Калькулятор резисторов онлайн чип: Калькулятор цветовой маркировки резисторов

Содержание

Особенности чип-резисторов — Сайт о строительстве

Особенности чип-резисторов

Чип-резисторы довольно широко используются в современной электротехнике.

Они являются абсолютным аналогом привычных выводных резисторов, но обладают важным преимуществом — размером. Именно использование данных устройств позволяет создавать современную вычислительную и радиоэлектронную технику.

Они применяются в SMT-технологии, которая отличается высочайшей автоматизацией установки печатных плат.

Для создания чип-резисторов используют тонкоплёночную либо толстоплёночную технологию, а сами устройства имеют разные уровни погрешности сопротивления. Наиболее распространёнными значениями являются 5% либо 1%, а более точные около 0.01%.

Их применяют в медицинской и измерительной технике, автомобильной и потребительской электронике, различных телекоммуникационных устройствах, блоках питания, а также другом оборудовании. Существует огромное количество устройств разного назначения, среди них:

  • толстоплёночные;
  • низкоомные, используемые для определения силы тока;
  • прецизионные плёночные со стабильными характеристиками;
  • безкоррозийные;
  • переменные;
  • сборочные;
  • подавляющие выбросы напряжения.

Особенности маркировки чип-резисторов

Чтобы сориентироваться в представленном ассортименте чип-резисторов, необходимо учитывать их маркировку. Почти все резисторы, за исключением устройств типоразмера 0402, являются маркированными.

Маленькие устройства не имеют маркировки, ведь просто на них нет места, куда её возможно поставить. Если размер превышает 0805, на резисторе устанавливают маркировку, которая содержит 3 цифры.

Известно, что чип-резисторы с допуском 10%, 5%, а также 2% маркированы первыми тремя цифрами. Каждое число имеет строгий смысл. Последнее число на маркировке обозначает количество Омов.

Тогда как первые два числа выражают мантиссу. Чтобы обозначить десятичную точку, иногда к значащим числам добавляют букву R. Получается, что маркировка 242 обозначает номинал 24х102 Ом, а это равно 2,4 кОм.

Зависимо от допуска сопротивления номиналы могут разделяться на несколько рядов Е6, Е12, а также Е24. Если допуск сопротивления небольшой, в ряду больше номиналов.

Максимальное напряжение чип-резисторов составляет 200В. Этим максимумом обладают и стандартные резисторы для простого монтажа. Именно поэтому при передаче значительного напряжения, например 500В, стоит поставить несколько резисторов, которые соединены последовательно.

SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких видов резисторов  – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные резисторы, предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо  две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 100 равно 45 Ом
  • 273 = 27 х 103 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 102 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 103 равно 173000 Ом (173 кОм)

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

Маркировка EIA-96

SMD резисторы повышенной точности (прецизионные)  в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код номинала резистора, а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

Способ изготовления чип-резисторов

Изобретение относится к электронной технике, а именно к производству постоянных резисторов, и может быть использовано в электронной, радиотехнической и других смежных отраслях промышленности.

По тонкопленочной технологии изготовления чип-резисторов – резистивный и проводниковый слои формируются путем вакуумного напыления на изолирующую подложку с последующей фотолитографией.

Известен прецизионный тонкопленочный чип-резистор, защищенный патентом РФ №2123735, кл. H01C 7/00, опубл. 20.12.1998 г.

В прецизионном тонкопленочном чип-резисторе, содержащем диэлектрическое основание с нанесенной на него керметной резистивной пленкой, контактные элементы и защитное покрытие, нанесенное непосредственно на резистивную пленку, между контактными элементами, защитным покрытием является кремнийорганический материал из ряда алкилалкоксисиланов, на который по всей рабочей поверхности резистора нанесен дополнительно эпоксидно-фенольный материал.

К недостаткам упомянутого способа можно отнести недостаточные эксплуатационные характеристики чип-резисторов, а именно надежность, стабильность.

Известен способ изготовления тонкопленочных резисторов, защищенный патентом РФ №2213383, кл. H01C 17/00, опубл. 27.09.2003. На подложку напыляют резистивный слой и многослойную проводящую структуру.

После первой фотолитографии и травления структуры получают проводники и контактные площадки. При второй фотолитографии фоторезистом покрывают все проводники и площадки, за исключением площадок перекрытия резисторов с проводниками, и формируемые резисторы.

Затем травлением резистивного слоя формируют тонкопленочные резисторы.

К недостаткам упомянутого способа можно отнести недостаточные эксплуатационные характеристики чип-резисторов, а именно надежность, стабильность.

Наиболее близким к заявляемому по технической сущности и достигаемому результату, выбранным в качестве прототипа, является способ изготовления прецизионных чип-резисторов по гибридной технологии, защищенный патентом РФ №2402088, МПК H01C 17/06, H01C 17/28, опубл. 20.10.2010 г.

Способ содержит следующие технологические операции: 1) нанесение на шлифованную (тыльную) поверхность изоляционной подложки методом трафаретной печати слоя серебряной или серебряно-палладиевой пасты с последующим ее вжиганием, образуя тем самым электродные контакты на тыльной стороне подложки; 2) напыление на полированную (лицевую) сторону изоляционной подложки методом вакуумной (тонкопленочной) технологии резистивного слоя; 3) формирование методом фотолитографии и ионного травления топологии резистивного слоя на подложке; 4) нанесение методом трафаретной печати на лицевой стороне подложки поверх резистивного слоя низкотемпературной серебряной пасты с последующим ее вжиганием, образуя тем самым электродные контакты на лицевой стороне; 5) подгонку методом лазерной подгонки величины сопротивления резисторов в номинал; 6) нанесение методом трафаретной печати на резистивный слой с последующим вжиганием слоя низкотемпературной защитной пасты, образуя защитный слой; 7) скрайбирование и ломку пластины изоляционной подложки на полосы; 8) напыление методом вакуумной (тонкопленочной) технологии из сплава никеля с хромом на торцы, соединяя тем самым между собой электродные контакты лицевой и тыльной сторон подложки; 9) ломку рядов пластины на чипы; 10) нанесение гальваническим методом поверх электродных контактов – торцевого, на лицевой и на тыльной сторонах – слоя никеля; 11) нанесение поверх слоя никеля гальваническим методом слоя припоя в виде сплава олова со свинцом.

К недостаткам упомянутого способа можно отнести использование дополнительной операции по формированию планарных (электродных) контактов на тыльной стороне подложки, усложняющей технологический процесс производства чип-резистора, а также недостаточные эксплуатационные характеристики чип-резисторов, а именно надежность, стабильность.

Задача, решаемая предлагаемым изобретением, – усовершенствование способа изготовления чип-резисторов.

Технический результат от использования изобретения заключается в улучшении эксплуатационных характеристик, а именно улучшении стабильности получаемых резистивных пленок за счет дополнительных операций – термообработки и термотренировки, повышении надежности вследствие отбраковки потенциально ненадежных чип-резисторов на операции импульсная тренировка.

Также техническим результатом от использования изобретения является повышение технологичности за счет использования вакуумно-дугового (тонкопленочного) способа формирования планарных контактов на обратной стороне подложки одновременно с торцевыми контактами, позволяющего исключить операцию формирования планарных контактов на тыльной стороне подложки.

Указанный результат достигается тем, что в способе изготовления чип-резисторов, включающем формирование резистивного слоя путем напыления с последующей фотолитографией, формирование планарных контактов на лицевой стороне подложки, лазерную подгонку, формирование защитного слоя, разделение подложки на полосы, формирование торцевых контактов по тонкопленочной технологии, нанесение припоя, разделение полос на чипы, пленарные контакты на лицевой стороне подложки формируют по тонкопленочной технологии с использованием фотолитографии, а планарные контакты на тыльной стороне подложки формируют одновременно с торцевыми контактами, дополнительно введены операции термообработки, термотренировки и импульсной тренировки, при этом термообработку осуществляют после формирования резистивного слоя, термотренировку и импульсную тренировку проводят после разделения полос на чипы.

Сущность предлагаемого способа изготовления чип-резисторов состоит в следующем.

На чертеже изображена конструкция чип-резистора, способ изготовления которого предлагается в данном изобретении.

В качестве основы чип-резистора используется изолирующая подложка (алюмооксидная пластина) 1. Вначале проводят подготовку изолирующих подложек, заключающуюся в очистке и отжиге. Отжиг проводят в печи при температуре (600±20)°C в течение (60±10) минут.

Далее формируют резистивный слой 2 и планарные контакты 3 на лицевой стороне подложки посредством напыления с последующей фотолитографией.

Далее проводят термообработку, заключающуюся в выдерживании чип-резисторов при температуре в диапазоне (350- 550)°C в течение (15-60) минут, лазерную подгонку сопротивления чип-резисторов, формируют защитный слой 4 посредством нанесения низкотемпературной защитной пасты с последующей сушкой, производят разделение подложки на полосы (плата-ряды).

Планарные контакты на тыльной стороне подложки формируют одновременно с торцевыми контактами 5 посредством напыления слоя никеля с подслоем титана с одновременным формированием планарных контактов на тыльной стороне подложки и последующим нанесением припоя (сплава олово-свинец). Далее разделяют полосы на чипы.

После этого последовательно производят термотренировку и импульсную тренировку. Термотренировка заключается в выдерживании чип-резисторов в термостате в течение (8±0,5) часов при температуре (130±20)°C. Импульсная тренировка заключается в стабилизации резистивного слоя чип-резисторов приложенным импульсным напряжением в диапазоне (10-1000) В.

Пример

В качестве основы чип-резистора использовалась изолирующая подложка (алюмооксидная пластина). Вначале проводили подготовку изолирующих подложек, заключавшуюся в очистке и отжиге. Отжиг проводили в печи при температуре (600±20)°C в течение (60±10) минут.

Далее формировали резистивный слой и планарные контакты на лицевой стороне подложки посредством напыления на установке УВН-71П-3 с последующей фотолитографией.

Далее проводили термообработку, заключавшуюся в выдерживании чип-резисторов при температуре в диапазоне (350-550)°C в течение (15-60) минут, лазерную подгонку сопротивления чип-резисторов методом удаления части резистивного слоя сфокусированным лучом лазера (на машине лазерной для подгонки резисторов МЛ 5-2), формировали защитный слой посредством нанесения низкотемпературной защитной пасты 4081 (ТУ 031-00387275-09) методом трафаретной печати с последующей сушкой в ИК- печи при 150°C и вжиганием в конвейерной мультизонной печи при температуре (200±20)°C, производили резку подложек на полосы. Планарные контакты на тыльной стороне подложки формировали одновременно с торцевыми контактами посредством напыления слоя никеля с подслоем титана на вакуумной установке НАНОМЕТ-200 и последующим горячим лужением припоем методом окунания в расплавленный припой (сплав олово-свинец при температуре 230-300°C), далее разламывали полосы на чипы. После этого последовательно производили термотренировку и импульсную тренировку. Термотренировка заключалась в выдерживании чип-резисторов в термостате в течение (8±0,5) часов при температуре (130±20)°C. Импульсная тренировка заключалась в стабилизации резистивного слоя чип-резисторов приложенным импульсным напряжением в диапазоне (10-1000) В.

Полученные резисторы имели следующие технические характеристики

Параметр
Значение (лучшее)

ТКС×10-6 1/°C в диапазоне температур от 20 до 125°C
±5

Гарантированная стабильность в течение 2000 ч при P=Pномин. и Т=85°C, не более
±0,25%

Допускаемое отклонение от номинального сопротивления
±0,25%

Минимальная наработка
30000 час

Сопротивление резисторов измеряли по ГОСТ 21342.20-78 «Резисторы. Метод измерения сопротивления». Температурный коэффициент сопротивления (ТКС) измеряли согласно ГОСТ 21342.15-78 «Резисторы. Метод определения температурной зависимости сопротивления».

Наработку оценивали по ГОСТ 25359-82 «Изделия электронной техники. Общие требования по надежности и методы испытаний».

Прочность контактных узлов резисторов на воздействие сдвигающей силы контролируют при креплении резисторов путем припаивания за контактные поверхности (торцевые контакты) к металлизированным серебром и облуженным площадкам на керамической плате.

Направление приложения усилия – параллельно торцевым контактам резистора. Значение нагрузки для резисторов типоразмера 0805 значительно превысило 0,15 кгс, а для типоразмеров 1206 и 2010 значительно превысило 0,3 кгс.

Таким образом, использование предлагаемого изобретения позволяет улучшить эксплуатационные характеристики чип-резисторов, а именно стабильность получаемых резистивных пленок за счет дополнительных операций – термообработки и термотренировки, надежность вследствие отбраковки потенциально ненадежных чип-резисторов на операции импульсная тренировка.

Предлагаемая технология изготовления чип-резисторов является более технологичной по сравнению с прототипом за счет использования вакуумно-дугового (тонкопленочного) способа формирования планарных контактов на тыльной стороне подложки одновременно с торцевыми контактами, позволяющего исключить операцию формирования планарных контактов на тыльной стороне подложки.

Способ изготовления чип-резисторов, включающий формирование резистивного слоя путем напыления с последующей фотолитографией, формирование планарных контактов на лицевой стороне подложки, лазерную подгонку, формирование защитного слоя, разделение подложки на полосы, формирование торцевых контактов по тонкопленочной технологии, нанесение припоя, разделение полос на чипы, отличающийся тем, что планарные контакты на лицевой стороне подложки формируют по тонкопленочной технологии с использованием фотолитографии, а планарные контакты на тыльной стороне подложки формируют одновременно с торцевыми контактами, дополнительно введены операции термообработки, термотренировки и импульсной тренировки, при этом термообработку осуществляют после формирования резистивного слоя, термотренировку и импульсную тренировку проводят после разделения полос на чипы.

Поверхностный монтаж, применение ЧИП (SMD) компонентов

В чем же заключаются плюсы применения таких чип элементов? Давайте разберемся.

Плюсы данного вида монтажа

Во первых, применение чип компонентов заметно уменьшает размеры готовых печатных плат, уменьшается их вес, как следствие для этого устройства потребуется небольшой компактный корпус.  Так можно собрать очень компактные и миниатюрные устройства.

Применение чип элементов заставляет экономить печатную плату (стеклотекстолит), а так же хлорное железо для их травления, кроме того, не приходиться тратить  время на высверливание отверстий, в любом случае, на это уходит не так много времени и средств.
Платы изготовленные таким образом легче ремонтировать и легче заменять радиоэлементы на плате.

Можно делать двухсторонние платы, и размещать элементы на обеих сторонах платы. Ну и экономия средств, ведь чип компоненты стоят  дешево, а оптом брать их очень выгодно.

Для начала, давайте определимся с термином поверхностный монтаж, что же это означает? Поверхностный монтаж – это технология производства печатных плат, когда радиодетали размещаются со стороны печатных дорожек, для их размещения на плате не приходится высверливать отверстия, если коротко, то это означает “монтаж на поверхность”. Данная технология является наиболее распространенным на сегодняшний день.

Кроме плюсов есть конечно же и минусы. Платы собранные на чип компонентах боятся сгибов и ударов, т.к. после этого радиодетали, особенно резисторы с конденсаторами просто напросто трескаются. Чип компоненты не переносят перегрева при пайке. От перегрева они часто трескаются и появляются микротрещины. Дефект проявляет себя не сразу, а только в процессе эксплуатации

Типы и виды чип радиодеталей

Резисторы и конденсаторы

Чип компоненты (резисторы и конденсаторы) в первую очередь разделяются по типоразмерам, бывают 0402 – это самые маленькие радиодетали, очень мелкие, такие применяются например в сотовых телефонах, 0603 – так же миниатюрные, но чуть больше чем предыдущие, 0805 – применяются например в материнских платах, самые ходовые, затем идут 1008, 1206 и так далее.

Резисторы:

Конденсаторы:

Ниже дана более таблица с указанием размеров некоторых элементов: [0402] – 1,0 × 0,5 мм [0603] – 1,6 × 0,8 мм [0805] – 2,0 × 1,25 мм [1206] – 3,2 × 1,6 мм

[1812] – 4,5 × 3,2 мм

Все чип резисторы обозначаются кодовой маркировкой, хоть и дана методика расшифровки этих кодов, многие все равно не умеют расшифровывать номиналы этих резисторов, в связи с этим я расписал коды некоторых резисторов, взгляните на таблицу.

Примечание: В таблице ошибка: 221 “Ом” следует читать как “220 Ом”.

Что касается конденсаторов, они никак не обозначаются и не маркируются, поэтому, когда будете покупать их, попросите продавца подписать ленты, иначе, понадобится точный мультиметр с функцией определения емкостей.

Транзисторы

В основном радиолюбители применяют транзисторы вида SOT-23, про остальные я рассказывать не буду. Размеры этих транзисторов следующие: 3 × 1,75 × 1,3 мм.

Как видите они очень маленькие, паять их нужно очень аккуратно и быстро. Ниже дана распиновка выводов таких транзисторов:

Распиновка у большинства транзисторов в таком корпусе именно такая, но есть и исключения, так что прежде чем запаивать транзистор проверьте распиновку выводов, скачав даташит к нему. Подобные транзисторы в большинстве случаев обозначаются с одной буквой и 1 цифрой.

Диоды и стабилитроны

Диоды как и резисторы с конденсаторами, бывают разных размеров, более крупные диоды обозначают полоской с одной стороны – это катод, а вот миниатюрные диоды могут отличаться в метках и цоколевке. Такие диоды обозначаются обычно 1-2 буквами и 1 или 2 цифрами.

Диоды:

Стабилитроны BZV55C:

Стабилитроны, так же как и диоды, обозначаются полоской с краю корпуса. Кстати, из-за их формы, они любят убегать с рабочего места, очень шустрые, а если упадет, то и не найдешь, поэтому кладите их например в крышку от баночки с канифолью.

Микросхемы и микроконтроллеры

Микросхемы бывают в разных корпусах, основные и часто применяемые типы корпусов показаны ниже на фото.

Самый не хороший тип корпуса это SSOP – ножки этих микросхем располагаются настолько близко, что паять без соплей практически нереально, все время слипаются ближайшие вывода.

Такие микросхемы нужно паять паяльником с очень тонким жалом, а лучше паяльным феном, если такой имеется, методику работы с феном и паяльной пастой я расписывал в этой статье.

Следующий тип корпуса это TQFP, на фото представлен корпус с 32мя ногами (микроконтроллер ATmega32), как видите корпус квадратный, и ножки расположены с каждой его стороны, самый главный минус таких корпусов заключается в том, что их сложно отпаивать обычным паяльником, но можно. Что же касается остальных типов корпусов, с ними намного легче.

Как и чем паять чип компоненты?

Чип радиодетали лучше всего паять паяльной станцией со стабилизированной температурой, но если таковой нет, то остается только паяльником, обязательно включенным через регулятор! (без регулятора у большинства обычных паяльников температура на жале достигает 350-400*C). Температура пайки должна быть около 240-280*С.

Например при работе с бессвинцовыми припоями, имеющими температуру плавления 217-227*С, температура жала паяльника должна составлять 280-300°С.  В процессе пайки необходимо избегать избыточно высокой температуры жала и чрезмерного времени пайки. Жало паяльника должно быть остро заточено, в виде конуса или плоской отвертки.

Рекомендации по пайке чип компонентов

Печатные дорожки на плате необходимо облудить и покрыть спирто-канифольным флюсом. Чип компонент при пайке удобно поддерживать пинцетом или ногтем, паять нужно быстро, не более 0.5-1.5 сек.

Сначала запаивают один вывод компонента, затем убирают пинцет и паяют второй вывод.

Микросхемы нужно очень точно совмещать, затем запаивают крайние вывода и проверяют еще раз, все ли вывода точно попадают на дорожки, после чего запаивают остальные вывода микросхемы.

Если при пайке микросхем соседние вывода слиплись, используйте зубочистку, приложите ее между выводами микросхемы и затем коснитесь паяльником одного из выводов, при этом рекомендуется использовать больше флюса. Можно пойти другим путем, снять экран с экранированного провода и собрать припой с выводов микросхемы.

Несколько фотографий из личного архива

Заключение

Поверхностный монтаж позволяет экономить средства и делать очень компактные, миниатюрные устройства. При всех своих минусах, которые имеют место, результирующий эффект, несомненно, говорит о перспективности и востребованности данной технологии.

Размеры SMD резисторов

Главная > Теория > Размеры SMD резисторов

Резисторы, изготовленные по технологии SMD (surface mount device), монтируются на поверхность платы посредством пайки к печатным проводникам.

Технология поверхностного монтажа позволила автоматизировать установку компонентов, применить в производстве групповые способы пайки: волной припоя, ИК нагревом и т. д.

Использование компонентов SMD обеспечивает значительное уменьшение размеров радиоэлектронной аппаратуры по сравнению с технологией выводного монтажа (ТНТ) и сокращение времени на производство изделия.

Резисторы для поверхностного монтажа

В отличие от традиционных выводных, имеющих не так много вариантов исполнения, существует множество типоразмеров SMD резисторов, иногда разница в размерах составляет доли миллиметра и существенно не влияет на другие параметры. Наиболее распространённые корпуса – это SOD 80/110/123, SMA DO 214.

Основные типоразмеры резисторов SMD

Общепринятое обозначение состоит из четырёх цифр, которые указывают на длину (первые две цифры) и ширину корпуса в дюймах, согласно рекомендованному стандарту EIA.

Некоторые производители используют метрическую систему. Правила обозначений описывают только способ – четырьмя цифрами, конкретные размеры резисторов стандартами не установлены.

Маркировка, содержащая сведения о типоразмере, на корпус изделия не наносится.

Основные размеры

Высота корпуса большинства резисторов не превышает 1-2 мм.

Наиболее распространённые типоразмеры SMD – резисторов общего назначения

Тип корпусаL(мм)W(мм)P макс. (мВт)Рабочее напряжение (вольт)

0402(1005)
1.0
0.5
63
50

0603(1608)
1,6
0,8
100
100

0805(2012)
2.0
1.2
125
200

1206(3216)
3.2
1.6
250
400

1210(3225)
3.2
2.5
250
400

1812(4532)
4.5
3.2
500
400

2010(5025)
5.0
2.5
630
400

2512(6432)
6.4
3.2
1000
400

2824(7161)
7.1
6.1
————–

3225(8063)
8.0
6.3
————–

4030(1076)
10.2
7.6
————–

Мощность компонентов СМД, имеющих длину более 5 мм, определяется технологией изготовления. Привести все сочетания длины и ширины корпусов и упомянуть все варианты исполнений, выпускаемые мировыми производителями, невозможно, для определения типоразмера достаточно, с приемлемой точностью, измерить корпус.

Иногда чип вообще может иметь форму, отличную от прямоугольника с разными сторонами, например, квадратный корпус DO – 214АА.

Резисторы для SMD-монтажа в цилиндрических корпусах типа MELF выпускаются в трёх самых распространённых типономиналах: Micro-MELF 2.2х1.1 мм, Mini-MELF 3.6х1.4 мм и MELF 5.8х2.2 мм.

Для указания размеров этого типа применяется метрическая система, где в первой части – длина изделия, вторая – означает диаметр.

Электрическое сопротивление не зависит от размеров чипа и может быть любым: от нулевого (перемычка) до нескольких мегаом и более. Мощность рассеяния резисторов, как и любого электронного компонента, в большинстве случаев напрямую зависит от их размера, но также определяется типом резистивного слоя.

Важно отметить! Указанные в таблице значения мощности являются ориентировочными, могут применяться к размерам SMD резисторов, предназначенных для универсального применения в массовой аппаратуре. Так, низкоомные резисторы серии LR 2512 фирмы Yageo имеют мощность рассеяния 2-3 ватта, в зависимости от исполнения, толстоплёночные резисторы типоразмера 1206 производства Vishay – 0.5 ватт.

Резисторы для поверхностного монтажа могут конструктивно объединяться в резисторные сборки, содержащие несколько элементов в стандартных типоразмерах.

Для специальных применений резисторы большой мощности выпускаются в SMD-корпусе TO252 (DPAK). В отдельных случаях разработчик оборудования может применить практически любой конструктив для сопротивления и заказать производителю ограниченную партию своих уникальных изделий.

Подстроечные SMD резисторы

Маркировка SMD резисторов

Система обозначений типоразмеров переменных резисторов для поверхностного монтажа определяется изготовителем, единого стандарта не имеет.

Переменный SMD резистор

Производятся в открытом, закрытом или герметизированном исполнении, с электрическими сопротивлениями из стандартного ряда. Размеры продукции разных производителей примерено одинаковы и, как правило, не превышают 5 мм по большей стороне.

Видео

Таблица резисторов SMD 0805 1% по ряду E96 и E 24 поставляемых со склада. Мощность резисторов чип

ГлавнаяМощностьМощность резисторов чип

Маркировка чип резисторов смд резистор онлайн калькулятор мощность

Самым распространённым и очень широко применяемым в электронике элементом. является резистор. Это элемент, создающий сопротивление электрическому току. Номинальные значения зависят от класса точности. Он указывает на отклонение, от номинала, которое допускается техническими условиями. Имеются три класса точности:

  • 5 %-ный ряд;
  • 10 %-ный;
  • 20 %- ный.

Например, если взять резистор I класса с номинальным значением сопротивления 100 кОм, то его натуральная величина находится в пределах от 95 до 105 кОм. У такого же компонента III класса точности величина будет лежать в 20%ном интервале, и равняться 80 или 120 кОм. Кто хорошо знаком с электротехникой, может вспомнить, что существуют прецизионные резисторы с 1%ным допуском.

Термин SMD резистор появился сравнительно недавно. Surface Mounted Devices дословно можно перевести на русский язык как «устройство, монтируемое на поверхность».

Чип резисторы, как их ещё называют, используют при поверхностном монтаже печатных плат. Они имеют гораздо меньшие габариты, чем их проволочные аналоги.

Квадратная, прямоугольная или овальная форма и низкая посадка позволяет компактно размещать схемы и экономить площадь.

На корпусе имеются контактные выводы, которые при монтаже крепятся прямо на дорожки печатной платы. Подобная конструкция делает возможным крепить элементы без применения отверстий.

Благодаря этому полезная площадь платы используется с максимальным эффектом, что позволяет уменьшить габариты устройств.

В связи с тем, что имеют место небольшие размеры элементов, достигается высокая плотность монтажа.

Основное преимущество таких элементов — это отсутствие гибких выводов, что позволяет не сверлить отверстия в печатной плате. Вместо них используются контактные площадки.

Маркировка

Размеры и форма SMD резисторов регламентируются нормативным документом. (JEDEC), где приводятся рекомендуемые типоразмеры. Обычно на корпусе наносятся данные о габаритах элемента. К примеру, цифровой код 0804 предполагает длину, равную 0,080 дюймам, ширину — 0,040 дюйма.

Если перевести такую кодировку в систему СИ, то этот компонент будет обозначаться как 2010. Из этой надписи видно, что длина составляет 2,0 мм, а ширина 1,0 мм. (1 дюйм равен 2,54 мм)

Требуемая мощность рассеивания определяет размер чипа. Поскольку на SMD резистор, имеющий очень маленький габарит, не представляется возможным разместить стандартную маркировку, которая имеется у обычных проволочных резистивных сопротивлений, разработана кодовая система обозначений. Для удобства производители условно разделили все чипы по способу маркировки на три типа:

  • из трёх цифр;
  • из четырёх цифр;
  • из двух цифр и буквы;

Последний вариант применяется для SMD-сопротивлений повышенной точности с допуском 1% ( прецизионных). Очень маленький размер не позволяет размещать на них надписи с длинными кодами. Для них разработан стандарт EIA-96

Для маркировки маленьких сопротивлений (менее 10 Ом) используется латинская буква R Например: 0R1 = 0,1 Ом и 0R05 = 0,05 Ом.

Существуют номиналы повышенной точности (так называемые прецизионные)

Пример подбора нужного резистора: если указана цифра 232 то необходимо 23 умножить на 10 во второй степени. Получается сопротивление 2,3 кОм (23 x 10 2 = 2300 Ом = 23 кОм). Аналогично рассчитываются чипы второго типа.

Расшифровывается их маркировка следующим образом: первые 2 цифры это основание, которое нужно умножить на 10 в степени третьего числа, чтобы получить номинал резистора.

Резистор 102 smd — расшифровывается так 10*100 = 1000 Ом или 1 кОм

Расшифровка обозначений чипов — специфичное занятие. Вычислить необходимую величину возможно используя старыми проверенными способами, проделав несколько арифметических действий. Но прогресс не стоит на месте, и кто это можно выполнить при помощи различных сайтов.

Онлайн-калькулятор

Калькулятор smd резисторов поможет подобрать нужный типоразмер, разобраться с кодами, а также избавит от изнурительных расчётов. Используя специальные программы можно найти информацию совершенно бесплатно.

Пример определения сопротивлений

240 = 24 х 100 равняется 24 Ом

273 = 27 х 103 равняется 27 кОм

Резисторы типоразмера 0603 точностью 1% маркируются кодом из двух цифр и одной латинской буквы, где цифры обозначают порядковый номер номинала в ряду е96, а буква множитель: A=x10, B=x100 и т.д., X=x1, Y=x0.1, Z=x0.01

Реверсивный калькулятор кодов

Калькулятор может работать со всеми кодами маркировки smd: из 3-х цифр, из 4-х цифр, или с кодом EIA-96. Для получения нужной величины сопротивления, нужно вписать код в центре рисунка резистора, и нажать на стрелку вниз. В текстовом поле появится искомое значение.

В обратном направлении также можно определиться с необходимым типом. Выбрать тип кодировки (поставить точку в нужном поле напротив кода), затем, чтобы получить код сопротивления, написать в поле сопротивление, которое имеет резистор. (10 кОм). SMD калькулятор выдаст нужный код после нажатия стрелки вверх.

Он появится в центре рисунка.

instrument.guru

Номинал Склад Заказ

750 Ом

1 кОм

1,2 кОм

1,3 кОм

1,5 кОм

1,8 кОм

2 кОм

2,2 кОм

2,4 кОм

3 кОм

3,01 кОм

3,9 кОм

4,7 кОм

5,1 кОм

6,8 кОм

7,5 кОм

9,1 кОм

10 кОм

15 кОм

Купить

Упаковка: В блистр-ленте на катушке диаметром 180 мм по 5000 штук резисторов типоразмера 1206.

  • Номинальная мощность чип резистора 1206 при 70°С…………..0.25 Вт
  • Рабочее напряжение чип резистора 1206…………………………….200 В
  • Максимальное напряжение чип резистора 1206……………………400 В
  • Диапазон рабочих температур чип резистора 1206………………-55° +125°С
  • Температурный коэффициент сопротивления………………………100 ppm/°С

Чип резисторы типоразмера 1206 5% поставляются со склада по ряду e24.

Современная малопотребляющая электронная аппаратура допускает использование чип резисторов меньшей рассеиваемой мощности 0402 5%, 0402 1%; 0603 5%, 0603 1%; 0805 5%, 0805 1%.

В электрических схемах требующих большей рассеиваемой мощности или рабочего напряжения 2512 5% и 2512 1%. Этот типоразмер удобен при выборе низкоомных резисторов.

Маркировка SMD резисторов: общая информация, принципы обозначений, расшифровка данных

Резисторы… Как много важного содержится в этом слове для тех, кто увлекается электроникой или постоянно работает с ней. Однако для полного погружения в мир электроники необходимо хотя бы поверхностно знать и уметь определять маркировку чип резисторов.

Общие данные SMD чипов

Аббревиатура «SMD» расшифровывается как Surface Mounted Devices, что в переводе на русский язык означает «устройство, монтируемое на поверхность». И это действительно так — резисторы устанавливаются над поверхностью на специальных креплениях. Монтируются же эти устройства на печатных платах.

Одно из значительных преимуществ smd-чипов заключается в их небольшом размере. На одной печатной плате можно без труда разместить десятки (если не сотни) подобных изделий. Также благодаря высокому качеству и небольшой стоимости, резисторы обрели необычайную популярность на рынке электроники.

Благодаря постоянному прогрессу, появляются всё новые модели чипов резисторов, маркировка и характеристики которых постоянно меняются. Всего же на этом рынке есть 3 типа изделий:

  • Сделанные в советский период (сейчас значительно теряют популярность).
  • Современные модели.
  • Резисторы SMD.

В этой статье остановимся на маркировке последнего типа т. к. он наиболее интересен.

Принципы маркировки

Все SMD чипы обозначаются по-разному. Дело в том, что каждое изделие имеет свой размер и значение допуска. Соответственно, чтобы не возникало путаницы, производителями было решено выделить 3 основные группы для маркировки:

  • Изделия, обозначающиеся 3-мя цифрами.
  • Модели, имеющие в маркировке 4 цифры.
  • Устройства с 2-мя цифрами и одной буквой.

Каждый из этих типов стоит рассмотреть более подробно.

К первой группе относятся изделия (числа 103, 513 и др.) с допуском в 2%, 5% или 10%. Под первыми двумя цифрами мантисса, а последняя указывает на показатель степени 10. Последнее значение необходимо для расчёта номинала резистора (измеряется в Омах). Также в некоторых моделях имеется буква «R», которая обозначает десятичную точку.

Ко второй группе было решено отнести модели, имеющих типоразмер в 0805 и выше, а также обладающих допуском в 1%.

Принцип схож с первой группой резисторов: первые 3 цифры обозначают мантиссу, а четвёртая — значение степени, имеющее основание 10.

Кроме того, здесь так же, как и в предыдущем типе, последнее число подразумевает номинал модели (в Омах), а буквой R обозначают десятичную точку. Стоит упомянуть, устройства с типоразмером 0402 не маркируются.

Наконец, в последней группе располагаются smd чипы, имеющих типоразмер 0603 и уровень допуска в 1%. Цифры указывают на код в таблице EIA-96 (об этом ниже), а буква — значение множителя:

  • A — число 10 в нулевой степени
  • B — основание 10 со степенью 1
  • C — это число 10 в степени 2
  • D = 103
  • E = 104
  • F = 105
  • R = 10-1
  • S = 10-2

Расшифровка маркировки

Для установки или работы с SMD резистором, необходимо знать и уметь расшифровать числа и буквы. Этот процесс можно разделить на 2 типа.

Обычная расшифровка

Как было сказано выше, при изготовлении smd резисторов, действуют нерушимые правила маркировки. Они придуманы для того, чтобы покупатель без труда смог определить мантиссу и значение сопротивления. Поэтому всё, что потребуется — это листочек с ручкой или математический склад ума.

Начнём с простого примера — определения сопротивления у изделий с допуском в 2%, 5% или 10% (это те модели, у которых в маркировке 3 цифры). Предположим, на резисторе указана цифра 233. Это значит, что необходимо 23 умножить на 10 в третьей степени. В итоге получится, что у изделия сопротивление 23 КОм (23 x 103 = 23 000 Ом = 23 КОм).

Аналогичная ситуация у моделей, имеющих 4 цифры в описании. Допустим, на изделии указано число 5401. Выполняя аналогичные вычисления получаем сопротивление 5,4 КОм (540 x 101 = 5 400 Ом = 5,4 КОм).

Совершенно иначе обстоят дела с расшифровкой обозначения у изделий, на которых указаны цифры и буквы. Как было написано выше, для этого потребуется таблица EIA-96 (её можно без труда отыскать в интернете).

Подставив цифры в соответствующую строку и перевести букву в численное выражение, можно без труда вычислить сопротивление. Например, маркировка 04D означает, что сопротивление равно 10,7 КОм (107 x 103 = 107 000 Ом = 10,7 КОм).

Расшифровка через сервисы

Прогресс не стоит на месте. Постоянно внедряются современные технологии, разрабатываются новые подходы, другими словами, жизнь человека становится всё более комфортной. В современном мире даже для вычисления сопротивления у SMD чипов, существуют хорошие сервисы и программы.

В интернете можно без труда найти множество сайтов, на которых предоставляется возможность рассчитать сопротивление. В большинстве случаев, таким сервисом выступает калькулятор для вычисления сопротивления резистора. Вот лишь некоторые из них:

  • cxem.net/calc/calc.php
  • wpcalc.com/markirovka-smd-rezistorov
  • profi-radio.ru/online-raschyot-soprotivleniya-smd-rezistora-po-tsifrovoy-markirovke.html

Также специально для этих целей была разработана отечественная программа «Резистор». Она в пару кликов позволяет узнать всю информацию об изделии. Кроме того, данный софт абсолютно бесплатен.

И в заключение

Расшифровка обозначений SMD резисторов — довольно специфичный процесс. Однако для полноценной работы с чипами, это просто необходимо. Кроме того, полученные знания точно не будут лишними.

Довольно многие люди предпочитают делать вычисления по старинке — с помощью ручки и блокнота. Другие же используют специальный софт. Но в любом случае стоит лишь немного потренироваться — и вычислять сопротивление резисторов не составит труда.

Способ изготовления прецизионных чип-резисторов по гибридной технологии

Изобретение относится к электронной технике, а именно к производству постоянных резисторов, и может быть использовано в электронной, радиотехнической и других смежных отраслях промышленности при изготовлении прецизионных чип-резисторов.

Изготовление прецизионных чип-резисторов основано на использовании толстопленочной либо тонкопленочной технологии [1].

Сущность толстопленочной технологии состоит в нанесении на изоляционную подложку слоя специальной токопроводящей пасты с последующим вжиганием ее в подложку и формированием электродных контактов.

Вследствие простоты изготовления чип-резисторы толстопленочной технологии характеризуются сравнительно невысокой стоимостью их производства при приемлемых для некоторых потребителей значениях технических характеристик.

Их основные технические параметры характеризуются следующими величинами: лучшие значения температурного коэффициента сопротивления (ТКС) находятся в пределах ±50·10-6 1/град; нестабильность параметров у лучших фирм не выходит за пределы ±1% за 1000 часов работы; уровень (ЭДС) шумов в значительной степени зависит от номинала и в ряде случаев при сопротивлении более 1 МОм превышает значение 30 мкВ/В.

При изготовлении чип-резисторов по тонкопленочной технологии резистивный слой образуется путем вакуумного напыления на изоляционную подложку проводящего материала, вследствие чего сложность производства, себестоимость и технические характеристики таких резисторов оказываются значительно выше. Так, значения ТКС находятся в пределах ±(5-10)·10-6 1/град; нестабильность параметров не превышает ±0,05% за 1000 часов работы; уровень шумов не превышает значение 1 мкВ/В.

В качестве аналогов предлагаемого изобретения можно отметить такие известные изобретения, как “Способ изготовления толстопленочных резисторов” [2] и “Прецизионный тонкопленочный резистор” [3]. Основные сопоставительные характеристики резисторов-аналогов соответствуют изложенному выше.

За прототип изобретения принят “Способ изготовления бескорпусного резистора” [4], представляющего собой изготовление чип-резисторов по гибридной технологии.

Сущность прототипа состоит в следующем.

Для изготовления резисторов используют изоляционную подложку, в которой образованы множественные первые линейные параллельные надрезы и множественные вторые линейные параллельные надрезы, причем вторые линейные надрезы перпендикулярны первым линейным надрезам.

Вначале посредством нанесения способом печатания толстопленочного пастообразного состава с последующим его спеканием формируют на лицевой (верхней) поверхности подложки верхний электродный контакт, а затем на нижней поверхности подложки формируют соответственно нижний электродный контакт.

Далее путем нанесения тонкопленочного резистивного слоя формируют резистивный элемент на верхней поверхности подложки (основания).

Ломая подложку по первым и вторым надрезам, получают соответствующие чип-резисторы.

Таким образом, прототип, совмещая процессы толстопленочной и тонкопленочной технологий, представляет собой изготовление чип-резистора по гибридной технологии.

Отличительными особенностями прототипа являются:

1) тонкопленочный резистивный слой наносится на изоляционную подложку поверх электродных контактов, покрывая при этом только часть их поверхности, предоставляя для внешних соединений остальную часть поверхности контактов, вследствие чего весьма ослабляются контактные соединения;

2) резистивный слой не покрыт защитным слоем, что обуславливает изменение его характеристик в процессе эксплуатации;

3) электродные контакты не покрыты слоем припоя, что снижает технологичность монтажных работ и эксплуатационную надежность.

Отмеченные особенности обуславливают низкую эксплуатационную надежность получаемого чип-резистора.

Целью изобретения является повышение эксплуатационной надежности прецизионных чип-резисторов.

Поставленная цель достигается предложением способа изготовления прецизионных чип-резисторов по гибридной, сочетающей тонкопленочную и толстопленочную, технологии, отличительной особенностью которого является последовательное выполнение следующих операций:

1) на шлифованную (тыльную) поверхность изоляционной подложки наносят методом трафаретной печати слой серебряной или серебряно-палладиевой пасты с последующим ее вжиганием, образуя тем самым электродные контакты на тыльной стороне подложки;

2) на полированную (лицевую) сторону изоляционной подложки методом вакуумной (тонкопленочной) технологии напыляют резистивный слой;

3) методом фотолитографии и ионного травления осуществляют образование топологии резистивного слоя на лицевой стороне подложки;

4) методом трафаретной печати на лицевой стороне подложки поверх резистивного слоя наносят слой низкотемпературной серебряной пасты с последующим ее вжиганием, образуя тем самым электродные контакты на лицевой стороне;

5) методом лазерной подгонки резистивного слоя подгоняют величину сопротивления резисторов в номинал;

6) методом трафаретной печати наносят на резистивный слой с последующим вжиганием слой низкотемпературной защитной пасты, образуя защитный слой;

7) скрайбируют и ломают пластину изоляционной подложки на полосы;

8) методом вакуумной (тонкопленочной) технологии на торцы рядов (полос) напыляют из сплава никеля с хромом торцевой слой, соединяя при этом электрически между собой электродные контакты лицевой и тыльной сторон подложки;

9) ломают ряды (полосы) на чипы;

10) гальваническим методом наносят поверх электродных контактов (торцевых) на лицевой и на тыльной сторонах слой никеля;

11) поверх слоя никеля гальваническим методом наносят слой припоя (сплав олова со свинцом).

Сопоставительный анализ с прототипом показывает, что заявляемый способ изготовления чип-резисторов по гибридной технологии отличается от прототипа наличием дополнительных действий, а именно:

– образование методом фотолитографии и ионного травления топологии резистивного слоя на подложке;

– нанесение методом трафаретной печати на лицевой стороне подложки поверх резистивного слоя слоя низкотемпературной серебряной пасты с последующим ее вжиганием;

– подгонка методом лазерной подгонки величины сопротивления резисторов в номинал;

– нанесение на резистивный слой с последующим вжиганием слоя низкотемпературной защитной пасты;

– напыление методом вакуумной (тонкопленочной) технологии сплава никеля с хромом на торцы рядов торцевого слоя;

– нанесение поверх электродов (торцевого) на лицевой и на тыльной сторонах гальваническим методом слоя никеля;

– нанесение поверх слоя никеля гальваническим методом слоя припоя, вследствие чего соответствует критерию “новизна”.

Сравнение заявляемого способа с другими аналогичными способами показывает, что способы изготовления чип-резисторов толстопленочной, тонкопленочной и гибридной технологий, содержащие формирование электродных контактов и резистивного слоя, известны.

Однако благодаря тому, что в предлагаемом способе изготовления чип-резисторов вводятся такие последовательно выполняемые действия, как:

– образование методом фотолитографии и ионного травления топологии резистивного слоя на подложке;

– нанесение на лицевой стороне подложки поверх резистивного слоя методом трафаретной печати слоя низкотемпературной серебряной пасты с последующим ее вжиганием, образуя тем самым электродные контакты на лицевой стороне;

– подгонка методом лазерной подгонки величины сопротивления резисторов в номинал;

– нанесение на резистивный слой с последующим вжиганием слоя низкотемпературной защитной пасты, образуя защитный слой;

– напыление методом вакуумной (тонкопленочной) технологии сплава никеля с хромом на торцы рядов торцевого слоя, соединяя при этом электрически между собой электродные контакты лицевой и тыльной сторон подложки;

– нанесение поверх электродных контактов (торцевого) на лицевой и на тыльной сторонах гальваническим методом слоя никеля, предотвращающего растворение серебра электродных контактов в припое;

– нанесение поверх слоя никеля гальваническим методом слоя припоя, облегчающего процесс сборки электронных схем,

появляются новые свойства заявляемого способа, проявляющиеся в повышении эксплуатационной надежности даже при эксплуатации изделий в жестких условиях.

Это позволяет сделать вывод о соответствии заявляемого “Способа изготовления чип-резисторов по гибридной технологии” критерию “существенные отличия”.

Сущность предлагаемого “Способа изготовления чип-резисторов по гибридной технологии” состоит в следующем.

В качестве основы изготавливаемых чип-резисторов используются изоляционные подложки (керамические пластины, например, типа ВК-100) с полированной лицевой и шлифованной тыльной сторонами.

Вначале на шлифованную (тыльную) поверхность изоляционной подложки наносят методом трафаретной печати слой серебряной или серебряно-палладиевой пасты с последующим ее вжиганием, образуя тем самым электродные контакты на тыльной стороне подложки, затем на полированную (лицевую) сторону изоляционной подложки методом вакуумной (тонкопленочной) технологии напыляют резистивный слой, методом фотолитографии и ионного травления осуществляют образование топологии резистивного слоя на подложке, после чего методом трафаретной печати на лицевой стороне подложки поверх резистивного слоя наносят слой низкотемпературной серебряной пасты с последующим ее вжиганием, образуя тем самым электродные контакты на лицевой стороне, методом лазерной подгонки подгоняют величину сопротивления резисторов в номинал, затем методом трафаретной печати наносят на резистивный слой с последующим вжиганием слой низкотемпературной защитной пасты, образуя защитный слой, скрайбируют и ломают пластину изоляционной подложки на ряды (полосы), методом вакуумной (тонкопленочной) технологии из сплава никеля с хромом на торцы рядов напыляют торцевой слой, соединяя при этом электрически между собой электродные контакты лицевой и тыльной сторон подложки, ломают ряды на чипы, гальваническим методом наносят поверх электродных контактов (торцевого) на лицевой и на тыльной сторонах слой никеля, а поверх слоя никеля гальваническим методом наносят слой припоя (сплав олова со свинцом).

Использование для образования торцевого слоя, электрически соединяющего верхние и нижние электродные контакты, сплава никеля с хромом обусловлено хорошей адгезией данного сплава как с керамической подложкой, так и с серебром и серебросодержащими сплавами.

Слой никеля, наносимый перед слоем припоя, необходим для предотвращения растворения серебра электродных контактов в припое.

На чертеже показана конструкция чип-резистора, получаемого по предлагаемой технологии, где обозначены:

1 – изоляционная подложка;

2 – электродные контакты толстопленочной технологии на тыльной стороне подложки;

3 – резистивный слой тонкопленочной технологии;

4 – электродные контакты толстопленочной технологии на лицевой стороне подложки;

5 – защитный слой;

6 – торцевой слой из сплава никеля с хромом тонкопленочной технологии;

7 – слой никеля;

8 – слой припоя.

Нанесение верхних (на лицевой стороне подложки) электродных контактов на основе серебряной пасты поверх резистивной пленки, что обеспечивает достижение высокой степени прецизионности при выполнении лазерной подгонки, напыление торцевого слоя из сплава никеля с хромом, электрически соединяющего верхние и нижние (на лицевой и тыльной сторонах подложки соответственно) электродные контакты, покрытие верхних, нижних и торцевых контактов слоем никеля, отделяющим серебро и серебросодержащие сплавы электродных контактов от припоя, покрытие слоя никеля слоем припоя, а резистивного слоя – защитным слоем, все это обуславливает высокую технологичность выполнения монтажных работ, а также образование высококачественных контактов и длительную стабильность параметров чип-резисторов в процессе их эксплуатации.

Таким образом можно сделать вывод, что цель, поставленная перед данным изобретением, – повышение эксплуатационной надежности прецизионных чип-резисторов, достигнута.

Предложенный гибридный способ изготовления чип-резисторов может быть использован в электронной, радиотехнической и других смежных отраслях промышленности при производстве прецизионных чип-резисторов широкой области номиналов.

Сочетание в предложенном гибридном способе изготовления прецизионных чип-резисторов достоинств толстопленочной и тонкопленочной технологий – простота изготовления и высокие технические характеристики – является гарантией его широкого применения на практике.

Технико-экономический эффект, обусловленный применением предложенного способа изготовления прецизионных чип-резисторов, заключается в существенном повышении их эксплуатационной надежности, а следовательно, и в повышении эффективности их применения.

Количественная величина ожидаемого технико-экономического эффекта от использования предложенного способа изготовления прецизионных чип-резисторов гибридной технологии в значительной мере зависит от области его применения и конкретных вариантов исполнения, ее определение возможно только после его практической реализации.

1. Справочник “Резисторы”. / Под редакцией И.Я.Четверткова и В.М.Терехова. – М.: Радио и связь, 1991.

2. Патент РФ №2086027, МПК Н01C 17/06. Способ изготовления толстопленочных резисторов. 1997, Бюл. №21.

3. Патент РФ №2123735, МПК Н01C 7/00. Прецизионный тонкопленочный чип-резистор. 1998, Бюл. №35.

4. Патент JP (Япония) №3869273, МПК Н01C 7/06. Способ изготовления бескорпусного резистора. 17.01.2007 г.

Способ изготовления прецизионных чип-резисторов по гибридной технологии, содержащий последовательное формирование на изоляционной подложке на основе толстопленочной технологии электродных контактов, а на основе тонкопленочной технологии – резистивного слоя с последующим ломанием изоляционной подложки на чипы, отличающийся тем, что вначале на шлифованную (тыльную) поверхность изоляционной подложки наносят методом трафаретной печати слой серебряной или серебряно-палладиевой пасты с последующим ее вжиганием, образуя тем самым электродные контакты на тыльной стороне подложки, затем на полированную (лицевую) сторону изоляционной подложки методом вакуумной (тонкопленочной) технологии напыляют резистивный слой, методом фотолитографии и ионного травления осуществляют образование топологии резистивного слоя на подложке, после чего методом трафаретной печати на лицевой стороне подложки поверх резистивного слоя наносят слой низкотемпературной серебряной пасты с последующим ее вжиганием, образуя тем самым электродные контакты на лицевой стороне, после чего методом лазерной подгонки подгоняют величину сопротивления резисторов в номинал, затем методом трафаретной печати наносят на резистивный слой с последующим вжиганием слой низкотемпературной защитной пасты, образуя защитный слой, скрайбируют и ломают пластину изоляционной подложки на ряды (полосы), методом вакуумной (тонкопленочной) технологии из сплава никеля с хромом на торцы рядов напыляют торцевой слой, соединяя при этом электрически между собой электродные контакты лицевой и тыльной сторон подложки, ломают ряды на чипы, гальваническим методом наносят поверх электродов – торцевого, на лицевой и на тыльной сторонах – слой никеля, а поверх слоя никеля гальваническим методом наносят слой припоя (сплав олова со свинцом).

Цифровое обозначение резисторов. Маркировка чип-резисторов

Все SMD резисторы для поверхностного монтажа обычно маркируются. Кроме сопротивлений в 0402-ом корпусе, т.к они не имеют маркировки в связи с их миниатюрными размерами. Резисторы других типоразмеров маркируются двумя основными методами. Если у чип резисторов допуск сопротивления 2%, 5% или 10%, то их маркировка состоит из 3-х цифр: две первые обозначают мантиссу, а третья является степенью для десятичного основания, т.е, получается значение сопротивления резистора в Омах. Например, код сопротивления 106 — первые две цифры 10 — это мантисса, 6 — степень, в итоге получаем 10х10 6 , то есть 10 Мом.

Иногда к цифровой маркировке прибавляется латинская буква R — она является дополнительным множителем и обозначает десятичную точку. SMD резисторы типоразмера 0805 и более, имеют точность 1% и обозначаются кодом из четырех цифр: первые три — мантисса, а последняя — степень для десятичного основания. К данной маркировке также может прибавляться латинский символ R. Например, код сопротивления 3303 — 330 — это мантисса, 3 — степень, в итоге получаем 330х10 3 , т.е 33 кОм. Кодовая маркировка SMD сопротивлений с допуском в 1% и типоразмером 0603 обозначается всего двумя цифрами и буквой с помощью таблицы.

Цифры обозначают код, по которому из нее выбирается значение мантиссы, а буква — множитель с десятичным основанием. Например, код 14R — первые две цифры 14 — это код. По таблице для кода 14 значение мантиссы 137, R — степень равная 10 -1 , в итоге получаем 137х10 -1 , то есть 13,7 Ом. Резисторы с нулевым сопротивлением (перемычки), маркируются просто цифрой 0.

Маркировка SMD резисторов — корпуса

Фирма Philips кодирует номинал smd резисторов следующим образом первые две или три цифры указывают номинал в омах, а последние — количество нулей (множитель). В зависимости от точности резистора номинал кодируется в виде трех или четырех символов. Отличия от стандартной кодировки могут заключаться в трактовке цифр 7, 8 и 9 в последнем символе. Буква R выполняет роль десятичной запятой или, если она стоит в конце, то указывает на диапазон. Единичный символ «0» указывает на резистор с нулевым сопротивлением (Zero — Ohm).


SMD-резисторы типоразмера 0402 не маркируются, резисторы остальных типоразмеров маркируются различными способами, зависящими от типоразмера и допуска. Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу, а последняя — показатель степени по основанию 10 для определения номинала резистора в Омах.

При необходимости к значащим цифрам добавляется буква R для обозначения десятичной точки. Например, маркировка 513 означает, что резистор имеет номинал 51×103 Ом = 51 КОм. Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырмя цифрами, первые три из которых обозначают мантиссу, а последняя — показатель степени по основанию 10 для задания номинала резистора в Омах.

Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750×101 Ом = 7.5 КОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 двумя цифрами и одной буквой. Цифры задают код, по которому из таблицы определяют мантиссу, а буква — показатель степени по основанию 10 для определения номинала резистора в Омах.

Например, маркировка 10C означает, что резистор имеет номинал 124×102 Ом = 12.4 КОм.

Справочник по маркировке SMD резисторов BOURNS

Smd резисторы bourns кодируются по трем стандартам:

Первые две цифры указывают значения в омах, последняя — количество нулей. Распространяется на резисторы из ряда Е-24, допусками 1 и 5%, типоразмерами 0603, 0805 и 1206

Первые три цифры указывают значения в омах, последняя — количество нулей. Распространяется на резисторы из ряда Е96, допуском 1%, типоразмерами 0805 и 1206.

Первые два символа — цифры, указывающие значение сопротивления в омах, взятые из нижеприведенной таблицы, последний символ — буква, указывающая значение множителя:S = 0.01; R = 0.1; А = 1; В = 10; С = 100; D = 1000; Е = 10000;F = 100000. Распространяется на резисторы из ряда Е-96, допуском 1%, типоразмером 0603

Многие компании выпускают в роли плавких вставок или перемычек специальные провода Jumper Wire с нормированными сопротивлением и диаметром (0.6 мм, 0.8 мм) и резисторы с «нулевым» сопротивлением. Они изготавливаются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в типовом корпусе для поверхностного монтажа (Jumper Chip). Реальные значения сопротивления таких компонентов лежат в диапазоне единиц или десятков миллиом (~ 0.005…0.05 Ом). В цилиндрических корпусах маркировку наносят черным кольцом посередине, в SMD корпусах для поверхностного монтажа (0603, 0805, 1206…) маркировки либо нет, либо наносится цифры «000» (иногда просто «0»).

Подборка справочников по SMD компонентам

SMD — Абривиатура из английского языка, от Surface Mounted Device — Устройство монтируемое на поверхность, т.е на печатную плату, а именно на специальные контактные площадки расположенные на ее поверхности.

Резисторы для планарного монтажа (smd, чип резисторы) маркируются одной или тремя, четырьмя цифрами, либо буквенно-цифровым кодом, разберемся подробнее, какая где маркировка применяется и что обозначает.

    1. Одной цифрой ноль маркируются резисторы-перемычки с нулевым сопротивлением.

  1. 2. Тремя цифрами маркируются 5% резисторы из ряда E24.

    Расшифровывается их маркировка следующим образом: первые 2 цифры это основание, которое нужно умножить на 10 в степени третьего числа, что бы получить номинал данного резистора.

    Например:
    маркировка на чип резисторе 120 — расшифровывается так 12*10 0 = 12 Ом
    маркировка на чип резисторе 512 — расшифровывается так 51*10 2 = 5,1 кОм
  2. 3. Четырьмя цифрами маркируются точные 1% резисторы из ряда E96 , если позволяет размер корпуса.

    Расшифровывается их маркировка следующим образом: первые 3 цифры это основание, которое нужно умножить на 10 в степени четвертого числа, что бы получить номинал данного резистора.

    Например:
    маркировка на чип резисторе 1020 — расшифровывается так 102*10 0 = 102 Ом
    маркировка на чип резисторе 5112 — расшифровывается так 511*10 2 = 51,1 кОм
  3. 4. Буквенно-цифровым кодом маркируются 1%, 2%, 5%, 10% резисторы.

    1% резисторы две цифры и буква .
    Цифрами закодировано значение сопротивления согласно таблице EIA-96. Буква обозначает степень 10 согласно приведенной ниже таблице:

    Tаблицa 1:

    Буква Значение
    S или Y 10 -2
    R или X 10 -1
    A 10 0
    B 10 1
    C
    10 2
    D 10 3
    E 10 4
    F 10 5

    Tаблицa EIA-96:

    Код R R Код R R Код R R Код R R Код R R Код R R
    01 100 17 147 33 215 49 316 65 464 81 681
    02 102
    18
    150 34 221 50 324 66 475 82 698
    03 105 19 154 35 226
    51
    332 67 487 83 715
    04 107 20 158 36 232 52 340 68 499 84 732
    05 110 21 162 37 237 53 348 69 511 85 750
    06 113 22 165 38 243 54 357 70 523 86 768
    07 115 23 169 39 249 55 365 71 536 87 787
    08 118 24 174 40 255 56 374 72 549 88 806
    09 121 25 178 41 261 57 383 73 562 89 825
    10 124 26 182 42 267 58 392 74 576 90 845
    11 127 27 187 43 274 59 402 75 590 91 866
    12 130 28 191 44 280 60 412 76 604 92 887
    13 133 29 196 45 287 61 422 77 619 93 909
    14 137 30 200 46 294 62 432 78 634 94 931
    15 140 31 205 47 301 63 442 79 649 95 953
    16 143 32 210 48 309 64 453 80 665 96 976

    Например:
    маркировка на чип резисторе 12D — расшифровывается так 130*10 3 = 130 кОм
    маркировка на чип резисторе 51B — расшифровывается так 332*10 1 = 3320 Ом

    2%, 5%, 10% резисторы маркируются следующим образом: буква и две цифры . Цифрами закодировано значение сопротивления и точности согласно ниже приведенной таблице. Буква обозначает степень 10, в соответствии с Tаблицей 1 для 1% резисторов, которая приведена выше.

    2 % 5 % 10 %
    Код R R Код R R Код R R
    01 100 25 100 49 100
    02 110 26 110 50 120
    03 120 27 120 51 150
    04 130 28 130 52 180
    05 150 29 150 53 220
    06 160 30 160 54 270
    07 180 31 180 55 330
    08 200 32 200 56 390
    09 220 33 220 57 470
    10 240 34 240 58 560
    11 270 35 270 59 680
    12 300 36 300 60 820
    13 330 37 330
    14 360 38 360
    15 390 39 390
    16 430 40 430
    17 470 41 470
    18 510 42 510
    19 560 43 560
    20 620 44 620
    21 680 45 680
    22 750 46 750
    23 820 47 820
    24 910 48 910

    Например:
    маркировка на чип резисторе D12 — расшифровывается так 300*10 3 = 300 кОм точность 2 %
    маркировка на чип резисторе B51 — расшифровывается так 150*10 1 = 1,5 кОм точность 10%

Самым распространённым и очень широко применяемым в электронике элементом. является резистор. Это элемент, создающий сопротивление электрическому току. Номинальные значения зависят от класса точности. Он указывает на отклонение, от номинала, которое допускается техническими условиями. Имеются три класса точности:

  • 5 %-ный ряд;
  • 10 %-ный;
  • 20 %- ный.

Например, если взять резистор I класса с номинальным значением сопротивления 100 кОм, то его натуральная величина находится в пределах от 95 до 105 кОм. У такого же компонента III класса точности величина будет лежать в 20%ном интервале, и равняться 80 или 120 кОм. Кто хорошо знаком с электротехникой, может вспомнить, что существуют прецизионные резисторы с 1%ным допуском.

Термин SMD резистор появился сравнительно недавно. Surface Mounted Devices дословно можно перевести на русский язык как «устройство, монтируемое на поверхность». Чип резисторы, как их ещё называют, используют при поверхностном монтаже печатных плат. Они имеют гораздо меньшие габариты , чем их проволочные аналоги. Квадратная, прямоугольная или овальная форма и низкая посадка позволяет компактно размещать схемы и экономить площадь.

На корпусе имеются контактные выводы, которые при монтаже крепятся прямо на дорожки печатной платы. Подобная конструкция делает возможным крепить элементы без применения отверстий. Благодаря этому полезная площадь платы используется с максимальным эффектом, что позволяет уменьшить габариты устройств. В связи с тем, что имеют место небольшие размеры элементов, достигается высокая плотность монтажа .

Основное преимущество таких элементов — это отсутствие гибких выводов, что позволяет не сверлить отверстия в печатной плате. Вместо них используются контактные площадки.

Маркировка

Размеры и форма SMD резисторов регламентируются нормативным документом. (JEDEC), где приводятся рекомендуемые типоразмеры. Обычно на корпусе наносятся данные о габаритах элемента. К примеру, цифровой код 0804 предполагает длину, равную 0,080 дюймам, ширину — 0,040 дюйма.

Если перевести такую кодировку в систему СИ, то этот компонент будет обозначаться как 2010. Из этой надписи видно, что длина составляет 2,0 мм, а ширина 1,0 мм. (1 дюйм равен 2,54 мм)

Требуемая мощность рассеивания определяет размер чипа. Поскольку на SMD резистор, имеющий очень маленький габарит, не представляется возможным разместить стандартную маркировку, которая имеется у обычных проволочных резистивных сопротивлений, разработана кодовая система обозначений. Для удобства производители условно разделили все чипы по способу маркировки на три типа:

  • из трёх цифр;
  • из четырёх цифр;
  • из двух цифр и буквы;

Последний вариант применяется для SMD-сопротивлений повышенной точности с допуском 1% (прецизионных). Очень маленький размер не позволяет размещать на них надписи с длинными кодами . Для них разработан стандарт EIA-96

Для маркировки маленьких сопротивлений (менее 10 Ом) используется латинская буква R Например: 0R1 = 0,1 Ом и 0R05 = 0,05 Ом.

Существуют номиналы повышенной точности (так называемые прецизионные)

Пример подбора нужного резистора: если указана цифра 232 то необходимо 23 умножить на 10 во второй степени. Получается сопротивление 2,3 кОм (23 x 10 2 = 2300 Ом = 23 кОм). Аналогично рассчитываются чипы второго типа.

Расшифровывается их маркировка следующим образом: первые 2 цифры это основание, которое нужно умножить на 10 в степени третьего числа, чтобы получить номинал резистора .

Резистор 102 smd — расшифровывается так 10*100 = 1000 Ом или 1 кОм

Расшифровка обозначений чипов — специфичное занятие. Вычислить необходимую величину возможно используя старыми проверенными способами, проделав несколько арифметических действий. Но прогресс не стоит на месте, и кто это можно выполнить при помощи различных сайтов.

Онлайн-калькулятор

Калькулятор smd резисторов поможет подобрать нужный типоразмер, разобраться с кодами, а также избавит от изнурительных расчётов. Используя специальные программы можно найти информацию совершенно бесплатно.

Пример определения сопротивлений

240 = 24 х 100 равняется 24 Ом

273 = 27 х 103 равняется 27 кОм

Резисторы типоразмера 0603 точностью 1% маркируются кодом из двух цифр и одной латинской буквы, где цифры обозначают порядковый номер номинала в ряду е96, а буква множитель: A=x10, B=x100 и т.д., X=x1, Y=x0.1, Z=x0.01

Реверсивный калькулятор кодов

Калькулятор может работать со всеми кодами маркировки smd: из 3-х цифр, из 4-х цифр, или с кодом EIA-96. Для получения нужной величины сопротивления, нужно вписать код в центре рисунка резистора, и нажать на стрелку вниз. В текстовом поле появится искомое значение. В обратном направлении также можно определиться с необходимым типом. Выбрать тип кодировки (поставить точку в нужном поле напротив кода), затем, чтобы получить код сопротивления, написать в поле сопротивление, которое имеет резистор. (10 кОм). SMD калькулятор выдаст нужный код после нажатия стрелки вверх. Он появится в центре рисунка.

Как выбрать резистор

Продолжая тему грамотного выбора пассивных компонентов, рассмотрим различные типы резисторов, их достоинства и недостатки, особенности применения, а также наиболее популярные для них приложения. В каждом разделе помещены ссылки на результаты поисковых запросов для некоторых серий резисторов, которые присутствуют в каталоге компании Терраэлектроника.

Рис. 1. Резисторы

Резисторы (Рис.1) представляют собой двухвыводные компоненты, применяемые для ограничения тока, деления напряжения и формирования временных характеристик цепей. Они используются совместно с такими активными компонентами, как операционные усилители, микроконтроллеры или интегральные схемы, и выполняют различные функции, например, смещение, фильтрацию и подтяжку линий ввода-вывода. Переменные резисторы могут применяться для изменения параметров схемы. Токочувствительные резисторы используются для измерений токов в электрических цепях.

Типы резисторов

Существует несколько различных типов резисторов, отличающихся по номинальной мощности, размерам, эксплуатационным качествам и стоимости. Наиболее распространенные типы — чип-резисторы (SMD-резисторы), выводные резисторы для монтажа в отверстия, проволочные резисторы, шунты (токочувствительные  резисторы) для измерения тока, термисторы и потенциометры. Ниже, для каждого типа резисторов представлены основные характеристики, наиболее подходящие приложения, а также информация о корпусных исполнениях и примеры конкретных серий.

Рис. 2. Чип-резисторы

Чип-резисторы (Рис. 2) предназначены для поверхностного монтажа. Они отличаются от выводных резисторов меньшими размерами, что делает их оптимальными для применения на печатных платах. Наиболее распространенными задачами smd-резисторов являются подтяжка портов ввода-вывода,  деление напряжения, ограничение тока. Резисторы также применяются в составе высокочастотных/ низкочастотных/ полосовых фильтров. Резисторы с нулевым сопротивлением  могут быть использованы в качестве джамперов для коммутации различных цепей.

Существует два типа SMD-резисторов:

  1. Тонкопленочные резисторы обычно используются в различных прецизионных приложениях: в аудиотехнике, медицинском или тестовом оборудовании. Они отличаются минимальным разбросом номиналов (0,1… 2%), низким температурным коэффициентом (5 ppm/C) и меньшим уровнем шума по сравнению с толстопленочными резисторами. Однако стоимость их выше.
  1. Толстопленочные резисторы являются наиболее распространенным типом резисторов и используются для широкого круга приложений. Они характеризуются большей погрешностью сопротивления (обычно 1 … 5%), повышенным температурным коэффициентом (50 ppm/C) и более высоким уровнем шума по сравнению с тонкопленочными резисторами. Если к резистору не предъявляется каких-либо особых требований, то обычно предпочтительным выбором становится именно толстопленочный резистор.

Корпусные исполнения: наиболее распространенными типоразмерами smd-резисторов являются 0201, 0402, 0603, 0805 и 1206. Цифры обозначают габаритные размеры в дюймовой системе, например, корпус 0402 имеет габариты 0,04х0,02″, размеры корпуса 0603 составляют 0,06х0,03″ и так далее.

Примеры:

  • 0402 — серия RC0402FR производства компании Yageo с номинальной мощностью 0,063 Вт (1/16 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 МОм;
  • 0603 — серия RC0603FR от Yageo с номинальной мощностью 0,1 Вт (1/10 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 МОм;
  • 0805 — серия RC0805FR от Yageo с номинальной мощностью 0,125 Вт (1/8 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 Мом;
  • 1206 — серия RC1206FR от Yageo с номинальной мощностью 0,25 Вт (1/4 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 МОм.

Или

  • 0402 — серия CR0402 производства компании Bourns с номинальной мощностью 0,063 Вт (1/16 Вт) и диапазоном доступных сопротивлений 1 Ом…10 МОм;
  • 0603 — серия CR0603 от Bourns с номинальной мощностью 0,1 Вт (1/10 Вт) и диапазоном доступных сопротивлений 1 Ом…10 МОм;
  • 0805 — серия CR0805 от Bourns с номинальной мощностью 0,125 Вт (1/8 Вт) и диапазоном доступных сопротивлений 1 Ом…10 МОм;
  • 1206 — серия CR1206 от Bourns с номинальной мощностью 0,25 Вт (1/4 Вт) и диапазоном доступных сопротивлений 0,82 Ом…10 МОм.

Или

  • 0402 — серия CRCW0402 производства Vishay с номинальной мощностью 0,063 Вт (1/16 Вт) и диапазоном доступных сопротивлений 1 Ом …10 МОм;
  • 0603 — серия CRCW0603 от Vishay с номинальной мощностью 0,1 Вт (1/10 Вт) и диапазоном доступных сопротивлений 1… 15 МОм;
  • 0805 — серия CRCW0805 от Vishay с номинальной мощностью 0,125 Вт (1/8 Вт) и диапазоном доступных сопротивлений 1 Ом … 50 МОм;
  • 1206 — серия CRCW1206 от Vishay с номинальной мощностью 0,25 Вт (1/4 Вт) и диапазоном доступных сопротивлений от 1 Ом…100 МОм.

Рис. 3. Выводные резисторы для монтажа в отверстия

Резисторы с аксиальными выводами для монтажа в отверстия (Рис. 3) весьма популярны и широко используются, особенно — при создании прототипов, поскольку их легко заменять при работе с макетными платами. Как и чип-резисторы, выводные резисторы применяются для подтяжки, деления напряжения, ограничения тока и фильтрации. Существуют различные типы выводных резисторов. Наиболее популярны углеродистые пленочные и металлопленочные резисторы.

  1. Углеродистые пленочные резисторы имеют значительный разброс сопротивлений (2…10%). Наиболее распространенными рядами сопротивлений для них являются E12 (± 10%), E24 (± 5%) и E48 (± 2%). В большинстве приложений углеродистые пленочные резисторы были вытеснены металлопленочными. Температурный коэффициент сопротивления углеродистых пленочных резисторов (TКC) обычно имеет отрицательную величину — около -500 ppm/C, однако конкретное значение зависит от сопротивления и размера.
  2. Металлопленочные резисторы  имеют меньший разброс сопротивлений (0,1…2%) и более высокую стабильность. Наиболее распространенными рядами сопротивлений для них являются E48 (± 2%), E96 (± 1%) и E192 (± 0,5%, ± 0,25% и ± 0,1%). Поскольку характеристики металлопленочных резисторов лучше, чем у углеродистых, то именно они используются в большинстве приложений. Температурный коэффициент металлопленочных резисторов (TC) составляет около ± 100 ppm/C, однако некоторые модели характеризуются только положительным или только отрицательным TC.
  3. Углеродные композитные резисторы широко использовались в электронных устройствах пятьдесят лет назад, но из-за большого разброса номиналов и невысокой стабильности они были заменены углеродистыми пленочными и металлопленочными резисторами. Тем не менее, композитные резисторы обладают хорошими высокочастотными характеристиками и способны выдерживать воздействие мощных импульсов, поэтому их до сих пор применяют в сварочном оборудовании и высоковольтных источниках питания.
  4. Металл-оксидные резисторы стали первой альтернативой углеродным композитным резисторам, но в дальнейшем в большинстве приложений они были вытеснены металлопленочными. Тем не менее, поскольку металл-оксидные резисторы отличаются повышенной рабочей температурой и более высокой номинальной мощностью (> 1 Вт), их по-прежнему используют в ответственных устройствах, эксплуатирующихся в жестких условиях.

Ряды сопротивлений EIA (EIA Decade Resistor Values) определяют не только номиналы резисторов, но и допустимую погрешность. Например, ряд E12 (± 10%) включает следующие стандартные значения: 100, 120, 150, 180, 220, 270, 330, 390, 470, 560, 680 и 820 Ом.

Для кодирования параметров выводных резисторов применяется цветовая маркировка (таблица 1).

Таблица 1. Цветовая маркировка выводных резисторов

Цвет

Значение

Первая цифра

Вторая цифра

Третья цифра*

Множитель

Точность

Температурный коэффициент, ppm/C

Рейтинг отказов

Черный

0

0

0

x10^0

Коричневый

1

1

1

x10^1

±1%

100

1%

Красный

2

2

2

x10^2

±2%

50

0,1%

Оранжевый

3

3

3

x10^3

15

0,01%

Желтый

4

4

4

x10^4

25

0,001%

Зеленый

5

5

5

x10^5

±0,5%

Синий

6

6

6

x10^6

±0,25%

Фиолетовый

7

7

7

x10^7

±0,1%

Серый

8

8

8

x10^8

±0,05%

Белый

9

9

9

x10^9

Золотой

x0,1

±5%

Серебряный

x0,01

±10%

Пусто

±20%

* Только для резисторов с 5-позиционной маркировкой

 

 

 

 

Примеры:

  • углеродистые пленочные резисторы серии CFR-25JB производства Yageo с номинальной мощностью 0,25 Вт и диапазоном доступных сопротивлений 1 Ом…10 МОм;
  • металлопленочные резисторы серии MFR-25FBF от Yageo с номинальной мощностью 0,25 Вт и диапазоном доступных сопротивлений 10 Ом…1 МОм;
  • металлопленочные резисторы серии PR02 от VISHAY с номинальной мощностью 2 Вт и диапазоном доступных сопротивлений 0,33 Ом…1 МОм.

Рис. 4. Проволочный резистор

Проволочные резисторы (Рис. 4) конструктивно представляют собой высокоомный провод, намотанный на изолирующий сердечник. Они отличаются очень высокой номинальной мощностью (до 1000 Вт) и способны работать при очень высоких температурах (до 300°C). Проволочные резисторы характеризуются отличной долговременной стабильностью – около 15…50 ppm/год, в то время как, например, у металлопленочных резисторов этот показатель составляет 200…600 ppm/год. Данный тип резисторов обладает самым малым уровнем шума.

Недостатки: диапазон доступных сопротивлений для проволочных резисторов оказывается достаточно узким (0,0001…100 кОм). Поскольку резистор выполнен в виде проволоки, намотанной на основание, то такая конструкция характеризуется высокой паразитной индуктивностью. По этой причине в высокочастотном диапазоне проволочные резисторы демонстрируют наихудшие показатели среди всех типов резисторов. Они также оказываются более дорогими по сравнению с другими популярными типами резисторов.

Приложения: обычно используются в автоматических выключателях и в качестве предохранителей благодаря высокой мощности.

Примеры

  • серия KNP500 производства компании Yageo с номинальной мощностью 5 Вт и диапазоном доступных сопротивлений 0,1 Ом …2,2 кОм;
  • серия HS-25 производства Ohmite с номинальной мощностью 25 Вт и диапазоном доступных сопротивлений 0,01 Ом … 5,6 кОм;
  • серия HSC100 от TE с номинальной мощностью 100 Вт и диапазоном доступных сопротивлений 0,1 Ом … 50 кОм.

Рис. 5. Шунты

Токоизмерительные резисторы, также называемые шунтами (Рис. 5), используются для прямого преобразования тока в напряжение с целью дальнейшего измерения. Они представляют собой резисторы с малым сопротивлением и высокой номинальной мощностью, что позволяет им работать с большими токами.

Одним из приложений для токоизмерительных резисторов является ограничение тока с целью защиты микросхем драйверов шаговых двигателей.

Большинство современных шунтов имеет либо два, либо четыре вывода. В четырехвыводной версии, которая также называется схемой Кельвина, ток проходит через две клеммы, а напряжение измеряется на двух оставшихся выводах. Такая схема уменьшает влияние температурной погрешности и значительно повышает стабильность схемы измерения. Четырехвыводные резисторы используются для приложений, требующих высокой точности и температурной стабильности.

Примеры

Двухвыводные исполнения

  • SMD:
    • серия MCS1632 производства Ohmite с номинальной мощностью 1 Вт и диапазоном доступных сопротивлений 0,005…0,05 Ом;
    • серия WSLP1206 от Vishay с номинальной мощностью 1 Вт и диапазоном доступных сопротивлений 0,005…0,05 Ом;
    • серия CRA2512 от Bourns с номинальной мощностью 3 Вт и диапазоном доступных сопротивлений 0,001…0,1 Ом.

 

  • Для монтажа в отверстия:
    • серия 12F от Ohmite с номинальной мощностью 2 Вт и диапазоном доступных сопротивлений 0,001…0,25 Ом;
    • серия LVR03R от Vishay с номинальной мощностью 3 Вт и диапазоном доступных сопротивлений 0,01…0,2 Ом;
    • серия PWR247T-100 от Bourns с номинальной мощностью 100 Вт и диапазоном доступных сопротивлений 0,05…100 Ом.

Четырехвыводные исполнения (схема Кельвина)

  • SMD:
    • серия FC4L  в корпусе 2512 от Ohmite с номинальной мощностью 2 Вт и диапазоном доступных сопротивлений 0,001…0,05 Ом;
    • серия WSL3637  в корпусе 3637 от Vishay с номинальной мощностью 3 Вт и диапазоном доступных сопротивлений 0,001…0,01 Ом.

Рис. 6. Термистор

Термисторы – это резисторы, сопротивление которых значительно изменяется при изменении температуры (Рис. 6).

Сопротивление NTC-термисторов плавно уменьшается при увеличении температуры. NTC являются готовыми датчиками температуры с диапазоном измерений -55… +200°C.

PTC-термисторы характеризуются скачкообразным изменением сопротивления при определенной температуре. Они применяются в качестве элементов защиты от перегрузки по току.

Ток удержания PTC (hold current) – это ток, при котором термистор гарантированно находится в проводящем состоянии.

Ток срабатывания PTC (trip current) – это ток, при котором термистор гарантированно переходит в непроводящее состояние.

Примеры

  • PTC-термисторы:
    • 1812 — серия MF-MSMF производства компании Bourns для рабочих токов от 0,3…5,2 А;
    • 1812 — серия 1812L от Littelfuse для рабочих токов 0,1…3,5 А.
  • NTC-термисторы:
    • серия B57236 от EPCOS с диапазоном сопротивлений 2,5…120 Ом;
    • 0603 — серия ERT-J1 от Panasonic с диапазоном сопротивлений 0,022…150 кОм.

Рис. 7. Подстроечные резисторы

Потенциометры – это резисторы с изменяемым сопротивлением. Они используются в различных приложениях, например, для управления коэффициентом усиления в усилителе, для настройки параметров схемы и так далее.

Подстроечные резисторы (Рис. 7) представляют собой небольшие потенциометры, которые могут быть установлены на печатной плате и отрегулированы с помощью отвертки. Они выпускаются как для поверхностного монтажа SMD, так и для монтажа в отверстия, с верхним или боковым расположением регулировочного винта.

Потенциометры бывают однооборотными и многооборотными. Однооборотные потенциометры часто используются в усилителях. Многооборотные потенциометры могут иметь до 25 оборотов и применяются для более точного управления.

Примеры

  • Однооборотные потенциометры:
    • SMD серия TC33X-2 производства Bourns с диапазоном сопротивлений 100 Ом…1 МОм ;
    • серия 3362P от Bourns с диапазоном сопротивлений 10 Ом…5 МОм ;
  • Многооборотные потенциометры:
    • серия 3296W от Bourns с диапазоном сопротивлений 10 Ом…5 МОм ;
    • серия T93YA от Vishay с диапазоном сопротивлений 10 Ом…1 МОм.

Рис. 8. Резисторная сборка 4609X-101-222LF

Резисторная сборка (resistors network, resistors array) представляет собой комбинацию из нескольких резисторов, размещенных в одном корпусе. Существует большое количество разных типов этих изделий, но, к сожалению, четкая система их классификации,  как в литературе, так и у производителей отсутствует.

Резисторы внутри корпуса сборки могут быть не соединены  между собой (Isolated) т. е. каждый резистор имеет два вывода на корпусе сборки, или сконфигурированы в определенную схему (Bussed). Часто встречаются изделия, у которых соединены между собой  вывод 1 каждого резистора с подключением к одному общему пину сборки, а каждый второй вывод резисторов  имеет свой собственный вывод на корпусе изделия.  Кроме того, можно встретить сборки с последовательным, последовательно- параллельным  и другими видами соединений резисторов внутри корпуса. Сборки можно классифицировать по количеству входящих  в них резисторов, по величине допуска, максимальному рабочему напряжению, мощности рассеивания, типоразмеру, по типу монтажа (SMD и выводной)  и т.д. Эти компоненты очень удобно использовать в схемах АЦП и ЦАП, применять качестве делителей напряжения, использовать в компьютерной технике, потребительской электронике  и т.д.

Примеры

  • серия 4600X от Bourns с рабочим напряжением до 100В

Рис. 9. Конфигурация резисторных сборок серии 4600X от Bourns

  • серия CAY16 от Bourns в SMD корпусе типоразмера 1206 с изолированными резисторами
  • серия 4114R-2 от Bourns — 14 выводных резисторов с одним общим выводом

Работа с Каталогом компании Терраэлектроника по поиску резисторов

Подобрать необходимый резистор в каталоге Терраэлектроники можно двумя способами:

  1. С использованием параметрического поиска.  Для этого необходимо зайти в раздел резисторов каталога, выбрать соответствующий задаче тип резистора, а далее указать параметры в ряде фильтров поисковой системы. Фрагмент скриншота поиска прецизионного SMD резистора от Yageo с параметрами: типоразмер 0805, номинал 10 кОм, точность 0.1 %,  мощность  0.125 мВт представлен на Рис. 10. 



    Рис. 10. Скриншот сервиса поиска резисторов

  2. Воспользоваться интеллектуальным поиском резисторов по параметрам. Для этого достаточно скопировать строку из спецификации “Резистор постоянный 10 кОм, 0.1%, 0.125 Вт, 0805″ или ввести «10kohm 0.1%  0.125W  0805» в строку поиска и получить тот же самый  список подходящих по указанным параметрам компонентов.

Заключение

В данном руководстве были рассмотрены некоторые наиболее популярные типы резисторов. В дополнение к ним существует ряд других типов резисторов, среди которых MELF, металлофольговые резисторы, керамические резисторы, варисторы, фоторезисторы и др., которые имеют свои уникальные преимущества по уровню точности, эксплуатационным характеристикам или габаритным размерам. Однако, в большинстве электронных схем вы чаще всего увидите один из типов, рассмотренных выше.

Как выбрать конденсатор

Журнал: https://octopart.com/blog/archives/2016/04/how-to-select-a-resistor

Набор SMD резисторов и конденсаторов.

Главная > Теория > Размеры SMD резисторов

Резисторы, изготовленные по технологии SMD (surface mount device), монтируются на поверхность платы посредством пайки к печатным проводникам. Технология поверхностного монтажа позволила автоматизировать установку компонентов, применить в производстве групповые способы пайки: волной припоя, ИК нагревом и т. д. Использование компонентов SMD обеспечивает значительное уменьшение размеров радиоэлектронной аппаратуры по сравнению с технологией выводного монтажа (ТНТ) и сокращение времени на производство изделия.


Резисторы для поверхностного монтажа

В отличие от традиционных выводных, имеющих не так много вариантов исполнения, существует множество типоразмеров SMD резисторов, иногда разница в размерах составляет доли миллиметра и существенно не влияет на другие параметры. Наиболее распространённые корпуса – это SOD 80/110/123, SMA DO 214.

Основные типоразмеры резисторов SMD

Общепринятое обозначение состоит из четырёх цифр, которые указывают на длину (первые две цифры) и ширину корпуса в дюймах, согласно рекомендованному стандарту EIA. Некоторые производители используют метрическую систему. Правила обозначений описывают только способ – четырьмя цифрами, конкретные размеры резисторов стандартами не установлены. Маркировка, содержащая сведения о типоразмере, на корпус изделия не наносится.


Основные размеры

Высота корпуса большинства резисторов не превышает 1-2 мм.

Наиболее распространённые типоразмеры SMD – резисторов общего назначения

Тип корпусаL(мм)W(мм)P макс. (мВт)Рабочее напряжение (вольт)
0402(1005)1.00.56350
0603(1608)1,60,8100100
0805(2012)2.01.2125200
1206(3216)3.21.6250400
1210(3225)3.22.5250400
1812(4532)4.53.2500400
2010(5025)5.02.5630400
2512(6432)6.43.21000400
2824(7161)7.16.1—————
3225(8063)8.06.3—————
4030(1076)10.27.6—————

Мощность компонентов СМД, имеющих длину более 5 мм, определяется технологией изготовления. Привести все сочетания длины и ширины корпусов и упомянуть все варианты исполнений, выпускаемые мировыми производителями, невозможно, для определения типоразмера достаточно, с приемлемой точностью, измерить корпус.

Иногда чип вообще может иметь форму, отличную от прямоугольника с разными сторонами, например, квадратный корпус DO – 214АА. Резисторы для SMD-монтажа в цилиндрических корпусах типа MELF выпускаются в трёх самых распространённых типономиналах: Micro-MELF 2.2х1.1 мм, Mini-MELF 3.6х1.4 мм и MELF 5.8х2.2 мм. Для указания размеров этого типа применяется метрическая система, где в первой части – длина изделия, вторая – означает диаметр.

Электрическое сопротивление не зависит от размеров чипа и может быть любым: от нулевого (перемычка) до нескольких мегаом и более. Мощность рассеяния резисторов, как и любого электронного компонента, в большинстве случаев напрямую зависит от их размера, но также определяется типом резистивного слоя.

Важно отметить! Указанные в таблице значения мощности являются ориентировочными, могут применяться к размерам SMD резисторов, предназначенных для универсального применения в массовой аппаратуре. Так, низкоомные резисторы серии LR 2512 фирмы Yageo имеют мощность рассеяния 2-3 ватта, в зависимости от исполнения, толстоплёночные резисторы типоразмера 1206 производства Vishay – 0.5 ватт.

Резисторы для поверхностного монтажа могут конструктивно объединяться в резисторные сборки, содержащие несколько элементов в стандартных типоразмерах.

Для специальных применений резисторы большой мощности выпускаются в SMD-корпусе TO252 (DPAK). В отдельных случаях разработчик оборудования может применить практически любой конструктив для сопротивления и заказать производителю ограниченную партию своих уникальных изделий.

Добавить ссылку на обсуждение статьи на форуме

РадиоКот >Обучалка >Аналоговая техника >Основы электроники >

Теги статьи:Добавить тег

Новая деталь — резистор.

Автор: Опубликовано 01.01.1970

Резистор — это элемент, обладающий определенным электрическим сопротивлением. Вообще, справедливости ради, скажу так — сопротивлением обладают не только резисторы, но и все остальные элементы: лампы, двигатели, диоды, транзисторы и даже простые провода. Однако у всех остальных элементов сопротивление — это не главная характеристика, а так скажем — побочная. На самом деле, лампочка — светит, двигатель — вращается, диод — выпрямляет, транзистор — усиливает, а провод — проводит. А вот у резистора нет иной «профессии», кроме как оказывать сопротивление идущему через него току. Ну, правда, он нагревается, и его можно использовать вместо обогревателя долгими зимними вечерами. Однако — это несколько из области нестандартных применений…

На картинке изображены различные резисторы. Маленькая черненькая фичка в нижней части — это тоже резистор, только без ножек. Такие детали используются для поверхностного монтажа и носят имя SMD. Здесь мы имеем счастье наблюдать SMD-резистор.

А на схеме его в любом случае обозначают только так:

Рядом с изображением обычно указывают его порядковый номер в схеме и номинальное сопротивление (то, на которое он рассчитан). В нашем примере он 12-й по счету и его сопротивление — 15 килоом (т.е., 15 000 Ом). Буква R перед порядковым номером говорит нам о том, что это — резистор. (Для каждого вида деталей в схеме ведется свой счет.)

Итак, резистор обладает сопротивлением. Сопротивление измеряется в Омах (см. главу 2 — Закон Ома). Каждый резистор рассчитан на какое-то определенное сопротивление. Чтобы узнать это определенное сопротивление — достаточно посмотреть на корпус резистора. Оно должно быть там написано. Однако не ищите надписей вроде 215 Ом. Так уже давно никто не обозначает, потому как — длинно получается. Сейчас весь мир перешел к трехзначной маркировке. Поэтому, на резисторе можно встретить, например, такие обозначения: 1К5, К20, 10Е, М36. Или такие: 152, 201, 100, 364. Или вообще не найти никаких букв, а только странные цветные полоски. В последнем случае — не отчаивайтесь — это цветовая маркировка. Ее довольно легко читать (если знать как =)). Сейчас мы начнем разгребать все способы маркировки. Но до этого, немного вспомним кратные приставки.

Кратные приставки мы постоянно используем в повседневной жизни. Например, покупая леску толщиной 0,25 миллиметра, или отправляясь на дачу на 54-й километр, или оценивая, сколько мегабайт занимает файл и влезет ли он на винчестер объемом 10 гигабайт. Или, на худой конец, объясняя соседу, что болевой порог человеческого уха — 120 децибелл и ваш усилок никак не обеспечит такой мощи, даже если очень захочет… «Миллиметр», «километр», «мегабайт», «гигабайт», «децибелл» — все эти слова образованы из слов «метр», «байт» и «Белл» при помощи кратных приставок: «милли-«, «кило-«, «Мега-«, «Гиго-«, «деци-«.-12) (триллионная)

Для обозначения сопротивления тоже используют кратные приставки. Чаще всего в схемах можно найти резисторы от нескольких десятков Ом до нескольких сотен килоом. Встречаются резисторы и по нескольку мегаом, но — редко. Итак:

1 кОм = 1000 Ом 1 МОм = 1000 кОм = 1 000 000 Ом

Несколько примеров:

1,5 кОм = 1,5*1000 = 1500 Ом 0,2 кОм = 0,2*1000 = 200 Ом и т.д.

Теперь поехали лопатить обозначения на корпусе!

Маркировка резисторов

Маркировка — это условные обозначения, наносимые на корпус детали, по которым мы можем узнать о некоторых её свойствах. Маркировка резистора может сказать нам о самом главном его свойстве — сопротивлении.

Существует несколько различных способов маркировки резисторов.

Способ 1-й, совдеповский.

Пример:

1К5, 68К, М16, 20Е, К39 и т.д.

Расшифруем: 1К5 = 1,5 кОм 68К = 68 кОм М16 = 0,16 МОм = 160 кОм 20Е = 20 (единиц) Ом К39 = 0,39 кОм = 390 Ом

Маркировка всегда состоит из двух цифр и одной буквы, обозначающей кратную приставку. Причем, буква ставится вместо десятичной запятой. Например, чтобы записать 1,5 кОм, надо написать 1К5. Если число 3-значное, скажем — 390 Ом, то надо выразить его с помощью 2-х знаков: 0,39 кОм. Ноль не пишем. Получается К39. Если число целое, то есть, после запятой нет знаков, буква ставится в самом конце: 68 К = 68,0 кОм

Способ 2-й, буржуазный

Пример:

152, 683, 164, 200, 391.

Расшифруем: 152 = 15 00 Ом = 1,5 кОм 683 = 68 000 Ом = 68 кОм 164 = 16 0000 Ом = 160 кОм 200 = 20 Ом 391 = 39 0 Ом.

Я не случайно писал нули через пробел. Усекли фишку? Правильно! Первые две цифры — это некоторое число. Последняя — количество нулей, дописываемых после этого числа. Проще некуда!

Способ 3-й, цветовой

Не подходит для дальтоников и ленивых. Идеалогия — как в предыдущем способе, но вместо цифр — цветные полоски. Каждой цифре соответствует свой цвет. Вот таблица соответствия (ее лучше выучить наизусть, или распечатать на цветном принтере и везде носить с собой =)):

Как читать? Берем резистор с цветовой маркировкой. На корпусе — 4 полоски. Три находятся рядом, одна — чуть в стороне. Переворачиваем резистор так, чтобы эта одиночная полоска была справа. Далее берем таблицу и переводим цвета трех левых линий в цифры. Получается трехзначное число. Далее — см. предыдущий способ.

Пример:

Вот и все! Оказывается, это так легко!!! =) Однако, если все же по каким-то причинам не удается прочесть маркировку резистора — сопротивление всегда можно померить измерительными приборами. О них мы еще поговорим.

<<—Вспомним пройденное—-Поехали дальше—>>

Как вам эта статья? Заработало ли это устройство у вас?
12923
62

Подстроечные SMD резисторы

Маркировка SMD резисторов

Система обозначений типоразмеров переменных резисторов для поверхностного монтажа определяется изготовителем, единого стандарта не имеет.


Переменный SMD резистор

Производятся в открытом, закрытом или герметизированном исполнении, с электрическими сопротивлениями из стандартного ряда. Размеры продукции разных производителей примерено одинаковы и, как правило, не превышают 5 мм по большей стороне.

Онлайн-калькулятор маркировки цветных резисторов

Из за миниатюрных размеров маломощных резисторов и для облегчения читаемости была введена цветная маркировка резисторов, нанесенная на них в виде 3, 4 или 5 полос (колец). Для использования калькулятора, резистор необходимо положить таким образом, чтобы ближайшая к выводу резистора полоса располагаласть слева или расположить слева самую широкую полосу, которая при определения номинала всегда является первой.

Номинал сопротивления всегда определяется по первым трем полосам. Первые две полосы маркировки – это цифры, а третья – множитель. Четвертое кольцо показывает допустимую погрешность точности сопротивления от номинального значения резистора.

Резисторы с точностью до 20 % маркируют тремя кольцами, с точностью 10 % и 5 % – четырьмя, для всех остальных более точных применяют маркировку пятью или шестью кольцами.

Для определения номинала резистора при помощи нашего онлайн-калькулятора, необходимо выбрать цвета всех колец – программа автоматически определит и покажет номинал.

↔ 4 кольца

Ваш браузер не поддерживает canvas элементы.

Кольцо 1Кольцо 1Кольцо 2МножительДопуск в %

Набор SMD резисторов и конденсаторов

Всем привет! Обзор о наборе smd (размер 0805) резисторов 50 номиналов (1Ω-10MΩ) по 30 шт + конденсаторы 40 номиналов (2.2pf-1uf) по 20 шт. У меня как у любого самоделкина-радиолюбителя есть джентльменский набор радиодеталей, который всегда под рукой. Это резисторы, конденсаторы, диоды, биполярные и полевые транзисторы. Для конструирования электрических схем — это необходимый минимум! Крайне желательно иметь данные детали наборами, ведь никогда не знаешь, какой номинал понадобится, а бегать в радиомагазин за мелочевкой — неудобно. Мне все чаще приходится иметь дело с smd деталями, поэтому понадобился набор резисторов и конденсаторов размера 0805. Такой набор нашелся в магазине Banggood. Посылка пришла быстро, дней за 25, для нашего региона это даже очень неплохо. Упаковка стандартная — желтый пакет с пупырчатой пленкой. Набор деталей упакован в пакет на защелке.

Резисторы.

Характеристики: Размер — 0805 Мощность — 0.125 Вт Рабочее напряжение — 150 В Максимально допустимое напряжение — 300 В Класс точности — ±5% Диапазон рабочих температур — -55С..+125°С
Справочная информация о размерах и электрических параметрах smd резисторов


Количество номиналов 50 по 30 штук, упакованы в ленты.


Таблица номиналов со страницы товара.


Номенклатурного ряда хватает для большинства задач, в любом случае всегда можно соединить параллельно или последовательно для достижения нужных значений. Сопротивления резисторов надписаны на лентах довольно небрежно, это скорее минус.

Обозначение сопротивления на SMD резисторах

Измерительные тесты.
Для тестирования возьму по 10 резисторов из каждого номинала. В таблицу пойдет наихудшее значение. Измерения буду производить RLC-метром Е7-22.


Таблица результатов.


По итогам измерений практически все резисторы укладываются в допуск ±5%. Однако обнаружил несоответствие с описанием товара, в наборе отсутствуют сопротивления: 0 Ом, 4.7 Ом, 120 Ом, 330 Ом, 1.5К, 3.3К, 120К, 2.2М. Вместо них обнаружились: 1 Ом, 7.5 Ом, 130 Ом, 360 Ом, 1.3К, 3К, 3.6К,130К, 2.7М соответственно. Либо это ошибка описания, либо ошибка при комплектации.

Конденсаторы.

Справочная информация о размерах и электрических параметрах smd конденсаторов


Характеристики: Размер — 0805 Допустимое отклонение номинальной емкости — ±15% Диапазон рабочих температур — -55С..+125°С Сопротивление изоляции — не менее 10 гигаOм

Количество номиналов 40 по 20 штук, также упакованы в ленты.


Таблица номиналов со страницы товара.

Обозначение емкости на SMD конденсаторах

Измерительные тесты.
Для тестирования возьму по 5 конденсаторов из каждого номинала. В таблицу пойдет наихудшее значение. Измерения буду производить RLC-метром Е7-22.


Судя по результатам почти все конденсаторы укладываются в погрешность. На очень маленьких емкостях от 1pF до 10pF прибор ловил «воздух» пришлось вносить коррективы в расчетах на емкость измерительных щупов. Все номиналы соответствуют заявленным на сайте, тут без замечаний.

Подведем итоги.

По резисторам:
+
Количество резисторов совпадает с заявленным. Погрешность в пределах допустимых значений. Данные резисторы к прецизионным отнести нельзя, но для большинства радиолюбительских схем общего назначения подойдут.

Небрежные надписи на лентах, некоторые значения трудно прочитать. Не соответствие всех номиналов с заявленным описанием на сайте. По конденсаторам:
+
Почти все емкости укладываются в погрешность. Номиналы соответствуют описанию товара.

Также небрежная маркировка.

Количество не соответствует с описанием товара. В лентах по 10шт вместо 20.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Цифровые маркировки

Цифровые маркировки содержат показатель (N) множителя (10N) в качестве последней цифры, остальные две или три — мантисса сопротивления.

Например, изображенный чип-резистор с маркировкой 102 имеет сопротивление 10*102 Ом, то есть 1 КОм, а с маркировкой 1206 — 120*106 = 120 000 000 Ом, то есть 120 МОм

Еще примеры расшифровки:

  • 151 — 15*101 = 150 Ом;
  • 103 — 10*103 = 10000 Ом;
  • 474 — 47*104 = 470000 Ом;
  • 2001 — 200*101 = 2000 Ом.

Цифровая маркировка резисторов

Маркировка резисторов меньше 1 Ом

Маркировка резисторов меньше 1 Ом
Маркировка резисторов меньше 1 Ом:

— нулевое сопротивление;>

  • 2R3 — 2,3 Ом;
  • R382 — 0,382 Ом;
  • R068 — 0,068 Ом;
  • R010 — 0,01 Ом.
  • Маркировки EIA-96

Такой стандарт был разработан для значений номинала с допуском в 1%.

Состоит из двух цифр и кода множителя.

Две цифры — это код, которым можно извлечь из таблицы, приведенной ниже, три цифры значения мантиссы (аналогично, как было в цифровых маркировках), а далее идет буква, обозначающая множитель.

Таблица для кодов значений


Таблица для кодов значений

Множители расшифровываются из букв вот так:

Расшифровка
И, на всякий случай, привожу наименования и обозначения всех известных единиц измерения номиналов резисторов.


Таблица единц измерения сопротивления

Несколько примеров номиналов по стандарту EIA-96:

  • 01А = 100 Ом ± 1%
  • 38С = 24300 Ом ± 1%
  • 92Z = 0,887 Ом ± 1%

Похожие статьи:

  • Что такое паяльный флюс?
  • Электротехнический инвертор
  • Транзистор: описание электронного компонента

Сопротивление электрическому току. SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор Сопротивление 470

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology ) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные , предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 10 0 равно 45 Ом
  • 273 = 27 х 10 3 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 10 2 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 10 3 равно 173000 Ом (173 кОм)

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код , а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

И как они обозначаются на электрических схемах. В этой статье речь пойдет о резисторе или как по старинке его еще называют сопротивление .

Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры и используются практически в каждом электронном устройстве. Резисторы обладают электрическим сопротивлением и служат для ограничения прохождения тока в электрической цепи. Их применяют в схемах делителей напряжения, в качестве добавочных сопротивлений и шунтов в измерительных приборах, в качестве регуляторов напряжения и тока, регуляторов громкости, тембра звука и т.д. В сложных приборах количество резисторов может достигать до нескольких тысяч штук.

1. Основные параметры резисторов.

Основными параметрами резистора являются: номинальное сопротивление, допускаемое отклонение фактической величины сопротивления от номинального (допуск), номинальная мощность рассеивания, электрическая прочность, зависимость сопротивления: от частоты, нагрузки, температуры, влажности; уровня создаваемых шумов, размерами, массой и стоимостью. Однако на практике резисторы выбирают по сопротивлению , номинальной мощности и допуску . Рассмотрим эти три основных параметра более подробно.

1.1. Сопротивление.

Сопротивление — это величина, которая определяет способность резистора препятствовать протеканию тока в электрической цепи: чем больше сопротивление резистора, тем большее сопротивление он оказывает току, и наоборот, чем меньше сопротивление резистора, тем меньшее сопротивление он оказывает току. Используя эти качества резисторов их применяют для регулирования тока на определенном участке электрической цепи.

Сопротивление измеряется в омах (Ом ), килоомах (кОм ) и мегаомах (МОм ):

1кОм = 1000 Ом ;
1МОм = 1000 кОм = 1000000 Ом .

Промышленностью выпускаются резисторы различных номиналов в диапазоне сопротивлений от 0,01 Ом до 1ГОм. Числовые значения сопротивлений установлены стандартом, поэтому при изготовлении резисторов величину сопротивления выбирают из специальной таблицы предпочтительных чисел:

1,0 ; 1,1 ; 1,2 ; 1,5 ; 2,0 ; 2,2 ; 2,7 ; 3,0 ; 3,3 ; 3,9 ; 4,3 ; 4,7 ; 5,6 ; 6,2 ; 6,8 ; 7,5 ; 8,2 ; 9,1

Нужное числовое значение сопротивления получают путем деления или умножения этих чисел на 10 .

Номинальное значение сопротивления указывается на корпусе резистора в виде кода с использованием буквенно-цифровой , цифровой или цветовой маркировки .

Буквенно-цифровая маркировка .

При использовании буквенно-цифровой маркировки единицу измерения Ом обозначают буквами «Е » и «R », единицу килоом буквой «К », а единицу мегаом буквой «М ».

а) Резисторы с сопротивлениями от 1 до 99 Ом маркируют буквами «Е » и «R ». В отдельных случаях на корпусе может указываться только полная величина сопротивления без буквы. На зарубежных резисторах после числового значения ставят значок ома «Ω »:

3R — 3 Ом
10Е — 10 Ом
47R — 47 Ом
47Ω – 47 Ом
56 – 56 Ом

б) Резисторы с сопротивлениями от 100 до 999 Ом выражают в долях килоома и обозначают буквой «К ». Причем букву, обозначающую единицу измерения, ставят на месте нуля или запятой. В некоторых случаях может указываться полная величина сопротивления с буквой «R » на конце, или только одно числовое значение величины без буквы:

К12 = 0,12 кОм = 120 Ом
К33 = 0,33 кОм = 330 Ом
К68 = 0,68 кОм = 680 Ом
360R — 360 Ом

в) Сопротивления от 1 до 99 кОм выражают в килоомах и обозначают буквой «К »:

2К0 — 2кОм
10К — 10 кОм
47К — 47 кОм
82К — 82 кОм

г) Сопротивления от 100 до 999 кОм выражают в долях мегаома и обозначают буквой «М ». Букву ставят на месте нуля или запятой:

М18 = 0,18 МОм = 180 кОм
М47 = 0,47 МОм = 470 кОм
М91 = 0,91 МОм = 910 кОм

д) Сопротивления от 1 до 99 МОм выражают в мегаомах и обозначают буквой «М »:

— 1 МОм
10М — 10 МОм
33М — 33 МОм

е) Если номинальное сопротивление выражено целым числом с дробью, то буквы Е , R , К и М , обозначающие единицу измерения, ставят на месте запятой, разделяя целую и дробную части:

R22 – 0,22 Ом
1Е5 — 1,5 Ом
3R3 — 3,3 Ом
1К2 — 1,2 кОм
6К8 — 6,8 кОм
3М3 — 3,3 МОм

Цветовая маркировка .

Цветовая маркировка обозначается четырьмя или пятью цветными кольцами и начинается слева направо. Каждому цвету соответствует свое числовое значение. Кольца сдвинуты к одному из выводов резистора и первым считается кольцо, расположенное у самого края. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, то ширина первого кольца делается примерно в два раза больше других.

Отчет сопротивления резистора ведут слева направо. Резисторы с величиной допуска ±20% (о допуске будет сказано ниже) маркируются четырьмя кольцами: первые два обозначают в Омах, третье кольцо является множителем , а четвертое — обозначает допуск или класс точности резистора. Четвертое кольцо наносится с видимым разрывом от остальных и располагается у противоположного вывода резистора.

Резисторы с величиной допуска 0,1…10% маркируются пятью цветовыми кольцами: первые три – численная величина сопротивления в Омах, четвертое – множитель, и пятое кольцо – допуск. Для определения величины сопротивления пользуются специальной таблицей.

Например. Резистор маркирован четырьмя кольцами:

красное — (2 )
фиолетовое — (7 )
красное — (100 )
серебристое — (10% )
Значит: 27 Ом х 100 = 2700 Ом = 2,7 кОм с допуском ±10% .

Резистор маркирован пятью кольцами:

красное — (2 )
фиолетовое (7 )
красное (2 )
красное (100 )
золотистое (5% )
Значит: 272 Ома х 100 = 27200 Ом = 27,2 кОм с допуском ±5%

Иногда возникает трудность с определением первого кольца. Здесь надо запомнить одно правило: начало маркировки не будет начинаться с черного, золотистого и серебристого цвета .

И еще момент. Если нет желания возиться с таблицей, то в интернете есть программы онлайн калькуляторы, предназначенные для подсчета сопротивления по цветным кольцам. Программы можно скачать и установить на компьютер или смартфон. Также о цветовой и буквенно-цифровой маркировке можно почитать в статье.

Цифровая маркировка .

Цифровая маркировка наносится на корпуса SMD компонентов и маркируется тремя или четырьмя цифрами.

При трехзначной маркировке первые две цифры обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель . Множителем является число 10 возведенное в степень третьей цифры:

221 – 22 х 10 в степени 1 = 22 Ом х 10 = 220 Ом ;
472 – 47 х 10 в степени 2 = 47 Ом х 100 = 4700 Ом = 4,7 кОм ;
564 – 56 х 10 в степени 4 = 56 Ом х 10000 = 560000 Ом = 560 кОм ;
125 – 12 х 10 в степени 5 = 12 Ом х 100000 = 12000000 Ом = 1,2 МОм .

Если последняя цифра ноль , то множитель будет равен единице , так как десять в нулевой степени равно единице:

100 – 10 х 10 в степени 0 = 10 Ом х 1 = 10 Ом ;
150 – 15 х 10 в степени 0 = 15 Ом х 1 = 15 Ом ;
330 – 33 х 10 в степени 0 = 33 Ом х 1 = 33 Ом .

При четырехзначной маркировке первые три цифры также обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель. Множителем является число 10 возведенное в степень третьей цифры:

1501 – 150 х 10 в степени 1 = 150 Ом х 10 = 1500 Ом = 1,5 кОм ;
1602 – 160 х 10 в степени 2 = 160 Ом х 100 = 16000 Ом = 16 кОм ;
3243 – 324 х 10 в степени 3 = 324 Ом х 1000 = 324000 Ом = 324 кОм .

1.2. Допуск (класс точности) резистора.

Вторым важным параметром резистора является допускаемое отклонение фактического сопротивления от номинального значения и определяется допуском (классом точности).

Допускаемое отклонение выражается в процентах и указывается на корпусе резистора в виде буквенного кода , состоящего из одной буквы. Каждой букве присвоено определенное числовое значение допуска, пределы которого определены ГОСТ 9964-71 и приведены в таблице ниже:

Наиболее распространенные резисторы выпускаются с допуском 5%, 10% и 20%. Прецизионные резисторы, применяемые в измерительной аппаратуре, имеют допуски 0,1%, 0,2%, 0,5%, 1%, 2%. Например, у резистора с номинальным сопротивлением 10 кОм и допуском 10% фактическое сопротивление может быть в пределах от 9 до 11 кОм ±10%.

На корпусе резистора допуск указывается после номинального сопротивления и может состоять из буквенного кода или цифрового значения в процентах.

У резисторов с цветовой маркировкой допуск указывается последним цветным кольцом: серебристый цвет – 10%, золотистый – 5%, красный – 2%, коричневый – 1%, зеленый – 0,5%, голубой – 0,25%, фиолетовый – 0,1%. При отсутствии кольца допуска резистор имеет допуск 20%.

1.3. Номинальная мощность рассеивания.

Третьим важным параметром резистора является его мощность рассеивания

При прохождении тока через резистор на нем выделяется электрическая энергия (мощность) в виде тепла, которое сначала повышает температуру тела резистора, а затем за счет теплопередачи переходит в воздух. Поэтому мощностью рассеивания называют ту наибольшую мощность тока, которую резистор способен длительное время выдерживать и рассеивать в виде тепла без ущерба потери своих номинальных параметров.

Поскольку слишком высокая температура тела резистора может привести его к выходу из строя, то при составлении схем задается величина, которая указывает на способность резистора рассеивать ту или иную мощность без перегрева.

За единицу измерения мощности принят ватт (Вт).

Например. Допустим, что через резистор сопротивлением 100 Ом течет ток 0,1 А, значит, резистор рассеивает мощность в 1 Вт. Если же резистор будет меньшей мощности, то он быстро перегреется и выйдет из строя.

В зависимости от геометрических размеров резисторы могут рассеивать определенную мощность, поэтому резисторы разной мощности отличаются размерами: чем больше размер резистора, тем больше его номинальная мощность, тем большую силу тока и напряжение он способен выдержать.

Резисторы выпускаются с мощностью рассеивания 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 5 Вт, 10 Вт, 25 Вт и более.

На резисторах, начиная с 1 Вт и выше, величина мощности указывается на корпусе в виде цифрового значения, тогда как малогабаритные резисторы приходится определять на «глаз».

С приобретением опыта определение мощности малогабаритных резисторов не вызывает никаких затруднений. На первое время в качестве ориентира для сравнения можно использовать обычную спичку . Более подробно прочитать про мощность и дополнительно посмотреть видеоролик можно в статье.

Однако с размерами есть небольшой нюанс, который надо учитывать при выполнении монтажа: габариты отечественных и зарубежных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев .

Резисторы можно разделить на две группы: резисторы постоянного сопротивления (постоянные резисторы) и резисторы переменного сопротивления (переменные резисторы).

2. Резисторы постоянного сопротивления (постоянные резисторы).

Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным . Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.

Керамическую трубку называют резистивным элементом и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются на непроволочные и проволочные .

Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки , нанесенной на керамическое основание.

Полупроводящая пленка называется резистивным слоем и изготавливается из пленки однородного вещества толщиной 0,1 – 10 мкм (микрометр) или из микрокомпозиций . Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества.

В зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).

Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.

2.2. Проволочные резисторы.

Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 – 0,05 мм.

Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.

Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.

По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.

Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.

С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.

На принципиальных схемах постоянные резисторы, независимо от их типа, изображают в виде прямоугольника , а выводы резистора изображают в виде линий, проведенных от боковых сторон прямоугольника. Такое обозначение принято повсеместно, однако в некоторых зарубежных схемах используется обозначение резистора в форме зубчатой линии (пилы).

Рядом с условным обозначением ставят латинскую букву «R » и порядковый номер резистора в схеме, а также указывают его номинальное сопротивление в единицах измерения Ом, кОм, МОм.

Значение сопротивления от 0 до 999 Ом обозначают в омах , но единицу измерения не ставят:

15 — 15 Ом
680 – 680 Ом
920 — 920 Ом

На некоторых зарубежных схемах для обозначения Ом ставят букву R :

1R3 — 1,3 Ом
33R – 33 Ом
470R — 470 Ом

Значение сопротивления от 1 до 999 кОм обозначают в килоомах с добавлением буквы «к »:

1,2к — 1,2 кОм
10к — 10 кОм
560к — 560 кОм

Значение сопротивления от 1000 кОм и больше обозначают в единицах мегаом с добавлением буквы «М »:

— 1 МОм
3,3М — 3,3 МОм
56М — 56 МОм

Резистор применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора: двойной косой чертой обозначают мощность 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римскими цифрами обозначается мощность от 1 Вт и выше.

4. Последовательное и параллельное соединение резисторов.

Очень часто возникает ситуация когда при конструировании какого-либо устройства под рукой не оказывается резистора с нужным сопротивлением, но зато есть резисторы с другими сопротивлениями. Здесь все очень просто. Зная расчет последовательного и параллельного соединения можно собрать резистор с любым номиналом.

При последовательном соединении резисторов их общее сопротивление Rобщ равно сумме всех сопротивлений резисторов, соединенных в эту цепь:

Rобщ = R1 + R2 + R3 + … + Rn

Например. Если R1 = 12 кОм, а R2 = 24 кОм, то их общее сопротивление Rобщ = 12 + 24 = 36 кОм.

При параллельном соединении резисторов их общее сопротивление уменьшается и всегда меньше сопротивления каждого отдельно взятого резистора:

Допустим, что R1 = 11 кОм, а R2 = 24 кОм, тогда их общее сопротивление будет равно:

И еще момент: при параллельном соединении двух резисторов с одинаковым сопротивлением, их общее сопротивление будет равно половине сопротивления каждого из них.

Из приведенных примеров понятно, что если хотят получить резистор с бо́льшим сопротивлением, то применяют последовательное соединение, а если с меньшим, то параллельное. А если остались вопросы, почитайте статью , в которой способы соединения рассказаны более подробно.

Ну и в дополнении к прочитанному посмотрите видеоролик о резисторах постоянного сопротивления.

Ну вот, в принципе и все, что хотел сказать о резисторе в целом и отдельно о резисторах постоянного сопротивления . Во второй части статьи мы познакомимся с .
Удачи!

Литература:
В. И. Галкин — «Начинающему радиолюбителю», 1989 г.
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. Г. борисов — «Юный радиолюбитель», 1992 г.

Резисторы керамические проволочные цементные – постоянные резисторы, номинальное сопротивление в зависимости от номинала составляет от 0,01 Ом до 100 кОм , рассеиваемая мощность – 5Вт, 10Вт, 15Вт, 25Вт . Предназначены для эксплуатации в цепях постоянного или переменного тока, обеспечивая ограничение силы тока и распределение напряжения.

Конструктивно проволочные резисторы выполнены в виде трубчатого основания из керамики (чистый глинозём Al 2 O 3), в качестве резистивного элемента используется проволочный проводник (медно-никелевый или хромово-никелевый сплав) с высоким удельным сопротивлением. Основание с обмоткой помещено в литой прямоугольный корпус из стеатитовой керамики и закапсулировано кремнезёмом (диоксид кремния SiO 2).

Монолитная керамическая конструкция резисторов обладает высокими характеристиками огнестойкости, влагостойкости и способностью к самозатуханию.

Вывода керамических резисторов – гибкие осевые аксиальные проволочного типа. В качестве материала выводов используется луженая медь. Монтаж осуществляется с использованием пайки по THT-технологии – вывода монтируются непосредственно в сквозные отверстия печатной платы.

Положение монтажа – любое, но следует помнить о резистивных особенностях, сопровождающихся нагревом корпуса резистора. Поэтому, не рекомендуется размещение резисторов на близком расстоянии к печатной плате или термочувствительным элементам.

Допустимое отклонение сопротивления цементных аксиальных резисторов составляет ±5% . Ряд промежуточных значений номинальных сопротивлений – Е24 E24 — один из рядов постоянных резисторов, который является результатом стандартизации номинальных сопротивлений резисторов. . При переменном токе предельное рабочее напряжение составляет 1500В , при постоянном токе – 1000В . Рабочая повышенная температура среды не превышает +275°С , пониженная – до -55°С . Сопротивление изоляции составляет не менее 1000 МОм .

При подборе необходимого номинала расчет рекомендуется проводить, используя гибкий , с помощью которого можно определить общее параллельное или последовательное сопротивление резисторов , а также сопротивление резисторов в цепи.

В представлены особенности конструкции и характеристики мощных резисторов С5-35В, С5-36В, ПЭВ, ПЭВР, RX24 и SQP.

Применяются мощные керамические резисторы в различной промышленной электронике, радио- и телевизионных приемниках, блоках питания и управления, усилителях, автомобильной электронике, а также в качестве испытательной нагрузки или нагревательных элементов (например, в видеокамерах наружного видеонаблюдения).

Более подробные характеристики представленных мощных керамических цементных резисторов , а также расшифровка маркировки, габаритные и установочные размеры приведены ниже.

Гарантийный срок работы поставляемых нашей компанией мощных резисторов составляет 2 года , что подкрепляется соответствующими документами по качеству.

Окончательная цена на мощные проволочные керамические цементные резисторы зависит от количества, сроков поставки и формы оплаты.

Продолжение статьи о начале занятий электроникой. Для тех, кто решился начать. Рассказ о деталях.

Радиолюбительство до сих пор является одним из самых распространенных увлечений, хобби. Если в начале своего славного пути радиолюбительство затрагивало в основном конструирование приемников и передатчиков, то с развитием электронной техники расширялся диапазон электронных устройств и круг радиолюбительских интересов.

Конечно, такие сложные устройства, как, например, видеомагнитофон, проигрыватель компакт-дисков, телевизор или домашний кинотеатр у себя дома собирать не станет даже самый квалифицированный радиолюбитель. А вот ремонтом техники промышленного производства занимаются очень многие радиолюбители, причем достаточно успешно.

Другим направлением является конструирование электронных схем или доработка «до класса люкс» промышленных устройств.

Диапазон в этом случае достаточно велик. Это устройства для создания «умного дома», преобразователи 12…220В для питания телевизоров или звуковоспроизводящих устройств от автомобильного аккумулятора, различные терморегуляторы. Также очень популярны , а также многое другое.

Передатчики и приемники отошли на последний план, а вся техника называется теперь просто электроникой. И теперь, пожалуй, следовало бы называть радиолюбителей как-то иначе. Но исторически сложилось так, что другого названия просто не придумали. Поэтому пусть будут радиолюбители.

Компоненты электронных схем

При всем разнообразии электронных устройств они состоят из радиодеталей. Все компоненты электронных схем можно разделить на два класса: активные и пассивные элементы.

Активными считаются радиодетали, которые обладают свойством усиливать электрические сигналы, т.е. обладающие коэффициентом усиления. Нетрудно догадаться, что это транзисторы и все, что из них делается: операционные усилители, логические микросхемы, и многое другое.

Одним словом все те элементы, у которых маломощный входной сигнал управляет достаточно мощным выходным. В таких случаях говорят, что коэффициент усиления (Кус) у них больше единицы.

К пассивным относятся такие детали, как резисторы, и т.п. Одним словом все те радиоэлементы, которые имеют Кус в пределах 0…1! Единицу тоже можно считать усилением: «Однако, не ослабляет». Вот сначала и рассмотрим пассивные элементы.

Резисторы

Являются самыми простыми пассивными элементами. Основное их назначение ограничить ток в электрической цепи. Простейшим примером является включение светодиода, показанное на рисунке 1. С помощью резисторов также подбирается режим работы усилительных каскадов при различных .

Рисунок 1. Схемы включения свтодиода

Свойства резисторов

Раньше резисторы назывались сопротивлениями, это как раз их физическое свойство. Чтобы не путать деталь с ее свойством сопротивления переименовали в резисторы .

Сопротивление, как свойство присуще всем проводникам, и характеризуется удельным сопротивлением и линейными размерами проводника. Ну, примерно так же, как в механике удельный вес и объем.

Формула для подсчета сопротивления проводника: R = ρ*L/S, где ρ удельное сопротивление материала, L длина в метрах, S площадь сечения в мм2. Нетрудно увидеть, что чем длиннее и тоньше провод, тем больше сопротивление.

Можно подумать, что сопротивление не лучшее свойство проводников, ну просто препятствует прохождению тока. Но в ряде случаев как раз это препятствие является полезным. Дело в том, что при прохождении тока через проводник на нем выделяется тепловая мощность P = I 2 * R. Здесь P, I, R соответственно мощность, ток и сопротивление. Эта мощность используется в различных нагревательных приборах и лампах накаливания.

Резисторы на схемах

Все детали на электрических схемах показываются с помощью УГО (условных графических обозначений). УГО резисторов показаны на рисунке 2.

Рисунок 2. УГО резисторов

Черточки внутри УГО обозначают мощность рассеяния резистора. Сразу следует сказать, что если мощность будет меньше требуемой, то резистор будет греться, и, в конце концов, сгорит. Для подсчета мощности обычно пользуются формулой, а точнее даже тремя: P = U * I, P = I 2 * R, P = U 2 / R.

Первая формула говорит о том, что мощность, выделяемая на участке электрической цепи, прямо пропорциональна произведению падения напряжения на этом участке на ток через этот участок. Если напряжение выражено в Вольтах, ток в Амперах, то мощность получится в ваттах. Таковы требования системы СИ.

Рядом с УГО указывается номинальное значение сопротивления резистора и его порядковый номер на схеме: R1 1, R2 1К, R3 1,2К, R4 1К2, R5 5М1. R1 имеет номинальное сопротивление 1Ом, R2 1КОм, R3 и R4 1,2КОм (буква К или М может ставиться вместо запятой), R5 — 5,1МОм.

Современная маркировка резисторов

В настоящее время маркировка резисторов производится с помощью цветных полос. Самое интересное, что цветовая маркировка упоминалась в первом послевоенном журнале «Радио», вышедшем в январе 1946 года. Там же было сказано, что вот, это новая американская маркировка. Таблица, объясняющая принцип «полосатой» маркировки показана на рисунке 3.

Рисунок 3. Маркировка резисторов

На рисунке 4 показаны резисторы для поверхностного монтажа SMD, которые также называют «чип — резистор». Для любительских целей наиболее подходят резисторы типоразмера 1206. Они достаточно крупные и имеют приличную мощность, целых 0,25Вт.

На этом же рисунке указано, что максимальным напряжением для чип резисторов является 200В. Такой же максимум имеют и резисторы для обычного монтажа. Поэтому, когда предвидится напряжение, например 500В лучше поставить два резистора, соединенных последовательно.

Рисунок 4. Резисторы для поверхностного монтажа SMD

Чип резисторы самых маленьких размеров выпускаются без маркировки, поскольку ее просто некуда поставить. Начиная с размера 0805 на «спине» резистора ставится маркировка из трех цифр. Первые две представляют собой номинал, а третья множитель, в виде показателя степени числа 10. Поэтому если написано, например, 100, то это будет 10 * 1Ом = 10Ом, поскольку любое число в нулевой степени равно единице первые две цифры надо умножать именно на единицу.

Если же на резисторе написано 103, то получится 10 * 1000 = 10 КОм, а надпись 474 гласит, что перед нами резистор 47 * 10 000 Ом = 470 КОм. Чип резисторы с допуском 1% маркируются сочетанием букв и цифр, и определить номинал можно лишь пользуясь таблицей, которую можно отыскать в интернете.

В зависимости от допуска на сопротивление номиналы резисторов разделяются на три ряда, E6, E12, E24. Значения номиналов соответствуют цифрам таблицы, показанной на рисунке 5.

Рисунок 5.

Из таблицы видно, что чем меньше допуск на сопротивление, тем больше номиналов в соответствующем ряду. Если ряд E6 имеет допуск 20%, то в нем всего лишь 6 номиналов, в то время как ряд E24 имеет 24 позиции. Но это все резисторы общего применения. Существуют резисторы с допуском в один процент и меньше, поэтому среди них возможно найти любой номинал.

Кроме мощности и номинального сопротивления резисторы имеют еще несколько параметров, но о них пока говорить не будем.

Соединение резисторов

Несмотря на то, что номиналов резисторов достаточно много, иногда приходится их соединять, чтобы получить требуемую величину. Причин этому несколько: точный подбор при настройке схемы или просто отсутствие нужного номинала. В основном используется две схемы соединения резисторов: последовательное и параллельное. Схемы соединения показаны на рисунке 6. Там же приводятся и формулы для расчета общего сопротивления.

Рисунок 6. Схемы соединения резисторов и формулы для расчетов общего сопротивления

В случае последовательного соединения общее сопротивление равно просто сумме двух сопротивлений. Это как показано на рисунке. На самом деле резисторов может быть и больше. Такое включение бывает в . Естественно, что общее сопротивление будет больше самого большего. Если это будут 1КОм и 10Ом, то общее сопротивление получится 1,01КОм.

При параллельном соединении все как раз наоборот: общее сопротивление двух (и более резисторов) будет меньше меньшего. Если оба резистора имеют одинаковый номинал, то общее их сопротивление будет равно половине этого номинала. Можно так соединить и десяток резисторов, тогда общее сопротивление будет как раз десятая часть от номинала. Например, соединили в параллель десять резисторов по 100 ОМ, тогда общее сопротивление 100 / 10 = 10 Ом.

Следует отметить, что ток при параллельном соединении согласно закону Кирхгофа разделится на десять резисторов. Поэтому мощность каждого из них потребуется в десять раз ниже, чем для одного резистора.

Продолжение читайте в следующей статье.

Прежде всего, определимся с понятием и обозначением сопротивления, как электрической величины. Согласно теории сопротивление — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока. В международной системе единиц (СИ) единицей измерения сопротивления является Ом (Ω). Для электротехники это относительно небольшая величина, поэтому мы чаще будем иметь дело с килоомами (кОм) и мегаомами (МОм). Для этого нужно усвоить следующую табличку:

1 кОм = 1000 Ом;
1 Мом = 1000 кОм;

И наоборот:

1 Ом = 0.001 кОм;
1 кОм = 0.001 Мом;

Ничего сложного, но знать это надо твердо.

Теперь о номиналах (величинах). Конечно, промышленность не выпускает для радиолюбителей резисторов со всеми номиналами. Изготовление высокоточных резисторов – дело трудоемкое и используются такие резисторы лишь в специальной высокоточной аппаратуре. Вы, к примеру, не найдете в обычном магазине резистора на 1.9 кОм и в такой точности чаще всего нет необходимости – она нужна редко, а если нужна, то для этого существуют подстроечные резисторы.

Весь стандартный ряд, с которым мы будем сталкиваться, я здесь приводить не буду – он достаточно длинный и учить его специально не стоит. Лучше научимся отличать один резистор от другого. Маркировать приборы могут по-разному. Самая удобная, по моему мнению, была цифровая маркировка. Делалась она, к примеру, на самых ходовых в свое время резисторах типа МЛТ.

Одного взгляда на резистор было достаточно, чтобы узнать какое у него сопротивление

К примеру, на втором сверху резисторе читаем 2,2 и ниже К5% . Номинал этого резистора – 2.2 килоома с точностью 5%. Для мегаомных резисторов используется «М» вместо «К» а омы обозначаются буквами «R», «Е» или вообще без буквы:

470 — 470 Ом
18Е — 18 Ом

Очень часто любая из букв может стоять вместо запятой:

2к2 – 2,2 килоома
М15 – 0,15 мегаом или 150 килоом

Вот и вся хитрость. Еще один параметр – мощность резистора. Чем выше мощность, тем больший ток может выдержать резистор без разрушения (сгорания). Снова вернемся к верхнему рисунку. Здесь резисторы имеют следующую мощность (сверху вниз) 2 Вт, 1 Вт, 0.5 Вт, 0.25 Вт, 0.125 Вт. Первые три настолько велики, что на них даже нашлось место для маркировки мощности: МЛТ-2, МЛТ-1, МЛТ-0.5. Остальные на глаз. Конечно, выпускаются (но большинство, увы, выпускалось) и другие типы (и мощности) с «человеческой» маркировкой, перечислять я их не буду, а принцип обозначения у них тот же.

ПЭВР-30, к примеру, выглядит как приличных размеров цилиндр, но маркируется так же

Но эта мода уже практически отошла, взамен цифр появились цветные полоски и специальные коды и с этим придется мириться.

Что это за резистор и каков его номинал? Для этого придется обратиться к специальным таблицам, которые я здесь и привожу.

Температура перехода < Расчет температуры кристалла транзистора > | Основы электроники

Как рассчитать температуру перехода (по температуре окружающей среды)

Температуру перехода (или температуру канала) можно рассчитать исходя из температуры окружающей среды, используя следующее уравнение.

* Rth (j-a): Термическое сопротивление «переход-окружающая среда» варьируется в зависимости от типа печатной платы. Для справки ниже представлена ​​таблица термического сопротивления по корпусам, основанная на использовании стандартной печатной платы ROHM.

* Значение Rth (j-a) отличается для каждого номера детали, но значения будут близкими, если упаковка одинакова.

** Если потребление тока нестабильно и меняется время от времени, тогда в формуле расчета должны быть указаны усредненные значения потребляемого тока, чтобы получить приблизительное значение (см. «Метод оценки пригоден или не используется».

Ниже приведен пример корреляции между потребляемым током и температурой перехода, когда Rth (j-a) составляет 250 градусов./ Вт, температура окружающей среды 25 град.

Температура перехода повышается пропорционально потребляемому току. Константа пропорциональности для этого равна Rth (j-a).

Поскольку Rth (j-a) составляет 250 град. / Вт, температура перехода повышается на 25 град. на каждое приращение 0,1 Вт потребляемого тока. Это означает, что температура перехода становится 150 град. когда потребление тока составляет 0,5 Вт, и график в этом случае предполагает, что ток выше 0,5 Вт не может быть применен к TR.

При подаче такого же тока температура перехода также повышается при повышении температуры окружающей среды. Это впоследствии уменьшает применимый ток. Максимальное потребление тока зависит от теплового сопротивления и температуры окружающей среды.

Максимальное потребление тока уменьшается с указанным выше соотношением.

Кривая снижения мощности, приведенная выше, показывает процент затухания тока, который может применяться ко всем корпусам.Например, в случае пакета MPT3 (SOT89) максимальная применимая мощность составляет 0,5 Вт при 25 град. и применяемый ток уменьшается со скоростью 0,8% / град. Это означает, что значение снижается до 0,4 Вт. Это 80% от 100% от начального значения (снижение на 20%), а затем снижение до 0,2 Вт, что составляет 40% от исходного значения (уменьшение на 60%).

Переходное термическое сопротивление

В приведенных выше примерах мы обсуждали случаи, когда ток подается на устройство непрерывно. Далее мы обсудим случай, когда температура повышается при кратковременном приложении тока.

На приведенном выше графике показано тепловое сопротивление в текущий момент времени (переходное тепловое сопротивление), ширина импульса отложена по оси X, а Rth (j-a) — по оси Y.

Этот график показывает нам, что температура перехода повышается по мере того, как сохраняется текущее время приложения, достигая состояния плато (называемого тепловым насыщением) через 200 секунд.

Мы можем использовать приведенную выше формулу расчета, чтобы получить температуру перехода, когда ток прикладывается мгновенно в виде одиночного импульса.

Метод расчета температуры перехода (от температуры корпуса)

Температуру перехода можно рассчитать по температуре корпуса, как показано ниже. Примером может служить замена Rth (j-a) в формуле на Rth (j-c).

* Температура корпуса измеряется радиационным термометром, как максимальная температура на поверхности упаковки, на которой нанесена маркировка.

* Обратите внимание, что температура корпуса значительно различается в зависимости от метода / точки измерения.

** Значение считается приблизительным, если приложенный ток не является постоянным, время от времени изменяющимся путем присвоения усредненного значения потребления.

Поскольку значение Rth (jc) варьируется в зависимости от типа печатной платы, а также от условий рассеивания тепла (включая состояние пайки), приведенная выше формула потенциально не применима к вашим расчетам, поскольку измеренные значения на печатной плате RHOMs могут отличаться от измеренных значений на вашей печатной плате.Например, температура корпуса может быть ниже по сравнению, даже если приложенный ток такой же, когда печатная плата имеет хорошие характеристики рассеивания тепла.

На приведенном ниже рисунке показано, что Rth (j-c) становится ниже по мере того, как рисунок земли коллектора на печатной плате становится меньше. (Площадь контактной площадки коллектора / толщина / материалы плюс материал печатной платы, ширина цепи размера также приведут к другим результатам измерений на Rth (j-c).

Значение Rth (j-c) может отличаться в зависимости от типа и состояния печатной платы.Выбрать правильное место для точного измерения температуры корпуса сложно. Из-за этого не рекомендуется приближать температуру перехода к температуре корпуса.

Тепловое сопротивление перехода к корпусу Rth (j-c) — подробности

В принципе, термическое сопротивление перехода к корпусу Rth (j-c) — это показатель, который в основном используется для корпусных устройств TO220 (через отверстие) путем пайки его на радиаторе. В этом случае, поскольку от корпуса до радиатора является путь теплового излучения, можно точно рассчитать температуру перехода, измерив температуру корпуса в точке в середине такого пути.В частности, если используется радиатор с идеальными характеристиками рассеивания тепла (например, бесконечный радиатор), способность рассеивания тепла считается безграничной. Считается само собой разумеющимся, что «Температура корпуса» = «Температура окружающей среды», а температура корпуса = 25 град. (Tc = 25 град.) Входит в расчетную формулу.

(Тепловое сопротивление бесконечного радиатора: Rth (c-a) =; тогда Rth (j-a) = Rth (j-c))

Для устройств поверхностного монтажа путь теплового излучения — это в основном часть печатной платы, которая находится непосредственно под устройством; что может затруднить измерение температуры корпуса из-за расположения.Даже если измерять температуру на маркировочной стороне устройства, его доля тепловыделения в общем тепловыделении довольно мала. Поэтому использовать эту температуру в формуле для расчета температуры перехода не рекомендуется.

Тем не менее, поскольку от наших клиентов поступает много запросов о значении Rth (jc) для устройств SMT, ROHM иногда предоставляет значение Rth (jc) в условиях, когда температура измеряется со стороны маркировки устройства, установленного на ранее установленном устройстве. упомянутая стандартная печатная плата.По этой причине значение Rth (j-c) следует рассматривать как эталонное.

Если устройство установлено на печатной плате иным образом, чем наше, то доля рассеивания тепла во всем тепловом излучении будет отличаться, что затруднит точное определение температуры перехода.

Термостойкость стандартных корпусов (справочные данные)

Значения в следующих данных не являются ни гарантированными значениями, ни максимальными / минимальными значениями. Пожалуйста, рассматривайте их только как справочные данные.*

* Приведенные здесь данные получены по результатам измерения конкретной партии продукции.

* Rth (j-a) варьируется в зависимости от печатной платы, условий рассеивания тепла, включая методы пайки и метод измерения температуры.

Транзистор

43. Методы расчета транзисторов со встроенными резисторами | Chip One Stop

(1) Расчет базового тока

Мы объясняем вычисление тока базы следующим образом на примере цифрового транзистора.

Требуется прямое напряжение (25 ℃ около 0,7 В) между EB, так как ток базы протекает в прямом направлении (между EB) между эмиттерной базой транзистора во время работы встроенного резистора транзистора. Тот же самый 0,7 В применяется к R2, потому что он подключен параллельно с базой к Emmitor в транзисторе со встроенным резистором. Следовательно, понятно, что ток протекает в R2.

Понятно, что напряжение подается на оба конца резистора R1, поскольку разность потенциалов между базой и эмиттером транзистора равна 0.7 В, а потенциал клеммы IN составляет 5 В, когда входное напряжение V равно 5 В. Следовательно, понятно, что ток течет в R1.

Следовательно, понятно, что ток течет в базе транзистора.

Базовый ток, протекающий в транзисторе, может быть рассчитан с помощью этого вычисления. Отрегулируйте выходной ток Io и входное напряжение Vin так, чтобы выходной ток Io был примерно в 10-20 раз меньше базового тока, который входит в транзистор, чтобы транзистор со встроенным резистором был правильно включен (= для минимизации выходного напряжения Вун).

Прямое напряжение уменьшается примерно на 2,2 мВ на каждый 1 ℃ повышения температуры прямого напряжения, хотя прямое напряжение между эмиттером и базой составляет около 0,7 В при температуре 25 ℃. Например, температура становится около 50 ℃. Напротив, она становится примерно при температуре -40 ℃. Таким образом, обратите внимание, что прямое напряжение Vf изменяется в зависимости от температуры. Кроме того, прямое напряжение 0,7 В при 25 ℃ также является критерием. Обратите внимание, что оно может составлять около ± 0.1 колеблюсь. Кроме того, во встроенном резисторе R1, R2 может быть отклонение около ± 30%, поэтому приведенный выше расчет считается критерием и, пожалуйста, рассчитайте с учетом наихудшего случая номинала резистора.

(2) Расчет минимально необходимого входного напряжения (управляющего напряжения)

В нем объясняется входное напряжение (управляющее напряжение), необходимое для включения транзистора со встроенным резистором, следующим образом на примере реального транзистора со встроенным резистором.

Напряжение между EB = прямое напряжение между EB: около 0,7 В = напряжение, приложенное к обоим выводам R2, образуется, когда прямой ток течет между EB во время работы транзистора со встроенным резистором.

Прямое напряжение (25 ℃, около 0,7 В) применяется между EB, потому что ток базы протекает в прямом направлении между эмиттер-базой встроенного транзистора (между EB), когда транзистор со встроенным резистором работает.Те же 0,7 В приложены к R2, потому что интервал EB и резистор R2 встроенного транзистора подключены параллельно транзистору со встроенным резистором. Следовательно, понятно, что ток течет в R2.

70 мкА, который течет в этот R2, также течет в R1. Следовательно, понятно, что напряжение приложено к обоим выводам R1. Таким образом, понятно, что входное напряжение в сумме 1,4 В необходимо для включения транзистора со встроенным резистором путем согласования 0.7 В между EB встроенного транзистора с 0,7 В R1.

Следовательно, если мы обобщим напряжение Vion, при котором встроенный резистор транзистора включится, то прямое напряжение будет рассматриваться как Vf. В результате понятно, что напряжение включения встроенного резистора транзистора определяется соотношением R1 и R2.

На самом деле, помимо вышеупомянутого управляющего напряжения, имеющего отклонение примерно на 20-30% из-за изменения соотношения номиналов резистора и Vf, поэтому при проектировании следует поддерживать идеальный запас для фактического использования, потому что также есть колебания из-за изменения температуры как критерий.Чтобы быть точным, рассчитайте, когда выходной ток составляет около 100 мкА, а когда выходной ток составляет около 1 мА при 25 ℃.

Вычисленное выше напряжение — это напряжение для инициирования включения транзистора. Напряжение, необходимое для протекания определенного количества тока, больше, потому что необходимо пропускать ток, составляющий примерно 1/20 или более выходного тока в базу через встроенный резистор. Аналогичный расчет сделан для типа pnp, потому что это почти такое же значение Vf, хотя приведенный выше пример относится к типу npn.

MOSFET — Как рассчитать значение резистора затвора?

Понимание ворот полевого МОП-транзистора

Полевые МОП-транзисторы

— замечательные устройства, которые обеспечивают множество преимуществ при управлении различными нагрузками. Тот факт, что они приводятся в действие напряжением и что во включенном состоянии они имеют очень низкое сопротивление, делают их устройством выбора для многих приложений.

Однако то, как на самом деле работают ворота, вероятно, является одной из наименее понятных характеристик для многих дизайнеров.

Давайте посмотрим на вашу типичную схему MOSFET.

ПРИМЕЧАНИЕ. Я собираюсь здесь только проиллюстрировать устройства с N-каналом, но P-канал работает по тем же механизмам.

смоделировать эту схему — Схема создана с помощью CircuitLab

Итак, мы знаем, что устройство работает от напряжения, так зачем нам \ $ R_ {GATE} \ $. Чтобы понять, почему важен \ $ R_ {GATE} \ $, нам нужно дополнить эту модель, включив в нее емкости полевого МОП-транзистора.

смоделировать эту схему

\ $ R_g \ $ — сопротивление ножек устройства и соединительного провода к самому затвору. Обычно это очень маленькое значение в единицах или двойках. Однако два конденсатора, один от затвора к истоку \ $ C_ {GS} \ $, другой от затвора к стоку \ $ C_ {GD} \ $, имеют большое значение.

Еще больше усложняет ситуацию то, что эти емкости непостоянны и изменяются в зависимости от приложенного напряжения. Типичный пример показан ниже.

Вы можете видеть, что когда приводное устройство переключает выход, скажем, с низкого на высокий, выход в основном подключается к земле через \ $ C_ {GS} \ $ и через \ $ C_ {GD} \ $. Таким образом, начальный ток, снимаемый с приводного устройства, определяется следующим уравнением.

\ $ I_ {gate} = V_ {Gate} / (R_ {source} + R_ {GATE} + R_g) \

$

Поскольку приводное устройство будет иметь максимальный ток привода, вам необходимо выбрать минимальное значение \ $ R_ {GATE} \ $, чтобы гарантировать, что это значение никогда не будет превышено.Однако единичный \ $ R_g \ $ мал, и не всегда возможно определить импедансы источника и стока драйвера, обычно уравнение сводят просто к ..

\ $ R_ {GATE} = V_ {Gate} / (I_ {max}) \

$

ПРИМЕЧАНИЕ. Можно использовать два резистора затвора с соответствующими диодами, если пределы источника и потребителя различаются в драйвере, или если необходимо повысить резкость краев включения или выключения.


Время решает все

Хорошо, теперь, возможно, вы понимаете, почему резистор затвора важен.Однако теперь вам нужно понять последствия наличия этого сопротивления затвора и что произойдет, если оно будет слишком большим.

Должно быть легко очевидно, что \ $ R_ {GATE} \ $ и \ $ C_ {GS} \ $ образуют RC-задержку, которая заставляет напряжение на затворе расти медленнее, чем выходное напряжение драйвера. Однако как насчет \ $ C_ {GD} \ $, как это влияет.

Разберем эту простую схему.

Здесь я выбрал типичный полевой МОП-транзистор с входным сопротивлением около 2,5 Ом.При замыкании дренажа на землю, как показано выше, на переднем крае выступов можно нанести следующие следы.

Как вы можете видеть, как мы и предсказывали, ток в \ $ R_ {Gate} \ $ изначально ограничивается сопротивлением на уровне 1А и экспоненциально спадает до нуля. Между тем, напряжение на самом затворе экспоненциально возрастает до приложенного напряжения затвора 10 В. Никаких сюрпризов здесь нет, кроме резкого края в начале Vg, который я считаю артефактом симулятора, вероятно, в результате входной индуктивности модели.

Неудивительно, что задний фронт импульса похож.

Хорошо, давайте подадим небольшое напряжение 1 В на затвор с помощью нагрузочного резистора 1 Ом.

На приведенных выше графиках следует обратить внимание на три вещи.

  1. Обратите внимание на выпуклость в \ $ V_ {D} \ $. Когда напряжение на затворе растет, верхняя часть \ $ C_ {GD} \ $ поднимается выше напряжения на шине. Поскольку в это время полевой МОП-транзистор все еще выключен, \ $ C_ {GD} \ $ должен разрядиться через нагрузочный резистор, как показано на графике I (R_LOAD).

  2. МОП-транзистор не включается в течение примерно 653 нс после фронта импульса, когда напряжение затвора успевает зарядиться до порогового значения. Очевидно, слишком большое значение \ $ R_ {GATE} \ $ задержит это еще больше.

  3. Если у вас есть зоркий глаз, вы также можете заметить небольшое отклонение I (R_GATE) при включении полевого МОП-транзистора.

Хорошо, позвольте мне показать вам более реалистичное напряжение с 10 В и 10 Ом на нагрузке.

Что должно вас выделить в приведенном выше описании, так это четкое плоское пятно в токе затвора и \ $ V_ {gs} \ $.Что вызывает это?

Когда \ $ V_ {GS} \ $ достигает порога включения, устройство начинает проводить, и это приводит к тому, что \ $ C_ {GD} \ $ начинает разряжаться через само устройство. Это эффективно «всасывает» больше тока через затвор, что значительно снижает скорость, с которой может возрастать напряжение затвора. По мере того, как он медленно поднимается, устройство включается еще немного, разряжая \ $ C_ {GD} \ $ немного быстрее, и так далее, пока в конечном итоге \ $ C_ {GD} \ $ не разряжается до того же уровня, что и \ $ C_ {GS} \ $.После этого комбинация заряжается как обычно, и \ $ V_ {GS} \ $ снова экспоненциально возрастает до целевого значения.

Здесь кое-что должно было стать вам очевидным. То есть …

Задержка включения меняется в зависимости от напряжения нагрузки!

Это, конечно, связано с тем, что чем выше напряжение, которое вы переключаете, тем больше энергии хранится в \ $ C_ {GD} \ $ и тем больше заряда должно пройти через затвор, чтобы разрядить его.

Давайте увеличим его до максимального значения, которое может выдержать это устройство, 300 В при нагрузке 1 А.

Обратите внимание, что плоское пятно теперь ОЧЕНЬ длинное. Устройство остается в линейном режиме, и для его полного включения требуется намного больше времени. На самом деле мне пришлось расширить временную базу на этом изображении. Ток затвора теперь поддерживается около 6 мкс.

Если посмотреть на время выключения, то в этом примере еще хуже.

Обратите внимание на такие же плоские пятна на токе затвора и напряжении затвора, что и при резервном заряде \ $ C_ {GD} \ $, которые становятся длиннее из-за включения сопротивления нагрузки в путь заряда.

Это означает, что если вы регулируете мощность нагрузки, частота, с которой вы можете ее управлять, сильно зависит от переключаемого напряжения.

Что вроде работает на 100КГц при 10В … при среднем токе затвора около 400мА …

Нет надежды на 300В.

На этих частотах мощности, рассеиваемой на полевом МОП-транзисторе, резисторе затвора и драйвере, вероятно, будет достаточно, чтобы вывести их из строя.


Заключение

Помимо простого использования на низких частотах, точная настройка полевых МОП-транзисторов для работы при более высоких напряжениях и частотах требует значительного количества тщательной разработки, чтобы получить характеристики, которые могут вам понадобиться.Чем выше вы поднимаетесь, тем мощнее должен быть драйвер MOSFET, чтобы вы могли использовать как можно меньшее сопротивление затвора.

Калькулятор делителя напряжения

| Good Calculators

Вы можете использовать этот калькулятор делителя напряжения для определения любой из четырех переменных, связанных с простым двухрезисторным делителем напряжения, когда доступны значения трех других переменных.

Четыре переменных, участвующих в двухрезисторном делителе напряжения: входное напряжение (V в ), выходное напряжение (V из ), сопротивление 1 (R1) и сопротивление 2 (R2).

Калькулятор также строит принципиальную схему и генерирует значения компонентов.

Как использовать калькулятор делителя напряжения:

  1. Введите три известные переменные
  2. Нажмите кнопку «Рассчитать»
  3. Калькулятор отобразит оставшееся значение и принципиальную схему.

Дополнительная информация

Инженеры очень часто используют схему двухрезисторного делителя напряжения. Делитель напряжения, который также часто называют делителем потенциала, предлагает явное преимущество, заключающееся в том, что он может поляризовать другие элементы в цепи, включая интегральные схемы и транзисторы, с напряжением, отличным от напряжения основного источника напряжения.

Основная причина, по которой используется эта схема, — это масштабирование входного напряжения до более низкого значения в соответствии с соотношением двух резисторов.

Это достигается следующим образом:

  1. Соотношение резисторов (R1 и R2) снижает входное напряжение до более низкого выходного напряжения.
  2. Выходное напряжение представляет собой часть входного напряжения. Эта дробь принимает форму R2, деленного на сумму R1 + R2.
  3. Основная формула, которая используется для определения выходного напряжения, основана на Законе Ома и выглядит следующим образом:

В на выходе = В на входе * R2 / (R1 + R2)

Например, скажем, мы работаем со схемой, которая имеет вход 12 В.Однако одной из микросхем в схеме нужно 9 вольт, а другой — всего 3 вольта. Делитель напряжения может использоваться для распределения напряжения между различными микросхемами в соответствии с их требованиями.

Если один резистор имеет значение 2 кОм, а другой — 6 кОм, вход 12 В будет разделен на 3 В и 9 В.

Обратите внимание: Никогда не используйте делитель напряжения для высоких напряжений, потому что полный ток должен пройти через резисторы, и это может привести к повреждению.В этом случае лучшим вариантом будет стабилизатор напряжения.

Пример:

Допустим, мы хотели бы определить выходное напряжение, если сопротивление резистора R1 составляет 5 кОм, сопротивление резистора R2 равно 10 кОм, а входное напряжение — 9 В.

Решение:

Выход В = В на входе * R2 / (R1 + R2) = (9 В) (10 кОм) / (5 кОм + 10 кОм) = 6 В

В на выходе = 6 В.

Формулы

В этом калькуляторе делителя напряжения используются следующие формулы:

V out = V in * R2 / (R1 + R2)

V in = V out * (R1 + R2) / R2

R1 = R2 * (V вход — V выход ) / V выход

R2 = R1 * V выход / (V вход — V выход )

Где, В выход = выходное напряжение (вольт), В вход = входное напряжение (вольт), R1 и R2 = значения резистора (Ом).

Вас также может заинтересовать наш Калькулятор цветовой маркировки резистора или Калькулятор трансформатора

Измерение температуры с помощью NTC

Измерение температуры с помощью NTC

Введение

Резисторы с отрицательным температурным коэффициентом (NTC) или термисторы являются широко используется в качестве датчиков температуры и ограничителей пускового тока в разнообразие приложений. Их основная характеристика заключается в том, что их сопротивление изменяется в зависимости от температура: чем горячее, тем меньше сопротивление.

Как датчики температуры, они имеют много преимуществ: они дешевы, они недешевы. доступны во многих различных формах и размерах и с широким номиналом значения сопротивления (примерно от 1 Ом до 10 МОм). Что еще более важно, они представляют широкие вариации своего сопротивления как функция температуры, позволяющая использовать простые схемы термометра и термостата без необходимости использования сложных усилителей.


Несколько разных моделей NTC: некоторые имеют цветовую кодировку R 25 , некоторые из них чрезвычайно малы, чтобы минимизировать тепловую массу и некоторые другие легко устанавливаются на радиатор.(нажмите, чтобы увеличить).

С другой стороны, их характеристики нелинейны, поэтому прямое считывание температуры — сложная задача с аналоговой электроникой, но эта проблема легко решить с помощью современного микроконтроллера. Их температурный диапазон как-то ограничен «обычными» температурами. и зависит от конкретной модели, но, как правило, они обычно работают от -50 до +150 ° C. Высокая точность обычно не достигается с помощью NTC, даже если есть некоторые исключения. существовать.


Удельное сопротивление подавляющего большинства электрических проводников (металлов) обычно повышается с повышением температуры, т. е. они имеют положительную температуру коэффициент (PTC). Но это изменение удельного сопротивления довольно невелико: например, удельное сопротивление Температурный коэффициент меди составляет всего 0,0039 К -1 при 20 ° С. Конечно, это явление можно (и есть) использовать для измерения температуры, но задействованные небольшие сигналы усложняют схему.


Крупный план NTC стеклянного типа, где настоящая «фишка» может быть увиденным. (нажмите, чтобы увеличить).

С другой стороны, полупроводники являются исключением: их удельное сопротивление вниз по мере увеличения температуры, и изменение намного выше. Например, температурный коэффициент нелегированного кремния равен -0,075 К -1 при 20 ° С. Даже если в качестве датчика температуры используется кремний, NTC обычно конструируют. с оксидами металлов, формованными и спеченными вместе, и имеют еще более высокие температурные коэффициенты.Обычные материалы — оксиды железа, никеля, кобальта, марганца и меди. Это позволяет использовать простые и очень чувствительные датчики температуры, обеспечивающие очень большие сигналы.


Изображение крошечного NTC, которое используется здесь в качестве примера для расчетов. R 25 = 6,8 кОм и β = 4200 К. (нажмите для увеличения).

Обратной стороной является то, что их сопротивление не является линейной функцией от температура, как видно на двух графиках ниже (что относится к NTC указано R 25 = 6.8 кОм и β = 4200 К). Даже ограничив диапазон температур (скажем, от 0 до 50 ° C), функцию трудно аппроксимировать линией. Как объяснялось ранее, в NTC сопротивление уменьшается с увеличением температуры. увеличивается.


Изменение сопротивления в зависимости от температуры по обеим осям линейны. Изображение справа показывает увеличение в диапазоне от 0 до 50 ° С.

Фактически сопротивление изменяется как экспоненциальная величина, обратная величине абсолютная температура.Как и ожидалось, построив сопротивление в логарифмической шкале и обратная абсолютной температуре (1 / T) функция становится прямой линия.


Изменение сопротивления в зависимости от температуры, с ось логарифмического сопротивления. На изображении слева есть нормальная ось температуры, а на изображении справа вместо этого показана величина, обратная абсолютной температуре (1 / T): здесь функция становится прямой.

Температурные характеристики NTC задаются двумя основными параметры: номинальное сопротивление отмечено R 25 , что составляет их стойкость при стандартной температуре 25 ° C (T 25 = 25 ° C = 298,15 К) и их константа β (бета), которая каким-то образом представляет «температурный коэффициент» или «чувствительность». Обычные NTC имеют значения β в диапазоне от 3000 до 5000 К.

С этими параметрами сопротивление (или температура) может быть рассчитывается следующим образом:

В этих уравнениях используется абсолютная температура в Кельвинах (K), если вы используете другой масштаб, вы должны сначала преобразовать его.

Это «простая» теоретическая модель, позволяющая с точностью до около ± 1% после хорошей калибровки. Если требуется более высокая точность, ее можно получить, ограничив температурный диапазон, используя прецизионный (и дорогой) NTC и более сложная математическая модель. Однако даже с лучшими техниками не ожидайте ничего лучше. чем ± 0,1% от NTC.

Следующий калькулятор использует приведенные выше уравнения для расчета сопротивления. или температура известного NTC.Просто введите известную температуру или сопротивление и нажмите соответствующий кнопка «рассчитать». Для работы необходимо указать два характерных параметра NTC: R 25 и β.

Если параметры NTC неизвестны, их можно определить просто два простых измерения (см. ниже).

С помощью современных микроконтроллеров легко запрограммировать эти уравнения и получить прямые показания в ° C (или в выбранной вами единице температуры) без необходимость сложных аналоговых схем линеаризации.

Однако есть несколько недостатков, которые следует упомянуть: во-первых, рабочий диапазон температур ограничен примерно от -50 до +150 ° C в зависимости от на конкретной модели NTC. Тогда из-за логарифмического изменения сопротивления, чем шире Диапазон температур, принимаемых схемой, тем ниже точность.

Кроме того, NTC обычно не калибруются на заводе: фактическая R 25 и β варьируются от одного NTC к другому и регулировка или калибровка цепи всегда требуется для получения абсолютных и точных показаний температуры.

При использовании NTC в качестве датчика температуры также следует соблюдать осторожность, чтобы работает на большой ток, хотя он, так как ток нагревает NTC и ввести ошибку измерения. По этой причине для термометры. По возможности постарайтесь использовать минимально возможный ток, менее 1 мА. Чтобы определить, греется ли NTC вместе (низкая точность) приложения, попробуйте подуть на него немного воздуха и посмотрите, есть ли разброс в показаниях.Конечно, не стоит дуть ртом, так как воздух, которым вы дышите, обычно горячее, чем окружающий воздух: просто подайте немного воздуха на NTC с помощью кусок картона. Никаких отклонений не должно происходить: если измеренная температура снизится из-за этого дополнительное охлаждение, вы можете уменьшить ток в вашем NTC.


Предположим, у вас на руках есть NTC и вы хотите узнать, что в основном характеристики R 25 и β ар.Иногда на детали указывается номинальное сопротивление R 25 . сам, но ни разу не видел и NTC с β напечатанным на нем.

Есть много причин, по которым вы можете захотеть это сделать: возможно, если вы домашний пивовар, у вас есть ящик с запчастями, и вы ищете подходит NTC. Возможно, вы ремонтируете какое-то устройство и вам нужна информация о NTC, но у вас нет руководства по эксплуатации. Или, что более вероятно, вы просто калибруете термометр и вам нужна точная значения для R 25 и β.

Очень часто точные параметры NTC неизвестны. К счастью, и R 25 , и β любого NTC можно легко определяется путем измерения сопротивления на двух разных температуры, которые я назову T 1 и T 2 . Зная соответствующие сопротивления R 1 и R 2 , мы можем использовать следующие уравнения:

Следующий калькулятор выполнит вычисления за вас: просто введите два температуры, соответствующие измеренные сопротивления и попадание в кнопка «рассчитать».Помните, что более низкая температура соответствует более высокой сопротивление.

Измерение сопротивления NTC может быть сложной задачей. Вам понадобятся мультиметр и эталонный термометр, то есть термометр, который вы доверять. Важно убедиться, что они оба показывают одинаковую температуру: поэтому положите Тестируемый NTC и зонд вашего термометра расположены очень близко друг к другу. Я обычно кладу каплю термопасты между ними, чтобы улучшить термопасту. проводимость.Тот же термопаста, который используется для крепления силовых компонентов на радиаторах, работает. хорошо.

Чтобы получить точные значения, используйте две температуры, которые находятся как можно дальше друг от друга. (или как это имеет смысл в вашем приложении). Производители обычно выбирают 25 и 85 ° C или 25 и 100 ° C. в качестве стандартных температур и укажите β 25/85 или β 25/100 , чтобы узнать, какие температуры использовались, но вы можно использовать любую температуру, фактическое значение β должно быть примерно то же самое.Для одного измерения, возможно, вы сможете обойтись только температурой окружающей среды. у вас в лаборатории. Но, по крайней мере, в отношении другого, вам нужно проявить немного творчества: попробуйте сделать измерение снаружи или в подвале. Может, вы положите все в холодильник. Избегайте попадания прямых солнечных лучей, так как это может привести к ошибкам из-за различного теплового режима. коэффициент излучения и тепловая масса двух датчиков. Для всех измерений убедитесь, что у NTC достаточно времени для стабилизации. до новой температуры и после манипуляций: подождите, пока стабильно, и это может занять несколько минут.Не стойте слишком близко и не дышите на испытательной установке.


NTC в делителе напряжения

Мы знаем, что NTC изменяет свое сопротивление в зависимости от температуры, но сопротивление — не самый простой параметр для измерения. Во многих приложениях мы хотим подавать сигнал в аналого-цифровой преобразователь (АЦП), чтобы обработать его численно и вычислить фактическая температура. Сейчас подавляющему большинству АЦП требуется напряжение на входе.

Чего мы хотим избежать, так это создания сложных аналоговых схем для придания формы или линеаризовать сигнал. Мы уже видели, что сопротивление как функция температуры R (T) NTC — сложная функция и в любом случае требует некоторой математики, так что не стоит строить схему для линейного преобразования ее сопротивления в напряжение.

Самое простое решение (а также то, что я предпочитаю) — установить NTC в делитель напряжения, как показано на схеме ниже.Требуется только один дополнительный постоянный резистор R F и дополнительный дополнительный конденсатор C. U REF — опорное напряжение, используемое АЦП: иногда оно питание от самого АЦП, иногда от внешнего регулятора напряжения и иногда это может быть просто положительная шина питания V DD микроконтроллер или АЦП. Здесь мы предполагаем, что существует некоторая схема, обеспечивающая стабильное опорное напряжение. напряжение U REF как на делителе напряжения, так и на АЦП.


Типовое подключение NTC в делителе напряжения для управления АЦП микроконтроллер. Дополнительный конденсатор фильтра — хорошая идея для уменьшения шума.

Мне лично нравится, когда один вывод NTC подключен к земле, но это также возможно «отразить» схему и подключить NTC к U REF . Для простоты все соображения на этой странице относятся к NTC. к земле.

Хорошая практика — добавить конденсатор на землю, чтобы отфильтровать шум. подхвачены проводами, соединяющими NTC. Температурные колебания обычно имеют длительные постоянные времени (секунды, если нет). минут), поэтому можно использовать довольно большой конденсатор. Если ты такой же ленивый, как я, просто выбери один из нескольких мкФ и посмотри, что получится … в противном случае сделайте математику и вычислите постоянную времени RC и убедитесь, что она настолько большой, насколько вы можете, но намного меньше, чем температура, при которой вы готов измерить.

Мы уже рассмотрели уравнение, которое позволяет расчет температуры, соответствующей заданному сопротивлению вашего NTC, но все, что ваш АЦП скажет вам, это напряжение на его входной клемме. Для определения этого сопротивления вам еще понадобится уравнение напряжения делитель, который выглядит следующим образом:

Или наоборот:

Предполагается, что входной импеданс вашего АЦП бесконечен, но это довольно хорошее предположение, поскольку современные АЦП действительно имеют очень высокий входной сигнал. сопротивление.

Опять же, это уравнение не является линейным и еще больше искажает кривую отклика датчик температуры, но если вы изобразите его на графике (см. ниже), мы получим неплохой сюрприз: кривая стала более «симметричной» и прямо в среднем диапазоне температур, избегая слишком низких или слишком низких большие значения, как у нас, когда мы имели дело непосредственно с сопротивлением. Если мы посмотрим только на диапазон от 0 до 50 ° C в этом примере, мы увидим, что ответ довольно прост: тщательно подбирая фиксированный резистор R F мы можем добиться удивительно точного результата, всего лишь аппроксимируя его прямой линией.На рисунке ниже (правый график) погрешность находится в пределах ± 2%. от 0 до 50 ° C с вашими «обычными» 6,8 кОм 4’200 K NTC и R F 4,7 кОм. Пунктирная линия — это просто прямая линия, показывающая, насколько близко это приближение может быть. Если ваше приложение может терпеть такое приближение и ограниченную температуру диапазон, вам не нужно выполнять сложную математику; просто возьми два очка и интерполировать прямой линией. Если нет, используйте уравнения делителя напряжения и NTC для расчета Т.


Изменение напряжения АЦП в зависимости от температуры. Обратите внимание, насколько прямолинейна кривая в уменьшенном температурном диапазоне. от 0 до 50 ° C, где погрешность может быть менее 2%. Пунктирная линия — это прямая линия.

В любом случае выбор R F требует некоторого размышления. Выбор R F равным R 25 является хорошей отправной точкой: это делает выход делителя ровно половиной опорного напряжения при 25 ° С.Наилучшая точность будет около этой температуры, потому что наклон кривая самая крутая и будет ухудшаться с повышением или понижением температуры где уклон становится более пологим. Если вас интересуют низкие температуры, выберите более крупный R F ; и наоборот, меньший R F сместит точность в сторону более высокой температуры. На рисунке ниже показано влияние R F на напряжение. ответ делителя. Если вы планируете аппроксимировать прямую линию, возможно, вам придется поиграть немного со стоимостью R F , чтобы найти наилучшее совпадение с термистор, который у вас есть, и температурный диапазон, которого вы хотите достичь.


Влияние R F на напряжение в зависимости от температура в нашем примере NTC. Средняя (черная) кривая соответствует R F = R 25 = 6,8 кОм.

Следующий калькулятор сделает за вас вычисления, но я просто использую его как инструмент «перепроверьте», потому что я считаю его гораздо удобнее используйте электронную таблицу с теми же уравнениями и постройте весь ответ.Тем не менее, в качестве последней проверки, я люблю измерять напряжение на входном контакте АЦП. и вычислите температуру с помощью этого калькулятора, чтобы убедиться, что я не делал никаких глупая ошибка.

Чтобы использовать его, сначала вам нужно ввести параметры NTC, который вы используете. (R 25 и β) и делителя напряжения (№ U и R F ). Затем вы вводите напряжение АЦП (U ADC ) или температуры (T) и нажав соответствующую кнопку «вычислить» Кнопка вычислит недостающую температуру или напряжение.Он также предоставит три дополнительных значения: фактическое сопротивление NTC при та температура (R NTC ), ток в NTC (I NTC ) и мощность, рассеиваемая в NTC (P NTC ).

В качестве уловки, если вы хотите знать, какое значение будет выдавать ваш АЦП при заданном температуры, вы можете указать максимальное значение АЦП как U REF вместо реального напряжения, а U ADC будет напрямую представлять значение ADC.Например, если у вас есть 12-битный АЦП, выдающий значения от 0 до 4’095, указав U REF как 4’095 В (!), U ADC будет читать непосредственно как значение АЦП. Это, конечно, ненастоящие Вольт: I NTC и P NTC в данном случае не имеет смысла, но это удобный трюк для отладки термометра.


Если вы реализуете NTC в цепи, вы, вероятно, захотите узнать температура в ° C или в эквивалентных единицах; имея только физическую ценность то есть «как-то» относиться к температуре обычно недостаточно.Мы уже знаем, что NTC дешевы, но не очень точны. Тем не менее, они широко используются для получения «чистых» термометров, причем помощь какой-то калибровки.

С уравнениями, представленными на этой странице, и обычным NTC (т.е. невысоким точность и дороговизна), можно ожидать в лучшем случае ± 1% больше весь температурный диапазон. Но NTC производятся с довольно большим разбросом по своим характеристикам. значения R 25 и β: не ждите, что NTC у вас в руках чтобы точно соответствовать значениям, указанным производителем.Таким образом, даже если вы знаете, какой у вас NTC, вам все равно нужно измерить его параметры, как объяснялось ранее, если вы хотите точный инструмент. Обычно это все, что требуется для хорошей калибровки: определение точного R 25 и β при двух разных температурах и используйте эти значения для расчета температуры.

Затем, когда ваш термометр будет готов, вы также можете сравнить его показания с некоторой ссылкой, чтобы убедиться, что они достаточно точны.В противном случае вам может потребоваться точная настройка параметров или убедиться, что вы не слишком большой ток в вашем NTC.

Теперь, вручную настроив значения R 25 и β в вашем алгоритм непростой, потому что оба влияют на температуру, которую вы В настоящее время читаю. Таким образом, настроить эти значения вручную в надежде исправить точность сложно. и требует много времени, так как требует повторных измерений на разных температуры.Обычно я выбираю две точки (две температуры), близкие к границы температурного диапазона, который я хочу измерить, и я точно измеряю сопротивление НПС. Они не должны быть абсолютными пределами диапазона, но должны быть удалены друг от друга на возможный. Затем я использую процедуру определения этих параметров описанный ранее, и я использую результаты как параметры. Если меня не устраивает имеющаяся у меня точность, я просто выполняю два измерения. опять же, поскольку точно измерить температуру сложнее, чем кажется.


NTC для ограничения пускового тока

Небольшие значения NTC обычно не используются в качестве датчиков температуры, но они делают очень хорошие и простые ограничители пускового тока. Например, импульсные источники питания (SMPS) часто имеют конденсаторы большой емкости. подключены к сети только выпрямительным мостом: когда они впервые включены, конденсаторы полностью разряжены и на мгновение ведут себя почти как как короткое замыкание; достаточно, чтобы сработал автоматический выключатель.Асинхронным двигателям в бытовых приборах может потребоваться большой пусковой ток. при простое ротора; затем ток уменьшается по мере увеличения скорости двигателя. Путем добавления подходящего NTC непосредственно последовательно с линией питания от сети, этот пусковой ток можно значительно уменьшить.

Когда цепь включается последовательно с NTC, NTC изначально холодный («холодный» в данном случае означает комнатную температуру, скажем, около 25 ° C).NTC выбран так, чтобы обеспечить сопротивление в несколько Ом в холодном состоянии, поэтому ограничение пускового тока до безопасного значения и предотвращение, например, предохранитель от перегорания. Как только ток начинает течь, NTC нагревается и его сопротивление падает в диапазоне мОм, пропуская основной ток, в основном безмятежный. Ожидайте, что NTC рассеивает несколько ватт: он станет довольно горячим, достаточно, чтобы обжечь пальцы. Его следует размещать вдали от чувствительных или прецизионных компонентов.


Ограничители пускового тока NTC трех различных размеров. Холодостойкость обозначена прямо на корпусе. (нажмите, чтобы увеличить).

Разработка ограничителя пускового тока — это отдельная тема, требующая подходящих NTC. которые рассчитаны на требуемый ток и рассеиваемую мощность. Я видел NTC номиналом до 20 А с холодным сопротивлением примерно в диапазоне от 1 до 100 Ом. Холодостойкость — это просто R 25 , но в этом приложении больше часто называют хладостойкость ; при измерении температуры термин Номинальное сопротивление или R 25 часто предпочтительнее, но это то же самое.Основная идея состоит в том, что это сопротивление холоду добавляется к нагрузке на запуск должен ограничивать ток до безопасного значения, в то время как максимальный ток номинал NTC должен превышать максимальный ток нагрузки. Для этого приложения β менее важен, и другие параметры должны считаться, как максимальный ток, максимальное напряжение или максимальное тепловыделение, которое не играет значительной роли в термометре заявление. Также необходимо учитывать тепловые характеристики, но при проектировании Ограничитель пускового тока выходит за рамки этой страницы.


Заключение

NTC дешевы и легко найти датчики температуры, но они нелинейны и требуется математика, некоторые уловки и некоторые компромиссы для определения фактического температура. Некоторые из этих аспектов описаны на этой странице. Однако он не предназначен для замены хорошей книги по электронике или подробного описания. заметки по применению производителей NTC; это больше, чтобы поделиться некоторыми мыслями и дать общее представление о том, как я это делаю.Калькуляторы, доступные на этой странице, могут помочь в определении того, какой NTC будет подходят под ваше приложение или по основным параметрам из тех, что у вас есть. Также объясняются уравнения довольно точной математической модели, поэтому что вы можете легко реализовать их в электронной таблице и получить еще лучший калькулятор для вашего приложения. NTC могут также использоваться в качестве ограничителей пускового тока, но это полностью другая тема, выходящая за рамки этой страницы.


Библиография и дополнительная литература

[1] Panasonic. Термистор NTC. Примечание по применению, 2004 г.


RGB калькулятор светодиодного резистора

Светодиоды настолько широко используются, что доступно множество нестандартных микросхем драйверов светодиодов PWM. мы можем произвести любой цвет, какой захотим, используя смесь красного, зеленого и синего.где V s — напряжение источника питания (например, питание USB 5 В) в вольтах, V f — прямое падение напряжения светодиода в вольтах, а I — ток светодиода в амперах. Не работает. Тип RGB-светодиода, который мы будем использовать в этой схеме, — это обычный катодный RGB-светодиод. КАЛЬКУЛЯТОР СОПРОТИВЛЕНИЯ СВЕТОДИОДОВ eBay Store Home Добавить в любимые продавцы Подпишитесь на рассылку новостей Свяжитесь с нами. Вернуться к калькуляторам конверсии. Уравнение калькулятора светодиодного резистора. Обратите внимание, что у вас может быть прототип платы или коммутационной платы, которая содержит как светодиод RGB, так и связанные с ним понижающие резисторы.Как использовать? Светодиодные модули RGB с микросхемами драйверов ШИМ. Калькулятор последовательного понижающего резистора светодиодов Онлайн-инструмент, который поможет вам определить оптимальное значение последовательного понижающего резистора для ограничения тока в цепи светодиода. Типичный светодиодный символ, конструкция и идентификация выводов. Ток обычно составляет 20 мА, для светодиодов UFO ток составляет: 30 мА для InGaN и 50 мА для AlGaInP. Примечание. В этом примере мы просто использовали то же значение сопротивления для резисторов серии светодиодов RGB. Не пытайтесь использовать только один на общем проводе.Я просто «на глаз» пробую разные номиналы резисторов? Этот калькулятор поможет вам определить номинал, допуск и температурный коэффициент резистора с цветовой кодировкой, просто выбрав цвета полос. Калькулятор светодиодных резисторов .. Таблица кодов резисторов. Параметры светодиодов Kitronik можно выбрать из списка, и калькулятор даже порекомендует предпочтительное значение резистора с цветовыми полосами. Калькулятор резисторов для светодиодов (последовательных и параллельных) By LEDs Free Download.com удалил прямую ссылку для загрузки и предлагает эту страницу только для информационных целей.Напряжение питания — зависит от … … RGB LED POV Globe — часть 1 — сборка светодиодной платы — Продолжительность: 2:11. В deze tabel kunt u op de kleurveldjes klikken om de weerstandkleuren en waarden te updaten. Он также рассчитает минимальное и максимальное значения на основе отношения допуска. Этот калькулятор поддерживает резисторы с 3, 4, 5 и 6 диапазонами. Шестнадцатеричное значение: RGB565: 0x0000: Заявление об отказе от ответственности: цифры, полученные этим калькулятором, должны использоваться только в качестве ориентировочных. Его нельзя пропустить в вашем смартфоне! Этот калькулятор светодиодного резистора поможет вам подобрать правильное значение резистора для светодиода в вашей светодиодной цепи, вам просто нужно ввести значения напряжения источника (V s), прямого тока светодиода (I f) и прямого напряжения светодиода ( V f).MSP430Projects 17087 просмотров. Калькулятор резистора RGB YTdama1. Если вы попытаетесь использовать на них один резистор, светодиод не будет работать так, как вы ожидаете. уравнение для калькулятора светодиодного резистора. Предположим, что мы хотим запустить красный светодиод от батареи 9 В. Инструмент калькулятора светодиодного резистора. Калькулятор светодиодного резистора. Привет, я новичок и у меня есть вопросы по выбору резистора. Обзор светодиодов … Подключения светодиодов: к указателю продукта. В идеале я, скорее всего, куплю кабель с совместимым 4-контактным разъемом RGB, зачищу провода, затем подключу каждую клемму светодиода к соответствующему проводу для контактов (с резистором, соответствующим общей мощности).Как и для любого другого светодиода, для каждого из трех элементов внутри светодиода RGB требуется понижающий резистор. Я понимаю, что это источник 5 В, а резистор 220 Ом будет иметь ток 0,02 А: I = V / R = 5 В / 220 Ом = 0,02 AA красный светодиод с прямым напряжением 1,7 В в цепи с током 0,02 А. потребуется резистор 220 Ом: 5 В — 1,7 В = 3,3 VR = V / I = 3,3 В / 0,02 = 165 Ом. Но им нужен один резистор на светодиод (3 на RGB, что фактически равно 3 в одном корпусе). Калькулятор отобразит значение падающего резистора вместе с номинальной мощностью для работы одного светодиода или нескольких светодиодов последовательно от источника питания.Просто введите указанные значения и нажмите кнопку «Рассчитать». Один светодиод — Светодиоды последовательно — Светодиоды параллельно Падение напряжения обычно составляет 1,9 — 2,1 В для красного, желтого и оранжевого, 3,0 — 3,3 В для белого, синего, зеленого и УФ и 1,2 В для инфракрасных светодиодов. Сопротивление серии светодиодов относится к использованию резисторов для стабилизации тока светодиода. Пример светодиода RGB Цвет светодиода выводится на светодиод с помощью прерывания таймера, которое вызывает функцию тика светодиода RGB. Когда у вас есть эти числа, калькулятор поможет вам выяснить, какое номинал и размер резистора необходимы.Катодный вывод RGB-светодиода подключен к выводу GND Arduino Uno. Светодиодный калькулятор параллельного резистора Параллельные резисторы подключаются параллельно, когда оба их вывода подключены к каждому выводу других резисторов. Калькулятор светодиодного резистора Один светодиод — Светодиоды последовательно — Светодиоды параллельно Падение напряжения обычно составляет 1,9 ~ 2,1 В для AlGaInP, 3,1 ~ 3,5 В для InGaN и 1,2 В для инфракрасного излучения. В зависимости от того, на какой анод подается + 3 В, определяется, каким цветом горит светодиод. Сброс настроек. подтвердите это, подключив светодиод к контакту 14 разъема 4017 и заземлению с помощью резистора 1K последовательно….этот светодиод должен мигать с частотой примерно 1 Гц…. R: (0-255) G: (0-255) B: (0-255) HSL. Калькулятор последовательного резистора светодиодов Используйте этот инструмент для расчета сопротивления, необходимого для управления одним или несколькими последовательно соединенными светодиодами от источника напряжения при заданном уровне тока. Этот калькулятор вычисляет значение резистора для подключения светодиода, вводя напряжение батареи вместе с прямым напряжением светодиода и номинальным током. C:% M:% Y:% K:% HEX. Тогда Vcc = 9 В, и наш красный светодиод хочет работать при 20 мА и имеет прямое напряжение Vf = 2 В.Давайте теперь перейдем к важному аспекту учебного пособия, а именно: значение резистора ограничения последовательного тока R s может быть рассчитано с использованием формулы закона Ома, в которой напряжение питания V s смещено прямым падением напряжения на диоде V f :. вычисление цветового кода резистора путем ввода значений — yahyatawil / RGB_resistor_calculator. Многие микросхемы драйверов светодиодов обеспечивают постоянный уровень тока для светодиода и не требуют последовательного подключения резистора к каждому светодиоду. … ** Светодиод RGB: этот тип светодиода RGB состоит из внутренних светодиодов: красного, зеленого и синего.Загружается … Отписаться от YTdama1? Калькулятор цветового кода резистора позволяет легко определять и выбирать значения сопротивления и допусков для 4-, 5- и 6-полосных резисторов со сквозным отверстием. H: ° S:% L:% CMYK. Мы увидим его влияние, когда поймем уравнение калькулятора светодиодного резистора, а также при выборе последовательного резистора. Токоограничивающий резистор, иногда называемый нагрузочным резистором или последовательным резистором, подключается последовательно со светоизлучающим диодом (LED), чтобы на нем было правильное прямое падение напряжения.Все калькуляторы на шаге 2 просто выполняют простую математику, которую вы можете сделать дома: Формула для расчета сопротивления в цепи: R = V / I или, что более важно для того, что мы делаем: (Source Volts — LED Вольт) / (Ток / 1000) = Сопротивление * Итак, если у нас есть батарея 12 В, питающая светодиод 3,5 В 25 мА, наша формула будет выглядеть следующим образом: (12 — 3,5) / (25/1000) = 340 Ом. Поскольку прямое напряжение красного светодиода составляет всего 2 вольта, вы не можете использовать резистор 100 Ом на той части RGB, чтобы ток проходил через контакты Arduino в стороне.Калькулятор светодиодного резистора. Если вам требуется помощь в определении цветового кода для указанного номинала резистора, обязательно посетите нашу страницу с информацией о расчете цветового кода резистора. только если это произойдет, RGB отреагирует в соответствии с предложенными спецификациями. Свет будет включаться с разной яркостью, потому что прямое напряжение для каждого цвета равно… LED Resistor Calculator. Это светодиод, в котором все земли светодиодов связаны вместе. Контакт 11 RPi (GPIO 17) -> Резистор -> Светодиод RGB Красный Контакт 13 RPi (GPIO 21) -> Резистор -> Светодиод RGB Зеленый Контакт 15 RPi (GPIO 22) -> Резистор -> Светодиод RGB Синий Контакт 6 RPi (Земля )

Программируемый гидравлический резистор для микрожидкостных микросхем с решетками электрозатворов

  • 1.

    О, К. В., Ли, К., Ан, Б. и Фурлани, Э. П. Проектирование микрожидкостных сетей, работающих под давлением, с использованием аналогии с электрическими цепями. Лабораторный чип 12 , 515–545 (2012).

    CAS Статья PubMed Google ученый

  • 2.

    Gökçe, O., Castonguay, S., Temiz, Y., Gervais, T. & Delamarche, E. Самосоединяющиеся потоки в микрофлюидике для импульсной доставки реагентов. Nature 574 , 228–232 (2019).

  • 3.

    Шомбург, В. К., Фаренберг, Дж., Маас, Д. и Рапп, Р. Активные клапаны и насосы для микрофлюидики. J. Micromechanics Microengineering 3 , 216–218 (1993).

    ADS CAS Статья Google ученый

  • 4.

    Чжан, К., Син, Д. и Ли, Ю. Микронасосы, микроклапаны и микромиксеры в микрожидкостных чипах для ПЦР: достижения и тенденции. Biotechnol. Adv. 25 , 483–514 (2007).

    CAS Статья PubMed Google ученый

  • 5.

    О, К. В. и Ан, К. Х. Обзор микроклапанов. J. Micromechanics Microengineering 16 , R13 – R39 (2006).

    ADS Статья Google ученый

  • 6.

    Уивер, Дж. А., Мелин, Дж., Старк, Д., Квейк, С. Р. и Хоровиц, М. А. Логика статического управления микрожидкостными устройствами с использованием клапанов увеличения давления. Нат. Phys. 6 , 218–223 (2010).

    CAS Статья Google ученый

  • 7.

    Им, С. Б., Уддин, М. Дж., Джин, Г. Дж. И Шим, Дж. С. Одноразовый микроклапан на кристалле и насос для программируемой микрофлюидики. Лабораторный чип 18 , 1310–1319 (2018).

    CAS Статья PubMed Google ученый

  • 8.

    Clime, L., Brassard, D., Geissler, M. & Veres, T. Активное пневматическое управление центробежными потоками микрожидкости для приложений «лаборатория на кристалле». Лабораторный чип 15 , 2400–2411 (2015).

    CAS Статья PubMed Google ученый

  • 9.

    Гу, В., Чжу, X., Футаи, Н., Чо, Б. С. и Такаяма, С. Компьютеризированная микрожидкостная культура клеток с использованием эластомерных каналов и дисплеев Брайля. Proc. Natl. Акад. Sci. 101 , 15861–15866 (2004).

    ADS CAS Статья PubMed Google ученый

  • 10.

    Вейбель Д. Б. и др. . Клапаны с моментным приводом для микрофлюидики. Анал. Chem. 77 , 4726–4733 (2005).

    CAS Статья PubMed Google ученый

  • 11.

    Olanrewaju, A., Beaugrand, M., Yafia, M. & Juncker, D. Капиллярная микрофлюидика в микроканалах: от микрофлюидных сетей до капиллярных цепей. Лабораторный чип 18 , 2323–2347 (2018).

    CAS Статья PubMed Google ученый

  • 12.

    Ново, П., Чу, В. и Конде, Дж. П. Интегрированное оптическое обнаружение автономных капиллярных микрофлюидных иммуноанализов: переносной прототип в месте оказания медицинской помощи. Biosens. Биоэлектрон. 57 , 284–291 (2014).

    CAS Статья PubMed Google ученый

  • 13.

    Майр, Д. А., Гейгер, Э., Пизано, А. П., Фреше, Дж. М. Дж. И Свек, Ф. Микрожидкостные микросхемы, полученные литьем под давлением, со встроенными межсоединениями. Лабораторный чип 6 , 1346–1354 (2006).

    CAS Статья PubMed Google ученый

  • 14.

    Becker, H. & Heim, U. Горячее тиснение как метод изготовления полимерных структур с высоким соотношением сторон. Датчики Актуаторы, Физ. 83 , 130–135 (2000).

    CAS Статья Google ученый

  • 15.

    Erkal, J. L. и др. . Микрожидкостные устройства, напечатанные на 3D-принтере, со встроенными универсальными и многоразовыми электродами. Лабораторный чип 14 , 2023–2032 (2014).

    CAS Статья PubMed PubMed Central Google ученый

  • 16.

    Донг, Х., Ли, К. М., Чжан, Ю. Ф., Цао, Х. Д. и Ган, Ю.Микрожидкостное устройство с трафаретной печатью для электрохимического иммуноанализа. Лабораторный чип 7 , 1752–1758 (2007).

    CAS Статья PubMed Google ученый

  • 17.

    Циммерманн М., Шмид Х. и Деламарш Э. Капиллярные насосы для автономных капиллярных систем. Lab Chip 7 , 119–125 (2007).

    CAS Статья PubMed Google ученый

  • 18.

    Ю. К., Бауэр, Дж. М., Мур, Дж. С. и Биби, Д. Дж. Чувствительный биомиметический гидрогелевый клапан для микрофлюидики. Прил. Phys. Lett. 78 , 2589–2591 (2002).

    ADS Статья CAS Google ученый

  • 19.

    Sershen, S. R. и др. . Независимое оптическое управление микрожидкостными клапанами, сформированными из оптико-механически чувствительных нанокомпозитных гидрогелей. Adv. Матер. 17 , 1366–1368 (2005).

    CAS Статья Google ученый

  • 20.

    Zilio, C., Sola, L., Damin, F., Faggioni, L. & Chiari, M. Универсальное гидрофильное покрытие из термопластичных полимеров, используемых в настоящее время в микрофлюидике. Biomed. Микроустройства 16 , 107–114 (2014).

    CAS Статья PubMed Google ученый

  • 21.

    Кесслер, Д., Йохум, Ф. Д., Чой, Дж., Чарльз К. и Теато П. Реактивные покрытия для поверхностей на основе полисилсесквиоксанов: универсальный метод для создания светочувствительных поверхностей. ACS Appl. Матер. Интерфейсы 3 , 124–128 (2011).

    CAS Статья PubMed Google ученый

  • 22.

    Аранго Ю., Темиз Ю., Гекче О. и Деламарш Е. Электрогаты для непрерывного управления потоком жидкости в микрофлюидике. Прил. Phys. Lett. 112 , 153701 (2018).

    ADS Статья CAS Google ученый

  • 23.

    Mugele, F. & Baret, J.-C. Электросмачивание: от основ до приложений. J. Phys. Конденс. Дело 17 , R705 – R774 (2005).

    CAS Статья Google ученый

  • 24.

    Ха, Д. и др. . Обратимое переключение высокоскоростных двухфазных потоков воздух-жидкость с помощью изменения структуры течения с помощью электросмачивания. J. Am. Chem. Soc. 125 , 14678–14679 (2003).

    CAS Статья PubMed Google ученый

  • 25.

    Fair, R. B. Цифровая микрофлюидика: возможна ли настоящая лаборатория на кристалле? Microfluid. Nanofluidics 3 , 245–281 (2007).

    CAS Статья Google ученый

  • 26.

    Choi, K., Ng, A.H.C., Fobel, R. & Wheeler, A.R. Цифровая микрофлюидика. Annu. Rev. Anal. Chem. 5 , 413–440 (2012).

    CAS Статья Google ученый

  • 27.

    Gumuscu, B., Bomer, J. G., Van Den Berg, A. & Eijkel, J. C. T. Крупномасштабное структурирование микрочипов гидрогеля с использованием капиллярного закрепления. Лабораторный чип 15 , 664–667 (2015).

    CAS Статья PubMed Google ученый

  • 28.

    Glière, A. & Delattre, C. Моделирование и изготовление капиллярных запорных клапанов для плоских микрофлюидных систем. Датчики Актуаторы, Физ. 130–131 , 601–608 (2006).

    Артикул CAS Google ученый

  • 29.

    Сафавие, Р. и Юнкер, Д. Капилляры: предварительно запрограммированные микрожидкостные схемы с автономным питанием, построенные из капиллярных элементов. Лабораторный чип 13 , 4180–4189 (2013).

    CAS Статья PubMed Google ученый

  • 30.

    Temiz, Y. & Delamarche, E. Субнанолитровый, мониторинг потока в микрофлюидных чипах в реальном времени с помощью портативного устройства и смартфона. Sci. Отчет 8 , 1–11 (2018).

    CAS Статья Google ученый

  • 31.

    Брюус Х. Теоретическая микрофлюидика . (изд. ОУП Оксфорд) 74–75 (2008).

  • 32.

    Olanrewaju, A. O., Robillard, A., Dagher, M. & Juncker, D. Автономные микрофлюидные капиллярные схемы, воспроизведенные с 3D-печатных форм. Лабораторный чип 16 , 3804–3814 (2016).

    CAS Статья PubMed PubMed Central Google ученый

  • 33.

    Жерве Т. и Йенсен К. Ф. Массовый перенос и поверхностные реакции в микрофлюидных системах. Chem. Англ. Sci. 61 , 1102–1121 (2006).

    CAS Статья Google ученый

  • 34.

    Ридкер, П. М., Бассук, С. и Тот, П. П. С-реактивный белок и риск сердечно-сосудистых заболеваний: доказательства и клиническое применение. Curr. Атеросклер. Rep. 5 , 341–349 (2003).

    Артикул PubMed Google ученый

  • 35.

    Гюнтер А. и Йенсен К. Ф. Многофазная микрофлюидика: от характеристик текучести до химического синтеза и синтеза материалов. Лабораторный чип 6 , 1487–1503 (2006).

    Артикул PubMed Google ученый

  • 36.

    Strub, D. J., Szymańska, K., Hrydziuszko, Z., Bryjak, J. & Jarzębski, A. B. Непрерывное кинетическое разрешение неэквимолярной смеси диастереоизомерного спирта с использованием структурированного монолитного ферментативного микрореактора. React. Chem. Англ. 4 , 587–594 (2019).

    CAS Статья Google ученый

  • 37.

    Абате, Р. А. и др. . Анализ последовательности ДНК с помощью капельной микрофлюидики. Лабораторный чип 13 , 4864 (2013).

    CAS Статья PubMed PubMed Central Google ученый

  • 38.

    Ниведита, Н., Лиграни, П., Папаутский, И. Дин Динамика потока в спиральных микроканалах с низким соотношением сторон. Sci. Отчет 7 , 1–10 (2017).

    ADS Статья Google ученый

  • 39.

    Hessel, V., Löwe, H. & Schönfeld, F. Микромиксеры — Обзор принципов пассивного и активного микширования. Chem. Англ. Sci. 60 , 2479–2501 (2005).

    CAS Статья Google ученый

  • 40.

    Hatch, A. et al. . Быстрый диффузионный иммуноферментный анализ на Т-сенсоре. Нат. Publ. Gr. 19 , 461–465 (2001).

    CAS Google ученый

  • 41.

    Луккетта, Э. М., Ли, Дж. Х., Фу, Л. А., Патель, Н. Х. и Исмагилов, Р. Ф. Динамика сети формирования паттерна эмбрионов дрозофилы, возмущенная в пространстве и времени с помощью микрофлюидики. 434 , 1134–1138 (2005).

    CAS Google ученый

  • 42.

    Уайтсайдс, Г. М. Истоки и будущее микрофлюидики. Nature 442 , 368–373 (2006).

    ADS CAS Статья PubMed Google ученый

  • 43.

    Дертингер, С. К. У., Чиу, Д. Т., Чон, Н. Л. и Уайтсайдс, Г. М. Создание градиентов сложной формы с использованием микрофлюидных сетей. Анал. Chem. 73 , 1240–1246 (2001).

    CAS Статья Google ученый

  • 44.

    Такаяма, С. и др. . Селективная химическая обработка клеточных микродоменов с использованием множественных ламинарных потоков. Chem. Биол. 10 , 123–130 (2003).

    CAS Статья PubMed Google ученый

  • 45.

    Lovchik, R. D., Tonna, N., Bianco, F., Matteoli, M. & Delamarche, E. Микрожидкостное устройство для депонирования и адресации двух популяций клеток с возможностью межклеточной коммуникации. Biomed. Микроустройства 12 , 275–282 (2010).

    Артикул PubMed Google ученый

  • 46.

    Вейгл, Б. Х. и Ягер, П. Разделение и обнаружение на основе микрожидкостной диффузии. Наука (80-.). 283 , 346–347 (1999).

    Артикул Google ученый

  • 47.

    Бхагат А.С., Кунтаэгоуданахалли С.С. и Папаутский И. Непрерывное разделение частиц в спиральных микроканалах с использованием потоков декана и дифференциальной миграции. Лабораторный чип 8 , 1906–1914 (2008).

    CAS Статья PubMed Google ученый

  • 48.

    Госсетт, Д. Р. и др. . Инерционное манипулирование и перенос микрочастиц через ламинарные потоки жидкости. Малый 8 , 2757–2764 (2012).

    CAS Статья PubMed Google ученый

  • 49.

    Kamholz, A. E. & Yager, P. Теоретический анализ молекулярной диффузии в управляемом давлением ламинарном потоке в микрофлюидных каналах. Biophys. J. 80 , 155–160 (2001).

    ADS CAS Статья PubMed PubMed Central Google ученый

  • 50.

    Сквайрс, Т. М. и Квейк, С. Р. Микрофлюидика: физика жидкости в нанолитровом масштабе. Ред. Мод. Phys. 77 , 977–1026 (2005).

    ADS CAS Статья Google ученый

  • 51.

    Исмагилов, Р.Ф., Строок, А.Д., Кенис, П.Дж.А., Уайтсайдс, Г.И Стоун, Х.А. Экспериментальные и теоретические законы масштабирования для поперечного диффузионного уширения в двухфазных ламинарных потоках в микроканалах. Прил. Phys. Lett. 76 , 2376–2378 (2000).

    ADS CAS Статья Google ученый

  • 52.

    Basu, S. & Campagnola, P. J. Ферментативная активность щелочной фосфатазы внутри структур белков и полимеров, полученных с помощью многофотонного возбуждения. Биомакромолекулы 5 , 572–579 (2004).

    CAS Статья PubMed Google ученый

  • 53.

    Paragas, V. B., Zhang, Y. Z., Haugland, R. P. & Singer, V. L. Субстрат щелочной фосфатазы ELF-97 обеспечивает яркий, фотостабильный, флуоресцентный метод усиления сигнала для FISH. J. Histochem. Cytochem. 45 , 345–357 (1997).

    CAS Статья PubMed Google ученый

  • 54.
  • Оставить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *