На предохранитель провод: Плавкий предохранитель – расчет и выбор проволоки для ремонта

Содержание

Как Подобрать Диаметр Провода Предохранителя: Инструкция

Выбираем диаметр провода, который необходим для замены плавкой вставки предохранителя

Самодельный предохранитель из медной проволоки может стать отличным временным способом заменить перегоревший предохранитель. Но если вы решились на такое, то крайне важно правильно подобрать сечение того самого проводника, который вы будете использовать. Почему это важно, каковы причины перегорания предохранителей и способы временного устранения этого неудобства мы и рассмотрим в нашей статье.

Причины перегорания предохранителей

Начнем с самого важного — с причин перегорания предохранителей. Ведь просто так нечего не происходит и прежде чем ставить «жучек», необходимо определиться с причинами поломки предохранителя.

Их может быть несколько:

Перегорание предохранителя от короткого замыкания

Самая банальная и распространенная причина перегорания предохранителя – это короткое замыкание. В результате данного события ток резко возрастает, на что и реагирует плавкая вставка в предохранителе, перегорая.

Перегруз так же ведет к перегоранию предохранителя

Так же достаточно частым явлением является перегорание проводника при заклинивании приводного механизма питающей цепи. В этом случае предохранитель действует как защита от перегрузки.

Зависимость силы тока от напряжения

Следующей возможной причиной того что вам потребуется искать провод для предохранителя может быть скачек напряжения. При резком и главное длительном снижении напряжения, ток, согласно закону Ома, пропорционально возрастает. Это может привести к перегоранию предохранителя. При непродолжительных по времени скачках такое происходит крайне редко.

Работа предохранителя на грани срабатывания

Еще один возможный вариант, это частая работа предохранителя на грани срабатывания. Когда ток, протекающий через него, близок к номинальному, проволока для предохранителей сильно нагревается. Затем остывает, и опять нагревается. Такой режим изменяет структуру металла, из-за чего предохранитель может перегореть при значительно более низких значениях тока.

Наиболее частые причины перегорания предохранителей в процентном соотношении

Именно для исключения таких случаев качественные предохранители выпускают из максимально чистых металлов. У них изменение структуры при частых перепадах температур минимизировано.

Выбор диаметра проволоки и ремонт предохранителя

Ну, а теперь давайте перейдет к основному вопросу нашей статьи – выбору диаметра и непосредственно ремонту. Начнем с первого.

Выбор диаметра проводника

Диаметр проводника в предохранителях четко рассчитан. Если вы выполняете замену, то должны установить проводник такого же диаметра. Иначе ваш предохранитель не будет выполнять свою функцию по защите электрической сети.

Диаметр провода в зависимости от номинального тока предохранителя

  • Сделать это можно несколькими способами. Наиболее простой взять сечение провода для предохранителя, и таблица стандартных значений позволит осуществить вам выбор. Для этого достаточно измерить диаметр провода.

Измерение диаметра провода

  • Диаметр провода можно измерить с помощью штангенциркуля или даже обычной линейки. Если диаметр проволоки для предохранителя слишком мал, то измерения можно произвести следующим образом. Проволоку наматываем на любой небольшой предмет – зажигалку, карандаш, ручку.

Измерение диаметра проволоки при помощи линейки или штангенциркуля

  • Желательно сделать 10-20 витков, для большей точности измерения. Витки делаем максимально плотными, для исключения пространства межу ними. Затем измеряем диаметр всех витков. Полученное значение делим на количество витков. Вот вам и диаметр провода для предохранителя.

Обратите внимание! При данном способе измерения диаметра у вас наверняка будет небольшая погрешность, связанная с недостаточной плотностью витков. Поэтому полученное число округляем для ближайшего меньшего.

  • Расчет предохранителя из медной проволоки можно произвести и для значений, не указанных в таблице. Для этого нам необходимо знать требуемый ток плавкой вставки и материал проволоки.
  • Для того чтобы вычислить диаметр медной проволоки для предохранителя до 7А, нам следует воспользоваться приведенной ниже формулой. В этой формуле d – рассчитываемый диаметр, Iпл – требуемый ток плавкой вставки, k – коэффициент учитывающий материал проволоки. Для меди он составляет 0,034.

На фото формула расчета диаметра провода

  • Если вы хотите своими руками вычислить диаметр проволоки для вставки на номинал выше 7А, то вам следует воспользоваться формулой, приведенной ниже. В этой формуле m – коэффициент учитывающий материал проволоки. Для меди он равен 80.

Формула расчета диаметра провода

  • Если толщина провода для предохранителя в результате расчета или выбора по таблице получилась таковой, какой нет в наличии. То можно добиться требуемого диаметра за счет соединения нескольких проволок разного сечения. Хотя этот вариант и несколько хуже.

Поправочные коэффициенты для формул в зависимости от материала провода

Ремонт предохранителей

Установка вместо калиброванной плавкой вставки в предохранитель проволоки в простонародье называется установкой «жучка». Любой «жучек», согласно нормам ПУЭ, недопустим, так как не всегда способен качественно защитить электроустановку.

Тем не менее к такому способу ремонта предохранителей прибегают достаточно часто. Особенно когда под рукой нет запасного предохранителя.

  • Установка «жучка» вместо предохранителя зависит от его типа. Если это трубчатый предохранитель на большой номинальный ток, то такие изделия обычно имеют разборную конструкцию как на видео.

Съёмные плавкие вставки

  • То есть, предохранитель можно раскрутить. Изъять перегоревшую плавкую вставку и вместо нее установить предохранитель из медного провода.
  • С изделиями меньших номиналов все немного сложнее. Обычно они изготавливаются неразборными, в связи с чем придётся повозиться.

Ремонт трубчатого предохранителя

  • Если перед вами трубчатый предохранитель стеклянного или керамического типа, то они обычно имеют металлические оконцовки. Для установки «жучка» их необходимо просверлить с двух сторон и в полученную полость вставить наш проводник. Отверстие вместе с проводником желательно затем запаять.
  • С ножевыми предохранителями выполнить ремонт своими руками несколько сложнее. Тут просверлить отверстие не получится, так как крепить провод необходимо к ножам, которые скрыты под корпусом. В этом случае сечение провода предохранителя на 10 А или другого номинала крепят непосредственно на ножи перед корпусом. А затем устанавливают предохранитель.

«Жучок» на ножевой предохранитель

Обратите внимание! Такой способ намного опаснее. Так как при перегорании провода возможно его разбрызгивание по соседнему оборудованию. К пожару это может и не привести, но повредить оборудование может.

Расплавленные брызги металла на корпусе предохранителя

  • Именно, исходя из этих причин, наша инструкция не советует наматывать проволоку непосредственно на контакты-держатели предохранителей. Это же касается намотки провода поверху корпуса трубчатого предохранителя.

Установка «жучка» поверх предохранителя

  • Отдельный вопрос — предохранители с наполнителем. Наполнитель необходим для более быстрого погасания электрической дуги. Обычно такие изделия имеют разборную конструкцию и для них необходима такая же толщина проволоки для предохранителя, как и для других трубчатых изделий. Песок же, который находится внутри изделия, сначала ссыпаем, а затем опять засыпаем в предохранитель.

Вывод

Диаметр провода для предохранителей зависит от номинального тока изделия и от материала используемого провода. Подобрать или рассчитать этот диаметр не так уж сложно. Но такая починка является лишь временной мерой.

ПУЭ не зря требует использования лишь калиброванных вставок, а что касается неразборных предохранителей с небольшим номинальным током, то их цена не столь высока, чтобы рисковать дорогостоящим оборудованием. Поэтому при первой возможности обязательно замените «жучок» на нормальный предохранитель или калиброванную вставку.

Таблица диаметров проводов для предохранителей — Таблицы — Справочник

       

Таблица диаметров плавких вставок

 

Если в предохранителе перегорает плавкая вставка, ее нужно заменить. Но что делать, если нет под рукой стандартизированных вставок? Как выбрать ток плавления вставки?

Ток плавления – это удвоенное значение тока номинального тока потребителя. Так, если номинальная нагрузка составляет 10 А, выбираем ток плавкой вставки, равный 20 А. Надо иметь в виду, что предохранитель мгновенно не перегорает, ему нужно какое-то время. Поэтому пусковые токи двигателей или другие кратковременные повышенные токи не влияют на работу предохранителя.

Назначение плавких вставок как и автоматических выключателей –защита сети и потребителей от перегрузок и коротких замыканий. Главное отличие плавких вставок от автоматов – это одноразовое использование. В последнее время все больше отходят от применения предохранителей, предпочитая их автоматическим выключателям. Плюс плавких вставок – это относительная доступность, дешевизна в применении. Минус – при срабатывании, чтобы включить, нужно время для замены вставки; при замене вставки нужно отключать напряжение.

 

Ток плавления, А

Диаметр, мм

Медь

Алюминий

Железо

0,5

0,03

0,04

0,06

1

0,05

0,07

0,12

2

0,09

0,1

0,19

3

0,11

0,14

0,25

4

0,14

0,17

0,3

5

0,16

0,19

0,35

6

0,18

0,22

0,4

7

0,2

0,25

0,45

8

0,22

0.27

0,48

9

0,24

0,29

0,52

10

0,25

0,31

0,55

15

0,32

0,4

0,72

20

0,39

0,48

0,87

25

0,46

0.56

1

30

0,52

0,64

1,15

35

0,58

0,7

1,26

40

0,63

0.77

1,38

45

0,68

0,83

1,5

50

0,73

0,89

1,6

60

0,82

1

1,8

70

0,91

1.1

2

80

1

1,22

2,2

90

1,08

1,32

2,38

100

1,15

1,42

2,55

120

1,31

1.6

2,85

140

1,45

1.78

3,18

160

1,59

1,94

3,46

180

1,72

2,1

3,75

200

1,84

2,25

4,05

225

1,99

2,45

4,4

250

2,14

2,6

4,7

275

2,2

2,8

5

300

2,4

2,95

5,3

 

                 I=80√d3
                                      — формула для расчета тока плавкой вставки для медной проволоки
                                                                                          

Диаметры медного провода для предохранителя

Диаметры медного провода для плавкой  вставки предохранителя

Табличка, которая должна быть под руками у каждого электрика.

Диаметры медного провода для плавкой   вставки предохранителя

Номинальный диаметр медного провода, мм

Ток плавкой вставки предохранителя, А

Номинальный диаметр медного провода, мм

Ток плавкой вставки предохранителя, А

0,05

0,6

0,71

47,8

0,063

1,25

0,75

52

0,071

1,5

0,8

57,2

0,08

1,8

0,85

62,7

0,09

2,1

0,9

68,3

0,1

2,5

0,95

68,6

0,112

3

1

80

0,124

3,5

1,06

87,3

0,14

4,2

1,12

94,8

0,16

5,1

1,18

102,5

0,17

5,6

1,25

111,8

0,18

6,1

1,32

121,3

0,2

7,1

1,4

132,5

0,224

8,4

1,45

139,7

0,25

10

1,5

147

0,28

11,8

1,6

161,9

0,315

14,1

1,7

177,3

0,335

15,5

1,8

193,2

0,355

16,9

1,9

209,5

0,4

20,2

2

226,2

0,45

24,1

2,12

247

0,5

28,2

2,24

268,2

0,56

33,5

2,36

290

0,63

40

2,5

316,2

0,67

43,7

Выбор медной проволоки под предохранитель (калькулятор)

 Бац, бух и хорошо, что не пожар… Выясняет, что всего лишь сгорел предохранитель. Здесь же можно взять, да и не мучиться,- впаять что-то серьезное, то есть провод потолще. Однако сами понимаете, что позже, вместо вот этого провода – предохранителя, теперь может сгореть нечто более существенное. Тогда ремонт не обойдется так легко. Вначале придется искать серьезную поломку, а затем еще покупать более дорогостоящую деталь и менять ее. Поэтому есть все же смысл подобрать медную проволоку такого диаметра, чтобы она заменила сгоревший предохранитель. То есть необходимо понять, какая существует зависимость между диаметром, сечением медного провода и максимальным током, когда он перегорает. Здесь важно заметить, что это не номинальный ток, а именно максимальный! Ведь при этом токе предохранитель должен срабатывать, то есть перегорать, а не работать без проблем. О подборе медного провода для проводки писал уже в другой статье, в этой же статье именно о критическом токе, когда проволока будет перегорать и работать как предохранитель.

Как определить номинал предохранителя по корпусу и на плате

 Прежде чем поменять что-то испортившееся, необходимо понять, что же все-таки испортилось. В нашем случае перегорело. Надеяться здесь стоит только на надписи на самой плате или на предохранителе, ибо другие методы узнать какой же это был номинал предохранителя весьма зыбки и безосновательны. Ведь исправный предохранитель ничего и не покажет как нулевое сопротивление, а неисправный обрыв. При этом не отдавать же его на анализ в лабораторию, дабы узнать какой это был материал. Смотрим примеры обозначения предохранителей на плате и SMD элементов. Кстати, иногда вместо предохранителя могут использовать даже резистор.

Расчет и подбор медной проволоки под плавкий предохранитель

 Ну хорошо, с номиналом разобрались, теперь бы подобрать такую проволоку, которая могла бы заменить сгоревший предохранитель. Этот вариант приоритетен в тех случаях, когда просто нет под замену аналогичного плавкого предохранителя.
Для того чтобы подобрать проволоку нужного диаметра, необходимо обратиться к форме ниже. В этом случае вы сможете сориентироваться с тем током и диаметром проволоки, в зависимости от материала, что пойдет именно вам.

Ток защиты предохранителя, Ампер 0,25 0.5 1.0 2.0 3.0 5.0 7.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
  Диаметр проволоки, мм   Медной 0.02 0.03 0.05 0.09 0.11 0.16 0.20 0.25 0.33 0.40 0.46 0.52 0.58 0.63 0.68
Алюминиевой 0.07 0.10 0.14 0.19 0.25 0.30 0.40 0.48 0.56 0.64 0.70 0.77 0.83
Стальной 0.32 0.20 0.25 0.35 0.45 0.55 0.72 0.87 1.00 1.15 1.26 1.38 1.50
Оловянной 0.18 0.28 0.38 0.53 0.66 0.85 1.02 1.33 1.56 1.77 1.95 2.14 2.30


Однако это все справочные материалы. А вот для того чтобы сделать подбор проволоки универсальным, можно воспользоваться формулой.

I пр = 80 √d3,

где
I пр – ток защиты предохранителя, А;
d – диаметр медной проволоки, мм.

Обратите внимание, что она верна для меди! Если у вас нет такого диаметра, то придется собирать проводник из нескольких меньших. Здесь надо понимать, что каждый из проводников будет работать параллельно, а значит ток будет падать соизмеримо количеству взятых проводников. Чтобы было легче прикинуть ток, диаметр и количество проводников, можно воспользоваться калькулятором. 

Теперь же пару слов о типовых номиналах предохранителей и случае, если номинал предохранителя первоначально не удалось установить.

Номиналы предохранителей ориентировочные

Номинал предохранителя на микроволновке порядка 12 А (2 Квт)
Номинал предохранителя в блоке питания компьютера 400 Вт – 2,5 А, 600 Вт-4, 800 Вт – 5 А.

 В целом примерно рассчитать предохранитель можно по мощности потребляемого устройства. То есть мощность делим на напряжение и получаем ток. Именно этот ток с небольшим запасом и станет номиналом нашего предохранителя.
Надо понимать, что даже предохранитель для защиты имеет небольшой запас по мощности порядка 10 процентов. Это связано с пусковыми индукционными токами при прохождении через индуктивность и при зарядке конденсаторов большой емкости.

Предохранитель как подобрать


Сообщества › Автозвук › Блог › Выбор предохранителей и выбор сечения провода. ВАЖНО!

С безопасностью не шутят, поэтому постараюсь изложить кратко, емко и доступно. Без заумностей, кому они нужны — лезем в спец литературу.

1. Любой силовой провод, даже слаботочная сопля ДОЛЖЕН БЫТЬ ЗАЩИЩЕН ПРЕДОХРАНИТЕЛЕМ! Даже я, со своим маниакальным отношениям к проводке и немалым опытом горел разок именно из-за слаботочной проводки, которую впопыхах криво подключил!

2. Пред защищает ВСЕ, что идет ЗА НИМ до следующего предохранителя, поэтому если за предом провод разделяется на несколько меньших и в точке разделения НЕТ предохранителя, номинал предохранителя выбирается ПО МЕНЬШЕМУ сечению провода. Иными словами — предохранитель должен сгореть РАНЬШЕ, чем ЛЮБОЙ из проводков ЗА НИМ!

3. Не забываем о том, что помимо защищаемого + провода, у нас есть еще и — провод! Если сечение — провода МЕНЬШЕ сечения +, номинал предохранителя выбирается исходя из МЕНЬШЕГО сечения!

4. Также не забываем дублировать штатную развязку массы АКБ проводом того же номинала, что и — нагрузки, даже если — провод подключен не на кузов, а напрямую от АКБ, т.к. в случае его обрыва, ток пойдет по штатной массе, номинал которой не велик.

5. Подбор номинала провода осуществляется исходя из его длины и нагрузки (ее можно получить путем сложения номиналов предов на усилителях) по таблице

Подбор сечения кабеля исходя из длины и нагрузки. Видимо автор не знал номиналов больше 0AWG В области больших токов и длин (правый нижний угол) подправлю ее позже

6. Подбор номинала предохранителя осуществляется исходя из длины и сечения защищаемого кабеля (в случае нескольких кабелей — наименьшего, см. п2) В условиях автомобиля, при длине проводов до 8м (условно), максимальный ток, который может пропустить провод узнаем из таблицы.

Подбор предохранителя исходя из сечения кабеля


Предохранитель выбирается НЕ БОЛЕЕ ближайшего МЕНЬШЕГО номинала. Например, имея провод 4 AWG, видим макс ток 105,7А, соответственно пред — не более 100А

Рекомендуемые МАКСИМАЛЬНЫЕ номиналы предохранителей ЕММА. Могут быть меньше расчетных, но на соревнованиях судятся по ЭТОЙ табличке

Примечание: Все цифры приведены для медных проводов. Если провод аллюминевый, то пред нужно выбирать на 40% меньшим номиналом. Если провод КГ, где оплетка не терпима к температурам, то пред нужно выбирать на 15% меньшим номиналом.

ЗЫ В некоторых соревновательных лигах подбор предохранителя осуществляется по другим принципам, но для общей пожаробезопасности — этих таблиц достаточно, поэтому здесь я другие варианты не рассматривал.
ЗЫЫ Поправки-дополнения приветствуются. Я давно не практиковался, мог что-то упустить.

www.drive2.ru

Плавкий предохранитель – расчет и выбор проволоки для ремонта

Плавкий предохранитель – это установочное изделие, предназначенное для защиты электроприборов путем отключения подачи на них электроэнергии при превышении допустимой величины тока способом расплавления установленной в предохранителе калиброванной проволоки.

Для защиты электрической проводки и дорогостоящей радиоаппаратуры от короткого замыкания, бросков тока в питающей сети и обеспечения безопасной эксплуатации электроприборов широко используются плавкие вставки – предохранители. Они выпускаются разных конструкций, типоразмеров и на любые токи защиты.

Рассмотренная технология ремонта предохранителей при соблюдении всех условий обеспечит его защитную функцию. Но не каждый имеет опыт работы с паяльником и измерения диаметра проволоки. Да и в любом случае предохранитель промышленного изготовления будет работать надежнее.

Квартирную электропроводку раньше тоже защищали исключительно с помощью плавких предохранителей, установленных в пробки. В настоящее время для защиты электропроводки применяются более надежные многоразовые приборы защиты от коротких замыканий – автоматические выключатели. В электроприборах же, более лучшей защиты от коротких замыканий, чем плавкий предохранитель пока ничего не придумали. Особенно актуально применение плавких предохранителей в автомобилях, так как они являются единственным надежным и дешевым средством защиты от короткого замыкания.

Условное графическое обозначение


плавкого предохранителя

Условное графическое обозначение плавкого предохранителя на схемах похоже на обозначения сопротивления, и отличается только тем, что через середину прямоугольника линия проходит не разрываясь. Рядом с условным обозначением обычно пишется и буквенное обозначение Пр. или F. Иногда на схемах просто пишут thermal fuse или fuse. После буквы часто указывают ток защиты предохранителя, например F 1 А, обозначает, что в схеме установлен предохранитель на ток защиты 1 ампер.

При эксплуатации предохранители выходят из строя, и их приходится заменять новыми. Считается, что предохранители ремонту не подлежат. Но если к делу ремонта подойти грамотно, то практически любой предохранитель можно с успехом отремонтировать и использовать повторно. Ведь корпус предохранителя остается целым, а перегорает только тонкая калиброванная проволока, размещенная внутри корпуса. Если перегоревшую проволоку заменить на такую же, то предохранитель сможет служить дальше.

Принцип работы предохранителя на видеоролике

При прохождении электрического тока меньше предельно допустимого, калиброванная проволока, соединяющая контакты предохранителя, нагревается до температуры около 70˚С. В случае превышения тока номинала предохранителя, проволока начинает нагреваться сильнее и при достижении температуры плавления металла, из которого она сделана – расплавляется, электрическая цепь разрывается, и течение тока прекращается.

Поэтому предохранитель и назвали плавким или плавкой вставкой. Видеоролик представлен в замедленном виде, для того, чтобы было хорошо видно, как происходит перегорание провода в предохранителе. В реальных условиях провод в предохранителе перегорает практически мгновенно.

Всего просмотров: 146573

Предохранитель защищает от превышения тока в цепи и, не имеет значения напряжение питающей сети, в которой он установлен, это может быть батарейка на 1,5 В, и автомобильный аккумулятор на 12 В или 24 В, сеть переменного напряжения 220 В, трехфазная сеть на 380 В. То есть Вы можете установить один и тот же предохранитель, например номиналом 1 А и в колодке предохранителей автомобиля, и в фонарике и в распределительном щите 380 В. Все типы плавких предохранителей отличаются только внешним видом и конструкцией, а работают по одному принципу – при превышении заданного тока в цепи, в предохранителе из-за нагрева расплавляется проволока.

Основных причин выхода из строя предохранителя две, из-за бросков питающего напряжения или поломки внутри самой радиоаппаратуры. Редко, но встречаются отказы предохранителя и по причине плохого его качества.

Многие думают, что предохранитель ремонту не подлежит. Но это не совсем так. В экстренной ситуации, когда под рукой нет запасного и, например, из-за отказавшегося работать авто в пути или усилителя, и срывается музыкальное сопровождение школьного бала или свадьбы, а все магазины уже закрыты, выбирать не приходится.

При грамотном подходе можно с успехом восстановить для временного использования до замены новым перегоревший предохранитель, сохранив его защитные функции. Зачастую такие проблемы решают банальным замыканием контактов держателя предохран

ydoma.info

Условия выбора плавких предохранителей

В наше время все большей популярностью пользуются автоматические выключатели (АВ) как иностранных так и отечественных производителей, это в первую очередь связано с тем, что у АВ отсутствуют недостатки предохранителей. Но не смотря на все свои недостатки, предохранители все еще активно используются, так как это наиболее дешевый вариант защиты присоединения.

Например у нас на предприятии, если заказчик не возражает, для защиты двигателей мощностью до 100 кВт, применяются разъединитель-предохранитель, учитывая что короткое замыкание не такое частое явление, предохранитель – это очень хорошее решения для защиты присоединения.

В связи с этим, в этой статье я расскажу как нужно правильно выбирать предохранители с плавкими вставками в соответствии с ПУЭ и другой справочной литературой, чтобы Ваши предохранители срабатывали только при ненормальных режимах работы электроприемников.

При выборе предохранителя, должны выполняться условия:

  • номинальное напряжение предохранителя должно соответствовать напряжению сети:

Uном = Uном.сети (1)

  • номинальный ток отключения предохранителя должен быть не меньше максимального тока к.з. в месте установки:

Iном.откл > Iмакс.кз (2)

Условия выбора плавких вставок:

  • ток плавкой вставки должен быть больше максимального тока защищаемого присоединения:

Iн.вс. > Iраб.макс. (3)

  • при защите одиночного асинхронного двигателя, выбирается ток плавкой вставки с учетом пуска двигателя:

Iн.вс. > Iпуск.дв/k (4)

где:

k – коэффициент, принимается равным 2,5 согласно [Л1. с. 124,125], что соответствует ПУЭ пункт 5.3.56, для электродвигателей с короткозамкнутым ротором при небольшой частоте включений и легких условиях пуска (tп=2-2,5 сек.).

Обычно данный коэффициент принимается для двигателей вентиляторов, насосов, главных приводов металлорежущих станков и механизмов с аналогичным режимом работы.

Для двигателей с тяжелыми условия пуска (tп > 10-20 сек.), например для двигателей мешалок, дробилок, центрифуг, шаровых мельниц и т.п. А также для двигателей с большой частотой включений, т.е. для двигателей кранов и других механизмов повторно-кратковременного режима, коэффициент k принимается равным 1,6 – 2.

Для двигателей с фазным ротором коэффициент k принимается равным 0,8 – 1.

При выборе тока плавкой вставке по условию (4), следует учитывать, что с течением времени защитные свойства вставки ухудшаются, из-за этого есть вероятность ложных сгораний плавкой вставке при пусках двигателей. В результате двигатель может вообще не запуститься, либо работать на 2-х фазах, что приводит к перегреву двигателя.

И если не предусмотрена защита от перегрузки, двигатель может выйти из строя.

Решением данной проблемы, является выбор большего тока плавкой вставки, чем по условию (4), если это допустимо по чувствительности к токам КЗ.

При защите сборки, ток плавкой вставки выбирают по трем условиям:

  • по наибольшему длительному току:
  • при полной нагрузке сборки и пуске наиболее мощного двигателя:
  • при самозапуске двигателей:

где:
k – коэффициент, учитывающий условия пуска двигателя;

— сумма пусковых токов самозапускающих двигателей;

— сумма максимальных рабочих токов электроприемников, кроме двигателя с наибольшим пусковым током Iпуск.макс.;

Для проверки надежного срабатывания предохранителя в конце защищаемой линии, нужно выполнить на кратность тока кз и учитывать время отключения.

В справочной литературе, Вы можете встретить такое утверждение, что для надежного и быстрого перегорания плавкой вставки, требуется чтобы при КЗ в конце защищаемой линии обеспечивалась необходимая кратность тока короткого замыкания, т.е отношение тока короткого замыкания Iкз к номинальному току плавкой вставки Iн.вс.

Данное условие было взято, еще со старого ПУЭ образца 1986 г пункт 1.7.79 ( для невзрывоопасной среды: kкз = Iкз/Iн.вс (kкз >3), данный пункт в ПУЭ 7-издания был изменен, и теперь нужно учитывать время отключения в системе TN, согласно таблицы 1.7.1.

Для взрывоопасной среды, согласно ПУЭ 7-издание пункт 7.3.139, должно выполнятся условие кратности тока кз: kкз = Iкз/Iн.вс (kкз >4). Данный пункт остался без изменения, если сравнивать с ПУЭ 1986 г, что весьма странно, если учитывать что изменился пункт 1.7.79.

Если Вам неизвестны значения пусковых токов двигателя, то в порядке исключений, можно выбрать номинальные токи плавких вставок для двигателей мощность до 100 кВт и частотой пусков не более 10-15 в час следующим образом [Л2. с. 15]:

  • при Uн.сети = 500 В Iн.вс = 4,5*Рн;
  • при Uн.сети = 380 В Iн.вс = 6*Рн;
  • при Uн.сети = 220 В Iн.вс = 10,5*Рн.

После того как Вы выбрали предохранитель, нужно выполнить проверку селективности (избирательности) последовательно включенных между собой предохранителей с учетом защитных характеристик.

Это означает, что при коротком замыкании должна перегореть только та плавка вставка и того предохранителя, который находиться ближе всего к месту повреждения. Как показывает практика, для обеспечения селективности между двумя последовательно включенными предохранителями. Нужно чтобы предохранители между собой отличались на две ступени по шкале номинальных токов. При этом вставки, должны иметь одинаковые защитные характеристики, поэтому нужно выбирать предохранители одного типа.

Вот в принципе и все, что Вам нужно знать про выбор плавких предохранителей, если данной информации Вам не достаточно, рекомендую ознакомится с литературой, которую я использовал при написании данной статьи. В следующей статье, я приведу примеры выбора плавких предохранителей для различных электроприемников.

Литература:

1. А.В. Беляев. Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ. Энергоатомиздат, Ленинградское отделение, 1988 г. Выпуск 617.
2. Е.Н. Зимин. Защита асинхронных двигателей до 500 В. 1967 г.
3. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.

raschet.info

Плавкие предохранители. Выбор, расчет предохранителя.

Плавкие предохранители

Назначение

При возникновении эксплуатационных (технологических) перегрузок и аварийных режимов, являющихся следствием нарушений работы схемы, по электрическим цепям аварийного контура протекают токи, превосходящие номинальные значения, на которые рассчитано электрооборудование.

В результате воздействия аварийных токов и перегрева токопроводов нарушается электрическая изоляция, обгорают и плавятся контактные поверхности соединительных шин и электрических аппаратов. Электродинамические удары при переходных процессах вызывают повреждение шин, изоляторов и обмоток реакторов.

Для ограничения амплитуды аварийных токов и длительности их протекания применяются специальные устройства и системы защиты электрооборудования.

Примечание. Устройства защиты должны отключить аварийную цепь раньше, чем могут выйти из строя отдельные ее элементы.

При больших перегрузках или коротких замыканиях устройства защиты должны сразу отключить всю электроустановку или часть ее с максимальным быстродействием для обеспечения дальнейшей работоспособности или, если авария является следствием выхода из строя одного из элементов цепи, предотвратить выход из строя другого электрооборудования.

В случае небольших перегрузок, не опасных для оборудования в течение определенного времени, система защиты может воздействовать на предупреждающую сигнализацию для сведения обслуживающего персонала или на систему автоматического регулирования для снижения тока.

Виды защиты и требования к ней

Поскольку основным фактором, приводящим к выходу из строя электрооборудования, является тепловое действие аварийного тока, то по принципу построения защитные устройства делятся на токовые и тепловые.

Токовые защитные устройства контролируют значения или отношения значений протекающих через оборудование токов.

Независимо от параметров установки и типа применяемых защитных аппаратов и систем выделяют следующие общие требования к защите.

Быстродействие — обеспечение минимально возможного времени срабатывания защиты, не превышающего допустимого.

Селективность. Аварийное отключение должно производиться только в той цепи, где возникла причина аварии. А другие участки силовой цепи должны оставаться в работе.

Электродинамическая стойкость. Максимальный ток, ограниченный защитными устройствами, не должен превышать допустимого для данной электроустановки значения по электродинамической стойкости.

Уровень перенапряжений. Отключение аварийного тока не должно вызывать перенапряжений, опасных для полупроводниковых приборов. Надежность. Устройства защиты не должны выходить из строя при отключении аварийных токов. Они обеспечивают возможность быстрого

восстановления электрической цепи при устранении неисправности.

Помехоустойчивость. При появлении помех в сети и в цепях управления устройства защиты не должно ложно срабатывать.

Чувствительность. Защита должна срабатывать при всех повреждениях и токах, опасных для элеменов схемы, независимо от места и характера аварии.

Плавкие предохранители

Определение. Плавкие предохранители — это аппараты, защищающие установки от перегрузок и токов короткого замыкания.

Основными элементами предохранителя являются плавкая вставка, включаемая в рассечку защищаемой цепи, и дугогасительное устройство (это не обязательный атрибут, а вспомогательный, без него предохранитель все равно работать будет), гасящее дугу, возникающую после плавления вставки.

К предохранителям предъявляются следующие требования:

— времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта;

— время срабатывания предохранителя при коротком замыкании должно быть минимальным, особенно при защите полупроводниковых приборов;

— характеристики предохранителя должны быть стабильными;

— в связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность;

— замена сгоревшего предохранителя или плавкой вставки не должна занимать много времени.

Выбор предохранителей

для защиты асинхронных электродвигателей

Основным условием, определяющим выбор плавких предохранителей для защиты асинхронных двигателей с короткозамкнутым ротором, является отстройка от пускового тока.

Отстройка плавких вставок от пусковых токов выполняется по времени: пуск электродвигателя должен полностью закончиться раньше, чем вставка расплавится под действием пускового тока.

Правило. Опытом эксплуатации установлено правило: для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.

Все электродвигатели разбиты на две группы: по времени; по частоте пуска.

Двигателями с легким пуском считаются двигатели вентиляторов, насосов, металлорежущих станков и т. п., пуск которых заканчивается за 3–5 с, пускаются эти двигатели редко, менее 15 раз в 1 ч.

К двигателям с тяжелым пуском относятся двигатели подъемных кранов, центрифуг, шаровых мельниц, пуск которых продолжается более 10 с, а также двигатели, которые пускаются очень часто — более 15 раз в 1 ч.

Выбор номинального тока плавкой вставки для отстройки от пускового тока производится по формуле:

IвсIпд/К,

где Iпд — пусковой ток двигателя; К — коэффициент, определяемый условиями пуска и равный для двигателей с легким пуском 2,5, а для двигателей с тяжелым пуском 1,6–2.

Примечание. Поскольку вставка при пуске двигателя нагревается и окисляется, уменьшается сечение вставки, ухудшается состояние контактов, она со временем может перегореть и при нормальной работе двигателя.

Вставка, выбранная в соответствии с приведенной выше формулой, может сгореть также при затянувшемся по сравнению с расчетным временем пуске или самозапуске двигателя. Поэтому во всех случаях целесообразно измерить напряжение на вводах двигателя в момент пуска и определить время пуска.

Сгорание вставок при пуске может повлечь работу двигателя на двух фазах и его повреждение.

Примечание. Каждый двигатель должен защищаться своим отдельным аппаратом защиты. Общий аппарат допускается для защиты нескольких маломощных двигателей только в том случае, если будет обеспечена термическая устойчивость пусковых аппаратов и аппаратов защиты от перегрузки, установленных в цепи питания каждого двигателя.

Выбор предохранителей для защиты магистралей, питающих несколько асинхронных электродвигателей

Защита магистралей, питающих несколько двигателей, должна обеспечивать и пуск двигателя с наибольшим пусковым током, и самозапуск двигателей. Если он допустим по условиям техники безопасности, технологического процесса и т. п.

При расчете уровня защиты необходимо точно определить, какие двигатели:

— отключаются при понижении или полном исчезновении напряжения;

— остаются включенными;

— повторно включаются при появлении напряжения.

Для уменьшения нарушений технологического процесса применяют специальные схемы включения удерживающего электромагнита пускателя, обеспечивающего немедленное включение в сеть двигателя при восстановлении напряжения. Поэтому в общем случае номинальный ток плавкой вставки, через которую питается несколько самозапускающихся двигателей, выбирается по формуле:

Iвс ≥ ∑Iпд/К,

где ∑Iпд — сумма пусковых токов самозапускающихся электродвигателей.

Выбор предохранителей для защиты магистралей при отсутствии самозапускающихся электродвигателей

Плавкие вставки предохранителей выбираются по следующему соотношению:

Iном. вст.Iкр/К,

где Iкр = Iпуск + Iдлит — максимальный кратковременный ток линии; Iпускпусковой ток электродвигателя или группы одновременно включаемых электродвигателей, при пуске которых кратковременный ток линии достигает наибольшего значения; Iдлитдлительный расчетный ток линии до момента пуска электродвигателя (или группы электродвигателей) — это суммарный ток, который потребляется всеми элементами, подключенными через плавкий предохранитель, определяемый без учета рабочего тока пускаемого электродвигателя (или группы двигателей).

Выбор предохранителей для защиты асинхронных электродвигателей от перегрузки

Поскольку пусковой ток в 5–7 раз превышает номинальный ток двигателя, плавкая вставка, выбранная по выражению IвсIпд/К будет иметь номинальный ток в 2–3 раза больше номинального тока двигателя. Выдерживая этот ток неограниченное время, она не может защитить двигатель от перегрузки.

Для защиты двигателей от перегрузки обычно применяют тепловые реле, встраиваемые в магнитные пускатели или в автоматические выключатели.

Примечание. Если для защиты двигателя от перегрузки и управления им применяется магнитный пускатель, то при выборе плавких вставок приходится учитывать также возможность повреждения контактов пускателя.

Дело в том, что при коротких замыканиях в двигателе снижается напряжение на удерживающем электромагните пускателя. Он разрывает ток короткого замыкания своими контактами, которые, как правило, разрушаются. Для предотвращения короткого замыкания двигатели должны отключаться предохранителем раньше, чем разомкнутся контакты пускателя.

Это условие обеспечивается, если время отключения тока короткого замыкания предохранителем не превышает 0,15–0,2 с. Для этого ток короткого замыкания должен быть в 10–15 раз больше номинального тока вставки предохранителя, защищающего электродвигатель.

Обеспечение селективности срабатывания плавких предохранителей

Избирательность (селективность) защиты плавкими предохранителями обеспечивается подбором плавких вставок таким образом, чтобы при возникновении короткого замыкания, например, на ответвлении к электроприемнику, срабатывал ближайший плавкий предохранитель, защищающий этот электроприемник, но не срабатывал предохранитель, защищающий головной участок сети.

Выбор плавких предохранителей по условию селективности следует производить, пользуясь типовыми время-токовыми характеристиками t=f(I) предохранителей с учетом возможного разброса реальных характеристик по данным завода-изготовителя.

При защите сетей предохранителями типов ПН, НПН и НПР с типовыми характеристиками (рис. 20 и рис. 21) селективность действия защиты будет выполняться, если между номинальным током плавкой вставки, защищающей головной участок сети Iг, и номинальным током плавкой вставки на ответвлении к потребителю Io выдерживаются определенные соотношения.

Например, при небольших токах перегрузки плавкой вставки (около 180–250 %) селективность будет выдерживаться, если Iг больше Io хотя бы на одну ступень стандартной шкалы номинальных токов плавких вставок.

Рис. 20. Защитные (времятоковые) характеристики плавких предохранителей типа ПН-2


Рис. 21. Защитные (времятоковые) характеристики плавких предохранителей типа НПР и НПН

При коротком замыкании селективность защиты предохранителями типа НПН будет обеспечиваться, если будут выдерживаться следующие соотношения:

где Iк — ток короткого замыкания ответвления, А; Iг — номинальный ток плавкой вставки плавкого предохранителя головного участка сети, А; Iо — номинальный ток плавкой вставки на ответвлении, А.

Соотношения между номинальными токами плавких вставок Iг и Iо для предохранителей типа ПН2, обеспечивающие надежную селективность, приведены в табл. 2.

Таблица 2 Номинальные токи последовательно включенных плавких вставок предохранителей ПН2, обеспечивающих надежную селективность


Номинальный ток меньшей плавкой вставки , а

Номинальный ток большей плавкой вставки , а, при отношении /Io

10

20

50

100 и более

30

40

50

80

120

40

50

60

100

120

50

60

80

120

120

60

80

100

120

120

80

100

120

120

150

100

120

120

150

150

120

150

150

250

250

150

200

200

250

250

200

250

250

300

300

250

300

300

400

более 600

300

400

400

более 600

400

500

более 600

Примечание. — ток короткого замыкания в начале защищаемого участка сети.

Для выбора плавких предохранителей по условию селективности можно использовать метод согласования характеристик предохранителей, в основу которого положен принцип сопоставления сечений плавких вставок по формуле:

,

где а — коэфициент селективности; F1 — сечение плавкой вставки, расположенной ближе к источнику питания; F2 — сечение плавкой вставки, расположенной дальше от источника питания, т. е. ближе к нагрузке.

Полученное значение а сравнивают с данными табл. 3, где приведены наименьшие значения а, при которых обеспечивается селективность. Селективность защиты будет обеспечена, если расчетное значение а равно табличному или больше него.

Наименьшие значения а, при которых обеспечивается селективность защиты Таблица 3


Металл плавкой вставки предохранителя, расположенного ближе к источнику питания (для любого типа предохранителя)

отношение а сечений плавких вставок смежных предохранителей, если предохранитель, расположенный ближе к нагрузке, изготовлен

с заполнителем при плавкой вставке из

без заполнителя при плавкой вставке из

меди

серебра

цинка

свинца

меди

серебра

цинка

свинца

Медь

1,55

1,33

0,55

0,2

1,15

1,03

0,4

0,15

Серебро

1,72

1,55

0,62

0,23

1,33

1,15

0,46

0,17

Цинк

4,5

3,95

1,65

0,6

3,5

3,06

1,2

0,44

Свинец

12,4

10,8

4,5

1,65

9,5

8,4

3,3

1,2

Выбор плавких предохранителей для защиты цепей управления

Выбор плавких вставок для цепи управления с напряжением Uн можно произвести по формуле

Iн.вст. ≥ (∑Pр + 0,1∑Pв)/Uн,

где ∑Pр — наибольшая суммарная мощность, потребляемая катушками электрических аппаратов (электромагнитными пускателями, промежуточными реле, реле времени, исполнительными электромагнитами) и сигнальными лампами и т. д. при одновременной работе, ВА или Вт;

Pв — наибольшая суммарная мощность, потребляемая при включении катушек одновременно включаемых аппаратов (пусковая мощность), ВА или Вт.

Если известны не мощности, а токи, то это формула может быть записана в виде

Iн.вст. ≥ ∑Iр + 0,1∑Iв

eti.su

Плавкие вставки. Как выбрать и расчет тока. Работа и применение

Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.

Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.

Плавкие вставки активно используются и в промышленности. От них может зависеть работоспособность целого завода или инженерной сети. Промышленные предохранители лучше не покупать с рук, на рынке или в непроверенных организациях. Мудрое решение — обратиться к профессионалам в области электроники, например, в интернет-магазин Conrad.ru. В подобных вопросах скупой платит не дважды, а трижды

На принципиальных электросхемах графический символ вставки сродни символу резистора, но со сплошной линией, идущей посредине прямоугольника. Обозначается преимущественно как F либо Пр. За литерой обычно идет показатель величины тока защиты. Допустим, F1A указывает, что в схему вмонтирован предохранитель, рассчитанный на допустимую силу тока в 1 ампер. В некоторых случаях делают международное обозначение «fuse» («thermal fuse»).

Повторно использовать плавкие вставки можно, но осторожно…

Плавкие вставки имеют естественное свойство перегорать, и считается, что подобная продукция не ремонтируется. Это не так: если к делу подойти творчески, то потенциально каждая деталь успешно восстанавливается с последующим вторичным применением.

Дело в том, что корпус вставки не повреждается, в негодность приходит лишь калиброванный металлический волосок внутри него. Таким образом, если отслуживший свой срок волосок заменить, предохранитель вновь готов к употреблению. Однако такой вариант годится в крайнем случае, когда, например, запасного предохранителя в наличии не имеется, магазин закрыт, а музыкальное оформление торжества находится под угрозой.

В нормальной же ситуации надлежит использовать только заводское изделие. То есть рациональное решение состоит в том, чтобы временно восстановить вставку до замены новым аналогом, сохранив защитные функции. Акцентируем на этом внимание потому что, увы, нередко сограждане просто замыкают контакты первой попавшейся под руку проволокой, или того хуже, вставляют в пробку вместо предохранителя стальной штырек. Такого рода «изобретение» – вопиющее нарушение техники безопасности, способствующее перегреву контактов и возгоранию.

Поистине универсальное приспособление

Предохранитель приходит в негодность по 2 причинам: из-за колебаний сетевых параметров или неисправностей в самих электроприборах. Бывают технологические отказы и вследствие неудовлетворительного качества той или иной партии продукции. Причем величина напряжения питающей сети, в которой находятся плавкие вставки, принципиально роли не играет. Так, допускается устанавливать образец номиналом 1A и в панели предохранителей автомашины, и в переносной светильник, и в распредустройство на 380V.

Как правило, в процессе эксплуатации волосок, соединяющий противоположные концы корпуса предохранителя, может греться до t ~ +70˚С, и это нормальное явление. Однако если токовая нагрузка увеличивается, t соответственно также растет. При достижении точки плавления материала, из которого проводник выполнен, происходит его мгновенное перегорание, цепь надежно размыкается и электропитание прекращается.

Совершенно ясно, что, скажем, при возникновении КЗ металл плавится, а не горит. Поэтому предохранитель и назвали плавким элементом, а если в обиходе говорят «лампочка перегорела», это вовсе не значит, что вольфрамовую нить накаливания уничтожил огонь – просто она расплавилась, не выдержав скачка электричества при включении. То же происходит и с предохранителем.

Как правильно выбрать предохранитель

Самый распространенный на рынке – трубчатый предохранитель. Он изготавливается в виде полого керамического либо стеклянного цилиндра, с торцов заглушенного металлическими крышками, соединенными между собой волоском, расположенным внутри корпуса. В плавкие вставки для сверхбольших токов в полость цилиндра помещают наполнитель, в основном, кварцевый песок.

Если потребляемая мощность известна, номинальный ток предохранителя легко вычисляется по следующей формуле:
Inom = Pmax / U
Где:
  • I nom – номинальный ток защиты, A.
  • P max – максимальная мощность, W.
  • U – напряжение питания, V.

Хотя лучше пользоваться специально созданными для этой цели таблицами.

Приведем некоторые данные из них:
  • Максимальной потребляемой мощности в 10W соответствует номинал стандартного напряжения в 0,1A.
  • 50W – 0,25A.
  • 100W – 0,5A.
  • 150W – 1A.
  • 250W – 2A.
  • 500W – 3A.
  • 800W – 4A.
  • 1kW – 5A.
  • 1,2kW – 6A.
  • 1,6kW – 8A.
  • 2kW – 10A.
  • 2,5kW – 12A.
  • 3kW – 15A.
  • 4kW – 20A.
  • 6kW – 30A.
  • 8kW – 40A.
  • 10kW – 50A.

Рассмотрим ситуацию, при которой телевизор после грозы перестал включаться. Оказалось, перегорела вставка неопределенного номинала. Мощность телевизора – 120W. По справочнику находим: для аппаратуры с данной установленной мощностью ближайшее значение 150W, которому соответствует изделие, рассчитанное на 1A.

Если предохранитель всякий раз после очередной замены выходит из строя, то причина неисправности кроется не в нем, а в аппаратуре, нуждающейся в ремонте. Использование предохранителя, рассчитанного на больший ток, лишь усугубит положение вплоть до ее ремонтонепригодности.

Кулибиным на заметку

При выпуске предохранителей в зависимости от быстродействия и силы тока применяется калиброванная нить из алюминиевых, медных, нихромовых, оловянных, серебряных, свинцовых сплавов. Чтобы изготовить плавкие вставки в кустарных условиях доступны лишь медь да алюминий, но и этого вполне достаточно.

Создатели деталей электротехнической защиты руководствуются хорошо известным правилом: значение тока разрабатываемого устройства должно быть выше потребляемого оборудованием. Грубо говоря, если усилитель работает на 5A, то ток защиты предохранителя определяется в 10A. На колпачке или теле предохранителя выбивается маркировка, являющаяся его технической характеристикой. Наряду с этим, функциональные электрические показатели наносят и на крышку электроприбора возле точки монтажа предохранителя.

Толщину проволоки определяют микрометром. Если он отсутствует, подойдет и ученическая линейка. Сделайте 10-20 сплошных витков на линейку (чем больше намотаете – тем точнее окажется результат), поделите число закрытых миллиметровых делений на число витков и узнаете искомую толщину. Намотаем 10 витков, покрывших 6,5 мм. Расстояние поделим на количество и получим диаметр провода – 0,65 мм, из которых приблизительно 0,05 мм занимает электроизоляционный лак. В итоге истинный диаметр равен 0,6 мм.

Обратимся к справочнику:
  • Току защиты предохранителя в 1A подходит соответственно толщина медного провода – 0,05 мм и алюминиевого – 0,07 мм.
  • 2A – 0,09 мм – 0,10 мм.
  • 3A – 0,11 мм – 0,14 мм.
  • 5A – 0,16 мм – 0,19 мм.
  • 7A – 0,20 мм – 0,25 мм.
  • 10A – 0,25 мм – 0,30 мм.
  • 15A – 0,33 мм – 0,40 мм.
  • 20A – 0,40 мм – 0,48 мм.
  • 25A – 0,46 мм – 0,56 мм.
  • 30A – 0,52 мм – 0,64 мм.
  • 35A – 0,58 мм – 0,70 мм.
  • 40A – 0.63 мм – 0,77 мм.
  • 45A – 0,68 мм – 0,83 мм.
  • 50A – 0,73 мм – 0,89 мм.

Таким образом, данная проволока сгодится для предохранителя на 30A.

Имеется 3 способа ремонта трубчатого предохранителя:
  1. Провод зачищается и завязывается на обоих колпачках на ряд витков. Указанный способ довольно рискованный, и прибегнуть к нему можно исключительно в качестве временной меры.
  2. Пайка также не требуется. Колпачки по очереди прогреваются на открытом огне, после чего снимаются и зачищаются ради хорошего контакта. Очищенный провод пропускается через цилиндр, концы загибаются на кромках, после чего колпачки надеваются на место. Но все равно это такой же «жучок», как и в первом случае, только менее примитивный.
  3. Напоминает оба предыдущих, и радикально отличается от них. Отремонтированный в результате предохранитель фактически невозможно отличить от нового, ибо восстанавливается он согласно заводской технологии, с пайкой.

Описанную технологию можно успешно использовать для ремонта любых типов вставок.

Похожие темы:

electrosam.ru

Питалово системы (Подбор сечения кабеля и предохранителя) — DRIVE2

Подбор сечения силового кабеля.

Работу электрической схемы постоянного тока можно легко объяснить, применяя аналогию движения электронов по проводнику движению воды по трубопроводу. Электрическая цепь ведет себя аналогично гидравлической системе подачи воды под
давлением. Электрический провод, по которому движутся электроны — это труба, по которой течет вода. Аккумуляторная батарея аналогична водонапорной башне (или насосу), которая создает давление в системе. Разность давления воды между начальной
точкой трубы, где установлен насос и ее конечной точкой заставляет течь воду по трубопроводу. Точно так же, разность потенциалов (напряжение) на концах проводника обеспечивает движение электронов по проводу. Количество воды, протекающее за
определенный промежуток времени через сечение трубы называют расходом воды в трубе (литр/сек). Аналогично расходу воды, сила тока в проводнике определяется как количество электрического заряда, переносимого за определенный промежуток времени
через сечение провода. Если сила тока со временем не меняется, то такой ток называют постоянным. Прение, возникающее в процессе движения электронов о кристаллическую решетку проводника принято называть сопротивлением проводника. Сопротивление
измеряется в Омах. По закону Ома для участка цепи сопротивление равно отношению напряжения к силе тока.

1 Ом = 1 Вольт /1 Ампер

Сопротивление проводника вызывает его нагрев. Поэтому правильный выбор сечения кабеля является очень важной задачей. Чем больше сечение кабеля, тем меньше его сопротивление, и тем больший ток он сможет пропустить. Следует помнить,
что с увеличением длины проводника сопротивление растет.

Автомобильные аудиосистемы потребляют большой ток, особенно если устанавливается несколько усилителей мощности. Напряжение в энергосистеме автомобиля постоянно и равно 12В, поэтому для обеспечения высокой мощности аудиосистема вынуждена потреблять большое количество тока. Усилитель является самым энергопотребляющим компонентом в звуковых системах. Поэтому для расчета
сечения силового кабеля нам прежде всего необходимо будет определить максимальную мощность усилителя. Для начала надо в спецификации к усилителю прочитать его среднюю мощность при 2 Ом или 4 омной нагрузке. Допустим, что мы имеем четырехканальный усилитель, RMS мощность которого равна 35 Вт на канал. Полная RMS мощность равна произведению количества каналов на мощность одного канала:
35 Вт х 4 = 140 Вт. (средняя мощность)

Зная, что средняя (RMS) мощность соответствует приблизительно 50% эффективности усилителя, то для определения максимальной мощности надо удвоить ее значение:
140 Вт х 2 ~ 280 Вт. (максимальная мощность)

Из физики известно, что мощность равна произведению силы тока на напряжение. Следовательно, сила тока равна:
Ампер = Ватт/Вольт.

Напряжение в сети автомобиля известно и равно приблизительно 13В. Значит, ток потребляемый нашим усилителем будет равен:
280 Вт /13 В = 21.53 A

Подобные вычисления следует произвести для каждого усилителя в аудиосистеме. После необходимо определить длину силового кабеля от аккумулятора до распределительного блока, а затем от этого блока до каждого компонента системы. Зная потребляемую силу тока и длину кабеля, обращаемся к специальной таблице подбора сечения и длины кабеля и подбираем необходимый калибр кабеля. Данные в таблице учитывают тот факт, что силовой кабель, сечение которого подобрано удовлетворяет не только потреблению тока усилителем, но и рассчитано на питание остальных компонентов аудиосистемы. Сечение заземляющих кабелей должно быть такое же, как и сечение питающих проводов. Плюсовой провод и заземление желательно тянуть от аккамулятора, если это невозможно по какой-то причине, заземлять ВСЕ компоненты системы нужно в одной точке, дабы исключить разность потенциалов между компонентами.
Расчет номинала предохранителя.
Расстояние от плюсовой клеммы аккумулятора до потребителя в основном превышает 40 сантиметров, поэтому устанавливаем защитный предохранитель, естественно не далее 40 сантиметров от аккумуляторной клеммы, а лучше устанавливать главный предохранитель возможно ближе к плюсовой клемме аккумулятора. Его назначение, защитить питающий кабель от возгорания, например в случае аварии автомобиля (ДТП). Повреждение автомобиля может быть пустяковым, но пережатый питающий кабель приведет к короткому замыканию, возгоранию и уничтожению автомобиля. Номинал главного предохранителя определяется МАКСИМАЛЬНО возможным номиналом предохранителя для данного сечения кабеля. Например для кабеля сечением 2 GA МАКСИМАЛЬНО возможный номинал предохранителя составляет 150 Ампер. А можно поставить предохранитель номиналом, допустим 100 Ампер, 80Ампер или 50 Ампер? Да можно! Можно поставить любой предохранитель, при одном условии, что он НЕ БУДЕТ превышать номинал 150 Ампер (иначе смысл этого предохранителя пропадает). Общий максимальный ток, который может быть потреблен к примеру двумя усилителями (моноблок 80А и двухканальник 30А), составляет 110 Ампер, так что если поставить главный предохранитель номиналом 100 Ампер, существует вероятность того, что он будет перегорать на пиках максимальной громкости. Исходя из вышеизложенного, я рекомендую выбрать предохранитель номиналом 150 Ампер, в случае нештатной ситуации он сработает.

Питающий кабель доходит до дистрибьютора, здесь питание делится на две линии ( в некоторых случаях и больше). Первая питает моноблок (с внутренней защитой 40 х 2 = 80 Ампер). Вторая питает двухканальный усилитель (с внутренней защитой 30 Ампер). Для чего нужны предохранители внутри усилителя? Для того, чтобы защитить усилитель от перегрузки и для того чтобы защитить автомобиль от возгорания в случае короткого замыкания внутри усилителя. Для питания уселителя возможен выбор разных размеров кабеля. Если мы выбрали от дистрибьютора до усилителя кабель размером 2 GA, МАКСИМАЛЬНЫЙ номинал предохранителя не может превышать 150 Ампер – мы защищаем кабель на случай короткого замыкания, а не усилитель. А можно выбрать номинал предохранителя, например 80 Ампер? Без проблем, вниз можно идти куда угодно, хоть до 1 ампера, но логика подсказывает, что смысла ставить предохранитель меньше 80 ампер нет, потому, что в цепи усилителя стоит предохранитель 80 Ампер. И так для каждого усилителя.
Статья взята с www.forum.digitaldesigns.ru/

www.drive2.ru

Как выбрать предохранители для автомобиля

Несмотря на свой достаточно маленький размер, автомобильный предохранитель имеет огромное значение в работоспособности автомобиля и каждой отдельно взятой его системы. Надёжность и состояние предохранителя напрямую влияет на целостность и сохранность всего транспортного средства. Каждый автомобилист обязан знать, какими бывают предохранители и где они находятся. Это позволит при необходимости заменить их своими руками, не обращаясь за помощью к специалистам. Предохранители необходимы для защиты бортовой электросети от резких скачков напряжения, которые возникают в случае короткого замыкания. Благодаря легкоплавкому элементу, при опасности она плавится, тем самым разрывая контакт между оборудованием и питанием, идущим на него. Размыкая сеть, сгорает только предохранитель, но остаётся целым и невредимым узел, система или агрегат, которые были под его защитой. В выходе из строя этих элементов нет ничего страшного. Замена легко выполняется своими руками, а сами они достаточно дешёвые. Их стоимость в десятки, а порой и сотни раз меньше, нежели цена оборудования, которое защищает предохранитель.

Рекомендации по выборы автомобильных предохранителей.

Разновидности

Для начала разберёмся в существующих типах автомобильных предохранителей. Их можно классифицировать в зависимости от используемых материалов и самой конструкции. Поскольку теперь каждый знает, что чего в автомобиле нужны эти самые предохранители, стоит изучить их разновидности. Теперь к вопросу о том, какие бывают предохранители, использующиеся в авто. Начнём с материалов изготовления. Тут ключевую роль играет то, из чего сделана именно легкоплавкая составляющая. Потому элементы делят на:

  • алюминиевые;
  • оловянные;
  • свинцовые;
  • сплавные (сочетание из свинца и олова).

Важнейшей характеристикой изделия является скорость или время срабатывания. То есть промежуток времени, за который плавкий элемент успевает расплавиться и разъединить цепь. Чем быстрее вставка сможет расплавиться, тем меньше вероятность, что пострадает защищаемое оборудование. Чтобы добиться желаемого результата, эти вставки изготавливаются из специальных сплавов и металлов, которые характеризуются низкой температурой плавления. Они способны быстро переходить из твёрдого в жидкое состояние. Для увеличения скорости срабатывания, в конструкциях некоторых предохранителей дополнительно предусматривается наличие системы подпружинивания. Конструктивно предохранители, используемые для авто, можно разделить на пальчиковые и флажковые.

Пальчиковые изделия получили широкое распространение на классических моделях автомобилей отечественного автопроизводителя в лице АвтоВАЗ. Это стержни, на которые надевается специальная плавкая перемычка. При этом пальчиковые защитные конструкции для авто делятся на пластиковые и керамические предохранители. Учитывая некоторые особенности предохранительных блоков, которыми оснащаются автомобили Жигули, наиболее предпочтительным вариантом считается именно керамический элемент. Он обладает большей устойчивостью по отношению к высокой температуре, считаются надёжнее и не способствуют ложному срабатыванию, если предохранитель начинает греться.

Но на современных автомобилях от пальчиковых конструкций отказались. Теперь основную массу предохранителей представляют флажковые защитные элементы. Они превосходят пальчиковые аналоги по удобству применения, а также опережают в плане надёжности. Флажковые также часто называют ножевыми, поскольку их конструкция предусматривает наличие пары ножек, необходимых для контакта при установке в своё гнездо внутри предохранительного блока. Наименование флажковых предохранителей можно объяснить прямоугольной или квадратной верхней частью, где и располагается непосредственно сам легкоплавкий элемент или перемычка. Головки на флажках делают разного цвета, который напрямую зависит от номинала. Визуально действительно напоминает флаг, откуда и пошло соответствующее название. Флажковые элементы в предохранительном блоке ценятся за хороший и крепкий контакт в посадочном гнезде. Но для извлечения устройства требуется использовать специальное приспособление.

Автопроизводители предусматривают этот момент, и размещают щипцы из пластика на крышке предохранительного блока с его внутренней стороны. При необходимости такой инструмент легко найти в любом магазине автомобильных товаров. Если действуете в экстремальных условиях, либо просто некогда искать и покупать щипцы, можно ухватиться на флажок с помощью плоскогубцев. Но здесь крайне важно быть аккуратным, чтобы случайно не спровоцировать замыкание выводов. Лучше всё же взять специализированное приспособление.

Понятие номинала

Чтобы изучить все существующие виды предохранителей, используемых для авто, недостаточно знать про конструкцию и материал. Здесь большое значение играют номиналы, то есть размеры силы тока, который элемент способен через себя пропустить. При выборе предохранителей для авто, которые нужны в качестве замены сгоревшим, всегда и обязательно необходимо смотреть на эту характеристику. Дело всё в том, что на различные электролинии в транспортном средстве подключается разное количество электрозависимого оборудования. У каждого энергопотребителя есть своя определённая мощность. Вполне логично и закономерно, что для цепи питания головной оптики нужна пропускная способность значительно выше, чем в случае с цепью для питания подсветки салона. Это означает, что предохранитель фар обязан иметь большую мощность, чем защитный элемент для салонной подсветки. Номинал, означающий силу тока, способную проходить через предохранитель, измеряют в Амперах. Номинал во многом зависит от того, какой тип предохранителя используется. Флажковые значительно разнообразнее в этом компоненте, и представлены с разными номинальными значениями. А уже достаточно устаревшие пальчиковые конструкции имеют всего 2 вида номиналов. Это 16 и 8 Ампер.

Зависимость цвета от номинала

Опытные автомобилисты могут просто по цвету флажкового предохранителя точно сказать, какой номинал у того или иного предохранителя. Не лишним будет изучить все виды номиналов и типы их цветового обозначения. Представленные разновидности защитных элементов стандартизированы, а потому применяются на всех современных автомобилях. То есть автомобильные предохранители разных марок и моделей всё равно примерно имеют одинаковые цветовые оформления в зависимости от значения номинала. Могут отличаться по оттенкам. Предлагаем вам также ознакомиться с этой характеристикой и узнать, при каком цвете какое номинальное значение силы тока будет у защитного компонента.

  • предохранители на 1 Ампер всего окрашиваются чёрным цветом;
  • если цвет серый, то сила тока, проходящего через элемент, будет 2 А;
  • фиолетовым окрашивают девайсы с номиналом 3 А;
  • 5 А определяются по коричнево-жёлтому цвету;
  • чисто коричневый цвет соответствует 7,5 А;
  • если видите флажок красного цвета, это 10 Ампер;
  • для 15 А используют голубую краску;
  • все жёлтые предохранители идут на 20 А;
  • 25-амперные предохранители делают белыми;
  • зелёные элементы означают, что номинал здесь 30 А;
  • оранжевые флажки предусматривают 40 А;
  • синим цветом идентифицируют предохранители на 60 А;
  • светло-коричневые элементы означают 70 А;
  • 80 А можно узнать по светло-жёлтому цвету;
  • все сиреневые устройства идут на 100 А.

Важно учитывать, что оттенки девайсов могут несколько отличаться. Потому лучше предварительно заглянуть в руководство по эксплуатации конкретно вашего автомобиля, а также внимательно изучить информацию на крышке предохранительного блока и цифровые обозначения на самих предохранителях. Значение номинала рассчитывают исходя из того, какая нагрузка ложится на электроцепь, когда включаются все запитанные через предохранитель потребители, плюс даётся небольшой запас по прочности. Все эти параметры просчитывают ещё на этапе производства. Информация о расположении и назначении каждого отдельно взятого предохранителя детально описывается в руководстве по эксплуатации и в инструкциях по ремонту. Плюс сама крышка блока с предохранителями также содержит полезную и необходимую автомобилисту информацию. Прежде чем менять сгоревший элемент, нужно проверить, какое у него значение номинала, купить такой же флажок, и установить его на место старого элемента защиты.

Почему важно не перепутать предохранители

Каждый из вас уже прекрасно знает и понимает, что для всех предохранителей предусмотрен определённый номинал, и он адаптирован под конкретные посадочные гнёзда. Каждое гнездо ведёт к той или иной электрической линии автотранспортного средства. Если автомобилист по ошибке или из-за отсутствия соответствующих знаний перепутает места посадки предохранителей, которые отличаются по номиналу, могут возникнуть достаточно серьёзные проблемы. Когда номинал оказывается чрезмерно маленьким, то плавкий элемент будет разрушаться очень быстро при сравнительно небольших нагрузках. Само электрозависимое оборудование, к которому подведён этот предохранитель, может работать в штатном режиме и при стандартных нагрузках. Но сам защитный элемент адаптирован под меньшую силу тока. И если он сталкивается со значением, превышающим его порог плавления, легкоплавкая составляющая разрушается, цепь размывается и оборудование отключается. Здесь не обязательно нужно, чтобы произошло короткое замыкание. Предохранитель сгорит и без него.

Есть и другая ситуация, когда на место легкоплавкого флажка с маленьким номиналом устанавливают предохранители, рассчитанные на большую нагрузку. Тогда с защитным элементом может ничего не произойти даже при значительном повышении силы тока, вплоть до короткого замыкания. Плавкий компонент не воспринимают нагрузку как высокую, но для подзащитного оборудования значения превысили допустимую норму. Происходит короткое замыкание, а цепь не размыкается. Поскольку защитный элемент не сработал, начинает гореть электропроводка автомобиля, может выйти из строя всё оборудование. Как вы можете наглядно видеть, крайне нежелательно путать между собой предохранители, которые обладают разными номинальными значениями. Нужно использовать исключительно те легкоплавкие элементы, которые предусмотрел автопроизводитель для каждого конкретного посадочного гнезда в предохранительном блоке. Этот же фактор запрещает и настоятельно не рекомендует использовать при замене предохранителей подручные средства, такие как проволока, монета и прочие инструменты. Обычно подобным образом поступают в ситуациях, когда специальные щипцы отсутствуют, а нужно срочно поменять сгоревший элемент. Но вы сильно рискуете, используя подручные инструменты. Особенно это касается любых металлических предметов.

Тут важно понимать, что предохранитель вряд ли будет просто так перегорать, если он установлен в правильное гнездо и имеет соответствующий номинал. С помощью проволоки или монеты разомкнуть цепь, когда в электрооборудовании произошло короткое замыкание, не удастся. Вы лишь спровоцируете ещё большие проблемы. Ваши попытки воспользоваться металлическим предметом могут привести к возгоранию и пожару. Потому только специальные щипцы. Если вы потеряли заводской инструмент, который обычно находится на внутренней стороне крышки предохранительного блока, купите новые щипцы в автомагазине.

Рекомендации по выбору

Чтобы предохранитель не подвёл в самый ответственный момент, перед его установкой нужно убедиться в эффективности защитных характеристик элемента. Старые сгоревшие флажки не подлежат ремонту. Это доступные по цене расходники, которые меняют по мере необходимости. Но прежде чем устанавливать новый элемент, нужно разобраться в причинах выхода из строя его предшественника. Когда в машине есть проблемы, простая замена ничего не даст. Новый предохранитель сгорит так же быстро, как и предыдущий. Менять его по несколько раз в неделю точно не вариант. Если проблема с автомобилем решена, то можно смело покупать и устанавливать защитный компонент в предохранительный блок в соответствующее номиналу посадочное гнездо. При выборе рекомендуется придерживаться нескольких простых советов.

  1. Производитель. Доверяйте хорошо зарекомендовавшим себя компаниям, которые выпускают действительно качественные изделия. Поскольку предохранители дешёвые и очень востребованные, многие пытаются вывести на рынок свой продукт. И далеко не всегда он обладает хорошим уровнем качества. Даже такие элементы лучше брать от проверенных изготовителей.
  2. Место покупки. Красивая упаковка и известное название на ней ещё не говорит о том, что перед вами хороший предохранитель. Часто автомобилисты сталкиваются с подделками и дешёвыми копиями оригинальных защитных устройств. Чтобы избежать подобных ситуаций, рекомендуется обращаться к сертифицированным продавцам и магазинам с хорошей репутацией.
  3. Толщина. Бывает так, что предохранители, имеющие разный номинал, в своей конструкции имеют абсолютно одинаковые по толщине легкоплавкие перемычки. Это явный признак подделки или низкокачественного изделия. Чем выше номинал, тем толще перемычка, поскольку она рассчитана на плавление при более высоких нагрузках. Если вы заметили одинаковую толщину на номинально разных предохранителях, смело выкидывайте всю упаковку. Такие элементы к применению непригодны.
  4. Проверка коротким замыканием. Редко предохранители продаются и покупаются поштучно. Обычно это целая упаковка, которая долго и верно служит автовладельцу, хранится в гараже или в машине, чтобы при необходимости всегда был запасной предохранитель. Можно пожертвовать одним из них, тем самым удостовериться в качестве всей партии. Для этого выполняют короткое замыкание вручную. Только не нужно для этих целей жертвовать своим автомобилем. Достаточно подключить к выводам защитного элементы пару проводов через клеммы типа мама, а обратные концы соединить с выводами на автомобильной аккумуляторной батарее. При этом обязательно отключите батарею от электрической сети самого транспортного средства. После такого соединения хороший и функционирующий предохранитель сгорает. Если же легкоплавкий элемент остаётся целым, но начинает плавиться сам корпус, перед вами плохие предохранители. Использовать их категорически не рекомендуется.

Самым действенным способом обеспечить длительную и безотказную работу для предохранителей является ряд мер, направленных на предотвращение возможного возникновения короткого замыкания в бортовой электрической сети. Старайтесь не перегружать автомобиль лишним оборудованием, реально оценивать возможности генератора и аккумуляторной батареи. Также всегда следите за состоянием электрозависимых узлов, систем и механизмов. Нельзя полноценно защититься от короткого замыкания и перегрузки электросистемы автотранспортного средства. Для этого и предусмотрены специальные предохранители, которые фактически приносят себя в жертву, чтобы не пострадало само оборудование. Ведь его стоимость значительно выше по сравнению с ценой на один простой предохранитель.

drivertip.ru

Выбор плавких предохранителей | Проектирование электроснабжения

В наше время предохранители с плавкими вставками уходят уже в прошлое. В новых проектах предохранители практически не применяют, по крайней мере я не применяю)))  Сегодня речь пойдет о том, на что следует обращать внимание при выборе  плавкой вставки предохранителя.

Для защиты электрических сетей  и электродвигателей могут быть использованы автоматические выключатели либо плавкие предохранители. О достоинствах и недостатках этих двух аппаратов я расскажу в другой раз.

Я не сторонник применения плавких предохранителей, но бывают ситуации, когда нужно выбрать плавкую вставку для предохранителя. В большинстве случаях трудностей возникнуть не должно. Основное условие это то, чтобы номинальный ток плавкой вставки был выше номинального тока защищаемой цепи и напряжение предохранителя совпадало с напряжением сети. Но что делать, если нам необходимо подобрать плавкую вставку предохранителя для защиты двигателя до 1кВ?

Как известно, у двигателей при пуске возникают большие пусковые токи. Если этим пренебречь, то наш предохранитель при пуске сразу перегорит. А этого не должно происходить!

В этом случае нужно руководствоваться п.5.3.56 ПУЭ.

Для электродвигателей с легкими условиями пуска отношение пускового тока электродвигателя к номинальному току плавкой вставки должно быть не более 2,5, а для электродвигателей с тяжелыми условиями пуска (большая длительность разгона, частые пуски и т.п.) это отношение должно быть равным 2,0-1,6.

Например, подберем предохранитель для двигателя (АИР100L2), который нарисован в шапке моего блога. Потребляемый ток 10,8А, Iп/Iн=7,5. Если бы не учитывали пусковой ток, то выбрали бы, например, ППН-33 с плавкой вставкой на 16А. Будем считать, что данный двигатель установлен на системе вентиляции и пуск у данного двигателя будет легким. Поэтому 10,8*7,5=81А – пусковой ток двигателя.

Iп/Iпл.вс.<=2,5

Iпл.вс.=81/2,5=>32,4А

Отсюда следует, чтобы плавкая вставка не перегорела при пуске данного двигателя, номинальный ток предохранителя должен быть более 32,4А, т.е. ППН-33 с плавкой вставкой на 36А.

Ниже представлена таблица рекомендуемых значений номинальных токов плавких предохранителей для защиты силовых трансформаторов 6/0,4 и 10/0,4кВ.

Sт.ном. защищаемого тр-ра, кВА Iном, А
трансформатора на стороне предохранителя на стороне
0,4кВ 6кВ 10кВ 0,4кВ 6кВ 10кВ
25 36 2,4 1,44 40 8 5
40 58 3,83 2,3 60 10 8
63 91 6,05 3,64 100 16 10
100 145 9,6 5,8 150 20 16
160 231 15,4 9,25 250 31,5 20
250 360 24 14,4 400 50 40 (31,5)
400 580 38,3 23,1 600 80 50
630 910 60,5 36,4 1000 160 80

Для любителей жучков привожу таблицу соответствия диаметра медной проволоки и номинального тока плавкой вставки. Здесь вам понадобится штангельциркуль для измерения диаметра проволоки.

Номинальный ток вставки, А Число проволок Диаметр медной проволоки, мм
2 1 0,12
3 1 0,16
6 1 0,25
10 1 0,33
15 1 0,45
20 1 0,5
25 1 0,6
35 1 0,75
40 1 0,8
40 2 0,5
50 1 0,9
70 1 1,1
70 2 0,75
80 1 1,2
80 2 0,8
100 1 1,35
100 2 0,9

 А вы часто применяете предохранители?

Советую почитать:
защитапредохранитель

220blog.ru

Как выбрать предохранители для автомобиля

На чтение 5 мин. Просмотров 338

Предохранители – маленькие, но очень важные детали автомобиля. От их надежной работы зависит ни много ни мало целостность всей машины. Если предохранитель не сгорит во время короткого замыкания – сгорит автомобиль. Чтобы все было в порядке, важно знать, как подобрать предохранители и как ими пользоваться.

Автомобильный предохранитель, как и любой другой, защищает бортовую сеть машины от резких и мощных бросков тока, возникающих при коротком замыкании. В его конструкции обязательно присутствует легкоплавкая перемычка, которая сгорает при большом токе и размыкает электрическую цепь. Существуют, как минимум, две конструкции предохранителей для автомобилей: пальчиковая и флажковая.

Виды автомобильных предохранителей

Пальчиковые предохранители широко применялись на классических моделях АвтоВАЗа и представляют собой стержень с надетой на него плавкой перемычкой. Пальчиковые предохранители есть с пластмассовым или керамическим стержнем. Учитывая особенности «жигулевских» блоков предохранителей, лучше использовать керамический стержень. Он более устойчив к высоким температурам и надежней в ситуации, когда греются предохранители.

Керамические автомобильные предохранители

В современных автомобилях уже давно применяются предохранители другой конструкции – флажковые. Они гораздо удобнее и надежней пальчиковых. Еще из называют ножевыми, потому что такие предохранители имеют две «ножки»-контакта, которыми они вставляются в гнезда блока. Ассоциация же с флажком происходит из-за квадратной или прямоугольной головки, в которой, кстати, и находится плавкая перемычка. Головки флажковых предохранителей делают цветными в зависимости от номинала, и они действительно чем-то смахивают на флажки.

Флажковый предохранитель

Такой тип предохранителей очень хорошо и крепко держится в гнезде, обеспечивая замечательный контакт. Однако чтобы достать флажковый предохранитель из гнезда, нужны специальные пластиковые щипцы. Они свободно продаются в автомагазинах. В крайнем случае, можно достать предохранитель небольшими плоско- или узкогубцами, однако в этом случае важно не замкнуть его выводы.

Что такое номинал предохранителя?

В разных электрических линиях автомобиля подключено разное количество оборудования. Более того, каждый потребитель электроэнергии имеет свою мощность. Так, например, цепь питания фар пропускает через себя гораздо большую электрическую мощность, чем, к примеру, цепь питания освещения салона. Соответственно для фар нужен и более мощный предохранитель. Значение силы тока, который может пропустить через себя предохранитель и называется его номиналом.

Сила тока измеряется в Амперах (А). В них же делятся и предохранители.

Пальчиковые предохранители, применяющиеся на «Жигулях», имеют всего два номинала:  8А и 16А. У современных флажковых номиналов больше.

Цвета и номиналы автомобильных предохранителей
Номинал

предохранителя
Цвет
Описание
Черный
2A Серый
3A Фиолетовый
5A Коричнево-желтый
7,5A Коричневый
10A Красный
15A Голубой
20A Желтый
25A Белый
30A

russia-avto.ru

Как правильно подобрать быстродействующий предохранитель

Виталий Хаймин
Руслан Черекбашев

Силовая электроника, управляющая киловаттами и мегаваттами энергии, немыслима без соответствующих мер защиты. Наряду со сложными автоматизированными системами в аппаратуре всегда имеется последний защитный барьер в виде предохранителей. От правильного выбора параметров предохранителя зависят затраты, которые понесет потребитель при последующем ремонте. При замене сгоревшего предохранителя вопрос корректного подбора не стоит, так как в паспорте оборудования указан конкретный код производителя. В данной статье будет рассмотрен случай, когда при разработке нового оборудования, комплектации силовых шкафов требуется выбрать быстродействующие предохранители, исходя из параметров системы, условий эксплуатации, особых требований и т. д. Причем наиболее подробно будет обсуждено определение основных параметров, влияющих на подбор предохранителей — значений номинального напряжения, номинального тока и др.

Определение значения номинального напряжения

Номинальное напряжение предохранителя — это рабочее напряжение переменного или постоянного тока. Чтобы правильно защитить любую систему, номинальное напряжение предохранителя должно быть не меньше напряжения в системе. По требованиям МЭК (Международная электротехническая комиссия)переменное напряжение при тестировании предохранителей должно соответствовать 110% номинального напряжения с коэффициентом мощности 10–20%. По северо-американским стандартам (UL) достаточно, чтобы все предохранители тестировались при их номинальном напряжении с коэффициентом мощности 15–20%. Поэтому на большинстве продуктов BUSSMANN указаны два номинальных напряжения (рис. 1).

Если два предохранителя устанавливаются последовательно, то каждый из них должен быть рассчитан на максимально возможное напряжение в цепи. Заявленные значения переменного номинального напряжения предохранителей BUSSMANN действительны при частотах 45–1000 Гц. Процесс прерывания на более низких частотах аналогичен процессам в цепи постоянного тока. При частоте ниже 45 Гц необходимо внести поправку к номинальному напряжению в соответствии с графиком, представленным на рис. 2.

Определение значения номинального тока предохранителя

Номинальный ток предохранителя — это среднеквадратичное значение тока, которое предохранитель способен пропускать продолжительное время без ухудшения его свойств и выхода температуры за допустимые пределы. Для корректной работы предохранителя необходимо правильно подобрать значение номинального тока. Оно зависит как от параметров защищаемой цепи, так и от многих внешних факторов. При повышенной температуре окружающей среды номинальный ток предохранителя следует увеличить, а при низких температурах или при принудительном охлаждении потоком воздуха — понизить. Также на это значение влияют частота тока, плотность тока в контактной площадке, атмосферное давление (при высотах выше 2000 м над уровнем моря), а также длительность и частота воздействия токов перегрузки. Все эти параметры связаны с номинальным током предохранителя следующей формулой:

In = Ib / (Kt × Ke × Kv × Kf × Ka × Kb),
где In — номинальный ток предохранителя; Ib — среднеквадратичный максимальный ток нагрузки в цепи, действующий в течение длительного времени; Kt — коэффициент температуры воздуха; Ke — коэффициент контактной плотности тока; Kv — коэффициент воздушного потока; Kf — коэффициент частоты тока; Ka — коэффициент высоты над уровнем моря; Kb — постоянная (const) нагрузки предохранителя. В технической документации Bussmann номинальный ток предохранителей определен для температуры окружающей среды, равной 20 °C.

Однако в реальных условиях эксплуатации температура может отличаться от этого значения. Повышение температуры среды, например, в условиях закрытого монтажа или в случае близости теплонагруженных элементов вызывает необходимость выбора предохранителя большего номинала, так как для плавления перемычки потребуется выделение меньшего количества тепла. И наоборот, понижение температуры окружающей среды требует использования предохранителя с меньшим номинальным током. График определения поправочного коэффициента в зависимости от температуры окружающей среды для типичного быстродействующего предохранителя приведен на рис. 4.


Таким образом, если температура окружающего воздуха составляет около 60оС, то при токе в цепи 100 А нужно использовать предохранитель 100А/0,8 = 125 А. Для оценки влияния воздуха используются различные эмпирические формулы и зависимости. При принудительном воздушном охлаждении предохранителей при скорости потока 2–10 м/с допустимо использовать предохранитель меньшего номинала. Из графика на рис. 5 видно, что уже при воздушном потоке со скоростью 2 м/с для цепи с максимальным током 1100 А следует использовать предохранитель с номинальным током 1000 А.

Следует учесть, что скорость воздушного потока должна браться непосредственно у корпуса предохранителя,
а не у крыльчатки вентилятора. Высокое быстродействие предохранителей достигается повышением плотности тока в перешейках плавких элементов, что вызывает сильный нагрев корпуса предохранителя. Следовательно, сечение и длина токоведущих шин оказывают большое влияние на характеристики предохранителя. Около 70% выделяемого в предохранителе тепла отводится через токоподводящие шины. Поэтому увеличение их сечения может обеспечить рост номинального тока на несколько процентов. По рекомендациям специалистов компании Bussmann, плотность тока в токоподводящих шинах должна составлять1,3 А/мм2 (по стандарту МЭК 60269, часть 4, плотность тока может быть в диапазоне 1–1,6 А/мм2). Если фактическая плотность тока в шинах больше этого значения, то следует повысить номинал предохранителя, используя для расчета коэффициент, определяемый по графику, приведенному на рис. 6.

Например, прямоугольный предохранитель на 200 А установлен на шине с сечением 100 мм2. Плотность тока при этом равна 200/100 = 2 A/мм2. Чтобы удовлетворить требованию 1,3 А/мм2, рекомендуемое сечение шины должно быть 200/1,3 = 154 мм2. Фактический размер шины составляет 100/154 = 65% от рекомендуемого значения. Определив по графику коэффициент Ke, получаем номинальный ток предохранителя 200/0,94 = 213 А. Если обе подключаемые шины не одинаковы, то коэффициент Ke можно рассчитать по формуле: Ke = (Ke1 + Ke2) / 2. Предохранители, работающие в высоко частотных цепях, требуют особого внимания. В таких условиях их токопроводящие способности могут быть понижены вследствие возникновения скин-эффекта и эффекта близостина токопроводящих элементах предохранителя. Скин-эффект выражается в увеличении плотности тока от центра к поверхности проводника. Это связано с явлением вытеснения тока в проводнике под действием собственного магнитного поля. Эффект близости выражается в смещении плотности тока из-за действия тока в расположенных рядом проводниках. Оба этих индукционных эффекта создают неравномерное распределение тока по сечению проводника, что приводит к повышенному выделению тепла. Для их учета вводится поправочный коэффициент частоты тока Kf, определяемый по графику, представленному на рис. 7.

Из графика видно, что при токе 100 А с частотой 10 кГц нужно использовать предохранитель на 100/0,7 = 143 А. Когда предохранители применяются, например, в горах, то из-за снижения плотности атмосферы ухудшается конвекционное охлаждение. Поэтому на высотах более 2000 м над уровнем моря применяется коэффициент высоты над уровнем моря, вычисляемый по формуле: Ka = (1 – (h – 2000)/20000), где h — высота в метрах над уровнем моря. Так, на высоте 5000 м в цепи с током 85 А следует использовать предохранитель на 85/(1 – (5000 – 2000)/20000) = 100 А. Постоянная (const) нагрузки предохранителя Kb определяется из технического описания предохранителя. Она зависит от материала корпуса предохранителя. Так, для фарфоровых предохранителей ее значение равно 1, а для корпуса из стекловолокна — 0,8.

Влияние перегрузок

Максимальный ток Imax, которому может подвергаться предохранитель, зависит от длительности и частоты импульсов перегрузки. По длительности перегрузки делятся на две категории:
• перегрузки длительностью более 1 с;
• перегрузки длительностью менее 1 с.
В таблице приведены основные рекомендации по определению максимально допустимого тока перегрузок Imax. Ток плавления берется из время-токовой характеристики предохранителя. Типичные примеры циклов нагрузки, включая токи перегрузки, приведены на рис. 8.

Возьмем, для примера, предохранитель на 200 А, который 3–5 раз в день подвергается перегрузкам 300 A, каждая из которых длится по 5 с. Для данного типа предохранителя по время-токовой кривой находим, что ток плавления It, соответствующий времени длительности перегрузок 5 с, будет равняться 600 A. По таблице определяем, что для данного типа предохранителя максимальный возможный ток перегрузки равен 60% × 600 = 360 A. Значит, этот предохранитель может выдерживать временные перегрузки до 360 A. Таким образом, выбранный плавкий предохранитель на 200 A, подвергающийся перегрузкам в 300 A в течение 5 с 3–5 раз в день, будет работать правильно.

Циклические нагрузки

Циклическая нагрузка, приводящая к преждевременной усталости предохранителей, определяется регулярными и нерегулярными изменениями тока нагрузки. При этом параметры тока должны достигать величин, приводящих к деформации плавких элементов предохранителя. Для того чтобы избежать этого, при выборе предохранителя закладывается определенный запас прочности. Так как общее правило для всех ситуаций установить невозможно, используется добавочный коэффициент G, определяемый эмпирически. В большинстве случаев достаточным является следующее значение коэффициента G = 1,6. После того как предохранитель был выбран, необходимо провести проверку для определения достаточности запаса прочности в условиях периодической импульсной нагрузки. Для этого нужно определить ток плавления It по время-токовой характеристике предохранителя. В качестве аргумента берется длительность одного импульса из цикла. Далее следует по графику (рис. 9) найти коэффициент цикличных пульсаций B. Здесь в качестве аргумента используется период импульсов T. Чтобы предохранитель надежно выполнял свои функции, допустимое значение тока импульса должно быть менее произведения тока плавления It и коэффициента B:

Ipulse< It × B.

Рассмотрим пример. Существует следующая циклическая нагрузка: 150 A в течение 2 мин с последующим изменением на 100 A в течение 15 мин (рис. 10).

Рассчитываем действующее значение тока в цепи Irms:

Предполагая, что нет ухудшающих параметров, считаем коэффициент G равным 1,6. Получаем

In > Irms × G = 107 × 1,6 = 171 A.

По первой оценке предохранитель на 200 A в этом случае достаточен. Проверим теперь запас прочности на B-фактор. Длительность импульса (рис. 10) равна 120 с. По время-токовой характеристике (рис. 11) определяем ток плавления It для 120 с. Он равен 440 А.

Далее из графика (рис. 10) вычисляем период цикла Т. Он составляет 120 с + 15 мин = 17 мин. По графику (рис. 12) определяем коэффициент В для 17 мин. Коэффициент B равен 0,32. Проверим выполнение условия надежности при работе с данной циклической нагрузкой. Умножая коэффициент B на ток плавления, получаем 440 × 0,32 = 141 А, что меньше тока импульса, равного 150 А.

Значит, при такой циклической нагрузке предохранитель на 200 А не будет иметь достаточного запаса надежности. Необходимо увеличить номинал предохранителя. Проводя такие проверки, мы можем получить гарантию долговременной работы предохранителя в условиях импульсной циклической нагрузки. Иногда в результате расчетов получается, что показатель тепловой энергии I2t предохранителя становится больше аналогичного показателя защищаемого устройства, например IGBT-модуля. При этом предохранитель будет неспособен выполнять назначенные ему функции. В таких ситуациях стоит несколько уменьшить запас прочности предохранителя или, если прочность снижается значительно, придется выбрать другую модель предохранителя. Кроме выбора основных параметров предохранителя, рассмотренных выше и являющихся определяющими, есть еще и другие критерии, например, конструктивное исполнение, вид контактов, наличие индикации срабатывания и т. д. Bussmann является ведущей компанией в мире по количеству выпускаемых моделей плавких предохранителей, а также предлагает наиболее широкий ассортимент быстродействующих предохранителей на мировом рынке. Более подробно познакомиться с технической информацией и подобрать нужную модель предохранителя можно на сайте официального представителя Bussmann в РФ — ООО «Айтекс» (www.bussfuse.ru).

Литература

1. www.cooperindustries.com
2. IEC 60 269 — 1 Low voltage fuses. Part 1/General requirements.
3. High Speed Fuse Application Guide / Cooper Industries plc, USA, 2010.
4. Намитоков К.К. и др. Аппараты для защиты полупроводниковых устройств. — М.: Энергоатомиздат, 1988.

bussfuse.ru

Пример выбора плавких предохранителей

В предыдущей статье мы рассмотрели условия выбора плавких предохранителей. В этой же статье, речь пойдет непосредственно о примере выбора плавких предохранителей для асинхронных двигателей и распределительного щита ЩР1, согласно схеме рис.1 (схема дана в однолинейном изображении). Самозапуск двигателей исключен. Условия пуска легкие. Технические характеристики двигателей приведены в таблице 1.

Рис. 1 – Схема защиты плавкими предохранителями группы короткозамкнутых асинхронных двигателей

Таблица 1 – Технические характеристики двигателей 4АМ

Обозначение на схемеТип двигателяНоминальная мощность Р, кВтКПД η,%Коэффициент мощности, cos φIп/Iн
4АМ112М27,587,50,887,5
4АМ100L25,587,50,917,5
4АМ160S215880,917,5
4АМ90L2384,50,886,5
4АМ180S215880,917,5

Расчет

1. Определяем номинальный ток для двигателя 1Д:

2. Определяем пусковой ток для двигателя 1Д:

3. Определяем номинальный ток плавкой вставки предохранителя FU2:

Iн.вс. > Iпуск.дв/k = 111,15/2,5 = 44,46 А;

где:
k =2,5 — коэффициент, учитывающий условия пуска двигателя, в моем случаем пуск двигателей легкий. Подробно выбор коэффициента, учитывающий условие пуска двигателя рассмотрен в статье: «Условия выбора плавких предохранителей».

Выбираем плавкую вставку предохранителя FU2 на ближайший больший стандартный номинальный ток 50 А, по каталогу на предохранители NV-NH фирмы ETI, согласно таблицы 2.

Номинальный ток отключения для предохранителей NV/NH с характеристикой АМ составляет 100 кА. По этому условие Iном.откл > Iмакс.кз., будет всегда выполнятся.

Таблица 2

Аналогично рассчитываем номинальный ток плавкой вставки для двигателей 2Д-5Д и заносим результаты расчетов в таблицу 3.

Обозначение на схеме Тип двигателя Ном.ток, А Пусковой ток, А Номинальный ток плавкой вставки, А Ном. ток предохранит., А
Расчетный Выбранный
4АМ112М2 14,82 111,15 44,46 50 50
4АМ100L2 10,5 78,8 31,52 40 40
4АМ160S2 28,5 213,7 85,48 100 100
4АМ90L2 6,14 39,9 15,96 20 20
4АМ180S2 28,5 213,7 85,48 100 100

4. Выбираем плавкую вставку предохранителя FU1.

4.1 Определяем наибольший номинальный длительный ток с учетом, что у нас включены все двигатели:

4.2 Определяем наибольший ток, учитывая что наиболее тяжелым режимом для предохранителя FU1, будет пуск наиболее мощного двигателя 5Д при находящихся в работе двигателях 1Д, 2Д, 3Д, 4Д.

Выбираем плавкую вставку предохранителя FU1 на номинальный ток 125 А.

Теперь нам нужно проверить выбранные плавкие вставки на отключающую способность короткого замыкания для отходящих линий в соответствии с ПУЭ раздел 1.7.79, время отключения не должно превышать 5 сек. Для проверки берется ток однофазного замыкания на землю в сети с глухозаземленной нейтралью.

Значения токов короткого замыкания для проверки отключающей способности предохранителей берем из статьи: «Пример приближенного расчета токов короткого замыкания в сети 0,4 кв».

Проверим выбранную плавкую вставку предохранителя FU2 на отключающую способность.

Двигатель 1Д защищен плавкой вставкой на 50 А, ток однофазного КЗ составляет 326 А, максимальный ток отключения плавкой вставки при времени 5 сек составляет 281 А согласно таблицы 2, Iк.з.(1) = 326A > Iк.з.max=281A (условие выполняется). Аналогично проверяем и остальные предохранители, результаты расчетов заносим в таблицу 4.

Проверим на отключающую способность предохранитель FU1, учитывая, что ток трехфазного короткого замыкания в месте установки предохранителя Iк.з(3) = 2468 А.

Предельно допустимый ток отключения для предохранителя FU1 с плавкой вставкой на 125 А составляет 100 кА > 2468 A (условие выполняется).

Таблица 4 – Результаты расчетов

Обозначение на схеме Номинальный ток плавкой вставки, А Iк.з.(3), А Iк.з.(1), А Максимальный ток отключения плавкой вставки при времени 5 сек. Iк.з.max, A Примечание
FU1 125 2468  
FU2 50 326 281 Условие выполняется
FU3 40 222 195 Условие выполняется
FU4 100 (80) 429 595 (432) Условие не выполняется
FU5 20 122 86 Условие выполняется
FU6 100 (80) 429 595 (432) Условие не выполняется

Как видно из результатов расчета для предохранителей FU4 и FU6 чувствительности к токам КЗ не достаточно. Чтобы увеличить чувствительность к токам КЗ, можно увеличить сечение кабеля, в данном случае увеличение сечение кабеля, является не целесообразным.

Либо уменьшить номинальный ток плавкой вставки для предохранителей FU4 и FU6, отстраиваясь от пусковых токов и учитывая, что условия пуска двигателя легкие (время пуска 5 сек.).

Как показывает опыт эксплуатации, для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.

Исходя из этого, выбираем ток плавкой вставки для предохранителей FU4 и FU6 на 80 А, где: Iк.з.max = 432 А при времени 5 сек., пусковой ток равен 213,7 А (условие выполняется).

Поделиться в социальных сетях

raschet.info

Самодельный предохранитель — Радиомастер инфо

В электронном устройстве вышел из строя плавкий предохранитель. Понятно, что нужно разобраться в причинах перегорания предохранителя и устранить их. Допустим, Вы это сделали, нужно включать устройство для проверки, а целого предохранителя нет.

Материал статьи в сокращенной форме продублирован на видео:

 

Плавкий предохранитель можно заменить кусочком провода, диаметр которого зависит от величины допустимого тока. Поэтому без особого риска можно заменить перегоревший предохранитель медным проводом, вставленным и запаянным в старый корпус предохранителя.

Для определения диаметра медного провода используют формулу:

           D(мм) = 0,034 × Iпл (А) + 0,005

Где: D – диаметр провода, в мм.

Iпл – ток плавления провода, в А.

Эту формулу применяют, если рассчитанное значение диаметра не превышает 0,2 мм.

Проверить полученный результат можно по другой формуле:

I(A) = 80√D3

Где: D – диаметр провода, в мм.

Iпл – ток плавления провода, в А.

 

Есть таблицы, в которых приводятся уже рассчитанные значения диаметра провода для плавкого предохранителя в зависимости от тока:

Ток, А Диаметр провода в мм
Медь Алюминий Сталь Олово
1 0,039 0,066 0,132 0,183
2 0,069 0,104 0,189 0,285
3 0,107 0,137 0,245 0,380
5 0,18 0,193 0,346 0,53
7 0,203 0,250 0,45 0,66
10 0,250 0,305 0,55 0,85
15 0,32 0,40 0,72 1,02
20 0,39 0,485 0,87 1,33
25 0,46 0,56 1,0 1,56
30 0,52 0,64 1,15 1,77

 

 

Понятно, что все эти расчеты и таблицы не дают абсолютно верную величину тока перегорания изготовленного плавкого предохранителя, но 5-10% точность обеспечивают. Этого вполне достаточно, чтобы самодельный предохранитель заменил перегоревший заводской. И уж наверняка это лучше, чем просто ставить вместо перегоревшего предохранителя первую попавшуюся под руки проволоку или скрепку.

Как это выполнить практически.

Для начала подбираем нужный диаметр провода. В данном конкретном случае нам нужен плавкий  предохранитель на 4 А. По таблице есть 5А. Значит, у нас должен быть диаметр немного меньше.

Этот провод диаметром 0,155мм вполне подойдет.

Готовим предохранитель к установке провода. Для этого по очереди нагреваем паяльником контакты предохранителя и прочищаем отверстия, например заточенной спичкой.

Затем продеваем в полученные отверстия провод.

И запаиваем с двух сторон.

Обрезаем лишний провод.

Все, плавкий  предохранитель готов, его можно вставлять в гнездо и использовать.

Очевидно, возникает вопрос, что делать, если нет микрометра, предназначенного для измерения диаметра провода. С меньшей точностью можно измерить диаметр провода штангенциркулем.

А если и его нет, то обычной линейкой.

Для этого нужно намотать провод виток к витку на любой стержень. Длина намотки 10-20 мм. Чем больше намотаете, тем точнее определите диаметр провода. Затем нужно длину намотки в «мм» разделить на количество витков и получите диаметр в «мм».

Например, 26 витков, длина намотки 20 мм. Диаметр провода 20 : 26 = 0,77 мм.

Проверяем этот же провод микрометром:

На микрометре мы видим показания 0,5 + 0,255 = 0,755мм. Если округлить, то получим  0,76 мм. Как видим, точность измерения диаметра провода с помощью линейки и намотки на стержень довольно высокая, около 2%.  Главное плотно, виток к витку, мотать провод.

Если нет возможности запаять провод в корпус предохранителя, то можно просто обмотать каждый контакт перегоревшего предохранителя и вставить в гнездо. Контакты гнезда должны надежно зажимать намотанный провод. Важно, чтобы края намотанного провода не торчали, иначе есть риск замыкания с соседними элементами.

И в заключение, главные выводы по данной теме:

  1. Перед началом работ по замене предохранителя обязательно выньте вилку устройства из розетки.
  2. Не меняйте перегоревший предохранитель  до тех пор, пока не выясните причину выхода его из строя и не устраните ее.
  3. Не вставляете вместо перегоревшего предохранителя первые попавшие под руку металлические предметы. Это может привести к серьезным повреждениям устройств, защищенных предохранителем и даже к большим потерям.

 

 

 

Можно ли предохранитель заменить проводом? — Радиомастер инфо

Проведены эксперименты по замене предохранителей калиброванным медным проводом и сделаны интересные выводы.

С заменой предохранителей, сталкивался практически каждый человек. Многим известна табличка для замены предохранителей проводом, она без труда находится в интернете и во многих справочниках:

 

Я решил проверить, соответствуют ли указанные в таблице значения реальным токам перегорания. Результаты получились довольно интересные.

Для проверки взял наиболее распространенное значение тока для предохранителя 3 Ампера. Подобрал медный провод диаметром 0,11 мм. Для этого случая удобно применять одну жилу из многожильного монтажного провода. Ее не нужно зачищать она и так обеспечивает надежный контакт.

Измерение диаметра микрометром:

Поскольку предохранители бывают разных размеров, решил проверить ток перегорания для разной длины провода диаметром 0,11мм.

Наиболее распространены такие предохранители:

Встречаются еще и такие:

Измерения начал с провода для самых длинных предохранителей 40мм. Ток перегорания составил 3,1А. Показания снимал с мультиметра, у него выше точность, чем у блока питания.

Провод того же диаметра 0,11мм длиной 10 мм перегорел при токе 4,78А.

Такой же провод длиной 4мм перегорел при токе уже 7,59А.

Интересная получается картина. Так для каких же предохранителей предназначена табличка проводов с указанными токами плавления? Есть еще и формулы расчета диаметра провода для замены предохранителя. Они дают значения, близкие к табличным. Уж очень большой получается разброс.

Провел опыты при разных напряжениях, постоянном 36В и переменном 230В. Ток менял плавно и скачками. Значения токов немного отличались, но зависимость от длины провода подтвердилась, почти в тех же пропорциях. Да оно и понятно, это можно объяснить изменением сопротивления при разной длине провода и отводом тепла от нагревающегося провода.

Взял заводской предохранитель на 3А и проверил его ток перегорания. Получил ток перегорания 5,59А.

Ну теперь есть ориентир. Решил измерить ток перегорания того же провода диаметром 0,11мм при разных способах его установки на перегоревший заводской предохранитель. Получил такие результаты.

Установил провод внутрь трубки предохранителя. Внешне получается, как заводской. Ток перегорания 5,38А, что довольно близко к заводскому.

Обмотал провод вокруг перегорелого предохранителя как часто делают при замене предохранителя без пайки. Ток перегорания 4,82А.

Запаял провод сверху предохранителя в одну линию. Так тоже часто делают если нет отверстий в контактах и проблемно вставить провод внутрь. Ток перегорания составил 3,81А.

Существенная разница между первым и третьим способом установки провода.

Посмотрел технические условия на плавкие предохранители. Там есть даже схема проведения испытаний. Но ведь я проводил не измерения абсолютных значений тока перегорания, а сравнительный анализ величины тока перегорания от способов установки и длины провода одного и того диаметра при прочих равных условиях.

Выводы.

  1. При замене перегоревшего предохранителя калиброванным проводом определенного диаметра нужно учитывать длину провода. При этом, чем длиннее провод, тем ниже значение тока перегорания.
  2. Ток перегорания зависит от способа установки провода на предохранитель. При этом, если предохранитель запаивать, делать герметичным, то ток возрастает, (светит как лампочка). Так же ток больше при тугой намотке вокруг корпуса предохранителя по сравнению с прокладкой провода в одну линию. На мой взгляд, это объясняется большим отводом тепла при намотке.
  3. Штатный предохранитель, или запаивание калиброванного провода нужного диаметра внутрь — самый правильный выход из ситуации. Особенно нужно быть осторожным при установке провода поверх предохранителя, так как раскаленный проводник, вне корпуса предохранителя, может вызвать возгорание окружающих его предметов.
  4. Ну и самое главное. Никогда не нужно менять предохранитель, пока не установлена причина перегорания ранее стоявшего. Особенно нельзя устанавливать вместо перегоревшего предохранителя металлические предметы (монеты, скрепки, фольгу) а также провод большого диаметра.

Вот пример неправильной замены предохранителя на автомобиле. Установлен вот такой «жук»:

И вот последствия. Перегоревшие жгуты автомобильной проводки.

Целесообразно всегда иметь под рукой калиброванный провод, например, в автомобиле, чтобы установить до покупки штатного предохранителя.

Провод диаметром 0,13мм в одну жилу на автомобильном предохранителе перегорает при токе около 5А. В две жилы ток перегорания в 1,8 раза больше, около 9А. И так далее. Это лучше, чем ставить то, что попадет под руку.

Материал статьи продублирован на видео:

 

Fuse Wire — Что это такое, из чего он сделан, Свойства

Последнее обновление: 21 июля 2021 г., Teachoo

Предохранитель — это кусок проволоки из материала с очень низкой температурой плавления, то есть он плавится и ломается, как только его температура становится выше точки плавления.

Материал, из которого изготовлен предохранитель, имеет низкие температуры плавления , следовательно, провода предохранителей в основном состоят из олова, свинца или цинка.

Как работает предохранитель?

В цепи используется предохранитель для избегать перегрузки или короткое замыкание.

Когда через него протекает ток, превышающий номинал предохранителя, предохранитель нагревается и плавится.

Этот разрывает цепь и защищает бытовую технику от повреждений.

Свойства провода предохранителя

Идеальный предохранитель должен обладать следующими свойствами

  • Низкая температура плавления, так что он ломается, как только через него проходит ток выше допустимого значения
  • Высокая стойкость, но сделаны из элементов, имеющих низкое удельное сопротивление — Необходимо высокое сопротивление, чтобы выделялось больше тепла (Heat = I 2 R), для материала требуется низкое удельное сопротивление, чтобы он не мешал протеканию тока.
  • Должен быть экономичный , потому что, хотя серебро удовлетворяет двум вышеупомянутым свойствам, оно не экономично, поэтому широко не используется в качестве предохранителя.

Предохранители разных приборов имеют разные номиналы тока.

Приборы, работающие на больших токах, имеют предохранители с более высокими номинальными токами.

Приборы, работающие на слабом токе, имеют предохранители меньшего номинала.

Например

  • Номинальный ток предохранителя, используемого в вентиляторах, фарах и т. Д., Составляет 5 А.
  • Номинальный ток предохранителя, используемого в двигателях, составляет 15 А.

Опасности замены провода предохранителя на медный провод

Как видите, этот кабель в какой-то момент фактически загорелся, и хозяину повезло, что огонь сам погас и не продолжил гореть в полости стены!

Что вызвало проблему?

Итак, как возник этот пожар и что вы можете сделать, чтобы предотвратить его возникновение у вас? Простая замена провода предохранителя на медный провод — вот что вызвало проблему.Чтобы понять опасности, нам нужно сделать шаг назад и посмотреть, что делает предохранитель. По сути, предохранитель — это защитное устройство, которое защищает вашу проводку и приборы, а также предотвращает возникновение электрических пожаров. Предохранитель содержит тонкий кусок проволоки, рассчитанный на пропускание ограниченного электрического тока. Если есть неисправность и через нее будет протекать слишком большой ток, то проволока нагреется настолько, что расплавится. Когда это происходит, он размыкает цепь и прекращает прохождение тока. Это защитит вашу технику и предотвратит возгорание.Однако, если вы используете медную проводку вместо проводки с предохранителями, этого процесса плавления не произойдет. Медь имеет более высокую температуру плавления, чем олово, используемое в плавкой проволоке. Таким образом, когда медный провод проходит под высоким током, он продолжает нагреваться, но не плавится. Вместо этого он вызывает короткое замыкание, что может привести к повреждению прибора и возникновению искры.

Что делать?

Хотя перегорание предохранителя может быть болезненным, помните, что это происходит для вашей безопасности.Рекомендуется, чтобы у вас был электрик для выполнения любых электромонтажных работ в вашем доме. Но если вы решили заменить предохранитель самостоятельно, убедитесь, что вы используете предохранительный провод правильного номинала, а не медный провод. Довольно редко мы находим плавкий провод в печах, замененный медным проводом, но мы регулярно находим медный провод в силовых цепях, который продолжает перегорать. Существует множество причин, по которым вы можете обнаружить повышенный ток в вашем доме, поэтому предохранители выполняют свою работу по защите вас от потенциальной опасности.Не поддавайтесь соблазну использовать медный провод для предохранителя, который перегорал несколько раз. Вместо этого позвоните нам в CDI и позвольте нам выяснить настоящую причину ваших электрических проблем. Плавкий предохранитель нужен не просто так — для вашей безопасности. Если этот предохранительный провод заменить медным, цепь не сможет остановиться, если что-то пойдет не так, и вероятность возгорания огромна. Итак, если у вас есть какие-либо проблемы с электричеством в вашем доме, пожалуйста, свяжитесь с нами здесь, в CDI Electrical.

Как определить размер предохранителя / провода

Большинство людей задумываются о размере провода предохранителя, но как только вы его освоите, это не должно вызывать слишком много головной боли.Это подробный учебник по предохранителям, в котором объясняется все, что вам нужно знать о предохранителях и о том, как их определять. Мы расскажем обо всех важных деталях и о том, что все это значит, чтобы вы быстро превратились из новичка в профессионала.

Зачем нужен предохранитель?

Основная функция предохранителя — защитить вашу проводку, но для этого вам нужно с самого начала выбрать правильный размер провода предохранителя: слишком низкий, и он перегорит, слишком высокий, и вы в конечном итоге нанести ущерб всей цепи!

Все может стать действительно некрасивым очень быстро, поэтому, чтобы избежать всего этого беспорядка, вам нужно каждый раз получать предохранители подходящего размера для работы.Чтобы предохранитель правильно работал и защищал провода, его номинальный ток должен быть в 1,1–1,5 раза больше номинального значения. Также неплохо приобрести держатель предохранителя ATC для защиты и установки предохранителя.

Распространенное заблуждение относительно выбора предохранителя правильного размера заключается в том, что он зависит от нагрузки цепи. Собственно, нагрузка схемы не должна иметь ничего общего с выбором предохранителя. Размер предохранителя должен соответствовать НАИБОЛЕЕ МАЛЕНЬКОГО провода (наибольшего калибра) в цепи.

Как рассчитать номинал предохранителя

Для тех из вас, кто хочет сразу приступить к делу, давайте не будем больше тратить время, вот как правильно рассчитать размер предохранителя за 3 простых шага:

  • Определите сечение провода, который у вас уже есть, найдя его на упаковке или просто измерив.
  • Используйте следующую таблицу, чтобы определить максимальный ток для любого используемого калибра проводов.
  • Возьмите максимальное значение тока, полученное из таблицы, и найдите самый большой предохранитель, который вы можете найти, который все еще подпадает под ограничения.НЕ ПРЕВЫШАЙТЕ ЗНАЧЕНИЯ, УКАЗАННЫЕ В ДАННОЙ ТАБЛИЦЕ! Обычные автомобильные предохранители типа лезвия существуют на 5A-20A с шагом 5A. Пример: 5A, 10A, 15A, 20A

Определение общей силы тока вашей цепи

Итак, вы только что купили свои вещи в Oznium и готовитесь спланировать установку, пока USPS доставит их к вам. Один из первых вопросов, который следует задать при планировании установки, — это провод какого размера использовать, что позже определит, какой предохранитель использовать.

Не волнуйтесь, если вы заблудились, вы в Oznium, мы вам поможем.

Ток измеряется в амперах, сокращенно до ампера или просто буквы A. Из-за слаботочной природы продуктов Oznium, большинство продуктов и таблица, которую я разработал, имеют ток, указанный в миллиамперах. или мА для краткости.

например. 1 А равен 1000 мА

Чтобы узнать общую силу тока в вашей конкретной установке, обратитесь к таблице ниже.

Найдите элементы, которые вы устанавливаете, и их текущие требования.Сложите значения и разделите на 1000, чтобы получить общий ток в амперах. Вы можете использовать это значение в таблице размеров предохранителей выше, чтобы определить минимальный требуемый размер провода.

Вот пример:

Допустим, вы купили комплект с холодным катодом для каждой стороны приборной панели (2 трансформатора), 5 светодиодов superflux для вентиляционных отверстий и гибкую светодиодную ленту 4,7 дюйма для центральной консоли.

Если вы хотите объединить все это в одну цепь, вам нужно знать ток.Согласно приведенной выше таблице, каждый трансформатор потребляет 700 мА, каждый светодиод Superflux потребляет 80 мА, а светодиодная лента — 80 мА

Сложите все это ..

(700 * 2) + (80 * 5) + (80 * 1 ) = Всего 1880 мА.

Тогда ..

1880 мА / 1000 = 1,88 А.

Поместите 1.88A в верхнюю таблицу этого поста. В этой таблице указано, что для вашей схемы должно быть не менее 21 калибра.

Лично я бы выбрал провод 20 калибра и предохранитель на 2,5 А.

Если я что-то упустил или упустил, поправьте меня через личку, и я исправлю таблицы.

Что такое номинал предохранителя?

Номинал предохранителя обычно указывается на боковой стороне предохранителя и указывается в амперах. Номинал предохранителя — это сила тока, необходимая для того, чтобы предохранитель сработал или сломался. Когда это происходит, электрическая энергия не проходит через электрическую цепь.

Почему предохранители рассчитаны?

Номинал предохранителя — ценная информация, потому что он помогает защитить вашу электрическую цепь, и поэтому им нельзя пренебрегать.Каждой электрической цепи потребуется разное количество электрического тока, то, что подходит для одной электрической цепи, может быть слишком много или слишком мало для другой. Поступайте правильно и защитите свою схему.

Надеюсь, это руководство поможет вам установить все продукты здесь, в Oznium, быстро и, самое главное, безопасно.

Любой, кому нужна дополнительная информация или у кого есть конкретная или более сложная установка, не стесняйтесь связаться с нами или задать вопрос ниже.

Прочтите общие вопросы и ответы по Предохранителю ATC для светодиодов


Провод предохранителя всегда тонкий почему?

Последнее обновление:

предохранитель — это просто еще один кабель в электрической цепи, предназначенный для плавления, когда ток, протекающий через него, пересекает пороговое значение тока, другими словами, предохранитель является устройством защиты по току.

Например, плавкий провод 2a может без проблем пропускать ток до 2a в обоих направлениях, но как только ток течет через поперечную ось 2a, провод плавится и разрезает другие устройства в цепи, чтобы предотвратить повреждение.

Предохранитель обычно подключается последовательно с защищаемым устройством. (Таким образом, нам не нужны плавкие провода с высоким сопротивлением). Зависимость между толщиной провода и пропускной способностью заключается в том, что чем больше толщина, тем больше ток может передаваться по проводу.поэтому шнур предохранителя должен иметь достаточную толщину, чтобы пропускать желаемый (2а, если это предохранитель 2а) ток по сравнению с другими толстыми проводами, так как он разработан, чтобы допускать высокие токи (вы можете проверить номинальные токи, напечатанные на проводе блока питания вашего ПК ). они также имеют низкую температуру плавления.

Плавкий предохранитель не имеет высокого или низкого сопротивления, имеет только сопротивление и низкую температуру плавления, чтобы выделять достаточно тепла для плавления, когда через него протекает чрезмерный ток. Если вы хотите интуитивно понятное объяснение взаимосвязи между толщиной провода и пропускная способность этого тока, позвольте мне объяснить с помощью хорошей аналогии с водопроводом и водой.

Как всегда, провод = водопровод, а вода = ток.

Сопротивление проводника пропорционально его длине и обратно пропорционально его площади поперечного сечения. Таким образом, если предохранительный кабель толстый, большее сечение снижает сопротивление на предохранительном кабеле. Таким образом, даже при большом токе, протекающем через предохранитель, он не взорвется. потому что он служит только нормальным электрическим контактом в цепи или кабеле.

Сопротивление, r = p l / a

P — удельное сопротивление на единицу длины

L — длина

А — площадь

Для уменьшения площади и поддержания минимального сопротивления тепловыделению предохранитель выполнен тонким.

Провод предохранителя не должен иметь большого или низкого сопротивления. он должен иметь достаточную мощность, чтобы выдерживать свой номинальный ток без нежелательного отключения и немедленно плавиться при небольшом перегрузке по току. это увеличение толщины предохранителя в зависимости от номинального тока.

Предохранители | Физика проводников и изоляторов

Обычно допустимая токовая нагрузка проводника является пределом конструкции схемы, который нельзя намеренно превышать, но есть приложение, в котором ожидается превышение допустимой токовой нагрузки: в случае предохранителей .

Что такое предохранитель?

A предохранитель представляет собой устройство электробезопасности, построенное вокруг проводящей полосы, которая предназначена для плавления и разделения в случае чрезмерного тока. Предохранители всегда подключаются последовательно с компонентом (ами), который должен быть защищен от перегрузки по току, так что, когда плавкий предохранитель перегорает (размыкается), он размыкает всю цепь и останавливает ток через компонент (ы). Плавкий предохранитель, включенный в одну ветвь параллельной цепи, конечно, не повлияет на ток через любую из других ветвей.

Обычно тонкий кусок плавкой проволоки помещается в защитную оболочку, чтобы свести к минимуму опасность дугового разряда в случае прорыва проволоки с большой силой, как это может случиться в случае сильных перегрузок по току. В случае небольших автомобильных предохранителей оболочка является прозрачной, так что плавкий элемент может быть визуально осмотрен. В бытовой электропроводке обычно используются ввинчиваемые предохранители со стеклянным корпусом и тонкой узкой полосой из металлической фольги посередине. Фотография, на которой показаны оба типа предохранителей, представлена ​​здесь:

Предохранители картриджного типа популярны в автомобилях и в промышленности, если они изготовлены из материалов оболочки, отличных от стекла.Поскольку предохранители рассчитаны на «отказ» срабатывания при превышении их номинального тока, они обычно предназначены для легкой замены в цепи. Это означает, что они будут вставлены в какой-либо тип держателя, а не припаиваться или прикрепляться болтами к проводникам цепи. Ниже приведена фотография, на которой изображена пара предохранителей со стеклянным картриджем в держателе с несколькими предохранителями:

Предохранители удерживаются пружинными металлическими зажимами, причем сами зажимы постоянно соединены с проводниками цепи.Основной материал держателя предохранителя (или блока предохранителей , как их иногда называют) выбран как хороший изолятор.

Другой тип держателя предохранителей патронного типа обычно используется для установки в панелях управления оборудованием, где желательно скрыть все точки электрического контакта от контакта с человеком. В отличие от только что показанного блока предохранителей, где все металлические зажимы открыты, этот тип держателя предохранителя полностью закрывает предохранитель в изолирующем корпусе:

Наиболее распространенным устройством защиты от перегрузки по току в сильноточных цепях сегодня является автоматический выключатель .

Что такое автоматический выключатель?

Автоматические выключатели — это специально разработанные переключатели, которые автоматически размыкаются для отключения тока в случае перегрузки по току. Малые автоматические выключатели, например, используемые в жилых, коммерческих и легких промышленных предприятиях, имеют термическое управление. Они содержат биметаллическую полосу (тонкую полоску из двух металлов, соединенных спина к спине), несущую ток цепи, которая изгибается при нагревании. Когда биметаллическая полоса создает достаточную силу (из-за чрезмерного нагрева ленты), срабатывает механизм отключения, и прерыватель размыкается.Автоматические выключатели большего размера автоматически активируются силой магнитного поля, создаваемого токонесущими проводниками внутри выключателя, или могут срабатывать для отключения от внешних устройств, контролирующих ток цепи (эти устройства называются защитными реле , ).

Поскольку автоматические выключатели не выходят из строя в условиях перегрузки по току — скорее, они просто размыкаются и могут быть повторно включены путем перемещения рычага — они с большей вероятностью будут обнаружены подключенными к цепи более длительным образом, чем предохранители.Фотография маленького автоматического выключателя представлена ​​здесь:

Внешне он похож на выключатель. Действительно, его можно было использовать как таковое. Однако его истинная функция — работать как устройство защиты от перегрузки по току.

Следует отметить, что в некоторых автомобилях используются недорогие устройства, известные как плавкие вставки , для защиты от перегрузки по току в цепи зарядки аккумулятора из-за стоимости предохранителя и держателя надлежащего номинала.Плавкая вставка — это примитивный предохранитель, представляющий собой не что иное, как короткий кусок провода с резиновой изоляцией, предназначенный для плавления в случае перегрузки по току, без какой-либо твердой оболочки. Такие грубые и потенциально опасные устройства никогда не используются в промышленности или даже в жилых помещениях, в основном из-за встречающихся более высоких уровней напряжения и тока. По мнению автора, их применение даже в автомобильных схемах вызывает сомнения.

Обозначение на электрической схеме для предохранителя представляет собой S-образную кривую:

Номиналы предохранителей

Предохранители

, как и следовало ожидать, в основном рассчитаны на ток: ампер.Хотя их работа зависит от самовыделения тепла в условиях чрезмерного тока за счет собственного электрического сопротивления предохранителя, они спроектированы так, чтобы вносить незначительное дополнительное сопротивление в цепи, которые они защищают. Это в значительной степени достигается за счет того, что плавкий провод делается как можно короче. Точно так же, как допустимая токовая нагрузка обычного провода не связана с его длиной (сплошной медный провод 10 калибра выдержит ток 40 ампер на открытом воздухе, независимо от длины или короткого отрезка), плавкий провод из определенного материала и калибра будет дуть при определенном токе независимо от того, как долго он длится.Так как длина не является фактором в текущем рейтинге, чем короче она может быть сделана, тем меньшее сопротивление будет между концом и концом.

Однако разработчик предохранителя также должен учитывать, что происходит после сгорания предохранителя: оплавленные концы сплошного провода будут разделены воздушным зазором с полным напряжением питания между концами. Если предохранитель недостаточно длинный в цепи высокого напряжения, искра может перескочить с одного из концов расплавленного провода на другой, снова замкнув цепь:

Следовательно, предохранители рассчитываются с учетом их допустимого напряжения, а также уровня тока, при котором они сработают.

Некоторые большие промышленные предохранители имеют сменные проволочные элементы для снижения затрат. Корпус предохранителя представляет собой непрозрачный картридж многоразового использования, который защищает провод предохранителя от воздействия и защищает окружающие предметы от провода предохранителя.

Номинальный ток предохранителя — это нечто большее, чем просто цифра. Если через предохранитель на 30 ампер пропускается ток в 35 ампер, он может внезапно перегореть или с задержкой перед перегоранием, в зависимости от других аспектов его конструкции. Некоторые предохранители предназначены для очень быстрого срабатывания, в то время как другие рассчитаны на более скромное время «срабатывания» или даже на замедленное срабатывание в зависимости от области применения.Последние предохранители иногда называют плавкими предохранителями с задержкой срабатывания, из-за их преднамеренных характеристик задержки срабатывания.

Классическим примером применения плавкого предохранителя с задержкой срабатывания является защита электродвигателя, где бросков тока обычно в десять раз превышают нормальный рабочий ток каждый раз, когда двигатель запускается с полной остановки. Если бы в таком приложении использовались быстродействующие предохранители, двигатель никогда бы не запустился, потому что при нормальных уровнях пускового тока предохранитель (и) немедленно перегорел бы! Конструкция плавкого предохранителя с задержкой срабатывания такова, что элемент плавкого предохранителя имеет большую массу (но не большую допустимую нагрузку), чем эквивалентный быстродействующий плавкий предохранитель, что означает, что он будет нагреваться медленнее (но до той же конечной температуры) при любом заданном количестве. тока.

На другом конце спектра действия предохранителей находятся так называемые полупроводниковые предохранители , предназначенные для очень быстрого размыкания в случае перегрузки по току. Полупроводниковые устройства, такие как транзисторы, как правило, особенно нетерпимы к условиям перегрузки по току и, как таковые, требуют быстродействующей защиты от сверхтоков в мощных приложениях.

Предохранители всегда должны размещаться на «горячей» стороне нагрузки в заземленных системах. Это сделано для того, чтобы нагрузка была полностью обесточена во всех отношениях после срабатывания предохранителя.Чтобы увидеть разницу между плавлением «горячей» стороны и «нейтральной» стороны нагрузки, сравните эти две схемы:

В любом случае предохранитель успешно прервал ток нагрузки, но нижняя цепь не смогла прервать потенциально опасное напряжение с любой стороны нагрузки на землю, где мог бы стоять человек. Первая схема намного безопаснее.

Как было сказано ранее, предохранители — не единственный используемый тип устройства защиты от сверхтоков.Переключатели, называемые выключателями , часто (и чаще) используются для размыкания цепей с чрезмерным током, их популярность связана с тем, что они не разрушают себя в процессе размыкания цепи, как предохранители. В любом случае, однако, размещение устройства защиты от сверхтоков в цепи будет соответствовать тем же общим рекомендациям, перечисленным выше: а именно, «предохранить» сторону источника питания , а не , подключенную к земле.

Хотя размещение защиты от перегрузки по току в цепи может определять относительную опасность поражения электрическим током в этой цепи при различных условиях, следует понимать, что такие устройства никогда не предназначались для защиты от поражения электрическим током.Ни предохранители, ни автоматические выключатели не предназначены для срабатывания в случае поражения электрическим током; скорее, они предназначены для открытия только в условиях потенциального перегрева проводника. Устройства максимального тока в первую очередь защищают проводники цепи от повреждения из-за перегрева (и опасности возгорания, связанной с чрезмерно горячими проводниками), и, во вторую очередь, защищают определенные части оборудования, такие как нагрузки и генераторы (некоторые быстродействующие предохранители предназначены для защиты особенно чувствительных электронных устройств. к скачкам тока).Поскольку уровни тока, необходимые для поражения электрическим током или поражения электрическим током, намного ниже, чем нормальные уровни тока обычных силовых нагрузок, состояние перегрузки по току не указывает на возникновение удара током. Существуют и другие устройства, предназначенные для обнаружения определенных условий удара (детекторы замыкания на землю являются наиболее популярными), но эти устройства строго служат этой единственной цели и не связаны с защитой проводов от перегрева.

ОБЗОР:

  • Предохранитель представляет собой небольшой тонкий проводник, предназначенный для плавления и разделения на две части с целью размыкания цепи в случае чрезмерного тока.
  • Автоматический выключатель — это специально разработанный переключатель, который автоматически размыкается для прерывания тока цепи в случае перегрузки по току. Они могут срабатывать (размыкаться) термически, магнитными полями или внешними устройствами, называемыми «реле защиты», в зависимости от конструкции выключателя, его размера и области применения.
  • Предохранители
  • в первую очередь рассчитаны на максимальный ток, но также рассчитаны на то, какое падение напряжения они будут безопасно выдерживать после прерывания цепи.
  • Предохранители
  • могут быть сконструированы так, чтобы срабатывать быстро, медленно или где-то посередине при одинаковом максимальном уровне тока.
  • Лучшее место для установки предохранителя в заземленной энергосистеме — на пути незаземленного проводника к нагрузке. Таким образом, при сгорании предохранителя к нагрузке останется только заземленный (безопасный) провод, что сделает безопаснее для людей находиться рядом.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Почему предохранитель сделан из тонкой проволоки?

Предохранители используются во многих электрических и электронных устройствах.

Это предохранительное устройство, используемое для защиты электрических / электронных компонентов и устройств от Максимальных токов (скачков тока), превышающих определенный предел.

Считайте это последней линией защиты.

Он состоит из металлической проволоки, плавящейся под действием тепла, вызванного высокими токами.

Но почему предохранитель сделан из тонкой проволоки? Предохранитель A изготовлен из тонкой проволоки, так как он должен плавиться при высоких температурах, вызванных высокими токами.Если он не расплавится, сверхтоки, вызванные скачками напряжения, могут повредить цепь.

Чем толще провод, тем больше может течь ток и тем труднее его расплавить.

Размер проводов зависит от их физических характеристик и способности выдерживать различные величины тока.

Подробнее об этом я расскажу в этой статье.

Что такое предохранитель и предохранитель?

Чтобы понять, почему в предохранителях используется тонкий провод, будет полезно узнать немного больше о них и о том, как они работают.

Итак, давайте подробнее рассмотрим предохранители (если вы уже знаете, как они работают, можете пропустить этот раздел).

Предохранитель

Во многих областях инженерного мира у нас есть предохранителей .

Это меры безопасности, которые позволяют инженерной системе вернуться в безопасное состояние в случае неисправности.

Предохранитель

А — один из этих предохранителей, используемых в электрических и электронных устройствах.

Это предохранительное устройство, используемое для защиты компонентов и устройств от перегрузки по току .

Перегрузка по току — это сценарий, при котором в цепи генерируются чрезмерные нежелательные токи. Он превышает номинальные токи, наблюдаемые в цепи.

Эти большие нежелательные токи могут привести к возникновению высоких температур, которые могут стать причиной пожара.

Плавкий провод

Но как у предохранителя есть способность защищать цепь от этих сверхтоков.

Звездой шоу здесь является предохранитель .

Этот ничего не подозревающий кусок проволоки представляет собой «тонкую» грань между безопасностью и катастрофой.

Как мы видели ранее, высокие токи вызывают высокие температуры, которые могут привести к пожарам.

В случае перегрузки по току предохранительный провод плавится при высоких температурах и ломается, размыкая цепь и прекращая прохождение тока.

Предохранители, как и любой другой электронный компонент, имеют номиналы, которые включают максимальное напряжение и ток, с которыми они могут работать до выхода из строя.

Но, в отличие от других компонентов, выход предохранителя из строя является частью его работы с целью защиты других компонентов.

Как работает предохранитель в цепи

Лучший способ проиллюстрировать, как работает предохранитель, — это посмотреть на примере. Итак, давайте посмотрим на предохранитель в действии в простой схеме.

Выше представлена ​​простая схема, предназначенная для питания лампы.

Ниже представлены компоненты цепей, а также их номинальные значения напряжения и тока соответственно;

  • Аккумулятор (12В)
  • Лампа (12В, 1А)
  • Предохранитель (12В, 1А).

Лампа требует напряжения 12 В и силы тока до 1 А для эффективной работы.

Итак, максимальный ток, который будет выдерживать эта схема, составляет 1А. Превышение этого значения тока приведет к повреждению лампы.

Поэтому специально для этой цели выбирается предохранитель с номинальным током 1 А (или 1,5 А, если допустить небольшой запас).

Любые токи выше этого значения вызовут плавление предохранителя.

Почему провод предохранителя тонкий?

Хорошо, давайте погрузимся в понимание, почему предохранитель сделан из тонкой проволоки.

Итак, теперь мы знаем, что основное назначение плавкой проволоки — плавление при высоких токах (и, следовательно, при высоких температурах).

Сила тока, которую может переносить провод, зависит от его физических размеров, а также от материала, из которого он сделан.

Калибр проволоки — это измерение, определяющее значение диаметра проволоки.

Это значение дает нам информацию о проводе, например, величину тока, которую он может выдерживать, а также сопротивление и вес.

Наиболее широко используемая система калибра проводов — это American Wire Gauge (AWG)

Каждый провод имеет ограничение по величине тока, который он может проводить, и выход за его пределы приведет к повреждению провода.

Основная причина того, что плавкий предохранитель имеет тонкий провод, — это то, что происходит, когда тонкий провод подвергается воздействию больших токов.

Допустим, у нас есть Wire A с диаметром провода 20.

Согласно системе AWG, этот провод может выдерживать ток до 3A (так что его максимальный предел составляет 3A).

Теперь для сценария А, допустим, мы подаем ток 2А. Здесь электроны (ток) могут свободно перемещаться по проводу, поскольку размер провода таков, что он может выдерживать такое количество тока.

Ключевым моментом здесь является то, что не возникает трения (или небольшого трения), вызванного столкновением электронов с проводом или друг с другом, поскольку их меньше.

Для сценария B, давайте увеличим ток по сравнению с номинальным током AWG до 4А.

Теперь количество электронов увеличилось, но размер провода остался прежним.Это создаст пробку из электронов внутри провода.

Они будут натыкаться и тереться друг о друга и о проволоку.

Это вызовет повышенный уровень трения, и мы знаем, что усиление трения вызовет нагрев.

Чем больше трение, тем больше тепла, которое в конечном итоге расплавит проволоку.

Нежелательно, чтобы это происходило в нормальных условиях в электрических и электронных цепях, однако это идеально подходит для предохранителя, поскольку при возникновении нежелательных высоких токов провод предохранителя должен расплавиться.

Это точная причина, по которой предохранитель сделан из тонкой проволоки.

Из чего сделан предохранительный провод?

Одним из критериев выбора провода предохранителя является его физический размер, поскольку теперь мы знаем, что провода имеют предел тока, с которым они могут справиться.

Но если мы выберем материал с высокой температурой плавления, это приведет к нарушению цели и сделает предохранитель бесполезным, поскольку он не плавится при высоких температурах.

Проволока для плавких предохранителей изготовлена ​​из сплава, состоящего из Sn (олово) и Pb (свинец) из-за их низкой температуры плавления.

Состав состоит из 62% олова и 38% свинца.

Их температура плавления составляет 183 ° C (361,4 ° F).

Что произойдет, если предохранительный провод толстый?

Ответ прост: цепь и компоненты, которые должен защищать предохранитель, будут повреждены.

Если предохранитель толстый, он сможет выдерживать больший ток.

Например, если ваша электрическая система рассчитана на 3 А (максимальный ток, который она может выдержать), но плавкий провод достаточно толст, чтобы выдерживать 5 А, и возникает условие перегрузки по току 4 А, компоненты вашей электрической системы будут поврежден, так как предохранительный провод не расплавится.

Практическое правило — выбирать плавкий предохранитель, рассчитанный на 1,1–1,5-кратное максимальное значение тока системы.

Провод предохранителя Wickes — 3 шт. В упаковке

Wickes Fuse Wire — Набор из 3 шт. | Wickes.co.uk перейти к содержанию Перейти в меню навигации

Мой счет

Войдите или зарегистрируйтесь

Доставка Доступен на следующий день

Продукт добавлен для Click & Collect

Товар не был добавлен для Click & Collect

Наши акции быстро развиваются! Защитите свой продукт с помощью Click & Collect.

Ближайший магазин

Другие магазины

Магазины с товарами на складе и Click & Collect рядом.

Изменить поиск

Click & Collect недоступен

Наши акции быстро развиваются! Защитите свой продукт с помощью Click & Collect.

Провод предохранителя Wickes — упаковка из 3 шт.

Результатов не найдено

Показать карту

Скрыть карту

Вы не вошли в систему, чтобы сохранить свой список навсегда.Пока вы не войдете в систему, ваш список будет временно сохранен, и к нему можно будет получить доступ только с того устройства, которое вы используете сейчас.

Авторизоваться Завести аккаунт

Стандартная доставка — от БЕСПЛАТНО

£ 4 или БЕСПЛАТНО свыше 75 фунтов стерлингов

Заказы, которые включают большие и громоздкие товары, требуют дополнительной платы за доставку.Пожалуйста, обратитесь к нашим деталям доставки для получения дополнительной информации.

Доставляем с понедельника по субботу с 7:00 до 19:00.

Действуют исключения из поставки.

Click & Collect в магазине в течение 1 часа — БЕСПЛАТНО

Для использования в предохранителях с возможностью повторного подключения.

Узнать больше

Читать меньше

  • Тип: Запасной провод предохранителя
  • для использования с: Сменные предохранители
  • Кол-во в упаковке: 3
  • Фирменное наименование: Фитиль
  • 5А Цепи освещения
  • Погружные нагреватели на 15 А

Спасибо за подписку на электронную почту

Авторские права © 2021 Wickes.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *