Катушка индуктивности для чего нужна: Что такое катушка индуктивности и для чего она нужна? | ASUTPP

Содержание

Что такое катушка индуктивности и для чего она нужна? | ASUTPP

Я получил письма от многих из вас с просьбой рассказать простыми словами о катушке индуктивности.

Это действительно хорошая просьба и желание). Потому что катушка индуктивности — это довольно странный компонент. Её невероятно легко сделать. Но немного сложнее понять как она работает.

Катушка индуктивности

Катушка индуктивности

Катушка индуктивности (иногда называют ее индуктором или дросселем) — это просто катушка проволоки, которая намотана вокруг какого-нибудь сердечника. Ядро сердечника может быть просто воздухом или магнитом.

Когда вы подаете ток через катушку, вокруг неё создается магнитное поле.

При использовании магнитного сердечника магнитное поле будет намного сильнее.

Что такое катушка индуктивности и для чего она нужна?

Как работает катушка индуктивности?

Ток через любой провод создаст магнитное поле. Катушка индуктивности имеет проволочную форму, поэтому магнитное поле будет намного сильнее.

Что такое катушка индуктивности и для чего она нужна?

Причина, по которой индуктор работает так, как он работает, заключается в этом магнитном поле. Отсюда вытекают и следующие свойства катушки.

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своём магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для переменного тока имеет не только собственное омическое (активное) сопротивление, но и реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Более детально о принципе работы катушек индуктивности вы можете почитать на сайте.

Для чего вы можете использовать их?

Я почти никогда не использую катушки индуктивности. Главным образом потому, что я работаю в основном с цифровыми схемами. Но я использовал их иногда для создания фильтров, генераторов и блоков питания.

Вы часто найдете катушки индуктивности в аналоговой электронике переменного тока, такой как радиооборудование.

для чего она нужна и как работает, параметры

Индукционная катушка — это дроссель или изолированный проводник. Используется электрический каркас, композитные вставки. При рассмотрении понятия необходимо изучить свойства, основные особенности катушки индуктивности.

Определение устройства

Катушка индуктивности — это устройство, которое обладает малой емкостью и значительным сопротивлением. Дроссель является отменным проводником электрического тока, учитывается высокий показатель инерционности. Устройства применяются в качестве свернутого изолированного проводника. Винтовые, спиральные модификации способны справляться с помехами, колебаниями в сети.

Индукционная катушка

Важно! Устройство работает в цепях переменного тока при низкой и высокой частоте.

Назначение и принцип действия

Специалисты задаются вопросом, зачем нужна токовая катушка индуктивности в цепи, и для этого необходимо разобраться в показателях. Коэффициент ЭДС (электродвижущая сила) показывает разницу между энергией и магнитным потоком. Устройства самоиндукции способны влиять на изменения в цепи. Чаще всего дроссели применяются в силовых установках. Они способны контролировать уровень напряжения, не допускают разрыва цепи.

Устройства самоиндукции

Также компоненты устанавливаются на пару с конденсаторами либо резисторами. Благодаря работе катушки фильтры находятся в безопасности. Теперь вызывает интерес, как включается индукционная катушка. Принцип работы построен на изоляции проводников. В конструкции используется электрический каркас с различным сечением. За счёт намоток обеспечивается распределение ёмкости на дросселе.

Интересно! Витки наматываются с определенным шагом, многое зависит от типа катушки.

Виды и типы

Различают низкочастотные, высокочастотные модели. В отдельную категорию выделяют винтовые, спиральные катушки. Также существуют модификации, которые используются в радиотехнике. Они подходят для защиты конденсатора либо резонансных контуров.

Устройства в радиотехнике

Для трансформаторов годятся катушки с усилителем каскадом. В последнюю категорию выделены вариометры, основное отличие — высокая частота колебательных контуров. Дроссели могут быть одинарными либо сдвоенными. От этого зависит показатель индуктивности и питания системы.

Низкочастотные

Для включения в электрическую цепь, применяется низкочастотная катушка индуктивности. Она предназначена для подавления переменного тока. В формуле учитывается циклическая частота и показатели индуктивности. За основу в устройствах берётся сердечник, который изготавливается из стали. Он может быть с фильтрами либо без них.

Чтобы влиять на частоту, происходит игра с сопротивлением. В цепи постоянного тока напряжение должно быть неизменным. С целью понижения частоты применяются фильтры. Основная проблема — это малая ёмкость. Чтобы детально ознакомиться с дросселем, стоит подробнее узнать о резонансной частоте, которая выделяется на контуре рабочего сигнала.

Когда в цепях повышается напряжение, на каркас оказывается нагрузка. В цепи постоянного тока задействуются непрозрачные проволочные резисторы. Также для этих целей подходят однослойные катушки типа «универсал». Их особенность — использование ферритовых стержней.

Низкочастотная катушка

Высокочастотные

Устройства изготавливаются с различными типами обмотки. Речь идет о наборе преимуществ, которые спасают в той или иной ситуации. Сфера применения элементов широка, учитывается значительная частота модуляции. Таким образом удается бороться с повышенным сопротивлением металлов. У катушек имеется сердечник.

Основная задача — это модуляция частоты генератора. Она происходит за счёт усиления сигнала, и за процессом можно проследить при подключении осциллографа. Многие высокочастотные катушки не отличаются стабильной работой, поскольку применяется керамический каркас. У него малый срок годности, плюс они восприимчивы к повышенной влажности.

Интересно! Современные товары изготавливаются из алюминия и являются компактными.

Электрикам известны контурные, безконтурные модификации высокой частоты. В зависимости от намотки учитывается стабильность электрических параметров. У моделей высокой частоты могут применяться магниты и провода. Речь идет о порошковых материалах, сделанных из диэлектриков.

Процесс изготовления связан с методом холодного прессования. Индуктивные датчики отличаются по защищенности. На предприятиях элементы могут погружать в раствор либо продевать в трубку. Это делается с целью избежания коротких замыканий. Мировые производители решают проблему путем использование вторичного витка.

Высокочастотная катушка

У моделей значительное сопротивление и есть проблема с концентрацией электролита. Таким образом изменяются свойства катушки индуктивности. Проводимость раствора падает и повышается частота электромагнитного поля.

Основные технические параметры

Катушки индуктивности имеют следующие характеристики:

  • добротность отклонения;
  • эффективность;
  • начальная индуктивность;
  • температура;
  • стабильность;
  • предельная емкость;
  • номинальная индуктивность.

Стабильность демонстрирует свойства устройства при изменении условий использования. Температура фиксируется вследствие различных причин. Многое зависит от размера каркаса. Когда температура уменьшается, индуктивность также снижается. Современные параметры — это цикличность, которая является отношением температуры к линейному расширению. Учитывается изменение в керамической основе плюс показатель плотности.

Температура отслеживается на горячей намотке. В этом плане хорошо себя показали многослойные дроссели с сердечником, которые сделаны из карбонильного железа. Ёмкость отображает количество витков катушки, берется в расчет количество секций и контуров. Высокочастотные модели считаются более емкостными и стабильными.

Емкостные катушки

Номинальная индуктивность — это параметр, который учитывает изменение размеров волны. Измерение происходит в микрогенрах. Если смотреть на формулу, учитывается количество витков, длина намотки, плюс диаметр катушки.

Маркировка

При рассмотрении катушек индуктивности оценивается цветовая и кодовая маркировка. Если смотреть на первые цифры, отображается показатель индуктивности. Далее учитывается параметр отклонения:

  • Серебряный 0,01 мкГн, 10%.
  • Золотой 0,1 мкГн, 5%.
  • Черный 0,1мкГн, 20%.
  • Коричневый 1,1 мкГн.
  • Красный 2, 2 мкГн.
  • Оранжевый 1 мкГн.
  • Желтый 4 мкГн.
  • Зеленый 5 мкГн.
  • Голубой 6 мкГн.
  • Фиолетовый 7мкГн.
  • Серый 8 мкГн.
  • Белый 9 мкГн.

Маркировка

В нестабильной цепи переменного электрического тока не обойтись без катушки индуктивности. Выше описаны основные типы изолированных проводников, продемонстрированы их параметры. Учитывается уровень частоты, а также свойства.

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самого начала, то есть с самых основ и темой сегодняшней статьи будет принцип работы и основные характеристики катушек индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку :), то есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Давайте разберемся, что за величину входят в это выражение:

  • – магнитная проницаемость вакуума. Это табличная величина (константа) и равна она следующему значению:
– магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами – магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз.
  • – площадь поперечного сечения катушки
  • – количество витков
  • – длина катушки
  • Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

    С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный 🙂

    Катушка индуктивности в цепи постоянного тока.

    Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

    Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь.

    Что же произойдет в тот момент когда мы замкнем выключатель?

    Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

    Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот  будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

    На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать. Напряжения на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

    Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

    После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

    Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

    На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

    Катушка индуктивности в цепи переменного тока.

    Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

    Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

    Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

    Собственно, график нам и демонстрирует эту зависимость 🙂 Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

    Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂

    Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: 0″ title=»Rendered by QuickLaTeX.com» />, участок 3-4: 0″ title=»Rendered by QuickLaTeX.com» />,

    Где – круговая частота: . – это частота переменного тока.

    Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

    Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение ? Здесь все на самом деле просто 🙂 По 2-му закону Кирхгофа:

    А следовательно:

    Построим на одном графике зависимости тока и напряжения в цепи от времени:

    Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

    При включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между напряжением и током, при этом ток отстает по фазе от напряжения на четверть периода.

    Вот и с включением катушки в цепь переменного тока мы разобрались 🙂

    На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому дальнейший разговор о катушках индуктивности мы будем вести в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

    В данной статье мы подробно рассмотрим индуктор. Отдельно разберем индуктор на схеме, обратную ЭДС генерируемую индуктором, постоянную времени индуктора, ток и напряжение в индукторе, а так же мощность и энергию в индукторе.

    Определение и принцип работы

    В наших уроках об электромагнетизме мы увидели, что когда электрический ток протекает через проводник, вокруг проводника возникает магнитный поток. Это создает взаимосвязь между направлением магнитного потока, который циркулирует вокруг проводника, и направлением тока, протекающего через тот же проводник, что приводит к хорошо известной взаимосвязи между током и направлением магнитного потока, называемой «Правило правой руки Флеминга».

    Но есть и другое важное свойство, относящееся к намотанной катушке, которая также существует, а именно то, что вторичное напряжение индуцируется в ту же катушку движением магнитного потока, поскольку оно противостоит любым изменениям электрического тока, протекающего по нему.

    Типичный индуктор

    В своей основной форме Индуктор — это не что иное, как катушка проволоки, намотанная вокруг центрального сердечника. Для большинства катушек токI, протекающий через катушку, создает магнитный поток вокруг нее, который пропорционален этому потоку электрического тока.

    Индуктор, называемый также дросселем, является еще одним типом пассивного электрического компонента, который является простой катушкой провода предназначенного, чтобы воспользоваться этой взаимосвязью путем индукции магнитного поля, сам по себе, или в активной зоне в результате тока, проходящем через катушки. Это приводит к гораздо более сильному магнитному полю, чем то, которое создавалось бы простой катушкой из проволоки.

    Индукторы образованы проволокой, плотно обернутой вокруг сплошного центрального сердечника, который может представлять собой либо прямой цилиндрический стержень, либо непрерывную петлю или кольцо для концентрации их магнитного потока.

    Схематическое обозначение индуктора — это катушка с проводом, поэтому катушку с проводом можно также назвать индуктором. Индукторы обычно классифицируются в соответствии с типом внутреннего сердечника, вокруг которого они намотаны, например, полый сердечник, твердый железный сердечник или мягкий ферритовый сердечник, причем различные типы сердечников различаются путем добавления непрерывных или пунктирных параллельных линий рядом с проволочная катушкой, как показано ниже.

    Индуктор на схеме

    Ток I, который протекает через катушку индуктивности производит магнитный поток, который пропорционален к нему. Но в отличие от конденсатора, который противодействует изменению напряжения на своих пластинах, индуктор противодействует скорости изменения тока, протекающего через него, из-за накопления самоиндуцированной энергии в его магнитном поле.

    Другими словами, катушки индуктивности сопротивляются или противостоят изменениям тока, но легко пропустят постоянный ток. Эта способность индуктора противостоять изменениям тока и которая также связывает ток I с его магнитным потоком как коэффициент пропорциональности, называется индуктивностью, которому присвоен символ L с единицами измерения ГенриH ).

    Поскольку Генри представляет собой относительно большую единицу индуктивности, для младших индукторов Генри используются для обозначения его значения. Например:

    Префиксы индуктивности

    Префикс Условное обозначение мультипликатор Степень десяти
    милли m 1/1 000 10 -3
    микро μ 1/1000000 10 -6
    нано n 1/1000000000 10 -9

    Таким образом, для отображения подразделов Генри мы будем использовать в качестве примера:

    • 1mH = 1 милли-Генри   — что равно одной тысячной (1/1000) Генри.
    • 100μH = 100 микро-Генри   — что равно одной 100-миллионной ( 1/1 000 000) Генри.

    Индукторы или катушки очень распространены в электрических цепях, и существует множество факторов, определяющих индуктивность катушки, таких как форма катушки, число витков изолированного провода, число слоев провода, расстояние между витками, проницаемость материала сердечника, размер или площадь поперечного сечения сердечника и т. д.

    Катушка индуктивности имеет площадь поперечного сечения сердечника ( A ) с постоянным числом витков провода на единицу длины ( l ). Таким образом, если катушка N витков связана на величину магнитного потока Φ то катушка имеет потокосцепление и любой ток I, который протекает через катушку будет производить индуцированный магнитный поток в противоположном направлении по отношению к потоку тока. Затем, согласно закону Фарадея, любое изменение в этой связи магнитного потока производит самоиндуцированное напряжение в одной катушке:

    Где:

    •    N — число витков
    •     А — площадь поперечного сечения в м 2
    •    Φ — количество потока в Веберах
    •     μ — проницаемость материала сердечника
    •     L — длина катушки в метрах
    •    di / dt — скорость изменения тока в Амперах в секунду

    Изменяющееся во времени магнитное поле индуцирует напряжение, которое пропорционально скорости изменения тока, создающего его, с положительным значением, указывающим на увеличение ЭДС, и отрицательным значением, указывающим на уменьшение ЭДС. Уравнение, связывающее это напряжение, ток и индуктивность с самоиндукцией, может быть найдено путем замены μN 2 A / l на L, обозначая постоянную пропорциональности, называемую индуктивностью катушки.

    Соотношение между потоком в катушке индуктивности и током, протекающим через катушку индуктивности, имеет вид: NΦ = Li . Поскольку катушка индуктивности состоит из катушки с проводящим проводом, это уменьшает приведенное выше уравнение, чтобы получить самоиндуцированную ЭДС, иногда называемую также обратной ЭДС, индуцированной в катушке.

    Обратная ЭДС генерируемая индуктором

    Таким образом, из этого уравнения мы можем сказать, что «самоиндуцированная ЭДС = индуктивность * скорость изменения тока» и цепь с индуктивностью один Генри будет иметь ЭДС 1 вольт, индуцированную в цепи, когда ток, протекающий через цепь, изменяется со скоростью 1 Ампер в секунду.

    Один важный момент, который нужно отметить относительно приведенного выше уравнения. Он только связывает ЭДС, создаваемую через индуктор, с изменениями тока, потому что, если ток индуктора постоянен и не изменяется, например, в постоянном токе, то индуцированное напряжение ЭДС будет равно нулю, поскольку мгновенная скорость изменения тока равна ноль di / dt = 0.

    При постоянном токе, протекающем через индуктор и, следовательно, нулевом индуцированном напряжении на нем, индуктор действует как короткое замыкание, равное куску провода, или, по крайней мере, очень низкое значение сопротивления. Другими словами, противодействие протеканию тока, предлагаемого индуктором, очень различно в цепях переменного и постоянного тока.

    Постоянная времени индуктора

    Теперь мы знаем, что ток не может изменяться мгновенно в индуктивности, потому что для этого ток должен измениться на конечную величину за нулевое время, что приведет к тому, что скорость изменения тока будет бесконечной di / dt =  ∞ , делая индуцированную ЭДС бесконечной, а бесконечного напряжения не существует. Однако, если ток, протекающий через индуктор, изменяется очень быстро, например, при работе переключателя, на катушке индуктивности могут возникать высокие напряжения.

    Рассмотрим схему индуктора выше. Когда переключатель ( S1 ) разомкнут, ток через катушку индуктивности не течет. Поскольку через индуктор ток не течет, скорость изменения тока ( di / dt ) в катушке будет равна нулю. Если скорость изменения тока равна нулю, то  в катушке индуктивности нет ЭДС самоиндукции ( V L= 0 ).

    Если мы теперь закроем переключатель (t = 0), ток будет проходить через цепь и медленно подниматься до своего максимального значения со скоростью, определяемой индуктивностью индуктора. Эта скорость тока, протекающего через катушку индуктивности, умноженная на индуктивность по Генри, приводит к тому, что на катушке образуется некоторая самоиндуцированная ЭДС с фиксированным значением, определенная уравнением Фарадея V L  = Ldi / dt.

    Эта самоиндуцированная ЭДС на катушке индуктивности ( V L ) борется с приложенным напряжением до тех пор, пока ток не достигнет своего максимального значения и не будет достигнуто устойчивое состояние. Ток, который сейчас течет через катушку, определяется только постоянным или «чистым» сопротивлением обмоток катушек, поскольку значение реактивного сопротивления катушки уменьшилось до нуля, поскольку скорость изменения тока (di / dt) равна нулю в устойчивом состоянии. Другими словами, теперь существует только сопротивление катушек постоянного тока, чтобы противостоять потоку тока.

    Аналогичным образом, если переключатель ( S1 ) разомкнут, ток, протекающий через катушку, начнет падать, но индуктор снова будет бороться с этим изменением и попытается удержать ток в своем прежнем значении, индуцируя напряжение в другом направлении. Наклон падения будет отрицательным и связан с индуктивностью катушки, как показано ниже.

    Ток и напряжение в индукторе

    Сколько индуктивного напряжения будет генерироваться индуктором, зависит от скорости изменения тока. В нашем уроке об электромагнитной индукции закон Ленца гласил: «Направление индуцированной ЭДС таково, что оно всегда будет противостоять изменению, которое его вызывает». Другими словами, индуцированная ЭДС всегда будет противопоставлять движение или изменение, которые изначально вызвали индуцированную ЭДС.

    Таким образом, при уменьшении тока полярность напряжения будет действовать как источник, а при увеличении тока полярность напряжения будет действовать как нагрузка. Таким образом, при одинаковой скорости изменения тока через катушку, увеличение или уменьшение величины индуцированной ЭДС будет одинаковым.

    Мощность в индукторе

    Мы знаем, что индуктор в цепи противостоит потоку тока I через него, потому что поток этого тока индуцирует ЭДС, которая противостоит ему, закон Ленца. Затем необходимо выполнить работу от внешнего источника батареи, чтобы ток протекал против этой индуцированной ЭДС. Мгновенная мощность, используемая для форсирования тока I по отношению к этой самоиндуцированной ЭДС (V L), определяется как:

    Мощность в цепи задается как P = V * I, поэтому:

    Идеальный индуктор не имеет сопротивления, только индуктивность, поэтому R = 0 Ом, и поэтому мощность в катушке не рассеивается, поэтому можно сказать, что идеальный индуктор имеет нулевую потерю мощности.

    Энергия в индукторе

    Когда мощность поступает в индуктор, энергия накапливается в его магнитном поле. Когда ток, протекающий через индуктор, увеличивается и di / dt становится больше нуля, мгновенная мощность в цепи также должна быть больше нуля, ( P> 0 ), т.е. положительная, что означает, что энергия накапливается в индукторе.

    Аналогичным образом, если ток через индуктор уменьшается и di / dt меньше нуля, то мгновенная мощность также должна быть меньше нуля ( P ), т.е. отрицательна, что означает, что индуктор возвращает энергию обратно в цепь. Затем, интегрируя приведенное выше уравнение для мощности, полная магнитная энергия, которая всегда положительна и сохраняется в индуктивности, определяется как:

    Энергия фактически накапливается в магнитном поле, которое окружает индуктор током, текущим через него. В идеальном индукторе, который не имеет сопротивления или емкости, поскольку ток увеличивает энергию, стекающую в индуктор и накапливающуюся там в его магнитном поле без потерь, он не высвобождается до тех пор, пока ток не уменьшится и магнитное поле не разрушится.

    Затем в переменном токе, переменного тока индуктор постоянно накапливает и доставляет энергию на каждом цикле. Если ток, протекающий через индуктор, является постоянным, как в цепи постоянного тока, то сохраненная энергия не изменяется, так как P = Li (di / dt) = 0 .

    Таким образом, индукторы могут быть определены как пассивные компоненты, так как они могут как накапливать, так и доставлять энергию в цепь, но они не могут генерировать энергию. Идеальный индуктор классифицируется как меньше потерь, что означает, что он может хранить энергию бесконечно, так как энергия не теряется.

    Однако, реальные катушки индуктивности всегда будут иметь некоторое сопротивление, связанное с обмотками катушки, и всякий раз, когда ток протекает через энергию сопротивления, теряется в виде тепла по закону Ома( P = I R ) независимо от того, является ли ток переменным или постоянный.

    Тогда основное использование индукторов — это в фильтрационных цепях, резонансных цепях и для ограничения тока. Индуктор может использоваться в цепях для блокировки или изменения переменного тока или диапазона синусоидальных частот, и в этой роли индуктор может использоваться для «настройки» простого радиоприемника или генераторов различных типов. Он также может защитить чувствительное оборудование от разрушительных скачков напряжения и высоких пусковых токов.

    В следующем уроке об индукторах мы увидим, что эффективное сопротивление катушки называется индуктивностью, а индуктивность, которая, как мы теперь знаем, является характеристикой электрического проводника, который «противодействует изменению тока», может быть как внутренней, индуцированный, называемый самоиндуктивностью или индуцированный извне, называемый взаимоиндуктивностью.

    comments powered by HyperComments

    Индукционная катушка (рисунок 1) представляет собой частный случай трансформатора. Она состоит из сердечника 1 (набранного из нарезанных кусков стальной проволоки), на который намотано несколько витков толстой изолированной проволоки 2. Эти витки являются первичной обмоткой индукционной катушки. Поверх первичной обмотки наматывается другая обмотка 3 из тонкой изолированной проволоки с большим числом витков (от 16 000 до 1 000 000 и более). Это – вторичная обмотка индукционной катушки.

    Рисунок 1. Схема устройства индукционной катушки

    Принцип работы индукционной катушки состоит в следующем. Первичная обмотка через механический прерыватель 4 присоединяется к источнику постоянного напряжения 5 (батарее элементов, аккумуляторов и так далее).

    При замыкании выключателя 6 ток батареи проходит по первичной обмотке катушки и намагничивает ее сердечник. Намагнитившийся сердечник притягивает к себе якорек прерывателя, чем разрывается цепь первичной обмотки. В следующее мгновение размагнитившийся сердечник отпускает якорек прерывателя. Последний под действием пружины возвращается на прежнее место, замыкает цепь первичной обмотки, и далее процесс повторяется вновь.

    В результате непрерывных замыканий и размыканий цепи в первичной обмотке катушки протекает прерывистый ток. Изменяющееся магнитное поле первичной обмотки, пересекая витки вторичной обмотки, индуктирует в ней электродвижущую силу (ЭДС). При замыкании первичной цепи ЭДС во вторичной обмотке имеет одно направление, при размыкании – другое. Большое число витков дает возможность получать на концах вторичной обмотки напряжение в несколько тысяч, а иногда и сотен тысяч вольт. Слой воздуха между выводами вторичной обмотки пробивается и проскакивает искра, длина которой в больших индукционных катушках достигает 1 метра.

    Для получения большой ЭДС во вторичной обмотке необходимо, чтобы ток в первичной цепи изменялся как можно быстрее. Однако искра в механическом прерывателе, появляющаяся при размыкании его контактов, не дает возможности току прекращаться сразу. Для быстрейшего исчезновения искры параллельно месту разрыва включают конденсатор 7.

    Первичную обмотку индукционной катушки можно питать также переменным током. Тогда надобность в прерывателе отпадает.

    При помощи индукционной катушки было сделано много важнейших физических открытий. Индукционные катушки широко применяются для зажигания рабочей смеси в автомобильных и авиационных двигателях и так далее.

    Рисунок 2. Внешний вид автомобильной индукционной катушки и механического прерывателя используемых для подачи искры в камеру сгорания двигателя (слева катушка, справа прерыватель)

    Видео 1. Катушка Румкорфа

    Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

    Катушка индуктивности характеризуется своими параметрами, главными из которых являются ее индуктивность, сопротивление обмоток и рабочий ток, с которым она может функционировать. При составлении схемы особую важность играют ее габариты, вес. К катушкам предъявляются особые требования, которые могут различными в зависимости от сферы ее применения. Для использования в преобразователях, фильтрах, катушки используются более мощные, чем это заложено схемой. Главное выбрать такую модель, которая не будет влиять на производительность всей схемы или цепи.

    В статье будет рассказано о том, что это такое, где используется такая катушка безопасности и из чего состоит. Также в статье содержится видеоролик и дополнительный материал, который поможет лучше разобраться в выбранной теме.

    Катушка индуктивности

    Обзор пассивных компонентов

    Современная радиоэлектронная аппаратура (РЭА) содержит огромное количество электрорадиокомпонентов, т.е. самостоятельных  изделий, выполняющих определенные функции. Электрорадиоэлементы подразделяют на активные и пассивные. К активным относятся транзисторы,  микросхемы ,электронные лампы и т.д., т. е. элементы, способные усиливать или преобразовывать электрические сигналы. К пассивным относятся резисторы, катушки индуктивности, конденсаторы, трансформаторы, коммутационные элементы, т. е. такие элементы, которые предназначены для перераспределения электрической энергии.

    Сетевая инфраструктура современного офиса состоит из множества составляющих, правильный выбор которых имеет существенное значение для успешной работы всей инфраструктуры в целом. Пассивные компоненты  играют при этом также немаловажную  роль, обеспечивают среде передачу данных, а также внешний вид, эстетику. Пассивным элементом схемы называется элемент, не имеющий внутренних источников энергии, и выполняющий либо накопление энергии (конденсатор, индуктивность), либо ее рассеяние (резистор).

    Пассивные компоненты по сути соответствует пассивному элементу схемы. Пассивные компоненты характеризуются малыми размерами, малым числом выводов (как правило, два-три), низкой стоимостью и, как правило, достаточно высокой стойкостью к воздействиям при сборке узлов. Пассивные элементы могут выступать как дискретные компоненты и как элементы интегральных микросхем. В РЭА интегральные микросхемы  имеют очень большой удельный вес, но пассивные компоненты являются все же самыми распространенными изделиями электронной промышленности. Это можно объяснить  тем, что некоторые элементы трудно выполнить в микросхемном исполнении. Практически невозможно в ИМС изготовить конденсаторы большой емкости, резисторы с большим сопротивлением, сложности в разработке интегральных катушек индуктивности и трансформаторов. Кроме того технические характеристики дискретных элементов лучше, чем интегральных.

    Катушки индуктивности разных размеровБудет интересно➡  Диодный мост – что это такое?Используемые источники:

    • https://rusenergetics.ru/oborudovanie/katushka-induktivnosti
    • https://microtechnics.ru/ustrojstvo-i-princip-raboty-katushki-induktivnosti/
    • https://meanders.ru/induktor.shtml
    • https://www.electromechanics.ru/electrical-engineering/640-induction-coil.html
    • https://electroinfo.net/radiodetali/chto-takoe-katushka-induktivnosti-i-pochemu-ee-inogda-nazyvajut-drossel.html

    Для чего нужна катушка индуктивности

    Стандартная конструкция катушки индуктивности состоит из изолированного провода с одной или несколькими жилами, намотанными в виде спирали на каркас из диэлектрика, имеющего прямоугольную, цилиндрическую или тороидальную форму. Иногда, конструкции катушек бывают бескаркасными. Наматывание провода производится в один или несколько слоев.

    Для того, чтобы увеличить индуктивность, используются сердечники из ферромагнитов. Они же позволяют изменять индуктивность в определенных пределах. Не всем до конца понятно, для чего нужна катушка индуктивности. Ее используют в электрических цепях, как хороший проводник постоянного тока. Однако, при возникновении самоиндукции, возникает сопротивление, препятствующее прохождению переменного тока.

    Разновидности катушек индуктивности

    Существует несколько вариантов конструкций катушек индуктивности, свойства которых определяют и сферу их использования. Например, применение контурных катушек индуктивности вместе с конденсаторами, позволяют получать резонансные контуры. Они отличаются высокой стабильностью, качеством и точностью.

    Катушки связи обеспечивают индуктивную связь отдельных цепей и каскадов. Таким образом, становится возможным деление базы и цепей по постоянному току. Здесь не требуется высокой точностью, поэтому, для этих катушек используется тонкий провод, наматываемый в две небольшие обмотки. Параметры данных приборов определяются в соответствии с индуктивностью и коэффициентом связи.

    Некоторые катушки используются в качестве вариометров. Во время эксплуатации их индуктивность может изменяться, что позволяет успешно перестраивать колебательные контуры. Весь прибор включает в себя две последовательно соединенных катушки. Подвижная катушка вращается внутри неподвижной катушки, тем самым, создавая изменение индуктивности. Фактически, они являются статором и ротором. Если их положение изменится, то поменяется и значение самоиндукции. В результате, индуктивность прибора может измениться в 4-5 раз.

    В виде дросселей используются те приборы, у которых при переменном токе отмечается высокое сопротивление, а при постоянном – очень низкое. Благодаря этому свойству, они используются в радиотехнических устройствах в качестве фильтрующих элементов. При частоте 50-60 герц для изготовления их сердечников применяется трансформаторная сталь. Если частота имеет более высокое значение, то сердечники изготавливаются из феррита или пермаллоя. Отдельные разновидности дросселей можно наблюдать в виде так называемых бочонков, подавляющих помехи на проводах.

    Где применяются катушки индуктивности

    Сфера применения каждого такого прибора, тесно связана с особенностями его конструкции. Поэтому нужно обязательно учитывать ее индивидуальные свойства и технические характеристики.

    Совместно с резисторами или конденсаторами, катушки задействованы в различных цепях, имеющих частотно-зависимые свойства. Прежде всего, это фильтры, колебательные контуры, цепи обратной связи и прочее. Все виды этих приборов способствуют накоплению энергии, преобразованию уровней напряжения в импульсном стабилизаторе.

    При индуктивной связи между собой двух и более катушек, происходит образование трансформатора. Эти приборы могут использоваться, как электромагниты, а также, как источник энергии, возбуждающий индуктивно связанную плазму.

    Индуктивные катушки успешно используются в радиотехнике, в качестве излучателя и приемника в конструкциях кольцевых и магнитных антенн, работающих с электромагнитными волнами.

    Катушка индуктивности. Устройство и принцип работы.

    Приветствую всех на нашем сайте!

    Мы продолжаем изучать электронику с самых основ, и темой сегодняшней статьи будет катушка индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.

    Устройство и принцип работы катушки индуктивности.

    Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку 🙂 То есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

    Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

    А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

    В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода.{-7}\medspace\frac{Гн}{м}

  • \mu – магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами – магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз
  • S – площадь поперечного сечения катушки
  • N – количество витков
  • l – длина катушки
  • Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

    С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный!

    Катушка индуктивности в цепи постоянного тока.

    Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

    Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь. Что же произойдет в тот момент когда мы замкнем выключатель?

    Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

    \varepsilon_s = -\frac{d\Phi}{dt}

    Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку I_L будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот  будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

    На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать.

    Напряжение на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

    Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

    После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

    Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

    \varepsilon_s = -L\medspace\frac{dI}{dt}

    На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

    Катушка индуктивности в цепи переменного тока.

    Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

    Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

    Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

    \varepsilon_L = -L\medspace\frac{dI}{dt}

    Собственно, график нам и демонстрирует эту зависимость! Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

    Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂

    Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: \varepsilon < 0, i > 0, участок 3-4: \varepsilon > 0, i < 0). Таким образом, ЭДС самоиндукции препятствует возрастанию тока (индукционные токи направлены “навстречу” току источника).

    А на участках 2-3 и 4-5 все наоборот – ток убывает, а ЭДС препятствует убыванию тока (поскольку индукционные токи будут направлены в ту же сторону, что и ток источника и будут частично компенсировать уменьшение тока).

    И в итоге мы приходим к очень интересному факту – катушка индуктивности оказывает сопротивление переменному току, протекающему по цепи. А значит она имеет сопротивление, которое называется индуктивным или реактивным и вычисляется следующим образом:

    X_L = w\medspace L

    Где w – круговая частота: w = 2 \pi f. [/latex]f[/latex] – это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный (f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

    Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u? Здесь все на самом деле просто! По 2-му закону Кирхгофа:

    u + \varepsilon_L = 0

    А следовательно:

    u = – \varepsilon_L

    Построим на одном графике зависимости тока и напряжения в цепи от времени:

    Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

    При включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между напряжением и током, при этом ток отстает по фазе от напряжения на четверть периода.

    Вот и с включением катушки в цепь переменного тока мы разобрались!

    На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

    Катушка индуктивности | Виды катушек, практические опыты

    Что такое катушка индуктивности

    Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

    Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

    Индуктивность

    Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC – метра.

    Что такое индуктивность?  Если через  провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

    где

    В – магнитное поле, Вб

    I – сила тока, А

    А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

    И у нас получится вот такая картина с магнитными силовыми линиями:

    Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с  Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

    С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

    Самоиндукция

    Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

    Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

    где

    I – сила тока в катушке , А 

    U – напряжение в катушке, В 

     R – сопротивление катушки, Ом

    Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

    [quads id=1]

    И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

    То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть  в разы больше, чем было до размыкания  цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

    Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

    Типы катушек индуктивности

    Катушки индуктивности делятся в основном на два класса: с магнитным и  немагнитным сердечником. Снизу  на фото катушка с немагнитным сердечником.

    Но где у нее сердечник? Воздух – это немагнитный сердечник :-).  Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным  сердечником используется, когда индуктивность не превышает 5 миллигенри.

    А вот катушки индуктивности с сердечником:

    В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

    Для катушек средней индуктивности используются ферритовые сердечники:

    Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

    Дроссель

    Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

    Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

    Также существует еще один особый вид дросселей – это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

    Что влияет на индуктивность?


    От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов.  Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.

    Имеется ферритовый сердечник

    Начинаю вводить катушку в сердечник на самый край

    LC-метр  показывает 21 микрогенри.

    Ввожу катушку на середину феррита

    35 микрогенри. Уже лучше.

    Продолжаю вводить катушку на правый край феррита

    20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине.  Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности  в переменных катушках индуктивности:

    где

    1 – это каркас катушки

    2 – это витки катушки

    3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

    Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

    Индуктивность стала почти 50 микрогенри!

    А давайте-ка попробуем расправим витки по всему ферриту

    13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.

    Убавим витки катушки в два раза. Было 24 витка, стало 12.

    Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз.  Вывод: чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

    [quads id=1]

    Давайте поэкспериментируем с ферритовым кольцом.

    Замеряем индуктивность

    15 микрогенри

    Отдалим витки катушки друг от друга

    Замеряем снова

    Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка  не играет никакой роли в катушке индуктивности тороидального исполнения.

    Мотнем побольше витков. Было 3 витка, стало 9.

    Замеряем

    Офигеть! Увеличил количество витков  в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

    Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”. Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

    Обозначение на схемах

    Последовательное и параллельное соединение катушек индуктивности


    При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.

    А при параллельном соединении получаем вот так:

    При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек.  Это может привести к неправильным показаниям общей индуктивности.

    Резюме

    Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

    Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

    Катушка индуктивности в цепи переменного тока – принцип действия и значение

    Катушка индуктивности является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля.

    Терминология[править | править код]

    Стандартизированные термины:

    Индуктивная катушка — элемент электрической цепи, предназначенный для использования его индуктивности[1] (ГОСТ 19880-74, см. термин 106).

    Катушка индуктивности — индуктивная катушка, являющаяся элементом колебательного контура и предназначенная для использования её добротности[2] (ГОСТ 20718-75, см. термин 1).

    Электрический реактор — индуктивная катушка, предназначенная для использования её в силовой электрической цепи[3] (ГОСТ 18624-73, см. термин 1). Одним из видов реактора является токоограничивающий реактор, например, для ограничения тока короткого замыкания ЛЭП.

    При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем, а иногда реактором. Стоит отметить, что такое толкование нестандартизированного термина «дроссель» (являющегося калькой с нем. Drossel) пересекается со стандартизированными терминами. В случае если работа данного элемента цепи основана на добротности катушки, то такой элемент следует называть «катушкой индуктивности», в противном случае «индуктивной катушкой».

    Цилиндрическую катушку индуктивности, длина которой намного превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющее механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

    Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

    При использовании для накопления энергии (например, в схеме импульсного стабилизатора напряжения) называют индукционным накопителем или накопительным дросселем.

    Накопленная энергия в индуктивности

    Как известно магнитное поле обладает энергией. Аналогично тому, как в полностью заряженном конденсаторе существует запас электрической энергии, в индуктивной катушке, по обмотке которой течет ток, тоже существует запас — только уже магнитной энергии.

    Энергия, запасенная в катушке индуктивности равна затраченной энергии необходимой для обеспечения протекания тока I в противодействии ЭДС. Величина запасенной энергии в индуктивности можно рассчитать по следующей формуле:

    где L — индуктивность, I — ток, протекающий через катушку индуктивности.

    Устройство и принцип работы катушки индуктивности.

    Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку ? То есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

    Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название ? Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля.{-7}medspacefrac{Гн}{м}

  • mu – магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами – магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз
  • S – площадь поперечного сечения катушки
  • N – количество витков
  • l – длина катушки
  • Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

    С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный!

    Гидравлическая модель

    Работу катушки индуктивности можно сравнить с работой гидротурбины в потоке воды. Поток воды, направленный сквозь еще не раскрученную турбину, будет ощущать сопротивление до того момента, пока турбина полностью не раскрутится.

    Далее турбина, имеющая определенную степень инерции, вращаясь в равномерном потоке, практически не оказывая влияния на скорость течения воды. В случае же если данный поток резко остановить, то турбина по инерции все еще будет вращаться, создавая движение воды. И чем выше инерция данной турбины, тем больше она будет оказывать сопротивление изменению потока.

    Также и индуктивная катушка сопротивляется изменению электрического тока протекающего через неё.

    Свойства катушки индуктивности[править | править код]

    Свойства катушки индуктивности:

    • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
    • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
    • Катушка индуктивности при протекании тока запасает энергию в своём магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

    Катушка индуктивности в электрической цепи для переменного тока имеет не только собственное омическое (активное) сопротивление, но и реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

    Катушка индуктивности обладает реактивным сопротивлением, модуль которого X L = ω L {displaystyle X_{L}=omega L} , где L {displaystyle L}  — индуктивность катушки, ω {displaystyle omega }  — циклическая частота протекающего тока.{2}{mbox{.}}}

    При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

    ε = − L d I d t . {displaystyle varepsilon =-L{dI over dt}{mbox{.}}}

    Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

    | ε | = − ε = U . {displaystyle |varepsilon |=-varepsilon =U{mbox{.}}}

    При замыкании катушки с током на резистор происходит переходной процесс, при котором ток в цепи экспоненциально уменьшается в соответствии с формулой[5]:

    I = I 0 e x p ( − t / T ) , {displaystyle I=I_{0}exp(-t/T){mbox{,}}}

    где : I {displaystyle I}  — ток в катушке,

    I 0 {displaystyle I_{0}}  — начальный ток катушки, t {displaystyle t}  — текущее время, T {displaystyle T}  — постоянная времени.

    Постоянная времени выражается формулой:

    T = L / ( R + R i ) , {displaystyle T=L/(R+R_{i}){mbox{,}}}

    где R {displaystyle R}  — сопротивление резистора,

    R i {displaystyle R_{i}}  — омическое сопротивление катушки.

    При закорачивании катушки с током процесс характеризуется собственной постоянной времени T i {displaystyle T_{i}} катушки:

    T i = L / R i . {displaystyle T_{i}=L/R_{i}{mbox{.}}}

    При стремлении R i {displaystyle R_{i}} к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

    В цепи синусоидального тока, ток в катушке по фазе отстаёт от фазы напряжения на ней на π/2.

    Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

    F   = m d v d t {displaystyle F =m{dv over dt}} ↔ | ε | = L d I d t {displaystyle |varepsilon |=L{dI over dt}} ,

    где

    F   {displaystyle F } ↔ | ε | {displaystyle |varepsilon |} ↔ U   {displaystyle U }  ; m   {displaystyle m } ↔ L   {displaystyle L }  ; d v   {displaystyle dv } ↔ d I   {displaystyle dI } E c o x p = 1 2 L I 2 {displaystyle E_{mathrm {coxp} }={1 over 2}LI^{2}} ↔ E k i n e t = 1 2 m v 2 {displaystyle E_{mathrm {kinet} }={1 over 2}mv^{2}}

    Индуктивность в электрических цепях

    В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.

    В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:

    Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:

    где ω является угловой частотой резонансной частоты F:

    Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.

     Индуктивное сопротивление ХL определяется по формуле:

    где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.

    Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:

    Схемы соединения катушек индуктивностей

    Параллельное соединение индуктивностей

    Напряжение на каждой из катушек индуктивностей, соединенных параллельно, одинаково. Эквивалентную (общую) индуктивность параллельно соединенных катушек можно определить по формуле:

    Последовательное соединение индуктивностей

    Ток, протекающий через катушки индуктивности соединенных последовательно, одинаков, но напряжение на каждой катушке индуктивности отличается. Сумма разностей потенциалов (напряжений) равна общему напряжению. Общая индуктивность последовательно соединенных катушек можно высчитать по формуле:

    Эти уравнения справедливы при условии, что магнитное поле каждой из катушек не оказывает влияние на соседние катушки.

    Маркировка

    Для обозначения номинала катушки индуктивности используют буквенную или цветовую маркировку. Есть два вида буквенной маркировки.

    Обозначение в микрогенри.

    Обозначение набором букв и цифр. Буква r – используется вместо десятичной запятой, буква в конце обозначения обозначает допуск: D = ±0.3 нГн; J = ±5%; К = ±10%; М = ±20%.

    Цветовую маркировку можно распознать аналогично таковой на резисторах. Воспользуйтесь таблицей, чтобы расшифровать цветные полосы или кольца на элементе. Первое кольце иногда делают шире остальных.

    На это мы и заканчиваем рассматривать, что собой представляет катушка индуктивности, из чего она состоит и зачем нужна.

    Добротность катушки индуктивности

    На практике катушка индуктивности имеет последовательное сопротивление, созданное медной обмоткой самой катушки. Это последовательное сопротивление преобразует протекающий через катушку электрический ток  в тепло, что приводит к потере качества индукции, то есть добротности. Добротность является отношением индуктивности к сопротивлению.

    Добротность катушки индуктивности может быть найдена через следующую формулу:

     где R является собственным сопротивлением обмотки.

    Катушка индуктивности. Формула индуктивности

    Базовая формула индуктивности катушки:

    • L = индуктивность в генри
    • μ 0 = проницаемость свободного пространства = 4π × 10 -7 Гн / м
    • μ г = относительная проницаемость материала сердечника
    • N = число витков
    • A = Площадь поперечного сечения катушки в квадратных метрах (м 2 )
    • l = длина катушки в метрах (м)

    Индуктивность прямого проводника:

    • L = индуктивность в нГн
    • l = длина проводника
    • d = диаметр проводника в тех же единицах, что и l

    Индуктивность катушки с воздушным сердечником:

    • L = индуктивность в мкГн
    • r = внешний радиус катушки
    • l = длина катушки
    • N = число витков

    Индуктивность многослойной катушки с воздушным сердечником:

    • L = индуктивность в мкГн
    • r = средний радиус катушки
    • l = длина катушки
    • N = число витков
    • d = глубина катушки

    Индуктивность плоской катушки:

    • L = индуктивность в мкГн
    • r = средний радиус катушки
    • N = число витков
    • d = глубина катушки

    См. также[править | править код]

    • Соленоид
    • Катушка Румкорфа, катушка зажигания
    • Катушка Пупина
    • Катушка Ерохина
    • Ферритовый фильтр
    • Трансформатор
    • Электрический импеданс
    • Переходный процесс (электроника)
    • Звукосниматель магнитный, Звукосниматель

    Конструкция катушки индуктивности

    Катушка индуктивности представляет собой обмотку из проводящего материала, как правило, медной проволоки, намотанной вокруг либо железосодержащего сердечника, либо вообще без сердечника.

    Применение в качестве сердечника материалов с высокой магнитной проницаемостью, более высокой чем воздух, способствует удержанию магнитного поля вблизи катушки, тем самым увеличивая ее индуктивность. Индуктивные катушки бывают разных форм и размеров.

    Большинство изготавливаются путем намотки эмалированного медного провода поверх ферритового сердечника.

    Некоторые индуктивные катушки имеют регулируемый сердечник, при помощи которого обеспечивается изменение индуктивности.

    Миниатюрные катушки могут быть вытравлены непосредственно на печатной плате в виде спирали. Индуктивности с малым значением могут быть расположены в микросхемах с использованием тех же технологических процессов, которые используются при создании транзисторов.

    Применение катушек индуктивности

    Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.

    Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.

    Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют трансформатор, являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.

    По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.

    Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.

    Паяльный фен YIHUA 8858

    Обновленная версия, мощность: 600 Вт, расход воздуха: 240 л/час…

    Урок 9. конденсатор и катушка индуктивности в цепи переменного электрического тока — Физика — 11 класс

    Физика, 11 класс

    Урок 9. Конденсатор и катушка индуктивности в цепи переменного электрического тока

    Перечень вопросов, рассматриваемых на уроке:

    Процессы, происходящие в цепи переменного электрического тока при наличии конденсатора и катушки индуктивности;

    Устройство и принцип действия генератора переменного тока и трансформатора;

    Автоколебания;

    Проблемы передачи электроэнергии и способы повышения эффективности её использования.

    Глоссарий по теме

    Автоколебания – незатухающие колебания в системе, поддерживаемые за счет постоянного источника энергии.

    Электрические машины преобразующие механическую энергию в электрическую называются генераторами.

    Трансформатор – устройство, применяемое для повышения или понижения переменного напряжения.

    Коэффициент трансформации – величина равная отношению напряжений в первичной и вторичной обмотках трансформатора.

    Основная и дополнительная литература по теме урока:

    Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

    Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.

    Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

    Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

    Основное содержание урока

    Переменный ток, которым мы пользуемся, вырабатывается с помощью генераторов переменного тока на электростанциях. Для передачи произведенной электроэнергии строятся линии электропередачи. В каждом населенном пункте имеются трансформаторы. Какую роль играют трансформаторы при передаче электроэнергии? Об этом мы поговорим на данном уроке.

    В июле 1832 года Фарадей получил анонимное письмо, в котором автор описывал устройство созданного им генератора постоянного тока. Ознакомившись с содержанием письма Фарадей тут же отослал его в редакцию научного журнала. Автор этого письма не назвал себя, его фамилия осталась неизвестной.

    Электрические машины преобразующие механическую энергию в электрическую называются генераторами. Впоследствии генераторы постоянного тока непрерывно совершенствовались. Потом, когда начали использовать переменный ток они уступили место генераторам переменного тока. Переменный ток в основном вырабатывается генераторами переменного тока. Простой моделью генератора может служить прямоугольная рамка, вращающаяся в магнитном поле. При вращении рамки, магнитный поток пронизывающий площадь поверхности, ограниченную рамкой, меняется по гармоническому закону:

    N- число витков.

    Возникает ЭДС индукции который меняется по гармоническому закону.

    ЭДС индукции в рамке равна:

    Если с помощью контактных колец и скользящих по ним щёток соединить концы рамки с электрической цепью, то в цепи возникнет переменный ток.

    В современной энергетике для производства электроэнергии используются электромеханические индукционные генераторы. Принцип действия таких генераторов основан на явлении электромагнитной индукции. Основными частями генератора являются статор и ротор. Неподвижная часть генератора называется статором, а вращающаяся – ротором.

    Постоянный ток не может идти по цепи содержащей конденсатор, т. к. цепь оказывается разомкнутой. При включении конденсатора в цепь переменного тока конденсатор будет периодически заряжаться и разряжаться с частотой равной частоте приложенного напряжения. В результате периодически меняющихся процессов зарядки и разрядки конденсатора в цепи течет переменный ток. Лампа накаливания, включенная в цепь переменного тока последовательно с конденсатором кажется горящей непрерывно, т.к. при высокой частоте колебаний силы тока человеческий глаз не способен заметить периодического ослабления нити накала. Конденсатор оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

    Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора называют ёмкостным сопротивлением.

    Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току. Чем больше ёмкость конденсатора и частота колебаний, тем больше ток перезарядки. При наличии в цепи переменного тока конденсатора колебания силы тока опережают по фазе колебания напряжения конденсаторе на 90º. Сдвиг фазы колебаний силы тока на 90º относительно фазы колебания напряжения на конденсаторе приводит к тому, что мощность переменного тока в течение одной четверти периода имеет положительный знак, а в течение второй четверти – отрицательный. Поэтому среднее значение мощности за период равно нулю.

    Индуктивность в цепи, так же, как и ёмкость, влияет на силу переменного тока. Объясняется это явлением самоиндукции. В любом проводнике, по которому протекает переменный ток, возникает ЭДС самоиндукции. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при этом вихревое электрическое поле тормозит движение электронов. Лишь спустя некоторое время сила тока достигает максимального значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет успевать достигать тех значений, которые она приобрела бы при постоянном напряжении. Следовательно, максимальное значение силы переменного тока ограничивается индуктивностью цепи и его частотой колебаний.

    Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

    Если частота равна нулю, то индуктивное сопротивление тоже равно нулю. Поэтому постоянный ток как бы не «замечает» катушку индуктивности в цепи.

    Колебания напряжения на катушке опережают по фазе колебания силы тока на 90º.

    Сдвиг фазы колебаний приводит к тому, что средняя мощность за период колебаний равна нулю.

    Генератор на транзисторе используется для создания высокочастотных электромагнитных колебаний.

    Для потребления электрической энергии нужно доставить его от источника к потребителю. Для этого строят линии электропередачи. При передаче электроэнергии на расстояние возникают потери энергии вследствие нагревания проводов. Тепловые потери можно определить используя закон Джоуля – Ленца:

    Из этой формулы следует, что для уменьшения потерь энергиинужно уменьшить сопротивление или повысить напряжение. Уменьшения сопротивления проводов ЛЭП требует увеличения их площади поперечного сечения, что приведет к увеличению массы проводов. Увеличение массы проводов связано с большими расходами на укрепление столбов линии электропередачи, для их удержания и на производство металла для них. Наиболее эффективным является увеличение напряжения.

    Для изменения напряжения в сети используют трансформаторы. Трансформатор был изобретен в 1876 году Яблочковым и в 1882 году усовершенствован Усагиным. Простейший трансформатор состоит из двух катушек, надетых на общий замкнутый стальной сердечник. Эти катушки называются обмотками трансформатора. Обмотка трансформатора, подключаемая к источнику переменного напряжения, называют первичной, а другая к которой присоединяют нагрузку – вторичной. Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в трансформаторе возникает переменное магнитное поле. Это поле пронизывает обе обмотки и в них возникает вихревое электрическое поле, которое действуя на заряженные частицы во вторичной обмотке способствует возникновению в ней переменного напряжения.

    Величина равная отношению напряжений в первичной и вторичной обмотках трансформатора называют коэффициентом трансформации. Его обозначают буквой «k».

    k– коэффициент трансформации.

    U1 иU2 – напряжения на первичной и на вторичной обмотке.

    N1 и N2— число витков на первичной и на вторичной обмотке.

    Если k < 1 — трансформатор повышающий,

    k > 1 — трансформатор понижающий.

    КПД трансформатора равен отношению мощности в нагрузке к мощности, подаваемой из сети на первичную обмотку:

    Для передачи электроэнергии на расстояние напряжение повышают с помощью трансформатора, а для потребления — понижают. В массивных проводниках при изменении магнитного поля возникают индукционные токи (токи Фуко), которые нагревают проводник. Чтобы эти индукционные токи не нагревали сердечник трансформатора его делают не сплошным, а из отдельных пластин, скрепленных вместе.

    Закон Ома гласит: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

    Из формулы закона Ома для переменного тока мы видим, что при постоянной амплитуде напряжения, амплитуда силы тока зависит от частоты. Амплитуда силы тока будет максимальной, если полное сопротивление минимально. Полное сопротивление цепи минимально при равенстве индуктивного и ёмкостного сопротивления. В этом заключается условие возникновения резонанса в электрической цепи.

    Резонанс в электрической цепи – это явление резкого возрастания амплитуды колебаний силы тока в контуре при совпадении частоты вынужденных колебаний с частотой собственных колебаний контура.

     Явление резонанса широко используется в радиотехнике, в схемах настройки радиоприемников. Меняя электроемкость конденсатора в колебательном контуре можно настроить его на нужную волну, т.е. выделить частоту на которой работает передающая станция

    Разбор тренировочных заданий

    1. Каково амплитудное значение ЭДС, возникающей в рамке из 50 витков, если она вращается с циклической частотой 180 рад/с в магнитном поле индукцией 0,4 Тл? Площадь рамки 0,02 м2.

    Дано:

    N=50

    ω=180 рад/с

    B=0,4 Тл

    S=0,02 м2

    _________

    Ԑm=?

    Решение:

    Ответ: 72 В.

    2. Катушка с индуктивностью 0,08 Гн присоединена к источнику переменного тока частотой 1000 Гц. При этом вольтметр показывает 100 В. Определить амплитуду тока в цепи. Ответ округлить до десятых.

    Дано:

    L=0,08 Гн

    ν= 1000 Гц

    U=100 В

    __________

    Im=?

    Решение:

    Напишем закон Ома для переменного тока

    Т.к. ХC и R равны нулю, то

    Учитывая, что , получаем:

    Найдем амплитудное значение напряжения:

    Подставим числовые данные в формулу для расчета амплитуды силы тока:

    Ответ: Im = 0,3 А.

    5 применений индукторов, которые вы должны знать

    Как один из основных пассивных компонентов, индукторы играют важную роль в электронике, от запуска двигателей до подачи энергии в ваш дом. Индукторы накапливают энергию в магнитном поле, когда через него протекает ток. В типичном индукторе используется изолированный провод, намотанный в катушку вокруг центрального сердечника.

    Какими бы полезными ни были индукторы, самая большая проблема — это их физический размер. Индукторы часто затмевают другие электронные компоненты в цепи и также добавляют вес.Некоторые методы имитируют большую катушку индуктивности в цепи. Однако добавленная сложность и дополнительные компоненты ограничивают использование этих методов.

    демарко-медиа / Getty Images

    Фильтры

    Индукторы широко используются с конденсаторами и резисторами для создания фильтров для аналоговых схем и при обработке сигналов. Сама по себе катушка индуктивности функционирует как фильтр нижних частот, поскольку полное сопротивление катушки индуктивности увеличивается с увеличением частоты сигнала.

    В сочетании с конденсатором, сопротивление которого уменьшается с увеличением частоты сигнала, получается режекторный фильтр, который пропускает только определенный частотный диапазон.

    Комбинируя конденсаторы, катушки индуктивности и резисторы, улучшенные топологии фильтров поддерживают множество приложений. Фильтры используются в большинстве электронных устройств, хотя по возможности часто используются конденсаторы, а не катушки индуктивности, поскольку они меньше и дешевле.

    Датчики

    Бесконтактные датчики ценятся за их надежность и простоту эксплуатации. Индукторы обнаруживают магнитные поля или присутствие магнитопроницаемого материала на расстоянии.

    Индуктивные датчики играют центральную роль почти на каждом перекрестке со светофором, который определяет интенсивность движения и соответствующим образом регулирует сигнал.Эти датчики отлично подходят для легковых и грузовых автомобилей. Некоторые мотоциклы и другие транспортные средства не обладают достаточной сигнатурой, чтобы их могли обнаружить датчики без наддува путем добавления магнита h4 к нижней части автомобиля.

    Индуктивные датчики имеют два основных ограничения. Либо обнаруживаемый объект должен быть магнитным и индуцировать ток в датчике, либо датчик должен иметь питание, чтобы обнаруживать присутствие материалов, которые взаимодействуют с магнитным полем. Эти параметры ограничивают область применения индуктивных датчиков и влияют на конструкции, в которых они используются.

    Трансформаторы

    Объединение катушек индуктивности, имеющих общий магнитный путь, образует трансформатор. Трансформатор является основным компонентом национальных электрических сетей. Трансформаторы используются во многих источниках питания для повышения или понижения напряжения до желаемого уровня.

    Серые канистры, которые часто можно найти на опорах электроснабжения, содержат трансформаторы.

    Поскольку магнитные поля создаются изменением тока, чем быстрее изменяется ток (увеличивается частота), тем эффективнее работает трансформатор.По мере увеличения входной частоты импеданс катушки индуктивности ограничивает эффективность трансформатора. На практике трансформаторы на основе индуктивности ограничены десятками кГц, обычно ниже. Преимущество более высокой рабочей частоты — это меньший по размеру и легкий трансформатор, который обеспечивает такую ​​же нагрузку.

    Архив Harley-Davidson

    Двигатели

    Индукторы обычно находятся в фиксированном положении и не могут перемещаться для выравнивания с каким-либо близлежащим магнитным полем. Индуктивные двигатели используют магнитную силу, приложенную к индукторам, для превращения электрической энергии в механическую.

    Индуктивные двигатели сконструированы таким образом, что вращающееся магнитное поле создается синхронно с входом переменного тока. Поскольку скорость вращения регулируется входной частотой, асинхронные двигатели часто используются в приложениях с фиксированной скоростью, которые могут получать питание непосредственно от сети 50/60 Гц. Самым большим преимуществом асинхронных двигателей перед другими конструкциями является отсутствие электрического контакта между ротором и двигателем, что делает асинхронные двигатели прочными и надежными.

    Многие простые электродвигатели, которые вы встретите, например, в вентиляторах, являются индуктивными.

    Накопитель энергии

    Как и конденсаторы, индукторы накапливают энергию. В отличие от конденсаторов, индукторы ограничены в том, как долго они могут хранить энергию, потому что энергия накапливается в магнитном поле, которое разрушается при отключении питания.

    В основном индукторы используются в качестве накопителей энергии в импульсных источниках питания, таких как блоки питания в ПК. В более простых неизолированных импульсных источниках питания вместо трансформатора и элемента аккумулирования энергии используется один индуктор.В этих схемах отношение времени, в течение которого катушка индуктивности запитана, ко времени отсутствия питания определяет соотношение входного и выходного напряжения.

    Спасибо, что сообщили нам!

    Расскажите, почему!

    Другой Недостаточно подробностей Сложно понять

    Что такое индуктор? — Простое и легкое руководство по индуктору

    Я получил несколько писем с вопросом «Что такое индуктор?». И я понял, что это действительно хороший вопрос. Потому что это какой-то странный компонент.

    Катушка индуктивности — это просто катушка с проводом.

    Сделать его невероятно просто — достаточно сделать несколько петель из проволоки. Но поскольку провода создают магнитные поля, вы скоро увидите, что они могут делать кое-что интересное.

    Индуктор в цепи

    Если вы изучаете электронику, первый важный вопрос: что делает катушка индуктивности в цепи?

    Катушка индуктивности будет сопротивляться изменениям тока.

    В схеме ниже у вас есть светодиод и резистор, соединенные последовательно с катушкой индуктивности.И есть переключатель для включения и выключения питания.

    Без индуктора это была бы обычная светодиодная цепь, и светодиод включился бы сразу же, когда вы щелкаете выключателем.

    Но индуктор — это компонент, который сопротивляется изменениям тока.

    Когда переключатель выключен, ток не течет. Когда вы включаете выключатель, начинает течь ток. Это означает, что существует изменение тока, которому будет сопротивляться индуктор.

    Таким образом, вместо того, чтобы ток сразу пошел от нуля до максимума, он будет постепенно увеличиваться до максимального значения.

    (Максимальный ток для этой цепи устанавливается резистором и светодиодом.)

    Поскольку сила тока определяет интенсивность света светодиода, индуктор заставляет светодиод постепенно загораться, а не мгновенно.

    Примечание: Вам понадобится очень большая катушка индуктивности, чтобы можно было видеть, как светодиоды гаснут в схеме выше. Это не то, для чего вы бы использовали индуктор. Но используйте это как мысленный образ того, что индуктор делает в цепи.

    Что происходит при отключении индуктора?

    Катушка индуктивности также препятствует мгновенному отключению тока.Ток не просто перестанет течь в катушке индуктивности в одно мгновение.

    Таким образом, когда вы выключаете питание, индуктор будет пытаться продолжить прохождение тока.

    Это достигается за счет быстрого увеличения напряжения на его выводах.

    На самом деле он настолько увеличивается, что вы можете получить небольшую искру на контактах вашего переключателя!

    Эта искра позволяет току течь (через воздух!) В течение доли секунды, пока магнитное поле вокруг индуктора не разорвется.

    Вот почему обычно диод помещают в обратном направлении через катушку реле или двигателя постоянного тока. Таким образом, индуктор может разряжаться через диод вместо того, чтобы создавать в цепи высокое напряжение и искры.

    БЕСПЛАТНЫЙ бонус: Загрузите основные электронные компоненты [PDF] — мини-книгу с примерами, которая научит вас, как работают основные компоненты электроники.

    Как работают индукторы

    Любой провод, по которому протекает ток, окружен небольшим магнитным полем.

    Когда вы наматываете провод в катушку, поле становится сильнее.

    Если вы намотаете провод на магнитопровод, например, из стали или железа, вы получите еще более сильное магнитное поле.

    Так создается электромагнит.

    Магнитное поле вокруг индуктора зависит от силы тока. Итак, когда меняется ток, меняется магнитное поле.

    Когда магнитное поле изменяется, на выводах индуктора создается напряжение, которое препятствует этому изменению.

    Для чего можно использовать индукторы?

    В типичных схемах для начинающих не так уж часто можно увидеть дискретные индукторы. Так что, если вы только начинаете, вы, вероятно, еще не встретите их.

    Но они очень распространены в блоках питания. Например, для создания понижающего или повышающего преобразователя. И они распространены в радиосхемах для создания генераторов и фильтров.

    Но гораздо чаще вы встретите электромагниты.И они в основном индукторы. Вы найдете их практически во всем, что движется от электричества. Например, реле, двигатели, соленоиды, динамики и многое другое.

    А трансформатор — это, по сути, две катушки индуктивности, намотанные на один и тот же сердечник.

    Если вы хотите узнать, как работают другие электронные компоненты, перейдите к основным компонентам в электронике.

    Индуктор

    и влияние индуктивности на индуктор

    В наших уроках по электромагнетизму мы видели, что когда электрический ток течет через проводник, вокруг этого проводника создается магнитный поток.Это воздействие создает взаимосвязь между направлением магнитного потока, циркулирующего вокруг проводника, и направлением тока, протекающего через тот же проводник. Это приводит к взаимосвязи между током и направлением магнитного потока, называемой «правилом правой руки Флеминга».

    Но есть еще одно важное свойство, относящееся к намотанной катушке, которое также существует, а именно, что вторичное напряжение индуцируется в той же катушке движением магнитного потока, поскольку оно противодействует или сопротивляется любым изменениям электрического тока, протекающего по ней.

    Типовой индуктор

    В своей основной форме индуктор представляет собой не что иное, как катушку с проволокой, намотанную вокруг центрального сердечника. Для большинства катушек ток (i), протекающий через катушку, создает вокруг нее магнитный поток (NΦ), который пропорционален этому потоку электрического тока.

    Катушка индуктивности , также называемая дросселем, представляет собой другой электрический компонент пассивного типа, состоящий из катушки с проволокой, предназначенной для использования преимуществ этого отношения, создавая магнитное поле в самом себе или внутри его сердечника в результате тока, протекающего через катушка проволоки.Превращение проволочной катушки в индуктор приводит к гораздо более сильному магнитному полю, чем то, которое создается простой катушкой с проволокой.

    Катушки индуктивности

    состоят из проволоки, плотно намотанной вокруг твердого центрального сердечника, который может быть либо прямым цилиндрическим стержнем, либо непрерывной петлей, либо кольцом для концентрации их магнитного потока.

    Схематическое обозначение катушки индуктивности — это катушка с проводом, поэтому катушку с проволокой также можно назвать индуктором . Индукторы обычно классифицируются в зависимости от типа внутреннего сердечника, вокруг которого они намотаны, например, полый сердечник (на открытом воздухе), твердый железный сердечник или мягкий ферритовый сердечник, при этом различные типы сердечников выделяются путем добавления непрерывных или пунктирных параллельных линий рядом с катушка с проволокой, как показано ниже.

    Символ индуктивности

    Ток i, протекающий через катушку индуктивности, создает пропорциональный ему магнитный поток. Но в отличие от конденсатора, который противодействует изменению напряжения на своих пластинах, индуктор противодействует скорости изменения тока, протекающего через него, из-за накопления самоиндуцированной энергии в его магнитном поле.

    Другими словами, катушки индуктивности сопротивляются изменениям тока или противодействуют им, но легко пропускают установившийся постоянный ток.Эта способность катушки индуктивности противостоять изменениям тока и которая также связывает ток, i с его магнитной индукционной связью, NΦ как константу пропорциональности, называется индуктивностью , которой присвоено обозначение L с единицами измерения Генри , ( H ) после Джозефа Генри.

    Поскольку Генри является относительно большой единицей индуктивности сам по себе, для меньших индуктивностей используются подъединицы Генри для обозначения ее значения. Например:

    Префиксы индуктивности

    Префикс Символ Множитель Сила десяти
    милли м 1/1000 10 -3
    микро мкм 1/1 000 000 10 -6
    нано n 1/1 000 000 000 10 -9

    Итак, чтобы отобразить подъединицы Генри, мы будем использовать в качестве примера:

    • 1 мГн = 1 милли-Генри, что равно одной тысячной (1/1000) части Генри.
    • 100 мкГн = 100 микро-Генри, что равно 100 миллионной (1/1 000 000) Генри.

    Катушки индуктивности или катушки очень распространены в электрических цепях, и существует множество факторов, определяющих индуктивность катушки, например, форма катушки, количество витков изолированного провода, количество слоев проволоки, расстояние между ними. витки, проницаемость материала сердечника, размер или площадь поперечного сечения сердечника и т.д., и это лишь некоторые из них.

    Катушка индуктивности имеет центральную площадь сердечника (A) с постоянным числом витков провода на единицу длины (l).Таким образом, если катушка из N витков связана посредством магнитного потока Φ, тогда катушка имеет потокосцепление NΦ, и любой ток, (i), который протекает через катушку, будет создавать индуцированный магнитный поток в направлении, противоположном направлению поток тока. Затем, согласно закону Фарадея, любое изменение в этой магнитной потокосцепке вызывает самоиндуцированное напряжение в единственной катушке:

    • Где:
    • N — количество витков
    • A — площадь поперечного сечения, м 2
    • Φ — величина потока в Webers
    • мкм — проницаемость материала сердечника
    • l Длина змеевика в метрах
    • di / dt — скорость изменения тока в амперах в секунду

    Изменяющееся во времени магнитное поле индуцирует напряжение, которое пропорционально скорости изменения тока, производящего его, с положительным значением, указывающим на увеличение ЭДС, и отрицательным значением, указывающим на уменьшение ЭДС.Уравнение, связывающее это самоиндуцированное напряжение, ток и индуктивность, можно найти, заменив мкН 2 А / л на L, обозначающую константу пропорциональности, называемую индуктивностью катушки.

    Связь между магнитным потоком в катушке индуктивности и током, протекающим через катушку индуктивности, определяется следующим образом: NΦ = Li. Поскольку катушка индуктивности состоит из катушки с проводящим проводом, это затем сокращает приведенное выше уравнение, чтобы дать самоиндуцированную ЭДС, иногда называемую обратной ЭДС , также индуцированной в катушке :

    Обратная ЭДС, генерируемая индуктором

    Где: L — самоиндукция, а di / dt — скорость изменения тока.

    Катушка индуктивности

    Итак, из этого уравнения мы можем сказать, что «Самоиндуцированная ЭДС равна индуктивности, умноженной на скорость изменения тока», и цепь с индуктивностью в один Генри будет иметь ЭДС в один вольт, индуцированную в цепи, когда ток, протекающий через цепь меняется со скоростью один ампер в секунду.

    Одно важное замечание по поводу приведенного выше уравнения. Он связывает только ЭДС, создаваемую на катушке индуктивности, с изменениями тока, потому что, если течение тока в катушке индуктивности является постоянным и не изменяется, например, в установившемся режиме постоянного тока, то индуцированное напряжение ЭДС будет равно нулю, поскольку мгновенная скорость изменения тока равна ноль, di / dt = 0.

    При постоянном постоянном токе, протекающем через катушку индуктивности, и, следовательно, нулевом индуцированном напряжении на ней, индуктор действует как короткое замыкание, равное куску провода или, по крайней мере, с очень низким сопротивлением. Другими словами, сопротивление протеканию тока, обеспечиваемое катушкой индуктивности, сильно различается между цепями переменного и постоянного тока.

    Постоянная времени индуктора

    Теперь мы знаем, что ток не может мгновенно измениться в катушке индуктивности, потому что для того, чтобы это произошло, ток должен измениться на конечную величину за нулевое время, что приведет к тому, что скорость изменения тока будет бесконечной, di / dt = ∞ , что делает наведенную ЭДС бесконечной, а бесконечные напряжения не существуют.Однако, если ток, протекающий через катушку индуктивности, изменяется очень быстро, например, при срабатывании переключателя, на катушке индуктора могут возникать высокие напряжения.

    Рассмотрим схему чистого индуктора справа. Когда переключатель (S1) разомкнут, ток через катушку индуктивности не протекает. Поскольку через катушку не течет ток, скорость изменения тока (di / dt) в катушке будет равна нулю. Если скорость изменения тока равна нулю, в катушке индуктивности нет самоиндуцированной обратной ЭДС (V L = 0).

    Если мы сейчас замкнем переключатель (t = 0), ток будет течь по цепи и медленно подниматься до своего максимального значения со скоростью, определяемой индуктивностью катушки индуктивности. Эта скорость тока, протекающего через катушку индуктивности, умноженная на индуктивность катушки индуктивности в системе Генри, приводит к возникновению в катушке некоторой самоиндуцированной ЭДС фиксированного значения, как это определено приведенным выше уравнением Фарадея: V L = -Ldi / dt.

    Эта самоиндуцированная ЭДС на катушке индуктора (V L ) борется с приложенным напряжением до тех пор, пока ток не достигнет своего максимального значения и не будет достигнуто состояние устойчивого состояния.Ток, который теперь протекает через катушку, определяется только постоянным током или «чистым» сопротивлением обмоток катушек, поскольку значение реактивного сопротивления катушки уменьшилось до нуля, потому что скорость изменения тока (di / dt) равна нулю в состояние устойчивого состояния. Другими словами, в реальной катушке существует только сопротивление катушки постоянному току, которое препятствует прохождению тока через себя.

    Аналогичным образом, если переключатель (S1) разомкнут, ток, протекающий через катушку, начнет падать, но индуктор снова будет бороться с этим изменением и попытается сохранить текущее значение тока на его предыдущем значении, создавая другое напряжение в другом направлении. .Наклон падения будет отрицательным и связан с индуктивностью катушки, как показано ниже.

    Ток и напряжение в индукторе

    Сколько наведенного напряжения будет создаваться индуктором, зависит от скорости изменения тока. В нашем руководстве по электромагнитной индукции Закон Ленца гласил: «Направление индуцированной ЭДС таково, что она всегда будет противодействовать вызывающему ее изменению». Другими словами, индуцированная ЭДС всегда будет ПРОТИВОДЕЙСТВОВАТЬ движению или изменению, которые изначально привели к возникновению индуцированной ЭДС.

    Таким образом, при уменьшении тока полярность напряжения будет действовать как источник, а при увеличении тока полярность напряжения будет действовать как нагрузка. Таким образом, при одинаковой скорости изменения тока через катушку увеличение или уменьшение величины наведенной ЭДС будет одинаковым.

    Пример индуктора No1

    Установившийся постоянный ток 4 ампера проходит через соленоидную катушку 0,5H. Каким будет среднее напряжение обратной ЭДС, индуцированное в катушке, если переключатель в приведенной выше схеме разомкнут на 10 мс и ток, протекающий через катушку, упадет до нуля ампер.

    Мощность в индукторе

    Мы знаем, что индуктор в цепи противодействует прохождению тока, (i) через него, потому что поток этого тока индуцирует противодействующую ему ЭДС, закон Ленца. Затем должен работать внешний аккумуляторный источник, чтобы поддерживать ток, протекающий против этой наведенной ЭДС. Мгновенная мощность, используемая для создания силы тока, (i) против этой самоиндуцированной ЭДС (V L ), дается сверху как:

    Мощность в цепи задается как, P = V * I, следовательно:

    Идеальный индуктор не имеет сопротивления, только индуктивность, поэтому R = 0 Ом, и, следовательно, внутри катушки не рассеивается мощность, поэтому мы можем сказать, что идеальный индуктор имеет нулевые потери мощности.

    Энергия в индукторе

    Когда мощность поступает в индуктор, энергия накапливается в его магнитном поле. Когда ток, протекающий через катушку индуктивности, увеличивается и di / dt становится больше нуля, мгновенная мощность в цепи также должна быть больше нуля (P> 0), т. Е. Положительная величина, что означает, что энергия накапливается в катушке индуктивности.

    Аналогично, если ток через катушку индуктивности уменьшается и di / dt меньше нуля, то мгновенная мощность также должна быть меньше нуля (P <0), т. Е. Отрицательная, что означает, что индуктор возвращает энергию обратно в цепь. .Затем, интегрировав приведенное выше уравнение для мощности, общая магнитная энергия, которая всегда положительна, хранится в индукторе, поэтому определяется как:

    Энергия, запасаемая индуктором

    Где: W — в джоулях, L — в Генри, а i — в амперах

    Энергия фактически накапливается в магнитном поле, окружающем индуктор, за счет протекающего через него тока. В идеальной катушке индуктивности, которая не имеет сопротивления или емкости, по мере того, как ток увеличивается, энергия течет в индуктор и сохраняется там в его магнитном поле без потерь, она не высвобождается до тех пор, пока ток не уменьшится и магнитное поле не исчезнет.

    Тогда в цепи переменного тока переменного тока индуктор постоянно накапливает и передает энергию в каждом цикле. Если ток, протекающий через катушку индуктивности, постоянный, как в цепи постоянного тока, то запасенная энергия не изменяется, поскольку P = Li (di / dt) = 0.

    Таким образом, индукторы можно определить как пассивные компоненты, поскольку они могут как накапливать, так и передавать энергию в цепь, но не могут генерировать энергию. Идеальный индуктор классифицируется как без потерь, что означает, что он может хранить энергию неограниченное время, поскольку энергия не теряется.

    Однако настоящие катушки индуктивности всегда будут иметь некоторое сопротивление, связанное с обмотками катушки, и всякий раз, когда ток течет через сопротивление, энергия теряется в виде тепла из-за Закона Ома (P = I 2 R) независимо от того, ток переменный или постоянный.

    Затем индукторы в основном используются в цепях фильтрации, резонансных цепях и для ограничения тока. Катушка индуктивности может использоваться в схемах для блокировки или изменения формы переменного тока или диапазона синусоидальных частот, и в этой роли катушка индуктивности может использоваться для «настройки» простого радиоприемника или различных типов генераторов.Он также может защитить чувствительное оборудование от разрушительных скачков напряжения и высоких пусковых токов.

    В следующем уроке по индукторам мы увидим, что эффективное сопротивление катушки называется индуктивностью, а индуктивность, которая, как мы теперь знаем, является характеристикой электрического проводника, который «препятствует изменению тока», может быть либо внутренне индуцированная, называемая самоиндукцией, или внешне индуцированная, называемая взаимной индуктивностью.

    Руководство по выбору индукторов для импульсных регуляторов

    Чтобы просмотреть PDF-версию этой статьи, щелкните здесь.

    Во всех импульсных регуляторах индуктивность используется как накопитель энергии. Когда полупроводниковый переключатель включен, ток в катушке индуктивности нарастает, и энергия накапливается. Когда переключатель выключается, эта энергия переходит в нагрузку. Количество сохраненной энергии определяется как Энергия = ½L.I 2 (Джоули)

    Где L — индуктивность в Генри, а I — пиковое значение тока катушки индуктивности.

    Величина, на которую изменяется ток в катушке индуктивности во время цикла переключения, называется током пульсаций и определяется следующим уравнением:

    V л = L.di / dt

    Где V l — напряжение на катушке индуктивности, di — ток пульсаций, а dt — длительность приложения напряжения. Из этого мы можем видеть, что значение тока пульсаций зависит от значения индуктивности.

    Рекомендации по понижающему преобразователю

    Для понижающего преобразователя выбор правильного значения индуктивности важен для получения приемлемых размеров катушки индуктивности и выходного конденсатора и достаточно низких пульсаций выходного напряжения.

    Как видно из Рис. 1 , ток катушки индуктивности состоит из компонентов переменного и постоянного тока. Поскольку переменная составляющая имеет высокую частоту, она будет проходить через выходной конденсатор, который имеет низкое высокочастотное сопротивление. Это приведет к возникновению пульсаций напряжения из-за эквивалентного последовательного сопротивления конденсатора (ESR), которое появляется на выходе понижающего преобразователя. Эти пульсации напряжения должны быть достаточно низкими, чтобы не влиять на работу цепи, питаемой регулятором.Обычно это порядка 10-500 мВ пик-пик.

    Выбор правильного тока пульсаций также влияет на размер катушки индуктивности и выходного конденсатора. Этот конденсатор должен иметь достаточно высокий номинальный ток пульсаций, иначе он перегреется и высохнет. Чтобы получить хороший компромисс между размером катушки индуктивности и конденсатора, вы должны выбрать значение пульсирующего тока от 10% до 30% от максимального тока нагрузки. Это также означает, что ток в катушке индуктивности будет непрерывным для выходных токов, превышающих 5% — 15% полной нагрузки.

    Катушки индуктивности понижающего преобразователя можно эксплуатировать в непрерывном или прерывистом режиме. Это означает, что ток индуктора может течь непрерывно или может упасть до нуля во время цикла переключения (прерывистый). Однако работа в прерывистом режиме не рекомендуется, так как это усложняет конструкцию преобразователя. Выбор пульсационного тока индуктора менее чем в два раза превышающий минимальную нагрузку обеспечивает работу в непрерывном режиме.

    Выбор индуктора

    При выборе индуктора для понижающего преобразователя, как и для всех импульсных стабилизаторов, вам необходимо определить или рассчитать следующие параметры:

    • Максимальное входное напряжение
    • Выходное напряжение
    • Частота переключения
    • Максимальный пульсирующий ток
    • Продолжительность включения

    Для понижающего преобразователя, показанного на Рис.2 , например, предположим, что частота переключения составляет 200 кГц, диапазон входного напряжения составляет 3,3 В ± 0,3 В, а выходное напряжение 1,8 В при 1,5 А при минимальной нагрузке 300 мА.

    Для входного напряжения 3,6 В рабочий цикл будет:

    D = V o / V i = 3,6 / 1,8 = 0,5

    Где V o — выходное напряжение, а V i — входное напряжение.

    Напряжение на индуктивности:

    V l = V i — V o = 1.8В при включенном переключателе;

    В l = — В o = -1,8 В, когда переключатель выключен.

    При выборе тока пульсаций 600 мА требуемая индуктивность составляет: L = V l .dt / di = (1,8 × 0,5 / 200 × 10 3 ) / 0,6

    L = 7,5 мкГн

    Для обеспечения некоторого запаса следует выбрать значение 10 мкГн. Это дает номинальный ток пульсаций от пика до пика 450 мА. В готовой конструкции это можно увидеть как пульсации выходного напряжения 0,45 × ESR выходного конденсатора.

    Номинальный ток индуктора

    Катушки индуктивности

    обычно имеют два номинальных тока: непрерывный (Irms) и пиковый (Isat). Irms обычно определяется как постоянный ток, который вызывает повышение температуры индуктора на 40 ° C. Isat — это пиковый ток, который вызывает определенный спад индуктивности, определяемый как уменьшение в процентах от значения разомкнутой цепи и может варьироваться от 5% до 50%. Эти номинальные значения тока являются ориентировочными для характеристик катушки индуктивности. Фактический максимальный рабочий ток будет зависеть от области применения.Имея это в виду, необходимо проверить ряд факторов, чтобы гарантировать правильный выбор индуктора.

    Во-первых, важно посмотреть, как индуктивность «спадает» с увеличением тока. Для таких материалов, как порошок железа, порошок пермаллоя молибдена (MPP), сендуст и аморфный порошок, в которых используется распределенный воздушный зазор, спад индуктивности начинается при очень низких уровнях тока и продолжается почти линейно по мере увеличения тока. Когда используется ферритовый материал, любое постепенное изменение индуктивности компенсируется большим зазором, который необходимо ввести для хранения энергии.В результате индуктивность резко падает в точке, где весь сердечник становится насыщенным. До достижения этой точки индуктивность остается почти постоянной. Вы можете найти примеры этих двух характеристик спада в Рис. 3 . На этом рисунке показаны кривые спада для двух катушек индуктивности 920 мкГн — один из феррита, а другой — MPP.

    Для материалов с ферритовым сердечником пиковый ток обычно указывается для уменьшения индуктивности на 10–30% от значения разомкнутой цепи.Не рекомендуется работать при более высоких уровнях тока, так как индуктивность быстро упадет до низкого уровня. Однако для порошкообразных материалов пиковый ток может быть задан при любом спаде до 50% при работе за пределами этого диапазона при условии, что индуктор не перегревается. Из примеров в Рис. 3 , пиковые токи будут определены от 16 до 17 А для ферритовой части и до 36 А для MMP.

    Потери в сердечнике и температура

    Допустимые потери для индуктора ограничены максимально допустимой температурой.Таким образом, для большинства стандартных деталей этот предел составляет 125 ° C, хотя он может быть и выше. Номинальный среднеквадратичный ток обычно представляет собой постоянный ток, который приводит к повышению температуры на 40 ° C, что теоретически допускает работу при температуре окружающей среды 85 ° C. Однако в большинстве приложений существует некоторая пульсация тока, возникающая из-за потерь в сердечнике. В таких условиях необходимо будет снизить номинальные параметры Irms, чтобы удерживать повышение температуры до 40 ° C. Кроме того, указанное повышение температуры на 40 ° C обычно достигается без ограничений воздушного потока из-за естественной конвекции, что в большинстве случаев не выполняется.

    Двумя основными проблемами в этой области выбора индуктора являются расчет потерь в сердечнике и требуемое снижение номинальных значений Irms, чтобы удерживать повышение температуры до приемлемого уровня. У разных производителей катушек индуктивности есть разные способы выражения потерь в сердечнике — некоторые не приводят никаких подробностей, а другие предоставляют информацию, необходимую для расчета рассеяния. Однако один из наиболее практичных подходов исходит из каталога Coiltronics ® , который показывает максимально допустимые потери в процентах от Irms по отношению к приложенным вольт-секундам на различных частотах.Поскольку произведение вольт-секунд пропорционально потерям в сердечнике, его можно легко определить с помощью этих кривых.

    Окончательный отбор

    Окончательный выбор индуктора зависит от четырех основных требований к конструкции: эффективности, электромагнитных помех (EMI), доступного пространства и стоимости. В портативном оборудовании с батарейным питанием требуется высокая эффективность от минимально возможной детали. Кроме того, поскольку электроника плотно упакована, низкий уровень электромагнитных помех очень важен. В промышленном применении, где основной источник постоянного тока генерируется от электросети переменного тока, эффективность становится менее важной.В результате часто используется решение с наименьшими затратами.

    Используя предыдущий пример понижающего преобразователя, вы можете теперь рассмотреть три возможных решения, предлагающих различные компромиссы с четырьмя конструктивными соображениями (, таблица 1, ).

    Прежде чем сравнивать характеристики каждой из этих частей с критериями проектирования, вы должны сначала взглянуть на их характеристику спада. В нашем примере номинальный пиковый ток составлял 1,725 ​​А (выходной ток 1,5 А плюс половина тока пульсаций), а максимальный пиковый ток составлял 1.8А (максимально допустимый ток пульсаций составлял 600 мА).

    Глядя на кривые спада для каждого индуктора, можно получить следующие рабочие индуктивности:

    CTX10-1-52 — 7,5 мкГн

    CTX10-1A — 8,0 мкГн

    DR74-100 — 9,5 мкГн

    CTX10-1-52 уже представляет собой маргинальную конструкцию, поскольку 7,5 мкГн — это минимальная индуктивность, необходимая для достижения максимального тока пульсаций 600 мА. Мы продолжим рассматривать эту часть, чтобы показать производительность устройства с железным порошком.

    Во-первых, давайте посмотрим на общие потери и эффективность.Чтобы вычислить потери в сердечнике, вы должны сначала рассчитать приложенные вольт-секунды:

    В л = 1,8 В

    dt = V o / V IN × 1 / fs = 2,5 мкс

    Приложенная вольт-мксекунда = 1,8 В × 2,5 мкс = 4,5 В-мкс

    Где

    В l = напряжение индуктора,

    В o = выходное напряжение,

    В IN = входное напряжение,

    dt = время включения и

    fs = частота переключения.

    Если посмотреть на DR73-100, эта деталь имеет номинальное значение 11 вольт-секунд.5 В-мкс при 100 кГц, то есть приложенные вольт-секунды, составляющие 10% потерь, необходимых для повышения температуры на 40 ° C.

    В этом примере компонент используется при среднеквадратичном значении 1,5 А, пике 1,8 А и 4,5 В-мкс. Таким образом, DR73-100 используется при 39% своей вольт-секундной мощности. Глядя на Рис. 4 , вы можете увидеть, что при 200 кГц и 39% приложенных вольт-секунд максимально допустимые потери, возникающие из-за Irms, составляют примерно 96,25% от общих потерь.

    Суммарные потери при повышении температуры на 40 ° C равны сопротивлению постоянному току (DCR), умноженному на квадрат номинального значения Irms, то есть для DR73-100;

    Потери при повышении температуры на 40 ° C = 0.0634Σ × 2,11 2 = 0,282 Вт

    В нашем примере потери из-за Irms должны быть уменьшены до 96,25% от этой цифры повышения на 40 ° C, что дает нам требуемые потери Irms в 0,271 Вт. Исходя из этого, вы можете рассчитать максимально допустимый среднеквадратичный ток, равный 2,03 А. Вы также знаете, что потери в сердечнике составляют примерно 11 мВт (разница между потерями при повышении температуры на 40 ° C и требуемыми потерями Irms в 0,271 Вт).

    Повторение этой процедуры для CTX10-1-52 и CTX10-1A может дать вам результаты, показанные в Таблица 2 , на странице 28.

    Взвешивание плюсов и минусов

    У всех трех катушек индуктивности рассеиваемая мощность меньше, чем требуется для повышения температуры на 40 ° C. Таким образом, тепловые характеристики не должны быть проблемой для большинства приложений. На практике потери в индукторе будут выше расчетных. Это связано с тем, что вы не учли потери в обмотке переменного тока из-за скин-эффекта и эффекта близости. Эти потери становятся более значительными с увеличением тока пульсации и увеличением частоты, но обычно меньше потерь I 2 R.Рассматривая каждую из альтернатив, вы можете взвесить плюсы и минусы каждого индуктора и определить приложения, которые им подходят лучше всего.

    CTX10-1-52 : Конструкция тороида из железного порошка означает наилучшие возможные характеристики электромагнитных помех от так называемой конструкции с замкнутым полем. Короче говоря, здесь нет паразитного магнитного поля. Это также означает низкую стоимость, поскольку железный порошок является самым дешевым из доступных материалов сердечника. Однако высокие потери в сердечнике и практический предел рабочей частоты 300 кГц делают железный порошок непригодным для большинства портативных приложений.Более высокие рабочие частоты, превышающие 1 МГц, обычно используются для уменьшения размера требуемого индуктора в этих изделиях. Тороиды из железного порошка представляют собой хорошее экономичное решение в приложениях с высокой мощностью, где требуются высокие значения индуктивности и номинальные токи.

    CTX10-1A : Это явный победитель, когда дело касается эффективности. Использование сердечника с высокой проницаемостью означает, что требуется меньше витков, и, как таковая, DCR обмотки является низким. В сочетании с разумными потерями в сердечнике даже на частотах выше 500 кГц аморфное решение обеспечивает общие потери, которые составляют менее 5% выходной мощности.Однако это решение связано с двумя проблемами: аморфные материалы дороги и, как правило, обладают плохой температурной стабильностью. Это делает их непригодными для использования при высоких температурах окружающей среды. Для более дешевого решения, которое по-прежнему обеспечивает лучшую производительность, чем порошок железа, вам следует рассмотреть возможность использования MPP или Sendust. Эти материалы предлагают как более низкие потери, так и более высокую частоту работы, чем железный порошок, с умеренными затратами.

    DR73-100 : Катушки индуктивности с ферритовым сердечником барабана предлагают самую низкую общую стоимость в очень энергоемкой упаковке, что делает их наиболее популярным выбором для преобразователей малой мощности в портативных, компьютерных и телекоммуникационных приложениях.Использование феррита означает, что возможна работа на высоких частотах, превышающих 1 МГц, что позволяет использовать более низкие значения индуктивности и детали меньшего размера. Единственная проблема, связанная с конструкцией сердечника барабана, — это электромагнитные помехи, поскольку сердечники барабана имеют значительное поле рассеяния. За исключением наиболее чувствительных приложений, эту проблему можно решить с помощью устройства с магнитным экранированием, такого как DR73.

    Конструкции

    Тороид и сердечник барабана обеспечивают необходимое решение в большинстве применений импульсных регуляторов. Однако в сильноточных приложениях решения с сердечниками E и U / I позволяют использовать медную фольгу для снижения потерь I 2 R.Для нашего примера лучшим решением является экранированный барабан. Эта часть предлагает самое компактное и дешевое решение с приемлемыми характеристиками EMI. Производительность EMI можно было обменять на небольшую рентабельность, но для получения более эффективного решения потребовалось бы непропорциональное увеличение затрат при небольшом улучшении.

    Для получения дополнительной информации об этой статье, CIRCLE 337 на сервисной карте считывателя

    Объяснение

    индукторов — Инженерное мышление

    Узнайте, как работают индукторы, где мы их используем, почему мы их используем, различные типы и почему они важны.

    Прокрутите вниз, чтобы просмотреть руководство YouTube.

    Помните, что электричество опасно и может быть смертельным, вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ.

    Что такое индуктор?

    Катушка индуктивности — это компонент электрической цепи, который накапливает энергию в своем магнитном поле. Он может высвободить это почти мгновенно. Возможность накапливать и быстро выделять энергию — очень важная функция, поэтому мы используем их во всех видах цепей.

    В нашей предыдущей статье мы рассмотрели, как работают конденсаторы, чтобы прочитать это НАЖМИТЕ ЗДЕСЬ .

    Как работает индуктор?

    Во-первых, представьте, что вода течет по трубам. Эту воду нагнетает насос, который эквивалентен нашей батарее. Труба разделяется на две ветви, трубы эквивалентны нашим проводам. В одном ответвлении есть труба с переходником, из-за которого вода немного затрудняется протекать через нее, так что это эквивалентно сопротивлению в электрической цепи.

    Электрическая схема индуктора.

    Другая ветвь имеет встроенное водяное колесо. Водяное колесо может вращаться, и вода, протекающая через него, заставляет его вращаться. Колесо очень тяжелое, поэтому для того, чтобы набрать скорость, требуется некоторое время, а вода должна постоянно давить на него, чтобы заставить его двигаться. Это эквивалент нашей катушки индуктивности.

    Аналогия с водяным колесом

    Когда мы впервые запускаем насос, вода потечет, и она хочет вернуться к насосу, так как это замкнутый цикл, точно так же, как когда электроны покидают батарею, они текут, чтобы попытаться вернуться к другому. сторона батареи.


    Обратите внимание: в этих анимациях мы используем поток электронов, который изменяется от отрицательного к положительному, но вы могли бы привыкнуть к обычному потоку, который изменяется от положительного к отрицательному. Просто помните о двух и о том, какой из них мы используем.

    через GIPHY

    Как вода течет; он достигает ветвей и должен решить, какой путь выбрать. Вода толкает колесо, но колесу потребуется некоторое время, чтобы сдвинуться с места, и поэтому это добавляет большое сопротивление трубе, что затрудняет прохождение воды по этому пути, поэтому вода вместо этого пойдет по пути. редуктора, потому что он может протекать напрямую и намного легче возвращаться к насосу.

    По мере того, как вода продолжает двигаться, колесо будет вращаться все быстрее и быстрее, пока не достигнет максимальной скорости. Теперь колесо не оказывает почти никакого сопротивления, поэтому вода может проходить по этому пути намного легче, чем по пути редуктора. Вода практически перестанет течь через редуктор и потечет через водяное колесо.

    Когда мы выключаем насос, вода больше не поступает в систему, но водяное колесо движется так быстро, что не может просто остановиться, оно имеет инерцию.Продолжая вращаться, он теперь толкает воду и действует как насос. Вода будет течь по петле обратно сама по себе, пока сопротивление труб и редуктор не замедлит поток воды настолько, что колесо перестанет вращаться.

    Таким образом, мы можем включать и выключать насос, и водяное колесо будет поддерживать движение воды в течение короткого времени во время перебоев.

    Мы получаем очень похожий сценарий, когда мы подключаем индуктор параллельно резистивной нагрузке, такой как лампа.

    Основы индуктивности.

    Когда мы запитываем схему, электроны сначала проходят через лампу и питают ее, через дроссель будет протекать очень небольшой ток, потому что его сопротивление сначала слишком велико. Сопротивление уменьшится и позволит протекать большему току. В конце концов, индуктор почти не оказывает сопротивления, поэтому электроны предпочтут вернуться по этому пути к источнику питания, и лампа выключится.

    Снижение сопротивления.

    Когда мы отключаем источник питания, индуктор будет продолжать толкать электроны по петле и через лампу, пока сопротивление не рассеет энергию.

    Пример схемы при выключенном питании.

    Что происходит с индуктором, чтобы он действовал таким образом?

    Когда мы пропускаем электрический ток через провод, он создает вокруг себя магнитное поле. Мы можем убедиться в этом, разместив компасы вокруг провода. Когда мы пропускаем ток через провод, компасы будут двигаться и выравниваться по магнитному полю.

    Пример компаса.

    Когда мы меняем направление тока; магнитное поле меняет направление, и компасы также меняют направление, чтобы выровняться с ним.Чем больше тока мы пропускаем через провод, тем больше становится магнитное поле.

    Компасы вокруг проволоки.

    Когда мы скручиваем провод в катушку, каждый провод снова создает магнитное поле, но теперь все они сливаются вместе и образуют более мощное магнитное поле.

    Магнитное поле вокруг катушки.

    Мы можем увидеть магнитное поле магнита, просто рассыпав несколько железных опилок на магнит, который показывает линии магнитного потока.

    Магнитное поле

    через GIPHY

    При отключении электричества; магнитного поля нет, но когда мы подключаем источник питания, через катушку начинает течь ток, поэтому магнитное поле начинает формироваться и увеличиваться в размере до максимального размера.

    Магнитное поле накапливает энергию. Когда электричество отключается, магнитное поле начинает коллапсировать, и поэтому магнитное поле преобразуется в электрическую энергию, которая толкает электроны.

    через GIPHY

    На самом деле это произойдет невероятно быстро, мы просто замедлили анимацию, чтобы ее было легче увидеть и понять.

    Почему это так?

    Катушки индуктивности не любят изменения тока, они хотят, чтобы все оставалось прежним.Когда ток увеличивается, они пытаются остановить его с помощью противодействующей силы. Когда ток уменьшается, они пытаются остановить его, выталкивая электроны, чтобы попытаться сохранить его таким же, каким был.

    Итак, когда цепь переходит из выключенного состояния во включенное, происходит изменение тока, он увеличивается. Индуктор попытается остановить это, чтобы создать противодействующую силу, известную как обратная ЭДС или электродвижущая сила, которая противодействует силе, которая ее создала. В этом случае через дроссель от батареи течет ток.Некоторый ток все еще проходит, и при этом он создает магнитное поле, которое будет постепенно увеличиваться. По мере его увеличения через катушку индуктивности будет течь все больше и больше тока, и обратная ЭДС исчезнет. Магнитное поле достигнет максимума, и ток стабилизируется. Индуктор больше не сопротивляется току и действует как обычный кусок провода. Это создает очень легкий путь для обратного потока электронов к батарее, гораздо более легкий, чем прохождение через лампу, поэтому электроны будут проходить через индуктор, и лампа больше не будет светить.

    Когда мы отключаем питание, индуктор понимает, что произошло уменьшение тока. Ему это не нравится, и он пытается поддерживать его постоянным, поэтому он выталкивает электроны, чтобы попытаться стабилизировать его, это включит свет. Помните, что магнитное поле аккумулировало энергию протекающих через него электронов и преобразует ее обратно в электрическую энергию, чтобы попытаться стабилизировать ток, но магнитное поле будет существовать только тогда, когда ток проходит через провод, и поэтому, когда ток уменьшается от Из-за сопротивления цепи магнитное поле разрушается до тех пор, пока не перестанет обеспечивать мощность.

    Индуктор против резистора

    Если мы подключили резистор и катушку индуктивности к осциллографу отдельными цепями, мы можем визуально увидеть эффекты. Когда ток не течет, линия постоянна и плоская на нуле. Но когда мы пропускаем ток через резистор, мы мгновенно получаем вертикальный график, а затем прямые линии и продолжаются до определенного значения. Однако, когда мы подключаем катушку индуктивности и пропускаем через нее ток, он не будет мгновенно подниматься вверх, он будет постепенно увеличиваться и образовывать изогнутый профиль, в конечном итоге продолжающийся с постоянной скоростью.

    Когда мы останавливаем ток через резистор, он снова мгновенно падает, и мы получаем эту внезапную и вертикальную линию обратно к нулю. Но когда мы прекращаем прохождение тока через катушку индуктивности, ток продолжается, и мы получаем еще один изогнутый профиль до нуля. Это показывает нам, как индуктор сопротивляется начальному увеличению, а также пытается предотвратить уменьшение.

    Кстати, мы подробно рассказали о текущих событиях в предыдущей статье, проверьте ЗДЕСЬ .

    Как выглядят индукторы?

    Катушки индуктивности на печатных платах будут выглядеть примерно так, как показано ниже.

    Индукторы в печатных платах.

    В основном, это просто медная проволока, намотанная на цилиндр или кольцо. У нас есть и другие конструкции, которые имеют какой-то кожух, обычно это делается для экранирования его магнитного поля и предотвращения его взаимодействия с другими компонентами.

    Мы увидим катушки индуктивности, представленные на технических чертежах с подобными символами.

    Условные обозначения на технических чертежах.

    Следует помнить, что все, что имеет витой провод, будет действовать как индуктор, включая двигатели, трансформаторы и реле.

    Для чего мы используем индукторы?

    • Мы используем их в повышающих преобразователях для увеличения выходного напряжения постоянного тока при уменьшении тока.
    • Мы можем использовать их, чтобы перекрыть источник переменного тока и пропустить только постоянный ток.
    • Мы используем их для фильтрации и разделения разных частот.
    • Мы также используем их для трансформаторов, двигателей и реле.

    Как измерить индуктивность

    Мы измеряем индуктивность индуктора в единицах Генри, чем больше число; тем выше индуктивность.Чем выше индуктивность; Чем больше энергии мы можем хранить и обеспечивать, тем больше времени уходит на формирование магнитного поля и преодоление обратной ЭДС.

    Конструкция индуктора

    Вы не можете измерить индуктивность стандартным мультиметром, хотя вы можете получить некоторые модели со встроенной этой функцией, но она не даст наиболее точного результата, это может быть для вас нормально, зависит от того, что вы его используете для. Чтобы точно измерить индуктивность, нам нужно использовать измеритель RLC. Мы просто подключаем индуктивность к устройству, и он запускает быстрый тест для измерения значений.


    Почему у индуктора нет полярности?

    Почему у индуктора нет полярности? — Обмен электротехнического стека
    Сеть обмена стеком

    Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

    Посетить Stack Exchange
    1. 0
    2. +0
    3. Авторизоваться Зарегистрироваться

    Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.

    Зарегистрируйтесь, чтобы присоединиться к этому сообществу

    Кто угодно может задать вопрос

    Кто угодно может ответить

    Лучшие ответы голосуются и поднимаются наверх

    Спросил

    Просмотрено 2k раз

    \ $ \ begingroup \ $

    Допустим, у нас есть источник постоянного тока, подключенный к катушке индуктивности.Ориентация магнитного поля через индуктор зависит от того, в каком направлении была намотана катушка (правило правой руки). Но почему мы не заботимся о его полярности, когда используем в цепи индуктор? Я предполагаю, что мы действительно заботимся о полярности с точки зрения взаимной индуктивности, но как насчет того, чтобы в цепи использовалась только одна катушка индуктивности?

    Создан 03 сен.

    пользователь207787

    1311 серебряный знак88 бронзовых знаков

    \ $ \ endgroup \ $ 5 \ $ \ begingroup \ $

    Мы заботимся о полярности индуктора только тогда, когда важна полярность магнитного поля.

    Например, с электромагнитами или синфазными дросселями и измерительными трансформаторами.

    Оставить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *