Lm339Dg описание на русском: схема включения, аналог и применение

Содержание

Знакомство с компараторами на примере чипа LM339

Ранее мы с вами познакомились с такими интегральными схемами, как таймер 555, счетчик 4026, логические вентили, а также сдвиговые регистры и декодеры. Теперь же пришло время узнать о компараторах. Несмотря на кажущуюся простоту, компараторы — куда более интересные устройства, чем может показаться на первый взгляд. Читайте далее, и сможете убедиться в этом самостоятельно.

Крайне наглядная картинка, объясняющая работу компаратора, была найдена в книге Чарльза Платта Электроника: логические микросхемы, усилители и датчики для начинающих. С некоторыми изменениями эта иллюстрация приведена ниже:

Внутреннее устройство компаратора

Компаратор имеет два входа, обозначаемые знаками минус (инвертирующий вход) и плюс (неинвертирующий вход), и один выход. Для нормальной работы выход компаратора обязательно должен быть подключен к плюсу источника питания через подтягивающий резистор. Почему нельзя было сделать это просто внутри микросхемы, скоро станет понятно.

Используется компаратор следующим образом. На инвертирующий вход подается эталонное напряжение. Когда напряжение на втором, неинвертирующем, входе больше эталонного, выход компаратора имеет высокое напряжение. Если же напряжение на неинвертирующем входе ниже эталонного, выход компаратора имеет низкое напряжение. Проще говоря, компаратор сравнивает два значения напряжения и на выходе говорит, какое больше. Входы компаратора можно использовать и наоборот, тогда выход компаратора будет инвертирован.

В качестве типичной микросхемы, содержащей внутри себя целых 4 компаратора, можно назвать LM339. Данный чип выпускается как в виде SMD-компонента, так и варианте для монтажа через отверстия. Распиновка у LM339 следующая:

Распиновка LM339

Данная иллюстрация взята из даташита микросхемы [PDF].

На практике компараторы чаще всего используют одним из следующих образов:

Примеры использования компаратора

Важно! По неудачному стечению обстоятельств, компаратор обозначается на схемах точно так же, как и операционный усилитель. Однако операционные усилители работают иначе, нежели компараторы, и их не следует путать. Определить, что именно используется в схеме, обычно можно по указанному названию чипа.

В левой части схемы изображен компаратор, чей выход соединяется с неинвертирующим входом через потенциометр или резистор. Это — так называемая положительная обратная связь. Благодаря ей достигается гистерезис. То есть, если напряжение на неинвертирующем входе будет колебаться в некотором коридоре возле эталонного, выход компаратора не будет постоянно изменяться. Если помните, триггер Шмитта (чип 74HC14) делает то же самое.

Кстати, можно заметить, что одна из связей на потенциометре в положительной обратной связи как бы лишняя. Как объяснил мне Melted Metal, так принято делать на случай потери контакта движка потенциометра с резистивной дорожкой.

Что же касается правой части схемы, на ней изображена схема двухпорогового компаратора. Если вход схемы, обозначенный, как signal, имеет напряжение между low и high, на выходе схемы образуется высокое напряжение. В противном случае напряжение на выходе низкое.

На следующем фото изображена первая схема, собранная на макетной плате:

Пример использования LM339, собранный на макетке

Потенциометр слева задает напряжение на инвертирующем входе, а потенциометр справа — на неинвертирующем. Потенциометр по центру участвует в положительной обратной связи. Напряжение на обоих входах отображается при помощи миниатюрных цифровых вольтметров. Поскольку напряжение на неинвертирующем входе выше эталонного, светодиод, подключенный к выходу компаратора, горит.

Обратите внимание, что на входы неиспользованных компараторов также подается высокое и низкое напряжение. Это увеличивает надежность работы схемы и уменьшает потребляемую ею электроэнергию. Не имеет значения, на какой из входов подается высокое напряжение, а на какой — низкое. Главное, чтобы выход каждого отдельного компаратора был строго определен.

Вторую схему в собранном виде здесь я не привожу. Так что, вам придется поверить мне на слово, что она работает 🙂

Помимо всех озвученных выше, следует иметь в виду еще пару важных моментов:

  • Через компаратор не следует пропускать слишком большой ток. Ток больше 20 мА может его сжечь;
  • Напряжение на выходе компаратора может быть как выше, так и ниже напряжения на любом из входов. То есть, выход можно питать от совершенно другого источника питания. А питание на саму микросхему при этом может идти от третьего. Для правильной работы микросхемы нужно только, чтобы все эти источники имели общую землю;

Последнее обстоятельство позволяет использовать компаратор в качестве преобразователя уровня сигнала. Кроме того, теперь наконец-то стало ясно, зачем были все эти сложности со внешним подтягивающим резистором.

Вообще, компаратор можно рассматривать, как очень простой вольтметр или АЦП. В частности, с его помощью не представляет труда собрать индикатор уровня заряда Li-Ion аккумулятора. Если же у вас есть лишний фоторезистор (см заметку Мои первые страшные опыты с Arduino) или фототранзистор, на базе компаратора можно сделать датчик освещения. Если же вместо фоторезистора воспользоваться термометром типа TMP36, можно собрать устройство, управляющее кулером или кондиционером, способное регулировать температуру.

Наконец, компаратор можно использовать в качестве логического элемента НЕ, а также, если соединить выходы нескольких компараторов, в качестве элемента И. Отсюда несложно получить ИЛИ, по форуме x || y = !(!x && !y), ровно как и любую другую булеву функцию. Само собой разумеется, при желании можно придумать и другие применения.

А какие безумные варианты использования компараторов приходят вам на ум?

Метки: Электроника.

Lm339 схема включения в блоке питания

Ещё в феврале во время отпуска, когда машина большую часть времени стояла в гараже, заметил что понемногу садится аккумулятор. Чтобы магнитола могла включаться когда угодно, управляющий провод магнитолы был подключён к плюсу питания. Через него постоянно проходит около сотни миллиампер (не помню точно сколько), этого хватает чтобы частично разрядить аккумулятор где-то за 2-3 недели простоя. Но не в этом дело. Аккумулятор подзарядить было нечем, а я уже давно подумывал об конструировании какого-нибудь зарядного устройства. Дело даже не в том, что они сейчас не очень дорогие и можно купить готовое, самому что-нибудь собрать, это всегда интересно, да и пока был в отпуске, свободное время позволяло этим заняться.

Начал читать мануалы и подбирать соответствующий трансформатор, когда нашёл на просторах нэта множество идей по переделке старых компьютерных импульсных блоков питания AT(ATX). Как оказалось, из такого блока питания можно сделать не просто зарядник для аккумулятора, но и универсальный блок питания (до 30v) для различных целей. Я всё время, что занимался электроникой, использовал различные китайские блоки питания, параметры которых оставляли желать лучшего, батарейки, подключался к трансформаторам всяких бумбоксов, светильников и о таком блоке питания мог только помечтать. Узнав о том, что можно такой БП сделать самому, начал реализацию этой идеи.

На глаза попался старый комп. Вытащил из него блок питания » Сейлор Юпитер». ATX 250W
То что нужно. А он ещё и оказался рабочим. Это проверяется замыканием зелёного и любого из чёрных проводов из общего жгута.

Знакомство с компараторами на примере чипа LM339

Ранее мы с вами познакомились с такими интегральными схемами, как таймер 555, счетчик 4026, логические вентили, а также сдвиговые регистры и декодеры. Теперь же пришло время узнать о компараторах. Несмотря на кажущуюся простоту, компараторы — куда более интересные устройства, чем может показаться на первый взгляд. Читайте далее, и сможете убедиться в этом самостоятельно.

Крайне наглядная картинка, объясняющая работу компаратора, была найдена мной в книге Чарльза Платта Электроника: логические микросхемы, усилители и датчики для начинающих. С некоторыми изменениями эта иллюстрация приведена ниже:

Компаратор имеет два входа, обозначаемые знаками минус (инвертирующий вход) и плюс (неинвертирующий вход), и один выход. Для нормальной работы выход компаратора обязательно должен быть подключен к плюсу источника питания через подтягивающий резистор. Почему нельзя было сделать это просто внутри микросхемы, скоро станет понятно.

Используется компаратор следующим образом. На инвертирующий вход подается эталонное напряжение. Когда напряжение на втором, неинвертирующем, входе больше эталонного, выход компаратора имеет высокое напряжение. Если же напряжение на неинвертирующем входе ниже эталонного, выход компаратора имеет низкое напряжение. Проще говоря, компаратор сравнивает два значения напряжения и на выходе говорит, какое больше. Входы компаратора можно использовать и наоборот, тогда выход компаратора будет инвертирован.

В качестве типичной микросхемы, содержащей внутри себя целых 4 компаратора, можно назвать LM339. Данный чип выпускается как в виде SMD-компонента, так и варианте для монтажа через отверстия. Распиновка у LM339 следующая:

На практике компараторы чаще всего используют одним из следующих образов:

Важно! По неудачному стечению обстоятельств, компаратор обозначается на схемах точно так же, как и операционный усилитель. Однако операционные усилители работают иначе, нежели компараторы, и их не следует путать. Определить, что именно используется в схеме, обычно можно по указанному названию чипа.

В левой части схемы изображен компаратор, чей выход соединяется с неинвертирующим входом через потенциометр или резистор. Это — так называемая положительная обратная связь. Благодаря ей достигается гистерезис. То есть, если напряжение на неинвертирующем входе будет колебаться в некотором коридоре возле эталонного, выход компаратора не будет постоянно изменяться. Если помните, триггер Шмитта (чип 74HC14) делает то же самое.

Кстати, можно заметить, что одна из связей на потенциометре в положительной обратной связи как бы лишняя. Как объяснил мне Melted Metal, так принято делать на случай потери контакта движка потенциометра с резистивной дорожкой.

Что же касается правой части схемы, на ней изображена схема двухпорогового компаратора. Если вход схемы, обозначенный, как signal, имеет напряжение между low и high, на выходе схемы образуется высокое напряжение. В противном случае напряжение на выходе низкое.

На следующем фото изображена первая схема, собранная на макетной плате:

Потенциометр слева задает напряжение на инвертирующем входе, а потенциометр справа — на неинвертирующем. Потенциометр по центру участвует в положительной обратной связи. Напряжение на обоих входах отображается при помощи миниатюрных цифровых вольтметров. Поскольку напряжение на неинвертирующем входе выше эталонного, светодиод, подключенный к выходу компаратора, горит.

Обратите внимание, что на входы неиспользованных компараторов также подается высокое и низкое напряжение. Это увеличивает надежность работы схемы и уменьшает потребляемую ею электроэнергию. Не имеет значения, на какой из входов подается высокое напряжение, а на какой — низкое. Главное, чтобы выход каждого отдельного компаратора был строго определен.

Вторую схему в собранном виде здесь я не привожу. Так что, вам придется поверить мне на слово, что она работает 🙂

Помимо всех озвученных выше, следует иметь в виду еще пару важных моментов:

  • Через компаратор не следует пропускать слишком большой ток. Ток больше 20 мА может его сжечь;
  • Напряжение на выходе компаратора может быть как выше, так и ниже напряжения на любом из входов. То есть, выход можно питать от совершенно другого источника питания. А питание на саму микросхему при этом может идти от третьего. Для правильной работы микросхемы нужно только, чтобы все эти источники имели общую землю;

Последнее обстоятельство позволяет использовать компаратор в качестве преобразователя уровня сигнала. Кроме того, теперь наконец-то стало ясно, зачем были все эти сложности со внешним подтягивающим резистором.

Вообще, компаратор можно рассматривать, как очень простой вольтметр или АЦП. В частности, с его помощью не представляет труда собрать индикатор уровня заряда Li-Ion аккумулятора. Если же у вас есть лишний фоторезистор (см заметку Мои первые страшные опыты с Arduino) или фототранзистор, на базе компаратора можно сделать датчик освещения. Если же вместо фоторезистора воспользоваться термометром типа TMP36, можно собрать устройство, управляющее кулером или кондиционером, способное регулировать температуру.

Наконец, компаратор можно использовать в качестве логического элемента НЕ, а также, если соединить выходы нескольких компараторов, в качестве элемента И. Отсюда несложно получить ИЛИ, по форуме x || y = !(!x && !y) , ровно как и любую другую булеву функцию. Само собой разумеется, при желании можно придумать и другие применения.

А какие безумные варианты использования компараторов приходят вам на ум?

Речь пойдёт о технологии переделки компьютерного блока питания (БП) в лабораторный БП.

Три года назад я опубликовал статью «Лабораторный блок питания из БП АТ», к которой читатели проявили огромный интерес! Стоит только сказать, что повторивших этот БП уже более 20 человек! Да не у всех получилось всё сразу, но я отвечал на комментарии к статье, помогая разобраться в проблемах. В итоге радость от работающего БП получили все!

Хочу сказать огромное спасибо моим читателям, что задавали вопросы! Во-первых, мои ответы на комментарии превратились в кладезь знаний для всех! Именно поэтому, я просил писать вопросы в статье, а не в личной переписке. Во-вторых, вы помогли мне усовершенствовать данную конструкцию! Ещё раз всем спасибо, кто задавал вопросы и высказывал предложения по усовершенствованию.

Отдельная благодарность Юрию Вячеславовичу Evergreen747 , который наравне со мною помогает отвечать на ваши многочисленные вопросы!

Тот блок питания делался много лет назад (намного раньше, чем была написана первая статья!). К тому же я переделал всего один экземпляр БП AT, и не было возможности набрать статистики по проблемам, которые могут встретиться в других вариантах таких блоков. Вы же мне очень помогли это сделать.

Недостатки первой конструкции лабораторного БП, прежде всего, связаны с отсутствием дежурного источника питания. Это выражается в том, что БП не держит низкое напряжение на выходе при малых токах нагрузки. Типично на холостом ходу выставить напряжение ниже 5…8 В не удаётся. Второе – это неустойчивая работа в режиме стабилизации тока, особенно в момент перехода из режима стабилизации напряжения: появляется пульсация выходного напряжения, иногда сопровождающаяся треском или писком…

Тот блок питания прекрасно подходит для питания мощных потребителей и зарядки аккумуляторных батарей, но для работы с маломощной электроникой, требующей низкого напряжения питания – он немного грубоват. Поэтому я сделал новый блок питания, внеся доработки, а старый перевёл на «постоянную работу» в гараж.

Новый вариант БП

Всё дальнейшее повествование будет основано на том, что вы хорошо изучили первую статью о переделке БП AT – я повторяться не буду, а расскажу лишь о модификациях прежней конструкции с практической стороны на примере создания нового БП. Так что кто не читал – идите по ссылке и изучайте. Первая статья для вас так и должна остаться «библией»!

Итак, разгребая хлам на работе, заинтересовал меня один БП ATX 400W: он не из самых современных, а выполнен на обычной TL494 (то, что нам нужно!), схема защиты – на LM339 (не плохо), у него добротный фильтр по питанию, крупный трансформатор, большая ёмкость конденсаторов в фильтре (470 мкФ 200 В), а также солидные радиаторы – что обещало действительно хорошую выходную мощность. Его я и препарировал!

Начал, естественно, с пылесоса… Затем, внимательнее изучил внутренности: выполнен он очень добротно – все входные цепи, выпрямитель сетевого напряжения, конденсаторы фильтра, силовые транзисторы преобразователя (MJE13009) уже стоят «по максимуму», значит умощнять его не придётся.

После включил его, нагрузив цепи +5V и +12V лампочками 12 В 35 Вт (очень удобно использовать миниатюрные галогеновые лампочки для люстр – они без проблем втыкаются прямо в разъёмы Mini-Fit) – работает! За минуту работы с такой нагрузкой при отключенном вентиляторе ничего не нагрелось – отлично.

Далее начал искать его принципиальную схему. Посмотрел основные моменты слаботочной части: хоть в нём и стоят две самые распространённые для БП ATX микросхемы (TL494 и LM339), но схема включения LM339 сильно отличалась (их действительно много вариантов). Защита по мощности через диод от среднего отвода запускающего трансформатора вела как раз к ней, а нам нужно её сохранить! Ничего страшного – начал срисовывать этот кусок схемы с печатной платы. Хуже нет копаться в чужом монтаже…

Ага, защита по превышению мощности выполнена на первом компараторе LM339, второй компаратор является триггером (защёлкой) и на него же заведена защита от перенапряжения. Выход защиты заведён на выв. 4 TL494 (что нам и нужно!). На двух оставшихся компараторах сделана индикация Power_Good. Схема включения БП (PS_ON) выполнена на двух транзисторах и также заведена на выв. 4. Удачная схема! Теперь ясно что оставить, а что сохранить:

В данном случае мне повезло: схема защиты по мощности работает через выв. 4 TL494. Но если вы внимательно посмотрите на схему входных цепей защиты, то увидите, что сигнал со среднего вывода запускающего трансформатора через R20 и D22 поступает на два делителя напряжения, и первый из них (на резисторах 47 и 6,2 кОм) заведён также и на выв. 16 TL494, который нам нужно высвободить. В данном случае это грубая «аварийная защита», дублирующая схему на компараторах LM339 и её можно спокойно убирать, выпаяв этот делитель.

Второй же делитель (R48–R50), перед входом компаратора (выв. 7 LM339) нужно превратить в регулируемый, для возможности настройки порога срабатывания защиты. Для этого можно заменить постоянный резистор в любом из его плеч на подстроечный с номиналом в 2 раза больше. Я заменил резистор верхнего плеча (47 кОм) на подстроечный 100 кОм.

В схеме защиты от перенапряжения достаточно заменить стабилитрон ZD3, подключенный к цепи +12V на КС522А. Кстати, для проверки работоспособности этой защиты достаточно закоротить стабилитрон пинцетом – БП должен выключиться.

Если в вашем БП схема защиты выполнена с использованием второго компаратора TL494 (выв. 15 и 16), который нам нужно высвободить для петли регулировки тока – то рекомендую собирать самую распространённую и многократно проверенную схему защиты на двух транзисторах. Вот полная схема БП в хорошем разрешении, в котором используется данная схема защиты. А вот, что должно остаться от защиты:

Сигнал берётся от среднего вывода трансформатора T2, через диод D22 и далее по цепочке поступает на базу Q10. А с коллектора Q8 через диод D29 поступает на выв. 4 TL494. Также на базу Q10 заведена защита от перенапряжения с выхода выпрямителя: стабилитрон КС522А и резистор 1-1,5 кОм включенные последовательно.

Что касается выпрямителя и фильтра выходного напряжения, то здесь меня также ждала удача: выпрямитель +12V имел разводку на плате для размещения двух выпрямительных диодных сборок параллельно (зеркально, с каждой стороны радиатора) в корпусе TO-220. В схеме фильтра уже присутствовал второй дроссель (на ферритовом стержне) и имелось достаточное место для установки электролитических конденсаторов взамен штатных. Значит, делаем фильтр на его же месте, в соответствии с рекомендациями в первой статье.

Диодные сборки для выпрямителя подобрал SBR20100CT (20 А, 100 В, корпус TO-220) из имеющихся дома от других компьютерных БП. Установил два корпуса в параллель, как это и позволяла печатная плата.

Дроссель групповой фильтрации я выпаял, и смотал с кольца родные обмотки (обмотка +12V содержала 12 витков). После намотал новую обмотку эмалированным проводом Ø1,0 мм на этом же кольце – 25 витков в два провода, сложенных вместе — всё, как рекомендовано в первой статье. Это, как раз 2 слоя намотки: на внешней стороне кольца витки второго слоя располагаются между витками первого слоя. Мотать рекомендую «от середины» к каждому концу обмотки – так короче концы проводов которые нужно пропускать через кольцо. Провод нужно хорошо натягивать, что бы он плотно прилегал к кольцу.

У меня имеется много конденсаторов с промышленных плат 1500 мкФ 35 В – их я и поставил в фильтр взамен штатных. В принципе, такой ёмкости уже достаточно. Также добавил керамические конденсаторы параллельно им, и установил резистор 100 Ом 2 Вт для устойчивой работы БП без внешней нагрузки. Этот резистор должен быть поднят над платой на всю длину его выводов – он может нагреваться при установке предельных значений напряжения.

Единственное, что нужно не забыть сделать в БП ATX – это убрать цепь вольтдобавки от выпрямителя +12V, которая питает микросхему ШИМ TL494 (выв. 12). Обычно это диод или диод последовательно с резистором в несколько Ом. В отличие от штатной схемы – выходное напряжение нашего БП будет регулируемым, и эта цепь только добавит нестабильности питания для ШИМ. Пульсации на выходе от этого увеличиваются. Пусть ШИМ питается только от дежурного источника.

Стал просматривать ещё раз схемы на сайте и наткнулся на схему аналогичного БП… Бывает! Ничего общего в названии, но отличие лишь в порядке нумерации элементов на плате и значениях ёмкости больших электролитических конденсаторов (не удивительно, схема от БП мощностью 300 Вт) – остальное один в один. Покажу и на примере всей схемы, что было удалено, а что оставлено.

И так, силовая (высоковольтная) часть у нас в порядке. Выходной выпрямитель и фильтр подготовлен. Защита от превышения мощности и перенапряжения имеется. Схема выключения БП выпаяна. Осталось сделать схему управления.

На этом этапе рекомендую испытать БП

Это выявит возможные ошибки в переделанной части, позволит определиться с максимальной нагрузочной способностью БП, проверить температурный режим его элементов, и работу схемы защиты. Вы будете полностью уверены в полной работоспособности БП до установки платы управления.

Для этого нужно подключить простейший делитель напряжения из двух резисторов (15 и 4,7 кОм) и потенциометр (10…50 кОм) к первому компаратору TL494 (выв. 1 и 2), как показано на схеме ниже. Чтобы исключить влияние второго компаратора, выв. 16 нужно заземлить, а на выв. 15 подать небольшое напряжение. В некоторых БП это уже сделано – так что не торопитесь резать эти цепи! В моём БП в штатной схеме на выв. 15 было уже подано +5 В, а выв. 16 остался заземлён через резистор 6,2 кОм от бывшего делителя.

Пробное включение в сеть производите через лампу накаливания 220 В 100 Вт, включенную вместо предохранителя. Это позволит избежать выхода из строя силовых транзисторов. В случае превышения тока, лампа просто зажжётся, сохранив дорогостоящие транзисторы. Естественно, БП запитанный через лампочку не позволит нагрузить его, так что испытание под нагрузкой нужно производить уже без лампочки.

Сделайте пробное включение. Если БП не запускается, то проверяйте сначала наличие напряжения 300…310 В на конденсаторах сетевого выпрямителя, затем наличие напряжения питания +12 В (или выше), которое поступает от источника дежурного напряжения на вывод 12 TL494, и затем отсутствие напряжения на выв. 4 – если оно там присутствует, то значит, защита запрещает работу ШИМ. Если ошибок нет – то выходное напряжение будет плавно регулироваться потенциометром в диапазоне от 0 до 20…21 В. Если это так, то можно отключать лампочку, ставить предохранитель обратно и переходить к испытаниям БП под нагрузкой.

Но сначала позаботьтесь об охлаждении силовых элементов! Вентилятор можно расположить сбоку от радиаторов, что бы он их хорошо продувал. Питание на вентилятор можно взять от дежурного источника (с выхода выпрямителя, питающего TL494), убедившись, что там, около 12 В.

В качестве нагрузки БП я использую толстую (около 1 мм) нихромовую проволоку, подсоединяясь к ней «крокодилами». Сопротивление меняю – изменяя расстояние между точками подключения – получается классический реохорд. Достаточно 2 м длины. Проволока будет накаляться (иногда докрасна) – так что позаботьтесь, чтобы она свободно висела не соприкасалась с окружающими предметами. При нагрузках более 10 А, я использую две сложенные вместе проволоки.

Нагружайте БП постепенно, контролируя напряжение и ток! Следите за нагревом силовых элементов. Лучший вариант – когда при предельных мощностях радиатор с силовыми транзисторами, радиатор с выпрямительными диодами и дроссель на кольце нагреваются примерно в равной степени. Не забывайте, что радиатор силовых транзисторов находится под потенциалом сети питания!

Подавляющее большинство компьютерных БП тянет ток 10 А при напряжении 20 В, т.е. 200 Вт мощности по бывшей 12V обмотке. Лучший вариант – контролировать осциллографом скважность импульсов на вторичной обмотке. Пределом следует считать примерно 90% заполнение (не бойтесь, 100% не даст выставить логика работы TL494). У моего БП предельная мощность по этой обмотке составила 250 Вт. Порог срабатывания защиты я настроил на 220…230 Вт.

Нагрев элементов был не столь существенный и я пошёл дальше. Попробовал нагрузить БП током 20 А при напряжении 10 В (те же 200 Вт) – диоды выпрямителя и дроссель стали греться больше, но терпимо. И тогда я решил сделать предел регулировки тока 20 А. Это позволит в диапазоне выходных напряжений от 0 до 10 В нагружать БП током 20 А. Выше этого напряжения предельный ток будет спадать (это ограничит нам схема защиты по перегрузке) до уровня 10 А при 20 В. Например, при напряжении 14 В блок может отдать в нагрузку ток 16 А, что очень заманчиво!

Многие жалуются на треск и писк, при определённых напряжениях и токах нагрузки. Испытывая БП на различных нагрузках я тоже с этим столкнулся и решил глубже изучить этот вопрос.

Писк – это самовозбуждение в петле регулировки выходного напряжения: от выходной «+» клеммы, до выв. 1 TL494 (включая внутренний компаратор в ней, т.е. как бы до выв. 3 TL494). Самовозбуждение проявляется появлением пульсаций напряжения на выходных клеммах БП, что прекрасно видно осциллографом. Прежде всего, это связано с цепочками отрицательной обратной связи (ООС) между выв. 2 и 3 и выв. 15 и 3, которые определяют коэффициент усиления в петле регулировки. В своей первой конструкции я оттуда выбросил резисторы, а зря!

Нужно сохранить штатную цепочку между выв. 2 и 3 TL494. У меня в старой схеме (конденсатор 0,1 мкФ) не лучший вариант, нужно поставить туда конденсатор в районе 0,022…0,047 мкФ и резистор 33…68 кОм, включенные последовательно. Резистор нужно подобрать по минимуму самовозбуждения (писка). Вместо резистора я ставил подстроечный 100 кОм, и загоняя БП в режим максимального «писка» (подбирая сочетание выходного напряжения и тока нагрузки БП), меняя сопротивление этого резистора находил минимум (проще смотреть осциллографом амплитуду пульсаций на выходе БП). У меня, например, идеальная цепочка получилась при сочетании 0,033 мкФ и 43 кОм.

Позднее, аналогично я подобрал и номиналы в петле ООС регулировки тока – RC цепочку между выв. 15 и 3 TL494. У меня идеальная цепочка получилась при сочетании 0,15 мкФ и 4,7 кОм. Конденсаторы этих цепочек должны отличаться по ёмкости, иначе, при одинаковых цепочках, появляется самовозбуждение на границе перехода из режима стабилизации напряжения в режим стабилизации тока – компараторы внутри TL494 начинают как бы «бороться» между собой, кому из них регулировать напряжение на выходе.

Также причиной самовозбуждения являются просадки напряжения по проводнику массы на плате между выпрямителем выходного напряжения и минусом питания TL494. Пробуйте соединить короткой толстой перемычкой (провод сечением не менее 1,5 мм²) средний вывод вторичной обмотки трансформатора (косичку), сидящий на земле, с землёй вблизи выв. 7 микросхемы TL494. Также точка, куда припаивается провод земли от переменных резисторов регулировки напряжения и тока должна быть выбрана вблизи выв. 7. Проверку лучше делать прямо на ходу: берёте кусок провода сечением 2,5 мм² длиной сантиметров 10-12, изгибаете дугой и пробуете соединять эти точки между собой.

Ну и третье – это наводки на провода цепи регулировки выходного напряжения от трансформатора – попробуйте повесить конденсатор 0,01 мкФ между выв. 2 и 7 (земля). Делайте именно в этом порядке! Т.к. иногда, установка перемычки, например, полностью убирает самовозбуждение, и после этого RC цепочку ООС уже не подобрать по минимуму.

В итоге я снизил размах пульсаций при токе нагрузки 10 А и напряжении 20 В в режиме стабилизации напряжения ниже 5 мВ, и в режиме стабилизации тока ниже 15 мВ. Это очень высокие показатели!

После испытания БП можно переходить к сборке платы управления. В первом варианте я отказался от использования дифференциального усилителя в петле регулировки тока, дабы уменьшить количество проводов. А зря! Коэффициент стабилизации тока оказался невысоким, плюс падение напряжения на проводах земли дополнительно вносило погрешность. Поэтому в новой схеме я включил оба операционных усилителя (ОУ) по дифференциальной схеме. Требования к типу ОУ остаются прежними, как написано в первой статье.

Усилитель в цепи регулировки напряжения (DA1.1) остался неизменным. При указанных номиналах резисторов (R1=R3 и R2=R4) предел регулировки напряжения соответствует 20,0 В. Для точной работы дифференциального усилителя нужно сохранять равенство этих сопротивлений в парах. Резисторы с номиналом 4,9 кОм составлены из двух, включенных последовательно (например, 3,9 и 1 кОм, или 4,7 кОм и 200 Ом и т.п.).

Усилитель в цепи регулировки тока собран по аналогичной дифференциальной схеме включения ОУ (DA1.2), что требует подключения его входов отдельными тонкими проводами непосредственно к клеммам шунта. Амперметр я использовал прежний SAH0012R-50, поэтому шунт остался точно таким же 75ШИП1-50-0.5 с сопротивлением 1,5 миллиОма. При этом шунте и указанных в схеме номиналах резисторов (R5=R7 и R6=R8) предел регулировки тока составляет 20 А. Чтобы уменьшить предел регулировки тока до 10 А нужно уменьшить сопротивление резисторов R5, R7 до 110 Ом. В случае использования амперметра с другим шунтом, отличающимся по сопротивлению, чтобы задать верхний предел регулировки тока, потребуется изменить сопротивление резисторов R5 и R7 (или R6 и R8), сохраняя равенство их сопротивлений между собой.

Индикацию перехода в режим стабилизации тока я перенёс в цепь регулировки напряжения, поменяв входы компаратора (DA1.4) между собой. В принципе – это не принципиально…

Как и в прошлой конструкции, переменные резисторы регулировки напряжения и тока (R10 и R11), а также R12–R14, C2 и C3 расположены на отдельной плате, расположенной на передней панели корпуса. Файл платы в формате Sprint-Layout можно скачать от сюда. Цепочки C4, R15 (штатная) и C5, R16 расположены на плате БП вблизи микросхемы TL494. Остальное расположено на отдельной плате, которую можно скачать от сюда. Монтаж выполнен на SMD элементах.

Хочу ещё раз подчеркнуть, что питание и землю на схему управления нужно брать от точек на плате БП в непосредственной близости от выв. 12 и 7 TL494. Земля к переменным резисторам регулировки тока и напряжения на передней панели также должна браться вблизи выв. 7 TL494. Корпус переменных резисторов должен быть заземлён.

Дежурный источник питания

Теперь поговорим о внутреннем питании ШИМ, платы управления, вольтметра, амперметра и вентилятора. В принципе, суммарный потребляемый ток этих элементов не высокий – его прекрасно потянет дежурный источник питания. Но нужно учитывать импульсный характер нагрузки, который имеет, прежде всего, вентилятор, и измерительные приборы (за счёт динамического режима работы светодиодных цифровых индикаторов). Пульсации в цепи питания ШИМ и платы управления нам ни к чему, поэтому их нужно развязать между собой.

Я пошёл ещё дальше: дежурный источник питания имеет два выхода: стабилизированный +5V_SB и второй, напряжением около 12 В, который стабилизирован параметрически (косвенно). Первый нам не нужен, а используется, как раз второй! Поэтому я перенёс цепи стабилизации напряжения с выхода +5V_SB на второй выход и настроил их на напряжение 12 В. (Если вам нужно для каких-либо целей +5 В, то можно установить интегральный стабилизатор LM7805 от этой цепи.)

LM339D — ОУ и Компараторы — МИКРОСХЕМЫ — Электронные компоненты (каталог)

Корпус: SO-14

 

LM339D — 4-канальный компаратор для работы в бытовом диапазоне температур (0..+70°С).

Микросхема компараторов LM339D по функциональному назначению и расположению выводов аналогична таким микросхемам как LM139, LM239, LM2901, MC3302, но отличается от них температурным диапазоном работы и незначительно другими параметрами.

Отечественный аналог: КФ1401СА1.

 

Расположение выводов LM339D:

Назначение выводов LM339D:

Назначение N Назначение
1 Выход 2 8 Инвертирующий вход 3
2 Выход 1 9 Неинвертирующий
вход 3
3 + Питания 10 Инвертирующий
вход 4
4

Инвертирующий

вход 1

11

Неинвертирующий

вход 4

5

Неинвертирующий

вход 1

12

— Питания (общий)

6

Инвертирующий

вход 2

13

Выход 4

7

Неинвертирующий

вход 2

14 Выход 3

Предельные режимы LM339D:

Напряжение питания

+36V

или

±18V

Входное напряжение

-0,3..+36V

Дифференциальное

входное напряжение

36V

Выходной ток 20mA

Диапазон температур

0..+70°С

Замыкание выхода на +Vcc может вывести микросхему из строя.

Основные характеристики LM339D:

Параметр

Мин.

Тип.

Макс.

Напряжение смещения

 

±1mV

±5mV

Синфазный входной ток 25nA 250nA

Дифференциальный входной ток

 

±5nA

±50nA

Выходной втекающий ток

6mA

16mA

 

Коэффициент усиления по напряжению

50V/mV

200V/mV

 

Напряжение насыщения

 

 

400mV

Ток потребления

 

1,1mA

2,0mA

Время отклика

 

1,3µS

 

Время отклика на большом сигнале 300nS

 

Эквивалентная схема одного канала LM339D:

 

Более подробные характеристики микросхемы LM339D с графиками работы и примерами схем включения Вы можете получить, скачав файл документации ниже (на английском языке).

Рассчитываем свою первую схему, или Торжество закона Ома.

РадиоКот >Обучалка >Аналоговая техника >Рассчитываем свою схему >

Рассчитываем свою первую схему, или Торжество закона Ома.

Расчет абсолютно бесполезного в большинстве случаев устройства рассмотрим ниже. Это индикатор напряжения на 12В аккумуляторе типа «Светодиодная линейка». Должен сказать, что мне для конкретного применения потребовался индикатор напряжения на аккумуляторе на 4 уровня — 10, 11, 12 и 13вольт. Имеется ввиду, что аккумулятор с напряжением 10вольт считается разряженным, а с 13вольт — заряженным. Да, измерения проводить этим устройством смысла нет, а вывести его на переднюю панель устройства — пусть глаз радует.

С чего начнем расчеты? Прежде всего, с выбора элементной базы. Очевидно, что в схеме должно быть некое устройство, чувствительное к изменению какого-то параметра и выдающее ответ типа «больше-меньше» — это компаратор. Как работает компаратор, мы уже рассматривали в Обучалке, я просто напомню:

Компаратор

Общее правило компаратора: «если напряжение на неинвертирующем (+) входе больше, чем на инвертирующем (-), то выдать ответ ДА». Ответ ДА — это не что иное, как плюс питания компаратора. Ответ НЕТ — это минус питания, логично. Запомнить, нам пригодится.
Повесим компаратору на входы по батарейке, смотрим:
Напряжение на входе «+» равно 6 вольт
Напряжение на входе «-» равно 5 вольт
Значит, компаратор выдаст на своем выходе напряжение, равное своему питанию (12вольт) и у нас загорится светодиод VD2. VD1 будет погашен. Если нам обе батарейки поменять местами, то будет гореть светодиод VD1, а VD2 будет погашен.
Размышляем, приходим к выводу, что для индикации четырех уровней напряжения нам потребуются четыре компаратора.
Пошукав в загашниках, порывшись в коробочках, нахожу удивительно простой счетверенный компаратор LM339. Почитав даташит, рисую цоколевку:

LM339

С левой стороны — входы компараторов. Инвертирующие входы обозначены кружочками, неинвертирующие — простые. С правой стороны — выходы (напротив инвертирующих входов) и лапки питания (лапка 3 — плюс питания, лапка 12 — минус питания).
У этой микры есть одна особенность — она не выдает ответ «ДА». То есть НЕТ она выдать может, а ДА — увы. Или НЕТ, или ничего. Почему? Смотрим структурную схему:

LM339 внутре

Это один (любой) компаратор из LM339. Смотрите на транзистор Q8 — выходной транзистор. Если на входе «+» напряжение меньше, чем на «-«, Q8 открывается и на выходе «Output» формируется минус питания — ответ НЕТ. А такого же транзистора, только с плюса, у нее нет: значит, ДА она нам не выдаст. Видимо, не хватило места в микросхеме. Шутка. Такой выход называется «Выход с открытым коллектором» и довольно часто попадаются микросхемы, построенные именно так — это и логические схемы, и компараторы и дешифраторы и пр.
Но открытый коллектор не помешает нам пользовать микросхему так, как нам хочется. Давайте повесим на нее светодиоды.
Как мы уже поняли, у компараторов из LM339 только один транзистор может зажечь светодиод, и зажечь может, только подав на него минус. Значит, вторые лапки светодиодов должны идти на плюс. Иначе не загорятся.

Схема 1

Поскольку схема будет питаться тем же напряжением, которое измеряет, а светодиоды таких напряжений не любят, включим их через токоограничивающие резисторы R1…R4.
Рассчитаем резисторы. Причем, используя один-единственный закон Ома. И не забывая о том, что ток измеряется в Амперах, напряжение в Вольтах, сопротивление — в Омах.

Светодиод D1 — зеленый, АЛ307Н — с этой буквой он самый яркий (6мкд). По справочнику максимальный ток 22мА при напряжении на диоде 2В. Гонять на максимальном токе мы его не будем, выберем поменьше, к примеру, 17мА. Загораться он будет при напряжении питания 13вольт. Резистор R1 должен погасить на себе лишнее напряжение (напряжение падения), равное
Uпад=13-2=11В
при токе через диод (впрочем, такой же, что и через резистор), равном
Iд=17мА,
значит его сопротивление будет равно
R=Uпад/Iд=11/0,017=647Ом.
Выберем резистор из ряда стандартных сопротивлений — 680Ом. Это, правда, уменьшит ток через диод, ну и ладно — дольше жить будет.

Со светодиодом D2 посложнее — он должен загораться при напряжении 12вольт, но должен гореть и при 13вольтах.
Выбираем желтый светодиод АЛ307Ж — те же 22мА при падении 2В. При напряжении питания 13В и токе 17мА, резистор, очевидно, будет таким же. А какой ток будет через диод на 12вольтах?
I=(12-2)/680=14,7мА
Что, впрочем, не уменьшает его яркость. Или уменьшает, но не намного.
Так же рассчитываем резисторы R3 и R4 для светодиодов D3 (АЛ307Ж) и D4 (АЛ307К):
R3=R2, так как светодиоды D3 и D2 одинаковые — желтые.
А у D4 ток уже не 22мА, а 20, поэтому выберем рабочий ток до 15мА и посчитаем резистор:
Uпад=13-2=11В
Iд=15мА
R=Uпад/Iд=11/0,015=733Ом.
Выберем штатный резистор 750Ом и посчитаем ток через диод при десяти вольтах питания (D4 должен зажечься при питании 10В):
Uпад=10-2=8В
R=750Ом
I=8/750=10,6мА
Здесь нам нужно поставить следственный эксперимент и проверить, как ярко горит красный светодиод на токе 10мА. Берем блок питания, выставляем у него напряжение 10вольт и подключаем к нему светодиод АЛ307К, включенный последовательно с резистором 750Ом.
Нормально?
А теперь увеличим напряжение до 13вольт и снова проверим.
Годится?
Замечательно. Эту часть схемы мы рассчитали, уфф! Она приобрела такой вид:

Схема 2

Следующая часть расчетов — тепловая. Нам нужно проверить, как будут греться резисторы и выбрать их мощность. Формула для расчета мощности так же проста, как сам закон Ома:
P=UI
В нашем случае U это напряжение падения на резисторе, I — ток через него. Вообще просто. Итак, считаем мощность, выделяемую резистором R1 при зажигании светодиода.
Ток берем штатный, напряжение — самое тяжелое для резистора — при питании схемы максимальным напряжением:
P=Uпад*Iд=11*0,017=0,187Вт.
Это больше, чем допустимая мощность для самого мелкого резистора (0,125Вт), поэтому выберем резистор R1 чуток помощнее, типа МЛТ-0,25. Резисторы R2 и R3 будут такими же, ведь токи через них те же и максимальные напряжения такие же.
Резистор R4 посчитаем, давайте уж:
P=Uпад*Iд=11*0,015=0,165Вт.
Ну и его туда же. Все резисторы МЛТ-0,25.

Сделаем паузу, мы устали.

Снова ффперед!
Как компаратор определит, что измеряемое напряжение повысилось до какого-то уровня? Ему же надо его с чем-то сравнить, так ведь? То есть нам требуется какой-то источник напряжения, неизменного в пространстве и времени: Напряжения, которое не менялось бы при изменении питания устройства во всем диапазоне +9:+13В. Напряжение это должно быть стабилизировано: что же это? Правильно, стабилитрон! Про него опять же написано много слов, песен спето различных, блоков питания напаяно: но всё же напомню, что сие есть такое. Стабилитрон — это диод с нелинейной вольт-амперной характеристикой. Проще говоря, это такой диод, который держит постоянным напряжение на себе при изменении тока через него.
Поставим лабораторный опыт. Приобретем (или спаяем откуда-нибудь, роли не играет абсолютно никакой) стабилитрон КС147Г. Его параметры такие:
Напряжение стабилизации 4,2…5,2В (номинальное 4,7В)
Ток стабилизации 1…26мА
Всё это значит, что при изменении тока через него от 1 до 26мА напряжение на стабилитроне будет меняться от 4,2 до 5,2вольт. Как это понять и применить на практике?
Смотрим схему:

Какая то схема.

Резистор R1 задает стабилитрону необходимый ток. Параллельно стабилитрону подключим вольтметр — он будет измерять напряжение стабилизации Uст. Регулируя напряжение на блоке питания 0…12В, наблюдаем показания вольтметра:
0…5В — вольтметр показывает нарастание напряжения до 4В
5…12В — вольтметр показывает увеличение напряжения 4…5В
Видали? Мы изменили напряжение на 7вольт, а получилось — всего на 1вольт! Давайте подумаем, в чем он нам может пригодиться и как из него вытащить пользу.
Корыстные мы, да. Напряжение, которое выдает нам стабилитрон, назовем опорным напряжением. Это для него оно — напряжение стабилизации, а для нас — опорное. Вот с этим самым опорным напряжением наши компараторы будут сравнивать измеряемое напряжение и выдавать диагноз — изменилось ли оно или нет, зажигать нам светодиоды или пущай тухнут.
Рассуждаем логически: поскольку светодиоды зажигаются на ответе компаратора «НЕТ», это значит, что сравниваемое напряжение поднялось выше опорного. Следовательно, опорное напряжение нам нужно подать на неинвертирующие входы компараторов. Входы можно соединять меж собой без вреда озоновому слою Земли и численности населения китайцев. Последствий не будет никаких. Так и сделаем:

Снова схема

Неинвертирующие входы компараторов мы соединили и кинули стабилитрон на землю и резистор на плюс питания. Этот «плюс питания» у нас будет одновременно и питанием, и измеряемым напряжением, да и Бог с ним! Опорное напряжение будет стабилизировано.
Резистор R5 требует расчета, займемся им:
Максимальное напряжение схемы 13В
Напряжение стабилитрона 4,7В
Падение напряжения на резисторе R5 равно
Uпад=13-4,7=8,3В
Максимальный ток стабилизации стабилитрона Iд=26мА, но мы выберем поменьше, к примеру, 15мА. Тогда сопротивление резистора R5 посчитаем
R=Uпад/Iд=8,3/0,015=553Ом
Выберем резистор 560Ом из существующих в ряду стандартных сопротивлений.
Проверим, укладываемся ли мы в стабилизацию при минимальном питании:
Минимальное питание 10В
Сопротивление резистора R5 560Ом
Ток через стабилитрон посчитаем, предположив, что напряжение на стабилитроне не изменилось:
Iд=Uпад/R=(10-4,7)/560=9,4мА
Если бы напряжение стабилитрона упало ниже 4,7В (к примеру, до минимального 4,2В), ток стабилитрона все равно находился бы в диапазоне допустимых (выше 1мА), что нам и требуется. Принимаем R5 равным 560Ом.
Смотрим, что у нас получилось:

Опять схема

Светодиоды я подписал, чтобы было нагляднее.
На свободные лапки компараторов нужно завести измеряемое напряжение, но как-то так, чтобы оно соответствовало зажигаемому светодиоду. Ну не напрямую же их соединять, так ведь?
Смотрим на самый нижний компаратор:
На его неивертирующем входе напряжение 4,7В. Чтобы зажечь светодиод D4 (то есть выдать ответ НЕТ), на инвертирующем входе должно быть напряжение больше 4,7В — это порог срабатывания при повышении входного напряжения до 10В. Нам нужно эти самые 10В завести на инвертирующий вход, но чтобы они выглядели на нем как 4,7В. Как-то надо поделить эти 10вольт до 4,7. Как? Очень просто — делителем напряжения.
Простейший делитель напряжения состоит из двух резисторов.

Делитель напряжения

Входное напряжение может быть любым, а выходное напряжение будет ровно в 2 раза меньше входного. Надо сказать, что делитель напряжения не выдает какой-либо мощности, то есть использовать его в блоках питания нельзя. Можно только получать маломощные, слаботочные напряжения в качестве сигналов управления, ослабить звук перед усилителем: много применений у делителя, но все они — ну никак не про мощность.
Значит, нам надо 10вольт поделить до 4.7. Будем думать.
На вход делителя мы подаем 10В, снимаем 4.7В. На нижнем резисторе (он называется «нижнее плечо делителя») мы видим 4,7В, на верхнем резисторе (верхнее плечо делителя) упадет разница между напряжениями, то есть 5,3В. Отношение 5,3/4,7 будет разницей между резисторами. 5,3/4,7=1,13 раза. В эти 1,13 раза будут отличаться сопротивления резисторов. То есть, если нижний резистор будет 10кОм, то верхний надо искать на 11,3кОм — в таком случае мы получим ровно 4,7В на выходе при входном 10В. Номинал 11,3кОм найти сложно, но можно удвоить оба резистора — соотношение между ними останется таким же — 1,13раза, а номиналы 20кОм и 22,6кОм искать легче — 22,6кОм можно заменить на 22, будет небольшая погрешность, ну и ладно. Нам это не страшно.

Конечно, сам делитель будет потреблять какой-то ток от источника входного напряжения, и нужно, чтобы тот источник входного напряжения мог обеспечить такой ток. Мы не будем рассчитывать всё до мелочей, я скажу только, что делитель с килоомными резисторами меньше потребляет ток, чем с омными резисторами, и плясать мы будем именно от килоомных резисторов.
Итак, мы определили 2 резистора для первого компаратора. Верхний резистор мы подключаем к плюсу питания, ведь оно у нас и питание, и измеряемое напряжение одновременно. Выходное напряжение подаем прямо на компаратор, на лапку 10. Точно так же рассчитаем все остальные делители:
Для компаратора, индицирующего порог «+11В»:
Входное напряжение 11В
Опорное напряжение 4,7В
Падение напряжения на верхнем плече делителя Uпад=11-4,7=6,3В
Отношение резисторов равно 6,3/4,7=1,34 раза
Если нижний резистор 10кОм, то верхний будет R=10*1,34=13,4кОм
Резистора 13,4кОм у нас нет, зато удвоенный резистор 13,4*2=26,8кОм можно заменить на 27кОм. В таком случае удвоим и нижний резистор — он будет не 10кОм, а 20.

Для компаратора «+12В»:
Входное напряжение 12В
Опорное напряжение 4,7В
Падение напряжения на верхнем плече делителя Uпад=11-4,7=7,3В
Отношение резисторов равно 7,3/4,7=1,55 раза
Если нижний резистор 10кОм, то верхний будет R=10*1,55=15,5кОм
Резистор 15,5кОм можно заменить на 15кОм. Это некритично. Нижний резистор остается прежним — 10кОм.

Для компаратора «+13В»:
Входное напряжение 13В
Опорное напряжение 4,7В
Падение напряжения на верхнем плече делителя Uпад=13-4,7=8,3В
Отношение резисторов равно 8,3/4,7=1,77 раза
Если нижний резистор 10кОм, то верхний будет R=10*1,77=17,7кОм
Существует номинал 18кОм, нам подойдет. Нижний резистор — 10кОм.
Наша схема снова немного преображается:

Да, да - схема.

Можно считать эту схему законченной — она будет работать, причем вполне сносно. Свои функции выполнять будет. Ее преимущество в том, что можно легко изменить пороги срабатывания каждого компаратора в отдельности, не мешая другим. Дальше мы рассмотрим, как можно немного упростить эту схему, и чуток ее доработаем.

Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?

Микросхема lm339n и ее применение схема

Эта статья содержит основную информацию о работе компараторов напряжения построенных на интегральных микросхемах и может быть использована в качестве справочного материала для построения различных схем.

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

Структурная схема одного компаратора входящего в микросхему LM339 и LM393

Компаратор напряжения — выход с открытым коллектором

Как правило, выход компаратора напряжения представляет собой выход с открытым коллектором.

Выход открытый коллектор имеет отрицательную полярность. Это означает, что на этом выходе не бывает положительного сигнала и нагрузка должна подключаться между этим выходом и источника питания.

В некоторых схемах к выходу компаратора подключают нагрузочный (подтягивающий) резистор для того, чтобы обеспечить сигнал высокого уровня поступающего на вход следующего элемента схемы.

Операционные усилители (ОУ), такие как LM324, LM358 и LM741 обычно не используются в радиоэлектронных схемах в качестве компаратора напряжения из-за их биполярных выходов. Тем не менее, эти операционные усилители могут быть использованы в качестве компараторов напряжения, если к выходу ОУ подключить диод или транзистор для того чтобы создать выход с открытым коллектором.

Ниже представлена логика работы компаратора имеющий выход с открытым коллектором:

Ток будет течь через открытый коллектор, когда напряжение на входе (+) будет ниже, чем напряжение на входе (-). И соответственно ток не будет протекать через открытый коллектор, когда напряжение на входе (+) будет выше, чем напряжение на входе (-).

Схема эквивалента компаратора напряжения с однополярным источником питания

Принципиальная схема «компаратор напряжения» эквивалентна работе операционного усилителя, например, LM358 или LM324, имеющим на выходе два транзистора типа NPN (см. выше). Таким образом, можно сделать все 4 выхода ОУ (LM339) с открытым коллектором. Каждый такой выход может выдерживать ток нагрузки 15 мА и напряжение до 50 вольт.

Выход включается или выключается в зависимости от относительных напряжений на плюсовом (+) и минусовом (-) входах компаратора. Входы компаратора крайне чувствительны и разница напряжения между ними всего лишь в несколько милливольт приводит к переключению его выхода.

Схема эквивалента компаратора напряжения с двухполярным источником питания

Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.

При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.

При работе с двухполярным источником питания, входное напряжение может быть выше или ниже относительно общего провода блока питания. Кроме того, один из входов компаратора может быть подключен к общему проводу, таким образом создается детектор «пересечение нуля».

Описание работы компаратора

Следующий рисунок показывает простейшую конфигурацию для компаратора напряжения, а так же графическое изображение режима его работы. В этой схеме опорное напряжение составляет половину напряжения питания, а входное напряжение может меняться от нуля до напряжения питания. В теории опорное и входное напряжение могут иметь значение от нуля и до напряжения источника питания, но есть реальные ограничения, зависящие от конкретно используемого компаратора.

Сигнал на выходе:

  1. Ток будет течь через открытый коллектор, когда напряжение на входе плюс (+) ниже, чем напряжение на входе минус (-).
  2. Ток не будет протекать через открытый коллектор, когда напряжение на входе плюс выше, чем напряжение на входе минус.

Входное напряжение смещения компаратора

Компараторы не являются совершенными устройствами, и их работа может иметь недостаток от последствий такого параметра, как входное напряжение смещения. Входное напряжение смещения для многих компараторов может составлять всего несколько милливольт и в большинстве схем может быть проигнорировано.

В основном проблема, связанная с входным напряжением смещения возникает, когда входное напряжение изменяется очень медленно. Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.

Следующая диаграмма иллюстрирует эффект смещения входного напряжения возникающий в результате медленного изменения входного напряжения. Этот эффект возрастает при увеличении выходного тока транзистора. Поэтому, для уменьшения этого эффекта, необходимо обеспечить максимальное сопротивление резистора R4.

Последствия входного напряжения смещения можно уменьшить, добавив в схему гистерезис. Это приведет к тому, что опорное напряжение будет меняться, когда выход компаратора переходит на высокий или низкий уровень.

Входное напряжение смещения и гистерезис

Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.

Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.

Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.

Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).

Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…

Рассчитываем свою первую схему, или Торжество закона Ома.

Расчет абсолютно бесполезного в большинстве случаев устройства рассмотрим ниже. Это индикатор напряжения на 12В аккумуляторе типа «Светодиодная линейка». Должен сказать, что мне для конкретного применения потребовался индикатор напряжения на аккумуляторе на 4 уровня – 10, 11, 12 и 13вольт. Имеется ввиду, что аккумулятор с напряжением 10вольт считается разряженным, а с 13вольт – заряженным. Да, измерения проводить этим устройством смысла нет, а вывести его на переднюю панель устройства – пусть глаз радует.

С чего начнем расчеты? Прежде всего, с выбора элементной базы. Очевидно, что в схеме должно быть некое устройство, чувствительное к изменению какого-то параметра и выдающее ответ типа «больше-меньше» – это компаратор. Как работает компаратор, мы уже рассматривали в Обучалке, я просто напомню:

Общее правило компаратора: «если напряжение на неинвертирующем (+) входе больше, чем на инвертирующем (-), то выдать ответ ДА». Ответ ДА – это не что иное, как плюс питания компаратора. Ответ НЕТ – это минус питания, логично. Запомнить, нам пригодится.
Повесим компаратору на входы по батарейке, смотрим:
Напряжение на входе «+» равно 6 вольт
Напряжение на входе «-» равно 5 вольт
Значит, компаратор выдаст на своем выходе напряжение, равное своему питанию (12вольт) и у нас загорится светодиод VD2. VD1 будет погашен. Если нам обе батарейки поменять местами, то будет гореть светодиод VD1, а VD2 будет погашен.
Размышляем, приходим к выводу, что для индикации четырех уровней напряжения нам потребуются четыре компаратора.
Пошукав в загашниках, порывшись в коробочках, нахожу удивительно простой счетверенный компаратор LM339. Почитав даташит, рисую цоколевку:

С левой стороны – входы компараторов. Инвертирующие входы обозначены кружочками, неинвертирующие – простые. С правой стороны – выходы (напротив инвертирующих входов) и лапки питания (лапка 3 – плюс питания, лапка 12 – минус питания).
У этой микры есть одна особенность – она не выдает ответ «ДА». То есть НЕТ она выдать может, а ДА – увы. Или НЕТ, или ничего. Почему? Смотрим структурную схему:

Это один (любой) компаратор из LM339. Смотрите на транзистор Q8 – выходной транзистор. Если на входе «+» напряжение меньше, чем на «-«, Q8 открывается и на выходе «Output» формируется минус питания – ответ НЕТ. А такого же транзистора, только с плюса, у нее нет: значит, ДА она нам не выдаст. Видимо, не хватило места в микросхеме. Шутка. Такой выход называется «Выход с открытым коллектором» и довольно часто попадаются микросхемы, построенные именно так – это и логические схемы, и компараторы и дешифраторы и пр.
Но открытый

Индикатор напряжения на lm339 схемы самоделки — Moy-Instrument.Ru

Индикатор напряжения на lm339 схемы самоделки

Автомобильные схемы
Автомобильные схемы электрических соединений
Основные обозначения элементов
Определение сопротивления резистора по цветовой маркировке
Калькулятор расчета резистора для светодиодов
Плавное включение и выключение светодиодов на микроконтроллере
Простая схема плавного включения и выключения светодиодов
Стабилизатор тока для светодиодов
Схема регулировки яркости светодиодов (диммер)

Светодиодный индикатор напряжения

Светодиодный индикатор на универсальных поликомпараторных микросхемах, содержащих в одном корпусе по несколько аналоговых компараторов общего назначения. Микросхема LM339, которая в одном корпусе DIP-14 содержит четыре компаратора с полевыми входами. Используя одну LM339 можно сделать четырехпороговый индикатор постоянного напряжения.

На рисунке 1 показана схема такого индикатора с линейной зависимостью измерения. Инверсные входы всех компараторов соединены вместе, — их общая точка является входом индикатора. На прямые входы подается опорное постоянное напряжение +Uomax через резистивный делитель, обеспечивающий распределение этого напряжения так, чтобы получить необходимый закон измерения. В данном случае резисторы делителя R2-R5 выбраны одинаковыми, поэтому и зависимость линейная.

Максимальная величина измеряемого напряжения (величина порога, при котором включается светодиод HL4) равна напряжению +Uomax (опорное напряжения максимума). Это напряжение желательно стабилизировать хотя-бы обычным параметрическим стабилизатором. Минимальная величина (порог при котором загорается HL1) зависит от сопротивления резистора R5 или от величины опорного напряжения минимума (Uomin).

Например, если нужно производить измерения в каком-то остро зажатом узком интервале напряжений, например, от 10 до 11V, то +Uomax должно быть равно 11V, а Uomin = 10V, при этом сопротивление R5 нужно исключить из схемы. Либо выбрать Uomin равным нулю (как на рисунке 1) и установить R5 такой величины, чтобы напряжение на нем было равно 10V.

Сопротивления R10-R13 нужны для придания компараторным схемам небольшого гистерезиса, улучшающего четкость работы индикатора. Индикаторная шкала состоит из четырех светодиодов HL1-HL4, подключенных к выходам компараторов через токоограничительные резисторы R14-R17.

Чтобы измерять переменное напряжение, например, в схеме индикации аудиосигнала, можно на входе сделать детектор на диодах или операционном усилителе.

Конечно, схема показанная на рисунке 1 несколько сложнее схемы на ВА6884 или другой аналогичной микросхемы, но это усложнение не столь существенно, особенно если нужно получить какую-то специфическую характеристику закона измерения. К тому же в данной схеме можно использовать практически любые доступные в текущий момент аналоговые компараторы или операционные усилители.

Схему, показанную на рисунке 1 можно легко каскадировать чтобы получить практически любое количество порогов измерения. На рисунке 2 показана схема восьмипорогового индикатора на двух микросхемах LM339, то есть, на восьми компараторах.

Схема на рисунке 2 специально показана так, чтобы было видно, как соединить схемы при каскадировании. Входы всех компараторов, сколько бы их ни было нужно соединить вместе, — это будет общий вход, на который поступает напряжение, подлежащее измерению.

Резисторы делителя (R2-R5 и R18-R21) включены последовательно. Если схема на большее число порогов, то и компараторов будет больше и больше будет резисторов в этом делителе. Например, используя четыре микросхемы LM339 можно сделать 16-пороговый индикатор.

Число порогов может быть практически любым, — совсем не обязательно кратным четырем. Все зависит от того, сколько компараторов вы используете. Например, если использовать в индикаторе уровня для стереоусилителя пять микросхем LM339, можно получить двухканальный шкальный десятипороговый индикатор. При этом, в каждом из каналов будут работать по две микросхемы LM339. И еще одна LM339, два компаратора которой работают в одном канале, а два других — в другом.

Нагрузочная способность выходов компараторов LM339 не слишком высока, поэтому для получения достаточной яркости индикатора желательно использовать сверх-яркие светодиоды. Либо сделать выходы на дополнительных ключах — усилителях, но это приводит к существенному усложнению схемы.

Индикатор разряда литиевых аккумуляторов

Так как индикатор разряда батареи (п.3 комментария) целесообразно применять на любом автономном электронном устройстве, для исключения неожиданных сбоев или отказа аппаратуры в самый неподходящий момент при разряде батареи, то изготовление индикатора разряда вынесено отдельной статьей.

Применение индикатора разряда особенно важно для большинства литиевых аккумуляторов с номинальным напряжением 3.7 вольта (например, популярные сегодня 18650 и им аналогичные или распространенные плоские Li-ion аккумуляторы от заменяемых на смартфоны телефонов), т.к. они очень «не любят» разряд ниже 3,0 вольт и выходят при этом из строя. Правда, в большинство из них должны быть встроены схемы аварийной защиты от глубокого разряда, но кто знает какой аккумулятор в ваших руках, пока вы его не вскроете (Китай полон загадок).

Но главное, хотелось бы заранее узнать, какой заряд в настоящее время имеется в используемом аккумуляторе. Тогда мы могли бы вовремя подключить зарядку или поставить новый аккумулятор, не дожидаясь грустных последствий. Поэтому нам нужен индикатор, который заранее подаст сигнал о том, что аккумулятор скоро сядет окончательно. Для реализации этой задачи существуют различные схемотехнические решения — от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

В нашем случае, предлагается изготовить простой индикатор разряда литиевых аккумуляторов, который с легкостью собирается своими руками. Индикатор разряда отличается экономичностью и надежностью, компактностью и точностью определения контролируемого напряжения.

Схема индикатора разряда

Схема выполнена с применением, так называемых детекторов напряжения. Их еще называют мониторами напряжения. Это специализированные микросхемы, разработанные специально для контроля напряжения. Неоспоримые достоинства схем на мониторах напряжения — чрезвычайно низкое энергопотребление в дежурном режиме, а также ее крайняя простота и точность. Чтобы сделать индикацию разряда еще более заметной и экономичной, выход детектора напряжения нагружаем на мигающий светодиод или «мигалку» на двух биполярных транзисторах.

Применяемый в схеме детектор напряжения (DA1) PS Т529Н соединяет выход (вывод 3) микросхемы с общим проводом, при снижении контролируемого напряжения на батарее до 3,1 вольта, включая этим питание на генератор импульсов высокой скважности. При этом сверхяркий светодиод начинает вспыхивать с периодом: пауза — 15 сек., короткая вспышка — 1 сек. Это позволяет снизить потребляемый ток до 0,15 ma в паузе, и 4,8 ma при вспышке. При напряжении на аккумуляторе более 3,1 вольта, схема индикатора практически отключается и потребляет всего 3 мкa.

Как показала практика, указанного цикла индикации вполне достаточно, чтобы увидеть сигнал. Но при желании можно установить более удобный для вас режим подбором резистора R2 или конденсатора С1. В связи с малым током потребления устройства, отдельный выключатель напряжения питания для индикатора не предусмотрен. Устройство работоспособно при снижении питающего напряжения до 2,8 вольта.

Изготовление зарядного устройства

1. Комплектация.
Приобретаем или подбираем из имеющихся в наличии, комплектующие для сборки в соответствии со схемой.

2. Сборка схемы.
Для проверки работоспособности схемы и ее настройки, собираем индикатор разряда на универсальной монтажной плате. Для удобства наблюдения (большая частота импульсов), на время проверки, заменяем конденсатор С1 на конденсатор меньшей емкости (например 0,47 мкф). Подключаем схему к блоку питания с возможностью плавной регулировки постоянного напряжения в пределах от 2 до 6 вольт.

3. Проверка схемы.
Медленно понижаем напряжение питания индикатора разряда, начиная с 6 вольт. Наблюдаем на дисплее тестера величину напряжения, при которой включится детектор напряжения (DA1) и начнет мигать светодиод. При правильном подборе детектора напряжения, момент переключения должен состояться в районе 3,1 вольта.

4. Готовим плату для монтажа и пайки деталей.
Вырезаем необходимый для монтажа кусочек из универсальной печатной платы, аккуратно обрабатываем края платы напильником, очищаем и лудим контактные дорожки. Размер вырезаемой платы зависит от применяемых деталей и их компоновки при монтаже. Размеры платы на фото 22 х 25 мм.

5. Монтаж отлаженной схемы на рабочую плату
При положительном результате в работе схемы на монтажной плате, переносим детали на рабочую плату, паяем детали, выполняем недостающую разводку соединений тонким монтажным проводом. По окончании сборки проверяем монтаж. Схема может быть собрана любым удобным способом, в том числе и навесным монтажом.

6. Проверка рабочей схемы индикатора разряда
Проверяем работоспособность схемы индикатора разряда и ее настройки, подключив схему к блоку питания, а затем к тестируемому аккумулятору. При напряжении в цепи питания менее 3,1 вольта, индикатор разряда должен включиться.

Вместо применяемого в схеме детектора напряжения (DA1) PS Т529Н на контролируемое напряжение 3,1 вольта, возможно применить аналогичные микросхемы других производителей, например BD4731. Этот детектор имеет открытый коллектор на выходе (о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы), а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

В схеме также возможно применить детекторы на напряжение 3.08 вольта — TS809CXD, TCM809TENB713, МСР103Т-315Е/ТТ, САТ809ТТВI-G. Точные параметры выбираемых детекторов напряжения желательно уточнить в их datasheet.

Аналогичным образом можно применить и другой детектор напряжения на любое другое необходимое для работы индикатора напряжение.

Решение по второй части вопроса в п.3 приведенного комментария – работы индикатора разряда только при наличии освещенности, отложено по следующим причинам:
— работа дополнительных элементов в схеме, требует дополнительных затрат энергии от аккумулятора, т.е. страдает экономичность схемы;
— работа индикатора разряда днем, чаще всего, бесполезна, т.к. в комнате нет «зрителей», а к вечеру заряд батареи может и закончиться;
— работа индикатора в темное время суток ярче и эффективнее, а для быстрого отключения устройства имеется выключатель питания.

Применение, предложенного по п.2 комментария, отечественного операционного усилителя не рассматривал, по причине отладки режимов работы схемы по минимальным токам, в процессе доводки на монтажной плате.

Для решения задачи по п. 1 комментария, несколько изменил схему устройства «Ночник с акустическим включателем». Для чего включил положительную шину питания акустического реле через инвертор на VT3, с управлением от постоянно работающего фотореле.

Таким образом, добавив две детали (на монтажной плате выделены овалом), получили возможность частично отключать акустическое реле в светлое время суток. Частичное отключение потому, что различные элементы обеих микросхем работают и в акустическом и в фото реле, но имеют общее питание, следовательно не отключаются полностью. Тем не менее некоторый эффект по энергосбережению имеется.
До доработки, схема устройства потребляла в дежурном режиме 1,1 ma.

После доработки, схема устройства потребляет в дежурном режиме в светлое время — 0,4 ma, в темное время — 1,7 ma (разница в 0,6 ma – плата за работу VT3).

Таким образом, можно посчитать, что в летнее время доработка оправдана и дает экономию, а зимой (когда длинные ночи) менее выгодна. Но имеется простое решение – шунтировать VT3 двухпозиционным переключателем «зима-лето» или «вкл-выкл».

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Поделки своими руками для автолюбителей

Простой и точный индикатор заряда-разряда АКБ

Сегодня статья будет с процессом сборки простого индикатора уровня заряда аккумуляторов, но с более высокоточной схемой, которая пригодна для реального использования и может стать отличным дополнением на панели приборов вашего автомобиля.

Индикатор построен на базе микросхемы ELM339, она в свою очередь представляет из себя четыре отдельных компаратора в едином корпусе.

Компаратор имеет два входа и один выход, он просто сравнивает напряжение на входах, исходя из этого на выходе получаем либо логический 0, либо единицу.

Использованный в схеме компаратор можно найти на платах компьютерного блока питания, ориентируйтесь по цифрам 339, буквы могут отличаться в зависимости от производителя.

В качестве индикаторов задействованы 3 миллиметровые светодиоды.

Схема работает очень простым образом, имеем источник опорного напряжения в лице стабилитрона, цепочки из резисторов представляют из себя делители, которые создают на входах компараторов определенное напряжение, назовем их пороговыми.

Компаратор постоянно сравнивает эти напряжения с напряжением, которые образуют делитель на резисторах R5 и R6, этот делитель снижает напряжение тестируемой батареи в три раза, если напряжение на прямом входе компаратора больше чем на инверсном, то на выходе получаем логическую единицу или напряжение питания.

Светодиод светится, если всё наоборот, то на выходе получаем логическую 0 или массу питания, светодиод в данном случае не светится.

Входные делители подобраны в узком диапазоне, поскольку схема предназначена для работы в качестве индикатора заряда 12-вольтовых аккумуляторов.

Маломощный диод 4148 защищает микросхему компаратора от обратной полярности.

Токо-ограничивающие резисторы для светодиодов подбираются с сопротивлением от 1 до 2,2 килом, можно ограничиться всего одним резистором.

Печатная плата довольно компактна, рисовал на скорую руку, но разводка неплохая, кстати её вы можете скачать в конце статьи.

Для проверки этой платы нам нужен лабораторный источник питания на котором нужно выставить напряжение около 13,5 — 14 вольт, имитируя полностью заряженный автомобильный аккумулятор.

Загораются сразу все светодиоды, постепенно снижая напряжение на блоке питания мы можем наблюдать потухание светодиодов при определенных напряжениях.

Горение только красных светодиодов означает, что аккумулятор почти разряжен.

Можно пересчитать входные делители и использовать схему для аккумуляторов с иным напряжением, кстати эту схему можно также применить и в зарядных устройствах.

Индикатор заряда для Li-ion аккумуляторов

Всем привет, мы давно не делали индикаторы разряда автомобильного аккумулятора. Но в этой статье мы будем делать такой, же индикатор только для одной банки LI-ION аккумуляторов с напряжением 3,7 вольт. Такие индикаторы конечно можно купить и на рынке, но, а для тех, кто не прочь поработать руками и мозгами, двигаемся дальше.

Данная схема мало чем отличается от стандартных индикаторов заряда для автомобильных аккумуляторов, но некоторые отличия все же есть. Схема этого индикатора построена на базе компаратора LM-339.

Микросхема LM339 содержит четыре отдельных компаратора, каждый из них имеет два входа и один выход.

Если меняется напряжение на одном входе, это моментально приводит к изменению состояния выхода компаратора. В случаем микросхемы LM 339 на выходе может быть либо вообще ничего, либо масса или минус питания. Такой компаратор называется с открытым коллектором, поэтому светодиоды подключены катодами к компаратору.

На некоторых входах компаратора нужно формировать стабильное или опорное напряжение.

Как правило, для этих целей используется стабилитрон, но дело в том, что мы собираемся контролировать напряжение на низковольтном источнике. Сам стабилитрон также должен быть низковольтным. Точнее говоря напряжение стабилизации стабилитрона должно быть меньше чем напряжение максимально разряженного аккумулятора.

В случае же обычных LI-ION аккумуляторов это около 3-х вольт. Исходя из выше написанного, для сборки необходимо найти стабилитрон с напряжением стабилизации на 2,5 и меньше вольт. (в нашем случае был использован стабилитрон на 3,3 вольт ).

Решение такое – использовать светодиод в качестве источника опорного напряжения. Для красных, желтых и зеленых светодиодов минимальное напряжение свечения – в пределах 2 вольт, только светодиод уже подключается в прямом направлении в отличие от стабилитрона. Резистивные делители на входах компаратора пришлось пересчитать под литиевый аккумулятор. Была сделана новая плата, рассчитанная для работы с банками 3,7 вольт. Еще один момент на плате есть две перемычки, обозначенные желтыми линиями.

Диод VD1 защищает микросхему, в случае если вы перепутаете полярность подключения к аккумулятору.

Как нам известно, напряжение полностью заряженного литий-ионного аккумулятора должно быть в районе 4,2 вольт, поэтому делители подобраны в очень узком диапазоне, при том использованы резисторы с погрешностью всего в 1 %., что гарантирует высокоточную работу индикатора. На плате имеем 4 индикаторных светодиода (цвета могут быть разными).

Для проверки работоспособности индикатора, его необходимо вначале подключить к лабораторному источнику питания, с выставленным напряжением 4,2 вольт имитируя полностью заряженный литий ионный аккумулятор.

Как видно, все светодиоды горят. Далее постепенно снижаем напряжение, имитируя разряд аккумулятора, и сразу видим поочередное потухание светодиодов при определенных напряжениях. Все работает.

Такой индикатор можно пристроить под какую-нибудь самоделку или использовать в качестве пробника для литиевых банок.

Вот и все, Не забывайте поделиться с друзьями и посвить лайк тем самым, вы поддержите проект.

Индикаторы разряда автомобильного аккумулятора ВАРИАНТ – 1 , ВАРИАНТ – 2 , ВАРИАНТ – 3.

Прикрепленные файлы – СКАЧАТЬ

Схема индикатора заряда аккумулятора на светодиодах

Успешный пуск автомобильного двигателя во многом зависит от состояния заряда аккумулятора. Регулярно проверять напряжение на клеммах с помощью мультиметра – неудобно. Гораздо практичнее воспользоваться цифровым или аналоговым индикатором, расположенным рядом с приборной панелью. Простейший индикатор заряда аккумулятора можно сделать своими руками, в котором пять светодиодов помогают отслеживать постепенный разряд либо заряд батареи.

Принципиальная схема

Рассматриваемая принципиальная схема индикатора уровня заряда представляет собой простейшее устройство, отображающее уровень заряда аккумулятора (АКБ) на 12 вольт. Её ключевым элементом является микросхема LM339, в корпусе которой собрано 4 однотипных операционных усилителя (компаратора). Общий вид LM339 и назначение выводов показан на рисунке. Прямые и инверсные входы компараторов подключены через резистивные делители. В качестве нагрузки используются индикаторные светодиоды 5 мм.

Диод VD1 служит защитой микросхемы от случайной смены полярности. Стабилитрон VD2 задаёт опорное напряжение, которое является эталоном для будущих измерений. Резисторы R1-R4 ограничивают ток через светодиоды.

Принцип работы

Работает схема индикатора заряда аккумулятора на светодиодах следующим образом. Застабилизированное с помощью резистора R7 и стабилитрона VD2 напряжение 6,2 вольт поступает на резистивный делитель, собранный из R8-R12. Как видно из схемы между каждой парой этих резисторов формируются опорные напряжения разного уровня, которые поступают на прямые входы компараторов. В свою очередь, инверсные входы объединены между собой и через резисторы R5 и R6 подключены к клеммам аккумуляторной батарее (АКБ).

В процессе заряда (разряда) аккумулятора постепенно изменяется напряжение на инверсных входах, что приводит к поочередному переключению компараторов. Рассмотрим работу операционного усилителя OP1, который отвечает за индикацию максимального уровня заряда АКБ. Зададим условие, если заряженный аккумулятор имеет напряжение 13,5 В, то последний светодиод начинает гореть. Пороговое напряжение на его прямом входе, при котором засветится этот светодиод, рассчитаем по формуле:
UOP1+ = UСТ VD2 – UR8,
UСТ VD2 =UR8+ UR9+ UR10+ UR11+ UR12 = I*(R8+R9+R10+R11+R12)
I= UСТ VD2 /(R8+R9+R10+R11+R12) = 6,2/(5100+1000+1000+1000+10000) = 0,34 мА,
UR8 = I*R8=0,34 мА*5,1 кОм=1,7 В
UOP1+ = 6,2-1,7 = 4,5 В

Это означает, что при достижении на инверсном входе потенциала величиной более 4,5 вольт компаратор OP1 переключится и на его выходе появится низкий уровень напряжения, а светодиод засветится. По указанным формулам можно рассчитать потенциал на прямых входах каждого операционного усилителя. Потенциал на инверсных входах находят из равенства: UOP1- = I*R5 = UБАТ – I*R6.

Печатная плата и детали сборки

Печатная плата изготавливается из одностороннего фольгированного текстолита размером 40 на 37 мм, которую можно скачать здесь. Она предназначена для монтажа DIP элементов следующего типа:

  • резисторы МЛТ-0,125 Вт с точностью не менее 5% (ряд Е24)
    R1, R2, R3, R4, R7, R9, R10, R11– 1 кОм,
    R5, R8 – 5,1 кОм,
    R6, R12 – 10 кОм;
  • диод VD1 любой маломощный с обратным напряжением не ниже 30 В, например, 1N4148;
  • стабилитрон VD2 маломощный с напряжением стабилизации 6,2 В. Например, КС162А, BZX55C6V2;
  • светодиоды LED1-LED5 – индикаторные типа АЛ307 любого цвета свечения.

Данную схему можно использовать не только для контроля напряжения на 12 вольтовых аккумуляторах. Пересчитав номиналы резисторов, расположенных во входных цепях, получаем светодиодный индикатор на любое желаемое напряжение. Для этого следует задаться пороговыми напряжениями, при которых будут включаться светодиоды, а затем воспользоваться формулами для пересчёта сопротивлений, приведенные выше.

Индикатор разряда Li-ion на TL431

Всем привет! Давно ничего не выкладывал, да и на само радиолюбительство подзабил в последнее время. Данный проект у меня уже давно «висит», вот нашёл время поделиться им с вами.

Итак, что и зачем: в большинстве моих (и не только моих) поделок используются элементы питания li-ion номиналом 3,7в — стандартные 18650, всяческие аккумы из сотовых телефонов и китайские разнокалиберные «лепёхи». На том же алиэкспресс есть модули зарядки, повышающие модули, модули для контроля разряда и прочая полезная ерунда, которая сильно облегчает жизнь. Но я не нашёл ничего вменяемого чтобы следить за уровнем заряда батареи и в случае достижения какого-то порогового значения сообщать об этом. Можно конечно сделать слежение на мозгах мк самоделки, либо поставить вольтметр за 70р с того же али, но всегда либо ног у мк не хватает, либо решение получается чрезмерным и громоздким. Исходя из всего этого возникла цель сделать маленькое и просто устройство, которое можно было бы клепать пачками из дешевых компонентов и которое выполняло бы свою функцию — показывало бы что батарея садится и её нужно зарядить.

Началось с вот такой схемы, которую я нашёл на просторах интернета:

Тут используются 4 резистора, R1 и R2 составляют делитель напряжения на управляющем контакте TL431, R3 подтяжка базы NPN транзистора к плюсу питания, R4 — токоограничивающий для индикаторного светодиода, уже упомянутый NPN-транзистор, а также регулируемый стабилитрон TL431, который является сердцем всей схемы.

Сначала был собран DIP-прототип, для проверки работоспособности, вот его фото, если кто захочет в таком варианте повторить:

Образец тесты прошёл, после чего была разработана (слово то какое громкое) новая схема на смд компонентах, собственно к чему я и стремился:

После ЛУТ, травления и сверловки я получил несколько таких вот малышек (часть уже где-то просрал):

ну и собственно готовое изделие, я бы даже сказал модуль:

вот он же в сравнении с драйвером шаговика А4988

получилось довольно компактно, удобно, а самое главное функцию свою выполняет и настраивается легко, для настройки понадобится ЛБП или любой регулируемый БП, выставляем напряжение срабатывания (то, при котором мы хотим видеть сигнал о разряде), затем крутим подстроечник пока светодиод не погаснет или не загорится — ловим «границу», затем уже проверяем работу индикатора изменением входного напряжения с ЛБП. Вот видео работы уже настроенного модуля:

Специально для тех, кто любит орать о сверхогромном потреблении питания и разрядке батареи от второстепенных потребителей в ущерб основному устройству:

при работе как видно потребляется аж целых 10 мА, а при заряженной батарее в 4 раза меньше — 2,3 мВ, что разрядит среднестатистический 1000 мАч аккум «очень быстро» — аж за 18 суток, но это опять же если модуль будет подключен к батарее постоянно. Поэтому при подключении необходимо предусмотреть выключатель, который размыкает цепь батареи полностью, давая ей полностью насладиться процессом саморазряда. Опять же можно заметить что я, как криворукий бабуин вместо 300 омного резистора в цепи светодиода воткнул 68 омный, что так же влияет на потребление. Пробовать с 300ом тупо обламывает, оставлю это моим покорным читателям.

И для тех, кто стойкий оловянный солдатик и дочитал до этого места, я напишу как эта ебала работает:

Вся соль заключается в особенности регулируемого стабилитрона ТЛ431 — он начинает пропускать ток через себя только при наличии на управляющей ноге напряжения равном или выше 2,6в, следовательно при правильно подобранном делителе напряжения из R1 и R2, где первый равен 1,5кОм а второй является подстроечным, на управляющую ногу ТЛ431 при заряженной батарее приходит напряжение, которое выше 2,6в, следовательно весь ток идёт через стабилитрон и светодиод не горит. Как только напряжение на батарее становится ниже порогового — на ТЛ431 приходит меньше 2,6в и он закрывается, тем самым открывая транзистор и зажигая светодиод. Просто как с балкона поссать.

Кто не хочет заморачиваться с подбором резисторов в делителе — вот вам скрин из полезной проги на андроиде:

3,3в — напряжение срабатывания

1,5кОм — постоянный резистор

5,6кОм — значение подстроечника

2,603В — получаемое на выходе делителя, то есть на входе ТЛ431

Какие могут быть нюансы:

1) забыть отзеркалить плату при печати (как я) — тупо переворачиваем полупроводники кверху ногами и всё ок

2) не работает схема — пробуем перевернуть ТЛ431 кверху ногами, ушлые китайцы штампуют ТЛ432 под видом ТЛ431 (у них распиновка зеркальная)

3) не горит светодиод/горит тускло — шаманим с номиналом токоограничивающего резистора

Ссылка на скачивание печаток в формате *.lay:

В общем сумбурно как-то изложил, но вроде инфу донёс, пишите вопросы, пожелания, советы, буду рад почитать.

Индикатор уровня напряжения аккумулятора на светодиодах и ОУ LM339

Сейчас вольтметр на приборной панели автомобиля — большая редкость. Все больше лампочки с изображением аккумулятора. Лампочка эта загорается когда нет зарядки аккумулятора. И все же, нужен хотя бы какой-то индикатор, показывающий ориентировочно напряжение.

Здесь приводится схема хорошо проверенного автомобильного индикатора напряжения, который можно применять и для других целей. Схема состоит из четырех компараторов микросхемы LM339. Соответственно, получается четырехпороговое устройство индикации.

Особенность схемы в том, что порог напряжения для каждого светодиода можно установить произвольно, причем делается это очень легко и не требует какого-либо вторжения в схему. Нужно всего-то подать на схему напряжение и покрутить один из подстроечных резисторов так, чтобы при этом напряжение загорался соответствующий светодиод. Практически, можно задать любые пороги для четырех светодиодных индикаторов, и даже в любом порядке.

При этом нижний предел ограничивается напряжением 6V (напряжение, при котором еще хорошо работает ИМС LM339), а верхний зависит от сопротивления R6, величина которого в килоомах должна быть равна верхнему пределу напряжения в вольтах. Еще нужно учесть, что верхнее напряжение не должно быть более 30В (максимум напряжения питания ИМС LM339).

Индикатор уровня напряжения аккумулятора на светодиодах и ОУ LM339

Схема питается от измеряемого напряжения. На прямые входы компараторов поступает напряжение с подстроечных резисторов R2-R5. Для каждого из компараторов можно установить свое опорное напряжение.

Чтобы опорное напряжение не менялось при изменении напряжения питания, оно стабилизировано стабилитроном VD1. Измеряемое напряжение поступает на соединенные вместе инверсные входы компараторов через делитель на резисторах R6 и R7.

Светодиоды можно заменить любыми индикаторными. Если предполагается измерять напряжение более 20V желательно несколько увеличить сопротивления резисторов R8-R11 чтобы не возникало перегрузки по току выходов компараторов. Если требуется большая точность задания порогов нужно чтобы подстроечные резисторы были многооборотными.

Клотов Н. РК-2016-01.

LM339D — ОУ и Компараторы — МИКРОСХЕМЫ — Электронные компоненты (каталог)

Корпус: SO-14

LM339D — 4-канальный компаратор для работы в бытовом диапазоне температур (0 .. + 70 ° С).

Микросхема компараторов LM339D по функциональному назначению и расположению выводов аналогичных микросхемам, как LM139, LM239, LM2901, MC3302, но отличается от них температурным диапазоном работы и незначительно другими включенными функциями.

Отечественный аналог: КФ1401СА1 .

Расположение выводов LM339D:

Назначение выводов LM339D:

N Назначение N Назначение
1 Выход 2 8 Инвертирующий вход 3
2 Выход 1 9 Неинвертирующий
вход 3
3 + Питания 10 Инвертирующий
вход 4
4

Инвертирующий

вход 1

11

Неинвертирующий

вход 4

5

Неинвертирующий

вход 1

12

— Питания (общий)

6

Инвертирующий

вход 2

13

Выход 4

7

Неинвертирующий

вход 2

14 Выход 3

Предельные режимы LM339D:

Напряжение питания

+ 36В

или

± 18 В

Входное напряжение

-0,3.. + 36V

Дифференциальное

входное напряжение

36V

Выходной ток 20 мА

Диапазон температуры

0 .. + 70 ° С

Замыкание выхода на + Vcc может вывести микросхему из строя.

Основные характеристики LM339D:

Параметр

Мин.

Тип.

Макс.

Напряжение с ущерба

± 1 мВ

± 5мВ

Синфазный входной ток 25нА 250нА

Дифференциальный входной ток

± 5нА

± 50 нА

Выходной втекающий ток

6 мА

16 мА

Коэффициент усиления по напряжению

50 В / мВ

200 В / мВ

Напряжение насыщения

400 мВ

Ток потребления

1,1 мА

2,0 мА

Время отклика

1,3 мкСм

Время отклика на большую сигнале 300 нс

Эквивалентная схема одного канала LM339D :

Более подробные характеристики микросхемы LM339D с графиками работы и примерами схем включения Вы можете получить, скачав файл ниже (на английском языке).

.

Знакомство с компараторами на примере чипа LM339

Ранее мы с вами познакомились с такими интегральными схемами, как таймер 555, счетчик 4026, логические вентили, а также сдвиговые регистры и декодеры. Теперь же пришло время узнать о компараторах. Несмотря на кажущуюся простоту, компараторы — куда более интересные устройства, чем может показаться на первый взгляд. Читайте далее, и сможете убедиться в этом самостоятельно.

Крайне наглядная картинка, объясняющая работу компаратора, была найдена в книге Чарльза Платта Электроника: логические микросхемы, усилители и датчики для начинающих.С некоторыми изменениями эта иллюстрация приведена ниже:

Внутреннее устройство компаратора

Компаратор имеет два входа, обозначаемые знаками минус (инвертирующий вход) и плюс (неинвертирующий вход), и один выход. Для нормальной работы компаратора обязательно должен быть подключен к плюсу источника питания через резистор. Почему нельзя было сделать это просто внутри микросхемы, скоро станет понятно.

Используется компаратор следующим образом. На инвертирующий вход подается эталонное напряжение.Когда напряжение на втором, неинвертирующем, входе больше эталонного, выход компаратора имеет высокое напряжение. Если же напряжение на неинвертирующем входе ниже эталонного, выход компаратора имеет низкое напряжение. Проще говоря, компаратор сравнивает два значения напряжения и на выходе говорит, какое больше. Входы компаратора можно использовать и наоборот, тогда выход компаратора будет инвертирован.

В качестве типичной микросхемы, внутри себя целых 4 компаратора, можно назвать LM339.Данный чип выпускается как в виде SMD-компонента, так и вариант для монтажа через отверстия. Распиновка у LM339 следующая:

Распиновка LM339

Данная иллюстрация взята из даташита микросхемы [PDF].

На практике компараторы чаще всего используют одним из следующих образов:

Примеры использования компаратора

Важно! По неудачному стечению обстоятельств, компаратор обозначается на схемах точно так же, как и операционный усилитель. Однако операционные усилители работают иначе, нежели компараторы, и их не следует путать.Определить, что именно используется в схеме, обычно можно по указанному названию чипа.

В левой части схемы изображен компаратор, чей выход соединяется с неинвертирующим входом через потенциометр или резистор. Это — так называемая положительная обратная связь. Благодаря ей достигается гистерезис. То есть, если напряжение на неинвертирующем входе будет колебаться в некотором коридоре возле эталонного, выход компаратора не будет постоянно изменяться. Если помните, триггер Шмитта (чип 74HC14) делает то же самое.

Кстати, можно заметить, что одна из связей на потенциометре в положительной обратной связи как бы лишняя. Как объяснил мне Melted Metal, так принято делать на случай потери движка потенциометра с резистивной дорожкой.

Что же касается правой части схемы, на ней изображена схема двухпорогов компаратора. Если вход схемы, обозначенный, как сигнал, имеет напряжение между низким и высоким, на выходе схемы образуется высокое напряжение. В случае возникновения напряжения на выходе низкое.

На следующем фото изображена первая схема, собранная на макетной плате:

Пример использования LM339, собранный на макетке

Потенциометр слева задает напряжение на инвертирующем входе, а потенциометр справа — на неинвертирующем. Потенциометр по центру участвует в положительной обратной связи. Напряжение на обоих входах отображается при помощи миниатюрных цифровых вольтметров. Входное напряжение на напряжение неинвертирующего входа выше эталонного, светодиод, подключенный к выходу компаратора, горит.

Обратите внимание, что на вход использованных компараторов также высокое и низкое напряжение.Это увеличивает надежность работы схемы и уменьшает потребляемую ею электроэнергию. Не имеет значения, на какой из входов высокое напряжение, а на какой — низкое. Главное, чтобы выход каждого отдельного компаратора был строго определен.

Вторую схему в собранном виде здесь я не привожу. Так что, вам придется поверить мне на слово, что она работает 🙂

Помимо всех озвученных выше, следует иметь в виду еще пару важных моментов:

  • Через компаратор не следует пропускать слишком большой ток.Ток больше 20 мА может его сжечь;
  • Напряжение на выходе компаратора может быть как выше, так и ниже напряжения на любом из входов. То есть, выход можно питать от совершенно другого источника питания. А питание на саму микросхему при этом может идти от третьего. Все эти источники имеют общую землю;

Последнее обстоятельство позволяет использовать компаратор в качестве преобразователя уровня сигнала. Кроме того, теперь стало ясно, что все эти сложности со стороны внешнего подтягивающего резистора.

Вообще, компаратор можно рассматривать, как очень простой вольтметр или АЦП. В частности, с его помощью не представляет труда собрать индикатор уровня заряда Li-Ion аккумулятора. Если же у вас есть лишний фоторезистор (см заметку Мои первые страшные опыты с Arduino) или фототранзистор, на базе компаратора можно сделать датчик освещения. Если же вместо фоторезистора используйте термометром типа TMP36, можно собрать устройство, управляющее кулером или кондиционер, способное регулировать температуру.

Наконец, компаратор можно использовать в качестве логического элемента НЕ, а также, если соединить выходы нескольких компараторов, в качестве элемента И. Отсюда несложно получить ИЛИ, по форуму x || y =! (! x &&! y) , ровно как и другую булеву функцию. Само собой разумеется, при желании можно придумать и другие применения.

А какие безумные варианты использования компараторов приходят вам на ум?

Метки: Электроника.

.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *