Мигалка светодиодная схема: Как сделать мигающий светодиод: обзор различных схем

Содержание

Как сделать мигающий светодиод: обзор различных схем

Мигающие светодиоды применяются в различных сигнальных схемах, в рекламных щитах и вывесках, электронных игрушках. Сфера их применения достаточно широка. Простая мигалка на светодиоде может быть также использована для создания автосигнализации. Надо сказать, что моргать этот полупроводниковый прибор заставляет встроенная микросхема (ЧИП). Основные достоинства готовых МСД: компактность и разнообразие расцветок, позволяющее красочно оформлять электронные устройства, например, рекламное табло с целью привлечения внимания покупателей.

Но можно изготовить мигающий светодиод самостоятельно. Используя простые схемы, это сделать несложно. Как сделать мигалку, имея небольшие навыки работы с полупроводниковыми элементами, описано в этой статье.

Мигалки на транзисторах

Самый простой вариант – светодиодная мигалка на одном транзисторе. Из схемы видно, что база транзистора висит в воздухе. Такое нестандартное включение позволяет ему работать как динистор.

Светодиодная мигалка на одном транзисторе

При достижении порогового значения возникает пробой структуры, открытие транзистора и разрядка конденсатора на светодиод. Такая простая мигалка на транзисторе может найти применение в быту, например, в небольшой елочной гирлянде. Для ее изготовления понадобятся вполне доступные и недорогие радиоэлементы. Светодиодная мигалка, сделанная своими руками, придаст немного шарма пушистой новогодней красавице.

Можно собрать похожее устройство уже на двух транзисторах, взяв детали из любой радиоаппаратуры, отслужившей свой срок. Схема мигалки приведена на рисунке.

Схема мультивибратора на двух транзисторах для простой мигалки

Для сборки понадобятся:

  • резистор R = 6,8–15 кОм – 2 штуки;
  • резистор R = 470–680 Ом – 2 штуки;
  • транзистор n-p-n-типа КТ315 Б – 2 штуки;
  • конденсатор C = 47–100 мкФ – 2 штуки;
  • маломощный светодиод или светодиодная лента.

Диапазон рабочего напряжения 3–12 вольт. Подойдет любой источник питания с такими параметрами. Эффект мигания в данной схеме достигается поочередным зарядом и разрядом конденсаторов, влекущим за собой открытие транзисторов, в результате чего появляется и исчезает ток в цепи светодиода.

Светодиоды с миганием можно получить, подключив выводы к нескольким разноцветным элементам. Встроенный генератор выдает поочередно импульсы на каждый цвет. Частота моргающего импульса зависит от заданной программы. Таким веселым миганием можно порадовать ребенка, если установить устройство в детскую игрушку, например, машинку.

Неплохой вариант получится, если взять трехцветный мигающий светодиод, имеющий четыре вывода (один общий анод или катод и три вывода управления цветом).

Еще один простой вариант, для сборки которого понадобятся батарейки типа CR2032 и резистор сопротивлением от 150 до 240 Ом. Мигающий светодиод получится, если последовательно соединить все элементы в одной схеме, соблюдая полярность.

Мигающий светодиод

Если получается собрать веселые огоньки по простейшей схеме, можно перейти к более сложной конструкции.

Схема мигалки на светодиодах

Данная схема мигалки на светодиодах работает следующим образом: при подаче напряжения на R1 и заряжении конденсатора С1, на нем растет напряжение. После того как оно достигнет 12 В, происходит пробой p-n-перехода транзистора, что увеличивает проводимость и вызывает свечение светодиода. При падении напряжения транзистор закрывается, и процесс идет сначала. Все блоки работают примерно на одной частоте, если не учитывать небольшую погрешность. Схему мигалки на светодиодах с пятью блоками можно собрать на макетной плате.

Макет мигалки на транзисторах

Мигающий светодиод своими руками: схемы с описанием

Мигающие светодиоды часто применяют в различных сигнальных цепях. В продаже довольно давно появились светодиоды (LED) различных цветов, которые при подключении к источнику питания периодически мигают. Для их мигания не нужны никакие дополнительные детали. Внутри такого светодиода смонтирована миниатюрная интегральная микросхема, управляющая его работой. Однако для начинающего радиолюбителя намного интереснее сделать мигающий светодиод своими руками, а заодно изучить принцип работы электронной схемы, в частности мигалок, освоить навыки работы с паяльником.

[contents]

Как сделать светодиодную мигалку своими руками

Существует множество схем, с помощью которых можно заставить мигать светодиод. Мигающие устройства можно изготовить как из отдельных радиодеталей, так и на основе различных микросхем. Сначала мы рассмотрим схему мигалки мультивибратора на двух транзисторах. Для ее сборки подойдут самые ходовые детали. Их можно приобрести в магазине радиодеталей или «добыть» из отживших свой срок телевизоров, радиоприемников и другой радиоаппаратуры. Также во многих интернет магазинах можно купить наборы деталей для сборки подобных схем led мигалок.

На рисунке изображена схема мигалки мультивибратора, состоящая всего из девяти деталей. Для ее сборки потребуются:

  • два резистора по 6.8 – 15 кОм;
  • два резистора имеющие сопротивление 470 – 680 Ом;
  • два маломощных транзистора имеющие структуру n-p-n, например КТ315 Б;
  • два электролитических конденсатора емкостью 47 –100 мкФ
  • один маломощный светодиод любого цвета, например красный.

Не обязательно, чтобы парные детали, например резисторы R2 и R3, имели одинаковую величину. Небольшой разброс номиналов практически не сказывается на работе мультивибратора. Также данная схема мигалки на светодиодах не критична к напряжению питания. Она уверенно работает в диапазоне напряжений от 3 до 12 вольт.

Схема мигалки мультивибратора работает следующим образом. В момент подачи на схему питания, всегда один из транзисторов окажется открытым чуть больше чем другой. Причиной может служить, например, чуть больший коэффициент передачи тока. Пусть первоначально больше открылся транзистор Т2. Тогда через его базу и резистор R1 потечет ток заряда конденсатора С1. Транзистор Т2 будет находиться в открытом состоянии и через R4 будет протекать его ток коллектора. На плюсовой обкладке конденсатора С2, присоединенной к коллектору Т2, будет низкое напряжение и он заряжаться не будет. По мере заряда С1 базовый ток Т2 будет уменьшаться, а напряжение на коллекторе расти. В какой-то момент это напряжение станет таким, что потечет ток заряда конденсатора C2 и транзистор Т3 начнет открываться. С1 начнет разряжаться через транзистор Т3 и резистор R2. Падение напряжения на R2 надежно закроет Т2. В это время через открытый транзистор Т3 и резистор R1 будет течь ток и светодиод LED1 будет светиться. В дальнейшем циклы заряда-разряда конденсаторов будут повторяться попеременно.

(adsbygoogle = window.adsbygoogle || []).push({});

Если посмотреть осциллограммы на коллекторах транзисторов, то они будут иметь вид прямоугольных импульсов.

Когда ширина (длительность) прямоугольных импульсов равна расстоянию между ними, тогда говорят, что сигнал имеет форму меандра. Снимая осциллограммы с коллекторов обоих транзисторов одновременно, можно заметить, что они всегда находятся в противофазе. Длительность импульсов и время между их повторениями напрямую зависят от произведений R2C2 и R3C1. Меняя соотношение произведений можно изменять длительность и частоту вспышек светодиода.

Для сборки схемы мигающего светодиода понадобятся паяльник, припой и флюс. В качестве флюса можно использовать канифоль или жидкий флюс для пайки, продающийся в магазинах. Перед сборкой конструкции необходимо тщательно зачистить и залудить выводы радиодеталей. Выводы транзисторов и светодиода нужно соединять в соответствии с их назначением. Также необходимо соблюдать полярность включения электролитических конденсаторов. Маркировка и назначение выводов транзисторов КТ315 показаны на фото.

Проще всего определить катод светодиода, рассматривая прибор на просвет. Катодом является электрод с большей площадью. Минусовой вывод «электролита» обычно помечен белой полосой на корпусе прибора.

В зависимости от задач, которые ставит перед собой радиолюбитель, схему мигалки можно собрать «навесу», соединяя выводы радиодеталей между собой с помощью отрезков тонкого провода. В этом случае может получиться конструкция наподобие той, что показана ниже на фото.

Собираем мигалку «на коленке»

Если нужно собрать мигалку для последующего применения, то монтаж можно выполнить на куске жесткого картона или изготовить печатную плату из текстолита.

Простая мигалка на светодиоде

Существуют более простые схемы мигалок на светодиоде. Одна из таких показана на следующем фото.

Схема самой простой мигалки

Если внимательно присмотреться к этой светодиодной мигалке, то можно увидеть, что транзистор в схеме мигалки включен «неправильно». Во-первых, неправильно подключены эмиттер и коллектор. Во-вторых, база «висит в воздухе». Однако схема светодиодной мигалки вполне рабочая. Дело в том, что в ней КТ315 работает как динистор. При достижении на нем порогового значения обратного напряжения происходит пробой полупроводниковых структур и транзистор открывается. Нарастание напряжения на транзисторе происходит по мере зарядки конденсатора. После открывания транзистора конденсатор разряжается на светодиод. Так как в схеме мигалки на светодиодах используется нестандартное включение транзистора, она может потребовать подбора резистора или конденсатора при наладке.

После того, как сделаете своими руками простую мигалку, можете переходить к более сложным мигающим устройствам, например к созданию цветомузыки на светодиодах.

Мигающий светодиод на одной батарейке

Большинство светодиодов работают при напряжениях свыше 1.5 вольт. Поэтому их нельзя простым способом зажечь от одной пальчиковой батарейки. Однако существуют схемы мигалок на светодиодах позволяющие преодолеть эту трудность. Одна из таких показана ниже.

В схеме мигалки на светодиодах имеется две цепочки заряда конденсаторов: R1C1R2 и R3C2R2. Время заряда конденсатора С1 гораздо больше времени заряда конденсатора С2. После заряда С1 открываются оба транзистора и конденсатор С2 оказывается последовательно соединен с батарейкой. Через транзистор Т2 суммарное напряжение батареи и конденсатора прикладывается к светодиоду. Светодиод загорается. После разряда конденсаторов С1 и С2 транзисторы закрываются и начинается новый цикл зарядки конденсаторов. Такая схема мигалки на светодиодах называется схемой с вольтодобавкой.

Мы рассмотрели несколько схем мигалок на светодиодах. Собирая эти и другие устройства можно не только научиться паять и читать электронные схемы. На выходе можно получить вполне работоспособные приборы полезные в быту. Дело ограничивается только фантазией создателя. Проявив смекалку, из светодиодной мигалки можно, например, сделать сигнализатор открытой дверцы холодильника или указатель поворотов велосипеда. Заставить мигать глазки мягкой игрушки.

Светодиодная мигалка на транзисторе | Мастер-класс своими руками

Одной из самых простых схем в любительской радиоэлектронике является светодиодная мигалка на одном транзисторе. Ее изготовление под силу любому новичку, у которого есть минимальный набор для пайки и полчаса времени.

Рассматриваемая схема хоть и отличается простотой, однако, она позволяет наглядно увидеть лавинный пробой транзистора, а также работу электролитического конденсатора. В том числе, путем подбора емкости можно легко изменять частоту мигания светодиода. Экспериментировать также можно с входным напряжением (в небольших диапазонах), которое тоже влияет на работу изделия.

Устройство и принцип работы


Мигалка состоит из следующих элементов:
  • источник питания;
  • сопротивление;
  • конденсатор;
  • транзистор;
  • светодиод.

Работает схема по очень простому принципу. В первой фазе цикла транзистор «закрыт», то есть не пропускает ток из источника питания. Соответственно, светодиод не светится.
Конденсатор расположен в цепи до закрытого транзистора, потому накапливает электрическую энергию. Происходит это до тех пор, пока напряжение на его выводах не достигнет показателя, достаточного для обеспечения так называемого лавинного пробоя.
Во второй фазе цикла накопленная в конденсаторе энергия «пробивает» транзистор, и ток проходит через светодиод. Он вспыхивает на короткое время, а затем опять гаснет, так как транзистор опять закрывается.
Далее мигалка работает в циклическом режиме и все процессы повторяются.

Необходимые материалы и радиодетали


Чтобы собрать светодиодную мигалку своими руками, работающую от источника питания с напряжением 12 В, понадобится следующее:
  • паяльник;
  • канифоль;
  • припой;
  • резистор на 1 кОм;
  • конденсатор емкостью 470-1000 мкФ на 16 В;
  • транзистор КТ315 или его более современный аналог;
  • классический светодиод;
  • простой провод;
  • источник питания на 12 В;
  • спичечный коробок (необязательно).


Последний компонент выступает в роли корпуса, хотя собрать схему можно и без него. В качестве альтернативы можно использовать монтажную плату. Навесной монтаж, описанный далее, рекомендуется для начинающих радиолюбителей. Такой способ сборки позволяет быстрее сориентироваться в схеме и сделать все правильно с первого раза.

Последовательность сборки мигалки


Изготовление светодиодной мигалки на 12 В осуществляется в следующей последовательности. Первым делом подготавливаются все вышеперечисленные компоненты, материалы и инструменты.
Для удобства светодиод и провода питания лучше сразу закрепить на корпусе. Далее к выводу «+» следует припаять резистор.



Свободная «ножка сопротивления соединяется с эмиттером транзистора. Если КТ315 расположить маркировкой вниз, то этот вывод будет у него крайним правым. Далее эмиттер транзистора соединяется с положительным выводом конденсатора. Определить его можно по маркировке на корпусе – «минус» обозначается светлой полосой.
Следующим этапом идет соединение коллектора транзистора с положительным выводом светодиода. У КТ315 – это ножка посредине. «Плюс» светодиода можно определить визуально. Внутри элемента имеется два электрода, отличающихся размерами. Тот, который поменьше, и будет положительным.


Теперь осталось только припаять отрицательный вывод светодиода к соответствующему проводнику источника питания. К этой же линии подсоединяется «минус» конденсатора.
Светодиодная мигалка на одном транзисторе готова. Подав на нее питание, можно увидеть ее работу по вышеописанному принципу.
Если есть желание уменьшить или увеличить частоту мигания светодиода, то можно поэкспериментировать с конденсаторами, имеющими разную емкость. Принцип очень простой – чем больше емкость элемента, тем реже будет мигать светодиод.



Достаточно часто даже правильно собранная схема работает некорректно. Если светодиод просто горит (не мигает), или же гаснет не полностью, достаточно изменить входное напряжение. На регулируемом блоке питания это делается элементарно – поворотом ручки в нужную сторону. Если источник питания нерегулируемый, то в цепь можно подобрать соответствующее добавочное сопротивление.

Мигалка светодиодная. Как самостоятельно сделать мигающий светодиод

Мультивибратор — простой генератор импульсов. Это одна из первых конструкций начинающих радиолюбителей. На мультивибраторе можно собрать простую мигалку на светодиодах. Итак, если Вы — начинающий радиолюбитель, то после освоения теоретической части электроники можно приступать к практике.

Простой мультивибратор

Схема распространённого простого мультивибратора для двух каналов представлена ниже. Светодиодов в одном плече может быть не только один, но два, три и больше если соединить их.

Трёхканальный мультивибратор

Обычно схема мультивибратора строится на двух транзисторах, как на рисунке выше и предназначен он для получения прямоугольных импульсов. Но н едавно в интернете была найдена схема мультивибратора на три канала.

Рассматриваемый мультивибратор имеет три канала, которые открываются поочередно. Весь монтаж был выполнен на макетной плате, притом со значительными разбросами. В схеме использованы маломощные транзисторы типа КТ315, можно также использовать КТ312, КТ3102, а также более мощные отечественные транзисторы (КТ815, КТ817 и даже КТ819).

Выбор очень велик, можно использовать буквально любые транзисторы прямой или обратной проводимости отечественного и импортного производства. При использовании транзисторов прямой проводимости (КТ361, КТ814, КТ816, КТ818) необходимо поменять источник питания + с — , а также полярность электролитических конденсаторов.

При правильно собранной схеме в настройке мультивибраторы не нуждаются. Следует проверить весь монтаж, особое внимание нужно уделить на подключение электролитических конденсаторов. Напряжение питания подбирается в районе 4…6 вольт, хотя и от «кроны» (9В) тоже работает.


Частоту мигания, т.е. генерирования импульсов по желанию можно подбирать конденсаторами. Конденсаторы следует ставить одинаковой ёмкости, чтобы длительность импульсов была одинаковой.

Желательно подобрать разноцветные светодиоды с одинаковыми параметрами. Можно использовать буквально любые светодиоды малой мощности.

Данная светодиодная мигалка на 12 вольт позволяет создать эффект хаотичных вспышек каждого из 6 светодиодов. Принцип работы основан на лавинном пробое p-n перехода .

Описание работы светодиодной мигалки

Опишем работу схемы на одном блоке, оставшиеся пять работают по аналогичному принципу. При подаче напряжения питания через резистор R1 начинает заряжаться конденсатор С1 и следовательно на нем начинает расти напряжение. Пока он заряжается, ничего не происходит.

После того как на выводах конденсатора напряжение достигнет 11…12 вольт, происходит лавинный пробой p-n перехода транзистора, проводимость его возрастает и как следствие этому, светодиод начинает светиться за счет энергии разряжающегося конденсатора C1.


Когда напряжение на конденсаторе падает ниже 9… 10 вольт, транзисторный переход закрывается, и весь процесс повторяется с самого начала. Оставшиеся пять блоков схемы работают также и примерно на той же частоте, но фактически частота немного отличается друг от друга из-за допусков радиокомпонентов.

В конструкции можно применить произвольные радиодетали. Необходимо отметить, что при напряжении питания менее 12 вольт схема работать не будет, поскольку не будет происходить лавинный пробой транзистора и генератор работать не будет. Особенностью этого типа генератора является его зависимость от напряжения питания. Чем выше напряжение, тем выше частота колебаний. Верхний уровень по питанию ограничен характеристиками конденсаторов и токоограничивающих резисторов.


Значения резисторов и конденсаторов определяют частоту работы каждого отдельно взятого генератора. Резисторы, защищают транзисторы от разрушения во время лавинного пробоя. Не следует сильно занижать сопротивление резисторов, так как это может привести к выходу из строя транзисторов. То же самое может произойти, если слишком увеличить емкости конденсаторов. В этом случае можно посоветовать последовательно светодиоду подключить дополнительное сопротивление.

http://pandatron.cz/?520&dekorativni_blikatko

У любого начинающего радиолюбителя присутствует желание поскорей собрать что-нибудь электронное и желательно, чтобы оно заработало сразу и без трудоёмкой настройки. Да и это понятно, так как даже маленький успех в начале пути даёт массу сил.

Как уже говорилось, первым делом лучше собрать блок питания . Ну а если он уже есть в мастерской, то можно собрать мигалку на светодиодах. Итак, пришло время «подымить» паяльником .

Вот принципиальная схема одной из простейших мигалок. Базовой основой данной схемы является симметричный мультивибратор . Мигалка собрана из доступных и недорогих деталей, многие из которых можно найти в старой радиоаппаратуре и использовать повторно. О параметрах радиодеталей будет сказано чуть позднее, а пока разберёмся с тем, как работает схема.

Суть работы схемы заключается в том, что транзисторы VT1 и VT2 поочерёдно открываются. В открытом состоянии переход Э-К у транзисторов пропускает ток. Так как в коллекторные цепи транзисторов включены светодиоды, то при прохождении через них тока они светятся.

Частота переключений транзисторов, а, следовательно, и светодиодов может быть приблизительно подсчитана с помощью формулы расчёта частоты симметричного мультивибратора.

Как видим из формулы, главными элементами с помощью которых можно менять частоту переключений светодиодов является резистор R2 (его номинал равен R3), а также электролитический конденсатор C1 (его ёмкость равна C2). Для подсчёта частоты переключений в формулу нужно подставить величину сопротивления R2 в килоомах (kΩ) и величину ёмкости конденсатора C1 в микрофарадах (μF). Частоту f получим в герцах (Гц или на зарубежный манер — Hz).

Данную схему желательно не только повторить, но и «поиграться» с ней. Можно, например, увеличить ёмкость конденсаторов C1, C2. При этом частота переключений светодиодов уменьшиться. Переключаться они будут более медленно. Также можно и уменьшить ёмкость конденсаторов. При этом светодиоды станут переключаться чаще.

При C1 = C2 = 47 мкф (47 μF), а R2 = R3 = 27 кОм (kΩ) частота составит около 0,5 Гц (Hz). Таким образом светодиоды будут переключаться 1 раз в течении 2 секунд. Уменьшив ёмкость C1, C2 до 10 мкф можно добиться более быстрого переключения — около 2,5 раз в секунду. А если установить конденсаторы C1 и C2 ёмкостью 1 мкф, то светодиоды будут переключаться с частотой около 26 Гц, что на глаз будет практически незаметно — оба светодиода будут просто светиться.

А если взять и поставить электролитические конденсаторы C1, C2 разной ёмкости, то мультивибратор из симметричного превратится в несимметричный. При этом один из светодиодов будет светить дольше, а другой короче.

Более плавно частоту миганий светодиодов можно менять и с помощью дополнительного переменного резистора PR1, который можно включить в схему вот так.

Тогда частоту переключений светодиодов можно плавно менять поворотом ручки переменного резистора. Переменный резистор можно взять с сопротивлением 10 — 47 кОм, а резисторы R2, R3 установить с сопротивлением 1 кОм. Номиналы остальных деталей оставить прежними (см. таблицу далее).

Вот так выглядит мигалка с плавной регулировкой частоты вспышек светодиодов на макетной плате.


Первоначально схему мигалки лучше собрать на беспаечной макетной плате и настроить работу схемы по своему желанию. Беспаечная макетная плата вообще очень удобна для проведения всяких экспериментов с электроникой.

Теперь поговорим о деталях, которые потребуются для сборки мигалки на светодиодах, схема которой приведена на первом рисунке. Перечень элементов, используемых в схеме, приведён в таблице.

Название

Обозначение

Номинал/Параметры

Марка или тип элемента

Транзисторы VT1, VT2

КТ315 с любым буквенным индексом
Электролитические конденсаторы C1, C2 10…100 мкф (рабочее напряжение от 6,3 вольт и выше) К50-35 или импортные аналоги
Резисторы R1, R4 300 Ом (0,125 Вт) МЛТ, МОН и аналогичные импортные
R2, R3 22…27 кОм (0,125 Вт)
Светодиоды HL1, HL2 индикаторный или яркий на 3 вольта

Стоит отметить, что у транзисторов КТ315 есть комплементарный «близнец» — транзистор КТ361. Корпуса у них очень похожи и их легко перепутать. Было бы не очень страшно, но эти транзисторы имеют разную структуру: КТ315 – n-p-n , а КТ361 – p-n-p . Поэтому их и называют комплементарными. Если вместо транзистора КТ315 в схему установить КТ361, то она работать не будет.

Как же определить who is who? (кто есть кто?).

На фото показаны транзистор КТ361 (слева) и КТ315 (справа). На корпусе транзистора обычно указывается только буквенный индекс. Поэтому отличить КТ315 от КТ361 по внешнему виду практически нереально. Чтобы достоверно удостовериться в том, что перед вами именно КТ315, а не КТ361 надёжнее всего будет проверить транзистор мультиметром.

Цоколёвка транзистора КТ315 показана на рисунке в таблице.

Перед тем, как впаивать в схему другие радиодетали их также стоит проверить. Особенно проверки требуют старые электролитические конденсаторы. У них одна беда – потеря ёмкости. Поэтому не лишним будет проверить конденсаторы .

Кстати, с помощью мигалки можно косвенно оценивать ёмкость конденсаторов. Если электролит «высох» и потерял часть ёмкости, то мультивибратор будет работать в несимметричном режиме – это сразу станет заметно чисто визуально. Это означает, что один из конденсаторов C1 или C2 имеет меньшую ёмкость («высох»), чем другой.

Для питания схемы потребуется блок питания с выходным напряжением 4,5 — 5 вольт. Также можно запитать мигалку и от 3 батареек типоразмера AA или AAA (1,5 В *3 = 4,5 В). О том, как правильно соединять батарейки читайте .

Электролитические конденсаторы (электролиты) подойдут любые с номинальной ёмкостью 10…100 мкф и рабочим напряжением от 6,3 вольт. Для надёжности лучше подобрать конденсаторы на более высокое рабочее напряжение — 10….16 вольт. Напомним, что рабочее напряжение электролитов должно быть чуть больше напряжения питания схемы.

Можно взять электролиты и с большей ёмкостью, но и габариты устройства заметно увеличатся. При подключении в схему конденсаторов соблюдайте полярность! Электролиты не любят переполюсовки.

Все схемы проверены и являются рабочими. Если что-то не заработало, то в первую очередь проверяем качество пайки или соединений (если собирали на макетке). Перед впаиванием деталей в схему их стоит проверить мультиметром , чтобы потом не удивляться: «А почему не работает?»

Светодиоды могут быть любые. Можно использовать как обычные индикаторные на 3 вольта, так и яркие. Яркие светодиоды имеют прозрачный корпус и обладают большей светоотдачей. Очень эффектно смотрятся, например, яркие светодиоды красного свечения диаметром 10 мм. В зависимости от желания можно применить и светодиоды других цветов излучения: синего, зелёного, жёлтого и др.

Июн 02 2017

Если нет возможности купить готовый мигающий светодиод, где внутрь колбы уже встроены все необходимые элементы для осуществления нужной функции, и осталось только подключить батарейку, то можно попробовать собрать свою схему

По некоторым причинам экономика нашей страны работает на добывающую отрасль, в то время как электроника закопана глубоко в землю. По этой причине с элементной базой напряг.

И действительно может встать проблема, а не задача, как сделать мигающий светодиод. Особенно, если на носу акция с «голубыми ведёрками».

Принцип действия светодиода

Прежде, чем подключить светодиод, необходимо знать минимум теории. В районе p-n перехода за счёт существования дырочной и электронной проводимости образуется зона с нестандартными для толщи основного кристалла энергетическими уровнями.

При рекомбинации носителей заряда освобождается энергия, и если величина её равна кванту света, то спай двух материалов начинает лучиться. Оттенок зависит от некоторых величин, а соотношение выглядит следующим образом:

E = h c / λ, где h = 6,6 х 10-34 – постоянная Планка, с = 3 х 108 – скорость света, а греческой буквой лямбда обозначается длина волны (м)

Из этого утверждения следует, что может быть создан диод, где разница энергетических уровней составляет Е.

Это и будет искомое. Именно так изготавливаются светодиоды. А в зависимости от разницы уровней, цвет может быть синим, красным, зелёным и пр.


Причём не все светодиоды обладают одинаковым КПД. Самыми слабыми являются синие, которые и исторически появились одними из последних.

КПД светодиодов сравнительно мал (для полупроводниковой техники) и редко дотягивает даже до 45%.

Но при всем этом удельное превращение электрической энергии в полезную световую просто потрясающее.

Каждый Вт энергии может давать фотонов в 6-7 раз больше, нежели спираль накала в тех же условиях потребления. Это объясняет, почему светодиоды сегодня занимают прочную позицию в осветительной технике.

Именно по этой же причине и создание мигалки на основе этих полупроводниковых элементов несравненно проще. Достаточно сравнительно малых напряжений, чтобы схема начала работать.


Все остальное сводится к тому, чтобы правильным образом подобрать ключевые и пассивные элементы для создания пилообразного или импульсного напряжения нужной формы:

  • Амплитуда.
  • Скважность.
  • Частота следования.

Как это сделать? Очевидно, что подключение светодиода к сети 220В будет не лучшей идеей.

Имеются подобные схемы, но заставить их мигать достаточно сложно, потому что элементная база для этого ещё не создана.

Обычно светодиоды работают от гораздо более низких питающих напряжений. Из них самыми доступными являются:

  • Напряжение +5 В присутствует в устройствах заряда телефонных аккумуляторов, а также iPad и других гаджетов.

Правда, выходной ток в этом случае невелик, но в большинстве случаев это и не нужно. Кроме того, +5 В можно найти на одной из шин блока питания персонального компьютера.

В этом случае с ограничением по току никаких проблем не будет. Провод в этом случае красного цвета, а землю ищите на чёрном.

  • Напряжение от +7 до +9 В часто встречается на зарядных устройствах ручных радиостанций, в обиходе называемых рациями.

Великое множество фирм, и у каждой свои стандарты

  • На наш взгляд схема подключения светодиода будет лучше всего работать от +12 В.

Это стандартное напряжение в микроэлектроники, его можно встретить во многих местах. Также компьютерный блок содержит вольтаж -12 В. Изоляция жилы синяя, а сам провод оставлен для совместимости со старыми приводами.

В нашем случае он может понадобиться в том случае, если не окажется под рукой элементной базы для питания +12 В. Тогда будет достаточно найти комплементарные транзисторы и включить их вместо исходных. Номиналы пассивных элементов остаются теми же. Сам светодиод также включается обратной стороной.

  • Номинал -3,3 В на первый взгляд кажется невостребованным.

Но если посчастливится достать на aliexpress RGB светодиоды SMD0603 по 4 рубля за штуку, то можно будет не воротить горы.

Однако! Падение напряжения в прямом направлении не должно превышать 3 В (обратное включение не понадобится, но в случае неправильной полярности максимальный вольтаж составляет 5).

Теперь, когда устройство светодиода нам вполне понятно, а условия горения известны, приступим к реализации нашей задумки. А именно – заставим элемент мигать.

Тестирование мигающих RGB светодиодов

Компьютерный блок питания является едва ли не идеальным вариантом для тестирования светодиодов SMD0603. В этом случае нужно просто поставить резистивный делитель.

Для этого согласно схеме из технической документации оценивают сопротивления p-n переходов в прямом направлении при помощи тестера.


Прямое измерение здесь невозможно. Вместо этого следует собрать схему, показанную на рисунке. Вот из каких соображений мы исходили, и что изображено на картинке:

  • Микросхема дана вместе с номерами ножек согласно техническим данным.
  • Питание подаётся на катод, потому что полярность напряжения отрицательная. 3,3 В как раз хватит, чтобы открыть p-n переходы.
  • Переменный резистор нужен не очень большого номинала.

У нас на рисунке установлен с максимальным пределом 680 Ом. Именно в таком положении он должен находиться изначально.

  • Обычно сопротивление открытого p-n перехода не очень велико, но нам нужен значительный запас, чтобы диоды не погорели (мы помним, что их максимальное прямое напряжение составляет 3 В).

Также принимается во внимание тот факт, что при низком вольтаже сопротивление каждого светодиода составит порядка 700 Ом. При параллельном включении суммарное сопротивление находится по формуле, показанной на рисунке ниже.

Подставляя туда в качестве всех трех входных параметров 700, получаем 233 Ом. Это будет сопротивление наших светодиодов в тот момент, когда они только-только начнут открываться (по крайней мере, мы так полагаем).

  • Суть в том, что нам понадобится контролировать режим тестером (см. рисунок выше).

Для этого постоянно измеряем напряжение на светодиодной микросхеме, одновременно уменьшая значение сопротивления, пока разница потенциалов не поднимется до 2,5 В. Дальше повышать вольтаж попросту опасно, быть может, многие остановятся даже на 2,2 В.

  • Затем из пропорции найдём искомое сопротивление светодиодной микросхемы: (3,3 – 2,5)/2,5 = R пер / Rобщ, где R пер – сопротивление переменного резистора в тот момент, когда напряжение на дисплее тестера достигает 2,5 В. R общ = 3,125 R пер.


Провод +3,3 В на блоке питания компьютера имеет оранжевую изоляцию, а схемную землю берём с чёрного.

Обратите внимание, что не нужно включать этот модуль без нагрузки. Идеально было бы на один из разъёмов подключить DVD-привод или какое-нибудь другое устройство.

Допускается также просто снять боковую крышку и извлечь оттуда нужные контакты.

Подключение светодиодов иллюстрирует схема. Многие спросят – а что дальше? Измерили сопротивление на параллельное подключение светодиодов и остановились?

Поясняем: в рабочем состоянии, если светодиодов понадобится включить несколько, мы проделаем аналогичную настройку. В результате напряжение питания на микросхеме должно составить 2,5 В.

Обратите внимание, что светодиоды мигающие, поэтому показания могут быть не совсем точными

В этом случае максимальное из показаний не должно превысить 2,5 В. Ну, и, конечно, будет видно, что схема работает, потому что светодиоды начнут мигать.

Чтобы только часть из них проявляла себя в этом плане, нужно убрать питание с ненужных. Допускается также собрать отладочную схему с тремя переменными резисторами – по одному в ветвь каждого цвета.


Таким образом, мы теперь знаем, как сделать мигающую светодиодную подсветку своими руками.

А теперь многие спросят, можно ли варьировать время срабатывания.

Полагаем, что внутри все равно должны использоваться ёмкости. Быть может, это даже собственные ёмкости p-n переходов светодиодов.

Но в любом случае, подключая переменный конденсатор параллельно схеме на вход, можно попробовать что-либо изменить.

Номинал должен быть очень малым и измеряться в пФ. В такой маленькой микросхеме попросту не может быть больших ёмкостей.

Мы допускаем также, что резистор, подключённый параллельно микросхеме (см. пунктир на схеме выше) и усаженный на землю, будет образовывать более точный делитель. В этом случае стабильность возрастёт.

Тогда номиналы нужно брать более весомые, но не забывать, что это значительно ограничит ток, идущий через светодиоды. Фактически нужно продумать этот вопрос согласно имеющейся ситуации.

Как сделать, чтобы обычный светодиод мигал

Схема, которую мы изобразили на рисунке, использует для своей работы лавинный пробой транзистора.

Если брать именно КТ315Б, который мы используем в качестве ключа, то для него максимально обратное напряжения между коллектором и базой составляет 20 В.

Поэтому ничего опасного в таком включении не имеется. А вот у модификации КТ315Ж этот параметр составляет всего лишь 15 В.

Это гораздо ближе к выбранному нами напряжению питания +12 В. Поэтому, такой транзистор в данной схеме использовать не стоит.

Строго говоря, лавинный пробой не является штатным режимом p-n перехода. В данном случае за счёт слишком большого обратного напряжения между коллектором и базой происходит ионизация атомов от ударов разогнавшимися носителями зарядов.

В результате образуется масса свободных заряженных частиц, которые увлекаются полем и образуют ток. Очевидцы утверждают, что для пробоя транзистора КТ315 требуется обратное напряжение, приложенное между коллектором и эмиттером, амплитудой 8-9 В.

А теперь пара слов о том, как работает схема. В первоначальный момент времени начинает заряжаться конденсатор.

Он подключен на +12 В, а остальная часть схемы оборвана за счёт того, что закрыт транзисторный ключ.

Начинать изучение основ электроники рекомендуется со сборки простых и наглядных схем, поэтому схема мигалки в различных исполнениях и вариантах, как нельзя лучше подойдет начинающем радиолюбителям в их нелегком пути. Кроме того эти конструкции могут пригодится и в повседневном использование. Например в роли праздничных световых украшений или в качестве муляжа сигнализации.

Элементарная схема мигалки на шести светодиодах, особенностью которой является простота и отсутствие активных управляющих элементов, такие как, транзисторы, тиристоры или микросхемы.

С третьим мигающим светодиодом красного цвета последовательно включено два обычных красных светодиода 1 и 2. Когда вспыхивает мигающий 3, вместе с ним светяться 1 и 2. При этом открывающийся диод шунтирует зеленые светодиоды 4-6, которые при этом тухнут. Когда мигающий гаснет, вместе с ним тухнут 1 и 2 светодиоды, при этом загорается группа зеленых светодиодов 4-6.

Эта схема управления миганием светодиодов позволяет создать эффект хаотичных вспышек. Принцип работы основан на лавинном пробое перехода .


При включении через сопротивление R1 начинает заряжаться емкость С1 и поэтому на нем начинает расти напряжение. Пока конденсатор заряжается, не что не меняется. Как только напряжение достигнет 12 вольт, произойдет лавинный пробой p-n перехода полупроводникового прибора, проводимость его увеличивается и поэтому, светодиод начинает гореть за счет энергии разряжающегося C1.

Когда напряжение на емкости снизится ниже 9 вольт, транзистор закрывается, и весь процесс повторяется с самого начала. Другие пять блоков схемы работают по аналогичному принципу.


Номиналы сопротивлений и конденсаторов задают частоту работы каждого отдельно взятого генератора. Сопротивления, кроме того, защищают транзисторы от выхода из строя во время лавинного пробоя.

Самым простой способ собрать мигающую конструкцию, это использовать специализированную микросхему LM3909, которую достаточно легко достать.

К микросборке достаточно подсоединить частотозадающую цепь, подать питание ну и, конечно, сам светодиод. Вот вам и готовое устройство имитации сигнализации в автомобиле.

При указанных номиналах частота мигания будет около 2,5 Герц

Отличительной чертой этой конструкции является возможность регулировать частоту мигания с помощью подстроечных сопротивлений R1 и R3.

Напряжение можно подавать от любого или от батареек, область использования на всю ширину вашей фантазии.

В данной конструкции используется в качестве генератора и периодически открывает и запирает полевой транзистор. Ну а транзистор включает цепочки уже обычных светодиодов.


Первая и вторая цепочки светодиодов соединены между собой параллельно и получают питание через сопротивление R4 и канал полевого транзистора.

Третья и четвертая цепочки подсоединены через диод VD1. Когда транзистор заперт, горят третья и четвертая цепочка. Если он открыт, то светят, первый и второй участок.


Мигающий светодиод подсоединен через сопротивления R1, R2, R3. Во время его вспышки осуществляется открытие полевого транзистора. Все детали, кроме батарейки, устанавливают на печатной плате.

Достаточно простые радиолюбительские конструкции получатся если использовать обычные . Правда, следует помнить об их особенностях работы, а именно о том, что они открываются при поступлении на управляющий электрод определенного уровня напряжения, а для их запирания нужно уменьшить ток анода до значения меньше тока удержания.

Конструкция состоит из генератора коротких импульсов на полевом транзисторе VT1 и двух каскадов на тиристорах. В анодную цепь одного из них подсоединена лампа накаливания EL1.


В начальный момент времени после включения питания оба тиристора закрыты и лампа не светится. Генератор создает короткие импульсы с интервалом, зависящим от цепочки R1C1. Первый импульс поступая на управляющие электроды, открывает их, зажигая лампу.

Через лампу потечет ток, VS2 останется открытым, а VS1 закроется, потому что его анодный ток, установленный сопротивлением R2, слишком мал. Емкость С2 начинает заряжаться через R2 и к моменту формирования второго импульса окажется уже заряженной. Этот импульс осуществит отпирание VS1, а вывод конденсатора С2 кратковременно подсоединится к катоду VS2 и закроет его, лампа потухнет. Как только С2 разрядится оба тиристора будут запертыми. Очередной импульс генератора приведет к повторению процесса повторится. Таким образом лампочка накаливания вспыхивает с частотой, вдвое меньшей заданной частоты генератора.

Основа конструкции простой мультивибратор на двух транзисторах. Они могут быть почти любые, необходимой проводимости.


Питание подключаю от габарита через сопротивление, второй провод — масса. Светодиоды закрепил в панельки от спидометра и тахометра.

Простая, рабочая схема светодиодной мигалки, имеющая 2 транзистора и питаемая от напряжения 5 вольт.

Данная схема светодиодной мигалки, у которой можно изменять частоту мерцания, является одной из базовых, простых. Схема представляет собой обычный генератор на двух биполярных транзисторах, конденсаторе, и нескольких резисторах. Причем, данная мигалка может мерцать в широком диапазоне частот. При необходимости вместо светодиода можно поставить даже маломощное реле на 5 вольт. Оно также будет периодически срабатывать с определенной частотой. Схема этой мигалки достаточно экономична, потребляет единицы миллиампер. Запитать мигалку можно практически от любой телефонной зарядки, где выходное напряжение 5 вольт.

Давайте в общих чертах рассмотрим работу данной схемы светодиодной мигалки. Итак, в начальный момент транзистор кт361 закрыт. Положительный потенциал «+» может протекать только через резистор на 10к. Тем самым происходит процесс заряда конденсатора на 22 микрофарада. Также этот ток постепенно открывает транзистор кт315, который в свою очередь открывает и кт361. Светодиод зажегся. Как только последний транзистор открылся, то «+» конденсатора оказался ближе к «+» питания, имея до этого противоположный заряд на себе. При своем разряде он способствует закрытию сначала первого транзистора кт315, а затем и второго кт361. Это приводит к тому, что светодиод погаснет. Ну, а далее цикл повторяется обратно. Последовательно светодиоду стоит токоограничительный резистор. Он нужен для того, чтобы задавать светодиоду нужную яркость свечения и не спалить его чрезмерным током.

На схеме также можно увидеть переменный резистор на 4,7к. Именно им можно задавать частоту мерцания светодиода. Хотя если нужно увеличить диапазон частоты мигания светодиода, то еще можно заменить конденсатор на большую или меньшую емкость. В итоге вы можете подобрать необходимую частоту мигания светодиода. Данную схему можно использовать где угодно. Тем более, что ее питания 5 вольт. Это стандартное напряжение на USB гнезде. Также это напряжение выходит с зарядных устройств для мобилок, планшетов, повербанков и т.д.

Важным моментов является то, что транзисторы обязательно должны быть разной проводимости. Если вы хотите поставить некоторое количество параллельно включенных светодиодом или лампочек накаливания, у которых ток потребления более 100 мА. То тут нужно будет вместо имеющихся транзисторов поставить поставить более мощные. Например вместо кт315 ставим кт815, а вместо кт361 можно поставить кт814. У этих транзисторов максимальный выходной ток уже около 1,5 А.

По поводу установки реле, вместо светодиода. Нужно учитывать, что у реле имеется своя допустимая максимальная частота срабатывания, при котором это реле будет работать стабильно. Так что слишком большую частоту не получится применять с релюшкой. Ну, а если вы не будете превышать максимально допустимую частоту его срабатывания, то с его использованием уже можно совершать мигания более мощных световых нагрузок. Это уже могут быть и прожекторы, и мощные лампы накаливания и т.д.

Видео по этой теме:

P.S. Чем проще вещь, тем надежнее она может работать. Эта простая светодиодная мигалка действительно является базовой, элементарной схемой, которую уже применяют для более сложных устройств. К примеру, если вместо переменного резистора поставить допустим полевой транзистор кп103. Подключив сток к минусу схемы, а исток к минусу конденсатора, при этом на затвор поставить резистор на 1м, после которого припаять небольшую антенну (примерно 10см). В итоге мы получим уже схему индикатора скрытой проводки, реагирующего на электрическое поле. Чем это поле будет сильнее около антенны, тем чаще будет мигать светодиода на этой схеме.

Мигалки на светодиодах и транзисторных мультивибраторах (6 схем)

Простые схемы самодельных светодиодных мигалок на основе транзисторных мультивибраторов. На рисунке 1 показана схема мультивибратора, переключающего два светодиода. Светодиоды мигают поочередно, то есть, когда горит HL1, светодиод НL2 не горит, а наоборот.

Можно вмонтировать схему в ёлочную игрушку. Когда включено питание игрушка будет мигать. Если светодиоды будут разного цвета, то игрушка будет одновременно с миганием и менять цвет свечения.

Частоту мигания можно изменять подбором сопротивлений резисторов R2 и R3, кстати, если эти резисторы будут не одинаковых сопротивлений можно добиться того, что один светодиод будет светиться дольше другого.

Но, двух светодиодов для даже самой маленькой настольной ёлочки как-то маловато. На рисунке 2 показана схема, переключающая две гирлянды по три светодиода. Светодиодов стало больше, больше и напряжение, необходимое для их питания. Поэтому теперь источник не 5-вольтовый, а 9-вольтовый (или 12-вольтовый).

 

Рис.1. Схема самой простой мигалки на светодиодах и транзисторах.

Рис.2. Схема простой мигалки на шести светодиодах и двух транзисторах.

Рис. 3. Схема светодиодной мигалкис мощными выходами для нагрузки.

В качестве источника питания можно использовать блок питания от старой телеигровой приставки вроде «Денди» или купить в магазине недорогой «сетевой адаптер» с выходным напряжением 9V или 12V.

И все же, даже шести светодиодов для домашней ёлки недостаточно. Хорошо бы увеличить число светодиодов втрое. Да и светодиоды использовать не простые, а сверх яркие. Но, если в каждой гирлянде будет уже по девять последовательно включенных светодиодов, да еще и сверх ярких, то суммарное напряжение, необходимое для их свечения будет уже 2,3Vх9=20,7V.

Плюс, еще несколько вольт необходимых для функционирования мультивибратора. При том в продаже обычно «сетевые адаптеры» из числа недорогих, не более чем на 12V.

Выйти из положения можно, если разделить светодиоды на три группы по три штуки. И группы включить параллельно. Но это приведет к возрастанию тока через транзисторы и нарушит работу мультивибратора. Впрочем, можно сделать дополнительные усилительные каскады на еще двух транзисторах (рис. 3).

Две гирлянды — хорошо, но они просто мигают поочередно. Вот если бы хотя бы три! Для такого случая существует так называемая схема «трехфазного мультивибратора». Она показана рисунке 4.

Рис.4. Схема мультивибратора на трех транзисторах.

Если в коллекторных цепях транзисторов включить светодиодные гирлянды (рис.5), получится своеобразный эффект бегущего огня. Скорость воспроизведе ния светового эффекта можно регулировать заменяя конденсаторы С1, С2 и С3 конденсаторами других емкостей. А так же заменяя резисторы R2, R4, R6 резисторами другого сопротивления. При увеличении емкости или сопротивления скорость переключения светодиодов снижается.

Рис. 5. Схема мультивибратора для получения эффекта бегущего огня.

А на рисунке 6 — умощненный вариант на 27 светодиодов. В «мигалках» по схемам на рисунках 3 и 6 можно использовать практически любые светодиоды, но все же желательно сверх яркие или супер яркие.

Рис. 6. Схема умощненного варианта мигалки на 27 светодиодах.

Монтаж можно выполнить на макетных печатных платах, которые продаются в магазинах радиодеталей. Либо вообще без плат, спаяв детали между собой.

Иванов А. РК-2014-11.

Как работает мигалка. Световой декор – как сделать мигающий светодиод. Обычные светодиоды и семы мигалок на их основе

Мультивибратор — простой генератор импульсов. Это одна из первых конструкций начинающих радиолюбителей. На мультивибраторе можно собрать простую мигалку на светодиодах. Итак, если Вы — начинающий радиолюбитель, то после освоения теоретической части электроники можно приступать к практике.

Простой мультивибратор

Схема распространённого простого мультивибратора для двух каналов представлена ниже. Светодиодов в одном плече может быть не только один, но два, три и больше если соединить их.

Трёхканальный мультивибратор

Обычно схема мультивибратора строится на двух транзисторах, как на рисунке выше и предназначен он для получения прямоугольных импульсов. Но н едавно в интернете была найдена схема мультивибратора на три канала.

Рассматриваемый мультивибратор имеет три канала, которые открываются поочередно. Весь монтаж был выполнен на макетной плате, притом со значительными разбросами. В схеме использованы маломощные транзисторы типа КТ315, можно также использовать КТ312, КТ3102, а также более мощные отечественные транзисторы (КТ815, КТ817 и даже КТ819).

Выбор очень велик, можно использовать буквально любые транзисторы прямой или обратной проводимости отечественного и импортного производства. При использовании транзисторов прямой проводимости (КТ361, КТ814, КТ816, КТ818) необходимо поменять источник питания + с — , а также полярность электролитических конденсаторов.

При правильно собранной схеме в настройке мультивибраторы не нуждаются. Следует проверить весь монтаж, особое внимание нужно уделить на подключение электролитических конденсаторов. Напряжение питания подбирается в районе 4…6 вольт, хотя и от «кроны» (9В) тоже работает.

Частоту мигания, т.е. генерирования импульсов по желанию можно подбирать конденсаторами. Конденсаторы следует ставить одинаковой ёмкости, чтобы длительность импульсов была одинаковой.

Одной из самых простых схем в любительской радиоэлектронике является светодиодная мигалка на одном транзисторе. Ее изготовление под силу любому новичку, у которого есть минимальный набор для пайки и полчаса времени.

Рассматриваемая схема хоть и отличается простотой, однако, она позволяет наглядно увидеть лавинный пробой транзистора, а также работу электролитического конденсатора. В том числе, путем подбора емкости можно легко изменять частоту мигания светодиода. Экспериментировать также можно с входным напряжением (в небольших диапазонах), которое тоже влияет на работу изделия.

Устройство и принцип работы

Мигалка состоит из следующих элементов:
  • источник питания;
  • сопротивление;
  • конденсатор;
  • транзистор;
  • светодиод.
Работает схема по очень простому принципу. В первой фазе цикла транзистор «закрыт», то есть не пропускает ток из источника питания. Соответственно, светодиод не светится.
Конденсатор расположен в цепи до закрытого транзистора, потому накапливает электрическую энергию. Происходит это до тех пор, пока напряжение на его выводах не достигнет показателя, достаточного для обеспечения так называемого лавинного пробоя.
Во второй фазе цикла накопленная в конденсаторе энергия «пробивает» транзистор, и ток проходит через светодиод. Он вспыхивает на короткое время, а затем опять гаснет, так как транзистор опять закрывается.
Далее мигалка работает в циклическом режиме и все процессы повторяются.

Необходимые материалы и радиодетали

Чтобы собрать светодиодную мигалку своими руками, работающую от источника питания с напряжением 12 В, понадобится следующее:
  • паяльник;
  • канифоль;
  • припой;
  • резистор на 1 кОм;
  • конденсатор емкостью 470-1000 мкФ на 16 В;
  • транзистор КТ315 или его более современный аналог;
  • классический светодиод;
  • простой провод;
  • источник питания на 12 В;
  • спичечный коробок (необязательно).


Последний компонент выступает в роли корпуса, хотя собрать схему можно и без него. В качестве альтернативы можно использовать монтажную плату. Навесной монтаж, описанный далее, рекомендуется для начинающих радиолюбителей. Такой способ сборки позволяет быстрее сориентироваться в схеме и сделать все правильно с первого раза.

Последовательность сборки мигалки

Изготовление светодиодной мигалки на 12 В осуществляется в следующей последовательности. Первым делом подготавливаются все вышеперечисленные компоненты, материалы и инструменты.
Для удобства светодиод и провода питания лучше сразу закрепить на корпусе. Далее к выводу «+» следует припаять резистор.


Свободная «ножка сопротивления соединяется с эмиттером транзистора. Если КТ315 расположить маркировкой вниз, то этот вывод будет у него крайним правым. Далее эмиттер транзистора соединяется с положительным выводом конденсатора. Определить его можно по маркировке на корпусе – «минус» обозначается светлой полосой.
Следующим этапом идет соединение коллектора транзистора с положительным выводом светодиода. У КТ315 – это ножка посредине. «Плюс» светодиода можно определить визуально. Внутри элемента имеется два электрода, отличающихся размерами. Тот, который поменьше, и будет положительным.


Теперь осталось только припаять отрицательный вывод светодиода к соответствующему проводнику источника питания. К этой же линии подсоединяется «минус» конденсатора.
Светодиодная мигалка на одном транзисторе готова. Подав на нее питание, можно увидеть ее работу по вышеописанному принципу.
Если есть желание уменьшить или увеличить частоту мигания светодиода, то можно поэкспериментировать с конденсаторами, имеющими разную емкость. Принцип очень простой – чем больше емкость элемента, тем реже будет мигать светодиод.

Мигающий светодиод может быть реализован и использован несколькими способами, от чего зависит и его дальнейшая область применения. Схемы могут состоять из нескольких диодов, транзисторов, подключаться к различным источникам питания, даже к батарейкам, по-разному моргать. Собрать большинство из них можно своими руками, но иногда нужно подогнать теоретическую базу.

Один из самых простых способов реализации моргающих светодиодных индикаторов может успешно имитировать сигнализацию для автомобиля. Для авто премиум-класса это не очень актуально, а для менее элитной техники, общая стоимость которой не окупает установку дорогостоящей системы оповещения, такая схема будет в самый раз. Мигалка на светодиодах в таком случае будет оптимальным вариантом.

Мигающий светодиод как сигнализация

Купить моргающий диод для авто – избавить себя от кропотливого просиживания над обработкой платы. Это не всегда верно, но в данном случае очень подходит. Важно разобраться, почему почему мигает светодиод.

На вид такой моргающий -индикатор невозможно отличить от обычного светодиода, который светится постоянно. При подаче напряжения он начинает мигать пару раз в секунду. Наличие мультиметра также поможет различить полупроводниковые приборы. В прямом направлении моргающий диод демонстрирует небольшое сопротивление, а в обратном – светодиод с обычным показателем падения напряжения.

Немного о самих мигающих светодиодах

Основой мигания светодиода служит небольших размеров чип, который состоит из высокочастотного задающего генератора. Последний работает совместно с делителем на логических элементах, давая возможность получать вместо высоких значений частоты требуемые 1-3 Гц.

Чтобы реализовать низкочастотный генератор, необходимо использовать конденсатор с большой ёмкостью. Решив собрать схему своими руками, весьма проблематично было бы использовать полупроводник с большой площадью. Почему – да он просто не уместится в корпусе светодиода.

На полупроводниковой подножке размещены не только генератор и делитель, но также электронный ключ и диод-протектор. Мигающие светодиоды с напряжением питания 3-12В оборудуются также ограничительным резистором, а низковольтным он не требуется.

Основное назначение диода-протектора заключается в предотвращении поломки микросхемы в случае переплюсовки её питания.

При подаче напряжения автомобильной сети номинал токоограничивающего резистора должен выбираться из диапазона 3-5кОм. Подключив светодиод своими руками можно отметить, что он потребляет ток не только при мерцании, но и в пазах.

Сборка сигнализации своими руками

Определившись с тем, как устроены мигающие светодиоды, как они работают, и почему мигают, можно приступить непосредственно к монтажу.

Для сборки потребуется 2 гибких многожильных проводка небольшого диаметра. Предпочтительнее выбирать кабели разного цвета, чтобы иметь возможность отличать их при подключении к автомобильной проводке.

Когда резистор и оба провода закреплены, можно поместить схему в толстую полимерную трубку. Окончательный этап монтажа сигнализации своими руками – подключение проводов к «+» и «-» цепи питания автомобиля. Если все мигает как надо, мигалку на светодиодах можно считать удачной.

Сборка схем своими руками на базе светодиодов пользуется огромной популярностью среди автолюбителей. Почему? Диоды дают огромные возможности для тюнинга. Замена любого освещения, внутренней подсветки и многое другое.

У любого начинающего радиолюбителя присутствует желание поскорей собрать что-нибудь электронное и желательно, чтобы оно заработало сразу и без трудоёмкой настройки. Да и это понятно, так как даже маленький успех в начале пути даёт массу сил.

Как уже говорилось, первым делом лучше собрать блок питания . Ну а если он уже есть в мастерской, то можно собрать мигалку на светодиодах. Итак, пришло время «подымить» паяльником .

Вот принципиальная схема одной из простейших мигалок. Базовой основой данной схемы является симметричный мультивибратор . Мигалка собрана из доступных и недорогих деталей, многие из которых можно найти в старой радиоаппаратуре и использовать повторно. О параметрах радиодеталей будет сказано чуть позднее, а пока разберёмся с тем, как работает схема.

Суть работы схемы заключается в том, что транзисторы VT1 и VT2 поочерёдно открываются. В открытом состоянии переход Э-К у транзисторов пропускает ток. Так как в коллекторные цепи транзисторов включены светодиоды, то при прохождении через них тока они светятся.

Частота переключений транзисторов, а, следовательно, и светодиодов может быть приблизительно подсчитана с помощью формулы расчёта частоты симметричного мультивибратора.

Как видим из формулы, главными элементами с помощью которых можно менять частоту переключений светодиодов является резистор R2 (его номинал равен R3), а также электролитический конденсатор C1 (его ёмкость равна C2). Для подсчёта частоты переключений в формулу нужно подставить величину сопротивления R2 в килоомах (kΩ) и величину ёмкости конденсатора C1 в микрофарадах (μF). Частоту f получим в герцах (Гц или на зарубежный манер — Hz).

Данную схему желательно не только повторить, но и «поиграться» с ней. Можно, например, увеличить ёмкость конденсаторов C1, C2. При этом частота переключений светодиодов уменьшиться. Переключаться они будут более медленно. Также можно и уменьшить ёмкость конденсаторов. При этом светодиоды станут переключаться чаще.

При C1 = C2 = 47 мкф (47 μF), а R2 = R3 = 27 кОм (kΩ) частота составит около 0,5 Гц (Hz). Таким образом светодиоды будут переключаться 1 раз в течении 2 секунд. Уменьшив ёмкость C1, C2 до 10 мкф можно добиться более быстрого переключения — около 2,5 раз в секунду. А если установить конденсаторы C1 и C2 ёмкостью 1 мкф, то светодиоды будут переключаться с частотой около 26 Гц, что на глаз будет практически незаметно — оба светодиода будут просто светиться.

А если взять и поставить электролитические конденсаторы C1, C2 разной ёмкости, то мультивибратор из симметричного превратится в несимметричный. При этом один из светодиодов будет светить дольше, а другой короче.

Более плавно частоту миганий светодиодов можно менять и с помощью дополнительного переменного резистора PR1, который можно включить в схему вот так.

Тогда частоту переключений светодиодов можно плавно менять поворотом ручки переменного резистора. Переменный резистор можно взять с сопротивлением 10 — 47 кОм, а резисторы R2, R3 установить с сопротивлением 1 кОм. Номиналы остальных деталей оставить прежними (см. таблицу далее).

Вот так выглядит мигалка с плавной регулировкой частоты вспышек светодиодов на макетной плате.

Первоначально схему мигалки лучше собрать на беспаечной макетной плате и настроить работу схемы по своему желанию. Беспаечная макетная плата вообще очень удобна для проведения всяких экспериментов с электроникой.

Теперь поговорим о деталях, которые потребуются для сборки мигалки на светодиодах, схема которой приведена на первом рисунке. Перечень элементов, используемых в схеме, приведён в таблице.

Название

Обозначение

Номинал/Параметры

Марка или тип элемента

Транзисторы VT1, VT2

КТ315 с любым буквенным индексом
Электролитические конденсаторы C1, C2 10…100 мкф (рабочее напряжение от 6,3 вольт и выше) К50-35 или импортные аналоги
Резисторы R1, R4 300 Ом (0,125 Вт) МЛТ, МОН и аналогичные импортные
R2, R3 22…27 кОм (0,125 Вт)
Светодиоды HL1, HL2 индикаторный или яркий на 3 вольта

Стоит отметить, что у транзисторов КТ315 есть комплементарный «близнец» — транзистор КТ361. Корпуса у них очень похожи и их легко перепутать. Было бы не очень страшно, но эти транзисторы имеют разную структуру: КТ315 – n-p-n , а КТ361 – p-n-p . Поэтому их и называют комплементарными. Если вместо транзистора КТ315 в схему установить КТ361, то она работать не будет.

Как же определить who is who? (кто есть кто?).

На фото показаны транзистор КТ361 (слева) и КТ315 (справа). На корпусе транзистора обычно указывается только буквенный индекс. Поэтому отличить КТ315 от КТ361 по внешнему виду практически нереально. Чтобы достоверно удостовериться в том, что перед вами именно КТ315, а не КТ361 надёжнее всего будет проверить транзистор мультиметром.

Цоколёвка транзистора КТ315 показана на рисунке в таблице.

Перед тем, как впаивать в схему другие радиодетали их также стоит проверить. Особенно проверки требуют старые электролитические конденсаторы. У них одна беда – потеря ёмкости. Поэтому не лишним будет проверить конденсаторы .

Кстати, с помощью мигалки можно косвенно оценивать ёмкость конденсаторов. Если электролит «высох» и потерял часть ёмкости, то мультивибратор будет работать в несимметричном режиме – это сразу станет заметно чисто визуально. Это означает, что один из конденсаторов C1 или C2 имеет меньшую ёмкость («высох»), чем другой.

Для питания схемы потребуется блок питания с выходным напряжением 4,5 — 5 вольт. Также можно запитать мигалку и от 3 батареек типоразмера AA или AAA (1,5 В *3 = 4,5 В). О том, как правильно соединять батарейки читайте .

Электролитические конденсаторы (электролиты) подойдут любые с номинальной ёмкостью 10…100 мкф и рабочим напряжением от 6,3 вольт. Для надёжности лучше подобрать конденсаторы на более высокое рабочее напряжение — 10….16 вольт. Напомним, что рабочее напряжение электролитов должно быть чуть больше напряжения питания схемы.

Можно взять электролиты и с большей ёмкостью, но и габариты устройства заметно увеличатся. При подключении в схему конденсаторов соблюдайте полярность! Электролиты не любят переполюсовки.

Все схемы проверены и являются рабочими. Если что-то не заработало, то в первую очередь проверяем качество пайки или соединений (если собирали на макетке). Перед впаиванием деталей в схему их стоит проверить мультиметром , чтобы потом не удивляться: «А почему не работает?»

Светодиоды могут быть любые. Можно использовать как обычные индикаторные на 3 вольта, так и яркие. Яркие светодиоды имеют прозрачный корпус и обладают большей светоотдачей. Очень эффектно смотрятся, например, яркие светодиоды красного свечения диаметром 10 мм. В зависимости от желания можно применить и светодиоды других цветов излучения: синего, зелёного, жёлтого и др.

Начинать изучение основ электроники рекомендуется со сборки простых и наглядных схем, поэтому схема мигалки в различных исполнениях и вариантах, как нельзя лучше подойдет начинающем радиолюбителям в их нелегком пути. Кроме того эти конструкции могут пригодится и в повседневном использование. Например в роли праздничных световых украшений или в качестве муляжа сигнализации.

Элементарная схема мигалки на шести светодиодах, особенностью которой является простота и отсутствие активных управляющих элементов, такие как, транзисторы, тиристоры или микросхемы.

С третьим мигающим светодиодом красного цвета последовательно включено два обычных красных светодиода 1 и 2. Когда вспыхивает мигающий 3, вместе с ним светяться 1 и 2. При этом открывающийся диод шунтирует зеленые светодиоды 4-6, которые при этом тухнут. Когда мигающий гаснет, вместе с ним тухнут 1 и 2 светодиоды, при этом загорается группа зеленых светодиодов 4-6.

Эта схема управления миганием светодиодов позволяет создать эффект хаотичных вспышек. Принцип работы основан на лавинном пробое перехода .

При включении через сопротивление R1 начинает заряжаться емкость С1 и поэтому на нем начинает расти напряжение. Пока конденсатор заряжается, не что не меняется. Как только напряжение достигнет 12 вольт, произойдет лавинный пробой p-n перехода полупроводникового прибора, проводимость его увеличивается и поэтому, светодиод начинает гореть за счет энергии разряжающегося C1.

Когда напряжение на емкости снизится ниже 9 вольт, транзистор закрывается, и весь процесс повторяется с самого начала. Другие пять блоков схемы работают по аналогичному принципу.

Номиналы сопротивлений и конденсаторов задают частоту работы каждого отдельно взятого генератора. Сопротивления, кроме того, защищают транзисторы от выхода из строя во время лавинного пробоя.

Самым простой способ собрать мигающую конструкцию, это использовать специализированную микросхему LM3909, которую достаточно легко достать.

К микросборке достаточно подсоединить частотозадающую цепь, подать питание ну и, конечно, сам светодиод. Вот вам и готовое устройство имитации сигнализации в автомобиле.

При указанных номиналах частота мигания будет около 2,5 Герц

Отличительной чертой этой конструкции является возможность регулировать частоту мигания с помощью подстроечных сопротивлений R1 и R3.

Напряжение можно подавать от любого или от батареек, область использования на всю ширину вашей фантазии.

В данной конструкции используется в качестве генератора и периодически открывает и запирает полевой транзистор. Ну а транзистор включает цепочки уже обычных светодиодов.

Первая и вторая цепочки светодиодов соединены между собой параллельно и получают питание через сопротивление R4 и канал полевого транзистора.

Третья и четвертая цепочки подсоединены через диод VD1. Когда транзистор заперт, горят третья и четвертая цепочка. Если он открыт, то светят, первый и второй участок.

Мигающий светодиод подсоединен через сопротивления R1, R2, R3. Во время его вспышки осуществляется открытие полевого транзистора. Все детали, кроме батарейки, устанавливают на печатной плате.

Достаточно простые радиолюбительские конструкции получатся если использовать обычные . Правда, следует помнить об их особенностях работы, а именно о том, что они открываются при поступлении на управляющий электрод определенного уровня напряжения, а для их запирания нужно уменьшить ток анода до значения меньше тока удержания.

Конструкция состоит из генератора коротких импульсов на полевом транзисторе VT1 и двух каскадов на тиристорах. В анодную цепь одного из них подсоединена лампа накаливания EL1.

В начальный момент времени после включения питания оба тиристора закрыты и лампа не светится. Генератор создает короткие импульсы с интервалом, зависящим от цепочки R1C1. Первый импульс поступая на управляющие электроды, открывает их, зажигая лампу.

Через лампу потечет ток, VS2 останется открытым, а VS1 закроется, потому что его анодный ток, установленный сопротивлением R2, слишком мал. Емкость С2 начинает заряжаться через R2 и к моменту формирования второго импульса окажется уже заряженной. Этот импульс осуществит отпирание VS1, а вывод конденсатора С2 кратковременно подсоединится к катоду VS2 и закроет его, лампа потухнет. Как только С2 разрядится оба тиристора будут запертыми. Очередной импульс генератора приведет к повторению процесса повторится. Таким образом лампочка накаливания вспыхивает с частотой, вдвое меньшей заданной частоты генератора.

Основа конструкции простой мультивибратор на двух транзисторах. Они могут быть почти любые, необходимой проводимости.

Питание подключаю от габарита через сопротивление, второй провод — масса. Светодиоды закрепил в панельки от спидометра и тахометра.

Цепь мигающего светодиода

со схемой и пояснениями

Схема мигающего светодиода похожа на электронную версию программы «Hello World». Это простая электронная схема, которая дает вам визуальный сигнал, если она работает. Это была первая трасса, которую я построил, и она была ОТЛИЧНОЙ!

Цель состоит в том, чтобы заставить мигать светоизлучающий диод (LED).

Три разных способа построения цепи мигающего светодиода

Есть несколько способов сделать цепь мигающего светодиода.Вы можете сделать его с помощью реле. Вы можете сделать его на транзисторах. Или вы можете сделать его, используя такие компоненты, как инвертор, таймер 555 или микроконтроллер.

Я покажу вам три способа построить схему мигающего светодиода, используя:

  • Реле
  • Транзисторы
  • Инвертор (логический НЕ-вентиль)

Мигание светодиода с использованием реле

Самый простой способ заставить индикатор мигать (или, по крайней мере, самый простой для понимания) — это следующий код:

На схеме выше вы видите аккумулятор, реле (в красном квадрате) и лампочку.Чтобы понять схему, нужно понять, как работает реле.

Когда на катушку реле подается питание, переключатель отключает питание от электромагнита и вместо этого подключает питание к лампочке, чтобы она загорелась.

Но когда на реле больше не подается питание, оно переключается обратно и выключает питание от лампочки, и снова подает питание на электромагнит.

Затем цикл начинается заново.

Проблема с схемой выше заключается в том, что она переключается так быстро, что вы даже не увидите мигания индикатора.

Чтобы решить эту проблему, вы можете ввести временную задержку, используя резистор и конденсатор.

Когда вы подаете питание на вышеуказанную схему, батарея начинает заряжать конденсатор через резистор R2.

Через мгновение катушка реле переводит реле в другое положение.

При этом загорится светодиод.

Поскольку конденсатор теперь заряжен, он будет удерживать реле в этом положении. Но конденсатор имеет достаточно энергии только для того, чтобы поддерживать электромагнит в реле под напряжением в течение некоторого времени, прежде чем он опустеет (или разрядится).

Когда конденсатор разряжается, реле возвращается в исходное состояние и снова выключает светодиод.

Затем цикл повторяется.

Для этой схемы с указанными выше значениями компонентов я рекомендую реле DS2Y-S-DC5V или подобное. Вот как его можно подключить на макетной плате:

Два мигающих светодиода с использованием транзисторов

Схема для мигания светодиода с использованием транзисторов называется Astable Multivibrator .

Чтобы понять эту схему, вам необходимо знать, как напряжения и токи ведут себя вокруг резисторов, конденсаторов и диодов (это то, что вы можете узнать в Ohmify).

Вот что происходит:

Два конденсатора C1 и C2 будут попеременно заряжаться и разряжаться и, таким образом, включать и выключать транзисторы. Когда транзистор включен, он позволяет току течь через него, так что светодиод над ним загорается.

Если вы хотите погрузиться в подробности, ознакомьтесь с моей статьей Как работают схемы нестабильного мультивибратора.

Как мигать светодиодом с инвертором

Это, вероятно, самая простая схема мигающего светодиода, если говорить о количестве компонентов: вам нужно всего три компонента для мигающей части!

Но нужно, чтобы резистор и светодиод, конечно, тоже мигали.

Эта схема из моего бесплатного курса электронной почты о том, как заставить светиться мигать.

Я разработал схему на основе инвертора .

Также называется НЕ-воротами.

Инвертор — это логический компонент, который выводит сигнал, противоположный тому, что он получает. Если он получает высокое напряжение, он выдает низкое напряжение на выходе. Наоборот.

Высокое напряжение — это напряжение, близкое к напряжению питания. Низкое напряжение — это напряжение, близкое к нулю вольт.

На принципиальной схеме видно, что выход инвертора (U1) обратно подключен к входу с помощью резистора. Это означает, что если на входе высокое напряжение, выход будет низким.Но поскольку выход снова подключен к входу, вход будет низким. Теперь, когда на входе низкий уровень, на выходе будет высокий. Это означает, что входной сигнал снова будет высоким и так далее…

Таким образом, он будет продолжать прыгать между высоким и низким.

Чтобы замедлить скачки вперед и назад, я использовал конденсатор на входе инвертора. Резистор R1 контролирует, какой ток возвращается для зарядки конденсатора на входе. Следовательно, размер резистора R1 и конденсатора C1 будет определять скорость мигания.

Я использовал инвертор с триггером Шмитта. Триггер Шмитта просто означает, что порог переключения с высокого на низкий отличается от порога переключения с низкого на высокий.

Ознакомьтесь с полными инструкциями по сборке здесь.

Начало строительства

Итак, вы читали о них. Пора начинать строить! Найдите нужные детали в одном из интернет-магазинов, закажите их и соберите.

Возможно, вас заинтересует Ohmify:

Ohmify — это онлайн-академия для людей, мало разбирающихся в электронике или совсем не разбирающихся в ней, которые хотят уверенно создавать электронные гаджеты и инструменты и готовы принять меры, чтобы это произошло.

Подробнее здесь:
https://ohmify.com/join/

Вы их построили?

Вы построили схему мигающего светодиода из этой статьи?

Как все прошло?

Дайте мне знать в поле для комментариев ниже.

Как построить простую схему мигающего светодиода с конденсатором, транзистором и двумя резисторами

Вот как мигает светодиод, состоящий только из светодиода, конденсатора, транзистора и двух резисторов. Этот пост является дополнением к сообщению Дика Каппеля «Простейшая схема светодиодного мигалки».Я добавил диаграмму Фритцинга и несколько фотографий и видео в высоком разрешении, чтобы вы могли быстро построить схему. Большинство других видео в Интернете сняты очень давно и по большей части не в фокусе. Вы увидите группу людей, которые просят сфокусированное видео в комментариях к этому видео. Надеюсь, этот подробный пост поможет.

Вот что вам понадобится:

  • Макет
  • 1 светодиод
  • 1 транзистор PN2222 — Я использовал резистор NPN, но вы можете использовать PNP, вам просто нужно перевернуть его и использовать заземление вместо источника питания.Вот хорошее видео, которое описывает разницу между NPN и PNP.
  • 1 x Конденсатор — Размер конденсатора определяет скорость мигания. Я экспериментировал с 100 мкФ / 6,3 В и 1000 мкФ / 10 В, и оба работали.
  • 1 резистор 1 кОм
  • 1 резистор 100 Ом
  • Источник питания 12 В — я использовал 8 батареек АА, соединенных последовательно. Я также пробовал с источниками питания 6 и 9 В, но он работал только с 12 В.

Макетная плата

[

  • Подключите батареи последовательно (минус соединен с плюсом)

  • Подключите резистор 1 кОм от плюса к ряду в середине платы.>

  • Подключите положительный вывод конденсатора к резистору 1 кОм, а отрицательный провод к земле>

  • Подключите эмиттер транзистора между резистором 1 кОм и положительным выводом конденсатора. Подключаем коллектор через пару дырок. Не подключайте базу. Держите транзистор плоской стороной к себе. Штифт слева — эмиттер, штифт справа — коллектор, штифт посередине — база. Хорошая диаграмма, объясняющая это.>

  • Подключите положительный провод светодиода (длинный) к коллектору транзистора, а отрицательный провод подключите к резистору 100 Ом и подключите его к земле.>

Вот и все. Он должен начать мигать.

Вот видео, как это работает.

А вот фото схемы крупным планом.

Йон

Single Transistor LED Flasher Circuit

Это, пожалуй, самый маленький на сегодняшний день светодиодный мигающий модуль на 12 В, который может бесконечно мигать светодиодами, используя один транзистор, резистор и конденсатор.

Можете ли вы представить себе, как создать великолепный светодиодный мигающий или мигающий сигнал, используя всего один транзистор и пару других пассивных деталей? Это именно то, что мы узнаем из этого поста! Это, пожалуй, самый простой и крохотный светодиодный мигающий светильник в мире!

Как это работает

Я столкнулся с этим явлением около восьми лет назад (2006 г.) случайно, когда пытался сделать минимально возможный боковой указатель поворота мотоцикла, и был удивлен этому явлению.

Однако потом я понял, что это явление уже открыл г.Дик Каппельс во время исследования теории отрицательного сопротивления в BJT японским исследователем г-ном Реона Эсаки (он же Лео). Дипломная работа Реоны Эсаки в соответствующей области и о туннельных диодах в конечном итоге принесла ему Нобелевскую премию в 1972 году.

Это выглядит слишком хорошо, чтобы быть правдой, однако следующая диаграмма просто докажет, что действительно можно создать работающую схему светодиодного мигающего сигнала, используя всего один транзистор общего назначения в качестве основного компонента.

Тогда я не догадывался, что это происходит из-за характеристик отрицательного сопротивления транзистора.

Схема фактически использует отрицательный коэффициент сопротивления транзисторов для создания эффекта мерцания.

Я скоро напишу исчерпывающую статью по этому поводу, и мы увидим там, как эту концепцию можно изменить различными способами.

Перечень деталей предлагаемой схемы однотранзисторного светодиодного мигающего сигнала

  • R1 = 2K7,
  • R2 = 100 Ом,
  • T1 = BC 547,
  • C1 = от 100 мкФ до 470 мкФ
  • Светодиод = любой тип, любой цвет

Частота мигания может быть изменена путем изменения значения R1 или C1 или обоих вместе.Но напряжение питания должно быть не менее 9В, иначе схема может работать некорректно.

Принципиальная схема

Подключение внешнего транзистора для более высоких нагрузок

Видеоклип:

Дизайн печатной платы

Схема мигающего светодиода — ElectroSchematics.com

Это простая мигающая светодиодная схема с 2 светодиодами и 2 транзисторами NPN.
Он иллюстрирует поведение транзисторов и конденсаторов, и если вы воспользуетесь осциллографом, будет очень легко определить, что происходит в этой нестабильной схеме мультивибратора.Его состояние постоянно меняется, и это изменение влияет на ток и напряжение, и эффект будет виден двумя светодиодами.

Сопутствующие товары: Светодиоды и светодиодное освещение

Скорость светодиода может регулироваться с помощью потенциометра P1. Будучи нестабильным мультивибратором, схема не имеет стабильного состояния, а постоянно колеблется между двумя состояниями вперед и назад. Два транзистора T1 и T2 поворачиваются и блокируют друг друга по очереди. Чем меньше емкость конденсатора и чем меньше сопротивление, тем быстрее гаснет соответствующий светодиод в пользу других, которые сразу же включаются.

  • Время активации T2 равно t, a = 0,7 x R1 x C1, выключение t off = 0,7 x R2 x C2.
  • Переключение от T1: t, a = 0,7 x R2 x C2, выключение t off = 0,7 x R1 x C1.

Транзисторы не обязательно должны быть BC547B, вы можете использовать BC238 или аналогичные малосигнальные транзисторы. Рекомендуется всегда использовать эквивалентные транзисторы. Если один из транзисторов неисправен, неисправен или неисправен, это влияет на полную функциональность этой схемы.Один светодиод горит, а другой гаснет.

Схема «два мигающих светодиода» рассчитана на 9 В, но работает и при более низких напряжениях. В этой конструкции мы использовали красные светодиоды, но, поменяв резисторы серии R1 и R4, вы также можете использовать светодиоды разных цветов.

Принципиальная схема с двумя мигающими светодиодами

Значения компонентов
R1 — 470 Ом
R2 — 470 Ом
R3 — 3,9 кОм
R4 — 3,9 кОм
P1 — 50 кОм
C1 — 47 мкФ / 16 В
C2 — 47 мкФ / 16 В
T1 — BC 547 B
T2 — BC 547 B
D1 — Стандартный светодиод, 5 мм, красный
D2 — Стандартный светодиод, 5 мм, красный

Схема регулируемого мигания / мигания светодиода

с использованием микросхемы таймера 555

Учебное пособие по созданию схемы регулируемого мигания / мигания светодиода с использованием микросхемы таймера 555 и некоторых других электронных компонентов.Эта схема включает и выключает светодиод или любое выходное устройство через равные промежутки времени. Продолжительность между последовательными переключениями светодиода можно регулировать с помощью потенциометра.

Посмотрите видео выше, чтобы получить подробные пошаговые инструкции о том, как построить эту схему. Объяснение того, как работает схема, также включено в видео.

Необходимые компоненты

  • 555 Таймер IC
  • Светодиод или любое выходное устройство
  • Конденсатор 10 мкФ
  • Резисторы: 100 кОм, 1 кОм, 220R
  • Макетная плата
  • Мало разъемов макетной платы
  • (5-12) В Источник питания
  • Потенциометр (опционально)
  • Релейный модуль (опционально)

Обратитесь к таблице резисторов, показанной в видеоуроке, для определения точного значения последовательного резистора светодиода (220R)

Принципиальная схема

Резисторы R1 и R2, а также конденсатор С1 контролирует частоту мигания.В то время как конденсатор C1 и резистор R1 влияют на время включения и выключения светодиода, резистор R2 отвечает только за время включения. Поэтому, если вы хотите попробовать разные номиналы резисторов и изменить частоту мигания, вы можете поэкспериментировать, изменив номинал резистора R2.

[Значение резистора, подключенного к светодиоду, зависит от двух параметров: цвета светодиода, который вы планируете использовать, и напряжения источника питания. Вы можете найти соответствующие значения в видеоуроке]

Ниже приведена принципиальная схема регулируемого двойного светодиодного мигающего индикатора, который использует потенциометр для изменения скорости мигания:

Обратите внимание, как мы подключили дополнительный светодиод к выходному контакту микросхемы таймера 555 .Такая компоновка позволяет только 1 светодиоду оставаться включенным в любой момент времени, что приводит к тому, что эта схема работает как чередующийся светодиодный мигающий сигнал.

Как работает эта схема

[Просмотрите видеоурок, представленный в начале этого урока для лучшего визуального понимания]

В предыдущих уроках серии проектов таймера 555 мы узнали, как триггерный контакт (контакт 2) и Пороговый вывод (вывод 6) микросхемы таймера 555 измеряет напряжение и управляет выходом. Ниже приведено резюме:

  • Если триггерный вывод (вывод 2 микросхемы таймера 555) обнаруживает любое напряжение менее 1/3 напряжения питания, он включает на выход
  • Если порог Контакт (контакт 6 микросхемы таймера 555) обнаруживает любое напряжение, превышающее 2/3 напряжения питания, он выключает выход
  • Всякий раз, когда выход микросхемы таймера 555 находится в состоянии ВЫКЛ, происходит разряд . Контакт (Контакт-7) действует как заземление / отрицательная шина i.е, он внутренне подключен к 0V

Принимая во внимание вышеупомянутые 3 пункта, давайте попробуем понять, как эта схема работает.

  1. Сразу после включения источника питания конденсатор (C1) будет в разряженном состоянии, поэтому напряжение на контакте 2 будет равно 0 В.
  2. Поскольку это напряжение меньше 1/3 напряжения питания, выход включается.
  3. Одновременно контакт 7 внутренне отключится от 0 В, и конденсатор начнет заряжаться через резисторы R1 и R2.
  4. Сразу после того, как напряжение на конденсаторе (C1) пересекает 2/3 напряжения питания, контакт 6 определяет его и отключает выход.
  5. Одновременно контакт 7 внутренне переподключится к 0 В, что приведет к разрядке конденсатора через резистор R1.
  6. И как только напряжение на конденсаторе упадет ниже 1/3 напряжения питания, контакт 2 включит выход, и весь этот цикл будет повторяться снова и снова. (Последовательность продолжается с 3-го шага)

Вы можете практически наблюдать за зарядкой и разрядкой конденсатора, измеряя напряжение на нем с помощью мультиметра.

Дальнейшие улучшения

Мы настроили микросхему таймера 555 для работы в качестве нестабильного мультивибратора. Таким образом, на выходе будет переменная прямоугольная волна, которая заставит светодиод мгновенно включиться или выключиться.

Мы можем изменить эту схему для создания синусоидальной волны, чтобы переключение между состояниями ВКЛ и ВЫКЛ было визуально плавным (аналогично эффекту затухания). Это можно сделать, добавив дополнительный транзистор и управляя им от напряжения на положительном выводе конденсатора. Подробнее об этом мы поговорим в другом уроке.

Приложения

  • В цепях указателей поворота на всех типах транспортных средств и в циклах
  • В цепях сигналов стробоскопа / SoS (для сигнализации о том, что кто-то находится в опасности или нуждается в помощи)
  • Для управления двигателями стеклоочистителей и создания движения вперед и назад
  • In Световые индикаторы, используемые в автомобилях (используется релейная версия схемы мигающих светодиодов)
  • В качестве входа для приложений, требующих синхронизирующих импульсов. Например: в счетных схемах с использованием микросхем 4017 и 4026

Если у вас есть какие-либо вопросы / предложения, не стесняйтесь размещать их в разделе комментариев к этому видео: Регулируемая схема мигания / мигания светодиодов с использованием таймера 555 IC

Полицейские огни Тематическое мигание Схема светодиодов с использованием микросхемы 555

Учебное пособие о том, как создать схему мигания / мигания светодиодов в стиле полицейских огней с использованием микросхемы таймера 555 и некоторых других электронных компонентов.Эта схема попеременно мигает между красными и синими светодиодами, при этом каждый из них мигает индивидуально, как полицейские стробоскопы. Объяснение того, как работает эта схема, также включено в видеоурок.

Вы также можете объединить эту цепь с помощью цепи полицейской сирены, которая является следующим проектом в этой серии проектов таймера 555: Цепь полицейской сирены с использованием 555 IC.

Необходимые компоненты

  • 2 ИС таймера по 555
  • Светодиоды: 3 красных, 3 синих
  • Резисторы: 2 x 1 МОм, 2 x 68R (резисторы для светодиодов)
  • Конденсаторы: 1 мкФ, 100 нФ
  • Макет
  • Несколько разъемов для макетных плат
  • (5-12) В Источник питания

Примечание: в зависимости от используемого источника питания и способа подключения светодиодов (последовательно или параллельно) вам необходимо использовать другой резистор, чем 68R, используемый последовательно с Светодиоды.Обратитесь к таблице, показанной в видеоуроке выше, для резистора, который будет использоваться для основных сценариев. Вы также можете посетить http://ledcalc.com/, чтобы рассчитать резистор на основе расположения светодиодов.

Принципиальная схема

Щелкните изображение ниже, чтобы увидеть полную принципиальную схему.

Как работает эта схема

[Просмотрите объяснение, данное в видеоуроке для лучшего визуального понимания]

В предыдущем руководстве: Схема регулируемого мигания / мигания светодиода с использованием микросхемы таймера 555, мы узнали, как настроить микросхему таймера 555 на работают в нестабильном режиме.Мы также подключили к выходу 2 светодиода с противоположной полярностью, чтобы они включались и выключались через равные промежутки времени. Вы можете обратиться к этому руководству, чтобы понять, как работает микросхема таймера 555 в нестабильном режиме и как значения конденсатора и резистора влияют на частоту мигания.

В этой схеме мигающих светодиодов в стиле полицейских стробоскопов мы использовали две копии аналогичных нестабильных схем, настроенных на разных частотах. В первой микросхеме таймера 555 используется конденсатор большего размера, поэтому для переключения выхода требуется больше времени.Вторая микросхема таймера 555 использует конденсатор меньшего размера, поэтому она очень быстро переключает выход.

Теперь перейдем к расположению светодиодов. Первая группа светодиодов (красные светодиоды) включается при наличии положительного напряжения на аноде и отрицательного напряжения на катоде. Этот сценарий происходит, когда выход первого таймера 555 IC включен, а выход второго таймера 555 выключен одновременно.

Аналогично, вторая группа светодиодов (синие светодиоды) включаются, только если выход первой микросхемы таймера 555 выключен, а выход второй микросхемы таймера 555 включен.

Таким образом, когда выход первой микросхемы таймера 555 включен, только первая группа светодиодов имеет шанс включиться, и они мигают с той скоростью, с которой вторая микросхема таймера 555 переключает выход.

Точно так же, когда первая микросхема таймера 555 выключается, только вторая группа светодиодов имеет шанс включиться, и они мигают с той скоростью, с которой вторая микросхема таймера 555 переключает выход.

Повторение этого цикла снова и снова создает этот крутой светодиодный мигающий эффект, похожий на мигающие огни, используемые на полицейских машинах.

Если у вас есть какие-либо вопросы / предложения, не стесняйтесь публиковать их в разделе комментариев к этому видео: Цепь мигающего светодиода в тематике полицейских огней с использованием микросхемы 555

Изготовление схемы

с использованием мигающего / мигающего светодиода с использованием таймера 555 IC

В этой статье объясняется схема для мигания светодиода с использованием микросхемы таймера 555. Это простая схема, предназначенная для объяснения работы и использования микросхемы таймера 555. Эта схема разработана с использованием устройства вывода с низким энергопотреблением, красного светодиода.Существует множество применений таймеров 555, которые обычно используются в диммерах лампы, управлении скоростью стеклоочистителя, переключателях таймеров, генераторе с фиксированной частотой переменного рабочего цикла, модуляции ШИМ и т. Д.


Цепь мигающего светодиода с использованием таймера 555 IC

Компоненты цепи

  • 555 таймер IC
  • светодиод
  • аккумулятор 9В
  • Резистор 1 кОм — 2
  • Резистор 470 кОм
  • Конденсатор 1 мкФ
  • Хлебная доска
  • Соединительные провода

Принципиальная схема

Следующая схема объясняет устройство мигающего светодиода (светоизлучающего диода) с микросхемой таймера 555.Здесь, в этой конфигурации, микросхема таймера 555 подключена в нестабильном режиме работы таймера 555.

Мигающий светодиод с использованием таймера 555
  • Соберите все необходимые компоненты и поместите микросхему таймера 555 на макетную плату.
  • Подключите контакт 1 микросхемы таймера 555 к земле. Вы можете найти структуру выводов микросхемы таймера 555 на схеме, показанной выше.
  • Более длинный вывод поляризованного конденсатора — положительный, а более короткий — отрицательный. Подключите контакт 2 к положительному полюсу конденсатора.Подключите отрицательный вывод конденсатора к массе аккумулятора.
  • Теперь закоротите контакт 2 с контактом 6 микросхемы таймера 555.
  • Соедините выходной контакт 3 с плюсовым выводом светодиода с помощью резистора 1 кОм. Отрицательный вывод светодиода необходимо подключить к земле.
  • Подсоедините контакт 4 к плюсовому полюсу аккумулятора.
  • Контакт 5 ни к чему не подключается.
  • Подключите контакт 6 к контакту 7 с помощью резистора 470 кОм.
  • Подключите контакт 7 к положительному полюсу батареи с помощью резистора 1 кОм.
  • Подсоедините контакт 8 к плюсовому полюсу аккумулятора.
  • Наконец, соедините выводы батареи с макетной платой, чтобы включить источник питания в цепи.

Физическая схема

Мигающий светодиод Физическая схема

555 микросхема таймера используется для создания разницы во времени в различных приложениях. Схема мигающего светодиода использует таймер 555 в нестабильном режиме, который генерирует непрерывный выходной сигнал в виде прямоугольной волны на выводе 3. Эта форма волны включает и выключает светодиод.Продолжительность включения / выключения зависит от временного цикла прямоугольной волны. Мы можем изменить скорость мигания, изменив значение емкости.

555 Таймер IC
Микросхема таймера

555 — это дешевое, популярное и точное устройство синхронизации, используемое в различных приложениях. Он получил свое название от трех резисторов 5 кОм, которые используются для генерации двух опорных напряжений компаратора. Эта ИС работает как моностабильный, бистабильный или нестабильный мультивибратор для различных применений.

555 Timer IC

Эта микросхема поставляется в биполярном 8-контактном корпусе с двойным расположением выводов.Он состоит из 25 транзисторов, 2 диодов и 16 резисторов, образующих два компаратора, триггеры и сильноточный выходной каскад.

Описание штифта

Ниже приводится описание выводов микросхемы таймера 555.

Контакт 1-Земля: Он подключен к земле как обычно. Для работы таймера этот вывод должен быть заземлен.

Контакт 2-TRIGGER: Отрицательный входной компаратор № 1. Отрицательный импульс на этом контакте «устанавливает» внутренний триггер, когда напряжение падает ниже 1/3 В постоянного тока, вызывая переключение выхода с «НИЗКОГО» на «НИЗКОЕ». ВЫСОКОЕ »состояние

Контакт 3-ВЫХОД: Этот контакт также не имеет специальной функции.Этот вывод взят из конфигурации PUSH-PULL, образованной транзисторами. Этот вывод дает выходной сигнал.

Вывод 4-Reset: В микросхеме таймера IC 555 есть триггер. Выход триггера напрямую управляет выходом микросхемы на выводе 3. Этот вывод подключен к Vcc, чтобы триггер не мог выполнить полный сброс.

Контакт 5 — Контакт управления: Контакт управления подключается к отрицательному входному контакту первого компаратора. Функция этого вывода — дать пользователю прямой контроль над первым компаратором.

Вывод 6-ПОРОГ: Пороговое напряжение на выводе определяет, когда сбрасывать триггер в таймере. Пороговый вывод выводится с положительного входа компаратора 1.

Вывод 7-РАЗРЯД: Вывод разрядки подключен непосредственно к коллектору внутреннего NPN-транзистора, который используется для «разряда» синхронизирующего конденсатора на землю, когда выход на выводе 3 переключается на «НИЗКИЙ».

Контакт 8-Power или VCC: Этот контакт также не имеет специальной функции.Он подключен к положительному напряжению.

Рабочие режимы таймера 555 IC

Микросхема таймера 555 работает в режимах

  • Астабильный режим
  • Моностабильный режим
  • Бистабильный режим

Астабильный режим

Астабильный режим означает, что на выходе не будет стабильных уровней. Таким образом, выход будет колебаться от высокого до низкого. Этот характер нестабильного выхода используется как выход тактового сигнала или прямоугольной формы для многих приложений.

Характеристики микросхемы таймера 555
  • Работает от широкого диапазона источников питания в диапазоне от + 5 В до + 18 Вольт.
  • Потребление или получение 200 мА тока нагрузки.
  • Внешние компоненты должны быть выбраны правильно, чтобы временные интервалы могли составлять несколько минут вместе с частотами, превышающими несколько сотен килогерц.
  • Выход таймера 555 может управлять транзисторно-транзисторной логикой (TTL) из-за его высокого выходного тока.
  • Он имеет температурную стабильность 50 частей на миллион (ppm) при изменении температуры на градус Цельсия или, что эквивалентно 0,005% / ° C.
  • Продолжительность включения таймера регулируется.
  • Максимальная рассеиваемая мощность на корпус составляет 600 мВт, а его входы запуска и сброса имеют логическую совместимость.

Таким образом, речь идет о создании мигающего светодиода с использованием микросхемы таймера 555. Мы надеемся, что вы лучше понимаете эту концепцию. Кроме того, любые вопросы по этой теме или проектам на основе таймера 555, пожалуйста, дайте свои ценные предложения, комментируя раздел комментариев ниже.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *