La8138A схема включения: TDA8138A — Справочник по микросхемам

Схема драйвера для светодиодной лампы на 220В

Неотъемлемой частью любой качественной лампы или светильника на светодиодах является драйвер. Применительно к освещению, под понятием «драйвер» следует понимать электронную схему, которая преобразует входное напряжение в стабилизированный ток заданной величины. Функциональность драйвера определяется шириной диапазона входных напряжений, возможностью регулировки выходных параметров, восприимчивостью к перепадам в питающей сети и эффективностью.

От перечисленных функций зависят качественные показатели светильника или лампы в целом, срок службы и стоимость. Все источники питания (ИП) для светодиодов условно разделяют на преобразователи линейного и импульсного типа. Линейные ИП могут иметь узел стабилизации по току или напряжению. Часто схемы такого типа радиолюбители конструируют своими руками на микросхеме LM317. Такое устройство легко собирается и имеет малую себестоимость. Но, ввиду очень низкого КПД и явного ограничения по мощности подключаемых светодиодов, перспективы развития линейных преобразователей ограничены.

Импульсные драйверы могут иметь КПД более 90% и высокую степень защиты от сетевых помех. Их мощность потребления в десятки раз меньше мощности, отдаваемой в нагрузку. Благодаря этому они могут изготавливаться в герметичном корпусе и не боятся перегрева.

Первые импульсные стабилизаторы имели сложное устройство без защиты от холостого хода. Затем они модернизировались и, в связи с бурным развитием светодиодных технологий, появились специализированные микросхемы с частотной и широтно-импульсной модуляцией.

Схема питания светодиодов на основе конденсаторного делителя

К сожалению, в конструкции дешёвых светодиодных ламп на 220В из Китая не предусмотрен ни линейный, ни импульсный стабилизатор. Мотивируясь исключительно низкой ценой готового изделия, китайская промышленность смогла максимально упростить схему питания. Называть её драйвером не корректно, так как здесь отсутствует какая-либо стабилизация.

Из рисунка видно, что электрическая схема лампы рассчитана на работу от сети 220В. Переменное напряжение понижается RC-цепочкой и поступает на диодный мост. Затем выпрямленное напряжение частично сглаживается конденсатором и через токоограничивающий резистор поступает на светодиоды. Данная схема не имеет гальванической развязки, то есть все элементы постоянно находятся под высоким потенциалом.

В результате частые просадки сетевого напряжения приводит к мерцанию светодиодной лампы. И наоборот, завышенное напряжение сети вызывает необратимый процесс старения конденсатора с потерей ёмкости, а, иногда, становится причиной его разрыва. Стоит отметить, что еще одной, серьезной отрицательной стороной данной схемы является ускоренный процесс деградации светодиодов вследствие нестабильного тока питания.

Схема драйвера на CPC9909

Современные импульсные драйверы для светодиодных ламп имеют несложную схему, поэтому ее можно легко смастерить даже своими руками. Сегодня, для построения драйверов, производится ряд интегральных микросхем, специально предназначенных для управления мощными светодиодами. Чтобы упростить задачу любителям электронных схем, разработчики интегральных драйверов для светодиодов в документации приводят типичные схемы включения и расчеты компонентов обвязки.

Общие сведения

Американская компания Ixys наладила выпуск микросхемы CPC9909, предназначенной для управления светодиодными сборками и светодиодами высокой яркости. Драйвер на основе CPC9909 имеет небольшие габариты и не требует больших денежных вложений. ИМС CPC9909 изготавливается в планарном исполнении с 8 выводами (SOIC-8) и имеет встроенный стабилизатор напряжения.

Благодаря наличию стабилизатора рабочий диапазон входного напряжения составляет 12-550В от источника постоянного тока. Минимальное падение напряжения на светодиодах – 10% от напряжения питания. Поэтому CPC9909 идеальна для подключения высоковольтных светодиодов. ИМС прекрасно работает в температурном диапазоне от -55 до +85°C, а значит, пригодна для конструирования светодиодных ламп и светильников для наружного освещения.

Назначение выводов

Стоит отметить, что с помощью CPC9909 можно не только включать и выключать мощный светодиод, но и управлять его свечением. Чтобы узнать обо всех возможностях ИМС, рассмотрим назначение ее выводов.

  1. VIN. Предназначен для подачи напряжения питания.
  2. CS. Предназначен для подключения внешнего датчика тока (резистора), с помощью которого задаётся максимальный ток светодиода.
  3. GND. Общий вывод драйвера.
  4. GATE. Выход микросхемы. Подает на затвор силового транзистора модулированный сигнал.
  5. PWMD. Низкочастотный диммирующий вход.
  6. VDD. Выход для регулирования напряжения питания. В большинстве случаев подключается через конденсатор к общему проводу.
  7. LD. Предназначен для задания аналогового диммирования.
  8. RT. Предназначен для подключения время задающего резистора.

Схема и ее принцип работы

Типичное включение CPC9909 с питанием от сети 220В показано на рисунке. Схема способна управлять одним или несколькими мощными светодиодами или светодиодами типа High Brightness. Схему можно легко собрать своими руками даже в домашних условиях. Готовый драйвер не нуждается в наладке с учетом грамотного выбора внешних элементов и соблюдением правил их монтажа.

Драйвер для светодиодной лампы на 220В на базе CPC9909 работает по методу частотно-импульсной модуляции. Это означает, что время паузы является постоянной величиной (time-off=const). Переменное напряжение выпрямляется диодным мостом и сглаживается емкостным фильтром C1, C2. Затем оно поступает на вход VIN микросхемы и запускает процесс формирования импульсов тока на выходе GATE. Выходной ток микросхемы управляет силовым транзистором Q1. В момент открытого состояния транзистора (время импульса «time-on») ток нагрузки протекает по цепи: «+диодного моста» – LED – L – Q1 – RS – «-диодного моста». За это время катушка индуктивности накапливает энергию, чтобы отдать её в нагрузку во время паузы. Когда транзистор закрывается, энергия дросселя обеспечивает ток нагрузки в цепи: L – D1 – LED – L. Процесс носит циклический характер, в результате чего ток через светодиод имеет пилообразную форму. Наибольшее и наименьшее значение пилы зависит от индуктивности дросселя и рабочей частоты. Частота импульсов определяется величиной сопротивления RT. Амплитуда импульсов зависит от сопротивления резистора RS. Стабилизация тока светодиода происходит путем сравнения внутреннего опорного напряжения ИМС с падением напряжения на RS. Предохранитель и терморезистор защищают схему от возможных аварийных режимов.

Расчет внешних элементов

Частотозадающий резистор

Длительность паузы выставляют внешним резистором RT и определяют по упрощенной формуле:

tпаузы=RT/66000+0,8 (мкс).

В свою очередь время паузы связано с коэффициентом заполнения и частотой:

tпаузы=(1-D)/f (с), где D – коэффициент заполнения, который представляет собой отношение времени импульса к периоду.

Рекомендованный производителем диапазон рабочих частот составляет 30-120 кГц. Таким образом, сопротивление RT можно найти так: RT=(tпаузы-0,8)*66000, где значение tпаузы подставляют в микросекундах.

Датчик тока

Номинал сопротивления RS задает амплитудное значение тока через светодиод и рассчитывается по формуле: RS=UCS/(ILED+0.5*IL пульс), где UCS – калиброванное опорное напряжение, равное 0,25В;

ILED – ток через светодиод;

IL пульс – величина пульсаций тока нагрузки, которая не должна превышать 30%, то есть 0,3*ILED.

После преобразования формула примет вид: RS=0,25/1.15*ILED (Ом).

Мощность, рассеиваемая датчиком тока, определяется формулой: PS=RS*ILED*D (Вт).

К монтажу принимают резистор с запасом по мощности 1,5-2 раза.

Дроссель

Как известно, ток дросселя не может измениться скачком, нарастая за время импульса и убывая во время паузы. Задача радиолюбителя в том, чтобы подобрать катушку с индуктивностью, обеспечивающей компромисс между качеством выходного сигнала и её габаритами. Для этого вспомним об уровне пульсаций, который не должен превышать 30%. Тогда потребуется индуктивность номиналом:

L=(USLED*tпаузы)/ IL пульс, где ULED – падение напряжения на светодиоде (-ах), взятое из графика ВАХ.

Фильтр питания

В цепи питания установлены два конденсатора: С1 – для сглаживания выпрямленного напряжения и С2 – для компенсации частотных помех. Так как CPC9909 работает в широком диапазоне входного напряжения, то в большой ёмкости электролитического С1 нет нужды. Достаточно будет 22 мкФ, но можно и больше. Емкость металлопленочного С2 для схемы такого типа стандартная – 0,1 мкФ. Оба конденсатора должны выдерживать напряжение не менее 400В.

Однако, производитель микросхемы настаивает на монтаже конденсаторов С1 и С2 с малым эквивалентным последовательным сопротивлением (ESR), чтобы избежать негативного влияния высокочастотных помех, возникающих при переключении драйвера.

Выпрямитель

Диодный мост выбирают, исходя из максимального прямого тока и обратного напряжения. Для эксплуатации в сети 220В его обратное напряжение должно быть не менее 600В. Расчетная величина прямого тока напрямую зависит от тока нагрузки и определяется как: IAC=(π*ILED)/2√2, А.

Полученное значение необходимо умножить на два для повышения надежности схемы.

Выбор остальных элементов схемы

Конденсатор C3, установленный в цепи питания микросхемы должен быть ёмкостью 0,1 мкФ с низким значением ESR, аналогично C1 и C2. Незадействованные выводы PWMD и LD также через C3 соединяются с общим проводом.

Транзистор Q1 и диод D1 работают в импульсном режиме. Поэтому выбор следует делать с учетом их частотных свойств. Только элементы с малым временем восстановления смогут сдержать негативное влияние переходных процессов в момент переключения на частоте около 100 кГц. Максимальный ток через Q1 и D1 равен амплитудному значению тока светодиода с учетом выбранного коэффициента заполнения: IQ1=ID1= D*ILED, А.

Напряжение, прикладываемое к Q1 и D1, носит импульсный характер, но не более, чем выпрямленное напряжение с учетом емкостного фильтра, то есть 280В. Выбор силовых элементов Q1 и D1 следует производить с запасом, умножая расчетные данные на два.

Предохранитель (fuse) защищает схему от аварийного короткого замыкания и должен длительно выдерживать максимальный ток нагрузки, в том числе импульсные помехи.

IFUSE=5*IAC, А.

Установка терморезистора RTH нужна для ограничения пускового тока драйвера, когда фильтрующий конденсатор разряжен. Своим сопротивлением RTH должен защитить диоды мостового выпрямителя от пробоя в начальные секунды работы.

RTH=(√2*220)/5*IAC, Ом.

Другие варианты включения CPC9909

Плавный пуск и аналоговое диммирование

При желании CPC9909 может обеспечить мягкое включение светодиода, когда его яркость будет постепенно нарастать. Плавный пуск реализуется при помощи двух постоянных резисторов, подключенных к выводу LD, как показано на рисунке. Данное решение позволяет продлить срок службы светодиода.

Также вывод LD позволяет реализовывать функцию аналогового диммирования. Для этого резистор 2,2 кОм заменяют переменным резистором 5,1 кОм, тем самым плавно изменяя потенциал на выводе LD.

Импульсное димирование

Управлять свечением светодиода можно путем подачи импульсов прямоугольной формы на вывод PWMD (pulse width modulation dimming). Для этого задействуют микроконтроллер или генератор импульсов с обязательным разделением через оптопару.

Кроме рассмотренного варианта драйвера для светодиодных ламп, существуют аналогичные схемные решения от других производителей: HV9910, HV9961, PT4115, NE555, RCD-24 и пр. Каждая из них имеет свои сильные и слабые места, но в целом, они успешно справляются с возложенной нагрузкой при сборке своими руками.

Светодиодные лампы, светильники, ленты.

СЕТОДИОДНЫЕ ЛАМПЫ, СВЕТИЛЬНИКИ, ЛЕНТЫ

    Наконец то решился собрать в кучу все, что имеется на сегодня по поводу светодиодов, светодиодных ламп и матриц освещения. Разумеется на полноту предлагаемой информации притендовать не могу, тем не менее используя и свой собственный опыт и опыт жителей интеренета постараюсь все упорядочить.
    Немного истории:
    Впервые создан 1962, разработал Ник Холоньяк в Университете Иллинойса для компании General Electric, годом раньше был опробован инфракрасный светодиод Робертом Байардом и Гари Питтманом из компании Texas Instruments.
    Свечение в полупроводниковом кристалле возникает при рекомбинации электронов и дырок в области p-n-перехода. Область p-n-перехода, образуется контактом двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.

    Светодиод — низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно, и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).
    При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.
    Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.
    В рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной.
Поэтому для светодиодов необходимо стабилизировать ток. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

    Для начала стоит разобраться из чего же состоят светодиодные лампы. Разумеется из цокля, корпуса и светорасеивателя. Разумеется, что внутри каждой лампы есть не много электроники.

    Самый простой и популярный среди радиолюбителей источник питания для светодиодов состоит из конденсаторного баласта и установленного стабилитрона, правда некоторые стремяться упростить схему и емксоть подбираютт таким образом, чтобы не ставить стабилитрон, но это уже на собственное усмотрение:

    Не смотря на свою простоту данный «драйвер» имеет существенный недостаток — он стабилизирует напряжения, а для светодиодов необходим стабилизатор тока. Разумеется, что С1 должен быть пленочным.
    Для тех, кто запамятовал напоминаю, что емкость конденсатора расчитывается исходя из необходимого напряжения на нагрузке и потребляемого нагрузкой тока.

Формула выглядит следующим образом:

    Для расширения диапазона питающих напряжений можно использовать аналог стабилитрона на транзисторе. В этом случае выделяемое тепло якобы стабилитроном может быть гораздо больше, поскольку максимальное тепло популярных стабилитронов 1,5 Вт, а транзистор в корпусе ТО-126 может расеивать до 10-15 Вт, в корпусе ТО220 до 20 Вт, а с радиатором еще больше. Следовательно можно увеличить емкость конденсатора для сохранения работоспособности при пониженном напряжении питания, а при повышенном тепло все равно будет успевать отводится на радиатор транзистора. Схема драйвера приобретает следующий вид:

    Положение может исправить введение в данную схему стабилизатора тока. Однако проблема будет решена не полностью — на транзисторе все равно будет выделяться тепло, которое придется рассеивать, а значит придется использовать радиатор повышенной площади (мощным светодиодам тоже нужен радиатор). В конечнои итоге схема линейного драйвера для светодиодов приобретает вид:

    Но это все любительские схемы, а это значит, что имеет смысл посмотреть, что творят инженеры заводов — производителей светодиодных ламп. Врать не буду — обзор не мой, но уровень подхода автора заставил аплодировать стоя. Оригинал статьи ТУТ, у себя я лишь помещую выжимку:

    Лампа BBK P653F, лампа P654F выглядит так же.
   Лампа разборная, конструкция у ламп P653F и P654F абсолютно одинаковая, отличаются они только излучающим узлом.
   32 светодиода установлены на алюминиевой плате и включены последовательно, на один светодиод приходится 49.3 / 32 = 1.54 вольта. Плата через термопасту прилегает к радиатору. Температура платы возле светодиода 53°C.

   Контроллер построен на микросхеме SM7525, дает на выходе 49.3V 0.106A. Не понравилось в конструкции лампы то, что контроллер установлен наполовину в цоколь, наполовину в алюминиевом радиаторе, но никакой изоляции между радиатором и платой контроллера нет.


   Схема простая, однако немного запутанная из-за непривычного включения индуктивности и ключа. На входе диодного моста на плате имеется место для предохранителя, но он не установлен.

 

   Пульсации светового потока почти такие же, как и у ламп PC73C и PC74C (9% на частоте 50 кГц).
   

    Лампа BBK PC73C. Лампа PC74C по конструкции такая же.
    Лампа разборная. Пластмассовый цоколь на резьбе (с большим усилием!) выкручивается из радиатора. Белое пластмассовое кольцо придерживает защитное прозрачное стекло и металлический жестяной отражатель. За отражателем прячется сложный многосегментный светодиод (я насчитал 35 сегментов в матрице 7×5).

    Контроллер дает на выходе 21.2V, 0.29A. Температура радиатора возле светодиода 66°C, температура поверхности светодиода 133°C (!).

    Контроллер построен на микросхеме BP9023. К сожалению, микросхема настолько китайская, что даташита на неё на английском языке просто нет.

 

    Схема построена по принципу обратноходового однотактного преобразователя, очень похожа на схему с контроллером BP2831A. Резисторы RS1 и RS2 задают ограничение по выходному току, резистор R4 скорее всего (по аналогии с контроллером BP2831A) задает порог защиты по напряжению. Цепочка D1R5R6C4 служит для демпфирования высоковольтных выбросов напряжения на стоке ключевого транзистора микросхемы.

   
    Лампа Ecola 7w 4200K GU10
    Лампа не предназначена для разборки, но если Вы все же на это решились, то начинать нужно с матового защитного стекла. Оно приклеено по краям мастикой к алюминиевому радиатору. Отклеить стекло очень сложно, не повредив его (у меня не получилось). Под стеклом прячется печатная плата на алюминиевой основе, на которой стоят 14 светодиодов, включенных последовательно. Печатная плата прижата к радиатору стопорным кольцом, и место контакта платы и радиатора промазано теплопроводящей пастой. Печатная плата односторонняя, и довольно тонкая (0.6 мм), что служит улучшению теплообмена между светодиодами и радиатором.

    Пластмассовый цоколь крепится к радиатору двумя саморезами, головки которых незаметны под мастикой.
    Контроллер дает на выходе 81V, 0.066A. Температура платы возле светодиода 55°C. Контроллер собран на миниатюрной плате, которая целиком помещается в цоколь, входы и выходы контроллера подключены проводами минимальной длины. Вокруг контроллера со всех сторон пластмасса, поэтому замыкания исключены.

 

    Конструкция в целом очень аккуратная и продуманная, и не удивительно, что контроллер совсем не излучает радиопомех, и пульсации светового потока не улавливаются фотоприемником (их просто нет!).

Контроллер построен на микросхеме BP2831A, схема очень простая.
   
    Лампа Ecola 6w 2800K GU5.3
    Лампа полностью разборная. Но выглядит по сравнению с предыдущей лампой Ecola 7w 4200K GU10 как бедная родственница. Куда подевались лоск разработки конструкции и качество сборки? Несмотря на цоколь GU5.3, лампа имеет большие размеры и из-за массивного радиатора довольно тяжелая. В патроне без дополнительного крепления держаться она не будет. При выкручивании нижних винтов (которые крепят цоколь к радиатору) будьте осторожны, потому что головки винтов некачественные, и винты выкручиваются с усилием.

    Свет излучают 3 включенных последовательно светодиода. Радиатор сделан так, что служит и корпусом лампы, и рефлектором. Температура платы возле светодиода 60°C. Спереди имеется защитное стекло с тремя линзами, которое крепится на винтах.
   Контроллер построен на микросхеме BP3122, выдает на выходе 9.6V, 0. 41A. Плата контроллера спроектирована очень тщательно и имеет маленькие размеры. Для монтажа используются обе стороны платы, и многие SMD-компоненты смонтированы прямо под трансформатором. Меня несколько удивило, что на выходе контроллера нет фильтрующего конденсатора. Наверное этим как раз и объясняются высокочастотные пульсации светового потока.

 

    К сожалению, лампа не может похвастаться низким уровнем радиопомех, и световой поток на выходе имеет большие пульсации на частоте 67.5 кГц
   
    Лампа Navigator NLL-MR16 3K GU5.3
Лампа не только неразборная, но даже внутри залита эластичным белым пластиком, напоминающим резину. Радиатора нет, 10 светодиодов установлены на алюминиевой плате.

    Контроллер построен на микросхеме BP2832A, дает на выходе 59V, 0.096A. Температура платы возле светодиода 83oC, т. е. светодиоды имеют не самый лучший тепловой режим.

 

    Микросхема BP2832A по цоколевке полностью совпадает с микросхемой BP2831A (да и по параметрам они отличаются только мощностью, BP2832A мощнее). Поэтому принципиальная схема контроллера отличается от схемы BP2831A (применена в лампе Ecola 7w 4200K GU10) только наличием дополнительных фильтрующих элементов (C1, L1).
   Несомненные достоинства лампы — малые размеры, почти полное отсутствие радиопомех, малые высокочастотные пульсации тока потребления и маленький уровень пульсаций светового потока.
   
    Лампа Navigator NLL-PAR16 4K GU10
   Лампа неразборная. Для вскрытия мне пришлось распилить её корпус дремелем. Лампа имеет маленький рефлектор для многосегментного светодиода, который совсем не прикрыт защитным стеклом. Радиатор отсутствует. Температура алюминиевого основания возле светодиода 87oC.

   К сожалению, при попытке сковырнуть крышку я случайно ударил отверткой по поверхности светодиода, в результате в нем получился обрыв. Поэтому измерять параметры контроллера пришлось с похожим многосегментным светодиодом из другой лампы.
   В испорченном светодиоде было 17 излучающих сегментов. По выходному току 0.13A, потребляемой мощности лампы 8 Вт и предполагаемому КПД я высчитал ориентировочно выходное напряжение 53 вольта.
   Контроллер построен на микросхеме SL21083 компании NXT (в даташите она именуется как SSL21083T).

 

   Схема традиционная, с дополнительными фильтрующими элементами входного тока Rf1, C1, L1. По уровню радиопомех это очень хороший контроллер, помех почти нет. Пульсации светового потока незначительные, и они на высокой частоте 86 кГц.
    Архив с PDF файлами показанных микросхем можно СКАЧАТЬ ЗДЕСЬ.
   
    Теперь вернемся к самоделкам и немного поразмышляем. Как видно из фото, приведенных выше ламп в светодиодных лампах используются и наборы SMD светодиодов и одинарные более менее мощные светодиоды. Несколько месяцев назад я заказал и успешно получил светодиоды серии 5730. На стренице продавца было указанно, что это светодиоды на 0,5 Вт, однако после сборки матрицы выяснилось, что это несколько не то, что хотелось увидеть — светодиоды намного слабее и тусклее, чем должны быть.

    После небольшого разбирательства выяснилось, что цена прямо пропорциональна качеству и далеко не все продавцы пишут истинные параметры светодиодов. Благодаря ссылке подписчика была найдена довольно ИНТЕРЕСНАЯ СТАТЬЯ как раз на эту тему. Вкратце статья выглядит так:

    Насобиралось у меня немного китайских светодиодов smd5730, решил рассказать вам немного о них. Всего у меня 4 разных светодиода. Первые — неплохие, китайские светодиоды, они уже обозревались здесь. Вторые — самые дешевые 5730 на aliexpress. Я их покупал по $ 1.15 за 200шт. Третьи и четвертые с самой обычной метровой светодиодной линейки на алюминиевой подложке, купленной в оффлайне за 2$, холодной и теплой цветовой температуры.
   Что бы было легче их сравнивать, я разрезал ту же алюминиевую линейку на минимально делимые кусочки, по 3 диода. Две оставил с родными диодами, а на остальных двух перепаял на купленные на Али. Фена, к сожалению, у меня пока нету. Выпаивать светодиоды паяльником как-то не очень — чаще всего он плавится или ломается. Я сделал по простому — нагрел утюг, и положил кусочки линейки на рабочую поверхность на рабочую поверхность утюга. Перед этим, конечно же, диоды промазал флюсом.

   Как только алюминиевая подложка нагрелась, снимаю светодиоды пинцетом, и убираю ее с утюга. Намазываю еще раз флюсом, прохожусь по контактам паяльником, для того, что бы на них набралось немного припоя. Потом сверху кладу новые светики и акуратно кладу линейку обратно на утюг. Как только припой расплавился, линейку акуратно, что бы светодиоды не «уплыли», убираю. После того как кусочек линейки остыл, хорошенько протираю его изопропиловым спиртом, что бы смыть остатки паяльной пасты. Припаиваю провода. Получается как-то так:

   Когда «подопытные» готовы — проверяю как они светят. Взял чистый белый лист бумаги, Он будет служить фоном. На фотоаппарате выставил ручной баланс белого по листу бумаги. Настройки экспозиции в ручном режиме, для того что бы можно было оценить яркость разных диодов. Кусочки линейки прикладываю перпендикулярно листу бумаги, подав на них напряжение 12в, и фотографирую. Не забываю померить ток. Получилось так:
    Так же решил померить ток и падениенапряжения при 150мА каждого диода по отдельности. Напряжение выбрал среднее — 3,2в. Фотографировать не стал, просто напишу:
    ток при 3,2в/напряжение при 150мА
   1. 151,1мА/3,2в
   2. 84 мА/3,65в
   3. 81,2мА/3,55в
   4. 49,8мА/4,26в

    Как видите, разница большая. Кристаллы у диодов тоже разные:

    Итоги:
   Первые светодиоды наиболее качественные, кристал у них действительно 0,5Вт. Его размер 15х30mil. Раньше у этого продавца были диоды с еще большим кристаллом — 20х40 mil, но мощность его была такой же. Наверное технология изготовления кристала усовершенствовалась.
   Продавец обещает 50-50Lm при 3,0-3,2в и 150мА. Так же есть в наличии диоды с температурой 3000-3500К, 5000-5500К и 6000-6500К. КУПИТЬ СВЕТОДИОДЫ.
   Вторые и третьи среднего качества, мощность где-то 0,25Вт. Больше о них ничего сказать не могу.
Последние самые дешевые и, соответственно, самые плохие. Мощностью менее 0,2Вт. Кристал мелкий, думаю от 2838. В описании продавец не указывает ни производителя кристалла, ни его параметров. Только то что это smd5730.

    Однако далеко не всем нужны именно 5730, поэтому немного порывшись по отзывам перепроверил данную мне ссылку и выяснилось, что на Али есть МАГАЗИН ПРОИЗВОДИТЕЛЯ светодиодов, и светодиоды там весьма приличного качества.
   
    Откровенно говоря монтаж вручную 84-х светодиодов оказалось той еще задачкой и оставшиеся светодиоды я решил на лампы пока что не использовать — на подсветку аппаратуры, или может еще куда пригодятся, а паять лампы… Уж увольте… Смысл полуторачасового сидения за ручной пайкой утрачивается, ведь есть уже ГОТОВЫЕ МАТРИЦЫ самых различных размеров, цветов и мощностей, идеально подходящие под потолочные светильники:

    Разумеется, что подобная матрица решает далеко не все задачи и в некоторых случая SMD светодиоды будут удобней, тем не менее наличие матриц существенно упрощает изготовление самодельных светильников.
    Разумеется, что обременять себя пайкой светодиодных драйверов решится далеко не каждый, да иногда и цена готовой светодиодной лампы бывает меньше самодельной. Просто у самодельных ламп больше универсальность — их можно использовать в оформлении интерьера, изготовлении оригинальных светильников и подсветок.
    Готовые драйвера для светодиодных светильников так же присутствуют на Али. Не скажу, что довольно много потратил сил на поиски приличного магазина, тем не менее таковой нашелся. Единственным недостатком магазина является мелкооптовая торговля (отправка от 3 штук). Тем не менее цены более чем примелемые. Если заниматься изготовлением самодельных светодиодных ламп даже от случая к случаю, то приобретенные драйвера лишними не окажутся. Мощностная линейка довольно большая, есть варианты и в герметичном корпусе для установки на улице. есть варианты и с гальванической связью с сетью и с развязкой от сети. В общем выбирать уже Вам: МАГАЗИН ДРАЙВЕРОВ
   
    Готовые лампы такой большой оригинальностью не отличаются… Не отличались. Совсем не давно нашел довольно интересный магазин, специализирующийся именно на светодиодных лампах и просмотрев несколько позиций товаров пришел к выводу, что эти лампы вполне приличного качестве — положительных отзывов порядка 95-98% в среднем. Разумеется, что всем угодить трудно. Цены тоже вполне приемлемы — светодиодная лампа на 7 Вт стоит 1,2$. МАГАЗИН ЗДЕСЬ.
    Однако при выборе светодиодной лампы не стоит гнаться за низкой ценой. Понятно, что это Китай, однако Китай тоже разным бывает и не секрет, что кто то из производителей гонится за низкой ценой снижая себестоимость ламп, а кто то за качеством нарабатывая авторитет. А некоторые успевают и то и другое. Тут стоит остановится немного подробней…
    Дело в том, что наиболее ответственные производители кроме фотографии самой светодиодной лампы выкладывают фотографии ее начинки и просмотрев не один десяток фотографий уже не трудно сделать вывод о том, что это за лампа, как хорошо и как долго она будет работать. Например подавляющее большинство светодиодных ламп имеющих внешний вид, приведенный на фото ниже догловечностью отличаться не будет, особенно в тех случаях, когда в сети 220 вольт хронически повышенное напряжение:

    Эти лампы могу отличаться и по габаритам и по мощности, но как правило у них аналогичная начинка — конденсаторный баласт, диодный мост, электролит и несколько токоограничивающи резисторов, т.е. схема еще проще, чем показанная на втором рисунке этой страницы. Кто то из производителей об этом умалчивает, а кто то не скрывает всю примитивность драйвера и показывает это прямо на странице продажи:

    Естественно, что яркость свечения данной светодиодной лампы будет на прямую зависеть от сетевого напряжения 220 вольт — меньшее напряжение уменьшит яркость, большее увеличит яркость и увеличит нагрев светодиодов, что соответсвенно уменьшит из ресурс работы.
    Лампы, которые не боятся изменения сетевого напряжения и не меняют свою яркость, причем иногда в ОЧЕНЬ широком диапазоне питающих напряжений, выглядят несколько иначе, да и вес имеют как минимум раза в 2 больший. Обычно и продавцы и производители хотят подчернуть то, что их лампы отличают от так называемого ширпотреба и показывают то, что стоит внутри лампы, и именно и радиатор для светодиодов, и драйвер, и иногда даже работы лампы в проверочных стендах, демонстрирующию силу света, отдаваемую их изделием:

    Как видно из фотографий лампы имеют полноценные блоки питания и гарантируют создание оптимальных режимов работы светодиодов. Однако увеличение электроники внутри данного светильника не безвозмездное — данные лампы стоят как миниму в полтора раза дороже, но эти деньги не будут выброшены на ветер — в межсезонье обычно сетевое напряжение плавает в дольно большом диапазоне и отсутствие изменения освещености в помещении будет только радовать. Кроме этого стабилизированное питание самих светодиодов значительно увеличчивает их ресурс работы — при перегреве светодиоды довольно быстро выходят из строя, а это чревато покупкой новой лампы.
   
   
    В заключении хотелось бы сказать, что пробовались и лично мной варианты нескольких драйверов:
    ЛИНЕЙНЫЕ
    ИМПУЛЬСНЫЕ
    HV9910 пока отложен — ждемс транзисторы, а вот на базе IR2153 драйвер мне понравился и как только появятся «лишние» деньги обязательно куплю светодиодов на 100 Вт.


Адрес администрации сайта: [email protected]
   

 

Импульсный блок питания КV-3150 для увлажнителей воздуха, устройство, ремонт.

Применяется в ультразвуковых увлажнителях воздуха модели «Vitek» и других. Приведена схема, рассмотрено устройство и последовательность ремонта.

 

Блок питания КV-3150 собран на ШИМ микросхеме SG6848 (корпус SOT-26, SMD 6 ног).

Datasheet  на SG6848 доступна в интернете, там же есть типовая схема включения и параметры (напряжение питания, токи, рекомендуемые полевики).

Схема блока питания КV-3150 немного отличается от типовой, поэтому при проверке деталей я зарисовал первичную цепь, связанную с сетью. Вторичная, включая обратную связь с микросхемой TL431 и оптопарой PC817 целая и легко прослеживается по печатной плате.

Очень удобно то, что на самой печатной плате нанесены номера и номиналы деталей.

На самой микросхеме надпись может быть другой. В моем случае написано S11S.

Блок питания КV-3150 до меня уже побывал у мастера, который рекомендовал купить новый. Но его цена необоснованно завышена 20$, в то время, как типичный ремкомплект стоит около 2$.

Мне пришлось заменить:

Диодный мост – 4 диода 1N4007

ШИМ микросхему — SG6848

Полевой транзистор — STP4NK60ZF

Резистор R2 — 2Вт 0,5 Ом

Резисторы R13, R9, R14 SMD (или 0,125Вт) — 47 Ом, 470 Ом, 10 кОм

Предохранитель 2А 250В – запаял калиброванную перемычку. Как это делать показано здесь.

Как известно, ремонт импульсных блоков питания нужно выполнять постепенно и осторожно. Если пропустить дефект то при первом же включении все замененные детали могут снова сгореть.

Я сначала проверяю все детали и печатную плату. Все неисправные детали выпаиваю.

Затем, начиная от сетевого разъема ставлю детали – предохранитель, диоды, резисторы. Включаю через лампу 220В мощностью около 75Вт и проверяю напряжения после диодного моста и на конденсаторе 10мкФ (это питание микросхемы SG6848). Так как микросхемы пока нет и потребления тока не будет, параллельно электролиту 10 мкф я ставлю стабилитрон на напряжение чуть ниже предельного напряжения электролита. Иначе напряжение может вырасти выше чем у электролита и повредить его.

Если все в норме, а у меня после диодного моста 310В, на конденсаторе 10мкф напряжение 24В (как у временного стабилитрона) то от сети отключаю, разряжаю при необходимости сетевой электролит и запаиваю микросхему.

Снова включаю, так же через лампу, измеряю напряжение питания микросхемы SG6848 на 5 ноге (около 12В)

Далее осциллографом смотрю управляющие импульсы на контакте куда будет припаян затвор полевого транзистора (полевик пока не ставлю). Эти импульсы не такие как при работе, но обязательно должны быть. Их частота заметно ниже, фактически это скачки напряжения, амплитуда чуть меньше напряжения питания микросхемы.

Если все так, выключаю, разряжаю сетевой электролит и запаиваю полевик, отпаиваю временный стабилитрон от конденсатора 10мкф, он уже не нужен.

Снова включаю в сеть через лампу, пробую температуру полевика, если не горячий, проверяю выходные напряжения. Так как в схеме есть обратная связь через оптопару, выходные напряжения и без нагрузки должны быть близки к норме (в этом блоке питания 35В и 12,5В). Земля общая, средний вывод выходного разъема.

Далее, если проверена схема нагрузки и в ней нет замыканий, можно отключить блок питания, подключить нагрузку и снова включить через лампу в сеть. Лампа при включении может вспыхнуть и чуть тлеть.

Теперь можно отключить, убрать лампу и включать блок питания КV-3150 в сеть напрямую. Проверить напряжения под нагрузкой. Как правило, при исправной нагрузке (подключаемом устройстве, в моем случае увлажнитель) все в норме.

Если что-то в нагрузке не заладится, сработает защита блока питания. Для этого в его схеме стоит резистор 2Вт 0,5 Ом в цепи истока полевика.

В принципе, порядок ремонта других импульсных блоков питания аналогичный.

Материал статьи продублирован ан видео:

 

 

Tsp23708-Схема подключения Fh22, Fh26 Lhd

Загрузить Tsp23708-Схема подключения Fh22, Fh26 Lhd …

Руководство по техническому обслуживанию грузовых автомобилей 37 Схема подключения Fh22, Fh26 LHD Group

Fh22 / Fh26: 254453–

TSP23708 / 1

Предисловие Описания и процедуры обслуживания, содержащиеся в этом руководстве, основаны на исследованиях конструкции и методов, проведенных до марта 96 года. продукция находится в постоянном развитии. Поэтому автомобили и компоненты, произведенные после указанной даты, могут иметь другие характеристики и методы ремонта.Если будет установлено, что это имеет большое значение для данного руководства, будут выпущены дополнительные сервисные бюллетени, отражающие изменения. В новой редакции этого руководства будут внесены изменения. В процедурах обслуживания, где заголовок включает номер операции, это ссылка на V.S.T. (Стандартные времена Volvo). Сервисные процедуры, в названии которых не указан номер операции, предназначены для общей информации, и никаких ссылок на V.S.T. В этой сервисной документации используются следующие уровни наблюдений, предостережений и предупреждений: Примечание: обозначает процедуру, практику или условие, которые необходимо соблюдать, чтобы транспортное средство или компонент функционировали должным образом.Осторожно: указывает на небезопасную практику, при которой возможно повреждение продукта. Предупреждение: указывает на небезопасную практику, в результате которой можно получить травму или серьезное повреждение продукта. Опасно: указывает на небезопасные действия, которые могут привести к серьезным травмам или смерти.

Volvo Truck Corporation Гётеборг, Швеция

Номер для заказа: TSP23708 / 1

© 96 Volvo Truck Corporation, Гётеборг, Швеция

Все права защищены. Никакая часть данной публикации не может быть воспроизведена, сохранена в поисковой системе или передана в любых формах любыми средствами, электронными, механическими, путем фотокопирования, записи или иными способами, без предварительного письменного разрешения Volvo Truck Corporation.ENG01855

Содержание Указатель электрической схемы компонентов …………………………………… ………….. 2 Схемы подключения компонентов ………………………….. ………………………….. 4 Указатель иллюстраций …………… ………………………………………….. …………… 52 Иллюстрации …………………………… ………………………………………….. …….. 53 Печатная плата (32), электроцентр ……………………………. …………….. 108 Предохранители на плате (32), электроцентр ……………………. ………. 110 Реле на плате (32), электроцентр ………………………… …. 111 Указатель иллюстраций жгута проводов ………………………………….. ………….. 112 Перечень разъемов ………………………….. ………………………………………. 115 Список компонентов ………………………………………….. …………………….. 121 Сокращения…………………………………………… ……………………………. 128 Цветовой код кабеля ………… ………………………………………….. ……………. 129 Обратная связь

1

Группа 37 Схема электрических соединений

Индекс электрической схемы компонентов

Индекс электрической схемы компонентов AA

Система стартера, предварительный нагрев двигателя

. ………………………………………….. …………………………

стр.4

BL

Ul, выхлопной тормоз, регулятор давления выхлопных газов (Fh22) …………………………………………… .

стр. 5

BN

EDC, выхлопной тормоз, регулятор давления выхлопных газов (Fh26) ……………………….. ……..

Лучшая схема подключения — Отличные предложения по схеме подключения от глобальных продавцов схем подключения

Отличные новости !!! Вы находитесь в нужном месте для схемы подключения. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress.У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как эта электрическая схема в кратчайшие сроки станет одним из самых популярных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что получили электрическую схему на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в схеме подключения и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести электрическую схему по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Схема подключения

— Заводские I / O

перейти к содержанию 

Введите, чтобы начать поиск

    • Добро пожаловать
    • Установка
    • Начиная Начиная
      • Обзор
      • 1.Навигация
      • 2. Открытие сцены
      • 3. Создание сцены
      • 4. Ручное управление сценой
      • 5. Управление с помощью ПЛК
    • Руководство Руководство
      • Обзор
      • Пользовательский интерфейс
      • Параметры
      • Навигация
      • Редактировать и запускать
      • Теги
      • Инъекция отказов
      • Сцены Сцены
        • Обзор
        • 1.От а до б
        • 2. От A до B (установка и сброс)
        • 3. Заправочный бак (таймеры)
        • 4. Очередь товаров (счетчики)
        • Ассемблер
        • Ассемблер (аналоговый)
        • Автоматизированный склад
        • Буферная станция
        • Конвергентная станция
        • Лифт (базовый)
        • Лифт (Продвинутый)
        • Контроль уровня
        • Паллетайзер
        • Pick & Place (базовый)
        • Выбрать и разместить XYZ
        • Поточная линия
        • Разделительная станция
        • Сортировка по высоте (базовая)
        • Сортировка по высоте (Дополнительно)
        • Сортировка по весу
        • Сортировочная станция
      • Запчасти Запчасти
        • Обзор
        • Эмиттер
        • Съемник
        • Предметы
        • Детали для тяжелых грузов
        • Детали с малой нагрузкой
        • Датчики
        • Операторы
        • Станции
        • Предупреждающие устройства
    .

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *