вы понимаете, насколько волшебный компьютерный чип, лежащий в основе вашего смартфона или ПК.В случае SoC смартфона у вас, по сути, есть один пакет размером менее квадратного дюйма, который позволяет вам делать практически все, от игр до доступа к сотовой сети и бесконтактной оплаты продуктов. Для этого внутри каждого чипа есть миллиарды крошечных переключателей, которые включаются и выключаются до четырех миллиардов раз в секунду. Современный компьютерный чип действительно чудо — особенно если учесть, что первые интегральные схемы, которые были построены всего 50 лет назад, имели максимум около дюжины транзисторов.
Меня поражает не только богатая, изменяющая общество функциональность передовых компьютерных микросхем, но и невероятно миниатюрная модель в масштабе . В современном чипе, построенном с использованием техпроцесса 20 или 22 нм, каждый транзистор имеет квадрат примерно 30 нанометров. Одна ячейка SRAM, состоящая из шести транзисторов, имеет площадь около 0,1 микрометра в квадрате (или 100 нанометров в квадрате, если хотите). Если вы отрежете крошечный кусочек человеческого волоса, вы можете получить в поперечном сечении около 500 ячеек SRAM — 3000 транзисторов.Вы даже можете втиснуть около 60 ячеек SRAM или 360 транзисторов в размер человеческого эритроцита — и каким-то образом, несмотря на один чип, содержащий миллиарды этих крошечных вещей, они могут непрерывно работать с миллиардами герц в течение десятилетий. .
Я мог бы продолжить, но это видео довольно хорошо показывает, сколько всего материала мы втиснули в один чип. Он начинается с фотографии чипа с удаленным колпачком, затем увеличивается серия более близких фотографий, прежде чем перейти к сканирующей электронной микроскопии.
В этом видео следует отметить несколько моментов. Во-первых, это довольно старый чип — современный чип Intel или TSMC был бы намного плотнее. Во-вторых, вы можете видеть только первую пару слоев — некоторые соединительные медные провода и вершины некоторых транзисторов; Последние 14-нм чипы Intel Broadwell состоят из 13 слоев.
Вот как выглядит современный чип под электронным микроскопом — в данном случае один из 14-нм чипов Intel FinFET Broadwell.
Если вы хотите узнать больше о процессорах, прочтите нашу статью о кэшах L1 и L2 или о том, что на самом деле делает процессор, когда он простаивает. Если вы любите приключения, у нас также есть история о том, как взламывать чипы и делать собственные снимки.
Что такое транзистор процессора? (с рисунками)
Транзистор — это полупроводниковое устройство, которое переключает и усиливает электронные сигналы. Он имеет как минимум три клеммы, которые подключают его к электронной схеме.Транзистор был изобретен в начале 1950-х годов и быстро заменил электронные лампы в электронных устройствах. Эти устройства в настоящее время являются важным компонентом почти всех электронных устройств, таких как центральный процессор (ЦП) компьютера. Транзистор ЦП обычно является частью интегральной схемы, хотя его также можно приобрести индивидуально.
Центральный процессор (ЦП).Клеммы транзистора ЦП имеют определенные имена в зависимости от типа транзистора. Выводы простого биполярного транзистора называются коллектором, эмиттером и базой. Ток или напряжение, приложенные к базе, влияют на ток, протекающий от коллектора к эмиттеру.
ЦП.Напряжение на базе транзистора может использоваться для включения и отключения тока от коллектора к эмиттеру. Этот тип транзистора представляет собой переключатель и является распространенным типом транзистора ЦП, который называется логическим вентилем. Переключатель обычно не пропускает ток через него, если напряжение на базе не превышает минимальный порог.Напряжение на базе контролируется другими компонентами схемы.
Транзистор ЦП также может быть усилителем. Этот тип транзистора использует напряжение на базе для управления величиной тока, протекающего через усилитель.Это означает, что небольшое изменение напряжения на базе может вызвать большую разницу в напряжении между коллектором и эмиттером.
Транзисторыимеют значительные преимущества перед электронными лампами в компьютерах. Транзистор ЦП намного меньше, чем его эквивалент на вакуумной лампе, что позволяет миниатюризировать компьютеры.Производство транзисторов можно автоматизировать в большей степени, чем производство электронных ламп, а это значит, что транзисторы дешевле электронных ламп.
Первый патент на транзистор был подан Юлиусом Эдгаром Лилиенфельдом в 1925 году, хотя на самом деле он не сконструировал такое устройство.Герберт Матаре обнаружил полупроводниковые эффекты, работая над доплеровской радиолокационной системой в 1942 году. Затем технологии прогрессировали, и в 1947 году, работая в Bell Labs AT&T, Уолтер Браттейн и Джон Бардин обнаружили, что кристалл германия может усиливать электрический ток. Гордон Тил построил первый кремниевый транзистор для Texas Instruments в 1954 году, а транзистор ЦП, представляющий собой металлооксидный полупроводниковый (МОП) транзистор, был впервые построен в Bell Labs в 1960 году.
Транзисторы ЦП — важный компонент компьютеров.Что такое транзистор? | Основы электроники
Транзистор был изобретен в 1948 году в Bell Telephone Laboratories.
Изобретение транзистора стало беспрецедентным достижением в электронной промышленности. Это ознаменовало начало нынешней эпохи в секторе электроники. После изобретения транзистора технический прогресс стал более частым, наиболее заметным из которых были компьютерные технологии. Трое физиков, которые изобрели транзистор; Уильям Шокли, Джон Бардин и Уолтер Браттейн были удостоены Нобелевской премии.Учитывая изобретения, которые открыли транзисторы, можно утверждать, что это было самое важное изобретение двадцатого века.
От германия к кремнию
Транзисторы изначально производились с использованием германия. Это было стандартом для первого десятилетия производства транзисторов. Транзисторы на основе кремния, которые мы привыкли видеть сегодня, были приняты, потому что германий разрушается при температуре 180 градусов F.
Функции транзистора
Функции транзистора состоят из усиления и переключения.Возьмем для примера радио: сигналы, которые радио принимает из атмосферы, очень слабые. Радио усиливает эти сигналы через выход динамика. Это функция «усиления».
Для аналогового радио простое усиление сигнала заставит динамики воспроизводить звук. Однако для цифровых устройств форму входного сигнала необходимо изменить. Для цифрового устройства, такого как компьютер или MP3-плеер, транзистор должен переключать состояние сигнала на 0 или 1.Это «функция переключения»
Даже более сложные компоненты, такие как интегральные схемы, изготовленные из жидкого кремния, в основном представляют собой наборы транзисторов.
Резисторы и транзисторы на одном кристалле
Изначально дискретные резисторы и транзисторы устанавливались на одних и тех же печатных платах. Позже транзисторные микросхемы со встроенными резисторами были разработаны как цифровые транзисторы. Использование цифровых транзисторов в конструкциях имеет:
1.Им требуется меньше места для установки компонентов на печатной плате.
2. Они требуют меньше времени для монтажа компонентов на печатной плате.
3. Это уменьшает количество необходимых компонентов.
Первые транзисторы со встроенными резисторами были разработаны фирмой ROHM, получившей патентные права. Цифровые транзисторы также защищены одним из эксклюзивных патентов ROHM.
Как работает транзистор?
Одна аналогия, которая помогает объяснить, как работает транзистор, — это думать о нем как о водопроводном кране.В этом случае электрический ток работает как вода. Транзистор имеет три контакта: база, коллектор и эмиттер. Основание работает как ручка крана, коллектор подобен трубе, которая идет в кран, а эмиттер подобен отверстию, через которое льется вода. Поворачивая ручку крана с небольшим усилием, мы можем контролировать мощный поток воды. Эта вода течет по трубе и выходит из отверстия. Слегка повернув ручку крана, можно значительно увеличить скорость потока воды.Если закрыть полностью, вода не будет течь. Если открыть полностью, вода будет хлестать как можно быстрее!
Теперь мы можем погрузиться в правильное объяснение, используя диаграммы ниже. Транзистор имеет три контакта: эмиттер (E), коллектор (C) и базу (B). База контролирует ток от коллектора до эмиттера. Ток, протекающий от коллектора к эмиттеру, пропорционален току базы. IE = IB x hFE. Показанная схема использует коллекторный резистор (RL). Если через RL протекает ток Ic, на этом резисторе образуется напряжение, равное произведению IC x RL.Это означает, что напряжение на транзисторе равно: E2 — (RL x IC). IC приблизительно соответствует IE, поэтому, если IE = hFE x IB, то IC также равно hFE x IB. Следовательно, посредством подстановки напряжение на транзисторах E = E2 — (RL x lB x hFE).
(* 1) hfe: Коэффициент усиления постоянного тока транзистора.
ТранзисторЧто такое транзистор
Из всех изобретений ХХ века рождение транзисторов, несомненно, является САМЫМ важным.Создание транзистора привело к миниатюрным полупроводникам, которые привели к современному миру. Такие технологии, как искусственный интеллект (AI), Интернет вещей (IoT), современная медицина, исследования, Интернет и многие другие, были бы невозможны без транзистора. Но почему изобретение транзистора так важно, что такое транзистор и что делают транзисторы, что делает их уникальными? [Подробнее — Что такое диод]
Важность транзисторов — усилители
Вы, наверное, слышали о транзисторах, но что делает транзистор? Важность транзисторов проистекает из их способности усиливать сигнал, при котором крошечный входной сигнал преобразуется в гораздо более сильный сигнал.Это важно, потому что многие компоненты в электронике производят только крошечные слабые сигналы (например, микрофоны), которые нельзя напрямую подключить к динамику. Следовательно, эти сигналы передаются в усилитель, который, в свою очередь, обеспечивает мощность, необходимую для управления динамиком. Но динамики и микрофоны существовали за много десятилетий до транзистора, и в это время вместо них использовался электронный клапан. Клапан — это усилительное устройство, которое выглядит как лампочка, но вместо этого имеет множество входных соединений, которые могут контролировать поток тока.
Хотя клапаны позволяли создавать радиоприемники и телевизоры, их большой размер и потребляемая мощность делали их непрактичными для более совершенных электрических систем. Например, электрические переключающие устройства (такие как клапаны и транзисторы) являются важным компонентом построения компьютера, поскольку они могут обрабатывать сигналы, которые, в свою очередь, могут использоваться для выполнения вычислений. В результате первые крупные компьютеры были построены с использованием клапанной технологии, но они были огромными по размеру, часто ломались и потребляли слишком много энергии.Когда появился транзистор, компьютеры могли внезапно уменьшиться в размерах, что сделало их практичными для повседневного использования.
Что такое транзистор и как работают транзисторы?
Транзистор — это электронный компонент, который может управлять протеканием тока с помощью внешнего электрического сигнала. Все транзисторы управляют потоком тока, но транзисторы могут использовать ток или напряжение для управления этим потоком. Хорошая аналогия транзистора — водопроводный кран; расход воды через кран регулируется поворотом крана.Транзисторы, которые управляют током с помощью входного тока, часто являются биполярными транзисторами (BJT), а транзисторы, которые управляют током с использованием входного напряжения, часто являются полевыми транзисторами (FET). [Подробнее — Что такое индуктор]
Как устроены транзисторы?
Транзисторы изготавливаются из полупроводниковых материалов, таких как кремний, но их физическая конструкция зависит от типа транзистора. Как указывалось ранее, транзисторы в основном относятся к одной из двух категорий; Биполярные и полевые транзисторы.Существуют и другие типы транзисторов (например, биполярные транзисторы с изолированным затвором или IGBJT), но они не так распространены, как BJT или полевые транзисторы.
Объяснение биполярных переходных транзисторов (BJT) — Что такое BJT?
Эти транзисторы состоят из трех слоев кремния, и заряд этих слоев зависит от типа транзистора. BJT бывают двух типов: NPN и PNP, которые указывают заряд каждого слоя. Три вывода BJT — это коллектор, база и эмиттер.Коллектор — это входная мощность транзистора, база — входной управляющий ток, а эмиттер — выходная мощность транзистора. Ток течет в коллектор, регулируется током базы и вытекает из эмиттера. [Подробнее — Что такое конденсатор]
ТранзисторыNPN и PNP используются в зависимости от полярности цепи и необходимого действия переключения. Транзисторы NPN очень распространены, поскольку они хорошо работают с большинством схем и могут считаться имеющими положительное действие (чем больше положительный ток на входе, тем больше положительный ток на выходе).Транзисторы PNP не так распространены и обычно встречаются в приложениях, дополняющих транзисторы NPN. Транзисторы PNP имеют отрицательное действие, в результате чего ток, покидающий базу, приводит к увеличению тока, протекающего через транзистор.
Полевые транзисторы — что такое JFET?
Полевые транзисторы также бывают N и P вариантов, как и BJT, но термин FET фактически относится к семейству транзисторов. Переходные полевые транзисторы являются примером полевого транзистора, но они не очень распространены.Вместо этого мы сосредоточимся на полевых транзисторах металл-оксид-полупроводник, или полевых МОП-транзисторах, поскольку они являются наиболее широко используемыми на сегодняшний день транзисторами. MOSFET-транзисторы имеют сложную структуру, которая начинается со слоя полупроводника, который имеет три полупроводниковых слоя (как и BJT, это NPN или PNP). Однако три контакта полевого МОП-транзистора вместо этого называются стоком (вход мощности), затвором (вход управления) и истоком (выходом мощности). Ток через полевой МОП-транзистор регулируется напряжением между затвором и истоком, где полевые МОП-транзисторы N-типа проводят ток, когда это напряжение является положительным, а МОП-транзисторы P-типа проводят ток, когда это напряжение отрицательно.Выше среднего слоя между контактом затвора и средним слоем расположен тонкий слой оксида металла. MOSFET N-типа имеет полупроводник N-типа для истока и стока, в то время как P-тип имеет полупроводник p-типа. [Подробнее — Что сейчас?]
Какой для чего — Какие существуют типы транзисторов?
При выборе транзистора для использования в проекте необходимо определить, с каким типом сигнала вы имеете дело. Оба типа транзисторов, BJT и FET, могут использоваться в любом приложении, но каждый транзистор имеет определенные преимущества, которые делают один предпочтительным по сравнению с другим.
BJT — это текущие устройства ввода, поэтому они не подходят для проектов, в которых есть датчики с очень слабыми выходными токами. Однако полевые транзисторы представляют собой устройства, управляемые напряжением, и поэтому идеально подходят для таких приложений. Однако биполярные транзисторы имеют значительно больший коэффициент усиления (т. Е. Величину усиления) и поэтому часто встречаются в усилителях мощности. С другой стороны, полевые транзисторы не имеют такого большого усиления, и в результате их часто можно найти в коммутационных приложениях, а не в аналоговых усилителях.
Как они выглядят?
Транзисторы бывают разных форм, размеров и форм, поэтому невозможно показать изображение каждого корпуса транзистора. Эта проблема усугубляется, когда многие другие компоненты, такие как линейные регуляторы, используют те же корпуса, что и транзисторы, что затрудняет их идентификацию. Однако, как правило, большинство транзисторов имеют три контакта, но некоторые могут иметь четыре контакта (особенно редко). Транзисторы бывают как в сквозных отверстиях, так и в деталях для поверхностного монтажа и почти всегда черного цвета.[Подробнее — Что такое резистор]
Базовые схемы переключения
Изучение того, как работают транзисторы, — большая тема, требующая немного математики. Например, есть уравнения, которые связывают входной ток с выходным током BJT, а также уравнения, которые связывают входное напряжение затвора с выходным током полевого транзистора. Вместо этого мы рассмотрим некоторые базовые схемы, использующие BJT и FET, которые вы можете использовать в своих собственных проектах без необходимости сложной математики.
Переключатель NPN — Что такое NPN?
Схема переключателя NPN используется в качестве электронного переключателя вместо усилителя. Когда на транзистор подается входной ток, мощность проходит через транзистор в реле, таким образом, включая его. Эта схема может быть полезна в приложениях, где небольшой ток (например, от фотодиода) можно использовать для управления более мощным устройством.
Переключатель NMOS
Переключатель NMOS такой же, как переключатель NPN, однако вместо того, чтобы требовать входного тока, схема требует входного напряжения.Эта схема очень полезна в приложениях, где датчик вырабатывает напряжение вместо тока (например, микрофон).
Логические ворота CMOS
Хотя это довольно сложная тема, важно понимать, как работают логические вентили CMOS, в частности вентили НЕ, И-НЕ и ИЛИ-ИЛИ, поскольку это демонстрирует, почему транзисторы так важны. Логические вентили — это вычислительные схемы, которые принимают двоичные данные, обрабатывают эти данные и производят выходные данные.
Примечание. Логическая 1 представляет VDD или, во многих случаях, 5 В.Логическая 1 представляет VSS или 0 В.
I (вход) | O (выход) |
1 | 0 |
0 | 1 |
Логический элемент НЕ принимает один бит и переворачивает его на выходе.
V1 | В2 | ВОУТ |
0 | 0 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
1 | 1 | 0 |
Логический элемент И-НЕ принимает два бита и выдает на выходе только 0, когда оба входа равны 1.
V1 | В2 | ВОУТ |
0 | 0 | 1 |
1 | 0 | 0 |
1 | 0 | 0 |
1 | 1 | 0 |
Логический элемент ИЛИ-НЕ принимает два бита и выдает на выходе только 1, когда оба входа равны 0.
В зависимости от того, как объединены логические элементы, их можно использовать для сложения, вычитания, умножения, деления и сравнения двоичных чисел. Отсюда последовательные схемы могут передавать числа по одному для выполнения нескольких операций. Это основы того, как работают компьютеры, и почему транзисторы так важны. Эти устройства могут быть преобразованы в интегральные схемы, которые могут содержать миллиарды транзисторов, которые, в свою очередь, могут использоваться для питания смартфонов, компьютеров, микроволновых печей, печей, автомобилей и практически любого электронного устройства, о котором вы только можете подумать.
Заключение
Транзистор — это трехконтактное устройство, которое может управлять током с помощью электричества. Они очень важны в схемах усиления, которые превращают малые сигналы в большие. Транзисторы, когда они используются в качестве переключателей, могут использоваться в логических схемах, которые, в свою очередь, составляют основу всей вычислительной техники. [Подробнее — Что такое напряжение]
Ваше полное руководство по их использованию в электронике
Здесь вы найдете полное руководство по транзисторам.
В этом руководстве по транзисторам я расскажу вам об основах транзисторов, различных типах, наиболее популярных частях и способах их использования в схемах.
Это часть нашей серии статей, посвященных диодам и транзисторам ..
Что такое транзистор?
Давайте начнем с простого для понимания определения транзистора. Чтобы дать определение транзистору, мы хотим взглянуть на общую картину и на то, как она вписывается в электронику.
Мы можем определить это следующим образом:
транзистор = электронное устройство, которое может использоваться для переключения или усиления электрической энергии
# 1 Уроки: из транзисторов получаются отличные переключатели и усилители, и два основных типа из них:
Биполярные транзисторы (BJT) — вы используете ток для управления
полевых транзисторов(FET) — вы используете напряжение для управления
.Транзистор — это фундаментальный строительный блок современной электроники.Когда он был изобретен, он привел к электронной революции, которая открыла новую эру технологий.
Транзисторный радиоприемник был одним из первых, кто произвел революцию в этой технологии. Размер радиоприемника резко уменьшился, поскольку больше не было необходимости использовать электронные лампы
Без транзистора не существовало бы современной электроники.
Кто изобрел транзистор?
Вы можете спросить: а когда же был изобретен транзистор? В отношении изобретения транзистора есть три важные даты:
1927 — Юлиус Лилиенфельд запатентовал полевой транзистор, но не смог произвести его в то время из-за ограничений технологии.
1947 — Уильям Шокли, Джон Бардин и Уолтер Браттейн изобрели транзистор с точечным контактом в компании Bell Telephone Laboratories, Inc.
1956 — Нобелевская премия по физике присуждена Шокли, Бардину и Браттейну за транзистор.
Что делает транзистор?
Две основные функции транзистора — усилитель и переключатель, работают как с отдельными транзисторами, так и с их комбинациями.
Соединение нескольких транзисторов с другими электрическими компонентами, такими как резисторы и диоды, может даже создать логические вентили.
Далее мы рассмотрим каждый из них более подробно
Транзисторный усилитель
Каждый раз, когда вы хотите использовать немного чего-то, чтобы получить еще больше, это называется усилением.
В качестве аналогии рассмотрим механическое плечо. Когда вам нужно выполнить механическую работу над чем-то, если вы добавите рычаги воздействия, вы сможете усилить свою работу.
Физика транзисторов позволяет нам использовать напряжение или ток для управления передачей электрической энергии в транзисторе.
В результате мы можем использовать небольшое напряжение или ток для управления гораздо большим напряжением или током. Это то, что мы называем усилителем.
Мы рассмотрим это более подробно, когда рассмотрим различные типы транзисторов позже. транзистор может действовать как переключатель.
Когда вы включаете выключатель света в своем доме, вы делаете небольшую механическую работу руками, которая позволяет электричеству течь через ваши лампочки.
Использование транзистора в качестве переключателя, подобного выключателю света, позволяет нам использовать напряжение или ток для его включения или выключения, что затем позволяет току течь через другую часть схемы.
Соединение множества разных переключателей вместе в различных комбинациях позволяет нам создавать всевозможные логические вентили, которые мы рассмотрим далее.
Транзисторный вентиль
Типичный логический вентиль в наши дни имеет несколько транзисторов, а также другие компоненты. Создание логических вентилей в схемах претерпело долгую эволюцию по мере того, как производственные технологии становились все лучше и лучше.
Логические вентили транзисторов в наши дни обычно изготавливаются из полевых МОП-транзисторов, а точнее — из КМОП. Мы рассмотрим их подробно позже.
Транзистор И затвор, например, может быть выполнен как минимум с двумя транзисторами. Чтобы увидеть, как другие вентили могут быть сделаны из транзисторов, ознакомьтесь с этим замечательным средством.
С годами развития транзисторы становятся все меньше и меньше. Например, еще в 1971 году транзисторы были 10 микрометров.
По состоянию на 2014 год они составляют 14 нанометров с ожидаемыми 10 нанометрами к 2017 году.Если посчитать, то всего за 46 лет размер уменьшится примерно на 1000 человек.
Имейте в виду, что это то, что можно производить. Есть группы исследований и разработок, которые достигли размера транзисторов в 1 нанометр. Это самый маленький из известных транзисторов на 2017 год.
Уменьшение размера транзистора позволяет размещать все больше и больше транзисторов в таких устройствах, как центральные процессоры (ЦП) в компьютерах.
Общая тенденция уменьшения размера компонентов, ведущая к удвоению количества, которое вы можете разместить в устройстве, известна как закон Мура.Всегда интересно увидеть количество транзисторов в устройствах за разные годы.
Например, количество транзисторов современных процессоров Intel исчисляется миллиардами и продолжает расти. Популярный процессор i7 содержит около 1,75 миллиарда транзисторов.
Кроме того, способ оптимизации количества транзисторов, используемых в затворах, называется логикой проходных транзисторов.Технология всегда раздвигает границы получения большего при меньшем размере и меньшем количестве компонентов. Это приводит к тому, что в одном и том же физическом пространстве помещается больше возможностей.
Символ транзистора
Итак, как выглядит схема транзистора? Давайте разберемся.
Чтобы упростить задачу, мы рассмотрим 6 различных типов транзисторов, с которыми вы чаще всего сталкиваетесь.
Символ транзистора NPN и символ транзистора PNP являются наиболее распространенными. Они являются частью биполярной семьи.
Также будет включать N-канальный JFET и P-канальный JFET, которые представляют собой полевые транзисторы с переходным затвором.
И, наконец, что не менее важно, у нас есть N-канальные MOSFET и P-канальные MOSFET, которые представляют собой металлооксидные полупроводниковые полевые транзисторы.
Обратите внимание на то, что на схеме для NMOS и PMOS (MOSFET) пунктирная линия в середине означает, что они находятся в расширенном режиме. Если бы они были прямыми линиями без тире, это были бы транзисторы с режимом истощения.
Мы рассмотрим каждый из этих типов транзисторов более подробно. Вот символы для каждого из них:
Обратите внимание, что направление стрелки на символах обычно указывает на n-тип по сравнению с p-типом.
Распиновка транзистора
Как видно из символьной диаграммы, у нас есть несколько разных выводов для каждого типа транзистора.
Для биполярного транзистора три основных контакта — это база (B), коллектор (C) и эмиттер (E).
В то время как для полевых транзисторов (JFET и MOSFET), контакты являются нашими Source (S), Gate (G) и Drain (D).
Мы рассмотрим, что эти контакты делают в следующем разделе.
Как работает транзистор?
Мы рассмотрели, что такое транзисторы, что они делают, и какие символы мы используем для них в схемах. Теперь давайте посмотрим, как работает транзистор более подробно
Мы рассмотрим некоторые основы работы с транзисторами, а затем покажем вам режимы работы каждого типа.
Вся цель транзистора состоит в том, чтобы позволить вам использовать немного электрической энергии для управления гораздо большим количеством электрической энергии.
Мы можем сделать это либо в двоичном режиме (включен или выключен), как в переключателе, либо мы можем использовать полный диапазон работы транзистора и создать усилитель.
С учетом сказанного, есть два основных транзистора типы, которые работают по-разному. Мы собираемся поддерживать теорию на высоком уровне, чтобы вы могли использовать ее на практике в электронике.
Если вас интересует вся физика, лежащая в основе этого, есть целые области изучения полупроводников и множество книг, которые вы можете изучить.Помните, что люди делают карьеру из этого материала.
Биполярный переходной транзистор
Первый тип называется биполярным переходным транзистором (БЮТ). Биполярный транзистор использует как электронные, так и дырочные носители, как и диоды.
Дырки и носители создаются полупроводниковыми материалами, известными как P-тип (дырки) и N-тип (электроны).
Материалы как N-типа, так и P-типа ведут себя определенным образом, и если их сложить вместе, можно получить еще более интересные эффекты.
Типичный диод обычно представляет собой материал N-типа и P-типа вместе. В то время как BJT — это их три вместе.Транзисторы бывают как типа NPN, так и PNP.
Например, NPN — это именно то, как оно названо, где есть сэндвич из материалов N-типа, P-типа и N-типа, соединенных вместе.
В свое время германиевые транзисторы были обычным способом изготовления биполярных транзисторов.Однако сейчас кремниевые транзисторы стали нормой.
Несколько ключевых моментов, касающихся BJT, заключаются в том, что hfe (иногда называемый бета) — это быстрый индикатор способности транзистора к усилению, также известный как усиление постоянного тока.
Кроме того, насыщение транзистора просто означает, что больше тока через базу не даст больше тока через коллектор и эмиттер.
Теперь давайте посмотрим на транзисторы NPN и PNP, чтобы лучше понять, как они работают.
Транзистор NPN
NPN — это именно то, как его называют, где есть сэндвич из материалов N-типа, P-типа и N-типа, соединенных вместе.Пример конструкции можно увидеть ниже.
Конструкция этого устройства устроена так, что ток обычно не течет между двумя материалами N-типа, потому что материал P-типа разделяет их.
Что интересно, так это то, что когда мы манипулируем материалом P-типа током, мы можем создать мост между двумя материалами N-типа, который позволяет току течь между ними.
Например, для типичного одиночного NPN , если мы подадим на базу около 0,7 Вольт, то ток будет течь через базу к эмиттеру.
Это, в свою очередь, позволит току легче проходить через материал P-типа. Это позволяет току течь от коллектора к эмиттеру в качестве конечного результата. Это позволяет манипулировать материалами.
Основы, которые вам нужно знать здесь на высоком уровне, следующие:
Для BJT NPN, когда ток течет от базы к эмиттеру, он включает транзистор и позволяет гораздо больше. ток течет от коллектора к эмиттеру.
Вот почему мы часто называем BJT устройствами с управляемым током.
NPN Operation
Теперь давайте рассмотрим несколько общих способов работы с NPN. Мы знаем, что контакты — это база (B), коллектор (C) и эмиттер (E).
- Cut Off («off»): Emitter> Base
- Saturation («on»): Emitter
Collector - Forward Active («пропорционально»): Emitter
- Reverse Active («отрицательный пропорциональный»): Emitter> Base> Collector
- Saturation («on»): Emitter
Для этих различных режимов переключатель будет использовать режимы отсечки и насыщения.
Усилитель будет использовать прямой активный режим, в котором ток от коллектора к эмиттеру пропорционален току от базы к эмиттеру.
Обратный активный режим — это когда ток течет от эмиттера к коллектору, что является обратным нормальному активному режиму. Этот режим используется нечасто.
Ключевым моментом здесь является то, что напряжение между базой и эмиттером (Vbe), обычно около 0,7 В, является одним из основных ингредиентов для включения NPN.
Конечно, поведение NPN намного сложнее, но это это общий вынос.
Транзистор PNP
Аналогичным образом, PNP имеют порядок материалов P-типа, N-типа и P-типа, как показано ниже.
PNP похожи на NPN, но направление тока другое.
Основная идея этого устройства состоит в том, что два материала P-типа разделены между собой N-типом, что означает, что ток не будет нормально течь между двумя материалами P-типа.
Однако, когда мы добавляем ток в смесь, мы можем управлять материалом N-типа, чтобы он действовал как мост между материалами P-типа, позволяя току течь.
Вот наш главный вывод:
Для BJT PNP, когда ток течет от эмиттера к базе, гораздо больше тока может течь от эмиттера к коллектору.
Работа PNP
Далее мы рассмотрим различные способы работы PNP. Мы помним, что контакты — это база (B), коллектор (C) и эмиттер (E).
- Cut Off («off»): эмиттер
Collector - Saturation («on»): Emitter> Base
- Forward Active («пропорционально»): Emitter> Base> Collector
- Reverse Active («отрицательный пропорциональный»): излучатель <база <коллектор
PNP аналогичен NPN, но токи меняются местами.Использование NPN гораздо более распространено, но иногда вы можете встретить PNP.
Часто NPN и PNP используются вместе, чтобы получить более сложное поведение схемы. Хорошим примером является схема двухтактного усилителя.
Опять же, PNP немного сложнее, но для большинства схем это все, что вам нужно знать
Полевой транзистор
Что может быть круче, чем манипулирование материалом с помощью тока? Вместо этого манипулируем напряжением! Именно это мы и делаем с полевыми транзисторами (FET).
Полевые транзисторыпозволяют нам использовать электрическое поле для управления электропроводностью канала в них, который управляет переключателем.
Давайте подробнее рассмотрим два основных типа полевых транзисторов.
JFET-транзистор
Переходный полевой транзистор (JFET) — очень простое устройство.
Основная идея состоит в том, что полевой транзистор JFET обычно проводит ток между источником и стоком, если на затвор не подается напряжение.
Это означает, что JFET обычно включен, пока напряжение на затворе не отключит его.
Напряжение создает электрическое поле, которое «зажимает» канал, по которому течет ток. Точно так же, как если бы вы зажали садовый шланг, чтобы вода не протекала через него.
Здесь есть два аромата, где для канала может использоваться материал N-типа или P-типа. Тип материала будет определять, какое напряжение необходимо приложить к затвору.
N-канальный JFET
Типичная конструкция n-канального JFET-транзистора показана ниже.
Основные сведения о N-канальном JFET:
- Напряжение между источником и стоком вызывает протекание тока. Чем больше напряжение, тем больше ток будет протекать до определенного момента. В режиме насыщения ток остается неизменным при увеличении напряжения от стока до источника, Vds.
- Подача напряжения на затвор и источник ограничит общий ток от источника до стока в зависимости от величины напряжения. Как только напряжение затвора к источнику достигает напряжения отсечки, ток не течет от источника к стоку.Это отключает устройство.
Чтобы разобраться в этом, посмотрите эту потрясающую визуализацию.
P-Channel JFET
Напротив, типичная конструкция JFET с p-каналом показана ниже.
P-канальный JFET работает очень похоже на N-канальный JFET, за исключением того, что токи и напряжения меняются местами.
МОП-транзистор
Гораздо более популярной формой полевого транзистора является металлооксидный полупроводниковый полевой транзистор (МОП-транзистор).Иногда люди для краткости называют их МОП-транзисторами.
Как мы увидим, часть имени MOS происходит от структуры транзистора, что упрощает запоминание его общей функции.
MOSFET обычно выключен до тех пор, пока напряжение на затворе не включит транзистор и позволяет току течь между источником и стоком.
Они обычно используются в цифровой электронике и процессорах.
Существует две формы полевого МОП-транзистора. Это N-канал (NMOS) и P-канал (PMOS).Давайте теперь подробно рассмотрим различия.
NMOS-транзистор
Для NMOS у нас есть простая структура, в которой исток и сток представляют собой материал N-типа, и они разделены материалом P-типа. Поверх разделения находится оксидный слой, а поверх него — металлический слой, который является воротами.
Вы можете увидеть эту структуру ниже.
По сути, всякий раз, когда на Воротах Источника присутствует напряжение (Vgs), создаваемое электрическое поле воздействует на материал P-типа, образуя канал между двумя другими материалами N-типа, которые являются Источником и Стоком.
Это напряжение создает канал и позволяет току течь по нему между Источником и Стоком.
Далее давайте более подробно рассмотрим различные режимы работы для режима расширения NMOS.
Основными переменными являются Vgs (напряжение от затвора до источника), Vth (пороговое напряжение Vgs), Vds (напряжение от стока до источника) и Vds-sat (напряжение насыщения Vds).
- Отсечка: Vgs
- Омический: Vgs> Vth и Vds
- Насыщение : Vgs> Vth и Vds> Vds-sat, канал полностью сформирован, увеличение Vds не вызывает увеличения тока
- Омический: Vgs> Vth и Vds
Здесь можно найти отличную визуализацию для этих режимов.В таблице данных для вашей части NMOS должно быть несколько графиков, отображающих ток стока (Id) в зависимости от Vds, с линиями, представляющими разные Vgs.
Отличным примером сильноточного NMOS является IRLML6344TRPBF.
Если вы откроете таблицу данных для этой части, вы увидите, что для этого требуется, чтобы напряжение Vgs было выше 1,1 вольт (Vth). Кривая показывает нам, что для разных уровней Vgs выше этого порогового напряжения мы получаем разные кривые тока стока.
В большинстве случаев напряжение Vds-sat составляет около 1 В, и именно здесь кривые переходят в плоскую линию.
Для CMOS, когда напряжение на затворе высокое, транзистор включен, а когда напряжение на затворе низкое, транзистор выключен.
Транзистор PMOS
Для PMOS он очень похож на NMOS, за исключением того, что материалы типа N и P поменяны местами. Вы можете увидеть структуру ниже.
PMOS работает очень похоже на NMOS, за исключением того, что некоторые вещи работают наоборот. Давайте посмотрим на разные режимы.
Основными переменными являются Vgs (напряжение от затвора до источника), Vth (пороговое напряжение Vgs), Vds (напряжение от стока до источника) и Vds-sat (напряжение насыщения Vds).
- Отсечка: Vgs> -Vth, ток не течет от источника к стоку
- Омический: Vgs <-Vth и -Vds> -Vds-sat, канал формируется на основе Vgs, -Vds более отрицательное значение вызывает больший ток линейно
- Насыщенность: Vgs <-Vth и -Vds <-Vds-sat, канал полностью сформирован, -Vds становится более отрицательным, не вызывает больше тока
Вот основной момент:
Для PMOS, когда напряжение на затворе высокое, транзистор выключен, а когда напряжение на затворе низкое, транзистор включен.
CMOS транзистор
Что происходит, когда вы объединяете NMOS и PMOS в одной детали? Вы получаете очень удобный компонент.
Фактически, комплементарная MOS (CMOS) лежит в основе процессоров, SRAM и логических микросхем. Использование КМОП дает множество технических преимуществ, подробности см. Здесь
Упаковка транзисторов
Транзисторы выпускаются в различных вариантах корпусов, включая сквозное отверстие, поверхностный монтаж и монтаж на шасси.
В большинстве конструкций электроники используется поверхностный монтаж.Однако любители часто используют варианты со сквозным отверстием.
Для более высокого рассеивания мощности может потребоваться установка через отверстие или монтаж на шасси для отвода тепла от схемы
Распространенным корпусом со сквозными отверстиями является TO-92, который имеет пластиковый корпус с тремя выводами. Популярным корпусом для поверхностного монтажа является SOT-23, который также имеет 3 контакта.
Самые популярные транзисторы
Транзистор Дарлингтона
Допустим, вам нужен усилитель или переключатель тока NPN, но найденные вами одиночные транзисторы просто не имеют достаточно высокого коэффициента усиления (hfe), чтобы вывести низкотоковый вход на высокий выходной ток.
Мы знаем, что мы можем усилить ток одним транзистором, тогда почему мы не можем сделать это дважды, чтобы получить еще больше?
Ответ — мы можем. Несколько транзисторов вызывают несколько ступеней усиления, которые умножаются друг на друга, что дает нам гораздо больший общий коэффициент усиления.
Это так же просто, как соединить два коллектора NPN вместе и подключить эмиттер первого к основанию второго.
Символ Дарлингтона показан ниже, чтобы проиллюстрировать эту установку.
Оказывается, это очень мощный аппарат. Конечно, мы могли бы создать его с двумя дискретными транзисторами, но он сэкономит намного больше места, если будет выполнен на той же интегральной схеме.
Например, с FZT605TA мы могли бы использовать 1 миллиампер для управления первым транзистором, который усиливается для управления вторым транзистором и позволяет нам управлять током, протекающим от коллектора к эмиттеру, более 1 ампер.
Это усиление более чем в 1000 раз!
Силовой транзистор
Когда мы говорим силовой транзистор, мы обычно подразумеваем транзисторы, которые могут обрабатывать более 1 А на выходной стороне.Это означает, что для BJT, тока коллектора и эмиттера, а также для полевых транзисторов, ток источника и стока имеет максимальное значение более 1 Ампер.
Некоторые вещи, на которые следует обратить внимание при поиске такого транзистора, — это его внутреннее сопротивление и максимальное тепловыделение.
Кроме того, если вы имеете дело с большим количеством тепла, есть ли у него упаковка, позволяющая подключать его к радиатору?
Корпус TO220 — это знаменитый корпус со сквозными отверстиями, в котором есть хорошая металлическая посадочная площадка и отверстие для винта для установки различных радиаторов.
Серия транзисторов TIP является популярным вариантом BJT в этом классе деталей. Вот несколько отличных примеров:
Транзистор TIP31 — ток коллектора макс = 3 А, hfe = 10, максимальная мощность = 2 Вт, л чернил
Транзистор TIP120 — ток коллектора макс = 5 А, hfe = 1000, максимальная мощность = 2 Вт, ссылка
Если вам нужен силовой полевой транзистор, то популярным выбором будет IRLML6344TRPBF. Он имеет максимальный ток стока 5 А и максимальную мощность 1,3 Вт. FET — это расширенный режим NMOS.
Фототранзистор
Если вы хотите преобразовать фотоны в ток, наиболее распространенным способом является использование фотодиода. Однако иногда диод не производит большого тока из-за количества света, которому он подвергается.
Поскольку мы уже знаем, что из транзисторов получаются отличные усилители тока, почему бы не использовать транзистор, чтобы довести выходной ток до желаемого уровня?
Здесь явно два варианта.
1. Как разработчик схем, мы могли бы использовать фотодиод с транзистором, чтобы получить более высокий выходной ток диода.Их часто называют схемами усилителя фототока.
2. Другой вариант заключается в том, что для специализированных случаев производители фактически делают отдельные детали (например, PT15-21B / TR8), в которых просто вырезано окно, чтобы подвергать транзистор фотонам, которые напрямую воздействуют на транзистор в детали. . Он также известен как оптический транзистор.
В зависимости от ситуации вы можете выбрать, какой из них использовать, исходя из ваших требований.
Есть некоторые фототранзисторы, работающие в диапазоне видимого света.Чаще они предназначены для инфракрасного диапазона спектра. Таким образом, они невидимы для человеческого глаза. Скорее всего, ваш ТВ-приемник для вашего пульта дистанционного управления использует один из них. Если нет, вы всегда можете использовать фотодиод и транзистор вместе, чтобы усилить ток с фотодиода.
Оказывается, Sharp выпустила отличное приложение для этих типов схем, которое охватывает все различные варианты.Вы можете найти его здесь: SMA99017
Оптоизоляторы
Кроме того, оптоизоляторы (также известные как оптопары) — это части, которые работают за счет встроенных в корпус светодиода и фототранзистора.
См. Например, FOD817. Таким образом, вы получаете настоящую электрическую изоляцию, поскольку внутренние части взаимодействуют только с помощью фотонов.
Photointerruptor
С механической стороны, если вам нужен способ обнаружить что-то в движении, которое может точно пройти через прорезь в материале , то фотопрерыватель — это изящное маленькое устройство.
Он работает так же, имея светодиод и фототранзистор, так что ваша схема может определять, когда свет между ними прерывается, а когда нет. GP1S094HCZ0F — отличный тому пример.
2n2222 Транзистор
На протяжении многих лет одним из самых популярных транзисторов для малых токов и малой мощности был транзистор 2n2222. Его также часто называют 2n2222a. Эта часть является BJT NPN.
Вот типичные характеристики 2n2222a:
- Максимальный ток коллектора = 0.8 А
- Максимальная мощность = 0,5 Вт
- Коэффициент усиления постоянного тока = 100
- Пробой между коллектором и эмиттером = 40 В
Деталь по-прежнему очень популярна. Большинство людей выбирают вариант в пластиковом корпусе, поскольку он намного экономичнее. Эта версия известна как Pn2222a, а примером является PN2222ABU.
2n3055 Транзистор
Если вам нужен сильноточный транзистор, то 2n3055 — отличный вариант. Это BJT NPN, и он поставляется в мощной упаковке TO-3.
Вот типичные характеристики 2 n30 55:
- Максимальный ток коллектора = 15 А
- Максимальная мощность = 115 Вт
- Коэффициент усиления постоянного тока = 20
- Пробой коллектора к эмиттеру = 60 Вольт
2n3904 Транзистор
Другой чрезвычайно популярный слаботочный транзистор — 2n3904. Это также BJT NPN.
Этот транзистор — один из лучших вариантов для усилителей тока цепи общего назначения, если он соответствует вашим требованиям.
Вот типичные характеристики транзистора 3904:
- Максимальный ток коллектора = 0,2 А
- Максимальная мощность = 0,625 Вт
- Коэффициент усиления постоянного тока = 100
- Пробой коллектора к эмиттеру = 40 Вольт
Деталь предлагается в пластиковом корпусе TO-92, что делает ее очень экономичной для большинства применений, где требуются детали со сквозными отверстиями. Любители часто выбирают этот транзистор.
2n4401 Транзистор
Если вам нужен транзистор общего назначения, но требуется немного больше тока, чем у 2n3904, то 2n4401 — хороший выбор.
Вот типичные характеристики для 2n4401:
- Максимальный ток коллектора = 0,6 А
- Максимальная мощность = 0,625 Вт
- Коэффициент усиления постоянного тока = 100
- Разрыв между коллектором и эмиттером = 40 В
BC547 Транзистор
Еще один популярный слаботочный транзистор — BC547.Это также BJT NPN. Он известен своим сверхвысоким коэффициентом усиления по току.
Вот типичные характеристики BC547:
- Максимальный ток коллектора = 0,1 А
- Максимальная мощность = 0,5 Вт
- Усиление постоянного тока = 420
- Пробой между коллектором и эмиттером = 45 В
Использование транзисторов
Теперь, когда мы ознакомились с большей частью теории и различными частями, давайте рассмотрим некоторые полезные схемы транзисторов.
Прежде чем мы перейдем к некоторым учебным пособиям по транзисторам, давайте рассмотрим очень базовую концепцию, которую важно знать дальше.
Смещение транзистора
Проще говоря, смещение транзистора устанавливает уровни напряжения и / или тока на оптимальную точку так, чтобы транзистор должным образом усиливал сигнал переменного тока по вашему вкусу.
Очевидно, это во многом зависит от используемого транзистора, а также от окружающей цепи и напряжений.
Лучший совет — внимательно изучить техническое описание транзистора, так как там можно найти все напряжения и токи для различных режимов.
В таблицах данных также обычно есть несколько отличных примеров схем, которые вы можете использовать в качестве справочника для своего проекта
Следующий совет — использовать программное обеспечение типа SPICE для моделирования вашей схемы. Удивительно, чему вы можете научиться, когда можете быстро преодолеть массовые отказы с молниеносной скоростью с помощью программного обеспечения для моделирования.
Следующее лучшее — это смонтировать схему и поиграть. Вы можете пойти на больший риск, если имеете дело с дешевыми запчастями на случай, если что-то взорвется.Однако, если вы имеете дело с дорогими деталями, которые трудно заменить, то сначала выполните описанные выше варианты.
Схема транзисторного усилителя
Если у вас есть слабый сигнал, который вам нужно усилить или даже управлять динамиком, тогда использование транзистора — вариант.
По сути, вы используете транзистор для тяжелой работы с током.
Есть несколько способов сделать это:
- Emitter F ollower — один из наиболее распространенных, также известный как обычный коллектор, см. Пример
- Common Emitter — см. Пример
- Push Pull — см. Пример
Для простых усилителей лучше всего использовать транзистор.Если вам нужно более продвинутое усиление, вам действительно стоит подумать об использовании операционного усилителя. Таким образом вы сможете лучше контролировать полосу пропускания и уровень шума в цепи.
Если вы этого еще не знали, операционные усилители в основном состоят из транзисторов. В Spa rkfun есть отличная статья, в которой они познакомят вас с самыми основными схемами усиления, а в конечном итоге все это соберут вместе и покажут основы внутреннего устройства операционного усилителя.
Есть причина, по которой операционные усилители имеют много транзисторов. в них, чтобы контролировать все маленькие эффекты.Не бойтесь использовать операционный усилитель по назначению.
Операционный усилитель общего назначения будет стоить столько же, сколько один или два транзистора, так зачем создавать сложную схему усилителя из транзисторов, если можно просто взять операционный усилитель и получить гораздо лучший результат.
Транзисторный переключатель NPN
Часто у нас есть процессор или микроконтроллер с цифровым выводом, который может подавать только около 10–20 мА (проверьте свое техническое описание). Следовательно, мы не можем напрямую управлять чем-либо с большим током.
Транзистор — отличный буфер, который мы можем использовать для усиления тока для управления вещами. Например, вентилятор, обогреватель или другое устройство со средним или большим током. BJT NPN является популярным выбором для таких ситуаций.
Пример конструкции
В следующей схеме транзистора NPN мы используем NPN для обработки высокого тока вентилятора, при этом позволяя нам управлять вентилятором с помощью слаботочного цифрового вывода.
В этом примере мы используем BJT в качестве переключателя NPN, поскольку два рабочих состояния либо включены, либо выключены.
На схеме видно, что распиновка транзистора NPN такова, что база подключена к управляющему сигналу с помощью резистора, коллектор подключен к нижнему концу вентилятора, а эмиттер подключен к земле.
Выбор транзистора
Итак, как выбрать подходящий транзистор для работы? В этом случае мы рассмотрим несколько ключевых характеристик, и нам нужно снизить номинальные характеристики, выбрав для нашего транзистора значения 2x-3x.
- Максимальный ток от коллектора к эмиттеру должен быть в 2–3 раза больше тока через вентилятор.Пример: если вентилятор потребляет 0,15 А, NPN должен иметь ток коллектора (Ic) max более 0,3 А
- ВЧ должно быть достаточно высоким, чтобы, по крайней мере, быть током через вентилятор, деленным на ток с нашего цифрового вывода. Пример: если наш вентилятор потребляет 0,15 А, и мы можем подавать 0,01 А через цифровой вывод, тогда hfe должно быть больше 15 (0,15 / 0,01)
- Максимальное напряжение пробоя коллектора NPN-эмиттер (Vce) должно быть в 2 раза больше. -3x напряжение питания для нашего вентилятора. Пример: если у нас есть вентилятор на 12 В, то нам потребуется максимальное напряжение 24 В или больше
Это основные вещи, на которые следует обращать внимание при выборе транзистора для этой схемы.Имейте в виду, что в разработку этой схемы было вложено гораздо больше, над чем кто-то давно работал.
Когда мы смотрим на доступные детали, мы обнаруживаем, что PN2222ABU отвечает всем нашим требованиям. Он имеет Ic = 1 ампер макс, Vce = 40 вольт макс и hfe = 50 мин при Ic = 0,15 ампер.
Чтобы получить дополнительную маржу, мы можем разделить hFE на 2, что станет 25. Это больше, чем наши требуемые 15, что мы и хотим.
Значит, нам, вероятно, сойдет с рук 0.006 А базового тока для управления током коллектора 0,15 А (0,15 / 25). Мы планируем использовать базовый ток 0,01 А, что еще больше переведет нас в режим насыщения.
Что делать, если ваш вентилятор или нагрузка потребляют намного больший ток, чем в нашем примере? Возможно, вам понадобится более мощный NPN. TIP120 — это чудовище с минимальным hFE 1000 на многих токах коллектора. Это также не намного дороже, чем наш предыдущий выбор.
Выбор резистора
Для пытливых умов, чтобы выбрать правильное значение резистора, R1, нам нужно заглянуть в лист данных транзистора и увидеть максимальное напряжение между базой и эмиттером, Vbe.Для этого транзистора его 1,2 Вольт.
Затем, какой бы логический уровень мы ни использовали, мы можем рассчитать резистор. Например:
3.3 Вольтовая логика — 0.6 В Vbe = 2.7 В
Теперь мы берем:
2.7 В / 0,01 А Базовый ток = 270 Ом для R1
Это ограничивает ток с нашего цифрового вывода до 0,01 А макс. 0,6 Vbe, а ток составляет 0,008 ампер мин при 1,2 Vbe. Мы должны быть в насыщении NPN для обоих из них.
Выбор диода
Диод присутствует из-за индуктивной нагрузки вентилятора.Диод не нужен, если нагрузка представляет собой нагреватель, светодиод или другую резистивную нагрузку.
Типичным диодом для D1 в этой ситуации является 1N4001. Он имеет прямой ток 1 А и максимальное обратное смещение 50 В.
Транзистор hFE
При выборе правильного транзистора hFE:
Большинство интернет-источников имеют практическое правило рассматривать каждый транзистор как имеющий значение 10. Выбери из.
Какой нормальный путь выбрать для определения того, имеет ли транзистор достаточно высокое hfe и какой базовый ток требуется, — это посмотреть в таблице данных.
Вы хотите найти кривые насыщения, сопоставить максимальный ток коллектора для вашей схемы и определить базовый ток, который переводит транзистор в режим полного насыщения. Кривая будет похожа на хоккейную клюшку.
Насыщение означает, что больший базовый ток не дает больше коллекторного тока на кривой.Пройдите немного дальше по кривой после того, как она выровнена ровно. Это золотая середина.
В некоторых таблицах данных нет этих кривых, поэтому вам придется полагаться на таблицу, которая сообщает вам hFE при определенных токах коллектора. Это типичный сценарий.
Попытайтесь сопоставить ток коллектора вашей схемы в таблице, а затем выберите минимальное значение hFE. В целях безопасности вы можете разделить hFE на 2, чтобы получить достаточный запас на ошибку.
Многие люди ошибаются здесь и получают ток коллектора из таблицы, который не соответствует их схеме, поэтому hfe, которое они используют, неправильное. .
Затем соберите и протестируйте свою схему, чтобы убедиться, что она работает правильно. Попробуйте поменять местами несколько транзисторов с одинаковым номером детали, чтобы убедиться, что все они работают.Схема должна работать, а транзистор не должен нагреваться.
Если ваша схема требует, чтобы вы подавали ток через транзистор (вместо потребляемого тока для NPN), вы можете вместо этого сделать схему переключения транзистора PNP. Хотя это не так часто, как использование NPN в этой ситуации. .
Тестирование транзисторов
Время от времени вам может потребоваться убедиться, что часть транзистора работает правильно.
Оказывается, довольно легко проверить транзистор, если вы можете изолировать часть от цепи. Далее мы рассмотрим некоторые методы:
Как проверить транзистор
Есть два основных способа проверить транзистор, и мы рассмотрим их оба. Важно удалить транзистор из схемы.
Если он находится в цепи, эти тесты, вероятно, не будут работать эффективно
Ручной метод мультиметра
Большинство современных мультиметров имеют режим проверки диодов.Иногда это сочетается с измерением сопротивления или это может быть отдельный режим регулятора. Ниже приведен пример счетчика Craftsman. Обратите внимание на символы диодов, кнопку и режим регулятора.
Чтобы проверить транзистор, нам нужно удалить его из схемы. В противном случае тест может быть неточным.
Чтобы измерить наш транзистор, мы делаем эти 4 шага:
1. Мы переводим нашу ручку-селектор в режим измерения диодов. В зависимости от нашего измерителя нам может потребоваться дополнительно нажать кнопку режима вверху, чтобы перейти от звукового сигнала к диодному режиму.Визуальный дисплей должен сообщить нам, в каком режиме мы находимся.
2. Для NPN поместите красный датчик на вывод Base, а черный датчик на вывод эмиттера. Обычно вы должны измерять от 0,4 до 1 В в зависимости от транзистора.
3. Для PNP поместите красный щуп на вывод эмиттера, а черный щуп на вывод основания. Обычно вы должны измерять от 0,4 до 1 В в зависимости от транзистора.
4. Как для NPN, так и для PNP поместите один датчик на коллектор, а другой датчик на излучатель.Здесь вы не должны получить достоверное прочтение. Поменяйте местами датчики, и снова вы не должны получить правильные показания.
Если транзистор проходит эти шаги, это хорошо. Если нет, то это плохо.
Автоматический метод мультиметра
В этом методе мы воспользуемся преимуществами тестера транзисторов, встроенного во многие мультиметры. Конечно, вам понадобится мультиметр, поддерживающий эту возможность.
Этот тест предназначен для деталей со сквозным отверстием. Если ваша деталь монтируется на поверхность, вам понадобится тестовые провода для подключения вашей детали к измерителю.
Если в вашем глюкометре есть эта функция, то где-нибудь на элементах управления вы найдете несколько отверстий с прорезями с метками для NPN и PNP. См. Пример ниже для счетчика мастера.
Этот тест состоит из трех этапов:
1. Сначала переместите ручку переключателя в раздел, обозначенный «hFE». Это переводит измеритель в транзисторный режим.
2. Затем обратите внимание, что отверстия помечены внизу для разных выводов NPN и PNP. Вам просто нужно совместить эти отверстия с выводами детали.Есть две строки: одна для NPN и одна для PNP.
3. Если наш транзистор вставлен правильно, измерение hFE должно соответствовать техническим характеристикам нашей детали. Мы можем найти это в таблице данных транзистора.
Если измеренное значение hFE соответствует нашему ожидаемому hFE с нашей стороны, то транзистор в порядке. Если нет, то это плохо. Надеюсь, это было полезно для вас.
Если у вас есть какие-либо вопросы или забавные истории о транзисторах, дайте мне знать об этом в комментариях ниже!
Понимание простого, но не такого простого транзистора —
Вы когда-нибудь задумывались, почему технологии смогли массовый рывок вперед в прошлом веке? Кажется, что с каждым десятилетием электроника становится все быстрее и эффективнее.В основном это результат крупных научных открытий, связанных с небольшими компонентами, заставляющими технологию работать. В основе этих достижений — скромный транзистор.
В этой статье мы рассмотрим сложности транзисторов, что они собой представляют, как работают и как используются. Мы также рассмотрим взаимосвязь между транзисторами и полупроводниками, в частности, функцию пластин GaAs при разработке специализированных транзисторов.
Что такое транзистор?
Транзисторы — это технические компоненты, которые служат как переключателем, так и усилителем электрических токов.Проще говоря, они используются для выполнения операций включения и выключения, сформулированных в виде шаблона для достижения определенной цели. Транзисторы играют важную роль как в простой, так и в сложной электронике, и их можно найти во всем, от телевизоров до смартфонов.
Как работают транзисторы?
Как усилитель
Одна из основных функций транзисторов — действовать как усилители электрических токов. Те из вас, кто знаком с законом сохранения энергии, могут задаться вопросом, как это возможно.В конце концов, разве количество энергии, поступающей в транзистор, не должно быть постоянным и равным максимальной выходной энергии?
Хотя это предположение верно, полезно подумать о транзисторах, таких как вентиль и водопровод. Независимо от количества воды, поступающей в шланг, давление воды меняется в зависимости от того, насколько открыт клапан. Транзисторы работают так же, как этот клапан, усиливая или ограничивая величину давления, допустимого в цепи. Это означает, что благодаря транзистору небольшое изменение напряжения может управлять большим током.
как коммутатор
Транзисторы имеют решающее значение в компьютерных функциях, потому что они действуют как переключатели для электрической энергии. Части компьютера, такие как микросхема памяти, состоят из миллионов транзисторов. Эти маленькие компоненты переключают электрические токи из одного места в другое или полностью перекрывают их, создавая серию паттернов «включено» и «выключено», которые преобразуются в единицы и нули, которые мы ассоциируем с двоичным кодом. По сути, транзисторы позволяют создавать условия «если-то», которые позволяют передавать определенные команды.
На микроуровне один транзистор мало что делает. Однако, когда миллионы или миллиарды транзисторов начинают формировать шаблоны, компьютер становится возможным выполнять задачу. Транзисторы работают, когда вы выполняете простые и сложные задачи; От набора электронной почты до игры в видеоигры — все возможно с помощью транзисторов.
Какие части транзистора?
Транзисторы состоят из трех основных компонентов; база, коллектор и эмиттер.
База
Основание функционирует как ворота, которые позволяют или ограничивают прохождение электричества от более крупного источника электропитания.
Коллектор
Как следует из названия, коллектор собирает носители заряда внутри транзистора, когда напряжение достигает базы.
Излучатель
Излучатель функционирует как точка выхода и выход для исходящего источника питания.
Какие бывают типы транзисторов?
Транзисторы разных типов выполняют разные функции.Фактически, существует два основных типа транзисторов; биполярная функция и эффект поля.
Биполярные переходные транзисторы
Это наиболее эффективные из двух типов для усиления электрических токов. Это устройства с регулируемым током, в которых небольшие токи проходят через базу и приводят к гораздо большему току, выходящему через эмиттер.
Полевые транзисторы
Полевые транзисторы имеют гораздо меньший ток, протекающий через них, что означает, что они потребляют меньше энергии от источника питания схемы.Это хорошо, потому что они не нарушают исходную схему и несут меньший риск перегрузки источника питания. Хотя они не так эффективны для усиления токов, как биполярные транзисторы, тем не менее они дешевле и проще в производстве.
Роль полупроводников в транзисторах
Работа транзистора была бы невозможна без полупроводников. Фактически, транзистор сам по себе является полупроводниковым устройством, используемым для передачи и усиления токов, и для этого используются полупроводниковые материалы, такие как кремний или пластины GaAs.
Что такое полупроводник?
Некоторые вещества можно классифицировать в зависимости от того, насколько хорошо они проводят электричество. Например, проводники, такие как серебро или алюминий, очень эффективно переносят токи из одной точки в другую. С другой стороны, изоляторы (например, резина или дерево) вообще не передают электричество. Следовательно, полупроводники — это вещества или материалы, способные передавать токи со скоростью где-то между проводником и изолятором.
Что такое GaAs Wafers?
GaAs обозначает арсенид галлия, соединение, обычно используемое в качестве полупроводника с прямой запрещенной зоной.Этот материал проходит процесс производства, аналогичный другим полупроводниковым материалам, таким как кремний, для создания пластины, используемой в качестве одного из основных и важных компонентов интегральных схем.
Что такое интегральные схемы?
Интегральные схемы — это отдельные компоненты, состоящие из транзисторов, в зависимости от типа, конденсаторов, резисторов и диодов. Когда вы собираете несколько интегральных схем, вы создаете полную электрическую схему. Следовательно, без полупроводников у вас не было бы транзисторов, а без транзисторов интегральные схемы, которые заставляют работать наш технологический мир, были бы невозможны.
Почему в транзисторах используются пластины из GaAs?
Кремний уже много лет является ведущим полупроводником, поскольку он является эффективным полупроводником, а также дешев в производстве. Однако это не означает, что они являются оптимальным вариантом для каждого приложения.
ПластиныGaAs могут передавать и выдерживать токи более высокого уровня более эффективно и с более низкой интенсивностью отказов, чем другие варианты. По этой причине пластины GaAs обычно используются в высокочастотных технологиях, таких как радары или датчики.
ПластиныGaAs также являются предпочтительным выбором в оборонной и аэрокосмической промышленности, поскольку они могут выдерживать высокие температуры и уровни излучения, которые были бы запрещены для других материалов.
Хотите узнать больше о GaAs Wafers?
Вы уже в нужном месте! Как ваш главный поставщик полупроводниковых пластин, Wafer World предлагает вам высококачественные продукты и лучшие в отрасли знания, чтобы ответить на все ваши вопросы о полупроводниках и их роли в электронике.