L7812 схема включения: L7812CV характеристики стабилизатора, схема подключения, даташит

Содержание

Стабилизатор напряжения 7812 схема включения

На смену популярной отечественной линейке КРЕНхх пришёл импортный стабилизатор на микрохеме L7812 (или просто 7812). Его схема включения не изменилась, да и характеристики улучшились незначительно. Подробнее смотрите в даташите к нему.

Технические параметры L7812

  • Корпус TO220
  • Номинальный выходной ток, А 1.2
  • Максимальное входное напряжение, В 40
  • Выходное напряжение, В 12

Цоколёвка показана на рисунке ниже. Там вы можете увидеть и отличия по подключению L7812 от L7912, работающего с общим плюсом.

При всех своих достоинствах, данный стабилизатор напряжения обладает максимальным током нагрузки в 1,5А, что зачастую не позволяет его использовать для питания различного рода токоемких устройств, к примеру автомобильную магнитолу. Однако неплохие характеристики этого стабилизатора и наличие защиты создали ему популярность. Описанная в datasheet схема увеличения максимального тока использует дополнительный мощный P-N-P транзистор.

Описанная же мной схема работает c N-P-N транзисторами, куда отлично впишутся КТ803/КТ805/КТ808, которые можно найти везде. Поэтому если вы живете в деревне и мощных P-N-P транзисторов вам не найти, как в 70-80-е годы прошлого века, смело собирайте.

Диод D1 компенсирует падение 0,6В на силовом транзисторе Q1, включенном по схеме эмиттерного повторителя. В качестве D1 пойдут 1N4007 и аналогичные. В качестве Q1 КТ803, КТ805, КТ808, КТ819 в металлических корпусах. Можно все оставить так, а можно сделать и так:

Как выбрать радиатор? Выделяемая на силовом транзисторе мощность приблизительно равна:

P=(Uвход-Uвыход)*Iнагр

Тогда приблизительно каждый ватт тепла необходимо рассеить на 10см2 охлаждающей поверхности.

Сам стабилизатор L7812 устанавливается на тот-же радиатор или на отдельный, по площади приблительно в 30 раз меньшей, чем у Q1.

Какой выбрать максимальный ток полученного стабилизатора? Здесь все зависит от тока, который вам нужен. 2)/R1=1.8Вт, с технологическим запасом 50% вам потребуется резистор мощностью 4Вт.

Периодически возникающая потребность запитать всевозможные устройства, имеющие как правило разные требования к величине питающего напряжения, побудило наконец создать универсальный блок питания на нагрузку до 1,5 А. В инете масса схем подобного рода устройств. Я взял за основу одну простую и подходящую для меня на основе стабилизатора LM317, решил несколько доработать ее и воплотить в жизнь. Дело в том, что в этой схеме регулировка выходного напряжения осуществляется переменным резистором 4,7 ком. Собрав схему на макетной плате, я понял, что такая регулировка уж очень неудобна, — очень сложно точно выставить нужное напряжение вращая движок резистора. Слишком большая чувствительность, и любое прикосновение к ручке вызывает значительное изменение напряжения на выходе. Я его заменил на дискретный галетный переключатель вот такого типа:

В результате нужное напряжение выбирается положением этого переключателя, коммутирующего соответствующие постоянные резисторы. Получилась вот такая схема.

Линейный регулируемый стабилизатор LM317 позволяет регулировать напряжения в диапазоне от 1,2 до 35 вольт. Мне нужен был следующий ряд — 1,5; 5; 9; 12; 15в. Это было выполнено путем подбора сопротивлений резисторов соответствующих положению переключателя на напряжения этого ряда. Правда один вывод переключателя я оставил не задействованным ( фактически разрыв в управляющей цепи микросхемы). Это я оставил сознательно (пусть будет), так как в этом положении на выходе появляется входное напряжение за минусом незначительного падения на микросхеме. У меня это — 33 вольта. Может когда пригодится.

Теперь о питании. У меня применен тороидальный трансформатор ТТП-40 с действующим напряжением вторичной обмотки 25в. После входного фильтра (конденсатор С1) напряжение на входе микросхемы 35в. Это почти предел по входному напряжению данного стабилизатора, больше подавать на него не желательно.

При работе микросхемы на нагрузках с низким напряжением на ней выделяется значительное тепло. Поэтому она помещена на ребристый радиатор с площадью поверхности около 300 см2. Но его нужно чем-то охлаждать в закрытом корпусе. Решил поставить вентилятор, не очень злобный, 60х60 мм. Но желательно, чтобы он работал, когда на то есть основания, то есть соответствующая температура радиатора, иначе зачем гонять зря воздух с пылью. Появилась схема управления кулером.

Подстроечным резистором Р1 настраивается температура срабатывания реле на включение вентилятора. Я настроил примерно на 40 градусов по замеру пирометром Fluke. Но питание схемы – 12в. . Значит нужно где-то его брать. После диодной сборки выпрямителя и конденсатора фильтра основной схемы блока питания – 35в. Можно конечно его подать на микросхемный стабилизатор типа L7812 и получить на выходе вожделенные 12в, но в таком режиме стабилизатор будет успешно работать еще и нагревателем воздуха, просаживая на себе эту дельту. Что ж городить и под него ацкий радиатор с гектар? Нет конечно. Нужно делать еще одну обмотку на трансформаторе с выходом примерно 15в.

А это вторая часть моего марлезонского балета. Трансформатор тороидальный и намотать на него очень не просто. Но начнем. Ибо глаза бояться, а руки чешутся.

Для начала нужно определить, сколько витков мотать. Ведь количество витков на первичной обмотке мне не известно. Делаем следующее. Наматываем поверх обмоток 10-20-30 (кто на сколько сподобится) витков любого провода и замеряем напряжение на получившейся новой миниобмотке. Я намотал 10 витков и получил 1, 28в. Следовательно, чтобы получить 15в нужно 15 разделить на 1,28 и умножить на 10. Результат – 117 витков. Это не десять и не двадцать, козьи пляски на лугу гарантированы! Несмотря на предстоящий ужас делаем следующее приспособление, — челнок типа рыбацкого мотовильца.

Его я сделал из того, что было под рукой – вырезал из блистерной упаковки и для жесткости примотал изолентой к получившемуся челноку небольшой гаечный ключ (если бы был ключ рожковый с двух сторон, то можно было бы использовать его в качестве челнока). При этом, когда вырезал ножницами по концам блистерного челнока пазы для укладки провода, я не стал отрезать средние части, а просто их загнул, чтобы было за что закрепить начало провода. Длина челнока по средним вырезам получилась 15 см, то есть 30 см – один виток на челноке. Замерил длину одного витка провода на самом трансформаторе. Пересчитал, сколько витков намотать на челнок, чтобы гарантированно хватило намотать на трансформатор 117 витков плюс запас процентов 5, который как известно, что-то там не трет и не делает и того хуже, прости Господи. Это не сложно. Намотал на челнок необходимую длину провода, Рис.4 ( сечение провода рассчитывается из предполагаемой нагрузки на обмотку и мощности трансформатора, я мотал диаметром 0,4 мм).

И, собственно, закрепив изолентой начало обмотки, начал аккуратно мотать 117 витков. Вот что получилось.

В процессе намотки я решил не доматывать 10 витков, чтобы получить напряжение где-то около 14в, учитывая, что входной фильтр поднимет его до 15-16в, что мне и нужно. Лишние вольты на входе – лишние калории тепла на микросхеме стабилизатора. После намотки закрепил обмотку изолентой, сделал отводы и замерил напряжение – 14,08 вольт. Ок! Не зря старался! Да, забыл. Когда собирал схему, чтобы не искать клеммы Vago ( на фото) дабы соединить щупы тестера и концы обмотки трансформатора, в дурном порыве соединил их зажимами типа «крокодил» от выключенного лабораторного блока питания. Смотрю, что такое?! Напряжение чуть выше 6 вольт и транс начал греться, как конфорка стремительно. Отключил. Секунды чесал репу, а потом догнал, — я же нагрузил его потрохами выключенного лабораторника. Чуть не спалил. Нашел клеммы, соединил, как положено, без дурного фанатизма. Результат на фото. Мораль — никогда не делай быстрее, чем думаешь.

Быстро собрал схему стабилизатора на микросхеме L7812 по типовой схеме его включения, установив на входе электролит 2200 мкф 35в, а на выходе 100 мкф 35в, предварительно на макетной плате, чтобы проверить его работу от новой обмотки. В качестве нагрузки подключил 5 ваттный резистор 51 ом. Ток нагрузки в результате получился 235 мА, что примерно соответствует потреблению вентилятора охлаждения.

Дальше собрал схему стабилизатора питания блока управления вентилятором на плате и установил в корпус устройства, чтобы проверить работу всего в целом. Универсальный блок питания работал штатно. В качестве нагрузки использовался резистор 25 вт 10 ом. На напряжениях от 9 до 15 вольт ток изменялся от 1 до 1,5А в строгом соответствии с законом Ома. L317-я благополучно грелась в своем седалище на радиаторе, но под контролем блока управления кулером, который включал вентилятор при нагреве в зоне микросхемы свыше 40 градусов и отключал его при остывании ниже оного предела с небольшим гистерезисом.

В качестве индикации напряжения и тока я применил цифровой китайский вольтамперметр. Очень удобная фишка. Единственно, что при выставлении переключателя на 1,5в индикация пропадает. Девайс рассчитан на минимальное напряжение 4 в.

Предварительно я откалибровал его на лабораторном блоке питания. Для этого в его схеме предусмотрено два подстроечных резистора.

Хочу обратить внимание на один важный момент касательно тороидальных трансформаторов. В основном они предусматривают их крепление посредством центрального болта и верхней шайбы. Так вот, очень легко создать короткозамкнутый ацкий типа виток, крепя его в стальном или любом корпусе из магнитного материала со всеми вытекающими из этого гнусными последствиями. Ток, индуцируемый в этом витке пойдет через центральный болт, корпус и вернется, откуда пришел с офигительным эффектом.

У меня применен стальной корпус. Я не стал крепить тор штатно через центральный болт, дабы не гневить судьбу и не думать, а вдруг верхний торец болта коснется верхней крышки, когда на нее поставишь бутылку или еще чего прижмешь не дай боже ( за нижнюю то ведь он надежно с изумительным контактом закреплен!). Поступил по другому. Просверлил в днище отверстия и закрепил тор четырьмя диаметрально противоположными кабельными полиэтиленовыми хомутами (Рис. 9). И держит хорошо, и «козы» не будет.

Вот в общем-то и все. Теперь есть и что питать, и чем питать. На переднюю панель корпуса изготовил в программе Front Desinger лицевую часть с учетом расположения элементов, распечатал на бумаге, заламинировал и наклеил. А это готовое изделие.

Каждый раз, читая новые записи в блогах сообщества я сталкиваюсь с одной и той же ошибкой — ставят стабилизатор тока там, где нужен стабилизатор напряжения и наоборот. Постараюсь объяснить на пальцах, не углубляясь в дебри терминов и формул. Особенно будет полезно тем, кто ставит драйвер для мощных светодиодов и питает им множество маломощных. Для вас — отдельный абзац в конце статьи. =)

Сразу хочу извиниться перед всеми, чьи рисунки вдруг попадут в эту статью. Спасибо за труд, отмечайтесь в комментариях. Я добавлю авторство, если нужно.

Для начала разберемся с понятиями:

СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
Исходя из названия — стабилизирует напряжение.
Если написано, что стабилизатор 12В и 3А, то значит стабилизирует именно на напряжение 12В! А вот 3А — это максимальный ток, который может отдать стабилизатор. Максимальный! А не «всегда отдает 3 ампера». То есть от может отдавать и 3 миллиампера, и 1 ампер, и два… Сколько ваша схема кушает, столько и отдает. Но не больше трех.
Собственно это главное.

И теперь я перейду к описанию видов стабилизаторов напряжения:

Линейные стабилизаторы (те же КРЕН или LM7805/LM7809/LM7812 и тп)

Импульсные стабилизаторы — гораздо круче, но и дороже. Обычно для рядового покупателя это уже выглядит как некая платка с детальками.

СТАБИЛИЗАТОР ТОКА
В применении к светодиодам именно их еще называют «светодиодный драйвер». Что тоже будет верно.

Теперь — к светодиодам. Ведь весь сыр-бор из-за них.

Светодиод питается ТОКОМ. Нет у него параметра НАПРЯЖЕНИЕ. Есть параметр — падение напряжения! То есть сколько на нем теряется.
Если написано на светодиоде 20мА 3.4В, то это значить что ему надо не больше 20 миллиампер. И при этом на нем потеряется 3.4 вольта.
Не для питания нужно 3. 4 вольта, а просто на нем «потеряется»!
То есть вы можете питать его хоть от 1000 вольт, только если подадите ему не больше 20мА. Он не сгорит, не перегреется и будет светить как надо, но после него останется уже на 3.4 вольта меньше. Вот и вся наука.
Ограничьте ему ток — и он будет сыт и будет светить долго и счастливо.

Вот берем самый распространненый вариант соединения светодиодов (такой почти во всех лентах используется) — последовательно соединены 3 светодиода и резистор. Питаем от 12 вольт.
Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели (про расчет не пишу, в интернете навалом калькуляторов).
После первого светодиода остается 12-3.4= 8.6 вольт.
Нам пока хватает.
На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта.
И для третьего светодиода тоже хватит.
А после третьего останется 5.2-3.4=1.8 вольта.
И если захотите поставить четвертый, то уже не хватит.
Вот если запитать не от 12В а от 15, то тогда хватит. Но надо учесть, что и резистор тоже надо будет пересчитать. Ну вот собственно и пришли плавно к…

Простейший ограничитель тока — резистор. Их часто ставят на те же ленты и модули. Но есть минусы — чем ниже напряжение, тем меньше будет и ток на светодиоде. И наоборот. Поэтому если у вас в сети напряжение скачет, что кони через барьеры на соревнованиях по конкуру (а в автомобилях обычно так и есть), то сначала стабилизируем напряжение, а потом ограничиваем резистором ток до тех же 20мА. И все. Нам уже плевать на скачки напряжения (стабилизатор напряжения работает), а светодиод сыт и светит на радость всем.
То есть — если ставим резистор в автомобиле, то нужно стабилизировать напряжение.

Можно и не стабилизировать, если вы расчитаете резистор на максимально-возможное напряжение в сети автомобиля, у вас нормальная бортовая сеть (а не китайско-русский тазопром) и сделаете запас по току хотя бы в 10%.
Ну и к тому же резисторы можно ставить только до определенной величины тока. После некоторого порога резисторы начинают адски греться и приходится их сильно увеличивать в размерах (резисторы 5Вт, 10Вт, 20Вт и тд). Плавно превращаемся в большой утюг.

Есть еще вариант — поставить в качестве ограничителя что-нибудь типа LM317 в режиме токового стабилизатора.

Импульсный стабилизатор тока (или драйвер).

Ну а в заключении — к тому, что постоянно пытаюсь доказать в дискуссиях. И доказываю. Вот только каждому отдельно объяснять одно и то же — язык отвалится. Поэтому попробую еще раз в этой статье.

Постоянно наблюдаю такую картину — задают ток драйвером для мощных светодиодов (скажем — 350мА) и ставят несколько веток светодиодов без ограничительных резисторов и прочего. И ведь люди, то вроде бы и не самые ламеры, а совершают одну и ту же ошибку раз за разом. Рассказываю, почему это плохо и к чему может привести:

Из закона Ома для полной цепи:
Сила тока в неразветвленной цепи равна сумме сил тока на ее параллельных участках.
Многие так и считают — «каждая ветка по 20мА, у меня 20 веток. Драйвер отдает 350мА, значит на каждую ветку придется даже меньше — по 17.5мА. Бинго!»
А вот и не Бинго!, а Жопа! Почему?

Сила тока в каждой ветке будет равна, если у вас идеальнейшие светодиоды с абсолютно одинаковыми параметрами. Тогда и ток будет во всех ветках одинаков, и никаких ограничителей тока не надо — взяли и поделили общий ток на количество одинаковых веток. Но такое — только в сказках.
Если параметры чуть-чуть отличаются — получили в одной ветке 19мА, в другой 17, в третьей 20…
Общее количество тока так и остается неизменным — 350мА, а вот в ветках творится безумная кака. На взгляд и не определишь, вроде светят одинаково… И вот у вас одна ветка, самая прожорливая, начинает греться сильнее остальных. И жрать больше. И греться еще сильнее. А потом раз — и потухла. И все эти ее миллиамперы разбежались по остальным веткам. И вот еще одна ветка, недавно вроде нормально горевшая берет и тухнет следом. И уже вдвое больший ток уходит на другие ветки, ведь общий ток жестко задан 350мА. Процесс лавинообразный и вот уже пришел кирдык всей этой схеме, потому что все 350мА усосались в оставшиеся светодиоды и никто-никто их не спас… А стояли бы, как полагается, по отдельному стабилизатору (хотя бы банальному резистору) на каждой ветка — работала бы и дальше.

Именно это мы и видим в китайских модулях и кукурузинах, которые горят как спички через неделю/месяц работы. Потому что светодиоды имеют адский разброс, а китайцы на драйверах экономят покруче, чем кто либо еще. Почему не горят фирменные модули и лампы Osram, Philips и тд? Потому что они делают довольно мощную отбраковку светодиодов и от всего дичайшего количества выпущенных светодиодов остается 10-15%, которые по параметрам практически идентичны и из них можно сделать такой простой вид, какой и пытаются сделать многие — один мощный драйвер и много одинаковых цепочек светодиодов без драйверов. Но только вот в условиях «купил светодиоды на рынке и запаял сам» как правило будет им нехорошо. Потому что даже у «некитая» будет разброс. Может повезти и работать долго, а может и нет.

Да и токовый драйвер по-сравнению со стабилизатором напряжения и копеечными резисторами как правило дороже. Ну нафига стрелять в мишень для мелкокалиберной винтовки из танка? Цель-то поразим, вопросов нет. Но вместе с ней еще и воронку оставим. =))

Да и просто — сделать правильно и сделать «смотрите как я сэкономил, а остальные — дураки» — это несколько разные вещи. Даже очень сильно разные. Учитесь делать не как пресловутые китайцы, учитесь делать красиво и правильно. Это сказано давно и не мной. Я лишь попробовал в стотыщпятьсотый раз объяснить прописные истины. Уж звиняйте, если криво объяснял =)

Ну и напоследок тем, кому даже такое изложение было слишком заумным.
Запомните следующее и старайтесь следовать этому (здесь «цепочка» — это один светодиод или несколько ПОСЛЕДОВАТЕЛЬНО-соединенных светодиодов):
1. КАЖДОЙ цепочке — свой ограничитель тока (резистор или драйвер…)
2. Маломощная цепочка до 300мА? Ставим резистор и достаточно.
3. Напряжение нестабильно? Cтавим СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
4. Ток больше 300мА? Ставим на КАЖДУЮ цепочку ДРАЙВЕР (стабилизатор тока) без стабилизатора напряжения.

Вот так будет правильно и самое главное — будет работать долго и светить ярко!
Ну и надеюсь, что все вышенаписанное убережет многих от ошибок и поможет сэкономить средства и нервы.

Ну ладно, рябятке.
Нюансов еще очень много, а я и так уже немаленькую статью-то накатал. Пожалуй все остальное — в комментариях.
Засим откланиваюсь,
Всегда ваш — ЛедЗлыдень Борисыч.

Крен 7812 схема включения | Домострой

На смену популярной отечественной линейке КРЕНхх пришёл импортный стабилизатор на микрохеме L7812 (или просто 7812). Его схема включения не изменилась, да и характеристики улучшились незначительно. Подробнее смотрите в даташите к нему.

Технические параметры L7812

  • Корпус TO220
  • Номинальный выходной ток, А 1. 2
  • Максимальное входное напряжение, В 40
  • Выходное напряжение, В 12

Цоколёвка показана на рисунке ниже. Там вы можете увидеть и отличия по подключению L7812 от L7912, работающего с общим плюсом.

При всех своих достоинствах, данный стабилизатор напряжения обладает максимальным током нагрузки в 1,5А, что зачастую не позволяет его использовать для питания различного рода токоемких устройств, к примеру автомобильную магнитолу. Однако неплохие характеристики этого стабилизатора и наличие защиты создали ему популярность. Описанная в datasheet схема увеличения максимального тока использует дополнительный мощный P-N-P транзистор.

Описанная же мной схема работает c N-P-N транзисторами, куда отлично впишутся КТ803/КТ805/КТ808, которые можно найти везде. Поэтому если вы живете в деревне и мощных P-N-P транзисторов вам не найти, как в 70-80-е годы прошлого века, смело собирайте.

Диод D1 компенсирует падение 0,6В на силовом транзисторе Q1, включенном по схеме эмиттерного повторителя. 2)/R1=1.8Вт, с технологическим запасом 50% вам потребуется резистор мощностью 4Вт.

Этот стабилизатор размещен в корпусе ТО – 220, имеющем три вывода. Он способен стабилизировать напряжение 12 вольт, что дает возможность применять его в разных электронных приборах.

  • Тип выхода – постоянный.
  • Ток выхода – 1 ампер.
  • Наименьшая температура работы — 0 градусов.
  • Наибольшая рабочая температура — 125 градусов.
  • Число выводов – 3.
  • Номинальное напряжение – 12 вольт.
  • Наименьшее напряжение входа – 14,5 вольт.
  • Наибольшее напряжение входа – 27 вольт.
  • Тип корпуса – ТО – 220 АВ.

Чаще всего такие стабилизаторы используются в какой-то одной части схемы в том случае, когда нет смысла для создания целого блока питания устройств. В стабилизаторе 7812 используется внутренняя токовая защита от перегрева. Это делает блок на его базе очень надежным. При хорошем охлаждении радиатором, устройство стабилизации 7812 способен выдать ток 1 ампер. Наибольшее напряжение входа должно равняться не ниже 14,8 В и не выше 35 В.

Такие стабилизаторы создавались для источников определенного постоянного напряжения 12 В, с использованием дополнительных элементов можно переделать эти устройства в стабилизированные источники тока с возможностью регулировки.

Схема действия стабилизатора, подходящая для всех микросхем этого типа:

Трехвыводные стабилизаторы

Для многих неответственных использований оптимальным выбором будет обычный 3-выводный стабилизатор. У него имеется всего 3 наружных вывода. Он имеет заводскую настройку на фиксированное напряжение. Серия 7800 – это представители стабилизаторов этого типа. В последних двух цифрах указывается напряжение. Об одном из этой серии, мы уже рассказывали ранее (7805)

На рисунке изображено, как просто выполнить стабилизатор, к примеру, на 5 вольт, применив одну схему. Емкость, подключенная параллельно выходу, оптимизирует процессы перехода и задерживает сопротивление выхода на низком уровне при повышенных частотах. Если прибор находится далеко от фильтра, то нужно использовать вспомогательный конденсатор входа. Серия 7800 производится в металлических и пластиковых корпусах.

lm7812 стабилизатор 12 В

Стабилизатор напряжения 7812 изменяет напряжение величиной до 20 В в 12 В. Этот прибор часто использовался для создания стабильного напряжения работы устройств низкого напряжения: усилителя звука, микроконтроллеров, осветительных ламп.

На входной каскад можно подключить нестабильную величину напряжения, и даже переменное значение. LM 7812 является стабилизатором, входящим в серию микросхем 78хх. Они отличаются лишь напряжением выхода, остальные параметры остаются прежними.

Для лучшего отвода тепла прикрепляют охлаждающий радиатор к корпусу стабилизатора. Его можно снять от старых устройств с платы. Вместо радиатора можно использовать жесть от банок, нарезав ее полосками, и просверлив в них отверстия для крепления на винт.

Стабилизатор напряжения – важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки.

Стабилизаторы семейства LM

В нашей статье мы рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Характеристики LM стабилизаторов

Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:

Output voltage – выходное напряжение

Input voltage – входное напряжение

Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.

Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Работа LM на практике

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме

Берем нашу Макетную плату и быстренько собираем выше предложенную схемку подключения. Два желтеньких – это конденсаторы, хотя их ставить необязательно.

Итак, провода 1,2 – сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

На Блоке питания мы ставим напряжение в диапазоне 7,5 Вольт и до 20 Вольт. В данном случае я поставил напряжение 8,52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? 5,04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7,5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входное напряжение. По даташиту можно подавать на него входное напряжение от 14,5 и до 27 Вольт. Задаем 15 Вольт с копейками.

А вот и напряжение на выходе. Блин, каких то 0,3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

Как сделать блок питания на 5, 9,12 Вольт?

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт? Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических конденсатора для для устранения пульсаций и высокостабильный блок питания на 5 вольт к вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе трансформатора тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый стабилизатор.

Для того, чтобы стабилизатор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт, а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, разницу напряжения, а следовательно и мощность, стабилизатор будет рассеивать на себе.

Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вовсе сгореть.

Заключение

Все большему числу электронных устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданным и не очень приятным последствиям. Используйте же на здоровье достижения электроники, и не парьтесь по поводу питания своих электронных безделушек.

Купить стабилизатор напряжения

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.

Kia 7812 схема подключения — Вместе мастерим

Установил, а точнее заменил в машине везде (кроме ближнего/дальнего света и противотуманок передних/задних) лампочки на светодиоды.
Замена лампочек на светодиоды в:
Кнопках стеклоподъёмников
В кнопках управления
В приборной панели

Но как известно светодиоды не любят перепадов напряжения свыше 12 В. и от этого перегорают быстро, а в авто при заглушённом двигателе напруга 13 В. и при заведённом может доходить до 15 В. (14 В. в среднем), что как раз таки очень плохо на них сказывается.

Вторым этапом по стабилизации напряжения у меня пошли Габаритки. Т.к. они постоянно включены, то они тоже наиболее подвержены перегоранию.
С ними оказалось всё посложнее чем с подсветкой салона…

Для работы потребовалось: Около метра провода, 2 стабилизатора напряжения типа КРЕН8, гофра, клеймы (папа, мама и кольцо)

Готовим стабилизаторы к установке:
1. Спаиваем между собой минусовые контакты на стабилизаторе, отогнув их вбок и припаиваем к ним провод
2. На положительные контакты так же припаиваем провода.

Далее идём к машине и разбираем блок предохранителей под капотом и начинаем установку. Для этого делаем:
1. По схеме находим нужную нам секцию в блоке предохранителей. В нашем случае нужна секция F2 JB-06

!По поводу сильного нагрева стабилизаторов могу саказать, что проехав сегодня около часа по городу я попробовал их. Салонный был очень тёплым, даже чуть горячеватым, но не очень сильно, как некоторые говорят. Под капотом стабилизаторы были просто тёплыми!

Вот и закончилл стабилизацию напряжения как в салоне так и в габаритках. Надеюсь теперь светодиоды прослужат долго.

Продлеваем жизнь светодиодным ходовым огням.

Как известно, светодиодное оборудование для сети автомобиля рассчитано на напряжение 12В. При работе авто от генератора в бортовой сети напряжение поднимается до 14,5В. И все мы видели как на авто начинают моргать или вовсе перегорают светодиоды, будь то ходовые огни или салонное освещение.

Существует несколько способов устранения данной проблемы. Первое и на мой взгляд самое простое – это подключение светодиодов через стабилизаторы напряжения.

Стабилизатор ставиться в цепь между источником и потребителем. Стабилизатор сглаживает входное напряжение и на выходе мы имеем

12В. Существует несколько вариантов стабилизаторов, они отличаются только характеристиками.

Мной были выбраны стабилизаторы KIA 7812А.

Мне были принесены дневные ходовые огни, на примере которых я покажу, как правильно инсталлировать стабилизаторы.
1. Разбираем корпус фонарей.
2. Смотрим схему подключения.

3. Впаиваем стабилизатор согласно схеме подключения.
4. Проклеиваем контакты стабилизатора и провода к нему жидким клеем, для герметичности и прочности. Корпус стабилизаторов является радиатором и нежелательно его заливать или заклеивать, так как при работе он может нагреваться.
5. Собираем корпус фонарей и проклеиваем негерметичные места силиконом.

На смену популярной отечественной линейке КРЕНхх пришёл импортный стабилизатор на микрохеме L7812 (или просто 7812). Его схема включения не изменилась, да и характеристики улучшились незначительно. Подробнее смотрите в даташите к нему.

Технические параметры L7812

  • Корпус TO220
  • Номинальный выходной ток, А 1.2
  • Максимальное входное напряжение, В 40
  • Выходное напряжение, В 12

Цоколёвка показана на рисунке ниже. Там вы можете увидеть и отличия по подключению L7812 от L7912, работающего с общим плюсом.

При всех своих достоинствах, данный стабилизатор напряжения обладает максимальным током нагрузки в 1,5А, что зачастую не позволяет его использовать для питания различного рода токоемких устройств, к примеру автомобильную магнитолу. Однако неплохие характеристики этого стабилизатора и наличие защиты создали ему популярность. Описанная в datasheet схема увеличения максимального тока использует дополнительный мощный P-N-P транзистор.

Описанная же мной схема работает c N-P-N транзисторами, куда отлично впишутся КТ803/КТ805/КТ808, которые можно найти везде. Поэтому если вы живете в деревне и мощных P-N-P транзисторов вам не найти, как в 70-80-е годы прошлого века, смело собирайте.

Диод D1 компенсирует падение 0,6В на силовом транзисторе Q1, включенном по схеме эмиттерного повторителя. В качестве D1 пойдут 1N4007 и аналогичные. В качестве Q1 КТ803, КТ805, КТ808, КТ819 в металлических корпусах. Можно все оставить так, а можно сделать и так:

Как выбрать радиатор? Выделяемая на силовом транзисторе мощность приблизительно равна:

P=(Uвход-Uвыход)*Iнагр

Тогда приблизительно каждый ватт тепла необходимо рассеить на 10см2 охлаждающей поверхности.

Сам стабилизатор L7812 устанавливается на тот-же радиатор или на отдельный, по площади приблительно в 30 раз меньшей, чем у Q1.

Какой выбрать максимальный ток полученного стабилизатора? Здесь все зависит от тока, который вам нужен. 2)/R1=1.8Вт, с технологическим запасом 50% вам потребуется резистор мощностью 4Вт.

Kia 7812 схема подключения

Стабилизатор 7812 – технические параметры

Этот стабилизатор размещен в корпусе ТО – 220, имеющем три вывода. Он способен стабилизировать напряжение 12 вольт, что дает возможность применять его в разных электронных приборах.

  • Тип выхода – постоянный.
  • Ток выхода – 1 ампер.
  • Наименьшая температура работы — 0 градусов.
  • Наибольшая рабочая температура — 125 градусов.
  • Число выводов – 3.
  • Номинальное напряжение – 12 вольт.
  • Наименьшее напряжение входа – 14,5 вольт.
  • Наибольшее напряжение входа – 27 вольт.
  • Тип корпуса – ТО – 220 АВ.

Чаще всего такие стабилизаторы используются в какой-то одной части схемы в том случае, когда нет смысла для создания целого блока питания устройств. В стабилизаторе 7812 используется внутренняя токовая защита от перегрева.

Это делает блок на его базе очень надежным. При хорошем охлаждении радиатором, устройство стабилизации 7812 способен выдать ток 1 ампер. Наибольшее напряжение входа должно равняться не ниже 14,8 В и не выше 35 В.

Такие стабилизаторы создавались для источников определенного постоянного напряжения 12 В, с использованием дополнительных элементов можно переделать эти устройства в стабилизированные источники тока с возможностью регулировки.

Схема действия стабилизатора, подходящая для всех микросхем этого типа:

Трехвыводные стабилизаторы

Для многих неответственных использований оптимальным выбором будет обычный 3-выводный стабилизатор. У него имеется всего 3 наружных вывода. Он имеет заводскую настройку на фиксированное напряжение. Серия 7800 – это представители стабилизаторов этого типа. В последних двух цифрах указывается напряжение. Об одном из этой серии, мы уже рассказывали ранее (7805)

На рисунке изображено, как просто выполнить стабилизатор, к примеру, на 5 вольт, применив одну схему. Емкость, подключенная параллельно выходу, оптимизирует процессы перехода и задерживает сопротивление выхода на низком уровне при повышенных частотах. Если прибор находится далеко от фильтра, то нужно использовать вспомогательный конденсатор входа. Серия 7800 производится в металлических и пластиковых корпусах.

lm7812 стабилизатор 12 В

Стабилизатор напряжения 7812 изменяет напряжение величиной до 20 В в 12 В. Этот прибор часто использовался для создания стабильного напряжения работы устройств низкого напряжения: усилителя звука, микроконтроллеров, осветительных ламп.

На входной каскад можно подключить нестабильную величину напряжения, и даже переменное значение. LM 7812 является стабилизатором, входящим в серию микросхем 78хх. Они отличаются лишь напряжением выхода, остальные параметры остаются прежними.

Для лучшего отвода тепла прикрепляют охлаждающий радиатор к корпусу стабилизатора. Его можно снять от старых устройств с платы. Вместо радиатора можно использовать жесть от банок, нарезав ее полосками, и просверлив в них отверстия для крепления на винт.

Посылка стабилизаторы L7812CV + проверка

(9 оценок, среднее: 3,89 из 5)

7805, 7812, 7815

Ниже будет описание и схема включения стабилизатора, которая подходит для всех микросхем этой серии.

На конденсаторы малой емкости не смотрим, желательно поставить побольше.

Output voltage – выходное напряжение. Input voltage – входное напряжение. В нашем примере выдает нам на выходе 5 вольт. Желательным входным напряжением производители отметили не более 10 в. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено. Здесь мы видим, что стабилизатор L7805 может нам выдать одно из напряжений диапазона 4.75 – 5.25 в, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 ампер. Нестабилизированное постоянное напряжение может быть от 7.5 и до 20 в, при это на выходе будет всегда 5 в. Это есть большой плюс данного радиокомпонента.

При нагрузке свыше 14 Вт, стабилизатор желательно установить на алюминиевый теплоотвод, чем больше нагрузка тем больше нужна площадь охлаждаемой поверхности. Производят в основном в корпусе ТО-220 Максимальный ток нагрузки: 1.5, а Допустимое входное напряжение: 35 в Выходное напряжение: 5 в Число регуляторов в корпусе: 1 Ток потребления: 6 мА Погрешность: 4 % Диапазон рабочих температур: 0 C . +140 C

Отечественный аналог КР142ЕН5А

Для того, чтобы стабилизатор не вывести из строя окончательно, нужно придерживаться нужного минимума на входе микросхемы, то есть если L7805, то на вход пускаем примерно 7-8 в. Это связано с тем, что излишнюю мощность стабилизатор будет рассеивать на себе. Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть перегрев. В результате нагрева такой прибор может перейти в состояние защиты. Легкое в использовании и отсутствие наладки и дополнительных радиокомпонентов привело к тому что стабилизатор хорошо распространился среди радиолюбителей как начинающих так и профессионалов.

Стабилизатор напряжения 12 вольт

Главная > Теория > Стабилизатор напряжения 12 вольт

  • 1 Классический стабилизатор
  • 2 Интегральный стабилизатор
  • 3 Видео

Стабилизаторы напряжения являются важнейшей частью всех электронных схем, они дают непрерывное, устойчивое питание компонентам системы, обеспечивая стабильность её параметров и защиту при неисправностях в схеме или в первичном источнике напряжения. 12 вольт постоянного напряжения – наиболее востребованное, применяется для питания множества устройств, используемых отдельно или встроенных в различные конструкции.

Стабилизация с помощью стабилитрона

Классический стабилизатор

Большинство систем питания построено по схеме линейного стабилизатора напряжения на 12 вольт, которая может иметь несколько вариантов исполнения:

  • Параллельный – регулировка с помощью включённого параллельно управляющего элемента;
  • Последовательный – включение элемента регулировки последовательно с нагрузкой.

Простейшим стабилизатором напряжения является стабилитрон, также называемый диодом Зенера – это диод, работающий постоянно в режиме пробоя. Напряжение, при котором наступает пробой, – это напряжение стабилизации, основной параметр стабилитрона. При параллельном включении нагрузки получается элементарный стабилизатор напряжения, примерно равного напряжению стабилизации.

Балластное сопротивление R определяет ток стабилитрона, указанный в спецификации. Такое решение отличается низким коэффициентом стабилизации, зависимостью от температуры и применяется при малых токах нагрузки для питания отдельных компонентов основной схемы. Возможно значительно увеличить выходной ток, если последовательно с нагрузкой установить мощный транзистор.

Линейный стабилизатор с транзистором

В этой схеме транзистор подключён последовательно с нагрузкой как эмиттерный повторитель, весь ток течёт через его переход. Уровнем на базе управляет стабилитрон: при возрастании тока на выходе на базу подаётся большее напряжение, проводимость транзистора увеличивается, и выходное напряжение восстанавливается. Мощность такого стабилизатора определяется типом транзистора и может достигать десятков ватт.

Важно отметить! В таком виде стабилизатор не защищён от перегрузки и короткого замыкания, при котором мгновенно выходит из строя. Для практического применения схема значительно усложняется: вводятся элементы ограничения тока и различные защитные функции.

Интегральный стабилизатор

Стабилизатор напряжения 12 вольт легко может быть реализован, если применить специализированный интегральный линейный стабилизатор из серии 78ХХ с фиксированным выходным напряжением. Для выходного напряжения 12 вольт выпускаются микросхемы 7812, у разных производителей они носят наименование LM7812, L7812, K7812 и т.д.

Отечественный аналог – КР142ЕН8Б. Производятся в корпусах TO – 220, TO – 3, D2PAK с тремя выводами. Эти микросхемы можно найти в блоках питания любой аппаратуры, они практически вытеснили стабилизаторы на дискретных элементах.

Основные характеристики стабилизатора в широко распространённом корпусе TO – 220:

  • Выходное стабилизированное напряжение – от 11,5 до 12,5 В;
  • Входное напряжение – до 30 В;
  • Выходной ток – до 1А;
  • Встроенная защита от перегрузки и короткого замыкания.

Входное напряжение должно превышать выходное (12 вольт) минимум на 3 вольта во всём диапазоне выходного тока. На выходной ток до 100 мА выпускается вариант микросхемы –78L12. Типовая схема включения позволяет своими руками собрать надёжный стабилизатор напряжения 12 вольт с характеристиками, подходящими для многих задач.

Включение микросхемы 7812

Конденсатор фильтров рекомендуется устанавливать не далее 30 мм от выводов микросхемы. Если выходного тока 1 ампер недостаточно, можно установить дополнительный транзистор.

Увеличение выходного тока

Схема имеет параметры стабилизации, аналогичные применённой микросхеме.

В некоторых случаях целесообразно использование микросхем серии 1083/84/85. Это интегральные стабилизаторы с выходным током 3, 5, и 7, 5 ампер. Устройства относятся к типу Low Dropout (с низким падением напряжения) – для них разница между входным и выходным напряжением может быть 1 вольт. Схема включения полностью соответствует микросхемам типа 7812.

Видео

Теперь поговорим о трех выводном стабилизаторе L7805. Микросхема выпускается в двух видах, в пластмассовом корпусе – ТО-220, например как транзистор КТ837 и металлическом корпусе – ТО-3, например как всем известный КТ827. Три вывода, если считать слева на право – то соответственно вход, минус и выход. Последних две цифры в маркировке указывают на стабилизированный выход микросхемы – L7805 – 5 в, 7806 – 6 в.

Стабилизатор напряжения 12 вольт

Классический стабилизатор напряжения 12 вольт. Интегральные стабилизаторы: основные характеристики и отличительные особенности. Целесообразность использование микросхем серии 1083/84/85 при изготовлении стабилизаторов 12в своими руками.

lm7812 стабилизатор 12 В

Стабилизатор напряжения 7812 изменяет напряжение величиной до 20 В в 12 В. Этот прибор часто использовался для создания стабильного напряжения работы устройств низкого напряжения: усилителя звука, микроконтроллеров, осветительных ламп.

На входной каскад можно подключить нестабильную величину напряжения, и даже переменное значение. LM 7812 является стабилизатором, входящим в серию микросхем 78хх. Они отличаются лишь напряжением выхода, остальные параметры остаются прежними.

Для лучшего отвода тепла прикрепляют охлаждающий радиатор к корпусу стабилизатора. Его можно снять от старых устройств с платы. Вместо радиатора можно использовать жесть от банок, нарезав ее полосками, и просверлив в них отверстия для крепления на винт.

(

15

оценок, среднее:

3,73

из 5)

Технические параметры L7812

  • Корпус TO220
  • Номинальный выходной ток, А 1. 2
  • Максимальное входное напряжение, В 40
  • Выходное напряжение, В 12

Цоколёвка показана на рисунке ниже. Там вы можете увидеть и отличия по подключению L7812 от L7912, работающего с общим плюсом.

При всех своих достоинствах, данный стабилизатор напряжения обладает максимальным током нагрузки в 1,5А, что зачастую не позволяет его использовать для питания различного рода токоемких устройств, к примеру автомобильную магнитолу. Однако неплохие характеристики этого стабилизатора и наличие защиты создали ему популярность. Описанная

в datasheet

схема увеличения максимального тока использует дополнительный мощный P-N-P транзистор.

Описанная же мной схема работает c N-P-N транзисторами, куда отлично впишутся КТ803/КТ805/КТ808, которые можно найти везде. Поэтому если вы живете в деревне и мощных P-N-P транзисторов вам не найти, как в 70-80-е годы прошлого века, смело собирайте.

Диод D1 компенсирует падение 0,6В на силовом транзисторе Q1, включенном по схеме эмиттерного повторителя. В качестве D1 пойдут 1N4007 и аналогичные. В качестве Q1 КТ803, КТ805, КТ808, КТ819 в металлических корпусах. Можно все оставить так, а можно сделать и так:

Конденсатор С3 – дополнительная емкость для предотвращения возбуждений, слишком большой номинал ставить не следует, уменьшится коэффициент передачи транзистора. Введена защита от КЗ, при определенном токе, на резисторе R1 начинает падать 0,6В и транзистор Q2 начинает шунтировать переход транзистора Q1. Однако вся мощность в данном случае будет рассеиваться на транзисторе Q1. Так что позаботьтесь о хорошем охлаждении.

Как выбрать радиатор? Выделяемая на силовом транзисторе мощность приблизительно равна:

P=(Uвход-Uвыход)*IнагрТогда приблизительно каждый ватт тепла необходимо рассеить на 10см2 охлаждающей поверхности.

Сам стабилизатор L7812 устанавливается на тот-же радиатор или на отдельный, по площади приблительно в 30 раз меньшей, чем у Q1.

Какой выбрать максимальный ток полученного стабилизатора? Здесь все зависит от тока, который вам нужен. 2)/R1=1.8Вт, с технологическим запасом 50% вам потребуется резистор мощностью 4Вт.

Ну и вот что у меня получилось:

Нагрузочный резистор:

И сами испытания усиленной L7812:

Больше, к сожалению, с моего трансформатора выжать не смог. Дальше вы сможете поэкспериментировать со схемой и сами. Автор: sheriff

Основные характеристики разных вариантов исполнения KA7812:
Part Number Корпус Рабочая температура Макс. ток нагрузки
(долговременный)
Напряжение стабилизации Диапазон входных напряжений Точность выходного напряжения
KA7812 TO-220 0…+125 °C 1.0 A
12.0 V 13-35 V 4%
KA7812A TO-220 0…+125 °C 1. 0 A
12.0 V 13-35 V 2%
KA7812R D-PAK 0…+125 °C 1.0 A
12.0 V 13-35 V 4%

Назначение выводов, цоколёвка, габаритные размеры корпусов KA7812:

Типовая схема включения KA7812:

В зависимости от корпуса, температурных характеристик и точности выходного напряжения замену KA7812 можно подобрать из следующих стабилизаторов: µA7812, LM7812ACT, L7812, KIA7812A, LM7812CT.

Daewoo Lanos 2008, двигатель бензиновый 1.5 л., 87 л. с., передний привод, механическая коробка передач — тюнинг

Участвовать в обсуждениях могут только зарегистрированные пользователи.

Качество компонентов

В реальности производитель очень важен. Всегда старайтесь покупать стабилизаторы, да и любые детали от крупных производителей и у проверенных поставщиков. Я лично предпочитаю STMicroelectronics. Их отличает эмблема ST в углу.

Ноунейм стабилизаторы или производства дедушки чаньханьбздюня очень часто имеют значительный разброс значений выходного напряжения от изделия к изделию. На практике встречалось, что стабилизатор 7805, который должен давать 5 вольт выдавал 4.63, либо же некоторые образцы давали до 5.2 вольта.

Ладно бы это, напряжение то он держит постоянным, но проблема еще и в том, что в несколько раз сильнее выбросы, фон и больше потребление самого стабилизатора. Думаю вы поняли.

Стабилизаторы семейства LM

В нашей статье мы  рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах  ТО-3 (слева)  и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

7812 – стабилизатор напряжения 12 вольт

7812 схема

7812 имеет встроенную защиту по току и защита от перегрева, делая блок питания на его основе практически неубиваемым. Если применяется достаточный теплоотвод (радиатор), то 7812 стабилизатор может отдать в нагрузку ток до 1А. Максимальное напряжение на входе должно быть не меньше 14,8 вольт и не больше 35 вольт.

Хотя эти стабилизаторы и разрабатывались для источников фиксированного стабилизированного напряжения 12 вольт, при применении необходимых “навесных” элементов можно превратить эти стабилизаторы в стабилизированные источники питания регулируемого напряжения от 12 В и более.

Цоколёвка – такая же, как у 7805.

Характеристики стабилизатора L7805CV, его аналоги

Основные параметры стабилизатора L7805CV:

  1. Входное напряжение — от 7 до 25 В;
  2. Рассеиваемая мощность — 15 Вт;
  3. Выходное напряжение — 4,75…5,25 В;
  4. Выходной ток — до 1,5 А.

Характеристика микросхемы приведена в таблице ниже, данные значения справедливы при условии соблюдения некоторых условий. А именно температура микросхемы находится в пределах от 0 до 125 градусов Цельсия, входном напряжении 10 В, выходном токе 500 мА (если иное не оговорено в условиях, колонка Test conditions), и стандартном обвесе конденсаторами по входу 0,33 мкФ и по выходу 0,1 мкФ.

Из таблицы видно, что стабилизатор прекрасно себя ведет при питании на входе от 7 до 20 В и на выходе будет стабильно выдаваться от 4,75 до 5,25 В. С другой стороны, подача более высоких значений приводит к уже более значительному разбросу выходных значений, поэтому выше 25 В не рекомендуется, а понижение по входу менее 7 В , вообще, приведет к отсутствию напряжения на выходе стабилизатора.

При работе на больших нагрузках, более 5 Вт, на микросхему необходимо установить радиатор во избежания перегрева стабилизатора, конструкция позволяет это сделать без каких-либо вопросов. Для более точной (прецизионной) техники, естественно, такой стабилизатор не подходит, т.к. имеет значительный разброс номинального напряжения при изменении входного напряжения.

Так как стабилизатор линейный, использовать его в мощных схемах бессмысленно, потребуется стабилизация, построенная на широтно-импульсном моделировании, но для питания небольших устройств, как телефонов, детских игрушек, магнитол и прочих гаджетов, вполне пригоден L7805. Аналог отечественный — КР142ЕН5А или в простонародье «КРЕНКА». По стоимости аналог также находится в одной категории.

Стабилизатор напряжения – важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки.

Стабилизаторы семейства LM

В нашей статье мы рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Характеристики LM стабилизаторов

Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:

Output voltage – выходное напряжение

Input voltage – входное напряжение

Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.

Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Читать также: Как сделать простую коптильню в домашних условиях

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Работа LM на практике

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме

Берем нашу Макетную плату и быстренько собираем выше предложенную схемку подключения. Два желтеньких – это конденсаторы, хотя их ставить необязательно.

Итак, провода 1,2 – сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

На Блоке питания мы ставим напряжение в диапазоне 7,5 Вольт и до 20 Вольт. В данном случае я поставил напряжение 8,52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? 5,04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7,5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входное напряжение. По даташиту можно подавать на него входное напряжение от 14,5 и до 27 Вольт. Задаем 15 Вольт с копейками.

А вот и напряжение на выходе. Блин, каких то 0,3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

Как сделать блок питания на 5, 9,12 Вольт?

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт? Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических конденсатора для для устранения пульсаций и высокостабильный блок питания на 5 вольт к вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе трансформатора тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый стабилизатор.

Для того, чтобы стабилизатор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт, а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, разницу напряжения, а следовательно и мощность, стабилизатор будет рассеивать на себе.

Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вовсе сгореть.

Заключение

Все большему числу электронных устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданным и не очень приятным последствиям. Используйте же на здоровье достижения электроники, и не парьтесь по поводу питания своих электронных безделушек.

Купить стабилизатор напряжения

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как  по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Схема источника тока на 78xx

Величина тока задается резистором R*, который является нагрузкой для стабилизатора. При этом стабилизатор не заземлен. Заземление происходит только через нагрузку Rн. Такая схема включения вынуждает микросхему пытаться обеспечить в нагрузку заданный ток, путем регулировки напряжения на выходе.

Проверка работоспособности L7805CV

Как проверить работоспособность микросхемы? Для начала можно просто прозвонить выводы мультиметром, если хоть в одном случае наблюдается закоротка, то это однозначно указывает на неисправность элемента. При наличии у вас источника питания на 7 В и выше, можно собрать схему согласно датащита, приведенную выше, и подать на вход питание, на выходе мультиметром фиксируем напряжение в 5 В, соответственно элемент абсолютно работоспособен. Третий способ более трудоемкий, в случае если у вас отсутствует источник питания. Однако в этом случае вы параллельно получите и источник питания на 5 В. Необходимо собрать схему с выпрямительным мостом согласно рисункe, представленного ниже.

Для проверки нужен понижающий трансформатор с коэффициентом трансформации в 18 — 20 и выпрямительный мост, дальнейший обвес стандартный два конденсатора на стабилизатор и все, источник питания на 5 В готов. Значения номиналов конденсаторов тут завышены по отношению к схеме включения L7805 в datasheet, это связано с тем, чтобы лучше сгладить пульсации напряжения после выпрямительного моста. Для более безопасной работы, желательно добавить индикацию для визуализации включения прибора. Тогда схема приобретет такой вид:

Читать также: Датчик отключения компрессора по давлению

Если на нагрузке будет много конденсаторов или любой другой емкостной нагрузки, можно защитить стабилизатор обратным диодом, во избежание выгорания элемента при разряде конденсаторов.

Большим плюсом микросхемы является достаточно легкая конструкция и простота использования, в случае, если вам необходимо питание одного значения. Схемы чувствительные к значениям напряжения обязательно должны снабжаться подобными стабилизаторами чтобы предохранить чувствительные к скачкам напряжения элементы.

Выходной ток источника тока на L78

Небольшой неприятностью представляется ток покоя Id, который складывается с выходным током. Величина тока покоя указывается в даташите. Для большинства стабилизаторов Id = 8мА. Эта цифра показывает наименьшее значение выходного тока. Т.е. Получить источник тока с величиной тока менее 8 млА не выйдет.

В идеале из стабилизатора можно выжать токи от 8 мА до 1 А. Однако при токах больше 200-300 мА крайне желателен радиатор. Гнать токи более 700-800 мА в принципе не желательно. Указанный в даташите 1А — это пиковое значение, в реальности стабилизатор скорее всего перегреется. На основании сказанного можно заключить, что диапазон выходных токов составляет 10-700 мА.

Точность тока и выходное напряжение

При этом нестабильность тока покоя составляет ΔId = 0.5мА. Эта величина определяет точность установки выходного тока. Так же точность задания величины выходного тока определяется точностью сопротивления R*. Лучше использовать резистор, точностью не хуже 1%.

Определенное удобство тут представляет тот факт, что схемы не может выдать напряжение выше заложенного напряжения стабилизации. Например при использовании стабилизатора 7805, напряжение на выходе не сможет превысить 5 вольт. Это бывает критично.

Где купить стабилизатор напряжения

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.


А в видео можете посмотреть как сделать самый простой стабилизатор на LM 317:

Сопротивление нагрузки

В то же время стоит учитывать сопротивление нагрузки. Например если требуется обеспечить 100 мА через нагрузку сопротивлением 100 Ом, то по закону ома получаем напряжение

V= I*R = 0.1 * 100 = 10 Вольт

Такими нехитрыми подсчетами мы получили величину напряжения, которую требуется приложить к нагрузке в 100 Ом, чтобы обеспечить в ней ток в 100мА. Это означает, что для данной задачи рационально поставить стабилизатор 7812 или 7815 на 12вольт и 15 вольт соответственно, дабы иметь запас.

А вот обеспечить такой же ток, через резистор в 10кОм уже не выйдет. Для этого необходимо напряжение в 100 вольт, что данные микросхемы уже не умеют.

Микросхемы стабилизаторы напряжения. Главная ошибка при использовании.

В данной статье рассказано как правильно использовать характеристики микросхем линейных стабилизаторов напряжения 7805,7808,7812 и аналогичных КР142ЕН5,8,12.

Самые распространенные микросхемы, которые применяются в блоках питания различных устройств. Такое широкое распространение получили ввиду предельно простой схемы подключения и довольно хороших параметров при правильном использовании. Основная схема подключения выглядит так:

Микросхемы стабилизаторы напряжения выпускаются разной мощности:

Обозначения на микросхеме:

Корпуса микросхем в зависимости от мощности тоже разные:

Микросхемы стабилизаторы напряжения большой мощности выпускают на выходные напряжения от 5В до 24В:

При этом входные напряжения и температурные характеристики такие:

Характеристики для микросхем средней мощности такие:

И для микросхем малой мощности соответственно такие:

 

 

При этом ряд напряжений на выходе для микросхем малой мощности выглядит так:

3.3; 5; 6; 8; 9; 10; 12; 15; 18; 24 Вольта

Какие же параметры для микросхем стабилизаторов напряжения в основном приводят в интернете? Рассмотрим наиболее распространенные случаи на конкретном примере:

При нагрузке свыше 14 Вт, стабилизатор желательно установить на алюминиевый теплоотвод, чем больше нагрузка, тем больше нужна площадь охлаждаемой поверхности.
Производят в основном в корпусе ТО-220
Максимальный ток нагрузки: 1.5 В
Допустимое входное напряжение: 35 В
Выходное напряжение: 5 В
Число регуляторов в корпусе: 1
Ток потребления: 6 мА
Погрешность: 4 %
Диапазон рабочих температур: 0 C … +140 C
Отечественный аналог КР142ЕН5А

 

Казалось, бы, все выписано из документации (DataSheet). Как человек воспринимает такую информацию. Наибольшее напряжение 35 В, хорошо, я не буду брать предел, возьму 30В. Максимальный ток нагрузки 1,5 А. Не буду брать предельное значение, возьму 1 А. Собирает схему по этим данным, а она, проработав некоторое время выходит из строя. Некоторые не понимают, грешат на качество микросхем. Ведь не заставлял работать микросхему на предельных значениях напряжения и тока, а она вышла из строя.

А все дело в том, что многие забывают о главном параметре, который указан в документации, но как-то не привлекает внимание так как напряжение и ток. Это максимальная мощность, которую может рассеивать микросхема стабилизатор. Как правило ее указывают прямо. Например, для мощных микросхем это 1,5 Вт без радиатора и 15 Вт с радиатором.

Что же получается при выбранном токе 1А и максимальном напряжении 30В, например, для микросхемы с выходным напряжением 5В. Поскольку стабилизатор линейный то на микросхеме упадет 30 – 5 = 25 В. При токе 1А мощность, рассеиваемая на микросхеме, составит 1А × 25В = 25Вт. Это почти в два раза больше допустимой мощности с радиатором. Вот она и выходит из строя. Получается, что при входном напряжении 30 В максимальный ток в нагрузке не может превышать 15 Вт : 25 В = 0,6 А.

В таблицах, приведенных выше в этой статье, для микросхем средней мощности без радиатора предельная мощность 1,2 Вт, а с радиатором, 12 Вт. Для микросхем малой мощности установка радиаторов не предусмотрена и максимальная рассеиваемая мощность составляет 0,625 Вт.

Именно мощность является определяющей при выборе предельных значений тока и напряжения.

Для наглядности предельные значения мощности, напряжения и тока для микросхем стабилизаторов напряжения разной мощности сведены в одну таблицу:

Минимальное падение напряжения на микросхеме 2,5В.

Если руководствоваться этим правилом, микросхемы будут работать надежно.

Материал статьи продублирован на видео:

Схема источника тока на 7805 и других 78xx стабилизаторах

Ни для кого не секрет, как собрать блок питания на стабилизаторах 7805, 7809, 7812 и тд. Но не все знают, что на этих же стабилизаторах можно собрать приличный источник тока. Схема источника тока и стала героем этой статьи. 

Так выглядит стандартная схема стабилизатора напряжения на микросхемах серии 78xx. Эти микросхемы настолько популярны, что их выпускает каждая, уважающая себя контора. Обычно в разговоре или на схеме даже опускают первые буквы, характеризующие производителя, указывая просто 7815. Ибо нефиг захламлять схему и сразу ясно, что речь о стабилизаторе напряжения.

Для тех, кто мало знаком с подобными стабилизаторми небольшое видео по сборке «на коленках»:

Качество компонентов

В реальности производитель очень важен. Всегда старайтесь покупать стабилизаторы, да и любые детали от крупных производителей и у проверенных поставщиков. Я лично предпочитаю STMicroelectronics. Их отличает эмблема ST в углу.

Ноунейм стабилизаторы или производства дедушки чаньханьбздюня очень часто имеют значительный разброс значений выходного напряжения от изделия к изделию. На практике встречалось, что стабилизатор 7805, который должен давать 5 вольт выдавал 4.63, либо же некоторые образцы давали до 5.2 вольта.

Ладно бы это, напряжение то он держит постоянным, но проблема еще и в том, что в несколько раз сильнее выбросы, фон и больше потребление самого стабилизатора. Думаю вы поняли.

Схема источника тока на 78xx

Величина тока задается резистором R*, который является нагрузкой для стабилизатора. При этом стабилизатор не заземлен. Заземление происходит только через нагрузку Rн. Такая схема включения вынуждает микросхему пытаться обеспечить в нагрузку заданный ток, путем регулировки напряжения на выходе.

Выходной ток источника тока на L78

Небольшой неприятностью представляется ток покоя Id, который складывается с выходным током. Величина тока покоя указывается в даташите. Для большинства стабилизаторов Id = 8мА. Эта цифра показывает наименьшее значение выходного тока. Т.е. Получить источник тока с величиной тока менее 8 млА не выйдет.

Скачать даташит на L78xx

В идеале из стабилизатора можно выжать токи от 8 мА до 1 А. Однако при токах больше 200-300 мА крайне желателен радиатор. Гнать токи более 700-800 мА в принципе не желательно. Указанный в даташите 1А — это пиковое значение, в реальности стабилизатор скорее всего перегреется. На основании сказанного можно заключить, что диапазон выходных токов составляет 10-700 мА.

Точность тока и выходное напряжение

При этом нестабильность тока покоя составляет ΔId = 0.5мА. Эта величина определяет точность установки выходного тока. Так же точность задания величины выходного тока определяется точностью сопротивления R*. Лучше использовать резистор, точностью не хуже 1%.

Определенное удобство тут представляет тот факт, что схемы не может выдать напряжение выше заложенного напряжения стабилизации. Например при использовании стабилизатора 7805, напряжение на выходе не сможет превысить 5 вольт. Это бывает критично.

Сопротивление нагрузки

В то же время стоит учитывать сопротивление нагрузки. Например если требуется обеспечить 100 мА через нагрузку сопротивлением 100 Ом, то по закону ома получаем напряжение

V= I*R = 0.1 * 100 = 10 Вольт

Такими нехитрыми подсчетами мы получили величину напряжения, которую требуется приложить к нагрузке в 100 Ом, чтобы обеспечить в ней ток в 100мА. Это означает, что для данной задачи рационально поставить стабилизатор 7812 или 7815 на 12вольт и 15 вольт соответственно, дабы иметь запас.

А вот обеспечить такой же ток, через резистор в 10кОм уже не выйдет. Для этого необходимо напряжение в 100 вольт, что данные микросхемы уже не умеют.

Заключение

Конечно такой источник тока имеет свои ограничения, однако он может пригодиться для подавляющего числа задач, где не требуется особая точность. Простота схемы и доступность компонентов, позволяет на коленке собрать источник тока.

7812 Контактная и электрическая схема

Очень простые схемы с использованием микросхемы 7812, любой может легко сделать

7812 — это известная микросхема, которая широко используется в схемах стабилизатора напряжения 12 В. Собственно говоря, это полноценный автономный регулятор напряжения. Нам нужно использовать только два конденсатора, один на входе и второй на выходе 7812, чтобы получить чистое выходное напряжение, и даже эти конденсаторы не являются обязательными для использования. Чтобы получить ток 12 В 1 А, 7812 следует установить на хорошую пластину радиатора.Благодаря форме 7812, напоминающей транзистор, легко устанавливается на пластину радиатора. 7812 имеет встроенную защиту от перегрева и короткого замыкания, что делает его хорошим выбором для изготовления источников питания. На рынках электроники он продается под различными названиями, такими как 7812a, 7812act, 7812t и lm7812. Все они почти идентичны, с небольшими различиями или вообще без них. Диапазон входного напряжения 7812 составляет от 14 до 35 В. Превышение диапазона напряжений может повредить ИС. Ниже приведена схема контактов 7812, чтобы прояснить распиновку соединений на случай, если вы захотите провести некоторые эксперименты.

7812 Идентификация контактов

Схема контактов 7812 Если вы держите вверх ногами (контакты вверх) и номер IC обращен к вам, то левый контакт будет выходом регулятора напряжения, центральный контакт будет заземлен, а правый контакт будет контактом входа напряжения. По моему опыту, максимальный безопасный ток, который вы можете получить от одной микросхемы 7812, составляет 1 А. Если вам нужно больше мощности, есть несколько способов сделать это. Более одного 7812 можно использовать параллельно, чтобы получить ток более 1 А, но выходное напряжение каждого 7812 может незначительно изменяться, что приводит к несбалансированной нагрузке на всех из них.Это может привести к проблемам с балансировкой нагрузки и может повредить микросхему, на которой передается наибольший ток. Однако есть способ решить эту проблему. Ниже я привел схематическую диаграмму, на которой две микросхемы 7812 соединены вместе и обе несут почти одинаковую нагрузку. По крайней мере, текущая разница не слишком велика, чтобы повредить любую микросхему.

7812 Объяснение использования

7812 Принципиальная схема 7812 Параллельная схема

Обратите внимание, что на этой принципиальной схеме я использовал резисторы для балансировки нагрузки, поэтому выходной сигнал этой схемы регулятора напряжения может быть немного неточным.Оба резистора должны быть минимум 15 Вт или выше. Если вы не найдете таких резисторов в вашем районе, вы можете сделать их, используя медный провод 32-го калибра или более тонкий. Эта параллельная цепь 7812 обеспечивает 12 В и ток около 2 А. Вы можете увеличить число 7812, но для каждого дополнительного 7812 потребуется резистор на выходе. Ниже приведена ссылка на простую, но полную принципиальную схему источника питания, разработанную с использованием 7812. Схема регулятора напряжения

Размещено или обновлено:

19 декабря 2010 г.

Комментариев:

9

Введение в регулятор напряжения L7812CV [FAQ]

L7812CV представляет собой трехконтактный стабилизатор положительного напряжения.Этот регулятор может обеспечивать локальное регулирование на карте, устраняя проблемы распределения, связанные с одноточечным регулированием.

Этот блог будет содержать подробную информацию о L7812CV, включая распиновку, функции, приложения, схемы, модели САПР и так далее.


Каталог


L7812CV Конфигурация выводов


L7812CV Упаковка


L7812CV Модели CAD


L7812CV Характеристики

  • Выходной ток до 1.5 А

  • Выходные напряжения 5; 6; 8; 8.5; 9; 12; 15; 18; 24 В

  • Тепловая защита от перегрузки

  • Защита от короткого замыкания

  • Защита выходного перехода SOA

  • Допуск выходного напряжения 2% (версия A)

  • Гарантия в расширенном температурном диапазоне (версия A)


L7812CV Электрические характеристики


L7812CV Принципиальная схема


L7812CV Приложения

  • Регулятор постоянного напряжения +12 В для питания микроконтроллеров и датчиков в большинстве проектов

  • Регулируемый выходной регулятор

  • Ограничитель тока для определенных приложений

  • Регулируемая двойная поставка

  • Схема защиты от переполюсовки выходов


L7812CV Типичное применение


L7812CV Функциональные эквиваленты

Номер детали

Описание

Производитель

AN7812

СИЛОВЫЕ ЦЕПИ

Регулятор постоянного положительного стандарта, 12В, полярный, PSFM3, TO-220AB, 3-контактный

Электронные компоненты Panasonic

ML7812FA

СИЛОВЫЕ ЦЕПИ

Регулятор постоянного положительного стандарта, 12 В, полярный, PSFM3, TO-220F, 3 контакта

Micro Electronics Corporation

IP140AIG-15

СИЛОВЫЕ ЦЕПИ

ФИКСИРОВАННЫЙ ПОЛОЖИТЕЛЬНЫЙ РЕГУЛЯТОР 15 В, SFM3, TO-257, 3 КОНТАКТА

TT Electronics Power and Hybrid / Semelab Limited

SG7815AIG

СИЛОВЫЕ ЦЕПИ

Регулятор постоянного положительного стандарта, 15 В, полярный, CSFM3, с ГЕРМЕТИЧЕСКИМ УПЛОТНЕНИЕМ, TO-257, 3 КОНТАКТА

Linfinity Microelectronics

SG7812IG

СИЛОВЫЕ ЦЕПИ

Стационарный положительный стандартный стабилизатор, 12В, полярный, с ГЕРМЕТИЧЕСКИМ УПЛОТНЕНИЕМ, TO-257, 3 КОНТАКТА

Корпорация Microsemi

MC7815AECTBU

СИЛОВЫЕ ЦЕПИ

ФИКСИРОВАННЫЙ ПОЛОЖИТЕЛЬНЫЙ РЕГУЛЯТОР 15 В, PSFM3, СООТВЕТСТВУЮЩИЙ ROHS, TO-220, 3 КОНТАКТА

ООО «Рочестер Электроникс»

KA7812AE

СИЛОВЫЕ ЦЕПИ

Регулятор постоянного положительного стандарта, 12 В, полярный, TO-220, 3 контакта

Fairchild Semiconductor Corporation

КА7812АТУ

СИЛОВЫЕ ЦЕПИ

Регулятор постоянного положительного стандарта, 12В, полярный, PSFM3, TO-220, 3-контактный

Fairchild Semiconductor Corporation

MC7812ACTG

СИЛОВЫЕ ЦЕПИ

Линейный стабилизатор напряжения, 1 А, от 5 до 24 В, положительный выход Vout: 12.0 В; TJ = от 0 ° C до + 125 ° C, TO-220, ОДИН МАНОМЕТР, 3 ОТВОДА, 50 ТРУБ

ON Semiconductor

MC7812CTG

СИЛОВЫЕ ЦЕПИ

Линейный стабилизатор напряжения, 1 А, от 5 до 24 В, положительный выход Vout: 12,0 В; TJ = от 0 ° C до + 125 ° C, TO-220, ОДИНОЧНЫЙ МАНОМЕТР, 3 ОТВОДА, 50 ТРУБ

ON Semiconductor


L7812CV Рекомендации по проектированию

Стабилизаторы постоянного напряжения серии L78 разработаны с защитой от тепловой перегрузки, которая отключает цепь при чрезмерной перегрузке по мощности, внутренней защитой от короткого замыкания, которая ограничивает максимальный ток, который будет выдерживать цепь. проход, и компенсация безопасной зоны выходного транзистора, которая снижает выходной ток короткого замыкания при увеличении напряжения на проходном транзисторе.Во многих слаботочных приложениях компенсационные конденсаторы не требуются.

Однако рекомендуется шунтировать вход регулятора с помощью конденсатора, если регулятор подключен к фильтру источника питания большой длины или если емкость выходной нагрузки велика. Входной байпасный конденсатор должен быть выбран для обеспечения хороших высокочастотных характеристик для обеспечения стабильной работы при любых условиях нагрузки. Следует выбрать танталовый, майларовый или другой конденсатор емкостью 0,33 мкФ или более с низким внутренним импедансом на высоких частотах.Шунтирующий конденсатор следует монтировать как можно более короткими выводами непосредственно через входные клеммы регулятора. Обычно следует использовать хорошие методы строительства для минимизации контуров заземления и падения сопротивления проводов, поскольку регулятор не имеет внешнего измерительного провода.

Добавление операционного усилителя позволяет настраивать более высокие или промежуточные значения при сохранении характеристик регулирования. Минимальное напряжение, получаемое с помощью устройства, на 2 В больше, чем напряжение регулятора.Схема сильноточного регулятора напряжения (рисунок, показанный ниже) может быть изменена для обеспечения защиты источника питания от короткого замыкания путем добавления резистора обнаружения короткого замыкания, RSC и дополнительного транзистора PNP. Датчик тока PNP должен выдерживать ток короткого замыкания трехполюсного регулятора. Поэтому требуется пластиковый силовой транзистор на четыре ампера.


L7812CV Популярность по регионам


L7812CV Анализ рыночных цен


L7812CV Производитель

Группа компаний STmicroelectronics (ST) была создана в июне 1988 года в результате слияния итальянских компаний SGS Microelectronics и французской компании Thomson.В мае 1998 года SGS-Thomson Microelectronics изменила свое название на STmicroelectronics Limited.

Это крупнейший в мире производитель специализированных аналоговых микросхем и микросхем преобразования энергии, крупнейший в мире поставщик промышленных полупроводников и микросхем для телевизионных приставок, а также мировой лидер в производстве дискретных компонентов, модулей камер для мобильных телефонов и автомобильных интегральных схем.


Спецификация компонентов

FAQ

L7812CV — трехконтактный стабилизатор положительного напряжения.Этот регулятор может обеспечивать локальное регулирование на карте, устраняя проблемы распределения, связанные с одноточечным регулированием.

KA7812 — это изделие FAIRCHILD с максимальным выходным током 1 А, а L7812CV — изделие ST с максимальным выходным током 1,5 А. Следовательно, когда требования к выходному току не превышают 1 А, их можно использовать совместно. Если выходной ток составляет от 1 до 1,5 А, можно использовать только L7812CV.

Если он упакован как TO-220, метод идентификации — смотреть стороной со словами к себе, а булавками вниз.Посчитайте 123 слева направо. Контакт 1 является входным, контакт 2 — заземлением, а контакт 3 — выходным. 78 Серия микросхем регулятора напряжения должна иметь вход постоянного тока, если вход и выход поменяны местами, микросхема будет сожжена. Кроме того, входное напряжение постоянного тока не должно быть слишком высоким.

LM7812CV и LM7812CT — трехконтактные регуляторы +12 В, максимальный выходной ток составляет 1 А. Разница в том, что производители у них разные.

Максимальный выходной ток 7812 обычно составляет 1 А (у некоторых производителей 1.5A), в то время как максимальный выходной ток 78M12 составляет 0,5A, поэтому 7812 может заменить 78M12, но 78M12 не сможет заменить 7812 (только если ток нагрузки не превышает 0,5A). Могут заменять друг друга только при определенных обстоятельствах).

12В. Выходное напряжение трехполюсной интегральной схемы стабилизатора является выходным напряжением. Например, 7805 выдает 5В, 7815 — 15В. Максимальный выходной ток стабилизированных интегральных схем серии 78 обычно равен 1.5А.

Максимальное входное напряжение 7812 составляет 35 В. Максимальный входной ток составляет 1 А, но его наилучшее рабочее напряжение составляет 15 В ~ 17 В, особенно при большом токе нагрузки. Поскольку это линейный регулятор, если разница входного и выходного напряжения и выходной ток одновременно велики, это вызовет чрезмерное потребление энергии и сильное тепловыделение.

IC 7812 Описание контактов и цепей регулятора напряжения

Об IC 7812 Регулятор напряжения

7812 Регулятор напряжения представляет собой автономную интегральную схему фиксированного линейного регулятора напряжения.Микросхема принадлежит к семейству стабилизаторов напряжения ic 78xx.

ИС регулятора напряжения 7812 проста в использовании и доступна по очень низкой цене. Последние две цифры 7812 указывают на выходное напряжение, равное 12 В

. 7812 регулятор напряжения

IC 7812 — это стабилизатор положительного напряжения, что означает, что он генерирует положительное напряжение относительно общей земли.

В случае, если требуется подача как положительного, так и отрицательного напряжения в одной цепи. Стабилизатор напряжения 7812 совмещен с соответствующей ИС семейства 79ХХ, то есть 7912 IC.

Регулятор напряжения 7812 обычно выпускается в корпусах TO-220, а также в корпусах TO-3, TO-92 и корпусах для поверхностного монтажа.

Регуляторы напряжения ic 7812 работают с оптимальными характеристиками, если входное напряжение как минимум на 2,5 В больше, чем выходное напряжение (т. Е. 14,5 В мин.), А ток на 1 или 1,5 А больше. Хотя разница в напряжении и токе для других корпусов IC отличается.

Как использовать IC 7812 Схема регулятора напряжения 7812

Микросхема 7812 имеет 3 контакта.

  • Положительный вход находится на контакте 1.
  • Контакт 2 является общим как для входного, так и для выходного напряжения.
  • Вывод 3 — положительный выход.

При использовании настройки регулятора напряжения необходимо следить за тем, чтобы ток через микросхему регулятора напряжения не превышал допустимую, указанную в таблице данных, иначе он может сгореть. Вы также должны быть осторожны с подключением к источнику напряжения. Обратная полярность действительно очень быстро нагревает микросхему, вы также можете использовать диод с pn переходом, чтобы предотвратить такое состояние.

Также прочтите jk flip flop.

Вы можете использовать конденсаторы, чтобы минимизировать колебания напряжения в цепи и поддерживать постоянное напряжение на входе и выходе схемы.

Также смотрите разницу между микропроцессором и микроконтроллером.

Преимущества ic 7812
  • 7812 микросхема регулятора напряжения не требует каких-либо компонентов для балансировки или насыщения их выходного напряжения.
  • 7812 ic имеет встроенную защиту от сильных токов.Он имеет радиатор с подключенной к нему общей массой. Радиатор предохраняет микросхему регулятора от перегрева и короткого замыкания.

См. Также описание типов транзисторов.

+/- 12 В двойной источник питания с использованием 7812, 7912

Это схема двойного источника питания +/- 12 В с использованием 7812 и 7912. Мы используем стабилизатор напряжения LM7812 IC для + 12 В и LM7912 для -12 В. . Эта схема подходит для регулировки тембра предусилителя со схемой OP-AMP.Он может выдавать выходной ток не более 1 А.

Я покажу вам интересную концепцию. Когда мы строим небольшую схему предусилителя. Для этого необходимо использовать блок питания. Для этого требуется небольшой ток питания — всего 100 мА. Но особенность в том, что требуется двойное напряжение на трех выводах: положительном, отрицательном и заземляющем. Итак, мы используем двойной блок питания на 12 В.

Как это работает

Есть две идеи схемы, которые вы выберете в своей работе. В первой схеме используется однополупериодный выпрямитель.Второй — двухполупериодный выпрямитель.

Подробнее Схема источника питания 12 В с использованием 7812

Слаботочная версия

Сначала приведена простая схема, представленная ниже.


Схема двойного источника питания +/- 12 В
Если ваша нагрузка использует слабый ток не более 300 мА. Вы можете использовать эту схему.

В схеме присутствует нерегулируемый блок питания. К ним относятся S1, F1, T1, D1, D2, C1, C2, C3 и C4. Так как это два выпрямительных диода в виде однополупериодного выпрямителя.Вы должны использовать конденсаторы двойного фильтра, C2 и C4. Для уменьшения пульсаций напряжения.

В этой схеме используется трансформатор 300 мА переменного тока, 15 В, трансформатор тока, 15 В. (30V) Когда он преобразуется в DCV. Это напряжение возрастает примерно до 42 В постоянного тока. Каждое входное напряжение составляет 21VDC, поступает на 7812 и 7912. Оба IC-регулятора поддерживают постоянное напряжение на выходе.

Прочие детали рабочие.

  • IC1-IC2 не требует удержания радиаторов из-за очень малых токов.
  • C5, C6 — конденсаторы фильтра для уменьшения пульсации сигнала.
  • C7 очищает переходное напряжение на выходе.
  • LED1 — индикатор включения питания. А R1 — это ограничитель тока LED1.
  • C1, C2, C3, C4 — это конденсаторы фильтра для сглаживания импульса постоянного тока до стабильного напряжения постоянного тока. Если у вас их много. Они хороши.

Более высокий ток

Если вам нужен двойной источник питания 12 В, ток более 500 мА. Эта схема вам подходит.

По схеме он аналогичен схеме выше.Но они меняют некоторые компоненты следующим образом.

    • Измените номинал тока трансформатора вторичной обмотки 1А.
    • Лучше использовать двухполупериодные выпрямительные диоды. У них 4 диода, 1N4007.
    • Итак, можно использовать два конденсатора фильтра. Но есть более высокий ток, чем указано выше.
    • Конденсаторы фильтра C3, C4, C7 и C4 для очистки входа переходного напряжения.
    • Также конденсаторы C5 и C6 фильтруют пульсации напряжения на выходе.
    • LED1 показывает включение питания с помощью ограничивающего резистора .

Рекомендуется:

Детали, которые вам понадобятся

  • IC1: 7812 положительный регулятор напряжения
  • IC2: 7912 отрицательный регулятор напряжения
  • D1-D4: 1N4007, 1000 В 1A Диоды
  • C1, C2: 2,200 Электролитические конденсаторы мкФ 35 В
  • C3, C4: 0,22 мкФ 50 В Керамические конденсаторы
  • C5, C6: 100 мкФ 35 В Электролитические конденсаторы
  • C7, C8: 0.1 мкФ 50 В Керамические конденсаторы
  • LED1 как вам нравится
  • R1: резистор 2,7 кОм 0,5 Вт
  • T1: 220 В или 117 В до 15 В Трансформатор CT 15 В 1 А
  • S1: выключатель питания
  • F1: предохранитель 0,5 A

Другие идеи внешних схем:
+/- 12V ДВОЙНОЙ ИСТОЧНИК ПИТАНИЯ

Как собрать

В этом проекте вы можете собрать их на перфорированной плате. Он прост в использовании и очень дешев.

Предостережения
Вам необходимо знать контакты всех компонентов.Их нужно только делать правильно. Например, я поставил не тот электролитический конденсатор. При входе в блок питания вызывает его взрыв. Я был слишком шокирован. Но я не прекращаю этот проект.

Посмотрите на соединение выводов 7912, 7812, диода и электролитического конденсатора.


Необходимо подключить выводы электролитических конденсаторов, диода и светодиода. Не работает и не разрушает.

Мы часто используем серию 78xx. Итак, вы можете использовать 7812 то же самое.

Но…

7912 Распиновка

Осторожно, распиновка 7912 не совпадает с 7812.Это разница контактов входа и земли. Я его поменял. Мой 7912 слишком горячий. Пожалуйста, посмотрите на это еще раз.

Спасибо, что прочитали плохой английский рассказ.

Кроме того, эти источники питания постоянного тока могут быть подключены к схеме двойного источника питания 12 В
Это позволяет нам регулировать напряжение 12 В.

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

% PDF-1.3 % 1 0 объект > поток конечный поток эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > / Parent 3 0 R / Contents [59 0 R] / Type / Page / Resources> / Shading> / XObject> / ProcSet [/ PDF / Text / ImageC] / Font >>> / MediaBox [0 0 595.LҊ = GSE? _,} Y)) BͽY = ݟ RZ? O_t_U (KI / œUX? BA

ؾ%! K / Ij & dg «k @ Cxq] Z% [P» YsC7AKVZ)] `DrVSa ~~ 9: oTp ty ב sIr1X`Y:, k9rN _0JijC {ȣ1! | ͕ «. $ ‘tJ63G

7805, 7812 и т. д.» Примечания к электронике

Стабилизаторы напряжения серии 7800, включая 7805, 7812, 7815, 7824 и т. Д., Очень просты в использовании для различных схем и приложений линейного питания.


Пособие по цепям линейного источника питания и руководство Включает:
Линейный источник питания Шунтирующий регулятор Регулятор серии Ограничитель тока Регуляторы серий 7805, 7812 и 78 **

См. Также: Обзор электроники блока питания Импульсный источник питания Защита от перенапряжения Характеристики блока питания Цифровая мощность Шина управления питанием: PMbus Бесперебойный источник питания


В течение многих лет линейные регуляторы напряжения серии 7800, включая более популярные версии этой серии, такие как 7805, 7812 и т. Д., Были самыми популярными доступными микросхемами регуляторов напряжения и использовались во многих электронных схемах, больших и малых.

Стабилизаторы напряжения серии 7800 были очень просты в использовании, стоили дешево и обеспечивали отличные характеристики.

Хотя сейчас они немного устарели, их все же можно приобрести очень дешево и обеспечить отличные характеристики — идеальный выбор для многих электронных устройств и схем, особенно для домашних конструкторов и т. Д.

Существовали не только линейные регуляторы напряжения серии 7800, дающие положительное выходное напряжение, но также были дополнительные стабилизаторы серии 7900, используемые для линий отрицательного напряжения.

Технические характеристики регуляторов напряжения серии

7800

Стабилизаторы напряжения серии 7800 очень просты в использовании, а их технические характеристики означают, что их можно очень легко использовать в различных приложениях для регуляторов напряжения и линейных источников питания.


7800 Варианты регулятора напряжения и особые характеристики
Параметр Номер IC мин. Макс Блок
Входное напряжение 7805 7 25 В
7808 10.5 25 В
7810 12,5 28 В
7812 14,5 30 В
7815 17,5 30 В
7824 27 38 В
Выходной ток, I O 1.5 А
Рабочая температура перехода, Т Дж 7800 серии 125 ° С

Другие электрические характеристики немного различаются в пределах диапазона, поэтому 7805 был выбран как один из наиболее широко используемых. Технические характеристики других регуляторов напряжения серии 7800, таких как 7812, можно оценить по 7805, поскольку они имеют схожие общие характеристики, но изменены для конкретного напряжения устройства.

Четыре линейных регулятора напряжения серии 7800, каждый с разным выходным напряжением: 5 В, 9 В, 12 В, 15 В
Технические характеристики для различных параметров регуляторов напряжения серии 7805
Параметры и условия мин. Типичный Макс Блок
Выходное напряжение при 25 ° C 4,8 5,0 5.2 В
Выходное напряжение от 0 ° C до 125 ° C 4,75 5,25 В
Регулировка входного напряжения при ° 25 ° C В I = от 7 В до 25 В 3 100 мВ
Подавление пульсаций, В I от 8 В до 18 В f = 120 Гц 62 78 дБ
Регулировка выходного напряжения, I O от 5 мА до 1.5А 15 100 мВ
Выходное сопротивление, f = 1 кГц 0,017 Ом
Температурный коэффициент напряжения, I O 5 мА -1,1 мВ / ° C
Напряжение отключения, I O = 1A 2 В
Выходной ток короткого замыкания при 25 ° C 750 мА
Пиковый выходной ток при 25 ° C 2.2 А

Эти спецификации для регулятора напряжения 7805 предоставляют спецификации для этого варианта, но имейте в виду, что спецификации будут незначительно отличаться у разных производителей, а также они дают представление о возможностях других вариантов, 7808 , 7812, 7815, 7824 и др.

Комплекты регуляторов напряжения серии 7800

Основной пакет для регуляторов серии 7800: от 7805 и 7808 до 7812 и 7812 и т. Д. — это пакет TO220.Распиновка очень простая — есть три подключения, а именно: вход, выход и общий. Металл на корпусе соединен с общим проводом, поэтому он идеально подходит для установки на радиаторы, которые обычно механически и электрически связаны с землей системы.

Корпус регулятора напряжения серии 7800 и его распиновка

Металлическая точка крепления / крепления подключается к контакту заземления. В большинстве рабочих условий контакт заземления совпадает с контактом электрического заземления, но будьте осторожны при использовании регулятора в конфигурации с переменным напряжением, когда ему, возможно, придется располагаться над землей.В этом случае требуется набор изолирующих шайб при прикручивании к радиатору.

Варианты мощности серии 7800

Хотя основной тип регуляторов серии 7800 использует корпус в стиле TO220 и обеспечивает выходную мощность 1,5 А, существуют также другие варианты, которые могут обеспечивать различные уровни мощности.

Хотя многие из основных спецификаций остаются неизменными, ограничения мощности различны, что позволяет включать их в разные пакеты. Таким образом, их можно использовать во многих различных областях.

Выбор интегральных схем регулятора напряжения серии 7800

Эти варианты обозначаются буквой H для высокой мощности, M для средней мощности и L для низкой мощности в номере детали.

Регулятор серии Типичный максимальный ток (A) Общие типы пакетов
7800 от 1,0 до 1,5 TO220
78H00 5 ТО3
78M00 0.5 TO126
78L00 0,1 ТО92

Примечание: Фактический максимальный номинальный ток для интегральных схем регулятора напряжения может незначительно отличаться от одного производителя к другому. Приведенные значения являются типичными и задаются большинством устройств в определенном диапазоне, но сверьтесь с фактическими техническими характеристиками, прежде чем им потребуется запускать их близко к заявленным максимальным значениям.

Преимущества и недостатки регуляторов 7800

Хотя регуляторы серии 78xx во многих случаях предлагают очень хорошее решение для линейного регулятора напряжения, стоит обратить внимание как на преимущества, так и на недостатки использования этих схем регулятора напряжения.

Преимущества регуляторов серии 78xx

  • Очень проста в использовании — просто выберите требуемый регулятор серии 7800 и вставьте его в схему, чтобы он заработал.
  • Требуется очень мало дополнительных электронных компонентов — при использовании базовой схемы для входа и выхода требуются только конденсаторы.
  • Низкая стоимость — эти линейные регуляторы напряжения можно получить по очень низкой цене.

Недостатки регулятора серии 78xx

  • Стабилизаторы серии 7800 — это старая технология, и в наши дни обычно используются более современные интегральные схемы.
  • Это линейный стабилизатор напряжения, поэтому они обладают низким КПД по сравнению с импульсными источниками питания.
  • Для работы микросхемы регулятора напряжения требуется падение напряжения на ней — обычно это напряжение около 2.Минимум 5В, а лучше больше.
7815 линейный регулятор напряжения IC

Базовая схема регулятора напряжения серии 7800

Конструкция электронной схемы с использованием регуляторов напряжения серии 7800 очень проста. Это почти вопрос их подключения: вход, выход и земля.

Естественно, есть несколько дополнительных электронных компонентов, которые могут потребоваться для обеспечения правильной работы схемы регулятора напряжения.

Базовая схема регулятора напряжения серии 7800

* Этот конденсатор необходим для обеспечения стабильности регулятора.Обычно, если сглаживающий конденсатор для выпрямителей находится рядом, его можно не использовать, но если есть провод какой-либо длины, его необходимо включить, чтобы гарантировать стабильность цепи.

** Этот конденсатор включен в цепь для устранения шумов и переходных процессов.

Это основная схема, используемая для любого регулятора напряжения серии 7800. Он очень успешен и не требует дополнительных компонентов, кроме тех, которые показаны для основной операции.

Отрицательная цепь питания регулятора напряжения серии

7800

Несмотря на то, что существуют регуляторы серии 7900 для отрицательного питания, в некоторых случаях требуется стабилизатор отрицательного напряжения, который может быть недоступен, или может потребоваться уменьшить количество электронных компонентов.В любом случае можно использовать стабилизатор серии 7800 с некоторыми изменениями в цепи для регулирования линии отрицательного напряжения.

Отрицательная шина. Схема регулятора напряжения серии 7800

Важное примечание: Для правильной работы этой цепи обе входные клеммы (Vi) должны быть плавающими. Если они заземлены, то на выходе регулятора произойдет короткое замыкание, и он не будет работать.

Схема регулятора переменного напряжения

Несмотря на то, что регуляторы серии 7800 по сути являются стабилизаторами постоянного напряжения, при тщательной разработке электронных схем можно получить возможность регулировать выходной сигнал.

Для достижения переменного выходного напряжения необходимо повысить потенциал общей линии, добавив несколько дополнительных электронных компонентов.

Общие характеристики регулятора не так хороши, как если бы общая линия была подключена непосредственно к земле, но все же очень хороши для большинства приложений.

Переменный линейный источник питания с использованием регулятора напряжения серии 7800

Значение компонентов и выходное напряжение можно определить из следующего уравнения:

Где
В xx = напряжение регулятора, т.е.е. 12 вольт для 7812
I O = ток в общей линии

При расчете значений резисторов имейте в виду, что ток, потребляемый общим соединением, обычно составляет около 5 мА, а не более нормальное значение около 5 мкА, потребляемое микросхемой регулятора, такой как LM317, которая была разработана для работы в этом режиме. Убедитесь, что резисторы достаточно малы, чтобы выдержать этот ток.

Источник питания с регулируемой регулировкой, использующий интегральную схему серии 7800, является полезным способом обеспечения некоторого изменения напряжения с использованием одного из этих очень полезных электронных компонентов.

Серия 7800/7900 с двойным питанием

С операционными усилителями и многими другими схемами, требующими двойных, т. Е. Положительных и отрицательных шин, часто бывает полезно иметь источник питания с регуляторами напряжения, которые обеспечивают как положительное, так и отрицательное питание.

Стабилизаторы напряжения серии 7800 идеально подходят для обеспечения положительной шины, а их собратья, регуляторы серии 7900, обеспечивают то же самое, но для отрицательной шины. Таким образом, две микросхемы регулятора напряжения дополняют друг друга, как и предполагалось.

Двойной стабилизатор напряжения, обеспечивающий положительное и отрицательное питание с использованием микросхем регуляторов серий 7800 и 7900

Схема двойного линейного стабилизатора напряжения очень понятна. Схема относительно устойчива к реальным значениям конденсаторов, но ошибается на стороне большего, а не на меньшей стороне, гарантируя, что конденсаторы 0,1 мкФ и 0,33 мкФ соответствуют этим значениям, которые необходимо удалить, и RF, для которых электролитические конденсаторы не будут работать так же хорошо. Электролитические конденсаторы имеют тенденцию иметь верхний предел частоты примерно 100 кГц в результате электролитического действия, которое придает им их емкость.

Эта схема сдвоенного линейного регулятора напряжения проста в сборке с использованием относительно небольшого количества электронных компонентов и работает очень хорошо.

Интегральные схемы регуляторов напряжения серии 7800 — одни из самых полезных микросхем стабилизаторов, когда-либо созданных. В то время как другие типы обогнали их в различных аспектах, микросхемы 7800 по-прежнему широко доступны и используются в больших количествах. Чипы можно купить у различных поставщиков и дистрибьюторов.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Регуляторы напряжения — положительные 1.0 A

% PDF-1.4 % 1 0 объект > эндобдж 6 0 obj / ModDate (D: 20200430030149 + 08’00 ‘) / Производитель (Acrobat Distiller 19.0 \ (Windows \)) / Заголовок (Регуляторы напряжения — положительный 1,0 А) >> эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > поток application / pdf

  • Регуляторы напряжения — положительный 1,0 A
  • zbjrpg
  • Эти регуляторы напряжения представляют собой монолитные интегральные схемы конструкции
  • .
  • в качестве стабилизаторов постоянного напряжения для широкого спектра применений
  • в т.ч. местный
  • на карте.Эти регуляторы используют внутренние
  • ограничение тока
  • тепловое отключение
  • и компенсация безопасной зоны. С
  • с адекватным радиатором, они могут обеспечивать выходные токи, превышающие
  • 1,0 А. Хотя в первую очередь спроектирован как фиксированный стабилизатор напряжения
  • эти
  • Устройства
  • можно использовать с внешними компонентами для получения регулируемых
  • напряжений и токов.
  • 2019-10-21T14: 53: 17 + 08: 00BroadVision, Inc.2020-04-30T03: 01: 49 + 08: 002020-04-30T03: 01: 49 + 08: 00Acrobat Distiller 19.0 (Windows) Эти регуляторы напряжения монолитные интегральные схемы спроектированы в качестве регуляторов постоянного напряжения для широкого спектра применений в том числе местное, внутреннее регулирование. Эти регуляторы используют внутренние ограничение тока, тепловое отключение и компенсация безопасной зоны. С участием адекватный радиатор, они могут выдавать выходные токи, превышающие 1.0 А. Хотя они разработаны в основном как стабилизаторы постоянного напряжения, эти устройства могут использоваться с внешними компонентами для получения регулируемых напряжения и токи. uuid: 70861b0e-ec42-4cd2-9ea2-d92769e676d8uuid: dd3d13a4-382a-457b-bf7c-d13855f6ad67 конечный поток эндобдж 5 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект > эндобдж 27 0 объект > эндобдж 28 0 объект > эндобдж 29 0 объект > эндобдж 30 0 объект > эндобдж 31 0 объект > эндобдж 32 0 объект > эндобдж 33 0 объект > эндобдж 34 0 объект > эндобдж 35 0 объект > эндобдж 36 0 объект > эндобдж 37 0 объект > эндобдж 38 0 объект > эндобдж 39 0 объект > эндобдж 40 0 объект > эндобдж 41 0 объект > эндобдж 42 0 объект > эндобдж 43 0 объект > эндобдж 44 0 объект > эндобдж 45 0 объект > эндобдж 46 0 объект > эндобдж 47 0 объект > эндобдж 48 0 объект > поток HWnHQ_Q / ȅ {whd03I 쌵 `h% 1C / m?}) Dl-˩SQÂO3pB% {` ߀ zkϔ (0P% Ab, b_HHjqj B34’Z * «# K WsH> / ^ Vn_Mi6 ~ u} [޾8 NMh3dS, c9GSr.

    Оставить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *