Мощный бп на lm317: Мощный блок питания на микросхеме LM317 и транзисторе КТ818 (2-30V)

Содержание

lm317 где можно выпаять — ComputerMaker.info

Автор admin На чтение 6 мин.

На микросборке LM317T схема блока питания (БП) упрощается во много раз. Во-первых, есть возможность сделать регулировку. Во-вторых, стабилизация питания производится. Причем по отзывам многих радиолюбителей, эта микросборка в разы превосходит отечественные аналоги. В частности, ее ресурс очень большой, не идет ни в какое сравнение ни с каким другим элементом.

Основа блока питания – трансформатор

Необходимо использование в качестве преобразователя напряжения понижающий трансформатор. Его можно взять от практически любой бытовой техники – магнитофонов, телевизоров и пр. Также можно использовать трансформаторы марки ТВК-110, которые устанавливались в блоке кадровой развертки черно-белых телевизоров. Правда, у них выходное напряжение всего 9 В, а ток довольно маленький. И если необходимо запитывать мощного потребителя, его явно не хватит.

Но если требуется сделать мощный БП, то разумнее использовать силовые трансформаторы. Их мощность должна составлять хотя бы 40 Вт. Чтобы на микросборке LM317T блок питания для ЦАП сделать, вам потребуется выходное напряжение 3,5-5 В. Именно такое значение нужно поддерживать в цепи питания микроконтроллера. Не исключено, что потребуется вторичную обмотку слегка изменить. Первичная при этом не перематывается, только проводится ее изоляция (по необходимости).

Выпрямительный каскад

Выпрямительный блок – это сборка из полупроводниковых диодов. Ничего в ней сложного нет, только следует определиться с тем, какой тип выпрямления нужно использовать. Схема выпрямителя может быть:

  • однополупериодная;
  • двухполупериодная;
  • мостовая;
  • с удвоением, утроением, напряжения.

Последнюю разумно применять, если, например, на выходе трансформатора у вас 24 В, а нужно получить 48 или 72. При этом неминуемо уменьшается выходной ток, это следует учитывать. Для простого блока питания больше всего подходит мостовая схема выпрямителя. Используемая микросборка LM317T блок питания мощный не позволит сделать. Причина тому – мощность самой микросхемы составляет всего 2 Вт. Мостовая схема же позволяет избавиться от пульсаций, да и КПД у нее на порядок выше (если сравнивать с однополупериодной схемой). Допускается в выпрямительном каскаде использовать как диодные сборки, так и отдельные элементы.

Корпус для блока питания

В качестве материала для корпуса разумнее использовать пластик. Он удобен в обработке, поддается деформации при прогреве. Другими словами, можно без труда придать заготовкам любую форму. А для высверливания отверстий не потребуется много времени. Но можно немного потрудиться и сделать красивый, надежный корпус из листового алюминия. Конечно, с ним мороки будет побольше, зато внешний вид окажется потрясающим. После изготовления корпуса из листового алюминия, его можно тщательно зачистить, прогрунтовать и нанести по несколько слоев краски и лака.

К тому же вы сразу убьете двух зайцев – получите красивый корпус и обеспечите дополнительное охлаждение микросборке. На LM317T блок питания построен по такому принципу, что стабилизация осуществляется с выделением большого количества тепла. Например, у вас на выходе выпрямителя 12 Вольт, а стабилизация должна выдать 5 В. Вот эта разница, 7 Вольт, уходит на нагрев корпуса микросборки. Следовательно, она нуждается в качественном охлаждении. И алюминиевый корпус будет способствовать этому. Впрочем, можно поступить и более продвинуто – смонтировать на радиаторе термовыключатель, который будет управлять кулером.

Схема стабилизации напряжения

Итак, у вас есть микросборка LM317T, схема блока питания на ней перед глазами, теперь нужно определить назначение ее выводов. Их у нее всего три – вход (2), выход (3) и масса (1). Поверните корпус лицевой стороной к себе, нумерация производится слева направо. Вот и все, теперь осталось осуществить стабилизацию напряжения. А сделать это несложно, если выпрямительный блок и трансформатор уже готовы. Как вы понимаете, минус с выпрямителя подается на первый вывод сборки. С плюса выпрямителя происходит подача напряжения на второй вывод. С третьего снимается стабилизированное напряжение. Причем по входу и выходу необходимо установить электролитические конденсаторы с емкостью 100 мкФ и 1000 мкФ соответственно. Вот и все, только лишь на выходе желательно поставить постоянное сопротивление (порядка 2 кОм), которое позволит электролитам быстрее разряжаться после выключения.

Схема блока питания с возможностью регулировки напряжения

Сделать регулируемый блок питания на LM317T оказывается проще простого, для этого не потребуется особых знаний и умений. Итак, у вас есть уже блок питания со стабилизатором. Теперь можно его слегка модернизировать, чтобы на выходе изменять напряжение, в зависимости от того, какое вам требуется. Для этого достаточно отключить первый вывод микросборки от минуса питания. По выходу включаете последовательно два сопротивления – постоянное (номинал 240 Ом) и переменное (5 кОм). В месте их соединения подключается первый вывод микросборки. Такие несложные манипуляции позволяют сделать регулируемый блок питания. Причем максимальное напряжение, подаваемое на вход LM317T, может составлять 25 Вольт.

Дополнительные возможности

С применением микросборки LM317T схема блока питания становится более функциональной. Конечно, в процессе эксплуатации блока питания, вам потребуется проводить контроль основных параметров. Например, потребляемого тока либо выходного напряжения (особенно это актуально для схемы с регулировкой). Поэтому на лицевой панели нужно смонтировать индикаторы. Кроме того, вам нужно знать, включен ли в сеть блок питания. Обязанность оповещать вас о включении в электросеть лучше возложить на светодиод. Данная конструкция вполне надежная, только питание для него нужно брать с выхода выпрямителя, а не микросборки.

Для контроля тока и напряжения можно использовать стрелочные индикаторы с градуированной шкалой. Но в случае, если хочется сделать блок питания, который не будет уступать лабораторным, можно воспользоваться и ЖК-дисплеями. Правда, для измерения тока и напряжения на LM317T схема блока питания усложняется, так как необходимо использование микроконтроллера и специального драйвера – буферного элемента. Он позволяет подключать к портам ввода-вывода контроллера ЖК-дисплей.

Тогда следующий вопрос. где и в каких приборах можно найти — LM317T. в телевиорах старых или радиоприёмниках может быть? или только а бп?

Похожие статьи

или чем можно ЛМ317 заменить?

проще — купить )
а вообще видел в акуммуляторных зарядках стоят

нечего им делать в телевизорах и радиоприемниках. если неохота покупать, из того же телевизора или приемника выдрать любой ОУ, мощный транзистор и стабилитрон и мутить на них стаб.

Подобные маломощные стабилизаторы применяются в питании усилителей польских ТВ антен, можно поставить в управление мощным транзистором для увеличения мощности. В ТВ и приемниках обично стоят стабилизаторы на фиксированое напряжение, а не регулируенмые.

Андрей, ага))) а это не слишком геморойно мутить самому стаб?

Тогда следующий вопрос. где и в каких приборах можно найти — LM317T. в телевиорах старых или радиоприёмниках может быть? или только а бп?

Похожие статьи

или чем можно ЛМ317 заменить?

проще — купить )
а вообще видел в акуммуляторных зарядках стоят

нечего им делать в телевизорах и радиоприемниках. если неохота покупать, из того же телевизора или приемника выдрать любой ОУ, мощный транзистор и стабилитрон и мутить на них стаб.

Подобные маломощные стабилизаторы применяются в питании усилителей польских ТВ антен, можно поставить в управление мощным транзистором для увеличения мощности. В ТВ и приемниках обично стоят стабилизаторы на фиксированое напряжение, а не регулируенмые.

Андрей, ага))) а это не слишком геморойно мутить самому стаб?

схема блока питания мощного регулируемого

На микросборке LM317T схема блока питания (БП) упрощается во много раз. Во-первых, есть возможность сделать регулировку. Во-вторых, стабилизация питания производится. Причем по отзывам многих радиолюбителей, эта микросборка в разы превосходит отечественные аналоги. В частности, ее ресурс очень большой, не идет ни в какое сравнение ни с каким другим элементом.

Основа блока питания – трансформатор

Необходимо использование в качестве преобразователя напряжения понижающий трансформатор. Его можно взять от практически любой бытовой техники – магнитофонов, телевизоров и пр. Также можно использовать трансформаторы марки ТВК-110, которые устанавливались в блоке кадровой развертки черно-белых телевизоров. Правда, у них выходное напряжение всего 9 В, а ток довольно маленький. И если необходимо запитывать мощного потребителя, его явно не хватит.

Но если требуется сделать мощный БП, то разумнее использовать силовые трансформаторы. Их мощность должна составлять хотя бы 40 Вт. Чтобы на микросборке LM317T блок питания для ЦАП сделать, вам потребуется выходное напряжение 3,5-5 В. Именно такое значение нужно поддерживать в цепи питания микроконтроллера. Не исключено, что потребуется вторичную обмотку слегка изменить. Первичная при этом не перематывается, только проводится ее изоляция (по необходимости).

Выпрямительный каскад

Выпрямительный блок – это сборка из полупроводниковых диодов. Ничего в ней сложного нет, только следует определиться с тем, какой тип выпрямления нужно использовать. Схема выпрямителя может быть:

  • однополупериодная;
  • двухполупериодная;
  • мостовая;
  • с удвоением, утроением, напряжения.

Последнюю разумно применять, если, например, на выходе трансформатора у вас 24 В, а нужно получить 48 или 72. При этом неминуемо уменьшается выходной ток, это следует учитывать. Для простого блока питания больше всего подходит мостовая схема выпрямителя. Используемая микросборка LM317T блок питания мощный не позволит сделать. Причина тому – мощность самой микросхемы составляет всего 2 Вт. Мостовая схема же позволяет избавиться от пульсаций, да и КПД у нее на порядок выше (если сравнивать с однополупериодной схемой). Допускается в выпрямительном каскаде использовать как диодные сборки, так и отдельные элементы.

Корпус для блока питания

В качестве материала для корпуса разумнее использовать пластик. Он удобен в обработке, поддается деформации при прогреве. Другими словами, можно без труда придать заготовкам любую форму. А для высверливания отверстий не потребуется много времени. Но можно немного потрудиться и сделать красивый, надежный корпус из листового алюминия. Конечно, с ним мороки будет побольше, зато внешний вид окажется потрясающим. После изготовления корпуса из листового алюминия, его можно тщательно зачистить, прогрунтовать и нанести по несколько слоев краски и лака.

К тому же вы сразу убьете двух зайцев – получите красивый корпус и обеспечите дополнительное охлаждение микросборке. На LM317T блок питания построен по такому принципу, что стабилизация осуществляется с выделением большого количества тепла. Например, у вас на выходе выпрямителя 12 Вольт, а стабилизация должна выдать 5 В. Вот эта разница, 7 Вольт, уходит на нагрев корпуса микросборки. Следовательно, она нуждается в качественном охлаждении. И алюминиевый корпус будет способствовать этому. Впрочем, можно поступить и более продвинуто – смонтировать на радиаторе термовыключатель, который будет управлять кулером.

Схема стабилизации напряжения

Итак, у вас есть микросборка LM317T, схема блока питания на ней перед глазами, теперь нужно определить назначение ее выводов. Их у нее всего три – вход (2), выход (3) и масса (1). Поверните корпус лицевой стороной к себе, нумерация производится слева направо. Вот и все, теперь осталось осуществить стабилизацию напряжения. А сделать это несложно, если выпрямительный блок и трансформатор уже готовы. Как вы понимаете, минус с выпрямителя подается на первый вывод сборки. С плюса выпрямителя происходит подача напряжения на второй вывод. С третьего снимается стабилизированное напряжение. Причем по входу и выходу необходимо установить электролитические конденсаторы с емкостью 100 мкФ и 1000 мкФ соответственно. Вот и все, только лишь на выходе желательно поставить постоянное сопротивление (порядка 2 кОм), которое позволит электролитам быстрее разряжаться после выключения.

Схема блока питания с возможностью регулировки напряжения

Сделать регулируемый блок питания на LM317T оказывается проще простого, для этого не потребуется особых знаний и умений. Итак, у вас есть уже блок питания со стабилизатором. Теперь можно его слегка модернизировать, чтобы на выходе изменять напряжение, в зависимости от того, какое вам требуется. Для этого достаточно отключить первый вывод микросборки от минуса питания. По выходу включаете последовательно два сопротивления – постоянное (номинал 240 Ом) и переменное (5 кОм). В месте их соединения подключается первый вывод микросборки. Такие несложные манипуляции позволяют сделать регулируемый блок питания. Причем максимальное напряжение, подаваемое на вход LM317T, может составлять 25 Вольт.

Дополнительные возможности

С применением микросборки LM317T схема блока питания становится более функциональной. Конечно, в процессе эксплуатации блока питания, вам потребуется проводить контроль основных параметров. Например, потребляемого тока либо выходного напряжения (особенно это актуально для схемы с регулировкой). Поэтому на лицевой панели нужно смонтировать индикаторы. Кроме того, вам нужно знать, включен ли в сеть блок питания. Обязанность оповещать вас о включении в электросеть лучше возложить на светодиод. Данная конструкция вполне надежная, только питание для него нужно брать с выхода выпрямителя, а не микросборки.

Для контроля тока и напряжения можно использовать стрелочные индикаторы с градуированной шкалой. Но в случае, если хочется сделать блок питания, который не будет уступать лабораторным, можно воспользоваться и ЖК-дисплеями. Правда, для измерения тока и напряжения на LM317T схема блока питания усложняется, так как необходимо использование микроконтроллера и специального драйвера – буферного элемента. Он позволяет подключать к портам ввода-вывода контроллера ЖК-дисплей.

Регулируемый стабилизированный блок питания 1-30V, 5А — d.lab

Несложный стабилизированный блок питания мощностью до 5А с регулировкой выходного напряжения от 1 до 30V на микросхеме-стабилизаторе LM317 и мощном биполярном NPN-транзисторе.

Никогда не думал, что с блоком питания у меня могут возникнуть проблемы, всегда можно было выкрутиться «КРЕН-кой». Однако, когда понадобился мощный стабилизированный источник питания «КРЕН-ка» естественно не подошла из-за слабого тока нагрузки. Как правило, на практике, обещанные 1.5А ни одна «КРЕН-ка» не держит. Более того, даже 1А она едва выдерживает при этом «просаживая» выходное напряжение и греясь как утюг.

Другое дело стабилизаторы LD1083 (7.5A), LD1084 (5A) или LD1085 (3A). Всем хороши, только вот LD1083 лично я в глаза ни разу не видел. Вообще достоверно неизвестно, существуют ли они в действительности. LD1085 и даже LD1084 можно свободно купить в магазинах в корпусах ТО-220, хотя теоретически они выпускаются и в больших корпусах ТО-3, но такие опять же никто не видел. Кроме того у таких микросхем есть один, намой взгляд существенный, недостаток — ограничение входного напряжения до 30V. Не выше, иначе микросхема просто не работает. Как в таком случае поступить, если нужно выходное напряжение 24V при токе 5А? Казалось бы чего сложного? Но дело в том, что для получения выходного напряжения 24V нужно на входе стабилизатора не менее 25.5V, а в сумме с подключенным электролитическим конденсатором входного фильтра получается около 33V на входе микросхемы. Вот и все, фактически эта замечательная микросхема способна выдать не более 20V.

Помню, как на раннем этапе своей радиолюбительской практики, я пытался «умощнить» «КРЕН-ку» биполярным транзистором по одной из множества схем с ошибками, опубликованных в радиолюбительской литературе 90-х годов. Тогда у меня толком ничего не получалось в основном по причине неполного понимания физики процесса. Да и сами схемотехнические решения оставляли желать лучшего — нужны были низкоомные резисторы, сильноточные дроссели и даже была схема с тиристором!

Отбросив все лишнее, я взял мощный биполярный транзистор и в режиме эмиттерного повторителя подал на базу напряжение: транзистор открылся. Увеличил напряжение — на эмиттере напряжение также увеличилось. Подцепил нагрузку — держит, подцепил больше, все равно держит. Привязал к базе LM317 — регулирует, ток держит. Пару вариаций, испытаний, подгонка компонентов и все — мощный стабилизированный БП готов:

На схеме есть дроссель L1, на самом деле это не дроссель — это обмотка от неисправного втягивающего реле стартера. Это такая своеобразная защита от КЗ: в обычном режиме работы ток без потерь проходит через толстый провод обмотки, а при КЗ выходных клемм обмотка становится мощной нагрузкой для блока питания. Понятно, что это не самый лучший способ, но он работоспособен и эффективен при кратковременном КЗ.

В остальном, не думаю, что схема такого уровня сложности требует особых пояснений. Следует напомнить, что вся отдаваемая в нагрузку мощность БП рассеивается на силовом транзисторе. Поэтому его нужно обязательно устанавливать на ооочень большой радиатор.

Данное схемотехническое решение не претендует на истину и возможно в будущем вылезут «подводные камни», но пока блок питания работает исправно и надежно.

Блок питания со стабилизацией тока и напряжения

Попалась в интернете недавно любопытная схемка простого, но довольно неплохого блока питания начального уровня, способного выдавать 0-24 В при ток до 5 ампер. В блоке питания предусмотрена защита, то есть ограничение максимального тока при перегрузке. В приложенном архиве есть печатная плата и документ, где приведено описание настройки данного блока, и ссылка на сайт автора. Прежде чем собирать, прочитайте внимательно описание.

Схема БП с регулировкой тока и напряжения

Изначально на фото печатной платы автора были ошибки, печатка была скопирована и доработана, ошибки устранены.

Вот фото моего варианта БП, вид готовой платы, и можно посмотреть как примерно применить корпус от старого компьютерного ATX. Регулировка сделана 0-20 В 1,5 А. Конденсатор С4 под такой ток поставлен на 100 мкФ 35 В.

При коротком замыкании максимум ограниченного тока выдается и загорается светодиод, вывел резистор ограничителя на переднюю панель.

Индикатор для блока питания

Провёл у себя ревизию, нашёл пару простеньких стрелочных головок М68501 для этого БП. Просидел пол дня над созданием экрана для него, но таки нарисовал его и точно настроил под требуемые выходные напряжения.

Сопротивление используемой головки индикатора и применённый резистор указаны в прилагаемом файле на индикаторе. Выкладываю переднюю панель блока, если кому понадобится для переделки корпус от блока питания АТХ, проще будет переставить надписи и что-то добавить, чем создавать с нуля. Если потребуются другие напряжения, шкалу можно просто подкалибровать, это уже проще будет. Вот готовый вид регулируемого источника питания:

Плёнка – самоклейка типа «бамбук». Индикатор имеет подсветку зелёного цвета. Красный светодиод Attention указывает на включившуюся защиту от перегрузки.

Дополнения от BFG5000

Максимальный ток ограничения можно сделать более 10 А. На кулер – кренка 12 вольт плюс температурный регулятор оборотов – с 40 градусов начинает увеличивать обороты. Ошибка схемы особо не влияет на работу, но судя по замерам при КЗ – появляется прирост проходящей мощности.

Силовой транзистор установил 2n3055, все остальное тоже зарубежные аналоги, кроме BC548 – поставил КТ3102. Получился действительно неубиваемый БП. Для новичков-радиолюбителей самое-то.

Выходной конденсатор поставлен на 100 мкФ, напряжение не скачет, регулировка плавная и без видимых задержек. Ставил из расчёта как указано автором: 100 мкф ёмкости на 1 А тока. Авторы: Igoran и BFG5000.

Обсудить статью БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Схема регулируемого блока питания с защитой от КЗ на LM317

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата регулируемого блока питания на регуляторе напряжения LM317

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

А теперь самое интересное… Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы h5 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Схема подключения вентилятора к блоку питания

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

JLCPCB — это крупнейшая фабрика PCB прототипов в Китае. Для более чем 600000 заказчиков по всему миру мы делаем свыше 15000 онлайн заказов на прототипы и малые партии печатных плат каждый день!

Anything in here will be replaced on browsers that support the canvas element

Мощный стабилизатор тока и напряжения на TL494

Этот стабилизатор обладает неплохими характеристиками, имеет плавную регулировку тока и напряжения, хорошую стабилизацию, без проблем терпит короткие замыкания, относительно простой и не требует больших финансовых затрат. Он обладает высоким кпд за счет импульсного принципа работы, выходной ток может доходить до 15 ампер, что позволит построить мощное зарядное устройство и блок питания с регулировкой тока и напряжения. При желании можно увеличить выходной ток до 20-и и более ампер.

В интернете подобных устройств, каждое имеет свои достоинства и недостатки, но принцип работы у них одинаковый. Предлагаемый вариант – это попытка создания простого и достаточно мощного стабилизатора.

За счет применения полевых ключей удалось значительно увеличить нагрузочную способность источника и снизить нагрев на силовых ключах. При выходном токе до 4-х ампер транзисторы и силовой диод можно не устанавливать на радиаторы.

Номиналы некоторых компонентов на схеме могут отличаться от номиналов на плате, т.к. плату разрабатывал для своих нужд.

Диапазон регулировки выходного напряжения от 2-х до 28 вольт, в моем случае максимальное напряжение 22 вольта, т.к. я использовал низковольтные ключи и поднять напряжение выше этого значения было рискованно, а так при входном напряжении около 30 Вольт, на выходе спокойно можно получить до 28-и Вольт. Диапазон регулировки выходного тока от 60mA до 15A Ампер, зависит от сопротивления датчика тока и силовых элементов схемы.

Устройство не боится коротких замыканий, просто сработает ограничение тока.

Собран источник на базе ШИМ контроллера TL494, выход микросхемы дополнен драйвером для управления силовыми ключами.

Хочу обратить ваше внимание на батарею конденсаторов установленных на выходе. Следует использовать конденсаторы с низким внутренним сопротивлением на 40-50 вольт, с суммарной емкостью от 3000 до 5000мкФ.

Нагрузочный резистор на выходе применен для быстрого разряда выходных конденсаторов, без него измерительный вольтметр на выходе будет работать с запаздыванием, т.к. при уменьшении выходного напряжения конденсаторам нужно время, для разрядки, а этот резистор быстро их разрядит. Сопротивление этого резистора нужно пересчитать, если на вход схемы подается напряжение больше 24-х вольт. Резистор двух ваттный, рассчитан с запасом по мощности, в ходе работы может греться, это нормально.

Как это работает:

ШИМ контроллер формирует управляющие импульсы для силовых ключей. При наличии управляющего импульса транзистор, и питание по открытому каналу транзистора через дроссель поступает на накопительный конденсатор. Не забываем, что дроссель является индуктивной нагрузкой, которым свойственно накапливание энергии и отдача за счет самоиндукции. Когда транзистор закрывается накопленный в дросселе заряд через диод шоттки продолжит подпитывать нагрузку. Диод в данном случае откроется, т.к. напряжение с дросселя имеет обратную полярность. Этот процесс будет повторяться десятки тысяч раз в секунду, в зависимости от рабочей частоты микросхемы ШИМ. По факту ШИМ контроллер всегда отслеживает напряжение на выходном конденсаторе.

Стабилизация выходного напряжения происходит следующим образом. На неинвертирующий вход первого усилителя ошибки микросхемы (вывод 1) поступает выходное напряжение стабилизатора, где оно сравнивается с опорным напряжением, которое присутствует на инверсном входе усилителя ошибки. При снижении выходного напряжения будет снижаться и напряжение на выводе 1, и если оно будет меньше опорного напряжения, ШИМ контроллер будет увеличивать длительности импульсов, следовательно транзисторы больше времени будут находиться в открытом состоянии и больше тока будет накачиваться в дроссель, если же выходное напряжение больше опорного, произойдет обратное – микросхема уменьшит длительность управляющих импульсов. Указанным делителем можно принудительно менять напряжение на неинвертирующщем входе усилителя ошибки, этим увеличивая или уменьшая выходное напряжение стабилизатора в целом. Для наиболее точной регулировки напряжения применён подстроечный многооборотный резистор, хотя можно использовать обычный.

Минимальное выходное напряжение составляет порядка 2 вольт, задается указанным делителем, при желании можно поиграться с сопротивлением резисторов для получения приемлемых для вас значений, не советуется снижать минимальное напряжение ниже 1 вольта.

Для отслеживания потребляемого нагрузкой тока установлен шунт. Для организации функции ограничения тока задействован второй усилитель ошибки в составе ШИМ контроллера тл494. Падение напряжения на шунте поступает на неинвертирующий вход второго усилителя ошибки, опять сравнивается с опорным, а дальше происходит точно тоже самое, что и в случае стабилизации напряжения. Указанным резистором можно регулировать выходной ток.

Токовый шунт изготовлен из двух параллельно соединённых низкоомных резисторов с сопротивлением 0,05Ом.

Накопительный дроссель намотан на желто белом кольце от фильтра групповой стабилизации компьютерного блока питания.

Так как схема планировалась на довольно большой входной ток, целесообразно использовать два сложенных вместе кольца. Обмотка дросселя содержит 20 витков намотанных двумя жилами провода диаметром 1,25мм в лаковой изоляции, индуктивность около 80-90 микрогенри.

Диод желательно использовать с барьером Шоттки и обратным напряжением 100-200 вольт, в моем случае применена мощная диодная сборка MBR4060 на 60 вольт 40 Ампер.

Силовые ключи вместе с диодом устанавливают на общий радиатор, притом изолировать подложки компонентов от радиатора не нужно, т.к. они общие.

Подробное описание и испытания блока можно посмотреть в видео

«Почти» лабораторный блок питания. Набор-конструктор из Китая. Модернизация / Блог им. Ghost_D / RoboCraft. Роботы? Это просто!

По мере погружения в мир электроники, на моем столе появился приличный ворох различных блоков питания: на 3.3V, 5V, 9V, 12V и т.п. Причем некоторых несколько штук — на разные мощности. Уверен, что у многих примерно такая же ситуация на рабочем месте. И вполне естественно, что в какой-то момент времени приходишь к мысли: а нельзя ли как-то упростить себе жизнь хотя бы в этом вопросе? Да, скажете вы, для этих целей давным давно существуют лабораторные блоки питания. На разные кошельки, вкус, цвет и даже «в горошинку»… Правда и стоят они достаточно неплохо. Поэтому чаще всего начинающие радиолюбители решают этот вопрос самостоятельным изготовлением регулируемого блока питания. Наиболее популярным вариантом является регулируемый блок питания на LM317. Прямо так, слово в слово (или «adjustable power supply lm317»), и забивайте в Google. Получите ОГРОМНЕЙШЕЕ число ссылок!!!
И братья китайцы не остались в стороне от вопроса и вовсю предлагают «за недорого» набор для самостоятельной сборки (по буржуйски DIY kit) такого блока питания. Например тут.

Каюсь, но я тоже не устоял и заказал себе такой набор. Уж больно он симпатично смотрелся в прозрачном корпусе… Однако, не с моим везением. Самая важная для меня часть — а это именно корпус из оргстекла, при транспортировке оказалась поломана. Вот же, китаец, не мог нормально упаковать хрупкую вещь! После небольшой с ним переписки, маленький житель поднебесной выслал мне новый корпус. Теперь терпеливо жду.

А да, возможно еще один веский аргумент «ЗА» покупку этого набора. Я попытался заказать лазерную резку поврежденных элементов корпуса у себя в городе, но мне ее предварительно оценили (я озвучил примерные размеры деталей по телефону) в 15 условных единиц!!! Точнее даже от 15 у.е. и выше!!! И это при общей стоимости набора у китайцев в 10 USD.

Кстати, к набору прилагалась бумажная оригинальная схема этого блока питания:

Полученный набор я спаял и собрал в корпус буквально за час. Тестовые испытания принесли еще одно разочарование. Помимо поврежденного корпуса (который я пока склеил дихлорэтаном), сам блок питания — оказался, так скажем,«не совсем мощным». При попытке выжать из него хотя бы 0.2 Ампера на 12 вольтах, выходное напряжение очень здОрово начинало «просаживаться». Признаться, нечто подобное я и ожидал. Следует отметить наличие в конструкторе интересных «свистопердпыхтелок»: генератор прямоугольных импульсов (с регулировкой частоты), логический пробник и некое подобие «прозвонки». Вроде как неплохая «фигулина» для всяких отладок, если бы чуть помощнее сам блок питания, хотя бы 0.5 ампера.

А чего нам терять? Попробуем модернизировать эту коробочку.

Итак, я решил подвергнуть доработке два важных компонента: трансформатор и стабилизатор. Вначале были попытки подобрать более мощный трансформатор, но идея потерпела фиаско: или мощность оказывалась примерно такой же как и в штатном, или размер никак не подходил по габаритам корпуса.
А вообще, зачем мне трансформатор? Почему бы его не заменить на малогабаритный импульсный блок питания? Полазив в своих закромах, я нашел какой-то блок питания (даже не знаю от чего, может от какого-то роутера…) на котором гордо красовалась надпись 12 вольт, 1.3 Ампера, 15 Ватт. Очень неплохо и похоже на честную маркировку (12В *1.3А= 15.6 Ватт). Расколов пластиковый корпус, я извлек плату (с удовлетворением хочу отметить весьма неплохую схему с ШИМ-контроллером и вполне сносное качество пайки) и примерился к корпусу блока питания.

Все очень даже влазит. Буквально чуть-чуть пришлось поработать напильником. Жаль, что максимально выдаваемое напряжение моей платы — 12 вольт. Ладно, попробуем исправить. Посмотрев пару роликов на ютубе, пришел к выводу, что моя плата — классическая схема импульсного БП, с регулировкой частоты ШИМ с помощью управляемого стабилитрона TL431.

Напомню, что проделанные мной «манипуляции» относятся ИМЕННО к имеющемуся у меня блоку питания!!! Будьте внимательны!!!

В моем варианте платы, TL431 — это внешне похожий на транзистор, трехногий элемент, расположенный возле трансформатора справа внизу. Что же это за «зверек»? Микросхема TL431 — это регулируемый стабилитрон. Используется в роли источника опорного напряжения в схемах различных блоков питания. Типовая схема включения:

Чтобы удостовериться, что я все правильно понял, проверим расчеты. На «свежедобытой» плате (для 12 вольт) были установлены следующие номиналы резисторов в делителе: R1=4702 (высокоточный 47кОм) и R2=1212 (высокоточный 1.21 кОм).

Считаем: (1+(47000/12100))*2.5=12.2 Вольта. Очень правдоподобно. Я же хочу на выходе получать порядка 16 вольт (бОльшее напряжение, лично мне, не разу не понадобилось). Обратным счетом получается, что мне для этого нужно установить такие номиналы: R1=56 кОм и R2=10 кОм. (я воспользовался вот этим он-лайн калькулятором).

И еще ОЧЕНЬ важно! Думаю, что значительное изменение выходного напряжения (скажем, с 12 вольт на 3.3, или на 25 вольт) — ничего хорошего не сулит. И еще важный момент: установленные на выходе электролиты были расчитаны на рабочее напряжение в 16 Вольт и я заменил их на аналогичные по емкости, но с бОльшим рабочим напряжением (25 Вольт). Тоже учитывайте этот момент.

Итак, запаиваю новые резисторы и конденсаторы — Вау… На выходе получаю напряжение около 16 вольт. Все так, как задумано! А что же с мощностью? Думаю, что мощность осталась та же 🙁 Чудес не бывает. Т.е., примерно 15 Ватт (плюс-минус лапоть). А это значит, что при таком напряжении, выдаваемый ток получится не более чем: (15Ватт/16вольт) = 0.9 Ампера. Проверка на светодиодной ленте показала стабильную работу переделанного блока с выходным током 0.8 Ампера. Для большинства моих поделок и испытаний — «ВЫШЕ КРЫШИ».

Но, как говорят французы: аппетит приходит во время еды. А на кой мне ВООБЩЕ линейный стабилизатор (LM317)? Нет, это конечно очень классная штука, но у него достаточно низкий КПД и излишек энергии он «тупо» рассеивает в виде тепла. При понижении напряжения с 16 вольт до 5, входные 16 вольт распределяются между стабилизатором и нагрузкой в отношении «11 вольт на стабилизаторе + 5 вольт на нагрузке». При токе в 0.2А на нагрузке выделяется 1 ватт, а на LM317 — целых 2.2 ватта. Получается что «лишние» 11 вольт просто гасятся на стабилизаторе, превращаясь в тепло. Во-первых, из-за этого возникают проблемы с охлаждением, а во-вторых на это уходит много энергии из источника питания. Конечно, при использовании штатного «мили-пили» трансформатора нагрев стабилизатора не большая проблема, так как ток незначительный. А вот после замены трансформатора на более мощный источник — это становится весьма критично. Короче говоря, воспользуемся современными технологиями.

Итак, вторым шагом поменяем LM317 на DC-DC преобразователь на базе LM2596.

Характеристики микросхемы:
— Входное напряжение — от 2.4 до 40 вольт
— Выходное напряжение — фиксированное либо регулируемое (от 1.2 до 37 вольт)
— Выходной ток — до 3 ампер (при хорошем охлаждении — до 4.5А)
— Частота преобразования — 150кГц
— КПД — 70-75% на низких напряжениях, до 95% на высоких

Указанная микросхема существует как в варианте на фиксированные напряжения, так и на регулируемое с помощью внешних резисторов. Обращаю ваше внимание, что я использовал в данном проекте именно регулируемую версию микросхемы, с маркировкой ADJ. У меня уже был достаточно большой опыт с этим вариантом преобразователя. (Кстати, раньше я использовал преобразователь LM2576 — практически полный аналог LM2596, но с другой рабочей частотой.)

Итак, новая схема (с сохранением функционала всяких «полезных фич») теперь стала такой:

Как вы могли заметить, «обвязка» LM2596 не намного сложнее, чем для LM317. Изменения в схеме коснулись только силовой части. А так же синий светодиод на выходе после стабилизатора (в исходном варианте схемы) — мне показался избыточным (ведь работоспособность можно оценить по индикатору напряжения). Дополнительно (на всякий пожарный случай) после стабилизатора установлены дроссель L2 и конденсатор C5 — Ripple filter (что-то типа, подавителя помех) и предохранитель на 1.5А (выпаял со старой материнской платы). Итак, теперь немного модернизируем плату нашего блока питания под этот вариант схемы. Важно соблюсти не только размер платы, но и положение некоторых элементов: посадочные и регулировочные отверстия, положение клемников, место установки переменного резистора.
Итак, как же это я сделал? Я отсканировал еще не распаянную плату на сканере. Сохранил полученную картинку в формате BMP.

Теперь в SprintLayout-е открываем [ОПЦИИ] -> [ШАБЛОН] -> [ЗАГРУЗИТЬ] и выбираем сохраненный ранее скан.

Теперь важно подобрать РАЗРЕШЕНИЕ и сдвиг по осям. Я расположил на картинке (чтобы можно было как-то ориентироваться) корпус микросхемы DIP14 и менял параметры шаблона, пока не получил идеальное соответствие картинки-шаблона реальным размерам радиодетали.

Все. Расположив ключевые элементы в нужных местах, мне осталось только развести дорожки под новую схему.Вот как в итоге получилось:

Обратите внимание, на подключение сегментного индикатора напряжения. Он запитывается ДО стабилизатора, а замеряет — ПОСЛЕ. Делается это для того, чтобы при установке минимального выходного напряжения он продолжал бы работать. Ну, что? Поехали по традиционной дорожке: ЛУТим-Сверлим-Травим-Паяем…

Лицевая сторона:

И вот у нас в руках готовая альтернативная плата. Размещаем в корпус. Как ни странно, но все подошло идеально. Как говорят, найди 10 отличий 🙂

Вот такая мигающая и светящаяся коробочка теперь живет на моем столе и весьма неплохо справляется с возложенными на нее задачами.
Надеюсь, найдутся люди, которые захотят повторить мою модернизацию. Все нужные для этого материалы забираем тут.

12 вольтовые мощные самодельные блоки питания. Блок питания

Многие электротехнические устройства питаются от постоянного напряжения величиной 12 вольт. Если такая техника не особо нуждается в высокой стабильности напряжения, то вполне подойдет самый простой блок питания, состоящий из понижающего трансформатора, диодного моста и фильтрующего конденсатора электролита. Тут вопрос остается только за мощностью такого источника питания, ну и следовательно от нее зависит, какие именно функциональные части будет стоять в блоке питания на 12 вольт. В этой статье давайте разберемся более подробно с этой темой.

Итак, схема простого блока питания на 12 вольт начинается с понижающего трансформатора, задача которого сетевое переменное напряжение 220 вольт понизить до более низкого. Логично предположить, что это пониженное напряжение должно в нашем случае быть 12 вольт. Но нет. На выходе вторичной обмотки трансформатора, для получения в итоге постоянных 12 вольт должно быть около 10 вольт. Почему так? Просто существует в электротехнике такой вот эффект — переменное напряжение после диодного моста имеет выпрямленный ток, но он скачкообразной формы. Когда мы к выходу моста подсоединяем фильтрующий конденсатор электролит эти скачки постоянного напряжения сглаживаются, а само напряжение увеличивается примерно на 18%. Вот и получается, что переменные 10 вольт после выпрямительного моста и фильтрующего конденсатора электролита превратятся в постоянные 12 вольт.

Нам нужно определится, в первую очередь, с мощностью нашего блока питания на 12 вольт. Какую именно максимальную силу тока мы хотим, чтобы он имел. К примеру, нужно иметь максимальную силу тока в 5 ампер. В этом случае, чтобы спаять хороший блок питания на 12 вольт с этим током нам понадобится понижающий трансформатор мощностью около 80 ватт. Напомню, чтобы найти электрическую мощность нужно силу тока перемножить на напряжение. Следовательно мы наши 12 вольт умножаем на 5 ампер и получаем 60 ватт. Плюс к этому мы добавляем небольшой запас (пусть будет 20 ватт). Вот и видим, что нужен трансформатор на 80 ватт (это если идти по оптимальному пути, хотя если вы поставите большей мощности транс, то это только повлияет на общие размеры источника питания).

Для получения тока на вторичной обмотке около 5 ампер, диаметр этой самой обмотки должен быть не менее 1,6 мм (медь). Для определения зависимости диаметра провода вторичной обмотки и силы тока, который она должна обеспечивать нужно смотреть в справочные таблицы (их легко найти в интернете воспользовавшись поиском).

Теперь нужно подобрать подходящий выпрямительный диодный мост, который нам позволит сделать из переменного напряжения постоянное, хотя и скачкообразной формы. Опять же, нужно в начале определится с силой тока, которую диодный мост может выдержать без негативных воздействий на него. Мы определились, что нам нужен максимальный ток 5 ампер. Как и в случае с трансформатором добавим к этому некий запас. В итоге, находим диодный мост (диоды под него) на силу тока в 8-10 ампер. Мост должен быть рассчитан на напряжение не менее 12 вольт (хотя диоды с маленьким обратным напряжением это редкость, обычно они рассчитаны на достаточно большие обратные напряжения). Либо ставим готовый целостный диодный мост, или паяем его сами из четырех диодов с нужными параметрами.

Ну, и последним важным функциональным элементом нашего самодельного блока питания на 12 вольт, что будем паять своими руками, является конденсатор электролит. Он выполняет фильтрующую роль, сглаживая скачки постоянного напряжения, делая постоянное напряжение более ровным (хотя и не идеальным). Для нашего блока питания вполне подойдет конденсатор электролит, рассчитанный на напряжение 16-25 вольт и емкостью около 5 000 — 10 000 микрофарад. Вот и все, осталось только эти все компоненты спаять в единую схему и собрать в подходящем корпусе.

Видео по этой теме:

P.S. Для удобства при использовании такого простого, самодельного блока питания на 12 вольт в него неплохо было бы еще поставить цифровой модуль вольтметра и амперметра. Это позволит видет при работе падение напряжения и силу потребляемого тока. Такие цифровые модули индикаторы, измеряющие постоянный ток и напряжение стоят достаточно дешево (около 3 баксов). Я себе такой модуль заказывал посылкой из Китая. Он компактный, точный, удобный. Так что советую.

Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

    Однополупериодный . Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

    Двухполупериодный . Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя — это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение — изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что в 1.41 раз меньше амплитудного. Или:

Амплитудное напряжение в сети 220В равняется:

Первая схема более распространена. Состоит из диодного моста — соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в , или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема — выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути — это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым — к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком — использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют — параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант — это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости — десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора — тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор — тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

где R — сопротивление нагрузки, а C — емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует — чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют , их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва — у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

C=3200*Iн/Uн*Kп,

Где Iн — ток нагрузки, Uн — напряжение нагрузки, Kн — коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

1. Трансформатор;

3. Конденсатор.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

У конденсатора две основных характеристики — емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения — нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное — велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем — и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант — использовать L78xx или другие , типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный — всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть , можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В — это падение на переходе эмиттер база, подробнее об этом мы писали . Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

С тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

В настоящее время подпитывающие блочные системы – это основная часть приборов освещения. Именно 12-вольтовое подпитывающее устройство позволяет сэкономить электрическую энергию. Сделать прибор несложно. В нашей статье мы попытаемся ответить на вопрос, как сделать .

Типы блоков питания

Принято разделять подпитывающие системы на несколько типов. В первую группу входят вторичные источники электропитания, которых большое количество. Во вторую – трансформаторного или сетевого. Третья группа включает импульсные источники. Каждый из блоков питания имеет свои характеристики, свои положительные и отрицательные стороны.

Основная часть приборов освещения – система подпитки. Именно 12-вольтовое подпитывающее устройство позволяет сэкономить электрическую энергию. Сделать прибор несложно. В нашей статье мы попытаемся ответить на вопрос, как сделать блок питания своими руками.

Самым распространённым является подпитывающая система второго типа, которую и будем сегодня собирать.

Составляющие части устройства

Собираемый нами сегодня механизм состоит из трёх частей:

  • понижающего трансформатора, являющегося наиболее важной и неотъемлемой частью;
  • конденсатора, с помощью которого стабилизируется текущее напряжение до оптимальных показаний;
  • диодов, которые необходимы для сборки диодного моста своими руками.

Каждая из частей очень важна. Если в какой-либо из них допустить ошибку при сборке, то это приведёт к тому, что неправильно будет работать собранный агрегат и подключённый к системе бытовой электрический прибор. А также собранный аппарат может вообще не включиться. Рассмотрим каждый из компонентов механизма более подробно.

Выбор трансформатора

Преобразующее напряжение приспособление является одним из главных трансформаторных компонентов. Здесь переменное 220-вольтовое напряжение преобразуется в подобное себе, но немного с пониженной амплитудой.

Воспользовавшись простыми подсчётами, выясним, сколько вторичная обмотка совершила оборотов вокруг своей оси. Узнав число оборотов (обычно показатель вольтажа в этом случае 6,3), следует разделить вольтовый показатель на количество витков.

Обычный понижающий прибор, необходимый для уменьшения вольтажа с привычного 220-вольтового до 12-вольтового, можно использовать в качестве машины трансформаторного типа.

Оптимально брать для прибора конденсатор 470 мкФ ёмкости с 25-вольтовым напряжением. Почему это будет оптимальным вариантом? Это связано с тем, что, когда напряжение выходит из агрегата, то оно становится выше стандартного с вольтажем в 12В. Когда механизм начинает работать, то напряжение возвращается к стандартным показателям (12 В).


Как изготовить выпрямитель

Устройство, работающее на полупроводниковых диодах, называется выпрямителем, который является одним из важных элементов схемы блока питания. С помощью выпрямителя преобразовываются значения переменного тока, приближают к его постоянным показателям.

Не представляет никакого труда собрать своими руками блок питания на 12 вольт. Прежде всего следует усвоить, что конденсатор имеет два выхода: один из них положительный, другой отрицательный.

Как же понять, где находится какой? Если диод имеет положительное значение, то на нём есть специальная полоска, если нет полоски, то значит, диод имеет отрицательное значение. Диодокомпоненты соединяются последовательно:

Схематическое соединение 2-х элементов: приспособление с минусом необходимо подключить к диоду с положительным значением.

Подобным образом проходит соединение 2-х других диодов (приспособление с минусом необходимо подключить к диоду с положительным значением). Соединение парных конструкций между собой, при этом необходимо попарно подсоединить диоды (отрицательный с отрицательным показателем, а положительный с положительным).

Важно проследить, чтобы подключение было правильным, иначе это приведёт к проблемам в работе механизма.

После создания диодного мостика с 4 соединительными точками:

  • двумя с плюс-минус схемой;
  • одной плюс-плюсовой;
  • одной минус-минусовой – можно приступать к сборке механизма. Важно при этом проверить качество контакта между диодными системами.

Сборка фильтрационных блоков

Перед тем, как подключить блок питания 12 вольт, рекомендуется установить специальные фильтры, которые помогут работе подключённых к устройству бытовых приборов. Чтобы подпитывалась бытовая техника, обычно применяется LC-цепочка. Там, где выходит из устройства выпрямитель со значением плюс, необходимо подключение дросселя. Через него должно осуществляться прохождение электрического тока.

На второй ступени фильтрации ведётся работа с электролитическим конденсатором, имеющим большую ёмкость, который следует подключить к дросселю со стороны, имеющей положительное значение.

Соединение второго вывода идёт к общему электрическому проводу со значением минус. Электролитический конденсатор способствует стабилизации электрического тока. Как же это происходит? Этот вопрос мы рассмотрим немного подробнее.

Как стабилизировать напряжение на выходе

Чтобы стабилизировать выходное напряжение, можно воспользоваться стабилитроном, имеющим силу 12-вольтового показателя. Даже если установить более мощные стабилизаторы, то на выходе получаются те же 12 Вольт.

Куда же уходит оставшееся количество? Остальная часть переходит в тепловую энергию, поэтому этот компонент принято монтировать на поверхность радиатора.

Процесс регулирования

Обычно принято использовать регулируемые блоки питания. Необходимо при установке стабилизатора смонтировать специальный провод, к которому следует подключить переменный резистор.

Переменный резистор и выход сборки имеет 220-омовые показатели сопротивления. Полупроводниковый диод устанавливают на входе и выходе из стабилизирующего устройства.

Регулятор позволяет стабилизировать показатели тока до оптимальных значений, предотвращает перегорание механизма. Для усиления безопасности собранного агрегата можно устанавливать электронный вольтметр на выходе из системы, который поможет отслеживать показатели текущего в системе напряжения.

Собрать блок питания на 12 Вольт не представляет сложности даже человеку с минимальными знаниями в области сборки каких-либо устройств. Для этого можно воспользоваться пошаговой инструкцией с фото на каждом из этапов. Имея необходимые детали и пошаговую инструкцию, можно собрать любой механизм.

При подключении к электроприборам необходимо проконсультироваться с мастером-электриком, который просмотрит правильность сборки, что предотвратит проблемы с работой приспособления.

Фото блоков питания на 12 вольт

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
Шаг 1: Какие детали необходимы для сборки блока питания…
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие…


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

На 1-2 ампера, но более высокий ток получить уже проблематично. Здесь будет описан блок питания повышенной мощности, на стандартное напряжение 13,8 (12) вольт. Схема на 10 ампер, но можно это значение увеличить ещё. В схеме предлагаемого БП нет ничего особенного, за исключением того, что, как показали испытания, она способна выдавать ток до 20 Ампер кратковременно или 10A непрерывно. Для дальнейшего повышения мощности используйте больший трансформатор, выпрямитель диодного моста, более высокую ёмкость конденсаторов и количество транзисторов. Схема блока питания для удобства показана на нескольких рисунках. Транзисторы не обязательно ставить строго те, что в схеме. Были использованы 2N3771 (50В, 20А, 200W) потому, что их много в наличии.


Регулятор напряжения работает в небольших пределах, от 11 В до 13,8 при полной нагрузке. С напряжением холостого хода значение 13,8в (номинальное напряжение батареи 12В), выход упадет на 13,5 около 1.5A, и 12.8В около 13А.


Выходные транзисторы подключены параллельно, с 0,1 ом 5 ватт проволочными резисторами в эмитерных цепях. Чем больше транзисторов, которые вы используете, тем выше пиковый ток возможно снять со схемы.


Светодиоды покажут неправильную полярность, а реле заблокирует стабилизатор БП от выпрямителей. Тиристор большой мощности BT152-400 открывается при перенапряжении и берёт удар тока на себя, приводя к сгоранию предохранителя. Не думайте что симистор сгорит первым, BT152-400R может выдерживать до 200А в течение 10 мс. Данный источник питания может служить и в качестве зарядного устройства для автомобильных аккумуляторов, но во избежании инцедентов, не нужно оставлять АКБ на долгое время подключенным без присмотра .

Понравилась статья? Поделись с друзьями:

Facebook

Twitter

Мой мир

Вконтакте

Google+

30.11.2020

Компьютер 

Самое интересное:

Расчет бп на lm317. LM317 и LM317T схемы включения, datasheet

Можно довольно легко сделать источник питания, который имеет стабильное напряжение на выходе и регулировку от 0 до 28В. Основа — дешёвая , усиленная с помощью двух транзисторов 2N3055. В таком схемном включении она становится более чем в 2 раза мощнее. Вы можете при необходимости использовать эту конструкцию для получения и 20 ампер (почти без переделок, но с соответствующим трансформатором и огромным радиатором с вентилятором), просто в своём проекте не нуждался в таком большом токе. Ещё раз напоминаю: убедитесь, что вы установили транзисторы на большой радиатор, 2N3055 могут очень сильно нагреваться при полной нагрузке.

Список использованных в схеме деталей:

Трансформатор 2 x 15 вольт 10 ампер

D1…D4 = четыре MR750 (MR7510) диода или 2 x 4 1N5401 (1N5408).

F1 = 1 ампер

F2 = 10 ампер

R1 2k2 2,5 ватт

R3,R4 0.1 Ом 10 ватт

R9 47 0.5 ватт

C2 two times 4700uF/50v

C3,C5 10uF/50v

D5 1N4148, 1N4448, 1N4151

D11 светодиод

D7, D8, D9 1N4001

Два транзистора 2N3055

P2 47 или 220 Ом 1 ватт

P3 10k подстроечник

Хотя LM317 и имеет защиту от короткого замыкания, перегрузки и перегрева, предохранители в цепи сети трансформатора и предохранитель F2 на выходе не помешают. Выпрямленное напряжение: 30 х 1.41 = 42.30 вольт, измеренное на С1. Так что все конденсаторы должны быть рассчитаны на 50 вольт. Внимание: 42 вольт-это напряжение, что может быть на выходе, если один из транзисторов будет пробит!

Регулятор P1 позволяет изменять выходное напряжение на любое значение между 0 и 28 вольт. Так как в LM317 минимальное напряжение 1,2 вольта, то чтобы получить нулевое напряжение на выходе БП — поставим 3 диода, D7,D8 и D9 на выходе LM317 к базе 2N3055 транзисторов. У микросхемы LM317 максимальное выходное напряжение — 30 вольт, но с использованием диодов D7, D8 и D9 произойдёт наоборот падение выходного напряжения, и оно составит около 30 — (3х0,6В) = 28.2 вольта. Калибровать встроенный вольтметр нужно с помощью подстроечника P3 и, конечно, хорошего цифрового вольтметра.



Примечание . Помните, что нужно изолировать транзисторы от шасси! Это делается изоляционными и теплопроводными прокладками или, по крайней мере, тонкой слюдой. Можно применить термоклей и термопасту. При сборке мощного регулируемого блока питания не забывайте использовать толстые соединительные провода, которые подходят для передачи большого тока. Тонкие проводки нагреются и поплавятся!

Блок питания – это непременный атрибут в мастерской радиолюбителя. Я тоже решил собрать себе регулируемый БП, так как надоело каждый раз покупать батарейки или пользоваться случайными адаптерами. Вот его краткая характеристика: БП регулирует выходное напряжение от 1,2 Вольта до 28 Вольт. И обеспечивает нагрузку до 3 А (зависит от трансформатора), что чаще всего достаточно для проверки работоспособности радиолюбительских конструкций. Схема проста, как раз для начинающего радиолюбителя. Собранная на основе дешёвых компонентов — LM317 и КТ819Г.

Схема регулируемого блока питания LM317

Список элементов схемы:


Стабилизатор LM317
Т1 — транзистор КТ819Г
Tr1 — трансформатор силовой
F1 — предохранитель 0.5А 250В
Br1 — диодный мост
D1 — диод 1N5400
LED1 — светодиод любого цвета
C1 — конденсатор электролитический 3300 мкф*43В
C2 — конденсатор керамический 0.1 мкф
C3 — конденсатор электролитический 1 мкф*43В
R1 — сопротивление 18K
R2 — сопротивление 220 Ом
R3 — сопротивление 0.1 Ом*2Вт
Р1 — сопротивление построечное 4.7K

Цоколёвка микросхемы и транзистора


Корпус взял от БП компьютера. Передняя панель изготовленная из текстолита, желательно установить вольтметр на этой панели. Я не установил, потому что пока не нашёл подходящего. Также на передний панели установил зажимы для выходных проводов.



Входную розетку оставил для питания самого БП. Печатная плата сделанная для навесного монтажа транзистора и микросхемы стабилизатора. Их закрепил на общем радиаторе через резиновую прокладку. Радиатор взял солидный (на фото его видно). Его нужно брать как можно больший — для хорошего охлаждения. Всё-таки 3 ампера — это немало!

Блок питания – необходимая вещь в арсенале любого радиолюбителя. И я предлагаю собрать очень простую, но в то же время стабильную схему такого устройства. Схема не трудная, а набор деталей для сборки – минимален. А теперь от слов к делу.

Для сборки нужны следующие комплектующие:

НО ! Эти все детали представлены точно по схеме, и выбор комплектующих зависит от характеристики трансформатора, и прочих условий. Ниже представлены компоненты согласно схеме, но их мы будем сами подбирать!

Трансформатор (12-25 В.)
Диодный мост на 2-6 А.
C1 1000 мкФ 50 В.
C2 100 мкФ 50 В.
R1 (номинал подбирается в зависимости от от трансформатора, он служит для запитки светодиода)
R2 200 Ом
R3 (переменный резистор, подбирается тоже, его номинал зависит от R1, но об этом позже)
Микросхема LM317T
А также инструменты, которые понадобятся в ходе работы.


Сразу привожу схему:


Микросхема LM317 является регулятором напряжения. Именно на ней я и буду собирать данное устройство.
И так, приступаем к сборке.

Шаг 1. Для начала нужно определить сопротивление резисторов R1 и R3. Дело в том, какой трансформатор вы выберете. То есть, нужно подобрать правильные номиналы, и в этом нам поможет специальный онлайн-калькулятор. Его можно найти вот по этой ссылке:
Я надеюсь, вы разберетесь. Я рассчитывал резистор R2, взяв R1=180 Ом, а выходное напряжение 30 В. Итого получилось 4140 Ом. То есть мне нужен резистор на 5 кОм.


Шаг 3. Сначала поясню, что куда впаивать. К контактам 1 и 2 – светодиод. 1 – это катод, 2 – анод. А резистор для него (R1) считаем тут:
К контактам 3, 4, 5 – переменный резистор. А 6 и 7 не пригодились. Это было задумано для подключения вольтметра. Если вам это не нужно, то просто отредактируйте скачанную плату. Ну а если понадобится, то установите перемычку между 8 и 9 контактами. Плату я делал на гетинаксе, методом ЛУТ, травил в перекисе водорода (100 мл перекиси + 30 г. Лимонной кислоты + чайная ложка соли).
Теперь о трансформаторе. Я взял силовой трансформатор ТС-150-1. Он обеспечивает напряжение в 25 вольт.

Шаг 4. Теперь нужно определиться с корпусом. Недолго думая, мой выбор пал на корпус от старого компьютерного блока питания. Кстати, в этом корпусе раньше был мой старый бп.


В переднюю панель я взял от бесперебойника, которая очень хорошо подошла по размерам.


Вот так примерно она будет установлена:



Чтобы закрыть дыру в центре, я вклеил небольшой кусок ДВП, и просверлил все нужные отверстия. Ну и установил разъемы Banana.


Кнопка включения питания осталась сзади. Её на фото пока нет. Трансформатор я закрепил его «родными» гайками к задней решетки вентилятора. Он точно подошел по размерам.


А на место где будет плата, тоже приклеил кусок ДВП, дабы избежать замыкания.


Шаг 5 . Теперь нужно установить плату и радиатор, припаять все необходимые провода. И не забываем про предохранитель. Его я прикрепил сверху на трансформатор. На фото это всё выглядит, как-то страшно и не красиво, но наделе это совсем не так.



Остается только закрыть верхнюю крышку. Её я тоже немного приклеил на термоклей к панели. И теперь наш блок питания готов! Остается его только протестировать.


Этот блок способен выдавать максимальное напряжение в 32 В и силу тока до 2 ампер. Минимальное напряжение — 1,1 В, а максимальное 32 В.



Спасибо, всем удачи!

Питания (БП) упрощается во много раз. Во-первых, есть возможность сделать регулировку. Во-вторых, стабилизация питания производится. Причем по отзывам многих радиолюбителей, эта микросборка в разы превосходит отечественные аналоги. В частности, ее ресурс очень большой, не идет ни в какое сравнение ни с каким другим элементом.

Основа блока питания — трансформатор

Необходимо использование в качестве преобразователя напряжения Его можно взять от практически любой бытовой техники — магнитофонов, телевизоров и пр. Также можно использовать трансформаторы марки ТВК-110, которые устанавливались в блоке кадровой развертки черно-белых телевизоров. Правда, у них выходное напряжение всего 9 В, а ток довольно маленький. И если необходимо запитывать мощного потребителя, его явно не хватит.

Но если требуется сделать мощный БП, то разумнее использовать Их мощность должна составлять хотя бы 40 Вт. Чтобы на микросборке LM317T блок питания для ЦАП сделать, вам потребуется выходное напряжение 3,5-5 В. Именно такое значение нужно поддерживать в микроконтроллера. Не исключено, что потребуется вторичную обмотку слегка изменить. Первичная при этом не перематывается, только проводится ее изоляция (по необходимости).

Выпрямительный каскад


Выпрямительный блок — это сборка из Ничего в ней сложного нет, только следует определиться с тем, какой тип выпрямления нужно использовать. Схема выпрямителя может быть:

  • однополупериодная;
  • двухполупериодная;
  • мостовая;
  • с удвоением, утроением, напряжения.

Последнюю разумно применять, если, например, на выходе трансформатора у вас 24 В, а нужно получить 48 или 72. При этом неминуемо уменьшается выходной ток, это следует учитывать. Для простого блока питания больше всего подходит мостовая схема выпрямителя. Используемая микросборка LM317T блок питания мощный не позволит сделать. Причина тому — мощность самой микросхемы составляет всего 2 Вт. Мостовая схема же позволяет избавиться от пульсаций, да и КПД у нее на порядок выше (если сравнивать с однополупериодной схемой). Допускается в выпрямительном каскаде использовать как диодные сборки, так и отдельные элементы.

Корпус для блока питания

В качестве материала для корпуса разумнее использовать пластик. Он удобен в обработке, поддается деформации при прогреве. Другими словами, можно без труда придать заготовкам любую форму. А для высверливания отверстий не потребуется много времени. Но можно немного потрудиться и сделать красивый, надежный корпус из листового алюминия. Конечно, с ним мороки будет побольше, зато внешний вид окажется потрясающим. После изготовления корпуса из листового алюминия, его можно тщательно зачистить, прогрунтовать и нанести по несколько слоев краски и лака.

К тому же вы сразу убьете двух зайцев — получите красивый корпус и обеспечите дополнительное охлаждение микросборке. На LM317T блок питания построен по такому принципу, что стабилизация осуществляется с выделением большого количества тепла. Например, у вас на выходе выпрямителя 12 Вольт, а стабилизация должна выдать 5 В. Вот эта разница, 7 Вольт, уходит на нагрев корпуса микросборки. Следовательно, она нуждается в качественном охлаждении. И алюминиевый корпус будет способствовать этому. Впрочем, можно поступить и более продвинуто — смонтировать на радиаторе термовыключатель, который будет управлять кулером.

Схема стабилизации напряжения


Итак, у вас есть микросборка LM317T, схема блока питания на ней перед глазами, теперь нужно определить назначение ее выводов. Их у нее всего три — вход (2), выход (3) и масса (1). Поверните корпус лицевой стороной к себе, нумерация производится слева направо. Вот и все, теперь осталось осуществить стабилизацию напряжения. А сделать это несложно, если выпрямительный блок и трансформатор уже готовы. Как вы понимаете, минус с выпрямителя подается на первый вывод сборки. С плюса выпрямителя происходит подача напряжения на второй вывод. С третьего снимается стабилизированное напряжение. Причем по входу и выходу необходимо установить электролитические конденсаторы с емкостью 100 мкФ и 1000 мкФ соответственно. Вот и все, только лишь на выходе желательно поставить постоянное сопротивление (порядка 2 кОм), которое позволит электролитам быстрее разряжаться после выключения.

Схема блока питания с возможностью регулировки напряжения


Сделать регулируемый блок питания на LM317T оказывается проще простого, для этого не потребуется особых знаний и умений. Итак, у вас есть уже блок питания со стабилизатором. Теперь можно его слегка модернизировать, чтобы на выходе изменять напряжение, в зависимости от того, какое вам требуется. Для этого достаточно отключить первый вывод микросборки от минуса питания. По выходу включаете последовательно два сопротивления — постоянное (номинал 240 Ом) и переменное (5 кОм). В месте их соединения подключается первый вывод микросборки. Такие несложные манипуляции позволяют сделать регулируемый блок питания. Причем максимальное напряжение, подаваемое на вход LM317T, может составлять 25 Вольт.

Дополнительные возможности

С применением микросборки LM317T схема блока питания становится более функциональной. Конечно, в процессе эксплуатации блока питания, вам потребуется проводить контроль основных параметров. Например, потребляемого тока либо выходного напряжения (особенно это актуально для схемы с регулировкой). Поэтому на лицевой панели нужно смонтировать индикаторы. Кроме того, вам нужно знать, включен ли в сеть блок питания. Обязанность оповещать вас о включении в электросеть лучше возложить на светодиод. Данная конструкция вполне надежная, только питание для него нужно брать с выхода выпрямителя, а не микросборки.

Для контроля тока и напряжения можно использовать стрелочные индикаторы с градуированной шкалой. Но в случае, если хочется сделать блок питания, который не будет уступать лабораторным, можно воспользоваться и ЖК-дисплеями. Правда, для измерения тока и напряжения на LM317T схема блока питания усложняется, так как необходимо использование микроконтроллера и специального драйвера — буферного элемента. Он позволяет подключать к портам ввода-вывода контроллера ЖК-дисплей.

LM317T Схема питания магнитолы. Блок питания на LM317. Схемы и расчеты

Микросхема уже не одно десятилетие пользуется успехом среди начинающих радиолюбителей благодаря своей простоте и надежности. На базе этой микросхемы можно собрать регулируемый блок питания на LM317, стабилизатор тока, светодиодный драйвер и другие БП. Для этого вам понадобится несколько внешних радиодеталей, для LM317 схема включения работает сразу, никаких настроек не требуется.

Микросхемы LM317 и LM317T Datasheet полностью идентичны, отличаются только корпусом.Вообще нет никаких различий или различий.

Он также написал обзоры и даташит других популярных ИС. С хорошими иллюстрациями, понятными и простыми схемами.


  • 1. Технические характеристики
  • 2. Аналоги
  • 3. Типовые схемы включения
  • 4. Вычислители
  • 5. Схемы включения
  • 6. Радиоконструкторы
  • 7. Datasheet, Datasheet

Характеристики

Основное назначение — стабилизация положительного напряжения.Регулировка происходит линейно, в отличие от импульсных преобразователей.

Популярна еще и LM317T, я с ней не встречался, поэтому пришлось долго искать нужный даташит к ней. Оказалось, что по параметрам они полностью идентичны, буквами «Т» в конце маркировки обозначен корпус Т-220 на 1,5 ампера.

Скачать даташеты:

  1. full;

Характеристики

Даже при наличии интегрированных систем защиты не должно эксплуатироваться на пределе возможностей.При выходе из строя неизвестно сколько вольт будет на выходе, удастся сжечь дорогую нагрузку.

Приведу основные электрические характеристики из Datasheet LM317 на русском языке. Не все знают технические термины на английском языке.

В даташете указана огромная сфера применения, проще написать там, где не используется.

Аналоги

Микросхемы с практически одинаковым функционалом многие отечественные и зарубежные.Я добавлю в список более мощные аналоги, чтобы избежать включения нескольких параллелей. Самый известный аналог LM317 — отечественный кр142ен12.

  1. LM117 LM217 — расширенный диапазон рабочих температур от -55 ° до + 150 °;
  2. LM338, LM138, LM350 — аналоги по 5а, 5а и 3а соответственно;
  3. LM317HV, LM117HV — выходное напряжение до 60В, если не хватает стандартных 40В.

Полные аналоги:

  • GL317;
  • SG317;
  • UPC317;
  • ЭКГ1900.

Типовые схемы включения

Контроллер 1,25 — 20 В с регулируемым током

000

000 .. Для максимального облегчения расчетов на базе LM317T было разработано множество программных калькуляторов LM317 и онлайн-калькуляторов.При указании исходных параметров можно сразу рассчитать несколько вариантов и посмотреть характеристики необходимых радиодеталей.

Программа для расчета источников напряжения и тока с учетом характеристик LM317 от LM317T. Расчет схем включения мощных преобразователей на транзисторах TL431, M5237. Также IC 7805, 7809, 7812.

Схемы включения

Стабилизатор LM317 зарекомендовал себя с универсальной микросхемой, способной стабилизировать напряжение и токи.За десятки лет были разработаны сотни схем включения LM317T для различных приложений. Основное назначение — стабилизатор напряжения в силовых блоках. Для увеличения силы количества ампер на выходе есть несколько вариантов:

  1. подключение параллельно;
  2. Установка
  3. на выходе силовых транзисторов, получаем до 20а;
  4. Замена мощных аналогов LM338 на 5а или LM350 на 3А.

Для построения двухполюсного блока питания используются стабилизаторы отрицательного напряжения LM337.

Считаю, что параллельное подключение — не лучший вариант из-за разницы характеристик стабилизаторов. Невозможно подогнать несколько штук точно под одинаковые параметры, чтобы равномерно распределить нагрузку. Благодаря скаттеру одной загрузки всегда будет больше всего. Вероятность выхода из строя нагруженного элемента выше, если он сгорит, то резко возрастет нагрузка на другой, который может не выдержать.

Чтобы не подключать параллельно, лучше использовать для питания преобразователя напряжения на выходе для силовой части DC-DC.Они рассчитаны на большой ток и лучше из-за большего размера.

Современные импульсные микросхемы уступают по популярности, их простота превзойти сложно. Стабилизатор тока на LM317 для светодиодов прост в настройке и расчетах, в настоящее время все еще используется в небольшом производстве электронных компонентов.

Два кровяных BP LM317 и LM337 для получения положительного и отрицательного напряжения.


Радиоконструкции

Для начинающих радиолюбителей могу порекомендовать радиоконструкторы от Китая на AliExpress. Такой конструктор — оптимальный способ собрать устройство по схеме включения, вам не нужно вносить плату и забирать его. Любой конструктор можно доработать на свое усмотрение, главное, чтобы заряд был. Стоимость конструктора от 100 руб с доставкой, готовый модуль в сборе от 50 руб.

Datasheet, Datasheet

Микросхема очень популярна, выпускается самыми разными производителями, в том числе китайскими. Мои коллеги сталкивались с LM317 с плохими параметрами, которые не тянут заявленный ток. Куплен у китайцев, которые любят подделывать и копировать, при этом ухудшая характеристики.

Комментарии (16):

# 1 root 28 марта 2017

В схему добавлено дополнений:

  • В эмиттерную схему транзисторов добавлены транзисторы для выравнивания токов;
  • Добавлены конденсаторы C3 и C4 (0.Керамика 1 мкФ).

Емкость C1 лучше собрать из нескольких электролитических конденсаторов, если вам нужен большой ток, рекомендуется 2 шт. Для 4700mCF и более.

Транзисторы

CT819 можно заменить на зарубежные MJ3001 или другие.

# 2 Victor 12 сентября 2017 г.

R2-какого типа, СП … или. Смэм неплохо! Спасибо !!!

# 3 root 12 сентября 2017

Резистор R2 — переменное сопротивление любого типа, мощностью 0.5 Вт и более. Если нет сопротивления до 3,3К, можно выставить 6,8к или другое (до 10к).

# 4 Дмитрий 25 октября 2017

Спасибо за уроки очень полезные.

# 5 Евгений 25 ноября 2017

Что с защитой от перегрузки / кз?

# 6 root 26 ноября 2017

Данная схема не защищает от непрерывной и токовой перегрузки. Без доработки схемы на его выходе не помешает установка предохранителя.

# 7 Андрюс 15 декабря 2017

собрал схему Но что-то падает ток на выходе.Trans 300.4A подает 31 вольт A на выходе при нагрузке 6 вольт 3 напряжения. Может что не так. Транзисторы тоже меняли LM — не помогает.

# 8 root 15 декабря 2017

Внимательно проверьте всю установку, особенно исправность микросхемы и транзисторов.
COFCOL CHOCHCH LM317:


По транзисторам в пластиковых и металлических корпусах — КТ819 — характеристики и основание.

# 9 Андрюс 15 декабря 2017

все проверено много раз.Микросхема тоже правильно подключена к транзистору. также поменял микросхему, транзисторы. Ничего не помогает, даже не знаю, что еще можно сделать.

# 10 Александр Коммонсистер 16 декабря 2017

Благодарю #root за смешанную внутреннюю схему микросхемы: искал везде, но безуспешно. На 12 урожае будет аналогично.

# 11 Александр Коммонсистер 17 декабря 2017 г.

Насчет внутренней схемы LM317: как заменить источник тока: Говорят два (и более) кремниевых диода? Возможна ли замена транзисторов на внутренней схеме на одну композитную марку, скажем, кт827вм? Чем заменили операционный усилитель? Как построить токовую защиту? — И пока я писал вопросы, сразу нашел ответ: использовать полевой транзистор.

# 12 ROOT 17 декабря 2017

Александр, ниже принципиальная схема Кристаллических микросхем LM117, LM317-N из даташета (сайт Ti.com — Texas Instruments):

# 13 Александр Коммонсистер 17 декабря 2017 г.

Спасибо: Очень напоминает схему CR142NE. Но нет никаких деноминаций.

# 14 Игорь 26 декабря 2017

Можно ли применить в схеме транзисторы CT827A?

# 15 Александр Коммонсистер 27 декабря 2017

Игорь: Наверняка можно, но после оператора (см. Пост №8) в цепочке баз до схемы защиты, скорее всего, будет включен гасящий резистор, номинал которого зависит от напряжения питания: главное в том, что на базе эмиттера не больше пяти вольт.Токовая защита Токовая защита, вероятно, будет заменена на Z147A Stabilitron.

# 16 Андрей 06 февраля 2018

Здравствуйте, первый раз собираю блок питания, в гараже нашел старый трансформатор. Я сделаю это по такой схеме. Подскажите пожалуйста на какой ножке переменный резистор куда идет.

В последнее время интерес к схемам стабилизаторов тока значительно возрос. И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное электроснабжение.Самый простой, дешевый, но в то же время мощный и надежный стабилизатор тока можно построить на базе одной из интегральных схем: LM317, LM338 или LM350.

Лист данных на LM317, LM350, LM338

Прежде чем переходить непосредственно к схемам, рассмотрим особенности и характеристики вышеуказанных линейных интегральных стабилизаторов (лисица).

Все три из них имеют схожую архитектуру и предназначены для построения на их основе не сложных схем стабилизаторов тока или напряжения, в том числе применяемых и со светодиодами.Различия между чипами связаны техническими параметрами, которые представлены в сравнительной таблице ниже.

LM317. LM350 LM338.
Диапазон значений регулируемого выходного напряжения 1,2 … 37В. 1,2 … 33В. 1,2 … 33В.
Максимальная токовая нагрузка 1,5А. 3А. 5А.
Максимально допустимое входное напряжение 40 В. 35В. 35В.
Индикатор возможной ошибки стабилизации ~ 0,1% ~ 0,1% ~ 0,1%
Максимальная рассеиваемая мощность * 15-20 Вт 20-50 Вт 25-50 Вт
Диапазон рабочих температур 0 ° — 125 ° C 0 ° — 125 ° C 0 ° — 125 ° C
Лист данных. LM317.pdf. LM350.pdf. Lm338.pdf.

* — зависит от производителя.

Во всех трех микросхемах есть встроенная защита от перегрева, перегрузки и возможного короткого замыкания.

Интегральные стабилизаторы (ИП) выпускаются в монолитном корпусе нескольких вариантов, самый распространенный — К-220. Микросхема имеет три выхода:

  1. Настроить. Выход для установки (регулировки) выходного напряжения. В режиме стабилизации тока подключен к плюсу выходного контакта.
  2. Выход. Выход с низким внутренним сопротивлением для формирования выходного напряжения.
  3. Ввод. Выход для напряжения питания.

Схемы и расчеты

Наибольшее использование IP было найдено в источниках светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора.
На вход подается напряжение питания, управляющий вывод подключается к выходу через резистор (R), а выход микросхемы подключается к аноду светодиода.

Если рассматривать самый популярный lm317t, то сопротивление резистора рассчитывается по формуле: R = 1,25 / i 0 (1), где i 0 — выходной ток стабилизатора, величина которого регулируется Паспортные данные на LM317 и должны быть в пределах 0,01–1,5 А. Отсюда следует, что сопротивление резистора может быть в пределах 0,8–120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: p r = i 0 2 × R (2). Включение и расчеты LM350, LM338 полностью аналогичны.

Результирующие расчетные данные для резистора округлены по большей части согласно номинальной строке.

Постоянные резисторы изготавливаются с небольшим изменением величины сопротивления, поэтому не всегда удается получить желаемое значение выходного тока. Для этого в схему устанавливают дополнительный быстродействующий резистор соответствующей мощности.
Это немного увеличивает стоимость сборки стабилизатора, но гарантирует необходимый ток для питания светодиода.При стабилизации выходного тока более 20% от максимального значения на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.

Онлайн-калькулятор LM317, LM350 и LM338

Как-то недавно я нашел в интернете одну схему простого блока Power с возможностью регулировки напряжения. Вы можете регулировать напряжение от 1 до 36 вольт, в зависимости от выходного напряжения на вторичной обмотке трансформатора.

Внимательно посмотрите на LM317T в самой схеме! Третья ножка (3) микросхемы цепляется за конденсатор C1, то есть третья ножка является входом, а вторая ножка (2) цепляется за конденсатор C2 и резистор 200 Ом и является выходом.

С помощью трансформатора от напряжения сети 220 вольт получаем не более 25 вольт. Меньше можно, больше нельзя. Потом все это дело выпрямляем диодный мост и сглаживаем пульсации конденсатором С1. Все это подробно описано в статье, как получить постоянное напряжение. И вот самый главный наш козырь в блоке питания — это высокостабильный стабилизатор напряжения LM317T. На момент написания статьи цена на этот чип составляла около 14 рублей.Даже дешевле, чем буханка белого хлеба.

Описание микросхемы

LM317T — регулятор напряжения. Если трансформатор выдается на вторичную обмотку 27-28 вольт, мы спокойно можем регулировать напряжение от 1,2 и до 37 вольт, но я бы не стал поднимать планку больше 25 вольт на выходе трансформатора.

Чип может быть выполнен в корпусе Case-220:

или в корпусе D2 Pack

Он может пропускать через себя ток максимальной силы 1.5 ампер, чего вполне достаточно для питания ваших электронных вязальных машин. То есть мы можем выдавать напряжение 36 вольт с током на нагрузку до 1,5 ампера, и при этом наша микросхема все равно будет выдавать 36 вольт — это, конечно, в идеале. На самом деле будут спрашивать акции Volta, что не очень критично. При большом токе в нагрузке желательно поставить эту микросхему на радиатор.

Для того, чтобы собрать схему, нам понадобится еще резистор переменный на 6,8км, можно даже на 10км, а также постоянный резистор на 200 Ом, желательно от 1 ватта.Ну а на выходе ставим конденсатор в 100 мкФ. Абсолютно простая схема!

Сборка в железе

Раньше у меня был очень плохой блок питания на транзисторах. Я подумал, а почему бы его не переделать? Вот результат 😉


Здесь мы видим импортный диодный мост GBU606. Он рассчитан на ток до 6 ампер, что более чем достаточно для нашего блока питания, так как он будет выдавать в нагрузку максимум 1,5 ампера. ЛМ-ку я поставил на радиатор с помощью пасты КПТ-8 для улучшения теплообмена.Ну, все остальное, я думаю, вы знаете.


А вот допотопный трансформатор, который дает мне на вторичной обмотке напряжение 12 вольт.


Все это аккуратно упаковано в футляр и выведены провода.


Так что вы думаете? 😉


У меня получилось минимальное напряжение 1,25 вольт, а максимальное — 15 вольт.



Ставлю любое напряжение, в данном случае самые обычные 12 вольт и 5 вольт



Все работает на ура!

Этот блок питания очень удобен для регулировки скорости мини-дрели, которая используется для сверления досок.


Аналоги на Алиэкспресс

Кстати, на Али можно найти готовый набор этого блока без трансформатора.


Лень собирать? Можно взять готовые 5 ампер менее 2 $:


По видно это ссылка.

Если 5 ампер недостаточно, вы можете увидеть 8 ампер. Достаточно даже самой известной электрической машины:


Блок питания — необходимая вещь в арсенале любого радиолюбителя.И предлагаю собрать очень простую, но в то же время стабильную схему такого устройства. Схема несложная, а набор деталей для сборки минимальный. А теперь от слов к делу.

Для сборки нам понадобятся следующие комплектующие:

НО! Все эти детали представлены точно по схеме, а выбор комплектующих зависит от характеристик трансформатора и других условий. Компоненты представлены по схеме, но мы их выберем! Трансформатор (12-25 В.) Диодный мост на 2-6 А.C1 1000 MKF 50 V.C2 100 MKF 50 V.R1 (номинал подбирается в зависимости от трансформатора Служит для подбора светодиодов) R2 200 OMR3 (резистор переменный, подбирается тоже свой номинал зависит от R1, но об этом позже) микросхема LM317Ta — это тоже те инструменты, которые понадобятся при работе.


Сразу приведу схему:


Микросхема LM317 — это регулятор напряжения. Именно на нем и буду собирать сей девайс. Итак, приступаем к сборке.

Шаг 1.Для начала нужно определить сопротивление резисторов R1 и R3. Дело в том, какой трансформатор вы выберете. То есть вам нужно правильно выбрать номинации, и в этом нам поможет специальный онлайн-калькулятор. Его можно найти по этой ссылке: На онлайн-калькуляторе, надеюсь, вы разберетесь. Я рассчитал резистор R2, взяв R1 = 180 Ом, а выходное напряжение 30 В. Получилось 4140 Ом. То есть мне нужен резистор на 5 ком.

Шаг 2. С резисторами разобрался, теперь о pCB.Я сделал это в программе Sprint Layout, которую можно скачать здесь: плата за скачивание


Шаг 3. Сначала я объясню, что надеть. Контакты 1 и 2 — светодиод. 1 — катод, 2 — анод. Резистор для него (R1) Рассмотрим здесь: рассчитаем резисторы с контактами 3, 4, 5 — переменный резистор. И 6 и 7 не пригодились. Было задумано подключить вольтметр. Если он вам не нужен, то просто отредактируйте скачанную плату. Ну а если нужно, установите перемычку между 8 и 9 по контактам.Пройди гонорар на Гетинаксе, методом ЛУТ, отравился перекисью водорода (100 мл перекиси + 30 г. Лимонная кислота + чайная ложка). Теперь о трансформаторе. Брал силовой трансформатор ТС-150-1. Он обеспечивает напряжение 25 вольт.

Шаг 4. Теперь нужно определиться с корпусом. Не раздумывая, мой выбор пал на корпус от старого компа Блока. Питание. Кстати, в этом здании раньше стоял мой старый БП.


Брал с бесперебойного на переднюю панель, подошла очень хорошо.


Вот как он будет установлен:


Чтобы закрыть отверстие в центре, я приклеил небольшой кусок ДВП и просверлил все необходимые отверстия. Ну и установил банановые разъемы.


Кнопка включения питания осталась позади. Ее на фото пока нет. Трансформатор я закрепил «родными» гайками на задней решетке вентилятора. Он точно подошел по размеру.


А на место, где будет плата, тоже приклеил кусок ДВП, во избежание замыкания.


Шаг 5. Теперь нужно установить плату и радиатор, спаять все необходимые провода. И не забываем про предохранитель. Я был прикреплен сверху к трансформатору. На фото все выглядит, как-то страшно и не красиво, а отворачивается совсем.



Осталось только закрыть верхнюю крышку. Еще я ее немного приклеил на термоклей к панели. И вот наш блок питания готов! Осталось только протестировать.

Это устройство может выдавать максимальное напряжение 32 В и ток до 2 ампер.Минимальное напряжение 1,1 В, максимальное 32 В.


uSAMODELKINA.RU.

Блок питания на LM317

Блок питания — непременный атрибут в радиолюбительской мастерской. Еще решил собрать регулируемый БП, так как надоело каждый раз покупать батарейки или пользоваться случайными переходниками. Вот его краткое описание: БП регулирует выходное напряжение от 1,2 вольт до 28 вольт. И обеспечивает нагрузку до 3 А (зависит от трансформатора), чего чаще всего бывает достаточно для проверки работоспособности любительских конструкций.Схема простая, просто для начинающего радиолюбителя. Собрана на основе дешевых комплектующих — LM317 и CT819g.

Регулируемая цепь источника питания LM317


Список элементов схемы:

  • Стабилизатор LM317.
  • T1 — Транзистор Kt819g
  • TR1 — Силовой трансформатор
  • F1 — Предохранитель 0,5a 250 В
  • BR1 — Диодный мост
  • D1 — Диод 1N5400
  • LED1 — Светодиод любого цвета
  • C1 — Электролитический конденсатор 3300 мкФ * 43B
  • C2 — Керамический конденсатор 0.1 мкФ
  • C3 — электролитический конденсатор 1 мкФ * 43V
  • R1 — сопротивление 18K
  • R2 — сопротивление 220 Ом
  • R3 — сопротивление 0,1 Ом * 2W
  • P1 — сильное сопротивление 4,7K

ЦВЕТ КРЫШКИ И ТРАНЗИСТОРА

Корпус взял от БП компа. Лицевая панель из текстолита, на эту панель желательно установить вольтметр. Не ставил так как еще не нашел подходящего. Также на лицевой панели установлены зажимы для выходных проводов.

Входная розетка слева для питания самого БП. Печатная плата Предназначена для крепления микросхемы транзистора и стабилизатора. Крепились к общему радиатору через резиновую прокладку. Радиатор взял твердый (на фото это видно). Его нужно брать как можно больше — для хорошего охлаждения. Все-таки 3 ампера — это много!

Посмотреть все характеристики и варианты включения микросхемы LM317 можно в даташите.Схема в настройке не нужна и работает сразу. Ну хоть заработал сразу. Автор статьи: Владислав.

Форум по микросхемам Стабилизаторы

Обсудить статью блок питания на LM317

radioskot.ru.

Блок питания — одно из важнейших устройств в радиолюбительской мастерской. Тем более с батареями и с батареями каждый раз тихо как-то надоело. Рассматриваемый здесь БП регулирует напряжение от 1,2 вольт до 24 вольт.И нагрузку до 4 А. для большего тока было решено установить два одинаковых трансформатора. Трансформаторы подключены параллельно.

Детали для регулируемого блока питания

  1. Корпус стабилизатора LM317 ТО-220.
  2. Транзистор кремниевый, П-Н-П КТ818.
  3. Резистор 62 Ом.
  4. Конденсатор электролитический 1 мкФ * 43Б.
  5. Конденсатор электролитический 10 мкФ * 43Б.
  6. Резистор 0,2 Ом 5Вт.
  7. Резистор 240 Ом.
  8. Сильный резистор 6.8 ком.
  9. Конденсатор электролитический 2200 мкФ * 35В.
  10. Любой светодиод.

Схема блока питания

Блок-схема защиты

Блок-схема выпрямителя

Детали для защиты здания от KZ

  1. Кремниевый транзистор, N-P-N KT819.
  2. Транзистор кремниевый, Н-П-Н КТ3102.
  3. Резистор 2 Ом.
  4. резистор 1 ком.
  5. резистор 1 ком.
  6. Любой светодиод.

Для корпуса регулируемого блока питания использованы два корпуса, от обычного компьютерного блока питания. Вместо кулера поставили вольтметр и амперметр.

Для дополнительного охлаждения был установлен кулер.

Печатная плата была нарисована в Sprint Layout V6.0.

Но можно присоединить схему только что смонтированной установки. Корпуса соединяются двумя болтами.

Гайки приклеены к крышке термоклеевой крышки.Для охлаждения стабилизатора и транзисторов использовался радиатор от компьютера, который продувал кулер.

Для удобства переноса блока питания ручка от хрубы в письменном столе прикручена. В целом получившийся блок питания очень понравился. Его мощности хватает для питания практически всех цепей, проверки микросхем и зарядки небольших аккумуляторов.

Схему IP настраивать не нужно, а при правильном пике заработает сразу.Статья 4EI3 Электронная почта автора

Форум по БП

Обсудить статью БП о LM317 с блоком безопасности

radioskot.ru.

Схема регулируемого блока питания на LM317

Сразу отвечу на вопросы: да, этот блок питания я делал для себя, хотя лабораторный блок у меня приличный; Питать детские электробатареи чисто, чтобы не тянуть главную мощную. И вот, когда я вроде как оправдался за такую ​​инсолидировку, как для опытного радиоплеера, можно переходить к подробному описанию 🙂

Схема источника напряжения на LM317

В общем, был самодельный приличный металл коробочка со стрелочным индикатором, в которой давно прожила зарядка (самодельная естественно).Но она работала плохо, поэтому после покупки цифрового универсального IMAX B6 — внутри нее задумали разместить БП до 12 вольт, чтобы электронные детские игрушки накормить (роботы, моторы и так далее).

Сначала был выбран трансформатор. Пульс ставить не хотелось — ни капельки внезапно, ни где резьба намечается, планируется вещь в детскую. Поставил ТП20-14, который через пару минут пнул)) точнее вырвал из интерсити, так как этот трансформатор 20 лет лежал в тумбочке.Ну ничего — заменил на надежный китайский 13V / 1A от магнитолы (тоже 15 лет было).

Следующий этап Блок питания — выпрямитель с фильтром. Имеется в виду диодный мост с конденсатором на 1000-5000 мкФ. Паять его на скаттер не захотел — поставил готовую косынку.

Отлично, уже есть постоянные 15 вольт! Мы идем … сейчас регулируем эти вольты. Можно было собрать на паре транзисторов простейший регулятор, но в облом.Самое быстрое решение — микросхема LM317. Всего 3 детали — переменный регулятор, резистор на 240 Ом и сам чип-стабилизатор, который от счастья попал в коробку. И даже не солдат!

Вот только она не вышла … Я сидел и тупо на нее споткнулся: Даркхэм вылез? Сначала трансформатор, теперь она … нет, упорно бьется днем!

Наутро для трезвой головы заметил, что 2 и 3 вывода перепутаны местами)) Перепанал и все стало налажено.Ровно от 1,22 до 12В. Осталось выпасть стрелка индикатора переключенного на тумблер как вольт / амперметр, так и светодиоды питания и выходного напряжения. Просто красный через пару километров на выходе висел, так что примерно было видно, что сделано, этакая дополнительная защита от подачи 10 В на 3-х вольтовую игрушку.

А про защиту. Их нет. Даже в режиме CW подаётся напряжение и светодиоды тусклые. Ток в цепи тока около 1,5 ампер. Но электронных предохранителей изобретать не удалось — слабый трансформатор сам играет роль программатора тока.Если вы столкнетесь с повторением конструкции по всем правилам — берите схему защиты отсюда.

Из особенностей микросхемы отмечу падение напряжения около 2 В. Это не много и мало — среднее, как для таких стабилизаторов.

Конденсатор на выходе поставил 47 мкФ на 25 В. Защитный диод не ставил, мол не обязательно. Резистор переменный 6,8 ком — но работает в узком секторе поворота ручки, лучше заменить на 2-3 ком.Или оказывать последовательно еще одно, постоянное сопротивление.

Итоги работы

Подведем итог: схема однозначно рабочая и рекомендуется для повторения начинающим мастерам, которые делают первые шаги, или тем, кому лень тратить время / деньги на более сложные схемы ДПК. Дело в том, что минимальный порог 1,2 В — не проблема. Я, например, не помню случая, чтобы мне вольт было меньше))

elwo.ru.

мощный регулируемый блок питания

На микросайте LM317T схема блока питания (БП) упрощается во много раз.Во-первых, можно произвести настройку. Во-вторых, сделана стабилизация мощности. Более того, по отзывам многих радиолюбителей, этот микробрикс в разы больше отечественных аналогов. В частности, его ресурс очень большой, ни в коем случае не по сравнению с каким-либо другим элементом.

Блок питания — трансформатор

В качестве преобразователя напряжения необходимо использовать понижающий трансформатор. Его можно взять практически из любой бытовой техники — магнитофонов, телевизоров и т. Д.Также можно использовать трансформаторы марки TWEC-110, которые были установлены в сканере черно-белого телевидения. Правда, выходное напряжение у них всего 9 В, а ток совсем небольшой. А если нужно проложить мощного потребителя, этого явно недостаточно.

Но если вы хотите сделать мощный БП, разумнее использовать силовые трансформаторы. Их мощность должна быть не менее 40 Вт. Для изготовления блока питания ЦАП на микросайте LM317T понадобится выходное напряжение 3,5-5 В. Именно такое значение в цепи питания микроконтроллера.Не исключено, что вторичную обмотку потребуется немного изменить. Первичная при этом не перематывается, проводится только ее изоляция (при необходимости).

Выпрямительный каскад

Выпрямительный блок представляет собой сборку полупроводниковых диодов. В этом нет ничего сложного, стоит только определиться, какой вид выпрямления использовать. Схема выпрямителя может быть:

  • одноальтерогенная;
  • двупетье;
  • дорожное покрытие;
  • с удвоением, тройным, напряжением.

Последнее разумно применить, если, например, на выходе трансформатора у вас 24 В, а нужно получить 48 или 72. В этом случае неизбежно уменьшается выходной ток, это следует учитывать. Для простого блока питания больше всего подойдет схема выпрямителя. Использование микросайта LM317T б / у мощного блока питания не позволит вам обойтись. Причина, по которой мощность самого чипа всего 2 Вт. Схема дорожного покрытия позволяет избавиться от ряби, а КПД у нее на порядок выше (если сравнивать с одноальтерогенной схемой).Допускается в выпрямительном каскаде использовать как диодные сборки, так и отдельные элементы.

Корпус блока питания

В качестве материала корпуса разумнее использовать пластик. Удобен в обработке, поддается разогреву при нагревании. Другими словами, заготовкам можно легко придать любую форму. А на сверление отверстий времени не потребуется. Но можно немного поработать и сделать красивый и надежный лист из алюминия. Конечно, хлопот с ним будет больше, но внешний вид будет потрясающий.После изготовления корпуса из листового алюминия его можно аккуратно очистить, спроектировать и нанести несколько слоев краски и лака.

Вдобавок убьешь сразу двух зайцев — получишь красивый чехол и обеспечишь дополнительное охлаждение майкрософта. На LM317T блок питания построен по такому принципу, что стабилизация осуществляется с выделением большого количества тепла. Например, у вас на выходе выпрямитель 12 В, а стабилизация должна выдавать 5 В.. Эта разница, 7 вольт, идет на нагрев корпуса микробрикса. Следовательно, ему необходимо качественное охлаждение. И алюминиевый корпус этому поспособствует. Однако можно ввести и более продвинутый — установленный на радиаторе термовыключатель, который будет управлять кулером.

Схема стабилизации напряжения

Итак, перед вами микросайт LM317T, схема питания на нем перед глазами, теперь нужно определиться с назначением его выводов. Их всего три — вход (2), выход (3) и масса (1).Поверните корпус лицевой стороной к себе, нумерация производится слева направо. На этом все, теперь осталось провести стабилизацию напряжения. А сделать это несложно, если выпрямительный блок и трансформатор готовы. Как вы понимаете, минус с выпрямителя поступает на первый вывод сборки. С плюса выпрямителя напряжение подается на второй вывод. С третьего снимается стабилизированное напряжение. Причем на входе и выходе необходимо установить электролитические конденсаторы емкостью 100 мкФ и 1000 мкФ соответственно.Вот и все, просто только на выходе желательно ставить постоянное сопротивление (около 2 ком), что позволит быстрее разряжаться электролитам после отключения.

Схема блока питания с возможностью регулировки напряжения

Сделать регулируемый блок питания на LM317T проще, для этого не нужны специальные знания и навыки. Итак, у вас уже есть блок питания со стабилизатором. Теперь его можно немного модернизировать, чтобы изменить напряжение на выходе в зависимости от того, что вам нужно.Для этого достаточно отключить первый вывод микронауки от минусовой цепи питания. На выходе последовательно соединены два сопротивления — постоянное (номинал 240 Ом) и переменное (5 ком). В месте их подключения подключается первый вывод микроскопов. Такие несложные манипуляции позволяют сделать регулируемый блок питания. Причем максимальное напряжение, подаваемое на вход LM317T, может составлять 25 вольт.

Дополнительные возможности

С использованием микросайта LM317T схема источника питания становится более функциональной.Конечно, во время работы блока питания нужно будет следить за основными параметрами. Например, потребляемый ток либо выходное напряжение (особенно это актуально для схемы регулирования). Поэтому на лицевую панель нужно вмонтировать индикаторы. Кроме того, нужно знать, включен ли блок питания в сеть. Обязанность уведомлять вас о включении в электросеть лучше назначить на светодиод. Такая конструкция достаточно надежна, только питание для нее нужно снимать с выхода выпрямителя, а не микропроцессоров.

Для контроля тока и напряжения можно использовать стрелочные индикаторы с градуированной шкалой. Но в случае, если вы хотите сделать блок питания, который не откажется от лабораторных, можно использовать ЖК-дисплеи. Правда, для измерения тока и напряжения на LM317T схема питания усложняется, так как необходимо использовать микроконтроллер и специальный Driver — буферный элемент. Он позволяет подключаться к портам ввода / вывода ЖК-контроллера.

fB.ru.

LM317T схема включения | Практическая электроника

Если в схеме требуется стабилизатор на какое-то нестандартное напряжение, то отличным решением будет использование популярного интегрального стабилизатора LM317T с характеристиками:

  • , способного работать в диапазоне выходных напряжений от 1.От 2 до 37 В;
  • выходной ток может достигать 1,5 А;
  • максимальная рассеиваемая мощность 20 Вт;
  • встроенный ограничитель тока, для защиты от короткого замыкания;
  • встроенная защита от перегрева.

Микросхема LM317T, схема включения в минимальном варианте подразумевает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входной и выходной конденсатор.

У стабилизатора два важных параметра: опорное напряжение (VREF) и ток, вытекающий из регулировки (IADJ).Микросхема стабилизатора стремится поддерживать резистор R1. Таким образом, если резистор R2 замыкается, то на выходе схемы будет 1,25 В, и чем больше падение напряжения на R2, тем больше выходное напряжение. Получается, что 1,25 В на R1 складывается с падением на R2 и формирует выходное напряжение.

Но я бы посоветовал использовать LM317T в случае стандартных напряжений, только когда надо что-то делать на коленке, а под рукой больше нет подходящей микросхемы типа 7805 или 7812.

А вот расположение выводов LM317T:

  1. Регулируемый
  2. Выход
  3. Вход

Кстати, У.отечественный аналог LM317 — КР142ЕН12А Схема включения точно такая же.

Эту микросхему легко сделать регулируемым блоком питания: вместо постоянного R2 поставить альтернативный, добавить сетевой трансформатор и диодный мост.

На LM317 можно сделать схему плавного пуска: добавить конденсатор и усилитель тока на биполярном PNP-транзисторе.

Схема включения для цифрового контроля выходного напряжения также не сложна. Рассчитываем R2 на максимально необходимое напряжение и параллельно складываем цепочки из резистора и транзистора.При включении транзистора параллельно к проводимости основного резистора добавляется проводимость дополнительного. И выходное напряжение снизится.

Схема стабилизатора тока даже проще, чем напряжения, так как резистор нужен только один. IOV = UOP / R1. Например, таким образом получаем от стабилизатора тока LM317T для светодиодов:

  • для одиночных светодиодов I = 350 мА, R1 = 3,6 Ом, мощностью не менее 0,5 Вт.
  • для трикотажных светодиодов I = 1 А, R1 = 1.2 Ом, мощностью не менее 1,2 Вт.

На основе стабилизатора несложно сделать зарядное устройство На 12 аккумуляторов это то, что нам предлагает Datasheet. Используя RS, вы можете настроить ограничение тока, а R1 и R2 определяют предел напряжения.

Если в схеме требуется стабилизация напряжений на токах более 1,5 А, то каждый может также использовать LM317T, но вместе с мощной биполярной транзисторной структурой PNP. Если вам необходимо построить биполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора — LM337T.

Но у этой микросхемы есть ограничения. Это не стабилизатор с низким падением напряжения, даже наоборот начинает хорошо работать только тогда, когда разница между выходным и выходным напряжением превышает 7 В.

Если ток не превышает 100м, то лучше использовать низкое капают микросхемы LP2950 и LP2951.

Мощные аналоги LM317T — LM350 и LM338

Если выходной ток 1,5 и недостаточно, то можно использовать:

  • LM350AT, LM350T — 3 А и 25 Вт (корпус TOO-220)
  • LM350K — 3 A и 30 Вт (Корпус ТО-3)
  • LM338T, LM338K — 5 А

Производители этих стабилизаторов, помимо увеличения выходного тока, обещают уменьшение тока на входе настройки до 50 мкА и повышение точности опорного напряжения.И схемы включения подходят от LM317.

hardelectronics.ru.

Простой регулируемый блок питания на трех микросхемах LM317

Здравствуйте, сегодня я расскажу, как сделать регулируемый блок питания на базе микросхемы LM317. Схема сможет выдавать до 12 вольт и 5 ампер.

Схема блока питания

Для сборки нам понадобится

  • Стабилизатор напряжения LM317 (3 шт.)
  • Резистор 100 Ом.
  • Потенциометр 1 ком.
  • Конденсатор электролитический 10 мкФ.
  • Конденсатор керамический 100 НФ (2 шт.).
  • Конденсатор электролитический 2200 мкФ.
  • Диод 1N400X (1N4001, 1N4002 …).
  • Радиатор для микросхем.
Схема сборки
Схему при навесной установке соберем, так как это некоторые детали. Сначала прикрепляем фишки к радиатору, собирать будет удобнее. Кстати, не обязательно использовать три лм. Все они подключены параллельно, так что можно сделать два или один.Теперь все крайние левые ножки припаиваем к ножке потенциометра. К этой ножке припаять плюс конденсатор, минус припаять к другому выводу. Чтобы конденсатор не мешал, скинул снизу потенциометра. Есть ножка потенциометра, к которой припаяны левые ножки микросхем, так же припаиваем резистор на 100 Ом. К другому концу потенциометра припаяны средние ножки микросхемы (у меня провод фиолетовый). Какой диод припаян к этой ножке резистора.К другой ножке диода припаиваем все правые ножки микросхемы (у меня провод белый). Плюс припаиваем один провод, он будет плюсом ввода. Но два провода припаяны ко второму выводу потенциометра (у меня черный). Будет минус вход и выход. Также припаиваем провод (у меня красный) к резистору, куда ранее был припаян диод. Это будет плюс. Теперь осталось припаять к плюсу и минусу вход, плюс и минус выход на конденсатор на 100 НФ (100 НФ = 0.1 мкФ, маркировка 104). На входе в следующий припаиваем конденсатор на 2200 мкФ, плюсовую ножку припаиваем к плюсовому входу. На этом схема готова к изготовлению. Так как схема дает 4,5 ампер и до 12 вольт, входное напряжение должно быть как минимум таким же. Потенциометр уже настроит выходное напряжение. Для удобства советую поставить хотя бы вольтметр. Полноценный корпус делать не буду, все, что сделал, прикрепил радиатор к отрезку ДВП и прикрутил потенциометр.Еще я вывел провода и прикрутил к ним крокодилов. Это довольно удобно. Далее я прикрепил все это к столу.

sdelaysam-svoimirukami.ru.

LM317 метод испытания регулируемого регулятора напряжения

Некоторое время назад я получил вопрос от участника, чтобы показать, как тестировать регулируемый стабилизатор напряжения LM317. Я решил сделать простой тестер и показать свой метод тестирования этого небольшого, но очень удобного компонента.

LM317 — это трехконтактный стабилизатор напряжения, который поставляется в другом корпусе и с разным током нагрузки до 1,5 А. Для более высокой нагрузки регулятор должен быть оснащен пассивным или активным радиатором для охлаждения ИС.

Обычно я провожу два теста, когда мне нужно проверить тот или иной тип регулятора IC:

— испытание на короткое замыкание

— испытание регулятора напряжения

Самый лучший и самый эффективный метод тестирования этой ИС — вне печатной платы.Чтобы узнать о выводе этой микросхемы, обратитесь к таблице данных микросхемы, которую вы должны проверить. В этом документе я буду использовать регулятор LM317T, и расположение выводов обычно такое же, как и у других LM317 семейства.

Вот вывод LM317T:

Испытание на короткое замыкание:

Выньте из печатной платы LM317 и используйте свой хорошо зарекомендовавший себя цифровой мультиметр, чтобы проверить наличие коротких контактов между всеми контактами. Никакие штифты не должны быть короткими. В противном случае ИС закорочена и неисправна.Замените ИС на новую с такой же нагрузочной способностью.

Испытание регулирования напряжения:

Это самая сложная часть. Вот формула расчета регулируемого резистора, как рассчитать соотношение между регулирующим резистором и Vout:

Если вы построите вышеуказанную простую схему, вы легко сможете протестировать свой LM317. Замкните один желаемый переключатель, считайте выходное напряжение и сравните с этой таблицей.

Если в одно и то же время замыкается более одного переключателя, сначала необходимо вручную рассчитать значение R2 с помощью уравнения параллельного сопротивления, а затем использовать приведенное выше уравнение для расчета выходного напряжения и сравнения результата с выходным напряжением, отображаемым вашим цифровым мультиметром. .В ваших расчетах и ​​измерениях вы получите небольшие отличия, это связано с допуском резисторов, LM317 и точностью цифрового мультиметра. Не беспокойтесь об этом, это нормально и составляет около + -5%.

Кто-то сказал бы, что установка потенциометра вместо R2 была бы более простым способом регулировки напряжения. Да, но тогда я предлагаю подключить еще один резистор около 100 Ом или около того с потенциометром. Это связано с тем, что в некоторых технических данных они обращают внимание на то, чтобы не закоротить контакт Adj, и это произойдет, если вы установите потенциометр в положение 0 Ом.I-Adj может подняться над Iadj_max и убить IC.

ВНИМАНИЕ!

Никогда не используйте испытательную схему для внутрисхемных испытаний. Входное напряжение тестера может повредить некоторые компоненты на печатной плате. Каждый раз, когда вы тестируете LM317, вынимайте его из печатной платы и подключайте к тестовой цепи.
Надеюсь, вам понравится этот урок, и вы сэкономите много времени на ремонт.

Эту статью для вас подготовил Кристиан Роберт Аджич из Нови Кнежевац, Сербия.

Пожалуйста, поддержите, нажав на кнопки социальных сетей ниже. Ваш отзыв о публикации приветствуется. Пожалуйста, оставьте это в комментариях.

P.S- Если вам понравилось это читать, нажмите здесь , чтобы подписаться на мой блог (бесплатная подписка). Таким образом, вы никогда не пропустите сообщение . Вы также можете переслать ссылку на этот сайт своим друзьям и коллегам — спасибо!

Примечание: вы можете проверить его предыдущий пост по ссылке ниже:

https: // www.jestineyong.com/pc-intel-d-326-cooling-problem-solved/

Нравится (174) Не нравится (0)

Расчет АД на lm317. Схемы подключения LM317 и LM317T, лист данных

Сделать блок питания со стабильным выходным напряжением и регулировкой от 0 до 28В довольно просто. Основа дешевая, усилена на двух транзисторах 2N3055. В такой схеме он становится более чем в 2 раза мощнее. При необходимости можно использовать эту конструкцию для получения 20 ампер (практически без переделок, но с соответствующим трансформатором и огромным радиатором с вентилятором), такой большой ток в вашем проекте просто не понадобился.Еще раз напоминаю: убедитесь, что вы устанавливаете транзисторы на большой радиатор, 2N3055 может сильно нагреваться при полной нагрузке.

Перечень деталей, используемых в схеме:

Трансформатор 2 x 15 вольт 10 ампер

D1 … D4 = четыре диода MR750 (MR7510) или 2 x 4 1N5401 (1N5408).

F1 = 1 ампер

F2 = 10 ампер

R1 2k2 2,5 Вт

R3, R4 0,1 Ом 10 Вт

R9 47 0,5 Вт

C2 два раза 4700uF / 50v

C2 50v

D5 1N4148, 1N4448, 1N4151

D11 LED

D7, D8, D9 1N4001

Два транзистора 2N3055

P2 47 или 220 Ом 1 Вт

P3 10k Trimmer

P3 10k Trimmer

и

короткое замыкание, перегрузка и перегрев, предохранители в цепи трансформаторной сети и предохранитель F2 на выходе мешать не будут.Выпрямленное напряжение: 30 х 1,41 = 42,30 вольт, измерено на С1. Таким образом, все конденсаторы должны быть рассчитаны на 50 вольт. Внимание: 42 вольта — это напряжение, которое может выдаваться при выходе из строя одного из транзисторов!

Регулятор P1 позволяет изменять выходное напряжение на любое значение от 0 до 28 вольт. Так как в LM317 минимальное напряжение составляет 1,2 вольта, то для получения нулевого напряжения на выходе блока питания — поставим 3 диода, D7, D8 и D9 на выходе LM317 на базовые транзисторы 2N3055 .На микросхеме LM317 максимальное выходное напряжение составляет 30 вольт, но при использовании диодов D7, D8 и D9 выходное напряжение наоборот падает, и оно будет примерно 30 — (3х0,6В) = 28,2 вольт. Калибровать встроенный вольтметр нужно с помощью триммера Р3 и, конечно же, хорошего цифрового вольтметра.



Примечание . Не забудьте изолировать транзисторы от шасси! Это делается с помощью изолирующих и теплопроводящих прокладок или хотя бы тонкой слюды.Можно нанести термоклей и термопасту. При сборке мощного регулируемого источника питания не забудьте использовать толстые соединительные провода, подходящие для передачи большого тока. Тонкая проводка нагреется и оплавится!

Блок питания — это непременный атрибут в мастерской радиолюбителя. Я также решил сделать для себя регулируемый блок питания, так как устал каждый раз покупать батарейки или использовать случайные переходники. Вот его краткое описание: Блок питания регулирует выходное напряжение от 1.От 2 до 28 вольт. И обеспечивает нагрузку до 3 А (в зависимости от трансформатора), чего часто бывает достаточно для проверки работоспособности радиолюбительских конструкций. Схема простая, просто для начинающего радиолюбителя. Собран на основе дешевых комплектующих — LM317 и KT819G.

Схема регулируемого источника питания LM317

Список элементов схемы:


Стабилизатор LM317
T1 — транзистор KT819G
Tr1 — силовой трансформатор
F1 — предохранитель 0,5A 250V
Br1 — диодный мост
D1 — диод 1N Светодиод любого цвета
С1 — конденсатор электролитический 3300 мкФ * 43В
С2 — 0.Керамический конденсатор 1 мкФ
C3 — электролитический конденсатор 1 мкФ * 43 В
R1 — сопротивление 18 кОм
R2 — сопротивление 220 Ом
R3 — сопротивление 0,1 Ом * 2 Вт
P1 — сопротивление сборки 4,7 кОм

Распиновка микросхемы и транзистора


Корпус был взят от БП компьютера. Лицевая панель сделана из печатной платы, на эту панель желательно установить вольтметр. Не ставил, так как еще не нашел подходящего. Также на лицевой панели установлены зажимы для выходных проводов.



Я оставил входной разъем для питания самого БП. Печатная плата выполнена для навесной установки транзистора и микросхемы стабилизатора. Крепились на общем радиаторе через резиновую прокладку. Радиатор взял твердый (это видно на фото). Его следует брать как можно больше — для хорошего охлаждения. Все-таки 3 ампера — это много!

Блок питания — необходимость в арсенале любого радиолюбителя. И предлагаю собрать очень простую, но в то же время стабильную схему такого устройства.Схема несложная, а набор деталей для сборки минимальный. А теперь от слов к делу.

Для сборки необходимы следующие комплектующие:

НО ! Все эти детали представлены точно по схеме, а выбор комплектующих зависит от характеристик трансформатора и других условий. Ниже представлены комплектующие согласно схеме, но мы их подберем сами!

Трансформатор (12-25 В.)
Диодный мост на 2-6 А.
C1 1000 мкФ 50 В.
C2 100 мкФ 50 В.
R1 (номинал выбирается в зависимости от трансформатора, служит для питания светодиода)
R2 200 Ом
R3 ( переменный резистор, тоже подбирается, его номинал зависит от R1, но об этом позже)
Микросхема LM317T
А также инструменты, которые понадобятся в процессе работы.


Сразу приведу схему:


Микросхема LM317 представляет собой регулятор напряжения.Именно на нем я буду собирать это устройство.
Итак, приступаем к сборке.

Шаг 1. Для начала необходимо определить сопротивление резисторов R1 и R3. Все дело в том, какой трансформатор вы выберете. То есть нужно правильно подобрать номиналы, и в этом нам поможет специальный онлайн-калькулятор. Его можно найти здесь по этой ссылке:
Надеюсь, вы сможете разобраться. Я рассчитал резистор R2, взяв R1 = 180 Ом, а выходное напряжение — 30 В.Всего получилось 4140 Ом. То есть мне нужен резистор на 5 кОм.


Шаг 3 Сначала объясню, что паять. К контактам 1 и 2 — светодиод. 1 — катод, 2 — анод. А резистор для него (R1) мы считаем здесь:
К контактам 3, 4, 5 — переменный резистор. И 6 и 7 не пригодились. Это было предназначено для подключения вольтметра. Если вам это не нужно, то просто отредактируйте загруженную доску. Ну а если надо, то установите перемычку между 8 и 9 контактами.Сделал оплату на гетинаксе методом LUT, протравив в перекиси водорода (100 мл перекиси + 30 г лимонной кислоты + чайная ложка соли).
Теперь о трансформаторе. Брал силовой трансформатор ТС-150-1. Он обеспечивает напряжение 25 вольт.

Шаг 4 Теперь нужно определиться с делом. Недолго думая, мой выбор пал на корпус компа от старого блока питания. Кстати, в этом здании когда-то был мой старый БП.


Я снял переднюю панель у ИБП, которая очень хорошо подошла по размеру.


Примерно так он будет установлен:



Чтобы закрыть отверстие в центре, я приклеил небольшой кусок ДВП и просверлил все необходимые отверстия. Ну вот установил банановые коннекторы.


Кнопка питания оставлена ​​позади. Ее фото еще нет. Прикрепил трансформатор «родными» гайками к задней решетке вентилятора. Он просто подходил по размеру.


А на место, где будет плата, я еще наклеил кусок ДВП во избежание короткого замыкания.


Шаг 5 . Теперь нужно установить плату и радиатор, спаять все необходимые провода. И не забываем про предохранитель. Я прикрепил его поверх трансформатора. На фото все выглядит как-то страшно и некрасиво, но носить это совсем не так.



Осталось только закрыть верхнюю крышку. Еще немного приклеил на термоклей к панели. И вот наш блок питания готов! Осталось только протестировать.


Это устройство может обеспечивать максимальное напряжение 32 В и силу тока до 2 ампер. Минимальное напряжение — 1,1 В, а максимальное 32 В.



Спасибо, всем удачи!

Блок питания (БП) упрощен во много раз. Во-первых, можно произвести корректировку. Во-вторых, выполняется стабилизация мощности. Более того, по отзывам многих радиолюбителей, эта микросборка во много раз превосходит отечественные аналоги.В частности, его ресурс очень велик, не может сравниться ни с одним другим элементом.

Основа блока питания — трансформатор

Надо использовать как преобразователь напряжения. Его можно снять практически с любой бытовой техники — магнитофонов, телевизоров и т. Д. Также можно использовать трансформаторы ТВК-110, которые устанавливались в блоке вертикальной развертки черно-белых телевизоров. Правда, выходное напряжение у них всего 9 В, а ток совсем небольшой. А если вам нужно запитать мощного потребителя, этого явно недостаточно.

Но если вы хотите сделать мощный БП, разумнее использовать Их мощность должна быть не менее 40 Вт. Для изготовления блока питания ЦАП на микросборке LM317T необходимо выходное напряжение 3,5-5 В. Это значение, которое необходимо поддерживать в микроконтроллере. Не исключено, что потребуется немного изменить вторичную обмотку. При этом первичный не перематывается, проводится только его изоляция (при необходимости).

Выпрямительный каскад


Выпрямительный блок представляет собой сборку.В этом нет ничего сложного, только вам нужно решить, какой тип ректификации вам нужно использовать. Схема выпрямителя может быть:

  • полуволновая;
  • полуволна;
  • дорожное покрытие;
  • с удвоением, утроением, напряжением.

Последний разумно использовать, если, например, у вас на выходе трансформатора 24 В, а нужно получить 48 или 72. При этом неизбежно будет уменьшаться выходной ток, это следует принимать в учетную запись.Для простого блока Мостовая схема выпрямителя наиболее подходит для источника питания. Используемая микросборка блока питания LM317T не позволит этого сделать. Причина этого в том, что мощность самого чипа составляет всего 2 Вт. Мостовая схема позволяет избавиться от пульсации, а ее КПД на порядок выше (по сравнению с полуволновой схемой). Допускается использование в выпрямительном каскаде как диодных сборок, так и отдельных элементов.

Корпус для блока питания

В качестве материала корпуса разумнее использовать пластик.Удобен в обращении, при нагревании может деформироваться. Другими словами, вы легко сможете придать заготовкам любую форму. А для сверления отверстий много времени не потребуется. Но можно потрудиться и сделать красивый и надежный корпус из листового алюминия. С ним, конечно, будет больше неприятностей, но внешний вид будет потрясающий. После изготовления корпуса из листового алюминия его можно тщательно очистить, загрунтовать и нанести в несколько слоев краски и лака.

Вдобавок сразу убьешь двух зайцев — получишь красивый корпус и обеспечишь дополнительное охлаждение микросборке.На LM317T блок питания построен по принципу стабилизации осуществляется с выделением большого количества тепла. Например, у вас на выходе выпрямителя 12 В, а стабилизация должна выдавать 5 В. Эта разница, 7 Вольт, уходит на нагрев корпуса микросборки. Поэтому ему нужно хорошее охлаждение. И алюминиевый корпус этому поспособствует. Однако можно сделать что-то более продвинутое — установить на радиатор термовыключатель, который будет управлять кулером.

Схема стабилизации напряжения


Итак, перед глазами микросборка LM317T, схема питания на ней, теперь нужно определиться с назначением ее выводов. У нее их всего три — входной (2), выходной (3) и массовый (1). Поверните лицевую сторону корпуса к себе, нумерация ведется слева направо. На этом все, теперь осталось провести стабилизацию напряжения. И сделать это несложно, если выпрямительный блок и трансформатор уже готовы.Как известно, минус с выпрямителя поступает на первый вывод сборки. Плюсом выпрямителя на второй вывод подается напряжение. С третьего снимается стабилизированное напряжение. Причем на входе и выходе необходимо установить электролитические конденсаторы емкостью 100 мкФ и 1000 мкФ соответственно. Вот и все, только на выходе желательно поставить постоянное сопротивление (около 2 кОм), которое позволит электролитам быстрее разряжаться после отключения.

Схема блока питания с регулировкой напряжения


Сделать регулируемый блок питания на LM317T несложно, это не требует специальных знаний и навыков. Итак, у вас уже есть блок питания со стабилизатором. Теперь вы можете немного модернизировать его, чтобы изменить выходное напряжение, в зависимости от того, что вам нужно. Для этого достаточно отключить первый вывод микросборки от минуса питания. На выходе включить последовательно два резистора — постоянный (номинал 240 Ом) и переменный (5 кОм).В месте их подключения подключается первый вывод микросборки. Такие простые манипуляции позволяют сделать регулируемый блок питания. Причем максимальное напряжение, подаваемое на вход LM317T, может составлять 25 вольт.

Дополнительные возможности

При использовании микросборки LM317T схема питания становится более функциональной. Конечно, во время работы блока питания нужно будет следить за основными параметрами. Например, потребляемый ток или выходное напряжение (особенно это актуально для регулируемой схемы).Поэтому индикаторы необходимо устанавливать на лицевую панель. Кроме того, вам необходимо знать, подключен ли источник питания. Обязанность уведомлять вас о включении источника питания лучше всего поручить светодиоду. Такая конструкция достаточно надежна, только питание для нее нужно снимать с выхода выпрямителя, а не микросборок.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *