Микрофарады в нанофарады онлайн: The page cannot be found

), скобки и π (число пи), уже поддерживаются на настоящий момент.
  • Из списка выберите единицу измерения переводимой величины, в данном случае ‘нанофарад [нФ]’.
  • И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае ‘микрофарад [мкФ]’.
  • После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.

  • С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘734 нанофарад’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘нанофарад’ или ‘нФ’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Ёмкость’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’89

    нФ в мкФ‘ или ’19 нФ сколько мкФ‘ или ’63 нанофарад -> микрофарад‘ или ’49 нФ = мкФ‘ или ’74 нанофарад в мкФ‘ или ‘2 нФ в микрофарад‘ или ’38 нанофарад сколько микрофарад‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.

    Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(81 * 39) нФ’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии.3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

    Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 4,822 530 820 312 5×1025. В этой форме представление числа разделяется на экспоненту, здесь 25, и фактическое число, здесь 4,822 530 820 312 5. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 4,822 530 820 312 5E+25. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 48 225 308 203 125 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.

    Содержание

    М (µ) * микрофарад, н (n) – нанофарад, п (p) – пикофарад

    Букву, обозначающую порядок номинала, ставят на месте, где между цифрами должна стоять запятая, при этом ноль опускают. Например,

    м15=0,15 мкФ; 1н5=1,5нФ; 15п=15пФ.

    Все конденсаторы, помимо емкости, характеризуются максимально допустимым напряжением, которое превышать нельзя, так как в этом случае может произойти пробой диэлектрика и они выйдут из строя (у электролитических конденсаторов закипает электролит). Иными словами, электрическую прочность конденсаторов характеризует значение рабочего напряжения, которое зависит от свойств и толщины диэлектрика и расстояния между выводами (обкладками).

    Номинальные значения рабочих напряжений конденсаторов (от единиц до десятков киловольт) стандартизованы и сведены в ряд:

    На отечественных конденсаторах, имеющих соответствующие размеры, значение рабочего напряжения представляется цифрами ряда. У зарубежных конденсаторов применяют буквенную кодировку, как это представлено в таблице 9.

    Допустимые отклонения от номинала также стандартизованы (ГОСТ 11076-69). В отечественных конденсаторах используют цифровую и кодовую маркировку допуска отклонений, в зарубежных конденсаторах – буквенную маркировку. В таблице 10 приведена буквенная кодировка допуска отклонений для отечественных и импортных конденсаторов.

    Конденсаторы с допуском отклонений до ±2% называют прецизионными, а конденсаторы с допуском ±5%, ±10%, ±20% — широкого применения.

    Цветовая маркировка конденсаторов. В соответствии со стандартами IEC применяют несколько (четыре) способов кодирования номинала ёмкости конденсаторов. Цветовое кодирование отечественных конденсаторов (К53-30) приведено в таблице 11.

    Так как оксидные конденсаторы имеют большой производственный разброс, они технологически выполняются по стандартному ряду Е6. Маркировка оксидно-полупроводниковых танталовых конденсаторов (каплевидной формы) производится цветовым кодом.

    Конденсаторы со значением допуска ±20% маркируют тремя цветовыми полосками, начиная со стороны, противоположной выводам конденсатора.

    Цветовое кодирование керамических конденсаторов (К10…, К26…) с рабочим напряжением, не превышающим 63 В, приведено в табл. 12.

    Маркировку наносят в виде цветовых полос или точек. Каждому цвету соответствует определенное цифровое значение. Ширина полосы, обозначающая величину ТКЕ, делается примерно в 2 раза больше других.

    Конденсаторы с малым значением допуска (0,1…10%) маркируют шестью цветовыми метками (табл. 13). Первые три метки – численное значение ёмкости в пФ, четвертая – множитель, пятая – допуск отклонений, шестая – ТКЕ.

    Конденсаторы с малым значением допуска ±20% маркируются четырьмя цветовыми метками. Первые две – значащая емкость в пФ (так как незначащий нуль в третьем ряду не маркируется). Третья метка – множитель, четвертая – ТКЕ. Значение допуска (пятая метка) не маркируется.

    Цифровая маркировка чип — конденсаторов. Как и у чип — резисторов, конденсаторы обозначают тремя или четырьмя цифрами. Первые две (три) цифры указывают значение емкости в пФ, последняя – количество нулей.

    Если конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть 9. при ёмкостях меньше 1 пФ первая цифра 0. например, код 010 соответствует ёмкость 1 пФ. Буква R используется в качестве десятичной запятой. Например, код 0R5 соответствует емкости 0,5 пФ. В таблице 14 приведены примеры цифровой кодировки чип – конденсаторов.

    Источники питания (допуски отклонений). Питание электронной аппаратуры осуществляется электрической энергией переменного синусоидального тока низкой частоты. В одних странах, включая Россию и Европу в целом, это частота 50 Гц, в США, Японии и некоторых других странах действует стандарт 60 Гц. Бытовым потребителям электроэнергия поставляется при среднеквадратическом отклонении напряжения 220 В (Россия, Европа), 110 В (США), 240 В (Великобритания).

    По принятому в России стандарту в норме частота сети должна быть в пределах (50±0,2) Гц. Напряжение в сети не должно отклоняться от номинального значения более чем на ±10%.

    Помимо сетевых источников питания существует большое количество автономных источников как постоянного, так и переменного токов, которые имеют вполне конкретный полевой допуск.

    Практическое занятие № 7

    Электронный измеритель емкости — презентация онлайн

    Электронны
    й
    измеритель

    2. Техническое задание

    Разработать устройство для
    измерения емкости.
    Диапазон измерений от 1 нФ до
    12000 мкФ.
    Вероятность безотказной работы за
    1000 часов не менее 89%.
    Первый отказ устройства должен
    произойти не раньше чем через 1,2
    года.

    3. Структурная схема

    4. Схема электрическая принципиальная

    5. Нанофарады

    6. Микрофарады

    7. Тысячи микрофарад

    8. Конденсатор имеет остаточный заряд

    9. Замыкание цепи или пробой конденсатора

    10. Емкость конденсатора выходит за пределы диапазона

    11. Потеря значений поправочных коэффициентов

    12. Плата печатная

    13. Технологический процесс изготовления ПП

    1.
    2.
    3.
    4.
    5.
    6.
    7.
    8.
    9.
    10.
    11.
    12.
    13.
    14.
    15.
    16.
    17.
    18.
    Входной контроль.
    Нарезка заготовок и получение базовых отверстий.
    Получение монтажных и переходных отверстий.
    Предварительная металлизация.
    Подготовка поверхности.
    Получение защитного рельефа.
    Электрохимическая металлизация.
    Удаление защитного рельефа.
    Получение рисунка печатной платы.
    Травление.
    Удаление защитного рельефа.
    Нанесение защитной паяльной маски.
    Лужение.
    Отмывка от флюса.
    Получение крепежных отверстий.
    Обработка по контуру.
    Промывка.
    Контроль электрических параметров.

    14. Сборочный чертеж

    15. Технологический процесс сборки и монтажа ПП

    1.
    2.
    3.
    4.
    5.
    6.
    7.
    8.
    9.
    10.
    11.
    12.
    Комплектовка.
    Входной контроль ЭРЭ.
    Защита маркировки ЭРЭ лаком.
    Формовка выводов.
    Обрезка и лужение выводов.
    Разконсервация платы.
    Установка штыревых ЭРЭ на плату .
    Пайка выводов.
    Механическая обработка выводов.
    Установка и пайка планарных микросхем.
    Контроль электрических параметров.
    Покрытие лаком.

    16. Экономические показатели

    Себестоимость устройства: 2372 р.
    Среднемесячная заработная плата
    одного производственного рабочего:
    15781 р.
    Основная заработная плата на один
    комплект: 422,4 р.
    Среднесуточный выпуск изделий: 33
    шт.

    17. Заключение

    В данном проекте рассмотрен технологически процесс изготовления
    печатной платы и технологический процесс сборки и монтажа
    двухсторонней печатной платы. Произведен расчет надежности,
    расчет технологичности и расчет конструктивных параметров печатной
    платы. Рассмотрена техника безопасности при изготовлении печатной
    платы и техника безопасности при сборке и монтаже.
    Произведенный расчет надежности показал, что вероятность
    безотказной работы составляет 98%, что превышает значение данное в
    техническом задании, это показывает высокую надежность устройства.
    Так же произведен расчет технологичности, рассчитанный
    комплексный показатель технологичности равен 0.56, что является
    показателем серийного производства.
    Данная плата «электронный измеритель емкости» предназначена для
    эксплуатации при температуре от -20°С до +40°С и относительной
    влажности не более 85%.
    Был произведен расчет себестоимости изготовления одного
    устройства. Цена одного электронного измерителя емкости составляет 2372р.

    Конденсатор 100n это сколько

    Конденсатор можно сравнить с небольшим аккумулятором, он умеет быстро накапливать электрическую энергию и так же быстро ее отдавать. Основной параметр конденсатора – это его

    емкость (C). Важным свойством конденсатора, является то, что он оказывает переменному току сопротивление, чем больше частота переменного тока, тем меньше сопротивление. Постоянный ток конденсатор не пропускает.

    Как и резисторы, конденсаторы бывают постоянной емкости и переменной емкости. Применение конденсаторы находят в колебательных контурах, различных фильтрах, для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

    Основная единица измерения емкости –

    фарад (Ф) – это очень большая величина, которая на практике не применяется. В электронике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). 1 мкФ равен одной миллионной доле фарада, а 1 пФ – одной миллионной доле микрофарада.

    Обозначение конденсатора на схеме

    На электрических принципиальных схемах конденсатор отображается в виде двух параллельных линий символизирующих его основные части: две обкладки и диэлектрик между ними. Возле обозначения конденсатора обычно указывают его номинальную емкость, а иногда его номинальное напряжение.

    Номинальное напряжение – значение напряжения указанное на корпусе конденсатора, при котором гарантируется нормальная работа в течение всего срока службы конденсатора. Если напряжение в цепи будет превышать номинальное напряжение конденсатора, то он быстро выйдет из строя, может даже взорваться. Рекомендуется ставить конденсаторы с запасом по напряжению, например: в цепи напряжение 9 вольт – нужно ставить конденсатор с номинальным напряжением 16 вольт или больше.

    Электролитические конденсаторы

    Для работы в диапазоне звуковых частот, а так же для фильтрации выпрямленных напряжений питания, необходимы конденсаторы большой емкости. Называются такие конденсаторы – электролитическими. В отличие от других типов электролитические конденсаторы полярны, это значит, что их можно включать только в цепи постоянного или пульсирующего напряжения и только в той полярности, которая указана на корпусе конденсатора. Не выполнение этого условия приводит к выходу конденсатора из строя, что часто сопровождается взрывом.

    Температурный коэффициент емкости конденсатора (ТКЕ)

    ТКЕ показывает относительное изменение емкости при изменении температуры на один градус. ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения на корпусе.

    Маркировка конденсаторов

    Емкость от 0 до 9999 пФ может быть указана без обозначения единицы измерения:

    22 = 22p = 22П = 22пФ

    Если емкость меньше 10пФ, то обозначение может быть таким:

    Так же конденсаторы маркируют в нанофарадах (нФ)

    , 1 нанофарад равен 1000пФ и микрофарадах (мкФ):

    10n = 10Н = 10нФ = 0,01мкФ = 10000пФ

    Н18 = 0,18нФ = 180пФ

    1n0 = 1Н0 = 1нФ = 1000пФ

    330Н = 330n = М33 = m33 = 330нФ = 0,33мкФ = 330000пФ

    100Н = 100n = М10 = m10 = 100нФ = 0,1мкФ = 100000пФ

    1Н5 = 1n5 = 1,5нФ = 1500пФ

    4n7 = 4Н7 = 0,0047мкФ = 4700пФ

    Цифровая маркировка конденсаторов

    Если код трехзначный, то первые две цифры обозначают значение, третья – количество нулей, результат в пикофарадах.

    Например: код 104, к первым двум цифрам приписываем четыре нуля, получаем 100000пФ = 100нФ = 0,1мкФ.

    Если код четырехзначный, то первые три цифры обозначают значение, четвертая – количество нулей, результат тоже в пикофарадах.

    4722 = 47200пФ = 47,2нФ

    Параллельное соединение конденсаторов

    Емкость конденсаторов при параллельном соединении складывается.

    Последовательное соединение конденсаторов

    Общая емкость конденсаторов при последовательном соединении рассчитывается по формуле:

    Если последовательно соединены два конденсатора:

    Если последовательно соединены два одинаковых конденсатора, то общая емкость равна половине емкости одного из них.

    1. Маркировка тремя цифрами.

    В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).

    код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF
    109 1.0 пФ
    159 1.5 пФ
    229 2.2 пФ
    339 3.3 пФ
    479 4.7 пФ
    689 6.8 пФ
    100 10 пФ 0.01 нФ
    150 15 пФ 0.015 нФ
    220 22 пФ 0.022 нФ
    330 33 пФ 0.033 нФ
    470 47 пФ 0.047 нФ
    680 68 пФ 0.068 нФ
    101 100 пФ 0.1 нФ
    151 150 пФ 0.15 нФ
    221 220 пФ 0.22 нФ
    331 330 пФ 0.33 нФ
    471 470 пФ 0.47 нФ
    681 680 пФ 0.68 нФ
    102 1000 пФ 1 нФ
    152 1500 пФ 1.5 нФ
    222 2200 пФ 2.2 нФ
    332 3300 пФ 3.3 нФ
    472 4700 пФ 4.7 нФ
    682 6800 пФ 6.8 нФ
    103 10000 пФ 10 нФ 0.01 мкФ
    153 15000 пФ 15 нФ 0.015 мкФ
    223 22000 пФ 22 нФ 0.022 мкФ
    333 33000 пФ 33 нФ 0.033 мкФ
    473 47000 пФ 47 нФ 0.047 мкФ
    683 68000 пФ 68 нФ 0.068 мкФ
    104 100000 пФ 100 нФ 0.1 мкФ
    154 150000 пФ 150 нФ 0.15 мкФ
    224 220000 пФ 220 нФ 0.22 мкФ
    334 330000 пФ 330 нФ 0.33 мкФ
    474 470000 пФ 470 нФ 0.47 мкФ
    684 680000 пФ 680 нФ 0.68 мкФ
    105 1000000 пФ 1000 нФ 1 мкФ

    2. Маркировка четырьмя цифрами.

    Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

    1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.

    3. Буквенно-цифровая маркировка.

    При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

    15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

    Очень часто бывает трудно отличить русскую букву «п» от английской «n».

    Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

    0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ

    4. Планарные керамические конденсаторы.

    Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

    N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

    S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

    маркировка значение маркировка значение маркировка значение маркировка значение
    A 1.0 J 2.2 S 4.7 a 2.5
    B 1.1 K 2.4 T 5.1 b 3.5
    C 1.2 L 2.7 U 5.6 d 4.0
    D 1.3 M 3.0 V 6.2 e 4.5
    E 1.5 N 3.3 W 6.8 f 5.0
    F 1.6 P 3.6 X 7.5 m 6.0
    G 1.8 Q 3.9 Y 8.2 n 7.0
    H 2.0 R 4.3 Z 9.1 t 8.0

    5. Планарные электролитические конденсаторы.

    Электролитические SMD конденсаторы маркируются двумя способами:

    1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

    2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

    , по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

    буква e G J A C D E V H (T для танталовых)
    напряжение 2,5 В 4 В 6,3 В 10 В 16 В 20 В 25 В 35 В 50 В

    Кодовая маркировка, дополнение

    В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

    А. Маркировка 3 цифрами

    Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

    Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
    109 1,0 0,001 0,000001
    159 1,5 0,0015 0,000001
    229 2,2 0,0022 0,000001
    339 3,3 0,0033 0,000001
    479 4,7 0,0047 0,000001
    689 6,8 0,0068 0,000001
    100* 10 0,01 0,00001
    150 15 0,015 0,000015
    220 22 0,022 0,000022
    330 33 0,033 0,000033
    470 47 0,047 0,000047
    680 68 0,068 0,000068
    101 100 0,1 0,0001
    151 150 0,15 0,00015
    221 220 0,22 0,00022
    331 330 0,33 0,00033
    471 470 0,47 0,00047
    681 680 0,68 0,00068
    102 1000 1,0 0,001
    152 1500 1,5 0,0015
    222 2200 2,2 0,0022
    332 3300 3,3 0,0033
    472 4700 4,7 0,0047
    682 6800 6,8 0,0068
    103 10000 10 0,01
    153 15000 15 0,015
    223 22000 22 0,022
    333 33000 33 0,033
    473 47000 47 0,047
    683 68000 68 0,068
    104 100000 100 0,1
    154 150000 150 0,15
    224 220000 220 0,22
    334 330000 330 0,33
    474 470000 470 0,47
    684 680000 680 0,68
    105 1000000 1000 1,0

    * Иногда последний ноль не указывают.

    В. Маркировка 4 цифрами

    Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

    Код Емкость[пФ] Емкость[нФ] Емкость[мкФ]
    1622 16200 16,2 0,0162
    4753 475000 475 0,475

    С. Маркировка емкости в микрофарадах

    Вместо десятичной точки может ставиться буква R.

    Код Емкость [мкФ]
    R1 0,1
    R47 0,47
    1 1,0
    4R7 4,7
    10 10
    100 100

    D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

    В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

    Код Емкость
    p10 0,1 пФ
    Ip5 1,5 пФ
    332p 332 пФ
    1НО или 1nО 1,0 нФ
    15Н или 15n 15 нФ
    33h3 или 33n2 33,2 нФ
    590H или 590n 590 нФ
    m15 0,15мкФ
    1m5 1,5 мкФ
    33m2 33,2 мкФ
    330m 330 мкФ
    1mO 1 мФ или 1000 мкФ
    10m 10 мФ

    Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

    Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

    А. Маркировка 2 или 3 символами

    Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

    Код Емкость [мкФ] Напряжение [В]
    А6 1,0 16/35
    А7 10 4
    АА7 10 10
    АЕ7 15 10
    AJ6 2,2 10
    AJ7 22 10
    AN6 3,3 10
    AN7 33 10
    AS6 4,7 10
    AW6 6,8 10
    СА7 10 16
    СЕ6 1,5 16
    СЕ7 15 16
    CJ6 2,2 16
    CN6 3,3 16
    CS6 4,7 16
    CW6 6,8 16
    DA6 1,0 20
    DA7 10 20
    DE6 1,5 20
    DJ6 2,2 20
    DN6 3,3 20
    DS6 4,7 20
    DW6 6,8 20
    Е6 1,5 10/25
    ЕА6 1,0 25
    ЕЕ6 1,5 25
    EJ6 2,2 25
    EN6 3,3 25
    ES6 4,7 25
    EW5 0,68 25
    GA7 10 4
    GE7 15 4
    GJ7 22 4
    GN7 33 4
    GS6 4,7 4
    GS7 47 4
    GW6 6,8 4
    GW7 68 4
    J6 2,2 6,3/7/20
    JA7 10 6,3/7
    JE7 15 6,3/7
    JJ7 22 6,3/7
    JN6 3,3 6,3/7
    JN7 33 6,3/7
    JS6 4,7 6,3/7
    JS7 47 6,3/7
    JW6 6,8 6,3/7
    N5 0,33 35
    N6 3,3 4/16
    S5 0,47 25/35
    VA6 1,0 35
    VE6 1,5 35
    VJ6 2,2 35
    VN6 3,3 35
    VS5 0,47 35
    VW5 0,68 35
    W5 0,68 20/35

    В. Маркировка 4 символами

    Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

    С. Маркировка в две строки

    Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

    Кроме буквенно-цифровой маркировки применяется способ цифровой маркировки тремя или четырьмя цифрами по стандартам IEC (табл. 2.5, 2.6).

    При таком способе маркировки первые две или три цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра — количество нулей. При обозначении емкостей менее 10 пФ последней цифрой может быть «9» (109 = 1 пФ), при обозначении емкостей 1 пФ и менее первой цифрой будет «0» (010 = 1 пФ). В качестве разделительной запятой используется буква R (0 R 5 = 0,5 пФ).

    При маркировке емкостей конденсаторов в микрофарадах применяется цифровая маркировка: 1 — 1 мкФ, 10 — 10 мкФ, 100 — 100 мкФ. В случае необходимости маркировки дробных значений емкости в качестве разделительной запятой ис­пользуется буква R : R 1 — 0,1 мкФ, R 22 — 0,22 мкФ, 3 R 3 — 3,3 мкФ (при обозначении емкости в мкФ перед буквой R цифра 0 не ставится, а она ставится только при обозначении емкостей менее 1 пФ).

    После обозначения емкости может быть нанесен буквенный символ, обозначаю­ щий допустимое отклонение емкости конденсатора в соответствии с табл. 2.4.

    Таблица 2.5. Кодировка номинальной емкости конденсаторов тремя цифрами

    Пикофарады ( пФ ; pF)

    Нанофарады ( нФ ; nF)

    КОД

    Емкость

    Пикофарады ( пф ; pF)

    Нанофарады ( нФ ; nF)

    Микрофарады ( мкФ ; mF)

    Код

    Емкость

    Пикофарады ( пФ ; pF)

    Нанофарады ( нФ ; nF)

    Микрофарады ( мкФ

    ТКЕ (температурный коэффициент емкости) — параметр конденсатора, который характеризует относительное изменение емкости от номинального значения при изменении температуры окружающей среды. Этот параметр принято выражать в миллионных долях емкости конденсатора на градус
    (10/-6 / °С). ТКЕ может быть положительным (обозначается буквой «П» или «Р»), отрицательным
    («М» или « N »), близким к нулю («МП») или ненормированным («Н»).

    Конденсаторы изготавливаются с различными по ТКЕ типами диэлектриков: группы NPO , X 7 R , Z 5 U , Y 5 V и другие. Диэлектрик группы NPO ( COG ) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильно­стью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовлен­ ные с применением этого диэлектрика, наиболее дорогостоящие. Диэлектрик группы X 7 R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность.

    Диэлектрики групп Z 5 U и Y 5 V имеют очень высокую диэлектрическую проница­ емость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющие значительный разброс параметров. SMD конденсаторы с диэлектриками групп X 7 R и Z 5 U используются в цепях общего назначения.

    Радиодетали, приборы, диски, литература почтой.

    Скачать бесплатно схемы,электронные книги (ebook) по радиоэлектронике, схемы для начинающих, радиотехника для начинающих схемы ТВ бесплатно, схемы управления, радиоустройств
    блоков питания, схемы усилителей мощности.
    Справочники радиолюбителя, справочники микросхемы
    справочники электронных компонентов – диоды, тиристоры, транзисторы, конденсаторы, datasheet электронных компонентов.

    Справочники и учебный материал (бесплатно)

    нанофарад [нФ] в микрофарад [мкФ] • Электрическая емкость • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

    Общие сведения

    Измерение емкости конденсатора номинальной емкостью 10 мкФ с помощью осциллографа-мультиметра

    Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:

    C = Q/∆φ

    Здесь Q

    — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).

    В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.

    Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).

    Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.

    В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.

    Концепция производительности

    Если между Фарадом (F), Фарадом (F) между двумя телами есть емкость, это означает, что напряжение, когда заряд переносится на один кулон, изменяется на один вольт

    [Изменение напряжения, В

    ] = [
    Переданный сбор, K
    ] / [
    Производительность, F
    ]

    Напомним, что перенесенный заряд равен текущей мощности, умноженной на время ее потока, мы пишем формулу в более обычной форме:

    [Изменение напряжения, В

    ] = [
    Текущая мощность, А
    ] * [
    Время, с
    ] / [
    Производительность, F
    ]

    Использование емкости

    Конденсаторы — устройства для накопления заряда в электронном оборудовании

    Условные обозначения конденсаторов на принципиальных схемах

    Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор — система двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (обкладок). Конденсатор (от лат. condensare — «уплотнять», «сгущать») — двухэлектродный прибор для накопления заряда и энергии электромагнитного поля, в простейшем случае представляет собой два проводника, разделённые каким-либо изолятором. Например, иногда радиолюбители при отсутствии готовых деталей изготавливают подстроечные конденсаторы для своих схем из отрезков проводов разного диаметра, изолированных лаковым покрытием, при этом более тонкий провод наматывается на более толстый. Регулируя число витков, радиолюбители точно настраивают контура аппаратуры на нужную частоту. Примеры изображения конденсаторов на электрических схемах приведены на рисунке.

    Параллельная RLC-цепь, состоящая из резистора, конденсатора и катушки индуктивности

    Историческая справка

    Еще 275 лет назад были известны принципы создания конденсаторов. Так, в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, а обкладками служили вода в сосуде и ладонь экспериментатора, державшая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как ее изобрели, с ней часто проводили эксперименты и публичные представления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикасался к банке рукой, и получал небольшой удар током. Известно, что 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, с ужасом вскрикнули.

    В Россию «лейденская банка» пришла благодаря русскому царю Петру I, который познакомился с Мушенбруком во время путешествий по Европе, и подробнее узнал об экспериментах с «лейденской банкой». Петр I учредил в России Академию наук, и заказал Мушенбруку разнообразные приборы для Академии наук.

    В дальнейшем конденсаторы усовершенствовались и становились меньше, а их емкость — больше. Конденсаторы широко применяются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который может быть использован для настройки приемника на нужную частоту.

    Существует несколько типов конденсаторов, отличающихся постоянной или переменной емкостью и материалом диэлектрика.

    Примеры конденсаторов

    Оксидные конденсаторы в блоке питания сервера.

    Промышленность выпускает большое количество типов конденсаторов различного назначения, но главными их характеристиками являются ёмкость и рабочее напряжение.

    Типичные значение ёмкости

    конденсаторов изменяются от единиц пикофарад до сотен микрофарад, исключение составляют ионисторы, которые имеют несколько иной характер формирования ёмкости – за счёт двойного слоя у электродов – в этом они подобны электрохимическим аккумуляторам. Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую поверхность электродов. У этих типов конденсаторов типичные значения ёмкости составляют десятки фарад, и в некоторых случаях они способны заменить в качестве источников тока традиционные электрохимические аккумуляторы.

    Вторым по важности параметром конденсаторов является его рабочее напряжение

    . Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято применять конденсаторы с удвоенным значением рабочего напряжения.

    Для увеличения значений ёмкости или рабочего напряжения используют приём объединения конденсаторов в батареи. При последовательном соединении двух однотипных конденсаторов рабочее напряжение удваивается, а суммарная ёмкость уменьшается в два раза. При параллельном соединении двух однотипных конденсаторов рабочее напряжение остаётся прежним, а суммарная ёмкость увеличивается в два раза.

    Третьим по важности параметром конденсаторов является температурный коэффициент изменения ёмкости (ТКЕ)

    . Он даёт представление об изменении ёмкости в условиях изменения температур.

    В зависимости от назначения использования, конденсаторы подразделяются на конденсаторы общего назначения, требования к параметрам которых некритичны, и на конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).

    Маркировка конденсаторов

    Подобно резисторам, в зависимости от габаритов изделия, может применяться полная маркировка с указанием номинальной ёмкости, класса отклонения от номинала и рабочего напряжения. Для малогабаритных исполнений конденсаторов применяют кодовую маркировку из трёх или четырёх цифр, смешанную цифро-буквенную маркировку и цветовую маркировку.

    Соответствующие таблицы пересчёта маркировок по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но самым действенным и практичным методом проверки номинала и исправности элемента реальной схемы остаётся непосредственное измерение параметров выпаянного конденсатора с помощью мультиметра.

    Оксидный конденсатор собран из двух алюминиевых лент и бумажной прокладки с электролитом. Одна из алюминиевых лент покрыта слоем оксида алюминия и служит анодом. Катодом служит вторая алюминиевая лента и бумажная лента с электролитом. На алюминиевых лентах видны следы электрохимического травления, позволяющего увеличить их площадь поверхности, а значит и емкость конденсатора.

    Предупреждение:

    поскольку конденсаторы могут накапливать большой заряд при весьма высоком напряжении, во избежание поражения электрическим током необходимо перед измерением параметров конденсатора разряжать его, закоротив его выводы проводом с высоким сопротивлением внешней изоляции. Лучше всего для этого подходят штатные провода измерительного прибора.

    Оксидные конденсаторы:

    данный тип конденсатора обладает большой удельной емкостью, то есть, емкостью на единицу веса конденсатора. Одна обкладка таких конденсаторов представляет собой обычно алюминиевую ленту, покрытую слоем оксида алюминия. Второй обкладкой служит электролит. Так как оксидные конденсаторы имеют полярность, то принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.

    Твердотельные конденсаторы:

    в них вместо традиционного электролита в качестве обкладки используется органический полимер, проводящий ток, или полупроводник.

    Трехсекционный воздушный конденсатор переменной емкости

    Переменные конденсаторы:

    емкость может меняться механическим способом, электрическим напряжением или с помощью температуры.

    Пленочные конденсаторы:

    диапазон емкости данного типа конденсаторов составляет примерно от 5 пФ до 100 мкФ.

    Имеются и другие типы конденсаторов.

    Ионисторы

    В наши дни популярность набирают ионисторы. Ионистор (суперконденсатор) — это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред — электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых угольных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология дополнялась и улучшалась. На рынок ионисторы вышли в начале восьмидесятых годов прошлого века.

    С появлением ионисторов появилась возможность использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют долгий срок службы, малый вес, высокие скорости зарядки-разрядки. В перспективе данный вид конденсаторов может заменить обычные аккумуляторы. Основными недостатками ионисторов является меньшая, чем у электрохимических аккумуляторов удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.

    Ионисторы применяются в автомобилях Формулы-1. В системах рекуперации энергии, при торможении вырабатывается электроэнергия, которая накапливается в маховике, аккумуляторах или ионисторах для дальнейшего использования.

    Электромобиль А2В Университета Торонто. Общий вид

    В бытовой электронике ионисторы применяются для стабилизации основного питания и в качестве резервного источника питания таких приборов как плееры, фонари, в автоматических коммунальных счетчиках и в других устройствах с батарейным питанием и изменяющейся нагрузкой, обеспечивая питание при повышенной нагрузке.

    В общественном транспорте применение ионисторов особенно перспективно для троллейбусов, так как становится возможна реализация автономного хода и увеличения маневренности; также ионисторы используются в некоторых автобусах и электромобилях.

    Электромобиль А2В Университета Торонто. Под капотом

    Электрические автомобили в настоящем времени выпускают многие компании, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с компанией Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионисторы вместе с химическими источниками питания, так называемое гибридное электрическое хранение энергии. Двигатели данного автомобиля питаются от аккумуляторов весом 380 килограмм. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.

    Емкостные сенсорные экраны

    В современных устройствах все чаще применяются сенсорные экраны, которые позволяют управлять устройствами путем прикосновения к панелям с индикаторами или экранам. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных касаний. Принцип работы емкостных экранов основывается на том, что предмет большой емкости проводит переменный ток. В данном случае этим предметом является тело человека.

    Поверхностно-емкостные экраны

    Cенсорный экран iPhone выполнен по проекционно-емкостной технологии.

    Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно применяется имеющий высокую прозрачность и малое поверхностное сопротивление сплав оксида индия и оксида олова. Электроды, подающие на проводящий слой небольшое переменное напряжение, располагаются по углам экрана. При касании к такому экрану пальцем появляется утечка тока, которая регистрируется в четырех углах датчиками и передается в контроллер, который определяет координаты точки касания.

    Преимущество таких экранов заключается в долговечности (около 6,5 лет нажатий с промежутком в одну секунду или порядка 200 млн. нажатий). Они обладают высокой прозрачностью (примерно 90%). Благодаря этим преимуществам, емкостные экраны уже с 2009 года активно начали вытеснять резистивные экраны.

    Недостаток емкостных экранов заключается в том, что они плохо работают при отрицательных температурах, есть трудности с использованием таких экранов в перчатках. Если проводящее покрытие расположено на внешней поверхности, то экран является достаточно уязвимым, поэтому емкостные экраны применяются лишь в тех устройствах, которые защищены от непогоды.

    Проекционно-емкостные экраны

    Помимо поверхностно-емкостных экранов, существуют проекционно-емкостные экраны. Их отличие заключается в том, что на внутренней стороне экрана нанесена сетка электродов. Электрод, к которому прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке, можно получить точные координаты касания. Проекционно-емкостный экран реагирует на касания в тонких перчатках.

    Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они долговечны и достаточно прочные, поэтому их широко применяют не только в персональной электронике, но и в автоматах, в том числе установленных на улице.

    Автор статьи: Sergey Akishkin, Tatiana Kondratieva

    Переменный и подстроечный конденсатор

    Обозначениепеременного и подстроечного

    конденсатора на схемах

    • Конденсаторы могут обладать не только постоянной емкостью, но и переменной емкостью, которую можно плавно менять в заданных пределах.
    • Конденсаторы с переменной емкостью используют в колебательных контурах радиоприемников и ряде других устройств.
    • Подстроечные конденсаторы применяются для настройки работы электронной схемы, когда в процессе работы устройства их емкость не меняется.
    • Дополнение

    Ещё примеры маркировки конденсаторов:

    • Кодовая маркировка конденсаторов

    Источник: https://myrobot.ru/wiki/index.php?n=Components.RCL

    Объем панели и генератора Van de Graaff

    Конденсаторы обычно представляют собой две пластины, накладывающие слой диэлектрических слоев.

    [Емкость между двумя панелями, Φ

    ] = [
    Диэлектрическая проницаемость вакуума, F / m
    ] * [
    Диэлектрическая диэлектрическая проницаемость между пластинами
    ] * [
    Поверхность панели, м²
    м] / [Расстояние между пластинами, м

    ]

    [Диэлектрическая проницаемость вакуума, F / m

    ] приблизительно равна 8,854E-12, [
    Расстояние между пластинами, м
    ] намного меньше линейных размеров пластин.

    Давайте подумаем о таком интересном случае.

    Предположим, у нас есть две панели с определенной разницей потенциалов. Мы начинаем физически проводить их в космосе. Мы используем энергию, потому что панели притягивают друг друга. Напряжение между пластинами будет увеличиваться, потому что заряд остается неизменным, а емкость уменьшается.

    Этот принцип основан на работе генератора Ван де Граафа. На конвейерной ленте имеются металлические пластины или зернистые материалы, которые могут нести наполнитель.

    как рассчитать с помощью онлайн калькулятора

    Программа для определения емкости конденсатора по цифровой маркировке

    Данная программа позволяет оперативно определить емкость конденсатора по цифровой маркировке. Определение емкости конденсатора выполняется в соответствии со стандартами IEC по таблице 1. Сам принцип определения емкости конденсатора показан на рис.1.

    Рис.1 – Определение емкости конденсатора

    Рассмотрим на примере определение емкости конденсатора по цифровой маркировке с помощью данной программы. Выберем конденсатор с цифровой маркировкой 104, для данного конденсатора в соответствии с таблицей 1 и представленным методом определения емкости (см.рис.1), емкость составит: 104 = 10 х 104 = 100000 pF = 100 nF = 0,1 µF, для цифровой маркировки 330, емкость составит: 330 = 33 pF = 0,033 nF = 0,000033 µF. Как мы видим, программа правильно определяет емкость конденсатора по цифровой маркировке.

    Если же Вам нужно определить емкость конденсатора по цветовой маркировке, воспользуйтесь программой «Конденсатор v1.2».

    Поделиться в социальных сетях

    Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

    Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

    Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

    Хотите быстро рассчитать силу тока, напряжение, мощность или другие электрические величины.

    Данный калькулятор расчета основных измеряемых величин в электротехнике, выполненный в программе Microsoft.

    Содержание 1. Введение2. Функциональность программы:2.1 Расчет токов КЗ в сети 0,4 кВ — трехфазных.

    Представляю Вашему вниманию еще одну программу расчета уставок дифференциальной токовой защиты.

    В данной статье речь пойдет о программе расчета уставок дифференциальной токовой защиты.

    Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных. Политика конфиденциальности.

    Кратные и дольные единицы[ | код]

    Образуются с помощью стандартных приставок СИ.

    КратныеДольные
    величинаназваниеобозначениевеличинаназваниеобозначение
    101 ФдекафараддаФdaF10−1 ФдецифараддФdF
    102 ФгектофарадгФhF10−2 ФсантифарадсФcF
    103 ФкилофарадкФkF10−3 ФмиллифарадмФmF
    106 ФмегафарадМФMF10−6 ФмикрофарадмкФµF
    109 ФгигафарадГФGF10−9 ФнанофараднФnF
    1012 ФтерафарадТФTF10−12 ФпикофарадпФpF
    1015 ФпетафарадПФPF10−15 ФфемтофарадфФfF
    1018 ФэксафарадЭФEF10−18 ФаттофарадаФaF
    1021 ФзеттафарадЗФZF10−21 ФзептофарадзФzF
    1024 ФиоттафарадИФYF10−24 ФиоктофарадиФyF
    применять не применяются или редко применяются на практике
    • Дольную единицу пикофарад
      до 1967 года называли
      микромикрофарада
      (русское обозначение: мкмкф; международное: µµF).
    • На схемах электрических цепей и (часто) в маркировке ранних конденсаторов советского производства целое число (например, «47») означало ёмкость в пикофарадах, а десятичная дробь (например, «10,0» или «0,1») — в микрофарадах; никакие буквенные обозначения единиц измерения ёмкости на схемах не применялись… Позже и до сегодняшних дней: любое число без указания единицы измерения — ёмкость в пикофарадах; с буквой н
      — в нанофарадах; а с буквами
      мк
      — в микрофарадах. Использование других единиц ёмкости на схемах не стандартизовано (как и обозначение номинала на конденсаторах). На малогабаритных конденсаторах используют различного рода сокращения: например, после двух значащих цифр ёмкости в пикофарадах указывают число следующих за ними нулей (таким образом, конденсатор с обозначением «270» имеет номинальную ёмкость 27 пикофарад, а «271» — 270 пикофарад)[
      источник не указан 2610 дней
      ].
    • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u
      («uF» вместо «µF») из-за отсутствия в раскладке клавиатуры греческих букв.

    Калькулятор емкости последовательного соединения конденсаторов

    Калькулятор позволяет рассчитать емкость нескольких конденсаторов, соединенных последовательно.

    Пример.

    Рассчитать эквивалентную емкость двух соединенных последовательно конденсаторов 10 мкФ и 5 мкФ.

    Введите значения емкости в поля C1 и C 2, добавьте при необходимости новые поля, выберите единицы емкости (одинаковые для всех полей ввода) в фарадах (Ф), миллифарадах (мФ), микрофарадах (мкФ), пикофарадах (пФ), нанофарадах (нФ) и нажмите на кнопку Рассчитать

    .

    1 мФ = 0,001 Ф. 1 мкФ = 0,000001 = 10⁻⁶ Ф. 1 нФ = 0,000000001 = 10⁻⁹ Ф. 1 пФ = 0,000000000001 = 10⁻¹² Ф.

    В соответствии со вторым правилом Кирхгофа, падения напряжения V₁

    ,
    V₂
    and
    V₃
    на каждом из конденсаторов в группе из трех соединенных последовательно конденсаторов в общем случае различные и общая разность потенциалов
    V
    равна их сумме:

    Основные параметры

    Основными параметрами конденсаторов являются:

    • номинальная емкость (Сном), которая обычно указывается на корпусе конденсатора,
    • температурный коэффициент емкости (ТКЕ)
    • номинальное напряжение (Uном).

    Номинальное напряжение — это максимальное допустимое постоянное напряжение, при котором конденсатор способен работать длительное время, сохраняя параметры неизменными при всех установленных для него температурах. На конденсаторах, в основном, указано номинальное рабочее напряжение при постоянном токе.

    При работе конденсатора в схемах переменного тока его номинальное напряжение, указанное на корпусе, должно в 1,5…2 раза превышать предельно допустимое действующее переменное напряжение цепи.

    На корпусе конденсатора обычно указывают его тип, напряжение, номинальную емкость, допустимое отклонение емкости, ТКЕ и дату изготовления.

    Примеры расчетов

    Вас могут заинтересовать и другие калькуляторы из группы «Электротехнические и радиотехнические калькуляторы»:

    Электротехнические и радиотехнические калькуляторы

    Электроника

    — область физики и электротехники, изучающая методы конструирования и использования электронной аппаратуры и электронных схем, содержащих активные электронные элементы (диоды, транзисторы и интегральные микросхемы) и пассивные электронные элементы (резисторы, катушки индуктивности и конденсаторы), а также соединения между ними.
    Радиотехника
    — инженерная дисциплина, изучающая проектирование и изготовление устройств, которые передают и принимают радиоволны в радиочастотной области спектра (от 3 кГц до 300 ГГц), также обрабатывают принимаемые и передаваемые сигналы. Примерами таких устройств являются радио- и телевизионные приемники, мобильные телефоны, маршрутизаторы, радиостанции, кредитные карточки, спутниковые приемники, компьютеры и другое оборудование, которое передает и принимает радиосигналы. В этой части Конвертера физических единиц TranslatorsCafe.com представлена группа калькуляторов, выполняющих расчеты в различных областях электротехники, радиотехники и электроники.

    Кратные и дольные единицы

    Образуются с помощью стандартных приставок СИ.

    КратныеДольные
    величинаназваниеобозначениевеличинаназваниеобозначение
    101 ФдекафараддаФdaF10−1 ФдецифараддФdF
    102 ФгектофарадгФhF10−2 ФсантифарадсФcF
    103 ФкилофарадкФkF10−3 ФмиллифарадмФmF
    106 ФмегафарадМФMF10−6 ФмикрофарадмкФµF
    109 ФгигафарадГФGF10−9 ФнанофараднФnF
    1012 ФтерафарадТФTF10−12 ФпикофарадпФpF
    1015 ФпетафарадПФPF10−15 ФфемтофарадфФfF
    1018 ФэксафарадЭФEF10−18 ФаттофарадаФaF
    1021 ФзеттафарадЗФZF10−21 ФзептофарадзФzF
    1024 ФиоттафарадИФYF10−24 ФиоктофарадиФyF
    применять не применяются или редко применяются на практике
    • Дольную единицу пикофарад
      до 1967 года называли
      микромикрофарада
      (русское обозначение: мкмкф; международное: µµF).
    • На схемах электрических цепей и (часто) в маркировке ранних конденсаторов советского производства целое число (например, «47») означало ёмкость в пикофарадах, а десятичная дробь (например, «10,0» или «0,1») — в микрофарадах; никакие буквенные обозначения единиц измерения ёмкости на схемах не применялись… Позже и до сегодняшних дней: любое число без указания единицы измерения — ёмкость в пикофарадах; с буквой н
      — в нанофарадах; а с буквами
      мк
      — в микрофарадах. Использование других единиц ёмкости на схемах не стандартизовано (как и обозначение номинала на конденсаторах). На малогабаритных конденсаторах используют различного рода сокращения: например, после двух значащих цифр ёмкости в пикофарадах указывают число следующих за ними нулей (таким образом, конденсатор с обозначением «270» имеет номинальную ёмкость 27 пикофарад, а «271» — 270 пикофарад)[
      источник не указан 1942 дня
      ].
    • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u
      («uF» вместо «µF») из-за отсутствия в раскладке клавиатуры греческих букв.

    Цифровая маркировка конденсаторов онлайн калькулятор

    • Главная
    • Форум
    • Новости
    • Блог
    • Почта
    • Обратная связь
    • Ссылки
    • Сотрудничество
    • Авторам
    • Вебмастерам
  • Расчёты онлайн
    • Калькулятор номинала SMD резистора
  • Генератор символов для LCD HD44780
  • Расчёт делителя напряжения
  • Определение сопротивлений резисторов по цветовой маркировке
  • Расчёт сопротивления резистора для светодиода
  • Расчёт ширины дорожки печатной платы
  • Цветовая маркировка резисторов, конденсаторов и индуктивностей
  • Расчёт резонансной частоты колебательного контура
  • Калькулятор фьюзов AVR
  • Расчёт DC-DC преобразователя на базе MC34063A
  • Расчёт частоты таймера 555
  • Расчёт линейного стабилизатора
  • Конвертер даты и времени в UNIX формат и обратно
  • Cхемы
  • Цифровые устройства
  • Программаторы
  • Таймеры, часы, счётчики
  • Для ПК
  • Для дома
  • Игрушки
  • Аналоговые устройства
    • Передатчики и приёмники
  • Генераторы
  • Усилители
  • Видео и ТВ
  • Регуляторы
  • Звукотехника
  • Фильтры, эквалайзеры
  • Для музыкантов
  • Акустика
  • Разное
  • Светотехника
  • Освещение
  • Светоэффекты
  • Детектирование
    • Металлоискатели
  • Измерения
  • Измерители L-C-R
  • Вольт/Амперметры
  • Термометры
  • Питание
    • Блоки питания
  • Преобразователи и ИБП
  • Зарядные устройства
  • Альтернативная энергетика
  • Arduino
  • Авто и мото
  • Станки с ЧПУ
  • Статьи
  • Антенны
  • Обучалка
    • Аналоговая техника
  • Цифровая техника
  • Микроконтроллеры
  • Аудиотехника
  • Видеотехника
  • Программные пакеты
  • Измерения
  • Разное
  • Секреты самодельщика
  • Файлы
  • Программы
  • Компиляторы, программаторы
  • Для печатных плат
  • Схемы, панели и шкалы
  • Расчёты
  • Разное
  • Книги
  • Цифровые устройства и МП
  • Математический анализ
  • Основы теории цепей
  • Теория вероятностей
  • РТ цепи и сигналы
  • Метрология
  • Микроконтроллеры
  • Программирование
  • Справочники
  • Схемотехника
  • Устройства СВЧ и антенны
  • РПДУ и УГФС
  • РПУ и УПиОС
  • РТС и СТРТС
  • Телевидение и видеотехника
  • Журналы
  • Радиоаматор
  • Радиолоцман
  • Радиолюбитель
  • Радиоежегодник
  • Радиоконструктор
  • Учебные материалы
    • Математический анализ
  • Теория вероятностей
  • РТ цепи и сигналы
  • Радиоавтоматика
  • Метрология
  • ОКиТПРЭС
  • Гуманитарные науки
  • Электроника
  • Цифровые устройства и МП
  • Электродинамика и РРВ
  • Схемотехника
  • УГиФС и РПДУ
  • Основы теории скрытности
  • Устройства СВЧ и антенны
  • УПиОС и РПУ
  • ЭПУ РЭС
  • Оптические устройства
  • ОКПиМРЭС
  • ССПРЭУС
  • РТС и СТРТС
  • СИТ
  • Телевидение и видеотехника
  • Разное
  • Документация
  • Микросхемы
  • 143
  • 148
  • 153
  • 154
  • 155
  • Разъёмы
    • Типы разъёмов
  • Распиновка разъёмов
  • Datasheets
  • Atmel
  • Microchip
  • NXP Semiconductors
  • Texas Instruments
  • Маркировка компонентов
  • Кратные и дольные единицы

    Образуются с помощью стандартных приставок СИ.

    КратныеДольные
    величинаназваниеобозначениевеличинаназваниеобозначение
    101 ФдекафараддаФdaF10−1 ФдецифараддФdF
    102 ФгектофарадгФhF10−2 ФсантифарадсФcF
    103 ФкилофарадкФkF10−3 ФмиллифарадмФmF
    106 ФмегафарадМФMF10−6 ФмикрофарадмкФµF
    109 ФгигафарадГФGF10−9 ФнанофараднФnF
    1012 ФтерафарадТФTF10−12 ФпикофарадпФpF
    1015 ФпетафарадПФPF10−15 ФфемтофарадфФfF
    1018 ФэксафарадЭФEF10−18 ФаттофарадаФaF
    1021 ФзеттафарадЗФZF10−21 ФзептофарадзФzF
    1024 ФиоттафарадИФYF10−24 ФиоктофарадиФyF
    применять не применяются или редко применяются на практике
    • Дольную единицу пикофарад
      до 1967 года называли
      микромикрофарада
      (русское обозначение: мкмкф; международное: µµF).
    • На схемах электрических цепей и (часто) в маркировке ранних конденсаторов советского производства целое число (например, «47») означало ёмкость в пикофарадах, а десятичная дробь (например, «10,0» или «0,1») — в микрофарадах; никакие буквенные обозначения единиц измерения ёмкости на схемах не применялись… Позже и до сегодняшних дней: любое число без указания единицы измерения — ёмкость в пикофарадах; с буквой н
      — в нанофарадах; а с буквами
      мк
      — в микрофарадах. Использование других единиц ёмкости на схемах не стандартизовано (как и обозначение номинала на конденсаторах). На малогабаритных конденсаторах используют различного рода сокращения: например, после двух значащих цифр ёмкости в пикофарадах указывают число следующих за ними нулей (таким образом, конденсатор с обозначением «270» имеет номинальную ёмкость 27 пикофарад, а «271» — 270 пикофарад)[
      источник не указан 1942 дня
      ].
    • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u
      («uF» вместо «µF») из-за отсутствия в раскладке клавиатуры греческих букв.

    Кодовая или цифровая маркировка конденсаторов

    Кодировка конденсаторов тремя цифрами

    Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ.

    * Иногда последний ноль не указывают.

    Кодировка конденсаторов с помощью четырёх цифр

    Маркировка ёмкости в микрофарадах

    Вместо десятичной точки может ставиться буква R.

    Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения

    В отличие от первых трех параметров, которые маркируются в соответствии со стандар- тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

    Маркировка СМД (SMD) конденсаторов.

    Размеры СМД конденсаторов невелики, поэтому маркировка их производится весьма лаконично. Рабочее напряжение нередко кодируется буквой(2-й и 3-й варианты на рисунке ниже) в соответствии с данными предоставленными в предидущем разделе. Номинальная емкость может кодироваться либо с помощью трехзначного цифрового кода(вариант 2 на рисунке), либо с использованием двухзначного буквенно-цифровой кода(вариант 1 на рисунке). При использовании последнего, на корпусе можно обнаружить таки две(а не одну букву) с одной цифрой(вариант 3 на рисунке).

    Первая буква может является как кодом изготовителя(что не всегда интересно), так и указываеть на номинальное рабочее напряжение(более полезная информация), вторая — закодированным значением в пикоФарадах(мантиссой). Цифра — показатель степени(указывает сколько нулей необходимо добавить к мантиссе). Например EA3 может означать, что номинальное напряжение конденсатора 16в(E) а емкость — 1,0 *1000 = 1 нанофарада, BF5 соответсвенно, напряжение 6,3в(В), емкость — 1,6* 100000 = 0,1 микрофарад и.т.д.

    БукваМантисса.
    A1,0
    B1,1
    C1,2
    D1,3
    E1,5
    F1,6
    G1,8
    H2,0
    J2,2
    K2,4
    L2,7
    M3,0
    N3,3
    P3,6
    Q3,9
    R4,3
    S4,7
    T5,1
    U5,6
    V6,2
    W6,8
    X7,5
    Y8,2
    Z9,1
    a2,5
    b3,5
    d4,0
    e4,5
    f5,0
    m6,0
    n7,0
    t8,0

    Таблица значений конденсаторов, маркировка

    Ёмкость конденсаторов может обозначаться в микрофарадах (uF), нанофарадах (nF), пикофарадах (pF), либо кодом. Данная таблица поможет вам разобраться в одинаковых значениях при различных обозначениях и подобрать аналоги для замены.

    Таблица обозначений конденсаторов

    uF (мкФ)nF (нФ)pF (пФ)Code (Код)
    * более подробную информацию для конкретных серий конденсаторов (DataShet-ы, описание, параметры, технические характеристики, и тд.) вы сможете найти на сайтах поисковых систем Яндекс или Google.
    1uF1000nF1000000pF105
    0.82uF820nF820000pF824
    0.8uF800nF800000pF804
    0.7uF700nF700000pF704
    0.68uF680nF680000pF684
    0.6uF600nF600000pF604
    0.56uF560nF560000pF564
    0.5uF500nF500000pF504
    0.47uF470nF470000pF474
    0.4uF400nF400000pF404
    0.39uF390nF390000pF394
    0.33uF330nF330000pF334
    0.3uF300nF300000pF304
    0.27uF270nF270000pF274
    0.25uF250nF250000pF254
    0.22uF220nF220000pF224
    0.2uF200nF200000pF204
    0.18uF180nF180000pF184
    0.15uF150nF150000pF154
    0.12uF120nF120000pF124
    0.1uF100nF100000pF104
    0.082uF82nF82000pF823
    0.08uF80nF80000pF803
    0.07uF70nF70000pF703
    0.068uF68nF68000pF683
    0.06uF60nF60000pF603
    0.056uF56nF56000pF563
    0.05uF50nF50000pF503
    0.047uF47nF47000pF473
    0.04uF40nF40000pF403
    0.039uF39nF39000pF393
    0.033uF33nF33000pF333
    0.03uF30nF30000pF303
    0.027uF27nF27000pF273
    0.025uF25nF25000pF253
    0.022uF22nF22000pF223
    0.02uF20nF20000pF203
    0.018uF18nF18000pF183
    0.015uF15nF15000pF153
    0.012uF12nF12000pF123
    0.01uF10nF10000pF103
    0.0082uF8.2nF8200pF822
    0.008uF8nF8000pF802
    0.007uF7nF7000pF702
    0.0068uF6.8nF6800pF682
    0.006uF6nF6000pF602
    0.0056uF5.6nF5600pF562
    0.005uF5nF5000pF502
    0.0047uF4.7nF4700pF472
    0.004uF4nF4000pF402
    0.0039uF3.9nF3900pF392
    0.0033uF3.3nF3300pF332
    0.003uF3nF3000pF302
    0.0027uF2.7nF2700pF272
    0.0025uF2.5nF2500pF252
    0.0022uF2.2nF2200pF222
    0.002uF2nF2000pF202
    0.0018uF1.8nF1800pF182
    0.0015uF1.5nF1500pF152
    0.0012uF1.2nF1200pF122
    0.001uF1nF1000pF102
    0.00082uF0.82nF820pF821
    0.0008uF0.8nF800pF801
    0.0007uF0.7nF700pF701
    0.00068uF0.68nF680pF681
    0.0006uF0.6nF600pF621
    0.00056uF0.56nF560pF561
    0.0005uF0.5nF500pF52
    0.00047uF0.47nF470pF471
    0.0004uF0.4nF400pF401
    0.00039uF0.39nF390pF391
    0.00033uF0.33nF330pF331
    0.0003uF0.3nF300pF301
    0.00027uF0.27nF270pF271
    0.00025uF0.25nF250pF251
    0.00022uF0.22nF220pF221
    0.0002uF0.2nF200pF201
    0.00018uF0.18nF180pF181
    0.00015uF0.15nF150pF151
    0.00012uF0.12nF120pF121
    0.0001uF0.1nF100pF101
    0.000082uF0.082nF82pF820
    0.00008uF0.08nF80pF800
    0.00007uF0.07nF70pF700
    0.000068uF0.068nF68pF680
    0.00006uF0.06nF60pF600
    0.000056uF0.056nF56pF560
    0.00005uF0.05nF50pF500
    0.000047uF0.047nF47pF470
    0.00004uF0.04nF40pF400
    0.000039uF0.039nF39pF390
    0.000033uF0.033nF33pF330
    0.00003uF0.03nF30pF300
    0.000027uF0.027nF27pF270
    0.000025uF0.025nF25pF250
    0.000022uF0.022nF22pF220
    0.00002uF0.02nF20pF200
    0.000018uF0.018nF18pF180
    0.000015uF0.015nF15pF150
    0.000012uF0.012nF12pF120
    0.00001uF0.01nF10pF100
    0.000008uF0.008nF8pF080
    0.000007uF0.007nF7pF070
    0.000006uF0.006nF6pF060
    0.000005uF0.005nF5pF050
    0.000004uF0.004nF4pF040
    0.000003uF0.003nF3pF030
    0.000002uF0.002nF2pF020
    0.000001uF0.001nF1pF010

    Магазин Dalincom предлагает большой ассортимент конденсаторов — керамические, электролитические, металлопленочные, пусковые, и др, которые вы можете купить в разделе Конденсаторы. Так-же обратите внимание на наше предложение по оптовым поставкам электролитических конденсаторов.

    Кратные и дольные единицы

    Образуются с помощью стандартных приставок СИ.

    КратныеДольные
    величинаназваниеобозначениевеличинаназваниеобозначение
    101 ФдекафараддаФdaF10−1 ФдецифараддФdF
    102 ФгектофарадгФhF10−2 ФсантифарадсФcF
    103 ФкилофарадкФkF10−3 ФмиллифарадмФmF
    106 ФмегафарадМФMF10−6 ФмикрофарадмкФµF
    109 ФгигафарадГФGF10−9 ФнанофараднФnF
    1012 ФтерафарадТФTF10−12 ФпикофарадпФpF
    1015 ФпетафарадПФPF10−15 ФфемтофарадфФfF
    1018 ФэксафарадЭФEF10−18 ФаттофарадаФaF
    1021 ФзеттафарадЗФZF10−21 ФзептофарадзФzF
    1024 ФиоттафарадИФYF10−24 ФиоктофарадиФyF
    применять не применяются или редко применяются на практике
    • Дольную единицу пикофарад
      до 1967 года называли
      микромикрофарада
      (русское обозначение: мкмкф; международное: µµF).
    • На схемах электрических цепей и (часто) в маркировке ранних конденсаторов советского производства целое число (например, «47») означало ёмкость в пикофарадах, а десятичная дробь (например, «10,0» или «0,1») — в микрофарадах; никакие буквенные обозначения единиц измерения ёмкости на схемах не применялись… Позже и до сегодняшних дней: любое число без указания единицы измерения — ёмкость в пикофарадах; с буквой н
      — в нанофарадах; а с буквами
      мк
      — в микрофарадах. Использование других единиц ёмкости на схемах не стандартизовано (как и обозначение номинала на конденсаторах). На малогабаритных конденсаторах используют различного рода сокращения: например, после двух значащих цифр ёмкости в пикофарадах указывают число следующих за ними нулей (таким образом, конденсатор с обозначением «270» имеет номинальную ёмкость 27 пикофарад, а «271» — 270 пикофарад)[
      источник не указан 2610 дней
      ].
    • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u
      («uF» вместо «µF») из-за отсутствия в раскладке клавиатуры греческих букв.

    Кратные и дольные единицы

    Образуются с помощью стандартных приставок СИ.

    КратныеДольные
    величинаназваниеобозначениевеличинаназваниеобозначение
    101 ФдекафараддаФdaF10−1 ФдецифараддФdF
    102 ФгектофарадгФhF10−2 ФсантифарадсФcF
    103 ФкилофарадкФkF10−3 ФмиллифарадмФmF
    106 ФмегафарадМФMF10−6 ФмикрофарадмкФµF
    109 ФгигафарадГФGF10−9 ФнанофараднФnF
    1012 ФтерафарадТФTF10−12 ФпикофарадпФpF
    1015 ФпетафарадПФPF10−15 ФфемтофарадфФfF
    1018 ФэксафарадЭФEF10−18 ФаттофарадаФaF
    1021 ФзеттафарадЗФZF10−21 ФзептофарадзФzF
    1024 ФиоттафарадИФYF10−24 ФиоктофарадиФyF
    применять не применяются или редко применяются на практике
    • Дольную единицу пикофарад
      до 1967 года называли
      микромикрофарада
      (русское обозначение: мкмкф; международное: µµF).
    • На схемах электрических цепей и (часто) в маркировке ранних конденсаторов советского производства целое число (например, «47») означало ёмкость в пикофарадах, а десятичная дробь (например, «10,0» или «0,1») — в микрофарадах; никакие буквенные обозначения единиц измерения ёмкости на схемах не применялись… Позже и до сегодняшних дней: любое число без указания единицы измерения — ёмкость в пикофарадах; с буквой н
      — в нанофарадах; а с буквами
      мк
      — в микрофарадах. Использование других единиц ёмкости на схемах не стандартизовано (как и обозначение номинала на конденсаторах). На малогабаритных конденсаторах используют различного рода сокращения: например, после двух значащих цифр ёмкости в пикофарадах указывают число следующих за ними нулей (таким образом, конденсатор с обозначением «270» имеет номинальную ёмкость 27 пикофарад, а «271» — 270 пикофарад)[
      источник не указан 1942 дня
      ].
    • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u
      («uF» вместо «µF») из-за отсутствия в раскладке клавиатуры греческих букв.

    Перевести нанофарады [нФ] в микрофарады [мкФ, мкФ] • Конвертер емкости • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

    Конвертер длины и расстояния Конвертер массы Конвертер сухого объема и общих измерений при приготовлении пищи Конвертер объема и общих измерений при приготовлении пищи Конвертер температуры Конвертер давления, напряжения, модуля Юнга Конвертер энергии и работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер углаКонвертер топливной экономичности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиКонвертер мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер удельного ускорения преобразователя инерции Преобразователь момента силы Преобразователь крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания Конвертер температурного интервалаКонвертер температурного интервалаКонвертер теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициентов теплопередачиКонвертер объёмного расходаПреобразователь массового расходаМолярный расход раствора Конвертер массового потока Конвертер массового потока ) Конвертер вязкостиПреобразователь кинематической вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяного параКонвертер уровня звукаКонвертер чувствительности микрофонаПреобразователь уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемПреобразователь яркостиКонвертер световой интенсивности и световой потокПреобразователь разрешения цифрового изображения Конвертер фокусного расстояния: оптическая сила (диоп. ter) в увеличение (X) преобразовательПреобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь поверхностной плотности зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивленияПреобразователь электрической проводимости уровней в дБм, дБВ, ваттах и ​​других единицах измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляПреобразователь магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой обработки , используя осциллограф мультиметра.

    Емкость — это физическая величина, которая представляет способность проводника накапливать заряд.Он находится путем деления величины электрического заряда на разность потенциалов между проводниками:

    C = Q / ∆φ

    Здесь Q — электрический заряд, который измеряется в кулонах (Кл), а ∆φ — разность потенциалов, измеряемая в вольтах (В).

    Емкость измеряется в фарадах (Ф) в СИ. Этот блок назван в честь британского физика Майкла Фарадея.

    Один фарад представляет собой чрезвычайно большую емкость для изолированного проводника.Например, изолированный металлический шар с радиусом в 13 раз большим, чем у Солнца, будет иметь емкость в одну фарад, а емкость металлического шара с радиусом Земли будет около 710 микрофарад (мкФ).

    Поскольку один фарад — это такая большая величина, используются меньшие единицы, такие как микрофарад (мкФ), что равно одной миллионной фарада, нанофарад (нФ), равный одной миллиардной фарада, и пикофарад (пФ). , что составляет одну триллионную фарада.

    В расширенной CGS для электромагнитных устройств основная единица емкости описывается в сантиметрах (см).Один сантиметр электромагнитной емкости представляет собой емкость шара в вакууме с радиусом 1 см. Система CGS расшифровывается как система сантиметр-грамм-секунда — она ​​использует сантиметры, граммы и секунды в качестве основных единиц длины, массы и времени. Расширения CGS также устанавливают одну или несколько констант на 1, что позволяет упростить определенные формулы и вычисления.

    Использование емкости

    Конденсаторы — электронные компоненты для накопления электрических зарядов

    Электронные символы

    Емкость — это величина, имеющая значение не только для электрических проводников, но и для конденсаторов (первоначально называемых конденсаторами).Конденсаторы состоят из двух проводников, разделенных диэлектриком или вакуумом. Самый простой вариант конденсатора имеет две пластины, которые действуют как электроды. Конденсатор (от латинского condender — конденсировать) — это двухслойный электронный компонент, используемый для хранения электрического заряда и энергии электромагнитного поля. Самый простой конденсатор состоит из двух электрических проводников, между которыми находится диэлектрик. Энтузиасты радиоэлектроники, как известно, делают подстроечные конденсаторы для своих схем с эмалированными проводами разного диаметра.Более тонкая проволока наматывается на более толстую. Схема RLC настраивается на желаемую частоту путем изменения количества витков провода. На изображении есть несколько примеров того, как конденсатор может быть представлен на принципиальной схеме.

    Параллельная RLC-цепь: резистор, катушка индуктивности и конденсатор

    Немного истории

    Ученые смогли изготавливать конденсаторы еще 275 лет назад. В 1745 году в Лейдене немецкий физик Эвальд Георг фон Клейст и физик из Нидерландов Питер ван Мушенбрук создали первое конденсаторное устройство, получившее название «лейденская банка».Стенки сосуда служили диэлектриком, а вода в кувшине и рука экспериментатора — проводящими пластинами. В такой банке может накапливаться заряд около одного микрокулона (мкКл). В то время были популярны эксперименты и демонстрации с лейденскими кувшинами. В них банку заряжали статическим электричеством за счет трения. Затем участник эксперимента касался банки и подвергался поражению электрическим током. Однажды 700 монахов в Париже провели Лейденский эксперимент. Они взялись за руки, и один из них прикоснулся к банке.В этот момент все 700 человек воскликнули от ужаса, почувствовав толчок.

    «Лейденская банка» попала в Россию благодаря русскому царю Петру Великому. Он встретился с Питером ван Мушенбруком во время своего путешествия по Европе и познакомился с его творчеством. Когда Петр Великий учредил Российскую академию наук, он поручил Мушенбруку изготовить для Академии различное оборудование.

    Со временем конденсаторы были усовершенствованы, и их размер уменьшался по мере увеличения емкости.Сегодня конденсаторы широко используются в электронике. Например, конденсатор и катушка индуктивности образуют цепь резистора, катушки индуктивности и конденсатора, также известную как цепь RLC, LCR или CRL. Эта схема используется для установки частоты приема на радио.

    Существует несколько типов конденсаторов, различающихся постоянной или переменной емкостью, а также типом используемого диэлектрического материала.

    Примеры конденсаторов

    Конденсаторы электролитические в блоке питания.

    Сегодня существует множество различных типов конденсаторов для различных целей, но их основная классификация основана на их емкости и номинальном напряжении.

    Обычно емкость конденсаторов находится в диапазоне от нескольких пикофарад до нескольких сотен микрофарад. Исключением являются суперконденсаторы, потому что их емкость формируется иначе, чем у других конденсаторов — это, по сути, двухслойная емкость. Это похоже на принцип действия электрохимических ячеек.Суперконденсаторы, построенные из углеродных нанотрубок, имеют повышенную емкость из-за большей поверхности электродов. Емкость суперконденсаторов составляет десятки фарад, и иногда они могут заменить электрохимические ячейки в качестве источника электрического тока.

    Вторым по важности свойством конденсатора является его номинальное напряжение . Превышение этого значения может сделать конденсатор непригодным для использования. Вот почему при построении схем обычно используются конденсаторы со значением номинального напряжения, которое вдвое превышает напряжение, приложенное к ним в цепи.Таким образом, даже если напряжение в цепи немного превышает норму, с конденсатором все будет в порядке, пока увеличение не станет вдвое больше нормы.

    Конденсаторы могут быть объединены в батареи для увеличения общего номинального напряжения или емкости системы. При последовательном соединении двух конденсаторов одного типа номинальное напряжение увеличивается вдвое, а общая емкость уменьшается вдвое. При параллельном подключении конденсаторов общая емкость удваивается, а номинальное напряжение остается прежним.

    Третьим по важности свойством конденсаторов является их температурный коэффициент емкости . Он отражает взаимосвязь между емкостью и температурой.

    В зависимости от назначения конденсаторы подразделяются на конденсаторы общего назначения, которые не должны соответствовать требованиям высокого уровня, и специальные конденсаторы. К последней группе относятся высоковольтные конденсаторы, прецизионные конденсаторы и конденсаторы с различным температурным коэффициентом емкости.

    Маркировка конденсаторов

    Как и резисторы, конденсаторы маркируются в соответствии с их емкостью и другими свойствами. Маркировка может включать информацию о номинальной емкости, степени отклонения от номинального значения и номинальном напряжении. Малогабаритные конденсаторы маркируются трех- или четырехзначным или буквенно-цифровым кодом, а также могут иметь цветовую маркировку.

    Таблицы с кодами и соответствующими им значениями номинального напряжения, номинальной емкости и температурного коэффициента емкости доступны в Интернете, но самый надежный способ проверить емкость и выяснить, правильно ли работает конденсатор, — это удалить конденсатор из цепи. и производить измерения с помощью мультиметра.

    Электролитический конденсатор в разобранном виде. Он изготовлен из двух алюминиевых фольг. Один из них покрыт изолирующим оксидным слоем и действует как анод. Бумага, пропитанная электролитом, вместе с другой фольгой действует как катод. Алюминиевая фольга протравливается для увеличения площади поверхности.

    Предупреждение: конденсаторы могут хранить очень большой заряд при очень высоком напряжении. Во избежание поражения электрическим током перед выполнением измерений необходимо принять меры предосторожности.В частности, важно разряжать конденсаторы, закорачивая их выводы с помощью провода, изолированного из высокопрочного материала. В этой ситуации хорошо подойдут обычные провода измерительного прибора.

    Электролитические конденсаторы: эти конденсаторы имеют большой объемный КПД. Это означает, что они имеют большую емкость для данной единицы веса конденсатора. Одна из пластин такого конденсатора обычно представляет собой алюминиевую ленту, покрытую тонким слоем оксида алюминия.Электролитическая жидкость действует как вторая пластина. Эта жидкость имеет электрическую полярность, поэтому крайне важно обеспечить правильное добавление такого конденсатора в схему в соответствии с его полярностью.

    Полимерные конденсаторы: В конденсаторах этих типов в качестве второй пластины используется полупроводник или органический полимер, проводящий электричество, а не электролитическая жидкость. Их анод обычно изготавливается из металла, такого как алюминий или тантал.

    3-секционный воздушный конденсатор переменной емкости

    Переменные конденсаторы: емкость этих конденсаторов можно изменять механически, регулируя электрическое напряжение или изменяя температуру.

    Пленочные конденсаторы: их емкость может составлять от 5 пФ до 100 мкФ.

    Есть и другие типы конденсаторов.

    Суперконденсаторы

    Суперконденсаторы в наши дни становятся популярными. Суперконденсатор — это гибрид конденсатора и химического источника питания. Заряд сохраняется на границе, где встречаются две среды, электрод и электролит. Первый электрический компонент, который был предшественником суперконденсатора, был запатентован в 1957 году.Это был конденсатор с двойным электрическим слоем и пористым материалом, который помог увеличить емкость из-за увеличенной площади поверхности. Этот подход известен теперь как двухслойная емкость. Электроды пористые, угольные. С тех пор конструкция постоянно улучшалась, и первые суперконденсаторы появились на рынке в начале 1980-х годов.

    Суперконденсаторы используются в электрических цепях как источник электрической энергии. У них много преимуществ перед традиционными батареями, включая их долговечность, малый вес и быструю зарядку.Вполне вероятно, что благодаря этим преимуществам суперконденсаторы в будущем заменят батареи. Основным недостатком использования суперконденсаторов является то, что они производят меньшее количество удельной энергии (энергии на единицу веса), а также имеют низкое номинальное напряжение и большой саморазряд.

    В гонках Формулы 1 суперконденсаторы используются в системах рекуперации энергии. Энергия вырабатывается, когда автомобиль замедляется. Он хранится в маховике, батарее или суперконденсаторах для дальнейшего использования.

    Электромобиль A2B производства Университета Торонто. Общий вид

    В бытовой электронике суперконденсаторы используются для обеспечения стабильного электрического тока или в качестве резервного источника питания. Они часто обеспечивают питание во время пиков потребления энергии в устройствах, которые используют питание от батареи и имеют переменную потребность в электроэнергии, например MP3-плееры, фонарики, автоматические счетчики электроэнергии и другие устройства.

    Суперконденсаторы также используются в общественном транспорте, особенно в троллейбусах, поскольку они обеспечивают более высокую маневренность и автономное движение при проблемах с внешним источником питания.Суперконденсаторы также используются в некоторых автобусах и электромобилях.

    Электромобиль A2B производства Университета Торонто. Под капотом

    В наши дни многие компании производят электромобили, в том числе General Motors, Nissan, Tesla Motors и Toronto Electric. Исследовательская группа Университета Торонто совместно с компанией Toronto Electric, занимающейся дистрибьюцией электродвигателей, разработала канадскую модель электромобиля A2B. В нем используются как химические источники энергии, так и суперконденсаторы — такой способ хранения энергии называется гибридным накопителем электроэнергии.Двигатели этого электромобиля питаются от аккумуляторов массой 380 кг. Солнечные батареи также используются за дополнительную плату — они устанавливаются на крыше автомобиля.

    Емкостные сенсорные экраны

    В современных устройствах все чаще используются сенсорные экраны, которые управляют устройствами с помощью сенсорных панелей или экранов. Существуют различные типы сенсорных экранов, включая емкостные и резистивные, а также многие другие. Некоторые могут реагировать только на одно прикосновение, а другие реагируют на несколько прикосновений.Принцип работы емкостных экранов основан на том, что большое тело проводит электричество. Это большое тело в нашем случае и есть человеческое тело.

    Поверхностные емкостные сенсорные экраны

    Сенсорный экран для iPhone выполнен по технологии проецируемой емкости.

    Поверхностный емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. Как правило, этот материал отличается высокой прозрачностью и низким поверхностным сопротивлением. Часто используется сплав оксида индия и оксида олова.Электроды в углах экрана подают на резистивный материал низкое колеблющееся напряжение. Когда палец касается этого экрана, возникает небольшая утечка электрического заряда. Эта утечка обнаруживается датчиками в четырех углах, и информация отправляется контроллеру, который определяет координаты касания.

    Преимущество этих экранов в их долговечности. Они могут выдерживать прикосновения с частотой до одного раза в секунду в течение до 6,5 лет. Это составляет около 200 миллионов касаний.Эти экраны имеют высокий коэффициент прозрачности, до 90%. Благодаря своим преимуществам, емкостные сенсорные экраны заменяют резистивные сенсорные экраны на рынке с 2009 года.

    Недостатки емкостных экранов заключаются в том, что они плохо работают при минусовых температурах и их трудно использовать в перчатках, потому что перчатки действовать как изолятор. Сенсорный экран чувствителен к воздействию элементов, поэтому, если он расположен на внешней панели устройства, он используется только в устройствах, защищающих экран от воздействия.

    Проекционные емкостные сенсорные экраны

    Помимо поверхностных емкостных экранов, существуют также проекционные емкостные сенсорные экраны. Они отличаются тем, что на внутренней стороне экрана находится сетка электродов. Когда пользователь касается электрода, тело и электрод работают вместе как конденсатор. Благодаря сетке электродов легко получить координаты той области экрана, к которой прикоснулись. Этот тип экрана реагирует на прикосновения даже в тонких перчатках.

    Проекционные емкостные сенсорные экраны также обладают высокой прозрачностью до 90%. Они прочные и долговечные, что делает их популярными не только в личных электронных устройствах, но и в устройствах, предназначенных для общественного использования, таких как торговые автоматы, электронные платежные системы и другие.

    Эту статью написали Сергей Акишкин, Татьяна Кондратьева

    У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

    Микрофарад в нанофарады

    Разместите свои комментарии?

    Преобразование микрофарад в нанофарад Преобразование

    7 часов назад 6 микрофарад в нанофарад = 6000 нанофарад . 7 мкФ от до нанофарад = 7000 нанофарад . 8 мкФ от до нанофарад = 8000 нанофарад . 9 мкФ от до нанофарад = 9000 нанофарад .10 мкФ от до нанофарад = 10000 нанофарад . ››. Хотите другие юниты? Вы можете выполнить обратное преобразование единиц из нанофарад в мкФ или ввести любые две единицы ниже:

    Веб-сайт: Convertunits.com