Конденсатор переменной ёмкости: описание, устройство и схема
Что представляет собой такой элемент, как конденсатор? Это небольшой радиоэлемент со средоточенной электрической емкостью, образующейся двумя или же большим числом электродов. В некоторых случаях этот элемент еще называют обкладкой. Эти маленькие детали разделяются такой вещью, как диэлектрик (специальная бумага, тонкий слой слюды, керамики и т. д.). Емкость этой детали будет зависеть от таких показателей, как размер (площадь) обкладок, расстояние между этими элементами, а также от свойств самого диэлектрика.
Общая информация
Очень важный факт. Конденсатор имеет одно свойство, которое проявляется в цепи переменного тока. Для такого контура эта деталь будет являться сопротивлением, величина которого будет зависеть от частоты. Если частота увеличивается, то сопротивление будет уменьшаться, и наоборот.
Существуют основные единицы измерения, при помощи которых можно определить принадлежность того или иного конденсатора. К ним относят Фарад, микроФарад и т. д. Обозначение на элементах этих единиц, соответственно, такое: Ф, мкФ.
Элементы с переменной емкостью
Конденсатор переменной емкости имеет в своем составе такие части, как секции пластин из металлического материала. Одна из этих секций может осуществлять плавное движение по отношению ко второй. Во время этого движения происходит так, что пластины подвижной части, то есть ротора, чаще всего вводятся в зазоры, имеющиеся между пластинами неподвижной части — статора. Благодаря этому движению происходит следующее. Площадь перекрытия одних пластин другими изменяется, в результате чего изменяется и емкость переменного конденсатора.
Диэлектриком в таких элементах чаще всего выступает воздух. Хотя стоит отметить, что, если говорить об аппаратуре с малыми габаритами, допустим, о транзисторных карманных приемниках, то в них чаще используются конденсаторы переменной емкости с твердым диэлектриком. В качестве этого элемента там используется износостойкое и высокочастотное сырье. Чаще всего это фторопласт или полиэтилен.
Параметры КПЕ
Основным параметром для таких деталей, который поможет определить возможность работы устройства в колебательном контуре, стала минимальная и максимальная емкость. Данный показатель чаще всего указывается рядом с самим конденсатором переменной емкости на схеме устройства.
Стоит отметить, что в таких устройствах, как радиоприемники и радиопередатчики, используется сразу несколько колебательных контуров. Для того чтобы настроить работу сразу нескольких частей, используют блоки конденсаторов. Один блок чаще всего состоит из двух, трех или более секций КПЕ.
Роторная часть для таких блоков обычно крепится на один общий вал для всех конденсаторов переменной емкости. Это делается для удобства, так как при вращении всего одного ротора появляется возможность изменения емкости сразу всех устройств, находящихся в этой секции.
Схемы КПЕ
Важно отметить, что на схеме каждый конденсатор, который входит в блок, отображается отдельно. Для того чтобы указать, что емкость переменного конденсатора из этого блока и остальных элементов может быть изменена при помощи всего одной ручки, управляющей всем блоком, те стрелки, который обозначают регулирование, должны быть соединены одной штриховой линией механической связи.
Стоит отметить, что есть некоторые разновидности таких КПЕ. Один из видов — это дифференциальные конденсаторы, которые нашли свое применение, к примеру, в плечах емкостных мостов. Особенностью этого вида будет то, что он имеет два ряда статорных пластин и один ряд роторных. Расположение групп пластин таково: когда одна группа выходит из зазора, вторая тут же занимает их место. В этот момент емкость конденсатора переменного тока дифференциального типа будет уменьшаться между пластинами первой группы статора и группой ротора. А вот между второй группой пластин статора и группой ротора этот показатель будет расти. Таким образом, суммарное значение будет все время оставаться неизменным.
Подстроечные КПЕ
Еще один вид КПЕ — это подстроечные конденсаторы. Их используют для того, чтобы задать начальную емкость колебательного контура, которая будет определять максимальную частоту его настройки. Емкость конденсатора в цепи переменного тока этого типа может быть изменена от нескольких единиц пикоФарадов до нескольких десятков пикоФарадов. В некоторых случаях может быть достигнута и большая емкость.
К таким типам КПЕ предъявляется основное требование, которое заключается в возможности плавно изменять показатель емкости. Также этот конденсатор должен обеспечивать надежную фиксацию ротора в заданном положении.
Конструкция КПК
Наиболее распространенным типом подстроечного конденсатора является керамический. Конструкция этого устройства следующая. Основание детали — керамический статор, а также подвижное основание, закрепленное на нем в форме диска — ротор. Обкладками в данном элементе служат тонкие слои серебра. Наносятся они при помощи вжигания. Вжигание осуществляется на статор, а также на наружную стенку ротора.
Для того чтобы изменить или определить емкость переменного конденсатора этого типа, необходимо вращать ротор. Если говорить о наиболее простой аппаратуре, то в ней чаще всего используется проволочный подстроечный конденсатор. Состоит данная деталь из отрезка медной проволоки диаметром 1-2 мм. Длина же этого элемента 15-20 мм. На проволоку очень плотно, виток к витку, наматывается изолированный провод диаметром 0,2-0,3 мм. Для того чтобы изменить емкость в данном устройстве, необходимо отматывать провод. Чтобы в это время не сползла обмотка с него, необходимо пропитать ее любым изоляционным составом.
Емкость сопротивления конденсатора в цепи переменного тока
Здесь важно отметить, что ток в цепи, в которой имеется конденсатор, может протекать лишь при условии, что будет изменяться приложенное напряжение. Также нужно понимать, что сила тока, который будет циркулировать в цепи, во время разряда и заряда этого элемента будет тем больше, чем больше емкость самого конденсатора, а также будет зависеть от скорости, с которой происходят изменения электродвижущей силы (ЭДС).
Еще одно свойство. Конденсатор с переменной емкостью, который включен в цепь именно с переменным током, будет являться для этой цепи сопротивлением. Другими словами, величина именно емкостного сопротивления будет тем меньше, чем больше будет значение самой емкости и чем выше будет частота действующего тока. Однако это утверждение справедливо лишь для цепи, в которой ток переменный. Емкость конденсатора равна бесконечности, то есть его сопротивление будет бесконечно, если разместить такой элемент в цепи с постоянным током.
Основные параметры для КПЕ
Существует несколько основных параметров для такого рода конденсаторов.
Один из основных — это закон изменения емкости. Данный закон определяет характер изменения емкости. Изменение этого параметра будет происходить в зависимости от угла поворота или же от линейного перемещения подвижной части пластин конденсатора по отношению к их неподвижным частям.
Еще одно из свойств — это температурная стабильность. Данный показатель напрямую зависит от конструкции самого конденсатора. Чаще всего данный показатель является положительным, а для конденсаторов с воздухом в качестве диэлектрика показатель не превышает (200:300) 10-61/град. Если говорить о конденсаторах с твердым диэлектриком, то у них это значение превышает данный показатель.
Керамические конденсаторы (конденсаторы км) — состав, применение, цена за грамм
Керамические конденсаторы нашли свое применение в высокоточной технике, например, измерительных приборах, медицинском оборудовании. Незаменимы керамические радиодетали и для приборов, работающие в импульсном режиме. Основным отличием этого типа конденсаторов является хорошее сцепление между его обкладками и керамическим покрытием. Это явление обеспечивает низкую температурную нестабильность.
Емкость керамических радиодеталей может достигать значения в 2,2 мФ. Значения переменной емкости может колебаться в зависимости от температуры – 10-90 микрофарад. В данной статье будут рассмотрены все особенности этих устройств. В статье можно посмотреть полезное видео и скачать бонус – интересный материал на данную тему.
Керамический конденсатор.
Что такое керамические конденсаторы
Керамические конденсаторы являются естественным элементом практически любой электронной схемы. Они применяются там, где необходима способность работать с сигналами меняющейся полярности, необходимы хорошие частотные характеристики, малые потери, незначительные токи утечки, небольшие габаритные размеры и низкая стоимость.
Там же, где эти требования пересекаются, они практически незаменимы. Но проблемы, связанные с технологией их производства, отводили этому типу конденсаторов нишу устройств малой емкости. Действительно, керамический конденсатор на 10 мкФ еще недавно воспринимался как удивительная экзотика, и стоило такое чудо как горсть алюминиевых электролитических, таких же емкости и напряжения, либо как несколько аналогичных танталовых.
Однако, развитие технологий позволило к настоящему времени сразу нескольким фирмам заявить о достижении ими емкости керамических конденсаторов 100 мкФ и анонсировать начало производства приборов еще больших номиналов в конце этого года. А сопровождающее этот процесс непрерывное падение цен на все изделия данной группы заставляет внимательнее присмотреться ко вчерашней экзотике, чтобы не отстать от технического прогресса и сохранить конкурентоспособность.
Таким образом, увеличения емкости конденсатора можно добиться уменьшением толщины слоя в диэлектрика, увеличением числа электродов, их активной площади и увеличением диэлектрической проницаемости диэлектрика. Уменьшение толщины диэлектрика и связанная с этим возможность увеличения количества электродов ≈ основной способ увеличения емкости керамических конденсаторов. Но снижение толщины диэлектрика приводит с снижению напряжения пробоя, поэтому конденсаторы большой емкости на высокое рабочее напряжение встречаются редко. Увеличение числа слоя в диэлектрика, процесс технологически связанный с уменьшением толщины единичного слоя.
Увеличение активной площади одного электрода – это увеличение габаритных размеров конденсатора ≈ крайне неприятное явление, приводящее к резкому росту стоимости изделия. Увеличение диэлектрической проницаемости при заметном увеличении емкости приводит к существенному ухудшению температурной стабильности и сильной зависимости емкости от приложенного напряжения. Теперь рассмотрим возможности и особенности применения керамических конденсаторов большой емкости. Перед началом обсуждения стоит обратить внимание на уже имеющиеся предложения и ближайшие планы лидеров отрасли фирм Murata и Samsung Electro-Mechanics .
Материал в тему: все о переменном конденсаторе.
Естественной областью применения подобного спектра керамических конденсаторов большой емкости может быть замена ими танталовых и алюминиевых конденсаторов для поверхностного монтажа в схемах подавления пульсаций, разделения постоянной и переменной составляющих электрического сигнала, интегрирующих цепочках. Однако, при этом необходимо учитывать принципиальные различия между этими группами деталей, делающие, в большинстве случаев, бессмысленными замены вида электролитический конденсатор “номинал x напряжение” на керамический конденсатор аналогичного “номинала x напряжения”. Рассмотрим коротко основные причины этого.
Частотные свойства конденсаторов определяет зависимость их импеданса и эквивалентного последовательного сопротивления (ESR) от частоты.
Существенная разница в импедансе керамических конденсаторов на частотах выше 1 кГц с алюминиевыми электролитическими и свыше 10 Гц с танталовыми конденсаторами позволяет в некоторых случаях использовать для сглаживания пульсаций напряжения номиналы меньшей ╦мкости для получения аналогичного эффекта. Данные, характеризующие разницу в величине сглаживания паразитных синусоидальных пульсаций различных частот конденсаторами разного типа, но одинаковой емкости 10 мкФ.
Таким образом, для обеспечения одинакового с танталовым конденсатором в 10 мкФ уровня подавления пульсаций частотой 1 МГц можно использовать керамический конденсатор емкостью 1,0√2,2 мкФ. Экономия места на плате и денег очевидна. Низкое эквивалентное последовательное сопротивление и связанные с ним малые потери позволяют значительно сильнее нагружать керамические конденсаторы, нежели электролитические, не вызывая при этом критического для детали разогрева, несмотря на их значительно более скромные габаритные размеры.
Механизм и строение
Состав керамического BaTiO3 является совокупностью, составленной из микрокристаллов от 1 до 20 миллиметрового в диаметре. Этот микрокристалл называют частицей, и состоит из кристаллической структуры, которая показана на рис. 1 и 2. Частица разделена на много доменов при температуре ниже Точки Кюри. Кристаллические оси выровнены в одном направлении в пределах домена, таким образом, как и спонтанная поляризация. При нагревании до Точки Кюри и выше кристаллическая структура BaTiO3 изменяется от четырехугольной до кубической. Тогда, спонтанные поляризационные и доменные стены исчезают (пропадают).
Строение керамического конденсатора.
Когда BaTiO3 находится в охлажденном состоянии (ниже Точки Кюри), ее кристаллическая структура поворачивается от кубической до четырехугольной, отрезки примерно до 1 % вдоль оси C и вдоль других осей – сокращаются. Тогда появляются спонтанные поляризационные и доменные стены. В то же время от воздействия «из вне» частицы искажаются. В этой стадии генерируются много мелких доменных стен, и направление спонтанной поляризации в каждом домене легко полностью изменить, даже малыми (низкими) электрическими полями. Так как диэлектрическая постоянная – пропорциональна сумме инверсии спонтанной поляризации к единице объема, наблюдается большая емкость.
Когда конденсаторы хранятся (применяются) без нагрузки при температурах ниже Точки Кюри размер беспорядочно ориентированных доменов становится большим, и они (домены) постепенно сдвигаются к устойчивому энергетическому состоянию (Рис. 3, 90 доменов). Это также облегчает сбор остаточного напряжения при кристаллическом искажении.
Кроме того, перемещение пространственных зарядов (ионы с низкой подвижностью, свободные точки кристаллической решетки и т.д.) в пределах доменной стены приводит к поляризации пространственного заряда. Эта поляризация пространственного заряда неблагоприятно воздействует на спонтанную поляризацию, преграждая ее инверсию.
Переменный конденсатор — это.
.. Что такое Переменный конденсатор?
Двухсекционный переменный конденсатор с воздушным диэлектриком, широко применяющийся в радиоприёмниках. Одна из секций включается в контур входного фильтра, вторая — в контур гетеродина. Крайние пластины каждой секции имеют надрезы; отгибая края этих пластин, можно добиться точного согласования емкости обеих секций в любом положении.
Подстроечные конденсаторы с керамическим диэлектриком
Переменный конденсатор (конденсатор переменной ёмкости, КПЕ) — конденсатор, электрическая ёмкость которого может изменяться механическим способом, либо электрически, под действием изменения напряжения, либо при изменении температуры. Переменные конденсаторы обычно применяются в колебательных контурах для изменения их резонансной частоты — например, во входных цепях радиоприёмников, в усилительных каскадах и генераторах высокой частоты, антенных устройствах. Емкость переменных конденсаторов обычно изменяется в пределах от единиц до нескольких десятков или сотен пикофарад.
По назначению переменные конденсаторы подразделяются на предназначенные для частой перестройки в процессе эксплуатации (например, для настройки приемника или передатчика), и подстроечные (триммеры, в советской литературе до 1950-х гг. назывались также полупеременными), которые регулируются относительно редко, только при наладке аппаратуры. Подстроечные конденсаторы проще по устройству (в них нет необходимости применять качественные подшипники и т. п.) и обычно имеют более узкий диапазон изменения емкости.
Очень распространены блоки КПЕ, состоящие из двух, трех и более секций с одинаковым или разным диапазоном емкостей, установленных на одном валу. Они применяются, когда нужно обеспечить согласованную перестройку нескольких контуров, например, входного фильтра, фильтра промежуточной частоты и гетеродина в радиоприемнике. Нередко в такой блок встраиваются и несколько подстроечных конденсаторов для точной подгонки емкостей отдельных секций.
- Механические КПЕ
- с воздушным диэлектриком
- с твёрдым диэлектриком
- вакуумные
- Электрические КПЕ
См.
также
Литература
- Справочник по электрическим конденсаторам / М. Н. Дьяконов, В. И. Карабанов, В. И. Присняков и др.; Под общ. ред. И. И. Четверткова и В. Ф. Смирнова. — М.: Радио и связь, 1983
- В. А. Ломанович. Справочник по радиодеталям (сопротивления и конденсаторы) — М.:Издательство ДОСААФ, 1966
Конденсатор (электронный элемент) — это… Что такое Конденсатор (электронный элемент)?
Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик
Слева — конденсаторы для поверхностного монтажа; справа — конденсаторы для объёмного монтажа; сверху — керамические; снизу — электролитические.
Различные конденсаторы для объёмного монтажа
Конденса́тор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых

История
В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку».
Свойства конденсатора
Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.
В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом
,
где — мнимая единица, — частота[1] протекающего синусоидального тока, — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).
При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь .
Резонансная частота конденсатора равна
При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.
Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:
где — напряжение (разность потенциалов), до которого заряжен конденсатор.
Обозначение конденсаторов на схемах
В России условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74
Обозначение по ГОСТ 2.728-74 |
Описание |
---|---|
Конденсатор постоянной ёмкости | |
Поляризованный конденсатор | |
Подстроечный конденсатор переменной ёмкости |
На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 106 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 – 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.
Характеристики конденсаторов
Основные параметры
Ёмкость
Основной характеристикой конденсатора является его ёмкость. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = C
Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда много меньше линейных размеров пластин).
Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково.
или
Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.
При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна
или
Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.
Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.
Удельная ёмкость
Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
Номинальное напряжение
Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.
Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.
Полярность
Конденсаторы, разрушившиеся без взрыва из-за температуры и напряжения, не соответствующих рабочим.
Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.
Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает без взрыва и осколков.
Паразитные параметры
Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:
Электрическое сопротивление изоляции конденсатора — r
Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / Iут , где U — напряжение, приложенное к конденсатору, Iут — ток утечки.
Эквивалентное последовательное сопротивление — R
Эквивалентное последовательное сопротивление (ЭПС, англ. ESR) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.
В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см. , напр., Capacitor plague(англ.)).
Эквивалентная последовательная индуктивность — L
Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.
Тангенс угла потерь
Тангенс угла потерь — отношение мнимой и вещественной части комплексной диэлектрической проницаемости.
Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол , где — угол диэлектрических потерь. При отсутствии потерь . Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная , называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.
Температурный коэффициент ёмкости (ТКЕ)
ТКЕ — относительное изменению емкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом значение ёмкости от температуры представляется линейной формулой:
- ,
где ΔT — увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость емкости от температуры, и конденсаторы с большими уходами емкости от воздействия температуры окружающей среды в обозначении имеют указание на относительное изменение емкости в рабочем диапазоне температур.
Диэлектрическое поглощение
Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием химических реакций между электролитом и обкладками. Наименьшим диэлектрическим поглощением обладают конденсаторы с органическими диэлектриками: тефлон (фторопласт), полистирол, полиэтилентерефталат, поликарбонат.
Классификация конденсаторов
Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.
По виду диэлектрика различают:
- Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
- Конденсаторы с газообразным диэлектриком.
- Конденсаторы с жидким диэлектриком.
- Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
- Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
- Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спеченного порошка.
Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:
- Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
- Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.
- Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.
В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.
Применение конденсаторов
Конденсаторы находят применение практически во всех областях электротехники.
- Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
- Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.
- ИП влажности воздуха (изменение состава диэлектрика приводит к изменению емкости)
- ИП влажности древесины
- В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит.
В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.
Внешние ссылки
Смотри также
Ссылки
- ↑ Частота в радианах в секунду.
- ↑ ГОСТ 2.728-74 (2002)
РАДИО ВСЕМ, №12, 1926 год. Расчет емкости конденсаторов
РАДИО ВСЕМ, №12, 1926 год. Расчет емкости конденсаторов«Радио Всем», №12, декабрь 1926 год, стр. 20-21
Расчет емкости конденсаторов
М. А. Нюренберг.
Почти во всех случаях радиолюбительской практики приходится иметь дело с конденсаторами — постоянной и переменной емкости и их расчету мы посвящаем эту статью.
Конденсатор постоянной емкости.
Простейший конденсатор постоянной емкости (черт. 1) представляет собой две металлические обкладки, разделенные друг от друга каким-либо диэлектриком (воздухом, слюдой и пр. ). Емкость такого конденсатора зависит от площади металлической обкладки; расстояния между обкладками (толщины диэлектрика) и свойств того диэлектрика, который применен в конденсаторе. Чем больше площадь обкладок, чем ближе расположены обкладки друг к другу, тем больше емкость конденсатора. Свойства диэлектрика определяются величиной, носящей название «диэлектрической постоянной», которая различна для разных диэлектриков. Чем больше диэлектрическая постоянная диэлектрика, тем больше емкость конденсатора.
Черт. 1.
Емкость такого конденсатора определяется формулой:
где C — емкость конденсатора в см.
S — плошадь одной обкладки в кв. см.
d — расстояние между обкладками в см.
ε — диэлектрическая постоянная (величины ε для различных диэлектриков приводятся ниже в таблице):
Диэлектрик | ε = | Диэлектрик | ε = |
Пустота…… | 1 | Бумага (сухая).. | 1,8—2,6 |
Воздух…… | 1,0006 | Каучук…… | 2,0—3,5 |
Керосин…… | 2 | Парафин…… | 1,8—2,3 |
Эбонит…… | 2—3 | Сера…… | 3,6—4,8 |
Маслян. бумага.. | 2 | Целлюлоид…… | 4 |
Шеллак…… | 3,0—3,8 | Сургуч…… | 4 |
Стекло…… | 5—10 | Вода (химич. чистая)…… |
81 |
Слюда…… | 5—8 |
Конденсаторы, состоящие из двух обкладок, имеют очень незначительную емкость и потому применяются очень редко — в специальных схемах для коротких волн. Обычно применяются конденсаторы, состоящие из нескольких обкладок, емкость которых может быть очень велика (черт.2).
Черт. 2.
Емкость таких конденсаторов зависит, кроме всего указанного ранее (для случая конденсатора с двумя обкладками), также от числа обкладок. Прибавляя к описанному ранее конденсатору одну, две, три и т. д. обкладок, мы будем увеличивать емкость конденсатора в 2, 3, 4 и т. д. раза.
Подсчитать емкость плоского конденсатора можно по номограмме черт. 3. В этой номограмме: dmm — толщина диэлектрика в мм. Fсм2 — площадь одной обкладки в кв. см., Cсм — емкость в см., n — общее число обкладок. Диэлектрическая постоянная ε — принята равной единице (воздух), Z — вспомогательная прямая. Способ пользования этой номограммой тот же, что номограммой для расчета самоиндукций (см. № 8 «Радио Всем»1) и мы на его описании останавливаться не будем. Последовательность соединения точек следующая: F — n — Z — d — C.
Черт. 2.
(увеличенное изображение)
В таблице II приведены значения емкости конденсатора в зависимости от числа обкладок и толщины диэлектрика при площади обкладки равной 1 кв. сантиметру. Для расчета емкости следует величину, взятую из таблицы, умножить на площадь обкладки в кв. см., например: нужно определить емкость конденсатора: число обкладок 5, толщина слюды 0,01 см., площадь каждой обкладки = 16 кв. см. По таблице находим, что емкость при площади, равной 1 кв. см. будет равна 191 см. Следовательно, полная емкость будет равна:
С = 191 × 16 = 3056 см.d (см.) | Число пластин | |||||||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
0,005 | 31,9 | 63,8 | 95,7 | 127 | 159 | 191 | 223 | 255 | 287 | 319 | 351 | Пара- фин ε = 2. |
0,01 | 15,9 | 31,9 | 47,8 | 63,7 | 79,6 | 95,5 | 111 | 127 | 143 | 159 | 175 | |
0,03 | 5,3 | 10,6 | 15,9 | 21,2 | 26,5 | 31,9 | 37,2 | 42,5 | 47,8 | 53,2 | 58,5 | |
0,05 | 3,2 | 6,4 | 9,5 | 12,7 | 15,9 | 19,1 | 22,3 | 25,5 | 28,7 | 31,9 | 35,1 | |
0,08 | 1,99 | 3,98 | 5,96 | 7,95 | 9,95 | 11,9 | 13,9 | 15,9 | 17,9 | 19,9 | 21,8 | |
0,1 | 1,59 | 3,19 | 4,78 | 6,37 | 7,96 | 9,55 | 11,1 | 12,7 | 14,3 | 15,9 | 17,5 | |
0,005 | 95,6 | 191 | 287 | 381 | 477 | 572 | 669 | 765 | 860 | 956 | 1050 | Слюда ε = 6. |
0,01 | 47,7 | 95,6 | 143 | 191 | 239 | 286 | 333 | 381 | 428 | 476 | 524 | |
0,03 | 15,9 | 31,8 | 47,7 | 63,5 | 79,4 | 95,5 | 111 | 127 | 143 | 159 | 175 | |
0,05 | 9,6 | 19,2 | 28,7 | 38,1 | 47,7 | 57,2 | 66,9 | 76,5 | 86,0 | 95,6 | 105 | |
0,08 | 5,9 | 11,9 | 17,9 | 23,9 | 29,9 | 35,7 | 41,7 | 47,7 | 53,7 | 59,7 | 65,4 | |
0,1 | 4,7 | 9,5 | 14,3 | 19,1 | 23,9 | 28,6 | 33,3 | 38,1 | 42,8 | 47,6 | 52,4 |
Формула для расчета емкости конденсатора, состоящего из нескольких обкладок, имеет следующий вид:
C = ε·S (n — 1) 12,5d Все обозначенные те же, что и в ранее приведенной формуле.
n — общее число обкладок (положительных и отрицательных).
Конденсатор переменной емкости.
Расчет конденсатора переменной емкости заключается в подсчете его максимальной емкости (при вдвинутых подвижных пластинах) и ничем не отличается от расчета плоского постоянного конденсатора. Начальная емкость (при выдвинутых подвижных пластинах) подсчету не поддается и обычно определяется экспериментальным путем.
Черт. 4.
При расчете конденсатора переменной емкости следует за площадь пластины принимать лишь ту площадь, которая взаимно перекрывается пластинами (подвижной и неподвижной). На черт. 4 эта площадь заштрихована.
Формула для расчета емкости переменного конденсатора, пластины которого имеют полукруглую форму, следующая:
C = ε (r12 — r22) (n — 1) 8d где r1 — радиус подвижной пластины в см.
r2 — внутренний радиус неподвижной пластины в см. (см. черт. 4).Остальные обозначения те же, что в ранее приведенных формулах.
Расчет емкости квадратичного конденсатора описан в № 11 «Радио Всем», где также описаны графики емкости конденсаторов, почему на этом вопросе мы останавливаться не будем.
Соединение конденсаторов.
При параллельном соединении нескольких конденсаторов (черт. 5) емкость всей группы будет равна сумме емкостей отдельных конденсаторов, т. е.
C = C1 + C2 + C3 +…Черт. 5.
При последовательном соединении нескольких конденсаторов (черт.6) общая емкость группы будет меньше емкости любого из включенных в группу конденсаторов. Для двух последовательно включенных конденсаторов общую емкость легко подсчитать по номограмме черт. 7, где C1 и C2 — емкости отдельных конденсаторов, а C — общая емкость этих конденсаторов, включенных последовательно. Простым соединением помощью линейки C1 и C2 определяется в точке пересечения общая емкость C. Очевидно, что, пользуясь этой номограммой, можно определить емкость нескольких, последовательно включенных конденсаторов. Для этого последовательно определяются значения C при двух конденсаторах C1 и C2; полученное значение C для двух конденсаторов соединяется с третьим конденсатором C3 и т. д.
Черт. 6.
Формула для последовательно соединенных конденсаторов имеет вид:
1 = 1 + 1 + 1 + … C C1 C2 C3 где C — общая емкость группы
C1, C2, C3 … — емкости отдельных конденсаторов.Дпя двух конденсаторов формула имеет вид:
Черт. 7.
(увеличенное изображение)
Этой статьей мы заканчиваем первый цикл статей, посвященных расчетам деталей и в следующих номерах журнала перейдем к расчетам антенн и приемников.
1) Пример работы с номограммой приведен не в №8, а в №7 «Радио Всем» за 1926 год. (примечание составителя).
Самодельные КПЕ из фольгированного стеклотекстолита
Переменные конденсаторы, они же конденсаторы переменное емкости или КПЕ, используется во множестве устройств. Они нужны в генераторах, антенных тюнерах, некоторых видах антенн, и много где еще. Обратим внимание на тот факт, что в любительской радиосвязи, к примеру, трансивер может с легкостью выдавать 25 Вт или 100 Вт, максимально же разрешенная мощность составляет 1000 Вт. Понятно, что общедоступные маленькие КПЕ тут совершенно не годятся, а нужных для таких мощностей КПЕ в магазине вы попросту не найдете.
Подходящие большие КПЕ из старой радиоаппаратуры можно приобрести на Авито и досках объявлений радиолюбителей. Но цены там зачастую не низкие, к конденсаторам редко указывается их емкость, не представляется возможным найти два или более одинаковых конденсатора, плюс есть риски и неудобства, сопряженные с покупкой с рук. А между тем, изготовить переменный конденсатор в домашних условиях не так уж и трудно.
Идею я подсмотрел в статье Build Your Own Transmitting Air Variable Capacitors 2003-го года за авторством David Hammack, N4DFP. В своей статье Дэвид использует медные листы, которых у меня не оказалось. Но я прикинул, что с тем же успехом подойдет и медь на одностороннем фольгированном текстолите, которого у меня как раз в избытке. Почему бы не попробовать?
Сразу покажу, что у меня в итоге получилось. Вид спереди:
Вид сзади:
Конденсатор имеет пять прямоугольных пластин размером 20x50x1 мм, зафиксированных двумя длинными болтами M3. Пластины разделены гайками. Еще четыре пластины в форме полукруга с радиусом 25 мм крепятся на одном болте M3. Этот болт можно вращать при помощи ручки от потенциометра, которую я приклеил к болту при помощи эпоксидного клея. Все это хозяйство держится на каркасе из двух прямоугольных кусков листового пластика размером 30x50 мм. Для соединения с подвижными пластинами я использовал толстый медный провод, изогнутый в форме петли. Провод плотно прилегает к вращающемуся болту и закреплен на каркасе конденсатора с помощью термоклея. Капля припоя, которую можно видеть на втором фото, служит для ограничения углов поворота ручки. Понятно, что все работало бы и без нее. Но мне хотелось, чтобы ручка имела какие-то крайние полажения, а не просто крутилась во все стороны.
Fun fact! Текстолит толщиной 1 мм можно резать обычными ножницами для бумаги. А стоящая у меня на столе катушка припоя очень удачно оказалась диаметром именно 25 мм — по ней и обводил.
Емкость такой поделки меняется от 13 до 53 пФ. Увеличивая площадь пластин или их количество, можно получить хоть 1000 пФ. Не думаю, что кому-то могут понадобится подстроечные конденсаторы большей емкости. Но такой конденсатор будет не очень удобен, как из-за больших размеров, так и того факта, что небольшой поворот ручки будет приводить к сильному изменению емкости.
Возможное решение заключается в том, чтобы использовать описанный выше конденсатор только для точной подстройки, а для грубой подстройки использовать конденсаторы фиксированной емкости. Последние можно соединять параллельно при помощи переключения тумблеров с двумя контактными группами.
Пример самодельного конденсатора фиксированной емкости:
Конденсатор состоит из шести пластин 25x50 мм. Пластины были склеены при помощи эпоксидного клея. Все четные пластины соединены между собой, и аналогично соединены все нечетные. Емкость конденсатора составляет 270 пФ. Практическая ценность таких конденсаторов, по-видимому, не очень высока, поскольку высоковольтные керамические конденсаторы фиксированной емкости легко доступны и стоят недорого. Тем не менее, давайте рассмотрим и их тоже, на случай, если когда-нибудь понадобится работать с очень высокими напряжениями.
Fun fact! Альтернативный способ изготовления конденсатора фиксированной емкости заключается в том, чтобы просто взять кусок коаксиального кабеля. Типичный кабель RG58 обладает погонной емкостью около 100 пФ на один метр.
Зависимость емкости конденсатора от числа пластин выглядит следующим образом:
2 пластины (1 слой диэлектрика) — 52 пФ
4 пластины (3 слоя диэлектрика) — 165 пФ
6 пластин (5 слоев диэлектрика) — 270 пФ
Можно заметить, что емкость растет пропорционально количеству слоев диэлектрика с точностью до ошибки измерения, что соответствует теории. Используя первую строчку, ради интереса можно посчитать диэлектрическую проницаемость используемого текстолита:
>>> # Формула: C = E * E0 * S / d
>>> E0 = 8.854187817 * (10**-12) # электрическая постоянная
>>> d = 1 / 1000 # расстояние между пластинами — 1 мм
>>> C = 52 / 1000 / 1000 / 1000 / 1000 # емкость — 52 пФ
>>> S = (25 / 1000) * (50/1000) # площадь — 25 x 50 мм
>>> E = (C*d) / (S*E0) # диэлектрическая проницаемость среды
>>> E
4.698341718043092
Это сходится с ожидаемым значением от 4.4 до 4.7.
На StackExchange подсказывают, что чтобы пробить подобные конденсаторы, нужно по крайней мере 3 кВ на 1 мм расстояния между пластинами — это в предположении, что ток пойдет по воздуху. Для надежности, рекомендуется использовать в качестве максимального напряжения половину от этого значения. Напряжение пробоя можно увеличить, увеличивая расстояние между пластинами. Но, как видно из приведенной выше формулы, в этом случае пострадает емкость, и придется увеличивать площадь и/или количество пластин. Более практичное решение заключается в том, чтобы вытравить 3 мм меди по границе пластин. Тогда напряжение пробоя составит порядка 20 кВ — напряжение пробоя 1 мм текстолита или 7 мм воздуха.
Каково будет максимальное напряжение на конденсаторе зависит от цепи, в которой планируется его использовать. Это нужно каждый раз моделировать или считать. Но чтобы оно превысило безопасные 10-15 кВ, придется постараться. В этом случае всегда можно просто увеличить расстояние между пластинами и использовать более толстый текстолит.
Fun fact! Само собой разумеется, ничто не мешает делегировать изготовление компонентов конденсатора вашему любимому производителю печатных плат.
Как видите, все оказалось достаточно просто. Очевидные плюсы самодельных КПЕ — низкая стоимость и доступность. Можно сделать сколько угодно ровно таких конденсаторов, каких нужно. Что же до времени, которое потребуется на изготовление конденсатора, я думаю, оно сопоставимо со временем, которое вы потратите на поиск готового, а также на переговоры с его продавцом.
Дополнение: Листовой алюминий, вероятно, будет более подходящим материалом для самодельных КПЕ, чем стеклотектолит.
Метки: Электроника.
Что такое переменный конденсатор?
Рефераты
Переменный конденсатор — это конденсатор, емкость которого можно регулировать в определенном диапазоне. Когда относительная эффективная площадь между металлической пластиной полюса или расстояние между пластинами изменяется, ее емкость соответственно изменяется. Обычно он используется в качестве настраивающего конденсатора в радиоприемной цепи. Его два основных типа — конденсатор с переменным диэлектриком с воздушным диэлектриком и конденсатор с переменным твердым диэлектриком.Он широко используется в настройке и усилении, частотно-селективных колебаниях и других схемах.
Краткое объяснение переменных конденсаторов
Каталог
I Переменный конденсатор Введение
Конденсаторы, емкость которых можно регулировать в определенном диапазоне, называются конденсаторами переменной емкости .
Переменный конденсатор обычно состоит из двух наборов полюсных пластин, изолированных друг от друга: фиксированный набор полюсных пластин называется статором , а подвижный набор полюсных пластин называется ротором .Роторы нескольких переменных конденсаторов могут быть объединены на одном валу для образования коаксиального переменного конденсатора (обычно известного как двойной, тройной и т. Д.). Переменные конденсаторы имеют длинную ручку, которую можно регулировать, потянув за провода или циферблаты. Форма следующая:
Рисунок 1. конденсатор переменной емкости
II Идентификация конденсатора
Емкость конденсатора обозначена на корпусе конденсатора числом или комбинацией буквенно-цифровых кодов, а иногда и обозначена лентой.На этикетке конденсатора указаны различные параметры конденсатора, включая значение емкости , номинальное напряжение и допуск .
Некоторые конденсаторы не имеют единицы измерения емкости. В этих случаях их единицы рассчитываются по умолчанию на основе данных значений и определяются эмпирически. В некоторых случаях используется трехзначное обозначение. Первые две цифры — это первые две цифры значения емкости, а третья цифра — множитель или количество Os после второй цифры.Например, 103 означает 10000 пФ.
Некоторые типы конденсаторов используют WV или WVDC для обозначения номинального напряжения, а другие типы конденсаторов опускаются. Если не указано иное, номинальное напряжение можно определить на основе информации, предоставленной производителем. Допуски конденсаторов обычно выражаются в нескольких процентах, например ± 10%. Температурный коэффициент выражается в частях на миллион (ppm). Этот тип знака состоит из P или N и следующих цифр. Например, N750 означает отрицательный температурный коэффициент 750 ppm / ° C, а P30 означает положительный температурный коэффициент 30 ppm / ° C.Знак NPO указывает, что и положительный температурный коэффициент, и отрицательный температурный коэффициент равны 0, так что емкость не изменяется с температурой. Также определенные типы конденсаторов отмечены цветными лентами.
На приведенном ниже рисунке показаны обозначения схем для конденсатора постоянной и переменной емкости.
Рисунок 2. условные обозначения конденсаторов постоянной и переменной емкости
(а) показывает графический символ, представляющий конденсатор постоянной емкости в цепи.Обычно используются оба типа. В некоторых типах конденсаторов левая кривая на рисунке обычно представляет внешнюю пластину (то есть конец рядом с внешним корпусом). Этот конец обычно обозначается цветной полосой рядом с проводом, соединенным с пластиной.
(b) показывает символ переменного конденсатора. Они добавляют стрелку через пластину к конденсатору постоянной емкости. Небольшие подстроечные конденсаторы обычно обозначаются символом справа. Стрелками указаны переменные тарелки.
III Классификация переменных конденсаторов
Переменные конденсаторы можно разделить на конденсаторы с воздушной диэлектрической проницаемостью и переменные конденсаторы с твердым диэлектриком в зависимости от используемых диэлектрических материалов.
1. Конденсатор переменной емкости с воздушным диэлектриком
Электрод воздушного диэлектрического переменного конденсатора состоит из двух комплектов металлических листов. Неподвижная из двух групп электродов — статор, а вращающаяся — ротор. Воздух используется как среда между подвижной и неподвижной пластинами.
Когда подвижная пластина переменного конденсатора с воздушным диэлектриком вращается так, что все подвижные пластины ввинчиваются в неподвижную пластину, емкость становится наибольшей; в противном случае, когда подвижная пластина полностью вывернута из неподвижной пластины, емкость будет наименьшей.
Воздушные средние переменные конденсаторы подразделяются на воздушные одинарные переменные конденсаторы и воздушные двойные переменные конденсаторы. Конденсаторы с переменной диэлектрической проницаемостью и воздушным диэлектриком обычно используются в радиоприемниках, электронных приборах, генераторах высокочастотных сигналов, оборудовании связи и сопутствующем электронном оборудовании.
Рисунок 3. (а) воздушные односвязные переменные конденсаторы (б) воздушные двойные переменные конденсаторы
2. Конденсатор переменной емкости с твердым диэлектриком
Твердый диэлектрический переменный конденсатор представляет собой лист слюды или пластиковую пленку (полистирол и другие материалы) в качестве среды между подвижной пластиной и неподвижной пластиной (подвижная деталь и неподвижная деталь представляют собой неправильные полукруглые металлические пластины. ).Оболочка — прозрачный пластик. Его преимущества — небольшие размеры и легкий вес; его недостатки — большой шум и удобство ношения.
Рисунок 4. лист слюды
Переменные конденсаторы с твердым диэлектриком подразделяются на герметичные переменные конденсаторы с одинарным подключением, герметичные переменные конденсаторы с двойным подключением (у него есть два набора ротора, статора и диэлектрика, которые могут вращаться коаксиально и синхронно) и герметичный конденсатор с четырьмя подключениями переменного тока ( он имеет четыре набора ротора, статора и диэлектрика).
Герметичные односвязные переменные конденсаторы в основном используются в простых радиоприемниках или электронных приборах; герметичные переменные конденсаторы с двойным соединением используются в транзисторных радиоприемниках и связанных с ними электронных приборах и электронном оборудовании; герметичные конденсаторы переменной емкости с четырьмя подключениями обычно используются в многодиапазонных радиоприемниках AM / FM.
IV Устройство и принцип работы конденсаторов переменной емкости
1. Структура конденсатора переменной емкости
Независимо от типа переменного конденсатора его электроды состоят из двух наборов металлических листов, изолированных друг от друга.Ниже мы используем самый ранний конденсатор переменного тока с воздушным диэлектриком (разновидность конденсатора переменного тока), чтобы проиллюстрировать его структуру и принцип работы: Как показано на рисунке, неподвижная одна из двух групп электродов представляет собой статор. Группа, которая может вращаться, представляет собой ротор, а воздух используется в качестве среды между подвижной пластиной и неподвижной пластиной. Когда подвижная пластина переменного конденсатора с воздушным диэлектриком вращается так, что все подвижные части ввинчиваются в неподвижную пластину, емкость является наибольшей; в противном случае, когда подвижная деталь полностью вывернута из неподвижной пластины, емкость будет наименьшей.
Рисунок 5. Конденсатор воздушный
В практических приложениях подвижные пластины нескольких переменных конденсаторов могут быть установлены на одном вращающемся валу для образования коаксиального переменного конденсатора. Конденсаторы переменной емкости имеют длинную ручку, которую можно регулировать с помощью троса или шкалы. Следовательно, переменный конденсатор воздушной среды делится на воздушный конденсатор переменного тока с одинарным подключением и переменный конденсатор с двойным подключением воздуха.
2.Что делает переменный конденсатор?
Основная роль переменного конденсатора — изменять и регулировать резонансную частоту контура. Он широко используется в настройке и усилении, частотно-селективных колебаниях и других схемах.
(1) Резонансный контур
Рисунок 6. Резонансная цепь
Как показано на рисунке, резонансный контур LC может изменять резонансную частоту, изменяя емкость переменного конденсатора C.Резонансная частота обратно пропорциональна квадрату емкости, и формула имеет следующий вид:
(2) Колебания выбранной частоты
Конденсатор должен быть подключен к генератору, чтобы частоту колебаний можно было плавно регулировать в определенном диапазоне. В схеме хорошего генератора высокочастотного сигнала отрегулируйте односвязный переменный конденсатор C, и частоту выходного сигнала можно изменить по мере необходимости.
Рисунок7. Выбранная частота колебаний
(3) Тюнинг
Часто используется в контуре настройки радио, чтобы сыграть роль при выборе радиостанции. Как показано на рисунке ниже, эта схема представляет собой схему каскада супергетеродинного преобразования радиочастоты. Один из конденсаторов C1a в двойном переменном конденсаторе C1 вмешивается в выходной контур антенны, а другой C1b подключается к гетеродину.Регулировка емкости двух линий C1 может изменить частоту синхронизации приема. C2 и C3 — это подстроечные конденсаторы, которые используются для частотной калибровки входной цепи антенны и цепи гетеродина.
Рисунок 8. Тюнинг
В Подстроечные конденсаторы
Подстроечный конденсатор — это разновидность переменного конденсатора, также называемого полупеременным конденсатором . Он играет роль микронастройки.Он часто используется для точной регулировки емкости, и больше не требуется изменять емкость во время использования. В схеме наиболее важным требованием к подстроечным конденсаторам является поддержание надежности заданной емкости.
Существует много типов подстроечных конденсаторов. В зависимости от диэлектрического материала его можно разделить на воздушных, подстроечных конденсаторов, подстроечных конденсатора с фарфоровой подрезкой, подстроечных конденсатора, подстроечных конденсаторов с органической пленкой и подстроечных конденсаторов слюдяных .Его часто используют в качестве компенсационного или корректирующего конденсатора в различных схемах настройки и колебаний. Емкость можно регулировать в небольшом диапазоне, а конденсатор, который может быть установлен на определенное значение емкости после регулировки, называется подстроечным конденсатором, также называемым полуборочным конденсатором. Когда вы настраиваете подстроечный конденсатор, вы должны изменить расстояние или площадь между двумя пластинами.
Подстроечный конденсатор состоит из двух или двух наборов небольших металлических пластин с диэлектриком, зажатым между ними.На фотографии показана форма переменного конденсатора. Полупеременные конденсаторы обычно не имеют ручек и могут регулироваться только отверткой, поэтому их часто используют в местах, где частая регулировка не требуется. Полупеременные конденсаторы используются в качестве компенсационных или корректирующих конденсаторов в различных схемах настройки и колебаний.
Рисунок 9. Форма конденсатора полупеременной
Подстроечные конденсаторыможно разделить на керамических подстроечных конденсатора и подстроечных конденсаторов с органической пленкой сек.Керамические подстроечные конденсаторы состоят из двух пластин из серебряного фарфора. Нижняя пластина представляет собой неподвижную пластину, а верхняя пластина — подвижная пластина. Подвижная пластина может вращаться вместе с валом. Поскольку площадь, покрытая серебром на двух пластинах, меньше полукруга, емкость можно изменить при вращении вала. Органические тонкопленочные подстроечные конденсаторы используют полиэфирную пленку в качестве среды, а однослойные или многослойные люминофорные медные листы в качестве неподвижных и подвижных пластин. Объем меньше, чем у подстроечных конденсаторов на основе фарфора.
VI Как проверить конденсатор переменной емкости?
Емкость переменного конденсатора, как правило, очень мала и не может быть измерена с помощью мультиметра, но можно судить, есть ли утечка в микросхеме или между подвижной и неподвижной пластинами, как показано на рисунке ниже.
Рисунок 10. Испытание переменного конденсатора
Расстояние между подвижной пластиной и неподвижной пластиной переменного конденсатора очень мало, и его легко закоротить, прикоснувшись к пластине.Прикосновение переменного конденсатора к микросхеме может быть определено электрическим блоком мультиметра.
Во время теста вы должны поместить два измерительных провода мультиметра на ротор и статор конденсатора и медленно вращать вал конденсатора вперед и назад. Если стрелка счетчика всегда неподвижна, это означает, что неровности нет. Если при повороте на угол стрелка указывает на ноль Ом, это означает, что пластины здесь соприкасаются. После того, как конденсатор ударяется об пластину, сначала проверьте, одинаково ли расстояние между подвижной пластиной и неподвижной пластиной.Если обнаруживается, что отдельные подвижные или неподвижные пластины перекошены или деформированы, это обычно вызвано воздействием внешних факторов, если они выпрямляются с помощью тонкого лезвия. Если обнаруживается, что один или два набора фиксированных пластин конденсатора все изогнуты или отклонены в одну сторону, это может быть вызвано ослаблением резиновой платы фиксированного кронштейна платы или распайкой припоя на опоре на обоих концах фиксированной пластины. .
Электростатический шум — это серия «дребезжащих» шумов, которые появляются в динамиках радиоприемника, когда вал переменного конденсатора вращается во время настройки радиостанции.Если соединительный провод фиксированной детали припаян и короткого замыкания не обнаружено, мы говорим, что это электростатический шум, вызванный электростатическим эффектом. Когда органический герметичный переменный конденсатор генерирует электростатический шум, вы можете подключить два контакта ротора и статора конденсатора к источнику питания 12 В постоянного тока, а затем несколько раз повернуть ротор, чтобы устранить электростатический шум конденсатора.
Артикул Рекомендуемый:
Введение в танталовые конденсаторы
Лучшая цена переменного конденсатора — Отличные предложения на переменный конденсатор от глобальных продавцов переменного конденсатора
Отличные новости !!! В поисках конденсатора переменной емкости вы обратились по адресу.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший конденсатор переменной емкости вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели конденсатор переменной емкости на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в переменном конденсаторе и думаете о выборе аналогичного продукта, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести конденсатор переменной емкости по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.
Купить конденсатор переменного тока онлайн — Купить конденсатор переменного тока со скидкой на AliExpress
Отличные новости !!! Вы попали в нужное место для конденсаторной переменной.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта переменная верхнего конденсатора в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что купили переменную емкость конденсатора на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в переменной емкости конденсатора и думаете о выборе аналогичного продукта, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, мы думаем, вы сможете приобрести конденсатор переменного тока по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.
Что такое переменный конденсатор? (с изображениями)
Конденсатор переменной емкости — это особый тип конденсатора, который чаще всего используется для настройки радиоприемников, который позволяет изменять количество электрического заряда, которое он может удерживать, в определенном диапазоне, измеряемом в единицах, известных как фарады.Обычные конденсаторы накапливают и накапливают электрический заряд, пока не будут готовы к использованию. В то время как переменный конденсатор сохраняет заряд таким же образом, его можно регулировать столько раз, сколько нужно, чтобы сохранять разное количество электричества. Поскольку наиболее часто переменный конденсатор используется в настраивающих механизмах радиоприемников и старых телевизоров, его часто называют настраивающим конденсатором или регулируемым конденсатором.
Емкость — это количество энергии, которое может хранить конденсатор.При изменении переменного конденсатора пользователь фактически изменяет его емкость. Емкость означает количество энергии, которое может хранить конденсатор. Чем больше емкость, тем больше запасенной энергии. Эта энергия измеряется в фарадах, но поскольку переменный конденсатор обычно имеет очень маленькую емкость, вместо него используется меньшая единица, известная как пикофарад.
Переменные конденсаторы, которые можно найти в большинстве старинных коммерческих и полевых радиостанций, позволяют операторам настраиваться на разные частоты без необходимости замены конденсаторов.Два типа переменных конденсаторов включают воздушные конденсаторы переменной емкости и вакуумные переменные конденсаторы. Каждый из них выполняет одну и ту же функцию, но вместо воздуха для изоляции конденсатора используется высокий вакуум. Это позволяет получить более высокую емкость в конденсаторе меньшего размера. Переменными конденсаторами также можно управлять механически или электронно.Конденсаторы с электронным управлением изменяют свою емкость в зависимости от приложенного к ним постоянного напряжения, в то время как версии с механическим управлением спроектированы таким образом, чтобы части можно было перемещать для увеличения или уменьшения емкости.
Одно из наиболее распространенных применений переменных конденсаторов — в радиоприемниках, чтобы позволить радио настраиваться на разные станции.Конденсатор является частью LC-цепи, где L обозначает катушку индуктивности, а C обозначает конденсатор. Эта комбинация катушки индуктивности / конденсатора использует переменный конденсатор для изменения частоты, проходящей через LC-цепь, и, таким образом, для соединения с радиостанциями, каждая из которых работает на другой частоте, которой LC-цепь должна соответствовать для приема.
Способность изменять количество электрического заряда, которое он может удерживать, является основным преимуществом переменного конденсатора перед обычным конденсатором.Это позволяет пользователю настраивать конденсатор на объектах, таких как радиоприемники, которые постоянно должны подключаться к разным частотам. Для такого переключения без переменных конденсаторов потребовался бы другой конденсатор для каждой частоты, что было бы непрактично, если вообще возможно. Главный недостаток — относительно небольшой диапазон, который они могут покрыть. Обычно они изменяются только в ограниченном диапазоне, и эти значения изначально имеют небольшую емкость.
Поставщики и ресурсы беспроводной связи RF
О мире беспроводной связи RF
Веб-сайт RF Wireless World является домом для поставщиков и ресурсов радиочастотной и беспроводной связи.На сайте представлены статьи, руководства, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тестирование и измерения, калькуляторы, новости, книги, загрузки и многое другое.
Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, волоконная оптика, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. Д. Эти ресурсы основаны на стандартах IEEE и 3GPP.Здесь также есть академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и MBA.
Статьи о системах на основе Интернета вещей
Система обнаружения падений для пожилых людей на основе Интернета вещей : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей.
В нем упоминаются преимущества или преимущества системы обнаружения падений Интернета вещей.
Читать дальше➤
Также обратитесь к другим статьям о системах на основе Интернета вещей следующим образом:
• Система чистоты туалетов самолета.
• Система измерения столкновения
• Система отслеживания скоропортящихся продуктов и овощей
• Система помощи водителю
• Система умной торговли
• Система мониторинга качества воды
• Система Smart Grid
• Система умного освещения на базе Zigbee
• Система интеллектуальной парковки на основе Zigbee.
• Система интеллектуальной парковки на основе LoRaWAN
RF Статьи о беспроводной связи
В этом разделе статей представлены статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE / 3GPP и т. Д. .стандарты. Он также охватывает статьи, относящиеся к испытаниям и измерениям, по тестированию на соответствие, используемым для испытаний устройств на соответствие RF / PHY. УКАЗАТЕЛЬ СТАТЕЙ >>.
Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Читать дальше➤
Основы повторителей и типы повторителей : В нем объясняются функции различных типов ретрансляторов, используемых в беспроводных технологиях.Читать дальше➤
Основы и типы замирания : В этой статье рассматриваются мелкомасштабные замирания, крупномасштабные замирания, медленные, быстрые замирания и т. Д., Которые используются в беспроводной связи. Читать дальше➤
Архитектура сотового телефона 5G : В этой статье рассматривается блок-схема сотового телефона 5G с внутренними модулями 5G Архитектура сотового телефона. Читать дальше➤
Основы помех и типы помех: В этой статье рассматриваются помехи в соседнем канале, помехи в одном канале, ЭМ помехи, ICI, ISI, световые помехи, звуковые помехи и т. Д.Читать дальше➤
5G NR Раздел
В этом разделе рассматриваются функции 5G NR (New Radio), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. Д.
5G NR Краткий указатель ссылок >>
• Мини-слот 5G NR
• Часть полосы пропускания 5G NR
• 5G NR CORESET
• Форматы DCI 5G NR
• 5G NR UCI
• Форматы слотов 5G NR
• IE 5G NR RRC
• 5G NR SSB, SS, PBCH
• 5G NR PRACH
• 5G NR PDCCH
• 5G NR PUCCH
• Эталонные сигналы 5G NR
• 5G NR m-последовательность
• Золотая последовательность 5G NR
• 5G NR Zadoff Chu Sequence
• Физический уровень 5G NR
• Уровень MAC 5G NR
• Уровень 5G NR RLC
• Уровень 5G NR PDCP
Учебные пособия по беспроводным технологиям
В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводной связи.Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, WLAN, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. Д. См. УКАЗАТЕЛЬ Учебников >>
Учебное пособие по 5G — Это руководство по 5G также охватывает следующие подтемы по технологии 5G:
Учебное пособие по основам 5G
Полосы частот
руководство по миллиметровым волнам
Волновая рамка 5G мм
Зондирование волнового канала 5G мм
4G против 5G
Тестовое оборудование 5G
Сетевая архитектура 5G
Сетевые интерфейсы 5G NR
канальное зондирование
Типы каналов
5G FDD против TDD
Разделение сети 5G NR
Что такое 5G NR
Режимы развертывания 5G NR
Что такое 5G TF
В этом учебном пособии GSM рассматриваются основы GSM, сетевая архитектура, сетевые элементы, системные спецификации, приложения,
Типы пакетов GSM, структура кадров GSM или иерархия кадров, логические каналы, физические каналы,
Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM, установка вызова или процедура включения питания,
MO-вызов, MT-вызов, VAMOS, AMR, MSK, модуляция GMSK, физический уровень, стек протоколов, основы мобильного телефона,
Планирование RF, нисходящая линия связи PS и восходящая линия связи PS.
➤Подробнее.
LTE Tutorial , охватывающий архитектуру системы LTE, охватывающий основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он обеспечивает связь с обзором системы LTE, радиоинтерфейсом LTE, терминологией LTE, категориями LTE UE, структурой кадра LTE, физическим уровнем LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, передача голоса по LTE, расширенный LTE, Поставщики LTE и LTE vs LTE продвинутые.➤Подробнее.
RF Technology Stuff
Эта страница мира беспроводной радиосвязи описывает пошаговое проектирование преобразователя частоты радиочастоты на примере преобразователя RF UP диапазона 70 МГц в диапазон C.
для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO,
колодки аттенюатора. ➤Подробнее.
➤Проектирование и разработка радиочастотных трансиверов
➤Конструкция RF фильтра
➤VSAT Система
➤Типы и основы микрополосковой печати
➤Основы волновода
Секция испытаний и измерений
В этом разделе рассматриваются контрольно-измерительные ресурсы, испытательное и измерительное оборудование для тестирования DUT на основе
Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.ИНДЕКС испытаний и измерений >>
➤ Система PXI для T&M.
➤ Генерация и анализ сигналов
➤Измерения слоя PHY
➤Тест устройства на соответствие WiMAX
➤ Тест на соответствие Zigbee
➤ Тест на соответствие LTE UE
➤Тест на соответствие TD-SCDMA
Волоконно-оптическая технология
Оптоволоконный компонент , основные сведения, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель,
фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в волоконно-оптической связи.
Оптические компоненты INDEX >>
➤Учебное пособие по оптоволоконной связи
➤APS в SDH
➤SONET основы
➤SDH Рамочная конструкция
➤SONET против SDH
Поставщики и производители радиочастотных беспроводных устройств
Сайт RF Wireless World охватывает производителей и поставщиков различных компонентов, систем и подсистем RF для ярких приложений, см. ИНДЕКС поставщиков >>.
Поставщики радиочастотных компонентов, включая радиочастотный изолятор, радиочастотный циркулятор, радиочастотный смеситель, радиочастотный усилитель, радиочастотный адаптер, радиочастотный разъем, радиочастотный модулятор, радиочастотный трансивер, PLL, VCO, синтезатор, антенну, генератор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексор, дуплексер, микросхема резистора, микросхема конденсатора, индуктор микросхемы, ответвитель, оборудование ЭМС, программное обеспечение для проектирования радиочастот, диэлектрический материал, диод и т.Производители RF компонентов >>
➤Базовая станция LTE
➤RF Циркулятор
➤RF Изолятор
➤Кристаллический осциллятор
MATLAB, Labview, встроенные исходные коды
Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW.
Эти коды полезны для новичков в этих языках.
ИНДЕКС ИСХОДНОГО КОДА >>
➤3-8 декодер кода VHDL
➤Код MATLAB для дескремблера
➤32-битный код ALU Verilog
➤T, D, JK, SR триггеры labview коды
* Общая информация о здравоохранении *
Выполните эти пять простых действий, чтобы остановить коронавирус (COVID-19).
СДЕЛАЙТЕ ПЯТЬ
1. РУКИ: Часто мойте их
2. КОЛЕНО: Откашляйтесь
3. ЛИЦО: Не трогай его
4. НОГИ: держитесь на расстоянии более 3 футов (1 м) друг от друга
5. ЧУВСТВОВАТЬ: Болен? Оставайся дома
Используйте технологию отслеживания контактов >>, соблюдайте >> рекомендации по социальному дистанцированию и установить систему видеонаблюдения >> чтобы спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таким странам, как США и Китай, чтобы остановить распространение COVID-19, поскольку это заразное заболевание.
RF Калькуляторы и преобразователи беспроводной связи
Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц.
Сюда входят беспроводные технологии, такие как GSM, UMTS, LTE, 5G NR и т. Д.
СПРАВОЧНЫЕ КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR
➤5G NR ARFCN против преобразования частоты
➤Калькулятор скорости передачи данных LoRa
➤LTE EARFCN для преобразования частоты
➤ Калькулятор антенны Яги
➤ Калькулятор времени выборки 5G NR
IoT-Интернет вещей Беспроводные технологии
Раздел IoT охватывает беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet,
6LoWPAN, RF4CE, Bluetooth, Bluetooth Low Power (BLE), NFC, RFID, INSTEON, X10, KNX, ANT +, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики Интернета вещей, компоненты Интернета вещей и компании Интернета вещей.
См. Главную страницу IoT >> и следующие ссылки.
➤ НИТЬ
➤EnOcean
➤Учебник по LoRa
➤Учебник по SIGFOX
➤WHDI
➤6LoWPAN
➤Zigbee RF4CE
➤NFC
➤Lonworks
➤CEBus
➤UPB
СВЯЗАННЫЕ ЗАПИСИ
RF Wireless Учебники
Различные типы датчиков
Поделиться страницей
Перевести страницу
Конденсаторы переменной емкости
| Конденсаторы переменной емкости | Конденсатор
Относительно непрерывного и опросного
«Непрерывный» означает, что указанное напряжение постоянно подается на порт 1,2.
sa
Опрос означает, что указанное напряжение включается и выключается и
применяется для порта 1,2. (Включено: 40 мс, выключено: 360 мс)
sa
Руководство по выбору
Пожалуйста, выберите подходящий VAC для требуемого диапазона настройки и шага.
■ Макс. напряжение настройки: 3,0 В
P / N |
Емкость (пФ) |
⊿C (пФ) |
Индуктивность антенны | ||
1 мкГн | 1.5 мкГн |
2 мкГн |
|||
LXRW0YV330-056 LXRW19V330-050 |
33 — 16,5 |
16,5 | 0,8 МГц | 1,2 МГц |
1,6 МГц |
LXRW0YV600-054 LXRW19V600-055 |
60-30 |
30 | 1,4 МГц |
2.1 МГц |
– |
LXRW0YV900-053 |
90–45 |
45 | 2,1 МГц |
— | — |
■ Макс. напряжение настройки: 5,0 В
P / N |
Антенна Индуктивность |
C серия (пФ) |
⊿f r |
LXRW19V201-058 |
0.5 мкГн |
470 | 1,0 МГц |
1000 | 1,5 МГц |
||
2700 | 2,0 МГц |
||
1,0 мкГн |
220 | 0,9 МГц |
|
330 | 1,4 МГц |
||
470 | 1.9 МГц |
||
1,5 мкГн |
180 | 1,1 МГц |
|
220 | 1,4 МГц |
Сценарии использования>
Информация о пакете
Тип корпуса: CSP
Размер : 0,6 × 0,6 мм (серия LXRW0Y)
Тип корпуса: DFN (формованная пластмасса)
Размер 1.