Радиодетали резисторы виды и обозначения таблица. Обозначение на схемах радиодеталей
Обозначение радиодеталей на схеме
В данной статье приведен внешний вид
и схематическое обозначение
радиодеталей
Каждый наверно начинающие радиолюбитель видел и внешне радиодетали и возможно схемы,но что чем является на схеме приходится долго думать или искать,и только где то он может прочитает и увидит новые для себя слова такие как резистор, транзистор, диод и прочее.А как же они обозначаются.Разберем в данной статье.И так поехали.
1.Резистор
Чаще всего на платах и схемах можно увидеть резистор,так как их по количеству на платах больше всего.
Резисторы бывают как постоянные,так и переменные(можно регулировать сопротивление с помощью ручки)
Одна из картинок постоянного резистора
ниже и обозначение
постоянного
и переменного
на схеме.
А где переменный резистор как выглядет. Это еще картиночка ниже.Извиняюсь за такое написание статьи.
2.Транзистор и его обозначение
Много информации написано, о функциях ихних, но так как тема о обозначениях.Поговорим об обозначениях.
Транзисторы бывают биполярными,и полярными, пнп и нпн переходов.Все это учитывается при пайке на плату, и в схемах.Увидите рисунок,поймете
Обозначение транзистора нпн перехода npn
Э это эммитер , К это коллектор , а Б это база .Транзисторы pnp переходов будет отличатся тем что стрелочка будет не от базы а к базе.Для более подробного еще одна картинка
Есть так же кроме биполярных и полевые транзисторы, обозначение на схеме полевых транзисторов похожи, но отличаются.Так как нет базы эмиттера и коллектора, а есть С — сток, И — исток, З — затвор
И напоследок о транзисторах как же они выглядат на самом деле
Общем если у детали три ножки, то 80 процентов того что это транзистор.
Если у вас есть транзистор и незнаете какого он перехода и где коллектор, база, и вся прочая информация,то посмотрите в сравочнике транзисторов.
Конденсатор, внешний вид и обозначение
Конденсаторы бывают полярные и неполярные, в полярных на схеме приресовывают плюс, так как он для постоянного тока, а неполярные соответствено для переменного.
Они имеют определенную емкость в мКф (микрофарадах) и расчитаны на определенное напряжение в вольтах.Все это можно прочитать на корпусе конденсатора
Микросхемы , внешний вид обозначение на схеме
Уфф уважаемые читатели, этих существует просто огромное количество в мире, начинаю от усилителей и заканчивая телевизорами
Данная статья предназначена для того, чтобы начинающему радиолюбителю было с чего начать. В различных технических изданиях такой материал так же встречается редко. Именно этим он и ценен.
В таблице приводится буквенное обозначение основных радиоэлементов на радиосхемах в соответствии с государственным стандартом (ГОСТом). Указанное в таблице буквенное обозначение радиоэлементов – не догма, и в основном не соблюдается разработчиками радиосхем. Например, в соответствии с ГОСТ, обозначение потенциометра (переменного резистора) – RP, а на схемах чаще всего встречается просто – R. Когда специалист любого уровня «читает» радиосхему, он безошибочно определяет, что буквенное обозначение относится именно к этому потенциометру, а не к другому радиоэлементу. Главное, что первая буква обозначения соответствует.
Бывали случаи, когда я проектировал схему, а когда наносил на схему буквенные обозначения, то вдруг обнаруживал, что я не помню, какой буквой обозначается редко используемый элемент. Тогда я обращался к этой табличке. Поэтому эта таблица с буквенными обозначениями может быть полезной не только начинающим радиолюбителям.
Основное обозначение | Наименование элемента | Дополнительное обозначение | Вид устройства |
А | Устройство | АА АК AKS | Регулятор тока Блок реле Устройство |
B | Преобразователи | BА BF BK BL BM BS | Громкоговоритель Телефон Датчик тепловой Фотоэлемент Микрофон Звукосниматель |
С | Конденсаторы | CG | Батарея конденсаторов силовая Блок конденсаторов зарядный |
D | Интегральные схемы, микросборки | DA DD | ИС аналоговая ИС цифровая, логический элемент |
E | Элементы разные | EK EL | Теплоэлектронагреватель Лампа осветительная |
F | Разрядники, предохранители, устройства защиты | FA FP FU FV | Дискретный элемент защиты по току мгновенного действия Дискретный элемент защиты по току инерционного действия Предохранитель плавкий |
G | Генераторы, источники питания | GB GC GE | Батарея аккумуляторов Синхронный компенсатор Возбудитель генератора |
H | Устройства индикационные и сигнальные | HA HG HL HLA HLG HLR HLW HV | Прибор звуковой сигнализации Индикатор Прибор световой сигнализации Табло сигнальное Лампа сигнальная с зелёной линзой Лампа сигнальная с красной линзой Лампа сигнальная с белой линзой Индикаторы ионные и полупроводниковые |
K | Реле, контакторы, пускатели | KA KH KK KM KT KV KCC KCT KL | Реле токовое Реле указательное Реле электротепловое Контактор, магнитный пускатель Реле времени Реле напряжения Реле команды включения Реле команды отключения Реле промежуточное |
L | Катушки индуктивности, дроссели | LL LR LM | Дроссель люминисцентного освещения Реактор Обмотка возбуждения электродвигателя |
М | Двигатели | МА | Электродвигатели |
Р | Приборы измерительные | PA PC PF PI PK PR PT PV PW | Амперметр Счётчик импульсов Частотомер Счетчик активной энергии Счетчик реактивной энергии Омметр Измеритель времени действия, часы Вольтметр Ваттметр |
Q | Выключатели и разъединители силовые | QF | Выключатель автоматический |
R | Резисторы | RK RP RS RU RR | Терморезистор Потенциометр Шунт измерительный Варистор Реостат |
S | Устройства управления и коммутации | SA SB SF | Выключатель, или переключатель Выключатель кнопочный Выключатель автоматический |
T | Трансформаторы, автотрансформаторы | TA TV | Трансформатор тока Трансформатор напряжения |
U | Преобразователи | UB UR UG UF | Модулятор Демодулятор Блок питания Преобразователь частоты |
Приборы электровакуумные и полупроводниковые | VD VL VT VS | Диод, стабилитрон Прибор электровакуумный Транзистор Тиристор |
|
X | Соединители контактные | XA XP XS XW | Токосъёмник Штырь Гнездо Соединитель высокочастотный |
Y | Устройства механические с электромагнитным приводом | YA YAB | Электромагнит Замок электромагнитный |
Чтобы можно было собрать радиоэлектронное устройство, необходимо знать обозначение радиодеталей на схеме и их название, а также порядок их соединения. Для осуществления этой цели и были придуманы схемы. На заре радиотехники радиодетали изображались трехмерными. Для их составления требовались опыт художника и знания внешнего вида деталей. Со временем изображения упрощались, пока не превратились в условные знаки.
Сама схема, на которой нарисованы условные графические обозначения (УГО), называется принципиальной. Она не только показывает, каким образом соединяются те или иные элементы схемы, но и объясняет, как работает все устройство, показывая принцип его действия. Чтобы добиться такого результата, важно правильно показать отдельные группы элементов и соединение между ними.
- государственный, в этот стандарт может входить несколько государств;
- международный, пользуются почти во всем мире.
Но какой бы стандарт ни применялся, он должен четко показать обозначение радиодеталей на схеме и их название. В зависимости от функционала радиодетали УГО могут быть простыми или сложными. Например, можно выделить несколько условных групп:
- источники питания;
- индикаторы, датчики;
- переключатели;
- полупроводниковые элементы.
Этот перечень неполный и служит лишь для наглядности. Чтобы легче было разобраться в условных обозначениях радиодеталей на схеме, необходимо знать принцип действия этих элементов.
Источники питания
К ним относятся все устройства, способные вырабатывать, аккумулировать или преобразовывать энергию. Первый аккумулятор изобрел и продемонстрировал Александро Вольта в 1800 году. Он представлял собой набор медных пластин, проложенных влажным сукном. Видоизмененный рисунок стал состоять из двух параллельных вертикальных прямых, между которыми стоит многоточие. Оно заменяет недостающие пластины. Если источник питания состоит из одного элемента, многоточие не ставится.
В схеме с постоянным током важно знать, где находится положительное напряжение. Поэтому положительную пластину делают выше, а отрицательную ниже. Причем обозначение аккумулятора на схеме и батарейке ничем не отличается.
Также нет отличия и в буквенном коде Gb. Солнечные батареи, которые вырабатывают ток под влиянием солнечного света, в своем УГО имеют дополнительные стрелки, направленные на батарею.
Если источник питания внешний, например, радиосхема питается от сети, тогда вход питания обозначается клеммами. Это могут быть стрелки, окружности со всевозможными добавлениями. Возле них указывается номинальное напряжение и род тока. Переменное напряжение обозначается знаком «тильда» и может стоять буквенный код Ас. Для постоянного тока на положительном вводе стоит «+», на отрицательном «-«, а может стоять знак «общий». Он обозначается перевернутой буквой Т.
Полупроводники, пожалуй, имеют самую обширную номенклатуру в радиоэлектронике. Постепенно добавляются все новые приборы. Все их можно условно разделить на 3 группы:
- Диоды.
- Транзисторы.
- Микросхемы.
В полупроводниковых приборах используется р-п-переход, схемотехника в УГО старается показывать особенности того или иного прибора. Так, диод способен пропускать ток в одном направлении. Это свойство схематически показано в условном обозначении. Оно выполнено в виде треугольника, у вершины которого стоит черточка. Эта черточка показывает, что ток может идти только по направлению треугольника.
Если к этой прямой пририсован короткий отрезок и он обращен в обратную сторону от направления треугольника, то это уже стабилитрон. Он способен пропускать небольшой ток в обратном направлении. Такое обозначение справедливо только для приборов общего назначения. Например, изображение для диода с барьером Шоттки нарисован s-образный знак.
Некоторые радиодетали имеют свойства двух простых приборов, соединенных вместе. Эту особенность также отмечают. При изображении двустороннего стабилитрона рисуются оба, причем вершины треугольников направлены друг к другу. При обозначении двунаправленного диода изображаются 2 параллельных диода, направленных в разные стороны.
Другие приборы обладают свойствами двух разных деталей, например, варикап. Это полупроводник, поэтому он рисуется треугольником. Однако в основном используется емкость его р-п-перехода, а это уже свойства конденсатора. Поэтому к вершине треугольника пририсовывается знак конденсатора — две параллельные прямые.
Признаки внешних факторов, влияющих на прибор, также нашли свое отражение. Фотодиод преобразует солнечный свет в электрический ток, некоторые виды являются элементами солнечной батареи. Они изображаются как диод, только в круге, и на них направлены 2 стрелки, для показа солнечных лучей. Светодиод, напротив, излучает свет, поэтому стрелки идут от диода.
Транзисторы полярные и биполярные
Транзисторы также являются полупроводниковыми приборами, но имеют в основном два p-n-p-перехода в биполярных транзисторах. Средняя область между двумя переходами является управляющей. Эмиттер инжектирует носители зарядов, а коллектор принимает их.
Корпус изображен кружком. Два p-n-перехода изображены одним отрезком в этом кружке. С одной стороны, к этому отрезку подходит прямая под углом 90 градусов — это база. С другой стороны, 2 косые прямые. Одна из них имеет стрелку — это эмиттер, другая без стрелки — коллектор.
По эмиттеру определяют структуру транзистора. Если стрелка идет по направлению к переходу, то это транзистор p-n-p типа, если от него — то это n-p-n транзистор. Раньше выпускался однопереходный транзистор, его еще называют двухбазовым диодом, имеет один p-n-переход. Обозначается как биполярный, но коллектор отсутствует, а баз две.
Похожий рисунок имеет и полевой транзистор. Отличие в том, что переход у него называется каналом. Прямая со стрелкой подходит к каналу под прямым углом и называется затвором. С противоположной стороны подходят сток и исток. Направление стрелки показывает тип канала. Если стрелка направлена на канал, то канал n-типа, если от него, то p-типа.
Полевой транзистор с изолированным затвором имеет некоторые отличия. Затвор рисуется в виде буквы г и не соединяется с каналом, стрелка помещается между стоком и истоком и имеет то же значение. В транзисторах с двумя изолированными затворами на схеме добавляется второй такой же затвор. Сток и исток взаимозаменяемые, поэтому полевой транзистор можно подключать как угодно, нужно лишь правильно подключить затвор.
Интегральные микросхемы
Интегральные микросхемы являются самыми сложными электронными компонентами. Выводы, как правило, являются частью общей схемы. Их можно разделить на такие виды:
- аналоговые;
- цифровые;
- аналого-цифровые.
На схеме они обозначаются в виде прямоугольника. Внутри стоит код и (или) название схемы. Отходящие выводы пронумерованы. Операционные усилители рисуются треугольником, выходящий сигнал идет из его вершины. Для отсчета выводов на корпусе микросхемы рядом с первым выводом ставится отметка. Обычно это выемка квадратной формы. Чтобы правильно читать микросхемы и обозначения знаков, прилагаются таблицы.
Прочие элементы
Все радиодетали соединяются между собой проводниками. На схеме они изображаются прямыми линиями и чертятся строго по горизонтали и вертикали. Если проводники при пересечении друг с другом имеют электрическую связь, то в этом месте ставится точка. В советских схемах и американских, чтобы показать, что проводники не соединяются, в месте пересечения ставится полуокружность.
Конденсаторы обозначаются двумя параллельными отрезками. Если это электролитический, для подключения которого важно соблюдать полярность, то возле его положительного вывода ставится +. Могут встречаться обозначения электролитических конденсаторов в виде двух параллельных прямоугольников, один из них (отрицательный) окрашивается в черный цвет.
Для обозначения переменных конденсаторов используют стрелку, она по диагонали перечеркивает конденсатор. В подстроечных вместо стрелки используется т-образный знак. Вариконд — конденсатор, меняющий емкость от приложенного напряжения, рисуется, как и переменный, но стрелку заменяет короткая прямая, возле которой стоит буква u. Емкость показывается цифрой и рядом ставится мкФ (микроФарада). Если емкость меньше — буквенный код опускается.
Еще один элемент, без которого не обходится ни одна электрическая схема — это резистор. Обозначается на схеме в виде прямоугольника. Чтобы показать, что резистор переменный, сверху рисуют стрелку. Она может быть соединена либо с одним из выводов, либо являться отдельным выводом. Для подстроечных используют знак в виде буквы т. Как правило, рядом с резистором указывается его сопротивление.
Для обозначения мощности постоянных резисторов могут использоваться знаки в виде черточек. Мощность в 0,05 Вт обозначается тремя косыми, 0,125 Вт — двумя косыми, 0,25 Вт — одной косой, 0,5 Вт — одна продольная. Большая мощность показывается римскими цифрами. Из-за многообразия невозможно провести описание всех обозначений электронных компонентов на схеме. Чтобы определить тот или иной радиоэлемент, пользуются справочниками.
Буквенно-цифровой код
Для простоты радиодетали разделяются на группы по признакам. Группы делятся на виды, виды — на типы. Ниже приведены коды групп:
Для удобства монтажа на печатных платах указываются места для радиодеталей буквенным кодом, рисунком и цифрами. У деталей с полярными выводами у положительного вывода ставится +. В местах для пайки транзисторов каждый вывод помечается соответствующей буквой. Плавкие предохранители и шунты отображаются прямой линией. Выводы микросхем маркируются цифрами. Каждый элемент имеет свой порядковый номер, который указан на плате.
Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.
На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.
Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:
Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.
Базовые изображения и функциональные признаки
Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.
Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.
Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.
Основные функции могут выполнять только неподвижные контакты.
Условные обозначения однолинейных схем
Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.
Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.
Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.
Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.
В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.
Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.
Изображение шин и проводов
В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).
Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.
На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.
Как изображают выключатели, переключатели, розетки
На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.
Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.
Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.
Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).
В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.
Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)
Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.
Светильники на схемах
В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.
В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.
Элементы принципиальных электрических схем
Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.
Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.
Буквенные условные обозначения в электрических схемах
Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.
В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.
Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.
Нормативные документы
Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.
Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.
Номер ГОСТа | Краткое описание |
2.710 81 | В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы. |
2.747 68 | Требования к размерам отображения элементов в графическом виде. |
21.614 88 | Принятые нормы для планов электрооборудования и проводки. |
2.755 87 | Отображение на схемах коммутационных устройств и контактных соединений |
2.756 76 | Нормы для воспринимающих частей электромеханического оборудования. |
2.709 89 | Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода. |
21.404 85 | Схематические обозначения для оборудования, используемого в системах автоматизации |
Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.
Виды электрических схем
В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:
Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.
Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.
Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.
Графические обозначения
Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.
Примеры УГО в функциональных схемах
Ниже представлен рисунок с изображением основных узлов систем автоматизации.
Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85
Описание обозначений:
- А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
- В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
- С – Отображение исполнительных механизмов (ИМ).
- D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
- Происходит открытие РО
- Закрытие РО
- Положение РО остается неизменным.
- Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
- F- Принятые отображения линий связи:
- Общее.
- Отсутствует соединение при пересечении.
- Наличие соединения при пересечении.
УГО в однолинейных и полных электросхемах
Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.
Источники питания.
Для их обозначения приняты символы, приведенные на рисунке ниже.
УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)
Описание обозначений:
- A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
- В – значок электричества, отображающий переменное напряжение.
- С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
- D – Отображение аккумуляторного или гальванического источника питания.
- E- Символ батареи, состоящей из нескольких элементов питания.
Линии связи
Базовые элементы электрических соединителей представлены ниже.
Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)
Описание обозначений:
- А – Общее отображение, принятое для различных видов электрических связей.
- В – Токоведущая или заземляющая шина.
- С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
- D — Символ заземления.
- E – Электрическая связь с корпусом прибора.
- F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
- G – Пересечение с отсутствием соединения.
- H – Соединение в месте пересечения.
- I – Ответвления.
Обозначения электромеханических приборов и контактных соединений
Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.
УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)
Описание обозначений:
- А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
- В – УГО воспринимающей части электротепловой защиты.
- С – отображение катушки устройства с механической блокировкой.
- D – контакты коммутационных приборов:
- Замыкающие.
- Размыкающие.
- Переключающие.
- Е – Символ для обозначения ручных выключателей (кнопок).
- F – Групповой выключатель (рубильник).
УГО электромашин
Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.
Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)
Описание обозначений:
- A – трехфазные ЭМ:
- Асинхронные (ротор короткозамкнутый).
- Тоже, что и пункт 1, только в двухскоростном исполнении.
- Асинхронные ЭМ с фазным исполнением ротора.
- Синхронные двигатели и генераторы.
- B – Коллекторные, с питанием от постоянного тока:
- ЭМ с возбуждением на постоянном магните.
- ЭМ с катушкой возбуждения.
УГО трансформаторов и дросселей
С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.
Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)
Описание обозначений:
- А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
- В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
- С – Отображение двухкатушечного трансформатора.
- D – Устройство с тремя катушками.
- Е – Символ автотрансформатора.
- F – Графическое отображение ТТ (трансформатора тока).
Обозначение измерительных приборов и радиодеталей
Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.
Примеры условных графических обозначений электронных компонентов и измерительных приборов
Описание обозначений:
- Счетчик электроэнергии.
- Изображение амперметра.
- Прибор для измерения напряжения сети.
- Термодатчик.
- Резистор с постоянным номиналом.
- Переменный резистор.
- Конденсатор (общее обозначение).
- Электролитическая емкость.
- Обозначение диода.
- Светодиод.
- Изображение диодной оптопары.
- УГО транзистора (в данном случае npn).
- Обозначение предохранителя.
УГО осветительных приборов
Рассмотрим, как на принципиальной схеме отображаются электрические лампы.
Описание обозначений:
- А – Общее изображение ламп накаливания (ЛН).
- В — ЛН в качестве сигнализатора.
- С – Типовое обозначение газоразрядных ламп.
- D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)
Обозначение элементов в монтажной схеме электропроводки
Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.
Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.
Графические условные обозначения радиоэлементов | Презентация к уроку:
Слайд 1
Графические условные обозначения радиоэлементов, наиболее часто применяемых в радиолюбительских принципиальных схемахСлайд 2
Провода, кабели, экраны Провод электрический Ответвление от провода, соединение проводов Провода пересекаются без электрического контакта между ними Экранированный провод Частично экранированный провод
Слайд 3
Провода, кабели, экраны Коаксиальный кабель Соединение с корпусом прибора Соединение с землёй Экран элемента или группы элементов Антенна
Слайд 4
Коммутационные устройства Контакт коммутационного устройства (выключателя, электрического реле) замыкающий. Выключатель однополюсный То же самое, с механической связью с другим элементом Герметизированный контакт замыкающий, магнитоуправляемый (геркон) Контакт коммутационного устройства размыкающий Контакт коммутационного устройства переключающий. Однополюсный переключатель на два направления
Слайд 5
Коммутационные устройства Переключатель однополюсный трёхпозиционный с нейтральным положением Кнопочный выключатель однополюсный, замыкающий, с самовозвратом Переключатель кнопочный однополюсный нажимной с возвратом вторичным нажатием кнопки Переключатель однополюсный шестипозиционный (галетный переключатель) Разъёмное однополюсное соединение
Слайд 6
Коммутационные устройства Штырь разъёмного соединения Гнездо разъёмного соединения Реле электромагнитное, с замыкающим и размыкающим контактами Гнездо штепсельное телефонное, двухпроводное Штепсель телефонный, двухпроводный
Слайд 7
Резисторы Резистор постоянный То же, с отводами Варистор Терморезистор Фоторезистор
Слайд 8
Резисторы Переменный резистор, реостат Переменный резистор с отводами Переменный резистор совмещенный с замыкающим контактом Переменный резистор сдвоенный Подстроечный резистор-потенциометр
Слайд 9
Конденсаторы Конденсатор постоянной ёмкости Постоянной ёмкости, поляризованный Оксидный поляризованный Оксидный неполяризованный Переменной ёмкости Подстроечный Вариконд
Слайд 10
Полупроводниковые приборы, диоды Диод выпрямительный Диод туннельный Стабилитрон, опорный диод Стабилитрон с двусторонней проводимостью Варикап ( варактор )
Слайд 11
Полупроводниковые приборы, диоды Светодиод Фотодиод Двунаправленный диод Выпрямительный однофазный диодный мост (схема Герца)
Слайд 12
Полупроводниковые приборы, Тиристоры Тиристор триодный, запираемый в обратном направлении, с управлением по аноду То же, с управлением по катоду Триодный симметричный ( симистор )
Слайд 13
Полупроводниковые приборы, Транзисторы Транзистор структуры n — p — n Транзистор структуры p — n — p Полевой с p — n переходом и n — каналом Полевой с p — n переходом и р — каналом
Слайд 14
Другие приборы Электрические лампы накаливания Кварцевый резонатор Тиратрон с холодным катодом, триодный Лампа тлеющего разряда Гальванический или аккумуляторный элемент питания
Слайд 15
Другие приборы Батарея из гальванических или аккумуляторных элементов питания Катушка индуктивности (дроссель) без сердечника Катушка индуктивности, подстраиваемая магнитодиэлектрическим сердечником Трансформатор
Слайд 16
Другие приборы Громкоговоритель (динамик) Наушник головной Микрофон Предохранитель плавкий Прибор электроизмерительный. Для указания назначения прибора в центре вписывают буквенные обозначения единиц измерения или измеряемых величин
Слайд 17
Видео по теме можно посмотреть по ссылке: https:// www.youtube.com/watch?v=qMg7e5qcrIw
U В Электрической Схеме — tokzamer.ru
Для изображения защитного проводника также имеется отдельный значок Провода бывают разные по виду, назначению, нагрузке, способу прокладки. Но за последнее время наблюдается тенденция применения ЭРЭ и комплектующих изделий зарубежного производства.
С — отображение катушки устройства с механической блокировкой. Часто тут же проставлены расстояния и номиналы.
Схема условных обозначений измерительных приборов вольтметра, амперметра и др. Блок — понятие общее, в его состав может входить как небольшое, так и значительное количество деталей.
Элементы электрических схем. Реле.
Обозначения строят из комбинации букв и цифр.
Если полярность отсутствует, обе обкладки обозначаются узкими прямоугольниками. Например, если нужно указать 4-контактный клеммник, то следует начертить четыре перечеркнутых кружочка в ряд, а не один.
B Аппаратура для преобразования неэлектрических величин в электрические без генераторов и источников питания , аналоговые и многозарядные преобразователи, датчики для указаний или измерений Микрофоны, громкоговорители, звукосниматели, детекторы ионизирующих излучений, чувствительные термоэлектрические элементы.
Так, без обозначения остались диммеры светорегуляторы и кнопочные выключатели. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.
Электролитические конденсаторы устанавливаются в фильтрах электропитания низкочастотных и импульсных устройств. Характерная особенность такой схемы — минимальная детализация.
Чертим гидравлическую схему [2] в САПР Компас3D
Нормативные документы
Однобуквенная символика элементов Буквенные коды, соответствующие отдельным видам элементов, наиболее широко применяющихся в электрических схемах, объединяются в группы, обозначаемые одним символом. Названия и условные обозначения этих радиодеталей на схеме регламентируются ГОСТом 2.
Как обозначаются различные радиодетали на схемах Как ранее было сказано, для обозначения радиодеталей каждого типа существует определенный графический символ. Направления прохождения сигнала обозначаются стрелками.
На функциональной схеме указаны блоки и связи между ними Принципиальные.
На чертеже отображается неизменяющееся номинальное сопротивление.
E- Символ батареи, состоящей из нескольких элементов питания. Есть функции, которые выполняют только подвижные контакты.
Все они также имеют условное обозначение и наносятся на соответствующие контакты. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три: Функциональная, на ней представлены узловые элементы изображаются как прямоугольники , а также соединяющие их линии связи.
Применяемые покупные комплектующие или самостоятельно изготавливаемые ЭРЭ обязательно находят свое отражение на принципиальных и монтажных электрических схемах устройств, в чертежах и другой ТД, которые выполняются в соответствии с требованиями стандартов ЕСКД. Обозначения на чертежах и схемах элементов общего применения относятся к квалификационным, устанавливающим род тока и напряжения,.
как научиться читать схемы
Смотрите также: Быстро составить смету на электромонтажные работы
Буквенные обозначения из двух символов
Эти сведения впервые публикуются в таком объеме.
Буквенные обозначения элементов на схемах: основные и дополнительные В таблице выше приведены международные обозначения.
На чертеже отображается неизменяющееся номинальное сопротивление.
Это дубликат более раннего документа — ГОСТ 2. Как правило, сведения о применяемых ЭРЭ указываются в справочниках и спецификации — перечне этих элементов. При этом обозначения координат следует разделять в соответствии с п.
Образец примитивной, но понятной и читаемой монтажной схемы для электроразводки частного дома, который можно составить самостоятельно, пользуясь ограниченным набором условных обозначений Требования по всем видам схематической документации изложены в ГОСТ 2. Конечный вывод одной детали соединяется с начальным выводом другой. Есть принципиальные схемы устройств, есть — электросетей.
Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом Все они отображаются латинскими символами в виде одной или двух букв. B Аппаратура для преобразования неэлектрических величин в электрические без генераторов и источников питания , аналоговые и многозарядные преобразователи, датчики для указаний или измерений Микрофоны, громкоговорители, звукосниматели, детекторы ионизирующих излучений, чувствительные термоэлектрические элементы.
Этот радиоэлемент обозначается в виде треугольника анода , вершина которого направлена в сторону протекания тока. Сами компоненты, входящие в группу, представлены микрофонами, громкоговорителями, звукоснимателями, детекторами ионизирующих излучений, термоэлектрическими чувствительными элементами и т. Например, С41 — конденсатор С4, используемый как интегрирующий. Для них характерна одинаковая электропроводность коллектора и эмиттера.
Начальные выводы всех сопротивлений соединяются в одной точке, конечные — в другой. Пример построения конструктивного обозначения приведен на черт. Принципиальная схема детализирует устройство Монтажная. Но начнем немного издалека При координатном методе конструктивное обозначение составляют из нескольких частей, каждая из которых указывает одну координату части объекта и условной системе координат, принятой для данной конструкции.
Как читать Элекрические схемы
Зарубежные обозначения радиодеталей
Согласно им, УГО имеет форму прямоугольника. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.
Прямо в схеме можно расставить номиналы и длину цепей.
Если нужно отразить только силовые линии, достаточно начертить линейную схему, а для изображения всех видов цепей с приборами контроля и управления понадобится полная. Позиционные обозначения на электрических схемах Обозначения буквенно-цифровые на электрических схемах должны соответствовать ГОСТ 2. Переменные резисторы изображение переменных резисторов на схемах В их конструкцию входит подвижный контакт, которым изменяют величину сопротивления.
Стабилизирует приложенное к выводам напряжение обратной полярности. В первом случае работает то одна цепь, то другая. Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации.
Читайте дополнительно: Как соединить двухклавишный выключатель
Содержание статьи
Карты напряжений и сопротивлений Картой диаграммой напряжений называют чертеж, на котором рядом с отдельными деталями и их выводами указывают величины напряжений, характерных для нормальной работы прибора. Вариант принципиальной схемы для электроснабжения дома с обозначением розеток, выключателей, разъема подключения электроплиты, звонка и его кнопки, светильников, автоматических предохранителей Тип 3 — монтажная схема Монтажная схема — документ, которым удобно пользоваться при установке сетей. Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому.
Большое количество информации содержат буквенные обозначения элементов в электрических схемах, определяемые различными нормативными документами. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов.
Обозначение элемента позиционное обозначение. На схемах используется также дополнительная часть обозначения позиции ЭРЭ, указывающая функцию элемента, в виде буквы. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.
Пример принципиальной схемы фрезерного станка Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то — полной. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Это и будет полная принципиальная схема.
Как читать электрические схемы
Курсы по ремонту сотовых телефонов (и не только;). Обозначение на схемах радиодеталей
Обзор элементов и их обозначение на печатной плате мобильного телефона helpmymac wrote in December 9th, 2012
Сопротивление
Сопротивление по традиции обозначается буквой R (Resistor) и измеряется в Омах (Ом). На схеме оно обозначается прямоугольником, либо перечеркнутым прямоугольником (так обозначается термистор и его сопротивление зависит от температуры). R3 470 означает, что это сопротивление №3 на данной схеме и он имеет сопротивление 470 Ом
Конденсатор
Конденсатор обозначается буквой C и его емкость измеряется в Фарадах (F). Существует два типа конденсаторов — полярный и неполярный. На картинке внизу C4 — неполярный конденсатор, C5 — полярный. Слева вверху показан внешний вид полярного конденсатора. Неполярный конденсатор, значит, неполяризованный, — то есть не важно какой стороной он будет установлен на печатную плату. В отличие от полярного, который нужно устанавливать строго -плюс к плюсу, минус к минусу. Таблица значений конденсаторов .
Диод
Существует множество различных диодов , диод используется в качестве фильтра тока и напряжения, также в качестве выпрямителя и преобразователя. Диод это электронный прибор который обладает различной проводимостью в зависимости от приложенного напряжения (в одном направлении пропускает ток, в другом нет)
На печатной плате обычный диод похож на сопротивление, но на нем может быть маленькая точечка. Так как диод нельзя просто так взять и поставить на плату, надо определить по схеме какой стороной он должен быть установлен.
Светодиоды (LED — Light Emitting Diode). Данный тип диодов используются в качестве подсветки клавиатуры и экранов на всех современных мобильных устройствах
Также часто можно встретить фотодиоды (PhotoDiode Photo Cell). Их используют в качестве датчика света, например, в айФонах любого поколения есть такая функция, как регулировка яркости экрана, в зависимости от освещенности. Яркость регулируется как раз с помощью данного типа диодов.
Катушка индуктивности
Грубо говоря это кусок проволоки намотанной в спираль. Определить на схеме ее очень просто, она похожа на волну.
Предохранитель
Предохранитель необходим для защиты от внезапного увеличения силы тока и напряжения в конкретной схеме. В случае если сопротивление в цепи будет очень низким или появится короткое замыкание, предохранитель просто сгорит. Их специально изготавливают из таких материалов, что при прохождении через него большого тока они сильно нагреваются и сгорают. На печатной плате они похожи сопротивления. Обозначается на схеме буквой F:
Кварцевый генератор
Кварцевые генераторы используют для измерения времени, в качестве стандартов частоты. Кварцевые генераторы широко применяются в цифровой технике в качестве тактовых генераторов, то есть генерирует электрические импульсы заданной частоты (обычно прямоугольной формы) для синхронизации различных процессов в цифровых устройствах. Кстати, кварцевый генератор на столько важный элемент, что при его поломке телефон просто не включится.
Если я забыл рассказать о чем-то, напишите мне в комментариях и я подправлю эту статью.
Данная статья предназначена для того, чтобы начинающему радиолюбителю было с чего начать. В различных технических изданиях такой материал так же встречается редко. Именно этим он и ценен.
В таблице приводится буквенное обозначение основных радиоэлементов на радиосхемах в соответствии с государственным стандартом (ГОСТом). Указанное в таблице буквенное обозначение радиоэлементов – не догма, и в основном не соблюдается разработчиками радиосхем. Например, в соответствии с ГОСТ, обозначение потенциометра (переменного резистора) – RP, а на схемах чаще всего встречается просто – R. Когда специалист любого уровня «читает» радиосхему, он безошибочно определяет, что буквенное обозначение относится именно к этому потенциометру, а не к другому радиоэлементу. Главное, что первая буква обозначения соответствует.
Бывали случаи, когда я проектировал схему, а когда наносил на схему буквенные обозначения, то вдруг обнаруживал, что я не помню, какой буквой обозначается редко используемый элемент. Тогда я обращался к этой табличке. Поэтому эта таблица с буквенными обозначениями может быть полезной не только начинающим радиолюбителям.
Основное обозначение | Наименование элемента | Дополнительное обозначение | Вид устройства |
А | Устройство | АА АК AKS | Регулятор тока Блок реле Устройство |
B | Преобразователи | BА BF BK BL BM BS | Громкоговоритель Телефон Датчик тепловой Фотоэлемент Микрофон Звукосниматель |
С | Конденсаторы | СВ CG | Батарея конденсаторов силовая Блок конденсаторов зарядный |
D | Интегральные схемы, микросборки | DA DD | ИС аналоговая ИС цифровая, логический элемент |
E | Элементы разные | EK EL | Теплоэлектронагреватель Лампа осветительная |
F | Разрядники, предохранители, устройства защиты | FA FP FU FV | Дискретный элемент защиты по току мгновенного действия Дискретный элемент защиты по току инерционного действия Предохранитель плавкий Разрядник искровой |
G | Генераторы, источники питания | GB GC GE | Батарея аккумуляторов Синхронный компенсатор Возбудитель генератора |
H | Устройства индикационные и сигнальные | HA HG HL HLA HLG HLR HLW HV | Прибор звуковой сигнализации Индикатор Прибор световой сигнализации Табло сигнальное Лампа сигнальная с зелёной линзой Лампа сигнальная с красной линзой Лампа сигнальная с белой линзой Индикаторы ионные и полупроводниковые |
K | Реле, контакторы, пускатели | KA KH KK KM KT KV KCC KCT KL | Реле токовое Реле указательное Реле электротепловое Контактор, магнитный пускатель Реле времени Реле напряжения Реле команды включения Реле команды отключения Реле промежуточное |
L | Катушки индуктивности, дроссели | LL LR LM | Дроссель люминисцентного освещения Реактор Обмотка возбуждения электродвигателя |
М | Двигатели | МА | Электродвигатели |
Р | Приборы измерительные | PA PC PF PI PK PR PT PV PW | Амперметр Счётчик импульсов Частотомер Счетчик активной энергии Счетчик реактивной энергии Омметр Измеритель времени действия, часы Вольтметр Ваттметр |
Q | Выключатели и разъединители силовые | QF | Выключатель автоматический |
R | Резисторы | RK RP RS RU RR | Терморезистор Потенциометр Шунт измерительный Варистор Реостат |
S | Устройства управления и коммутации | SA SB SF | Выключатель, или переключатель Выключатель кнопочный Выключатель автоматический |
T | Трансформаторы, автотрансформаторы | TA TV | Трансформатор тока Трансформатор напряжения |
U | Преобразователи | UB UR UG UF | Модулятор Демодулятор Блок питания Преобразователь частоты |
V | Приборы электровакуумные и полупроводниковые | VD VL VT VS | Диод, стабилитрон Прибор электровакуумный Транзистор Тиристор |
X | Соединители контактные | XA XP XS XW | Токосъёмник Штырь Гнездо Соединитель высокочастотный |
Y | Устройства механические с электромагнитным приводом | YA YAB | Электромагнит Замок электромагнитный |
В этой статье мы рассмотрим обозначение радиоэлементов на схемах.
С чего начать чтение схем?
Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.
До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов
Изучаем простую схему
Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:
Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.
Ну что же, давайте ее анализировать.
В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение . То есть вы должны понимать, какую основную функцию выполняет ваша схема . Это можно прочесть в описании к ней.
Как соединяются радиоэлементы в схеме
Итак, вроде бы определились с задачей этой схемы. Прямые линии — это провода, либо печатные проводники, по которым будет бежать электрический ток . Их задача — соединять радиоэлементы.
Точка, где соединяются три и более проводников, называется узлом . Можно сказать, в этом месте проводки спаиваются:
Если пристально вглядеться в схему, то можно заметить пересечение двух проводников
Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга . В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:
Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.
Если бы между ними было соединение, то мы бы увидели вот такую картину:
Буквенное обозначение радиоэлементов в схеме
Давайте еще раз рассмотрим нашу схему.
Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.
Итак, давайте первым делом разберемся с надписями. R — это значит . Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер «2». В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…
Как же обозначаются остальные радиоэлементы?
Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды — это группа , к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов :
А — это различные устройства (например, усилители)
В — преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся .
С — конденсаторы
D — схемы интегральные и различные модули
E — разные элементы, которые не попадают ни в одну группу
F — разрядники, предохранители, защитные устройства
H — устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации
K — реле и пускатели
L — катушки индуктивности и дроссели
M — двигатели
Р — приборы и измерительное оборудование
Q — выключатели и разъединители в силовых цепях. То есть в цепях, где «гуляет» большое напряжение и большая сила тока
R — резисторы
S — коммутационные устройства в цепях управления, сигнализации и в цепях измерения
T — трансформаторы и автотрансформаторы
U — преобразователи электрических величин в электрические, устройства связи
V — полупроводниковые приборы
W — линии и элементы сверхвысокой частоты, антенны
X — контактные соединения
Y — механические устройства с электромагнитным приводом
Z — оконечные устройства, фильтры, ограничители
Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента . Ниже приведены основные виды элементов вместе с буквой группы:
BD — детектор ионизирующих излучений
BE — сельсин-приемник
BL — фотоэлемент
BQ — пьезоэлемент
BR — датчик частоты вращения
BS — звукосниматель
BV — датчик скорости
BA — громкоговоритель
BB — магнитострикционный элемент
BK — тепловой датчик
BM — микрофон
BP — датчик давления
BC — сельсин датчик
DA — схема интегральная аналоговая
DD — схема интегральная цифровая, логический элемент
DS — устройство хранения информации
DT — устройство задержки
EL — лампа осветительная
EK — нагревательный элемент
FA — элемент защиты по току мгновенного действия
FP — элемент защиты по току инерционнго действия
FU — плавкий предохранитель
FV — элемент защиты по напряжению
GB — батарея
HG — символьный индикатор
HL — прибор световой сигнализации
HA — прибор звуковой сигнализации
KV — реле напряжения
KA — реле токовое
KK — реле электротепловое
KM — магнитный пускатель
KT — реле времени
PC — счетчик импульсов
PF — частотомер
PI — счетчик активной энергии
PR — омметр
PS — регистрирующий прибор
PV — вольтметр
PW — ваттметр
PA — амперметр
PK — счетчик реактивной энергии
PT — часы
QF
QS — разъединитель
RK — терморезистор
RP — потенциометр
RS — шунт измерительный
RU — варистор
SA — выключатель или переключатель
SB — выключатель кнопочный
SF — выключатель автоматический
SK — выключатели, срабатывающие от температуры
SL — выключатели, срабатывающие от уровня
SP — выключатели, срабатывающие от давления
SQ — выключатели, срабатывающие от положения
SR — выключатели, срабатывающие от частоты вращения
TV — трансформатор напряжения
TA — трансформатор тока
UB — модулятор
UI — дискриминатор
UR — демодулятор
UZ — преобразователь частотный, инвертор, генератор частоты, выпрямитель
VD — диод , стабилитрон
VL — прибор электровакуумный
VS — тиристор
VT —
WA — антенна
WT — фазовращатель
WU — аттенюатор
XA — токосъемник, скользящий контакт
XP — штырь
XS — гнездо
XT — разборное соединение
XW — высокочастотный соединитель
YA — электромагнит
YB — тормоз с электромагнитным приводом
YC — муфта с электромагнитным приводом
YH — электромагнитная плита
ZQ — кварцевый фильтр
Графическое обозначение радиоэлементов в схеме
Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:
Резисторы и их виды
а ) общее обозначение
б ) мощностью рассеяния 0,125 Вт
в ) мощностью рассеяния 0,25 Вт
г ) мощностью рассеяния 0,5 Вт
д ) мощностью рассеяния 1 Вт
е ) мощностью рассеяния 2 Вт
ж ) мощностью рассеяния 5 Вт
з ) мощностью рассеяния 10 Вт
и ) мощностью рассеяния 50 Вт
Резисторы переменные
Терморезисторы
Тензорезисторы
Варисторы
Шунт
Конденсаторы
a ) общее обозначение конденсатора
б ) вариконд
в ) полярный конденсатор
г ) подстроечный конденсатор
д ) переменный конденсатор
Акустика
a ) головной телефон
б ) громкоговоритель (динамик)
в ) общее обозначение микрофона
г ) электретный микрофон
Диоды
а ) диодный мост
б ) общее обозначение диода
в ) стабилитрон
г ) двусторонний стабилитрон
д ) двунаправленный диод
е ) диод Шоттки
ж ) туннельный диод
з ) обращенный диод
и ) варикап
к ) светодиод
л ) фотодиод
м ) излучающий диод в оптроне
н ) принимающий излучение диод в оптроне
Измерители электрических величин
а ) амперметр
б ) вольтметр
в ) вольтамперметр
г ) омметр
д ) частотомер
е ) ваттметр
ж ) фарадометр
з ) осциллограф
Катушки индуктивности
а ) катушка индуктивности без сердечника
б ) катушка индуктивности с сердечником
в ) подстроечная катушка индуктивности
Трансформаторы
а ) общее обозначение трансформатора
б ) трансформатор с выводом из обмотки
в ) трансформатор тока
г ) трансформатор с двумя вторичными обмотками (может быть и больше)
д ) трехфазный трансформатор
Устройства коммутации
а ) замыкающий
б ) размыкающий
в ) размыкающий с возвратом (кнопка)
г ) замыкающий с возвратом (кнопка)
д ) переключающий
е ) геркон
Электромагнитное реле с разными группами контактов
Предохранители
а ) общее обозначение
б ) выделена сторона, которая остается под напряжением при перегорании предохранителя
в ) инерционный
г ) быстродействующий
д ) термическая катушка
е ) выключатель-разъединитель с плавким предохранителем
Тиристоры
Биполярный транзистор
Однопереходный транзистор
Резистор на схеме обозначается латинской буквой «R», цифра — условный порядковый номер по схеме. В прямоугольнике резистора может быть обозначена номинальная мощность резистора — мощность, которую он может долговременно рассеивать без разрушения. При прохождении тока на резисторе рассеивается определенная мощность, которая приводит к нагреву последнего. Большинство зарубежных и современных отечественных резисторов маркируется цветными полосами. Ниже приведена таблица цветовых кодов.
Наиболее часто встречающаяся система обозначений полупроводниковых радиодеталей — европейская. Основное обозначение по этой системе состоит из пяти знаков. Две буквы и три цифры — для широкого применения. Три буквы и две цифры — для специальной аппаратуры. Следующая за ними буква обозначает разные параметры для приборов одного типа.
Первая буква — код материала:
А — германий;
В — кремний;
С — арсенид галлия;
R — сульфид кадмия.
Вторая буква — назначение:
А — маломощный диод;
В — варикап;
С — маломощный низкочастотный транзистор;
D — мощный низкочастотный транзистор;
Е — туннельный диод;
F — маломощный высокочастотный транзистор;
G — несколько приборов в одном корпусе;
Н — магнитодиод;
L — мощный высокочастотный транзистор;
М — датчик Холла;
Р — фотодиод, фототранзистор;
Q — светодиод;
R — маломощный регулирующий или переключающий прибор;
S — маломощный переключательный транзистор;
Т — мощный регулирующий или переключающий прибор;
U — мощный переключательный транзистор;
Х — умножительный диод;
Y — мощный выпрямительный диод;
Z — стабилитрон.
Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.
На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.
Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:
Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.
Базовые изображения и функциональные признаки
Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.
Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.
Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.
Основные функции могут выполнять только неподвижные контакты.
Условные обозначения однолинейных схем
Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.
Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.
Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.
Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.
В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.
Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.
Изображение шин и проводов
В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).
Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.
На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.
Как изображают выключатели, переключатели, розетки
На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.
Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.
Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.
Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).
В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.
Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)
Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.
Светильники на схемах
В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.
В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.
Элементы принципиальных электрических схем
Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.
Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.
Буквенные условные обозначения в электрических схемах
Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.
В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.
Вконтакте
Одноклассники
Google+
Как научиться читать электрические (принципиальные) схемы начинающему
Рубрика: Статьи обо всем Опубликовано 28.01.2020 · Комментарии: 0 · На чтение: 10 мин · Просмотры:Post Views: 3 824
Принципиальные схемы — это основа радиолюбительства и электроники. Схемы помогают собирать устройства и разбираться в работе радиодеталей. Без них была бы полная неразбериха, если бы детали рисовали на схемах так, как они выглядят на самом деле.Особенности чтения схем
В принципиальных схемах проводники (или дорожки) обозначаются линиями.
Так обозначаются проводники, которые пересекаются, но они не имеют общего соединения и электрически друг с другом не связаны.
Общая точка
Часто у начинающих радиолюбителей возникает вопрос — что это за символ на схеме?
Это общая точка (GND, земля). Раньше ее называли общим проводом. Так обозначается единый провод питания. Обычно это минус питания. Раньше на схемах могли сделать общим проводом и плюс питания. В данном случае схема без общей точки выглядела бы вот так:
Общая точка с однополярным питанием визуально лучше и компактнее выглядит, чем если просто сделать единую линию между ними.
Еще общей точкой ее называют потому, что относительно нее можно измерять любые остальные точки на схемах. Например, ставите щуп мультиметра на общую точку, а вторым щупом можете проверить любую часть цепи на схеме.
Почему она может называться землей (GND)? Раньше в качестве общего провода могло использоваться шасси корпуса прибора. Из-за этого возникла путаница между заземлением и землей. Оно интерпретируется в контексте схемы. Та схема, что была разобрана выше — общая точка (земля) это просто минус питания. Другое дело это двуполярные источники тока и заземление.
Двуполярное питание и общая точка
В двуполярном питании общая точка — это средний контакт между плюсом и минусом.
Заземление
Примером заземления может послужить фильтр в компьютерных блоках питания.
С конденсаторного фильтра помехи идут на корпус блока питания. Это и есть заземление. А с блока питания они должны уходить в розетку, если у вас есть заземление, иначе сам корпус блока питания может быть под напряжением. Токи там не большие, они не опасны для жизни. Это делается с целью уменьшения импульсных помех в блоке питания и безопасности.
Иногда в блоках питания вместо корпуса помехи с конденсатора идут на общую точку. Это все зависит от конструкции и схемотехники. В этом случае помех будет больше, чем с заземлением.
А вообще, на схемах есть разные заземления. Например, в цифровой технике разделяют аналоговую землю и цифровую. чтобы не нарушать режимы работы схемы. Импульсные помехи могут повлиять на аналоговую часть схемы.
Номиналы радиодеталей
Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.
К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.
Есть еще один общепринятый стандарт. На схемах указываются номиналы некоторых деталей и их рабочие напряжения.
По умолчанию сопротивление без приставки пишется только числом. У R2 сопротивление равно 220 Ом. А у R3 после числа есть буква. Сопротивление этого резистора читается как 2,2 кОм (2 200 Ом).
Рассмотрим на схеме два конденсатора.
В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.
Нанофарады обозначаются как nF.
Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.
Что такое даташит и для чего он нужен
Даташит (Datasheet) — это техническая спецификация, в которой указывается полная информация о радиодетали. Вся техническая информация, основная схема включения, параметры и типы корпусов указываются именно в этом документе.
Даташиты бывают на разных языках, в основном на английском. Есть и переведенные варианты.
Документация на микросхему NE555. Нарисован корпус и внешний вид детали.
Здесь подробно описывается микросхема, ее параметры и условия работы.
Такая документация есть на любую деталь. Это очень удобно и информативно, особенно при поиске аналогов. А помощью интернета поиск аналога деталей или схемы стал еще проще.
Еще даташит позволяет опознать неизвестную деталь или микросхему. Достаточно написать ее название в поисковике, добавить слово даташит, и в результатах поиска будет вся документация.
Как научиться читать принципиальные схемы
На самом деле есть только несколько способов. Это теория и практика. Если вы выучите обозначение радиодеталей, это еще не значит, что вы выучили схемотехнику. Это все равно, что выучить азбуку, но без грамматики и практики вы не выучите язык.
Теория — это схемотехника, книги, описание принципа работы схемы. Практика — это сборка устройств, ремонт и пайка.
Например простая схема усилителя на одном транзисторе.
Вход X1 плюс (левый или правый канал), X2 минус. Звуковой сигнал поступает на электролитический конденсатор C1. Он защищает транзистор VT1 от замыкания, поскольку транзистор VT1 постоянно открыт при помощи делителя напряжения на R1 и R2. Делитель напряжения устанавливает рабочую точку на базе транзистора VT1, и транзистор не искажает входной сигнал. Резистор R3 и конденсатор C2, которые подключены к эмиттеру транзистора VT1, выполняют функцию термостабилизации рабочей точки при повышении температуры транзистора. Электролитический конденсатор C3 накапливает и фильтрует питающее напряжение. Динамическая головка BF1 служит выходом звукового сигнала.
Можно ли это понять, только выучив обозначения радиодеталей без схемотехники и теории? Навряд-ли.
Еще сложнее дело обстоит с цифровой техникой.
Что это за микроконтроллер, какие он функции выполняет, какая прошивка и какие фьюзы в нем установлены? А вторая микросхема, какой это усилитель? Без даташитов и описания к схеме не получится понять ее работу.
Изучайте схемотехнику, теорию и практику. Просто выучив название деталей не получится разобраться в схемотехнике. Обозначение радиодеталей выучиться само по себе по мере практики и накопления знаний. Еще все зависит от выбранной отрасли. У связистов одна схемотехника, у ремонтников мобильной техники другая. А те, кто занимается звуком, не очень поймут электриков. Как и наоборот. Чтобы понять другую отрасль, ее схемотехнику и принципы работы нужно в нее погрузиться.
Принципиальные схемы это своего рода язык, у которого есть разные диалекты.
Поэтому, не следует строить иллюзии. Изучайте схемотехнику и собирайте схемы.
Принципиальные схемы помогают собирать устройства, и при изучении теории, понимать работу устройства. Без знаний и опыта, схема это просто схема.
Обозначения радиодеталей на принципиальных схемах
УГО — это условно графическое изображения радиодетали на схеме. Некоторые УГО различаются друг от друга.
Например, в США обозначение резисторов отличается от СНГ и Европы.
Из-за этого меняется восприятие схемы.
Однако внешне и по обозначениям они похожи. Или например, транзисторы. Где-то они чертятся с кругами, а где-то без. Могут различаться размеры и угол стрелок. В таблице представлены УГО отечественных радиодеталей.
Биполярный p-n-p транзистор
Однопереходный транзистор с n базой
Однопереходный транзистор с p базой
Обмотка реле
Заземление
Диод
Диодный мост
Диод Шотки
Двуханодный стабилитрон
Двунаправленный стабилитрон
Обращенный диод
Стабилитрон
Туннельный диод
Варикап
Катушка индуктивности
Катушка индуктивности с подстраиваемым сердечником
Катушка индуктивности с сердечником
Обмотка
Регулируемый сердечник
Опорный конденсатор
Переменный конденсатор
Подстроечный конденсатор
Двухпозиционный переключатель
Герконовый переключатель
Размыкающий переключатель
Замыкающий переключатель
Полевой транзистор с каналом n типа
Полевой транзистор с каналом p типа
Быстродействующий плавкий предохранитель
Инерционно-плавкий предохранитель
Плавкий предохранитель
Пробивной предохранитель
Термическая катушка
Тугоплавкий предохранитель
Выключатель-предохранитель
Разрядник
Разрядник двухэлектродный
Разрядник электрохимический
Разрядник ионный
Разрядник роговой
Разрядник шаровой
Разрядник симметричный
Разрядник трехэлектродный
Разрядник трубчатый
Разрядник угольный
Разрядник вакуумный
Разрядник вентильный
Гнездо телефонное
Разъем
Разъем
Подстроечный резистор
Резистор 0,125 Вт
Резистор 0,25 Вт
Резистор 0,5 Вт
Резистор 1 Вт
Резистор 2 Вт
Резистор 5 Вт
Динистор проводящий в обратном направлении
Динистор запираемый в обратном направлении
Диодный симметричный тиристор
Тетродный тиристор
Тиристор с управлением по катоду
Тиристор с управлением по аноду
Тиристор с управлением по катоду
Тиристор триодный симметричный
Запираемый тиристор с управлением по аноду
Запираемый тиристор с управлением по катоду
Диодная оптопара
Фотодиод
Фототиристор
Фототранзистор
Резистивная оптопара
Светодиод
Тиристорная оптопара
Это далеко не все детали. И зубрить их особого смысла нет. Такие таблицы пригодятся в виде справочника. Можно опознать что за деталь представлена на схеме во время ее изучения или сборки устройства.Какими буквами обозначаются радиодетали на схемах
Буквенное обозначение на схеме | Радиодеталь |
R | Резисторы (переменный, подстроечный и постоянный) |
VD | Диоды (стабилитрон, мост, варикап и т.д.) |
C | Конденсаторы (неполярный, электролитический, переменный и т.д.) |
L | Катушки и дроссели |
SA | Переключатели |
FU | Предохранители |
FV | Разрядники |
X | Разъемы |
K | Реле |
VS | Тиристоры (тетродные, динисторы, фототиристоры и т.п.) |
VT | Транзисторы (биполярные, полевые) |
HL | Светодиоды |
U | Оптопары |
Post Views: 3 824
✅ Как разобраться в микросхемах
Для начинающих электронщиков важно понимать, как работают детали, как их рисуют на схеме и как разобраться в схеме электрической принципиальной. Для этого нужно сперва ознакомиться с принципом работы элементов, а как читать схемы электроники я расскажу в этой статье на примерах популярных устройств для начинающих.
Схема настольной лампы и фонарика на светодиоде
Схема – это рисунок на которых с помощью определенных символов изображаются детали схемы, линиями – их соединения. При этом, если линии пересекаются – то контакта между этими проводниками нет, а если в месте пересечения присутствует точка – это узел соединения нескольких проводников.
Кроме значков и линий на схеме изображены буквенные обозначения. Все обозначения стандартизированы, в каждой стране свои стандарты, например в России придерживаются стандарта ГОСТ 2.710-81.
Начнем изучение с простейшего – схемы настольной лампы.
Схемы не всегда читают слева направо и сверху вниз, лучше идти от источника питания. Что мы можем узнать из схемы, посмотрите в правую её часть.
— значит питание переменным током.
Рядом написано «220» — напряжением в 220 В. X1 и X2 – предполагается подключение в розетку с помощью вилки. SW1 – так изображается ключ, тумблер или кнопка в разомкнутом состоянии. L – условное изображение лампочки накаливания.
Краткие выводы:
На схеме изображено устройство, которое подключается к сети 220 В переменного тока с помощью вилки в розетку или других разъёмных соединений. Есть возможность отключения с помощью переключателя или кнопки. Нужно для питания лампы накаливания.
С первого взгляда кажется очевидным, но специалист должен уметь сделать такие выводы глядя на схему без пояснений, это умение даст возможность выносить диагноз неисправности и устранять её или же собирать устройства с нуля.
Перейдем к следующей схеме. Это фонарик с питанием от батарейки, в качестве излучателя в нём установлен светодиод.
Взгляните на схему, возможно, вы увидите новые для себя изображения. Справа изображен источник питания, так выглядит батарейка или аккумулятор, длинный вывод это плюс другое название – Катод, короткий – минус или Анод. У светодиода к аноду (треугольная часть обозначения) подключается плюс, а к катоду (на УГО выглядит как полоска) – минус.
Это нужно запомнить, что у источников питания и потребителей названия электродов наоборот. Две исходящие от светодиода стрелки дают вам понять, что этот прибор ИЗЛУЧАЕТ свет, если бы стрелки наоборот указывали на него – это был бы фотоприемник. Диоды имеют буквенное обозначение VDx, где х- порядковый номер.
Важно:
Нумерация деталей на схемах идет столбцами сверху вниз, слева направо.
Резистор – это сопротивление. Преобразует электрический ток в тепло, препятствую его движению, выглядит как прямоугольник, обычно на схемах имеет буквенное обозначение «R».
Как читать электронные схемы: увеличиваем уровень сложности
Когда вы уже разобрались с базовым набором элементов, пора ознакомится с более сложными схемами, давайте рассмотрим схему трансформаторного блока питания.
Главным средством преобразователя на схеме является трансформатор TV1, это новый для вас элемент. Предлагаю рассмотреть ряд подобных изделий.
Трансформаторы используются повсеместно, либо в сетевом (50 гц), либо в импульсном (десятки кГц) исполнении. Катушки индуктивности используются в генераторах, радиопередающих устройствах, фильтрах частот, сглаживающих и стабилизирующих приборах. Она выглядит следующим образом.
Второй незнакомый элемент на схеме – это конденсатор, здесь используется для сглаживания пульсаций выпрямленного напряжения. Вообще основная его функция – это накапливать энергию в качестве заряда на его обкладках. Изображается следующим образом.
Если к схеме добавить узел стабилизации, построенный по схеме параметрического стабилизатора, напряжение блока питания будет стабилизировано. При этом только от повышения питающего напряжения, при просадках ниже, чем Uстабилизации напряжение будет пульсирующем в такт с просадками. VD1 – это стабилитрон, они включаются в обратном смещении (катодом к точке с положительным потенциалом). Различаются по величине тока стабилизации (Iстаб) и напряжения стабилизации (Uстаб).
Краткие итоги:
Что мы можем понять из этой схемы? То, что блок питания состоит из трансформатора, выпрямителя и сглаживающего фильтра на конденсаторе. Подключается первичной стороной (входом) к сети переменного тока с напряжением 220 Вольт. На его выходе имеет два разъёмных соединения – «+» и «-» и напряжение 12 В, нестабилизорванное.
Давайте перейдем еще более сложным схемам и познакомимся с другими элементами электрических цепей.
Как читать схемы с транзисторами?
Транзисторы – это управляемые ключи, вы можете закрыть их и открыть, а если нужно открыть не полностью. Данные свойства позволяют их применять, как в ключевом, так и линейном режимах, что позволяет их использовать в огромном спектре схемных решений.
Давайте рассмотрим популярную среди новичков схему – симметричный мультивибратор. Это по сути генератор, который на своих выходах выдаёт симметричные импульсы. Может применяться, как основа для простых мигалок, в качестве источника частоты для пищалки, в качестве генератора для импульсного преобразователя и во многих других цепях.
Пройдемся по знакомым деталям сверху вниз. Вверху мы видим 4 резистора, средние два – времязадающие, а крайние – задают ток резистора, также влияют на характер выходных импульсов.
Далее HL – это светодиоды, а ниже два электролита – это полярные конденсаторы, когда будете их монтировать оставайтесь внимательны – неправильное подключение электролитического конденсатора чревато выходом его из строя вплоть до взрыва с выделением тепла.
Интересно:
На графическом обозначении электролитического конденсатора всегда помечается «положительная» обкладка конденсатора, а на настоящих элементах – чаще всего есть пометка отрицательной ножки, не перепутайте!
VT1-VT2 – это новые для вас элементы, таким образом обознаются биполярные транзисторы обратной проводимости (NPN), ниже указана модель транзистора – «КТ315». У них обычно 3 ножки:
При этом на корпусе их назначение не указывается. Чтобы определить назначение выводов, нужно воспользоваться одним из поисковых запросов:
1. «Название элемента» — цоколевка.
2. «Название элемента» — распиновка.
3. «Название элемента» datsheet.
Это справедливо, как для радиоламп, так и для современных микросхем. Запросы имеют почти одинаковый смысл. Вот таким образом я нашел цоколевку транзистора КТ315.
На изображении с распиновкой должно быть четко видно: с какой стороны считать ножки, где находится ключ, срез или метка, чтобы вы правильно определили необходимый вывод.
Интересно:
У биполярных транзисторов стрелка на эмиттере обозначается направление протекания тока (от плюса к минусу), если стрелка ОТ базы – это транзистор обратной проводимости (NPN), а если К базе то прямой проводимости (PNP), часто вы можете заменить все NPN транзисторы на PNP, как в схеме мультивибратора, тогда нужно будет и поменять полярность источника питания (плюс и минус местами) ведь, повторюсь, стрелка на эмиттере указывает направление протекания тока.
На приведенной схеме положительный контакт источника питания подключен к верхней части схемы, а отрицательный к нижней. Так и на транзисторе стрелка указывает сверх-вниз – по направлению протекания тока!
В элементах с большим количеством ног имеет значение куда подключать, так же, как и в диодах и светодиодах, если вы перепутаете ножки – в лучшем случае схема не заработает, а в худшем – убьете детали.
Что мы смогли узнать, прочитав схему мультивибратора:
В этой схеме используются транзисторы и электролитические конденсаторы, питается она напряжением в 9 В (хотя может и больше, и меньше, например 12 В не повредят схеме, как и 5 В).
Стало ясно о способе соединения деталей и включения транзисторов. А также о том, что схема представляет собой прибор, работающий на принципе автогенератора основанного на процессе перезаряда транзисторов, которое вызвано попеременным открытием и закрытием транзисторов каждого по очереди, когда первый открыт, второй закрыт.
Проследив пути протекания тока (от плюса к минусу) и использовав знания о том, как работает биполярный транзистор мы делаем выводы о характере работы.
Тиристоры – полууправляемые ключи, учимся читать схемы
Давайте рассмотрим схему с не менее важным и распространенным элементом – тиристором. Я выбрал слово «полууправляемый» потому что, в отличие от транзистора, вы можете только открыть его, ток в нем прервется либо при прерывании питания, либо при смене полярности приложенного к нему напряжения. Открывается с помощью подачи на управляющий электрод напряжения.
Симисторы – содержат два тиристора соединённых встречно-параллельно. Таким образом, одним компонентом можно коммутировать переменный ток, при прохождении верхней части (положительной) полуволны синусоиды, при условии наличия сигнала на управляющем, электроде откроется один из внутренних тиристоров. Когда полуволна сменит свой знак на отрицательный – он закроется и в работу вступит второй тиристор.
Динисторы – разновидность тиристора, без управляющего электрода, а открываются они, подобно стабилитронам, по преодолению определенного уровня напряжения. Часто используются в импульсных блоках питания, как пороговый элемент для запуска автогенераторов и в устройствах для регулировки напряжения.
Вот так, собственно это выглядит на схеме.
Внимательно смотрим на подключение. Схема предназначена для подключения к сети переменного тока, например 220 В, в разрыв одного из питающих проводов, например фазного (L). Симистор VS1 – основной силовой элемент цепи, справа внизу дана его распиновка из даташита, 3 вывод – управляющий. На него через двунаправленный динистор VD1 модели DB3 рассчитанный на напряжение включения порядка 30 вольт, подаётся управляющий сигнал.
Так как все полупроводниковые приборы в этой конкретной схеме двунаправленные, регулировка осуществляется по обеим полуволнам синусоиды. Динистор открывается, когда на конденсаторе C1 появляется необходимой величины потенциал (напряжение), а скорость его заряда, следовательно, момент открытия ключей, задаётся RC цепью, состоящей из R1, переменного резистора (потенциометра) R2 и С1.
Эта простая схем имеет огромное значение и прикладное применение.
Выводы
Благодаря умению читать схемы электрические принципиальные, вы можете определить:
1. Что делает это устройство, для чего оно предназначено.
2. При ремонте – номинал вышедшей из строя детали.
3. Чем питать это устройство, каким напряжением и родом тока.
4. Примерную мощность электронного устройства, исходя из номиналов компонентов силовых цепей.
Важно не только знать условные графические обозначения элементов, но и принцип их работы. Дело в том, то не всегда те или иные детали могут использоваться в привычной роли. Но в пределах сегодняшней статьи рассмотреть все распространенные элементы довольно сложно, так как это займет очень большой объем.
Как быстро научиться электронике?
Как быстро научиться электронике!? “А не сбрендил ли автор?” – подумаете вы. Кто-то может за пару лет научиться программировать микроконтроллеры, а кто-то до сих пор будет собирать пищалки и фонарики. Это уже зависит, конечно, от самого человека. Но давайте вернемся к вопросу… Реально ли можно быстро научиться понимать схемы, собирать по ним электронные безделушки и научиться программировать микроконтроллеры?
Итак, начнем издалека… Жил да был один итальянец. Звали его Вильфредо Парето. И был он очень наблюдательный, любил за всем наблюдать. Вот как-то наблюдал он за всем и всея и понял одну важную вещь во всей Вселенной. А звучит эта вещь как-то так: 20% усилий дают 80% результата, а остальные 80% лишь 20% результата. Хм, звучит неплохо, но так ли это? И соблюдается ли этот закон во всей нашей Вселенной? А давайте проверим! Вот некоторые статистические данные:
• 20 процентов стран, в которых проживает меньше 20 процентов населения земного шара, потребляют 70 процентов мировых запасов энергии, 75 процентов металла и 85 процентов древесины.
• Менее 20 процентов общей площади Земли дают 80 процентов всех минеральных ресурсов.
• Менее 20 процентов войн приносят более 80 процентов человеческих потерь.
• Где бы вы ни жили, 20 процентов облаков производят 80 процентов дождя.
• Меньше 20 процентов записанной музыки исполняется более 80 процентов времени.
• В большинстве художественных музеев 20 процентов сокровищ демонстрируются 80 процентов времени.
• Менее 20 процентов изобретений оказывают более 80 процентов влияния на нашу жизнь. В двадцатом веке атомная энергия и компьютеры обладали большим влиянием, чем, вероятно, сотни тысяч прочих изобретений и новых технологий.
• 20 процентов земли дают более 80 процентов продуктов питания.
• 20 процентов статей “Практической электроники” просматриваются 80 процентами читателей :-).
В действительности весь жизненный цикл, от желудя до гигантского дуба, от маленького зернышка до обширных пшеничных полей, является отражением принципа 80/20, взятом в самом масштабном значении. Незначительные причины — колоссальные результаты. Вскоре это принцип был назван 80/20 или принципом Парето, в честь наблюдательного итальянца.
Чтобы научиться электронике я ходил на радиокружок, читал книжки по электронике, закончил вуз по специальности “Радиотехника”, но про себя я не могу сказать, что я супер-пупер электронщик… Пять лет вуза – сплошная теория, которая вообще нахрен никому не нужна. Зачем надо было заучивать все эти трехэтажные формулы и теоремы? После окончания вуза они все равно выветрились, как семена одуванчика при легком дуновении ветерка, но все таки я благодарен вузу за то, что там меня научили быстро понимать материал и быстро соображать.
Где-то случайно на страницах Рунета я прочитал про принцип Парето и про себя подумал: “Где же зарыты эти 20% в изучении электроники?” Проанализировав время, в течение которого я изучал эту сферу, я все так понял: 20% – это
– сидение по вечерам с паяльником и паяние схем
– радиофорумы и сайты без копипаста с учебников и энциклопедий
– общение с такими же чайниками в электронике
– практика, практика и еще раз ПРАКТИКА!
Ох, а сколько сейчас в Рунете книжек по электронике… “Радиоэлектроника для чайников”, “Занимательная электроника”, “Электроника от А до Я”.
Сколько я их только не перечитал. Да, согласен, есть хорошие книжки, но в основном книжки по электронике написаны каким-нибудь профессором с пятиэтажными формулами и с логарифмическими графиками. Читать книги по электронике? Думаю, это на любителя. Опять же напрашивается принцип 80/20. 20% книг дают 80% знаний. Но эти книги еще надо найти. От себя добавлю, не тратьте зря время, если книжка по электронике вас ну никак не устраивает. Начните читать другую. И все таки, я больше склоняюсь к практической части электроники. Электроника на практике как раз и относится к тем 20%. Вы все еще сидите? А ну-ка бегом паяльник в руки!
Как читать принципиальные схемы?
Как научиться читать принципиальные схемы
Те, кто только начал изучение электроники сталкиваются с вопросом: «Как читать принципиальные схемы?» Умение читать принципиальные схемы необходимо при самостоятельной сборке электронного устройства и не только. Что же представляет собой принципиальная схема? Принципиальная схема – это графическое представление совокупности электронных компонентов, соединённых токоведущими проводниками. Разработка любого электронного устройства начинается с разработки его принципиальной схемы.
Именно на принципиальной схеме показано, как именно нужно соединять радиодетали, чтобы в итоге получить готовое электронное устройство, которое способно выполнять определённые функции. Чтобы понять, что же изображено на принципиальной схеме нужно, во-первых знать условное обозначение тех элементов, из которых состоит электронная схема. У любой радиодетали есть своё условное графическое обозначение – УГО. Как правило, оно отображает конструктивное устройство или назначение. Так, например, условное графическое обозначение динамика очень точно передаёт реальное устройство динамика. Вот так динамик обозначается на схеме.
Согласитесь, очень похоже. Вот так выглядит условное обозначение резистора.
Обычный прямоугольник, внутри которого может указываться его мощность (В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты). А вот таким образом обозначается обычный конденсатор постоянной ёмкости.
Это достаточно простые элементы. А вот полупроводниковые электронные компоненты, вроде транзисторов, микросхем, симисторов имеют куда более изощрённое изображение. Так, например, у любого биполярного транзистора не менее трёх выводов: база, коллектор, эмиттер. На условном изображении биполярного транзистора эти выводы изображены особым образом. Чтобы отличать на схеме резистор от транзистора, во-первых надо знать условное изображение этого элемента и, желательно, его базовые свойства и характеристики. Поскольку каждая радиодеталь уникальна, то в условном изображении графически может быть зашифрована определённая информация. Так, например, известно, что биполярные транзисторы могут иметь разную структуру: p-n-p или n-p-n. Поэтому и УГО транзисторов разной структуры несколько отличаются. Взгляните.
Поэтому, перед тем, как начать разбираться в принципиальных схемах, желательно познакомиться с радиодеталями и их свойствами. Так будет легче разобраться, что же всё-таки изображено на схеме.
На нашем сайте уже было рассказано о многих радиодеталях и их свойствах, а также их условном обозначении на схеме. Если забыли – добро пожаловать в раздел «Старт».
Кроме условных изображений радиодеталей на принципиальной схеме указывается и другая уточняющая информация. Если внимательно посмотреть на схему, то можно заметить, что рядом с каждым условным изображением радиодетали стоят несколько латинских букв, например, VT, BA, C и др. Это сокращённое буквенное обозначение радиодетали. Сделано это для того, чтобы при описании работы или настройки схемы можно было ссылаться на тот или иной элемент. Не трудно заметь, что они ещё и пронумерованы, например, вот так: VT1, C2, R33 и т.д.
Понятно, что однотипных радиодеталей в схеме может быть сколь угодно много. Поэтому, чтобы упорядочить всё это и применяется нумерация. Нумерация однотипных деталей, например резисторов, ведётся на принципиальных схемах согласно правилу «И». Это конечно, лишь аналогия, но довольно наглядная. Взгляните на любую схему, и вы увидите, что однотипные радиодетали на ней пронумерованы начиная с левого верхнего угла, затем по порядку нумерация идёт вниз, а затем снова нумерация начинается сверху, а затем вниз и так далее. А теперь вспомните, как вы пишите букву «И». Думаю, с этим всё понятно.
Что же ещё рассказать о принципиальной схеме? А вот что. На схеме радом с каждой радиодеталью указывается её основные параметры или типономинал. Иногда эта информация выносится в таблицу, чтобы упростить для восприятия принципиальную схему. Например, рядом с изображением конденсатора, как правило, указывается его номинальная ёмкость в микрофарадах или пикофарадах. Также может указываться и номинальное рабочее напряжение, если это важно.
Рядом с УГО транзистора обычно указывается типономинал транзистора, например, КТ3107, КТ315, TIP120 и т.д. Вообще для любых полупроводниковых электронных компонентов вроде микросхем, диодов, стабилитронов, транзисторов указывается типономинал компонента, который предполагается для использования в схеме.
Для резисторов обычно указывается всего лишь его номинальное сопротивление в килоомах, омах или мегаомах. Номинальная мощность резистора шифруется наклонными чёрточками внутри прямоугольника. Также мощность резистора на схеме и на его изображении может и не указываться. Это означает, что мощность резистора может быть любой, даже самой малой, поскольку рабочие токи в схеме незначительны и их может выдержать даже самый маломощный резистор, выпускаемый промышленностью.
Вот перед вами простейшая схема двухкаскадного усилителя звуковой частоты. На схеме изображены несколько элементов: батарея питания (или просто батарейка) GB1; постоянные резисторы R1, R2, R3, R4; выключатель питания SA1, электролитические конденсаторы С1, С2; конденсатор постоянной ёмкости С3; высокоомный динамик BA1; биполярные транзисторы VT1, VT2 структуры n-p-n. Как видите, с помощью латинских букв я ссылаюсь на конкретный элемент в схеме.
Что мы можем узнать, взглянув на эту схему?
Любая электроника работает от электрического тока, следовательно, на схеме должен указываться источник тока, от которого питается схема. Источником тока может быть и батарейка и электросеть переменного тока или же блок питания.
Итак. Так как схема усилителя питается от батареи постоянного тока GB1, то, следовательно, батарейка обладает полярностью: плюсом «+» и минусом «-». На условном изображении батареи питания мы видим, что рядом с её выводами указана полярность.
Полярность. О ней стоит упомянуть отдельно. Так, например, электролитические конденсаторы C1 и C2 обладают полярностью. Если взять реальный электролитический конденсатор, то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. А теперь, самое главное. При самостоятельной сборке электронных устройств необходимо соблюдать полярность подключения электронных деталей в схеме. Несоблюдение этого простого правила приведёт к неработоспособности устройства и, возможно, другим нежелательным последствиям. Поэтому не ленитесь время от времени поглядывать на принципиальную схему, по которой собираете устройство.
На схеме видно, что для сборки усилителя понадобятся постоянные резисторы R1 — R4 мощностью не менее 0,125 Вт. Это видно из их условного обозначения.
Также можно заметить, что резисторы R2* и R4* отмечены звёздочкой *. Это означает, что номинальное сопротивление этих резисторов нужно подобрать с целью налаживания оптимальной работы транзистора. Обычно в таких случаях вместо резисторов, номинал которых нужно подобрать, временно ставится переменный резистор с сопротивлением несколько больше, чем номинал резистора, указанного на схеме. Для определения оптимальной работы транзистора в данном случае в разрыв цепи коллектора подключается миллиамперметр. Место на схеме, куда необходимо подключить амперметр указано на схеме вот так. Тут же указан ток, который соответствует оптимальной работе транзистора.
Напомним, что для замера тока, амперметр включается в разрыв цепи.
Далее включают схему усилителя выключателем SA1 и начинают переменным резистором менять сопротивление R2*. При этом отслеживают показания амперметра и добиваются того, чтобы миллиамперметр показывал ток 0,4 — 0,6 миллиампер (мА). На этом настройка режима транзистора VT1 считается завершённой. Вместо переменного резистора R2*, который мы устанавливали в схему на время наладки, ставится резистор с таким номинальным сопротивлением, которое равно сопротивлению переменного резистора, полученного в результате наладки.
Каков вывод из всего этого длинного повествования о налаживании работы схемы? А вывод таков, что если на схеме вы видите какую-либо радиодеталь со звёздочкой (например, R5*), то это значит, что в процессе сборки устройства по данной принципиальной схеме потребуется налаживать работу определённых участков схемы. О том, как налаживать работу устройства, как правило, упоминается в описании к самой принципиальной схеме.
Если взглянуть на схему усилителя, то также можно заметить, что на ней присутствует вот такое условное обозначение.
Этим обозначением показывают так называемый общий провод. В технической документации он называется корпусом. Как видим, общим проводом в показанной схеме усилителя является провод, который подключен к минусовому «-» выводу батареи питания GB1. Для других схем общим проводом может быть и тот провод, который подключен к плюсу источника питания. В схемах с двуполярным питанием, общий провод указывается обособленно и не подключен ни к плюсовому, ни к минусовому выводу источника питания.
Зачем «общий провод» или «корпус» указывается на схеме?
Относительно общего провода проводятся все измерения в схеме, за исключением тех, которые оговариваются отдельно, а также относительно его подключаются периферийные устройства. По общему проводу течёт общий ток, потребляемый всеми элементами схемы.
Общий провод схемы в реальности часто соединяют с металлическим корпусом электронного прибора или металлическим шасси, на котором крепятся печатные платы.
Стоит понимать, что общий провод это не то же самое, что и «земля». «Земля» — это заземление, то есть искусственное соединение с землёй посредством заземляющего устройства. Обозначается оно на схемах так.
В отдельных случаях общий провод устройства подключают к заземлению.
Как уже было сказано, все радиодетали на принципиальной схеме соединяются с помощью токоведущих проводников. Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Токоведущий проводник на принципиальной схеме обозначается обычной линией. Вот так.
Места пайки (электрического соединения) этих проводников между собой, либо с выводами радиодеталей изображаются жирной точкой. Вот так.
Стоит понимать, что на принципиальной схеме точкой указывается только соединение трёх и более проводников или выводов. Если на схеме показывать соединение двух проводников, например, вывода радиодетали и проводника, то схема была бы перегружена ненужными изображениями и при этом потерялась бы её информативность и лаконичность. Поэтому, стоит понимать, что в реальной схеме могут присутствовать электрические соединения, которые не указаны на принципиальной схеме.
В следующей части речь пойдёт о соединениях и разъёмах, повторяющихся и механически связанных элементах, экранированных деталях и проводниках. Жмите «Далее«.
Радиоэлектроника для новичка
Первый шаг — он самый сложный.
С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел «Старт«.На страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.
Если Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!
Ну, а для начала, рекомендуем научиться паять.
Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.Измерения и измерительная аппаратура
Обзор характеристик и особенностей выбора мультиметра для начинающего радиолюбителя.
Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.
Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.
Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.
Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.
Омметр – прибор для измерения сопротивления. Здесь вы узнаете о том, как омметр можно использовать в своей радиолюбительской практике.
Здесь вы познакомитесь с тем, как устроен и работает осциллограф. Научитесь разбираться в органах управления осциллографа. Осциллограф является одним из самых мощных инструментов для изучения процессов, происходящих в электронной технике.
Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.
Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.
Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.
Как проверить ИК-приёмник? Методика проверки исправности инфракрасного приёмника с помощью мультиметра и пульта ДУ.
Как узнать мощность трансформатора, не производя сложных расчётов? Здесь вы узнаете о простой методике определения мощности силового трансформатора.
Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.
Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.
Несколько рекомендаций и советов начинающим радиолюбителям по правильному измерению сопротивления цифровым мультиметром. Общие правила по проверке работоспособности цифрового мультитестера и подготовки его к работе.
В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.
Эквивалентное последовательное сопротивление (или ЭПС) — это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.
Таблица значений ESR конденсаторов разной ёмкости поможет вам определить качество электролитического конденсатора.
Здесь вы узнаете, как правильно соединять конденсаторы и рассчитывать общую ёмкость при их последовательном и параллельном включении.
Узнайте, как правильно соединять резисторы и рассчитывать их общее сопротивление при последовательном и параллельном включении.
Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.
Простой апгрейд мультиметра DT — 830B. Встраиваем светодиодный фонарик в цифровой мультиметр.
Мастерская начинающего радиолюбителя
Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.
Вторая часть рассказа о чтении принципиальных схем. Соединения и разъёмы, повторяющиеся элементы, механически связанные элементы, экранированные детали и проводники. Обо всём этом читайте здесь.
Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.Самый востребованный прибор в лаборатории начинающего радиолюбителя — это регулируемый блок питания. Здесь вы узнаете, как с минимумом усилий и временных затрат собрать регулируемый блок питания 1,2. 32V на базе готового модуля DC-DC преобразователя.
Собираем радиоуправляемое реле на базе готового радиомодуля.
Здесь я расскажу об универсальном зарядном устройстве, которым можно заряжать/разряжать практически любые аккумуляторы (Pb, Ni-Cd, Ni-Mh, Li-Po, Li-ion, LiFe).
Портативные USB-колонки для ноутбука являются достаточно востребованным атрибутом компьютерной периферии. Из каких электронных компонентов состоят данные устройства? В статье приводится принципиальная схема усилителя портативных компьютерных колонок с питанием от USB-порта.
Модернизация USB-колонок SVEN PS-30 на базе микросхемы-декодера CM6120-S.
Что такое мультивибратор и зачем он нужен? Здесь вы узнаете, как собрать мультивибратор на транзисторах. Познакомитесь с формулой расчёта его колебаний.
Для преобразования переменного тока в постоянный применяется так называемый выпрямитель. Здесь вы узнаете о типах диодных выпрямителей, а также об их особенностях и сферах применения. Материал будет интересен начинающим радиолюбителям и тем, кто хочет больше узнать о том, какие схемы выпрямителей применяются в электронике и электротехнике.
Здесь вы узнаете, как собрать мигалку на светодиодах из доступных радиодеталей. Много фоток и пояснений гарантируется.
Здесь показана схема маячка на микросхеме к155ла3. Подробно рассказано о подборе деталей для светодиодного маячка на микросхеме.
Как собрать мультивибратор на микросхеме? Здесь вы узнаете, как собрать мультивибратор на логических микросхемах серии К561, К176 и др.
Организуем рабочее место радиолюбителя-новичка. Собираем многофункциональную розетку.
Непременным атрибутом современного музыкального устройства служит вход внешнего сигнала AUX IN. Как использовать столь полезную функцию? Музыка налету.
Узнайте как можно переделать проводную гарнитуру мобильного телефона и максимально использовать возможности сотового телефона Sony Ericsson. В статье приводиться принципиальная схема проводной гарнитуры сотового телефона и методика её доработки.
Трёхцветную светодиодную ленту можно использовать по-разному: фоновая и декоративная подсветка, световое оформление, мягкое освещение и пр. Но после приобретения RGB-ленты возникает вопрос: «А как управлять этой лентой?». Здесь я расскажу о личном опыте применения RGB контроллера с радиоуправлением. Кроме того, разберёмся в том, как подобрать блок питания для светодиодной ленты.
Как научиться электронике? Конечно, на самых простых вещах! Например, на обычном аккумуляторном фонарике. Показана схема аккумуляторного фонаря, а также даны пояснения о назначении радиоэлементов.
Как читать принципиальные схемы и радиодетали (УГО)
Принципиальные схемы — это основа радиолюбительства и электроники. Схемы помогают собирать устройства и разбираться в работе радиодеталей. Без них была бы полная неразбериха, если бы детали рисовали на схемах так, как они выглядят на самом деле.
Особенности чтения схем
В принципиальных схемах проводники (или дорожки) обозначаются линиями.
А вот так они выглядят, если между ними есть соединение. Черная точка — это узел в схеме. Узел — это соединение нескольких проводников или деталей вместе. Они электрически друг с другом связаны.
Общая точка
Часто у начинающих радиолюбителей возникает вопрос — что это за символ на схеме?
Это общая точка (GND, земля). Раньше ее называли общим проводом. Так обозначается единый провод питания. Обычно это минус питания. Раньше на схемах могли сделать общим проводом и плюс питания. В данном случае схема без общей точки выглядела бы вот так:
Общая точка с однополярным питанием визуально лучше и компактнее выглядит, чем если просто сделать единую линию между ними.
Почему она может называться землей (GND)? Раньше в качестве общего провода могло использоваться шасси корпуса прибора. Из-за этого возникла путаница между заземлением и землей. Оно интерпретируется в контексте схемы. Та схема, что была разобрана выше — общая точка (земля) это просто минус питания. Другое дело это двуполярные источники тока и заземление.
Двуполярное питание и общая точка
В двуполярном питании общая точка — это средний контакт между плюсом и минусом.
Заземление
Примером заземления может послужить фильтр в компьютерных блоках питания.
С конденсаторного фильтра помехи идут на корпус блока питания. Это и есть заземление. А с блока питания они должны уходить в розетку, если у вас есть заземление, иначе сам корпус блока питания может быть под напряжением. Токи там не большие, они не опасны для жизни. Это делается с целью уменьшения импульсных помех в блоке питания и безопасности.
Иногда в блоках питания вместо корпуса помехи с конденсатора идут на общую точку. Это все зависит от конструкции и схемотехники. В этом случае помех будет больше, чем с заземлением.
Номиналы радиодеталей
Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.
К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.
Есть еще один общепринятый стандарт. На схемах указываются номиналы некоторых деталей и их рабочие напряжения.
Например, на этой схеме есть два резистора.
Рассмотрим на схеме два конденсатора.
В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.
Нанофарады обозначаются как nF.
Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.
Что такое даташит и для чего он нужен
Даташит (Datasheet) — это техническая спецификация, в которой указывается полная информация о радиодетали. Вся техническая информация, основная схема включения, параметры и типы корпусов указываются именно в этом документе.
Даташиты бывают на разных языках, в основном на английском. Есть и переведенные варианты.
Документация на микросхему NE555. Нарисован корпус и внешний вид детали.
Здесь подробно описывается микросхема, ее параметры и условия работы.
Такая документация есть на любую деталь. Это очень удобно и информативно, особенно при поиске аналогов. А помощью интернета поиск аналога деталей или схемы стал еще проще.
Еще даташит позволяет опознать неизвестную деталь или микросхему. Достаточно написать ее название в поисковике, добавить слово даташит, и в результатах поиска будет вся документация.
Как научиться читать принципиальные схемы
На самом деле есть только несколько способов. Это теория и практика. Если вы выучите обозначение радиодеталей, это еще не значит, что вы выучили схемотехнику. Это все равно, что выучить азбуку, но без грамматики и практики вы не выучите язык.
Теория — это схемотехника, книги, описание принципа работы схемы. Практика — это сборка устройств, ремонт и пайка.
Например простая схема усилителя на одном транзисторе.
Вход X1 плюс (левый или правый канал), X2 минус. Звуковой сигнал поступает на электролитический конденсатор C1. Он защищает транзистор VT1 от замыкания, поскольку транзистор VT1 постоянно открыт при помощи делителя напряжения на R1 и R2. Делитель напряжения устанавливает рабочую точку на базе транзистора VT1, и транзистор не искажает входной сигнал. Резистор R3 и конденсатор C2, которые подключены к эмиттеру транзистора VT1, выполняют функцию термостабилизации рабочей точки при повышении температуры транзистора. Электролитический конденсатор C3 накапливает и фильтрует питающее напряжение. Динамическая головка BF1 служит выходом звукового сигнала.
Можно ли это понять, только выучив обозначения радиодеталей без схемотехники и теории? Навряд-ли.
Еще сложнее дело обстоит с цифровой техникой.
Что это за микроконтроллер, какие он функции выполняет, какая прошивка и какие фьюзы в нем установлены? А вторая микросхема, какой это усилитель? Без даташитов и описания к схеме не получится понять ее работу.
Принципиальные схемы это своего рода язык, у которого есть разные диалекты.
Поэтому, не следует строить иллюзии. Изучайте схемотехнику и собирайте схемы.
Принципиальные схемы помогают собирать устройства, и при изучении теории, понимать работу устройства. Без знаний и опыта, схема это просто схема.
Обозначения радиодеталей на принципиальных схемах
УГО — это условно графическое изображения радиодетали на схеме. Некоторые УГО различаются друг от друга.
Например, в США обозначение резисторов отличается от СНГ и Европы.
Из-за этого меняется восприятие схемы.
Однако внешне и по обозначениям они похожи. Или например, транзисторы. Где-то они чертятся с кругами, а где-то без. Могут различаться размеры и угол стрелок. В таблице представлены УГО отечественных радиодеталей.
Обозначение массы на схеме
Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.
Нормативные документы
Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.
Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.
Номер ГОСТа | Краткое описание |
2.710 81 | В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы. |
2.747 68 | Требования к размерам отображения элементов в графическом виде. |
21.614 88 | Принятые нормы для планов электрооборудования и проводки. |
2.755 87 | Отображение на схемах коммутационных устройств и контактных соединений |
2.756 76 | Нормы для воспринимающих частей электромеханического оборудования. |
2.709 89 | Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода. |
21.404 85 | Схематические обозначения для оборудования, используемого в системах автоматизации |
Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.
Виды электрических схем
В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:
- Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
- Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка
Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.
Пример однолинейной схемы
- Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов
Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.
Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.
Графические обозначения
Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.
Примеры УГО в функциональных схемах
Ниже представлен рисунок с изображением основных узлов систем автоматизации.
Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85
Описание обозначений:
- А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
- В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
- С – Отображение исполнительных механизмов (ИМ).
- D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
- Происходит открытие РО
- Закрытие РО
- Положение РО остается неизменным.
- Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
- F- Принятые отображения линий связи:
- Общее.
- Отсутствует соединение при пересечении.
- Наличие соединения при пересечении.
УГО в однолинейных и полных электросхемах
Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.
Источники питания.
Для их обозначения приняты символы, приведенные на рисунке ниже.
УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)
Описание обозначений:
- A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
- В – значок электричества, отображающий переменное напряжение.
- С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
- D – Отображение аккумуляторного или гальванического источника питания.
- E- Символ батареи, состоящей из нескольких элементов питания.
Линии связи
Базовые элементы электрических соединителей представлены ниже.
Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)
Описание обозначений:
- А – Общее отображение, принятое для различных видов электрических связей.
- В – Токоведущая или заземляющая шина.
- С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
- D — Символ заземления.
- E – Электрическая связь с корпусом прибора.
- F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
- G – Пересечение с отсутствием соединения.
- H – Соединение в месте пересечения.
- I – Ответвления.
Обозначения электромеханических приборов и контактных соединений
Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.
УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)
Описание обозначений:
- А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
- В – УГО воспринимающей части электротепловой защиты.
- С – отображение катушки устройства с механической блокировкой.
- D – контакты коммутационных приборов:
- Замыкающие.
- Размыкающие.
- Переключающие.
- Е – Символ для обозначения ручных выключателей (кнопок).
- F – Групповой выключатель (рубильник).
УГО электромашин
Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.
Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)
Описание обозначений:
- A – трехфазные ЭМ:
- Асинхронные (ротор короткозамкнутый).
- Тоже, что и пункт 1, только в двухскоростном исполнении.
- Асинхронные ЭМ с фазным исполнением ротора.
- Синхронные двигатели и генераторы.
- B – Коллекторные, с питанием от постоянного тока:
- ЭМ с возбуждением на постоянном магните.
- ЭМ с катушкой возбуждения.
Обозначение электродвигателей на схемах
УГО трансформаторов и дросселей
С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.
Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)
Описание обозначений:
- А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
- В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
- С – Отображение двухкатушечного трансформатора.
- D – Устройство с тремя катушками.
- Е – Символ автотрансформатора.
- F – Графическое отображение ТТ (трансформатора тока).
Обозначение измерительных приборов и радиодеталей
Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.
Примеры условных графических обозначений электронных компонентов и измерительных приборов
Описание обозначений:
- Счетчик электроэнергии.
- Изображение амперметра.
- Прибор для измерения напряжения сети.
- Термодатчик.
- Резистор с постоянным номиналом.
- Переменный резистор.
- Конденсатор (общее обозначение).
- Электролитическая емкость.
- Обозначение диода.
- Светодиод.
- Изображение диодной оптопары.
- УГО транзистора (в данном случае npn).
- Обозначение предохранителя.
УГО осветительных приборов
Рассмотрим, как на принципиальной схеме отображаются электрические лампы.
Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)
Описание обозначений:
- А – Общее изображение ламп накаливания (ЛН).
- В — ЛН в качестве сигнализатора.
- С – Типовое обозначение газоразрядных ламп.
- D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)
Обозначение элементов в монтажной схеме электропроводки
Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.
Пример изображения на монтажных схемах розеток скрытой установки
Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.
Обозначение выключатели скрытой установки Обозначение розеток и выключателей
Буквенные обозначения
В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.
Буквенные обозначения основных элементов
К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.
ГОСТ 21.403. Таблица 4. Условные графические обозначения оборудования вспомогательных систем.
Таблица 4. Условные графические обозначения оборудования вспомогательных систем.
В материале использованы изображения условных обозначений из Бибилотеки Visio Инженерные системы, предназначенной для создания чертежей и схем отопления, вентиляции, газоснабжения, санитарно-технических систем, энергетического оборудования и т.д.
В этой статье мы рассмотрим обозначение радиоэлементов на схемах.
С чего начать чтение схем?
Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.
До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов
Изучаем простую схему
Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:
Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.
Ну что же, давайте ее анализировать.
В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.
Как соединяются радиоэлементы в схеме
Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача – соединять радиоэлементы.
Точка, где соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:
Если пристально вглядеться в схему, то можно заметить пересечение двух проводников
Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:
Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.
Если бы между ними было соединение, то мы бы увидели вот такую картину:
Буквенное обозначение радиоэлементов в схеме
Давайте еще раз рассмотрим нашу схему.
Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.
Итак, давайте первым делом разберемся с надписями. R – это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…
Как же обозначаются остальные радиоэлементы?
Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:
А – это различные устройства (например, усилители)
В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.
D – схемы интегральные и различные модули
E – разные элементы, которые не попадают ни в одну группу
F – разрядники, предохранители, защитные устройства
G – генераторы, источники питания, кварцевые генераторы
H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации
K – реле и пускатели
M – двигатели
Р – приборы и измерительное оборудование
Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока
R – резисторы
S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения
U – преобразователи электрических величин в электрические, устройства связи
V – полупроводниковые приборы
W – линии и элементы сверхвысокой частоты, антенны
X – контактные соединения
Y – механические устройства с электромагнитным приводом
Z – оконечные устройства, фильтры, ограничители
Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:
BD – детектор ионизирующих излучений
BE – сельсин-приемник
BL – фотоэлемент
BQ – пьезоэлемент
BR – датчик частоты вращения
BS – звукосниматель
BV – датчик скорости
BA – громкоговоритель
BB – магнитострикционный элемент
BK – тепловой датчик
BM – микрофон
BP – датчик давления
BC – сельсин датчик
DA – схема интегральная аналоговая
DD – схема интегральная цифровая, логический элемент
DS – устройство хранения информации
DT – устройство задержки
EL – лампа осветительная
EK – нагревательный элемент
FA – элемент защиты по току мгновенного действия
FP – элемент защиты по току инерционнго действия
FU – плавкий предохранитель
FV – элемент защиты по напряжению
GB – батарея
HG – символьный индикатор
HL – прибор световой сигнализации
HA – прибор звуковой сигнализации
KV – реле напряжения
KA – реле токовое
KK – реле электротепловое
KM – магнитный пускатель
KT – реле времени
PC – счетчик импульсов
PF – частотомер
PI – счетчик активной энергии
PR – омметр
PS – регистрирующий прибор
PV – вольтметр
PW – ваттметр
PA – амперметр
PK – счетчик реактивной энергии
PT – часы
QF – выключатель автоматический
QS – разъединитель
RK – терморезистор
RP – потенциометр
RU – варистор
SA – выключатель или переключатель
SB – выключатель кнопочный
SF – выключатель автоматический
SK – выключатели, срабатывающие от температуры
SL – выключатели, срабатывающие от уровня
SP – выключатели, срабатывающие от давления
SQ – выключатели, срабатывающие от положения
SR – выключатели, срабатывающие от частоты вращения
TV – трансформатор напряжения
TA – трансформатор тока
UB – модулятор
UI – дискриминатор
UR – демодулятор
UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель
VL – прибор электровакуумный
VS – тиристор
WA – антенна
WT – фазовращатель
WU – аттенюатор
XA – токосъемник, скользящий контакт
XP – штырь
XS – гнездо
XT – разборное соединение
XW – высокочастотный соединитель
YA – электромагнит
YB – тормоз с электромагнитным приводом
YC – муфта с электромагнитным приводом
YH – электромагнитная плита
ZQ – кварцевый фильтр
Графическое обозначение радиоэлементов в схеме
Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:
Таблица типов и обозначений резисторов радиодеталей. Обозначение на схемах радиодеталей
Обозначение радиодеталей на схеме
В данной статье представлен внешний вид и схематическое обозначение радиодетали
Каждый, наверное, начинающий радиолюбитель видел и внешне радиодетали, и, возможно, схемы, но то, что в схеме, надо долго думать или искать, и только где-то он может прочитать и увидеть новые для себя слова типа резистор, транзистор , диод и так далее.они обозначены. Разберем в этой статье. И так поехали.
1. Резистор
Чаще всего резистор можно увидеть на платах и схемах, так как на платах их больше всего.
Резисторы могут быть как постоянными, так и переменными (сопротивление можно регулировать ручкой)
Одно из изображений постоянного резистора ниже и обозначения постоянного и переменного на схеме.
А как выглядит переменный резистор? Это все еще картинка ниже. Прошу прощения за написание этой статьи.
2. Транзистор и его обозначение
Об их функциях написано много информации, но поскольку речь идет о нотации, давайте поговорим о нотации.
Транзисторы бывают биполярными и полярными, с переходами PNP и NPN. Все это учитывается при пайке как на плату, так и в схемах.Посмотрите картинку, вы поймете
Обозначение транзистора npn переход npn
Это эмиттер , К этому коллектор , а B — база Транзисторы pnp переходов будут отличаться тем, что стрелка будет не от базы, а на базу. Для подробностей еще одно фото
Есть еще биполярные и полевые транзисторы, обозначения на схеме полевых транзисторов аналогичны, но разные, так как нет базы эмиттера и коллектора, но есть C — сток, I — исток, Z — выход
И напоследок про транзисторы, как они на самом деле выглядят
В общем, если деталь имеет три ножки, то процентов 80 то что это транзистор.
Если у вас есть транзистор и вы не знаете, что это за переход и где находится коллектор, база и вся остальная информация, то загляните в справочник транзисторов.
Конденсатор, внешний вид и обозначение
Конденсаторы бывают полярные и неполярные, в полярных на схеме добавляют плюс, так как он для постоянного тока, и неполярные соответственно для переменного.
Они имеют определенную емкость в мкФ (микрофарадах) и рассчитаны на определенное напряжение в вольтах.Все это можно прочитать на корпусе конденсатора
.
Микросхемы , внешнее обозначение на схеме
Уфф уважаемые читатели, таких в мире просто огромное количество, начиная от усилителей и заканчивая телевизорами
.Эта статья предназначена для начинающего радиолюбителя, с чего начать. В различных технических изданиях такой материал также встречается редко. Вот почему он ценен.
В таблице приведены буквенные обозначения основных радиоэлементов на радиосхемах в соответствии с ГОСТом.Указанное в таблице буквенное обозначение радиоэлементов не является догмой и, как правило, не соблюдается разработчиками радиосхем. Например, по ГОСТу обозначение потенциометра (переменного резистора) — RP, а на схемах чаще всего встречается просто R. Когда специалист любого уровня «читает» радиосхему, он безошибочно определяет, что буквенное обозначение относится именно к этому потенциометру, а не к другому радиоэлементу. Главное, чтобы первая буква обозначения совпадала.
Были времена, когда я проектировал схему, и когда я вводил буквы в схему, я внезапно обнаруживал, что не помню, какая буква использовалась для обозначения редко используемого элемента. Затем я обратился к этой тарелке. Поэтому данная таблица с буквенными обозначениями может быть полезна не только начинающим радиолюбителям.
Базовое обозначение | Название позиции | Дополнительное обозначение | Тип устройства |
AND | Устройство | AA AK AKS | Регулятор тока Блок реле Устройство |
B | Преобразователи | BA Bf BK BL BM BS | Динамик Телефон Термодатчик Фотоэлемент Микрофон Звукосниматель |
ИЗ | Конденсаторы | SV CG | Силовой конденсаторный аккумулятор Зарядный конденсаторный блок |
D | Микросхемы, микросборки | DA DD | Аналоговый IC IC цифровой, логический элемент |
E | Элементы разные | EK EL | ТЭН Лампа освещения |
F | Разрядники, предохранители, защитные устройства | FA FP FU FV | Элемент защиты дискретного мгновенного тока Элемент защиты дискретного инерционного тока Предохранитель Искровой разрядник |
G | Генераторы, источники питания | GB GC GE | Аккумуляторная батарея Синхронный компенсатор Генераторный возбудитель |
H | Устройства индикации и сигнализации | HA HG HL HLA HLG HLR HLW HV | Устройство звуковой сигнализации Индикатор Световой сигнализатор Табло сигнальное Сигнальная лампа с зеленой линзой Сигнальная лампа с красной линзой Сигнальная лампа с белой линзой Ионные и полупроводниковые индикаторы |
K | Реле, контакторы, пускатели | KA KH KK KM KT KV KCC KCT KL | Реле тока Реле индикатора Электрическое тепловое реле Контактор, магнитный выключатель Реле времени Реле напряжения Реле команды закрытия Реле команды отключения Промежуточное реле |
L | Дроссели, дроссели | LL LR LM | Дроссель люминесцентного света Реактор Обмотка возбуждения электродвигателя |
M | Двигатели | MA | Электродвигатели |
R | Измерительные приборы | PA PC PF PI PK PR PT PV PW | Амперметр Счетчик импульсов Счетчик частоты Счетчик активной энергии Счетчик реактивной энергии Омметр Счетчик времени действия, часы Вольтметр Ваттметр |
Q | Силовые выключатели и разъединители | QF | Автоматический выключатель |
R | Резисторы | RK RP RS RU RR | Термистор Потенциометр Измерительный шунт Варистор Реостат |
S | Устройства управления и коммутации | SA SB SF | Переключатель или переключатель Кнопочный переключатель Автоматический переключатель |
Т | Трансформаторы, автотрансформаторы | TA TV | Трансформатор тока Трансформатор напряжения |
U | Преобразователи | UB UR UG UF | Модулятор Демодулятор Источник питания Преобразователь частоты |
V | Электровакуумные и полупроводниковые приборы | VD VL VT VS | Диод, стабилитрон Электровакуумный прибор Транзистор Тиристор |
X | Штыревые разъемы | XA XP XS XW | Токосъемник Pin Nest Высокочастотный разъем |
Y | Механические устройства с электромагнитным приводом | Я ЯБ | Электромагнит Электромагнитный замок |
Для того, чтобы собрать электронное устройство, необходимо знать обозначение радиодеталей на схеме и их название, а также порядок их подключения.Для достижения этой цели были изобретены схемы. На заре радиотехники радиодетали изображались в трех измерениях. Их составление требовало опыта художника и знания внешнего вида деталей. Со временем изображения упрощались, пока не превратились в условные обозначения.
Сама схема, на которой нарисованы условные графические символы (УГО), называется основной. Он не только показывает, как связаны определенные элементы схемы, но и объясняет, как работает все устройство, показывая принцип его действия.Для этого важно правильно показать отдельные группы элементов и связь между ними.
Кроме принципа есть сборочные. Они предназначены для точного отображения каждого элемента по отношению друг к другу. Арсенал радиоэлементов огромен. Постоянно добавляются новые. Тем не менее, УГО на всех схемах практически одинаковое, но буквенный код существенно отличается. Есть 2 типа стандарта:
- , этот стандарт может включать несколько состояний;
- международных, пользуются почти во всем мире.
Но какой бы стандарт ни использовался, он должен четко отображать обозначение радиодеталей на схеме и их названия. В зависимости от функциональности радиодеталей УГО они могут быть простыми или сложными. Например, можно выделить несколько условных групп:
- блоки питания;
- индикаторов, датчиков;
- переключателей;
- полупроводниковых элементов.
Этот список неполный и служит только для ясности.Чтобы облегчить понимание обозначений радиодеталей на схеме, необходимо знать принцип работы этих элементов.
Источники питания
Сюда входят все устройства, способные генерировать, накапливать или преобразовывать энергию. Первую батарею изобрел и продемонстрировал Александро Вольта в 1800 году. Это был набор медных пластин, покрытых влажной тканью. Доработанный рисунок стал состоять из двух параллельных вертикальных линий, между которыми находится многоточие.Заменяет недостающие пластины. Если источник питания состоит из одного элемента, многоточие не используется.
В цепи постоянного тока важно знать, где находится положительное напряжение. Поэтому положительная пластина делается выше, а отрицательная — ниже. Причем обозначение АКБ на схеме и АКБ ничем не отличается.
Также нет разницы в буквенном коде Gb. Панели солнечных батарей, вырабатывающие ток под действием солнечного света, имеют в своем УГО дополнительные стрелки, направленные в сторону батареи.
Если источник питания внешний, например, радиосхема запитана от сети, то вход питания обозначается клеммами. Это могут быть стрелки, кружочки со всякими дополнениями. В них указывается номинальное напряжение и род тока. Переменное напряжение обозначается «тильдой», может быть буквенный код Ac. Для постоянного тока положительный вход — «+», отрицательный «-», или может быть «общий» знак. Обозначается перевернутой Т.
Полупроводники, пожалуй, имеют самую обширную номенклатуру в электронике.Постепенно добавляются новые устройства. Все их условно можно разделить на 3 группы:
- Диоды.
- Транзисторы.
- Микросхемы.
В полупроводниковых приборах используется pn переход, схемотехника в UGO пытается показать особенности конкретного прибора. Итак, диод способен пропускать ток в одном направлении. Это свойство схематично показано в легенде. Он выполнен в виде треугольника с чертой вверху. Этот штрих показывает, что ток может течь только в направлении треугольника.
Если к этой прямой прикрепить короткий отрезок и повернуть его в обратную сторону от направления треугольника, то это уже стабилитрон. Он способен пропускать небольшой ток в обратном направлении. Это обозначение действительно только для устройств общего назначения … Например, изображение для диода с барьером Шоттки нарисовано s-образным знаком.
Некоторые радиодетали обладают свойствами двух простых устройств, соединенных вместе. Эта особенность тоже отмечена.При отображении двустороннего стабилитрона оба рисуются, причем вершины треугольников направлены друг к другу. При обозначении двунаправленного диода изображаются 2 параллельных диода, направленных в разные стороны.
Другие устройства обладают свойствами двух разных частей, например варикапом. Это полупроводник, поэтому он нарисован треугольником. Однако в основном используется емкость его pn перехода, а это уже свойства конденсатора. Поэтому на вершине треугольника прикреплен знак конденсатора — две параллельные прямые.
Также отражаются признаки воздействия внешних факторов на устройство. Фотодиод преобразует солнечный свет в электрический ток, некоторые типы представляют собой элементы солнечной батареи … Они изображены в виде диода, только в круге, и на них направлены 2 стрелки, чтобы показать солнечные лучи. Светодиод, напротив, излучает свет, поэтому стрелки идут от диода.
Полярные и биполярные транзисторы
Транзисторы также являются полупроводниками, но в биполярных транзисторах они имеют в основном два pnp-перехода.Средняя область между двумя переходами — это контрольная область. Эмиттер инжектирует носители заряда, а коллектор принимает их.
Тело показано в круге. Два p-n перехода показаны как один сегмент в этом круге. С одной стороны, к этому отрезку подходит прямая под углом 90 градусов — это основа. С другой стороны, 2 наклонные линии. На одном из них есть стрелка — это излучатель, на другом без стрелки — коллектор.
Эмиттер определяет структуру транзистора.Если стрелка идет в сторону перехода, то это транзистор p-n-p типа, если от него — то это транзистор n-p-n. Раньше выпускался однопереходный транзистор, его еще называют двухбазовым диодом, он имеет один p-n-переход. Он обозначен как биполярный, но нет коллектора, а есть две базы.
Похожую схему имеет и полевой транзистор … Отличие в том, что переход называется канальным. Прямая линия со стрелкой подходит к каналу под прямым углом и называется затвором.С противоположной стороны подходят сток и исток. Направление стрелки указывает тип канала. Если стрелка направлена на канал, то канал n-го типа, если от него, то p-типа.
Полевой транзистор с изолированным затвором имеет некоторые отличия. Затвор нарисован в виде буквы g и не подключен к каналу, стрелка помещена между стоком и истоком и имеет то же значение. В транзисторах с двумя изолированными затворами в схему добавляется второй такой затвор.Сток и исток взаимозаменяемы, поэтому полевой транзистор можно подключать как угодно, нужно лишь правильно подключить затвор.
Интегральные схемы
Интегральные схемы — самые сложные электронные компоненты. Выводы обычно входят в общую схему … Их можно разделить на следующие типы:
- аналог
- ;
- цифровой;
- аналого-цифровой.
На схеме они обозначены прямоугольником.Внутри код и (или) название схемы. Исходящие лиды пронумерованы. Операционные усилители нарисованы треугольником, выходной сигнал идет сверху. Для подсчета выводов рядом с первым выводом на корпусе микросхемы ставится отметка. Обычно это квадратная выемка. Для правильного чтения микросхем и условных обозначений прилагаются таблицы.
Элементы прочие
Все радиодетали соединены между собой проводниками. На схеме они изображены прямыми линиями и нанесены строго по горизонтали и вертикали.Если проводники при пересечении друг с другом имеют электрическое соединение, то на этом месте ставится точка. На советской и американской схемах, чтобы показать, что проводники не соединяются, на пересечении поставлен полукруг.
Конденсаторы обозначены двумя параллельными участками. Если он электролитический, для подключения которого важно соблюдать полярность, то рядом с его плюсовым выводом ставится +. Могут быть обозначения электролитических конденсаторов в виде двух параллельных прямоугольников, один из которых (отрицательный) окрашен в черный цвет.
Стрелка используется для обозначения переменных конденсаторов; он перечеркивает конденсатор по диагонали. Триммеры используют Т-образный знак вместо стрелки. Вариконд — конденсатор, изменяющий емкость от приложенного напряжения, рисуется, как переменная, но стрелка заменяется короткой прямой линией, возле которой стоит буква u. Емкость обозначается числом, рядом с которым ставится мкФ (мкФ). Если емкость меньше, буквенный код опускается.
Еще один элемент, без которого не обходится ни одна электрическая схема — резистор.Он обозначен на схеме в виде прямоугольника. Чтобы показать, что резистор переменный, сверху нарисована стрелка. Он может быть подключен как к одному из выводов, так и к отдельному выводу. Для триммеров используется знак в виде буквы т. Как правило, его сопротивление указывается рядом с резистором.
Знаки тире могут использоваться для обозначения мощности постоянных резисторов. Мощность 0,05 Вт обозначается тремя наклонными, 0,125 Вт — двумя наклонными, 0,25 Вт — одним наклонным, 0.5 Вт — одна продольная. Высокая мощность указывается римскими цифрами. Из-за разнообразия описать на схеме все обозначения электронных компонентов невозможно. Для определения того или иного радиоэлемента воспользуйтесь справочниками.
Буквенно-цифровой код
Для простоты радиокомпоненты разделены на группы по функциям. Группы делятся на типы, типы — на типы. Ниже приведены коды групп:
Для удобства монтажа на печатных платах места для радиодеталей обозначены буквенным кодом, рисунком и цифрами.Для деталей с полярными выводами + помещается на положительный вывод. В местах для пайки транзисторов каждый вывод маркируется соответствующей буквой. Предохранители и шунты показаны прямой линией. Выводы микросхем обозначены цифрами. У каждого элемента есть свой порядковый номер, который указан на плате.
Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большинство из них стандартизированы и описаны в нормативных документах.Большинство из них было опубликовано в прошлом веке, а новый стандарт был принят только в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), поэтому иногда новую элементную базу обозначают по принципу «как кто изобрел.» И в этом сложность чтения схем новых устройств. Но, в целом, символы в электрических схемах описаны и многим хорошо известны.
На схемах часто используются два типа обозначений: графические и буквенные, также часто наносятся номиналы.По этим данным многие сразу могут сказать, как работает схема. Этот навык развивается за годы практики, но сначала вам нужно понять и запомнить символы в электрических цепях. Затем, зная работу каждого элемента, можно представить конечный результат устройства.
Для составления и чтения разных диаграмм обычно требуются разные элементы. Типов цепей много, но в электротехнике обычно используются:
Есть много других типов электрических цепей, но они не используются в бытовой практике.Исключение составляет трасса прохождения кабелей по участку, подача электричества в дом. Этот тип документа определенно будет нужен и полезен, но это скорее план, чем диаграмма.
Основные изображения и функциональные знаки
Коммутационные аппараты (переключатели, контакторы и др.) Основаны на контактах разной механики. Есть NO, NC, переключающие контакты. Замыкающий контакт нормально разомкнут, при переключении в рабочее состояние цепь замкнута.Нормально открытый контакт замкнут, но при определенных условиях срабатывает для размыкания цепи.
Переключающий контакт может быть двух- или трехпозиционным. В первом случае работает одна цепочка, потом другая. Второй занимает нейтральную позицию.
Кроме того, контакты могут выполнять разные функции: контактор, разъединитель, выключатель и т. Д. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты.Они показаны на фото ниже.
Только фиксированные контакты могут выполнять основные функции.
Условные обозначения однолинейных схем
Как уже было сказано, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, выключатели, выключатели и т.д. и соединения между ними. Обозначения этих условных элементов можно использовать на схемах электрических щитов.
Основная особенность графических обозначений в электрических схемах состоит в том, что схожие по принципу действия устройства отличаются некоторой мелочью.Например, автоматический выключатель (автоматический выключатель) и автоматический выключатель отличаются только двумя небольшими деталями — наличием / отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, отображающего функции этих контактов. Контактор отличается от обозначения выключателя только формой значка на неподвижном контакте. Разница очень небольшая, но устройство и его функции разные. Все эти мелочи нужно смотреть и запоминать.
Также есть небольшая разница между обозначениями УЗО и дифференциального автомата.Так же только в функциях подвижных и неподвижных контактов.
Примерно так же обстоит дело с катушками реле и контактора. Они выглядят как прямоугольник с небольшими графическими дополнениями.
В данном случае это легче запомнить, так как есть довольно серьезные отличия во внешнем виде дополнительных иконок. С фотореле все так просто — лучи солнца ассоциируются со стрелками. Импульсное реле также довольно легко отличить по характерной форме знака.
Немного проще с лампочками и подключениями. У них разные «картинки». Разъемное соединение (например, розетка / вилка или розетка / вилка) выглядит как два кронштейна, а разборное (например, клеммная колодка) выглядит как круги. Причем количество пар галочек или кружков указывает на количество проводов.
Изображение шин и проводов
В любой схеме подходят подключения и в большинстве своем они проводные. Некоторые соединения представляют собой шины — более мощные токопроводящие элементы, от которых могут выходить отводы.Провода обозначены тонкой линией, а места ответвлений / соединений обозначены точками. Если точек нет, это не соединение, а перекресток (нет электрического соединения).
Есть отдельные изображения для автобусов, но они используются, если вам нужно графически отделить их от линий связи, проводов и кабелей.
На схемах подключения часто бывает необходимо указать не только, как проходит кабель или провод, но и его характеристики или способ прокладки.Все это тоже отображается графически. Это также необходимая информация для чтения чертежей.
Как изображены выключатели, выключатели, розетки
Некоторые типы этого оборудования не имеют изображений, утвержденных стандартами. Так, диммеры (диммеры) и кнопочные переключатели остались без обозначения.
Но все остальные типы переключателей имеют свои символы в электрических схемах. Они бывают открытой и скрытой установки, соответственно также есть две группы иконок.Отличие заключается в положении линии на ключевом изображении. Чтобы понять на схеме, какой тип переключателя имеется в виду, это необходимо помнить.
Есть отдельные обозначения для двухкнопочных и трехкнопочных переключателей. В документации они называются «двойными» и «тройными» соответственно. Есть отличия для корпусов с разной степенью защиты. В помещениях с нормальными условиями эксплуатации устанавливаются выключатели с IP20, возможно, до IP23. Во влажных помещениях (ванная, бассейн) или на открытом воздухе степень защиты должна быть не ниже IP44.Их изображения отличаются тем, что кружки закрашены. Так что их легко отличить.
Есть отдельные изображения для переключателей. Это переключатели, позволяющие управлять включением / выключением света с двух точек (их тоже три, но без стандартных изображений).
В обозначении розеток и групп розеток прослеживается та же тенденция: розетки одинарные, розетки двойные, есть группы по несколько штук. Продукция для помещений с нормальными условиями эксплуатации (IP 20–23) имеет неокрашенный центр, для влажных помещений с корпусом повышенной защиты (IP44 и выше) центр окрашен в темный цвет.
Обозначения в электрических цепях: розетки разного типа, установка (открытые, скрытые)
Разобравшись в логике обозначения и запомнив некоторые исходные данные (в чем разница между условным изображением розетки открытого и скрытого монтажа, например), через некоторое время можно уверенно ориентироваться в чертежах и схемах.
Лампы на схемах
В этом разделе описаны символы на электрических схемах различных ламп и светильников.Здесь лучше обстоят дела с обозначениями новой элементной базы: есть даже вывески для светодиодных ламп и ламп, компактных люминесцентных ламп (экономки). Также хорошо, что изображения ламп разных типов существенно различаются — их сложно спутать. Например, лампы с лампами накаливания изображают в виде круга, с длинными линейными люминесцентными лампами — в длинном узком прямоугольнике. Разница в изображении линейной люминесцентной лампы и светодиодной лампы не очень большая — только штрихи на концах — но тут можно вспомнить.
Стандарт даже содержит символы в электрических схемах потолочного и подвесного светильника (держателя). Также они имеют довольно необычную форму — кружочки небольшого диаметра с черточками. В целом, в этом разделе легче ориентироваться, чем в других.
Элементы основных электрических цепей
Принципиальные схемы устройств содержат различную элементную базу. Также изображены линии связи, клеммы, разъемы, лампочки, но, кроме того, присутствует большое количество радиоэлементов: резисторы, конденсаторы, предохранители, диоды, тиристоры, светодиоды.Большинство условных обозначений в электрических схемах этой элементной базы показано на рисунках ниже.
Более редкие придется искать отдельно. Но большинство схем содержат эти элементы.
Буквенные обозначения в электрических схемах
Помимо графических изображений подписываются элементы на схемах. Это также помогает читать диаграммы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того, чтобы потом можно было легко найти тип и параметры в спецификации.
В приведенной выше таблице показаны международные обозначения. Есть еще отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблицей ниже.
Любые электрические схемы могут быть представлены в виде чертежей (принципиальных и электрических схем), конструкция которых должна соответствовать нормам ЕСКД. Эти стандарты применяются как к электропроводке или силовым цепям, так и к электронным устройствам. Соответственно, чтобы «читать» такие документы, необходимо понимать символы в электрических схемах.
Положения
Учитывая большое количество электрических элементов, для их буквенно-цифровых (далее БО) и условно-графических символов (УГО) разработан ряд нормативных документов, исключающих несоответствие. Ниже представлена таблица с основными стандартами.
Таблица 1. Нормы графического обозначения отдельных элементов в монтажных и принципиальных схемах.
Номер ГОСТ | Краткое описание |
2.710 81 | В этом документе собраны требования ГОСТ к различным типам электрических элементов БО, в том числе электроприборам. |
2,747 68 | Требования к размеру отображаемых элементов в графической форме. |
21,614 88 | Принятые стандарты для электрических схем и проводки. |
2,755 87 | Отображение на схемах коммутационных аппаратов и контактных соединений |
2.756 76 | Стандарты на чувствительные части электромеханического оборудования. |
2,709 89 | Этот стандарт регламентирует нормы, согласно которым на схемах указываются контактные соединения и провода. |
21,404 85 | Условные обозначения оборудования, используемого в системах автоматизации |
Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения в нормативные документы, хотя этот процесс более инертный.Приведем простой пример, УЗО и дифавтоматы широко используются в России более десяти лет, но до сих пор нет единого стандарта на эти устройства по ГОСТ 2.755-87, в отличие от автоматических выключателей. Вполне возможно, что этот вопрос будет решен в ближайшее время. Чтобы быть в курсе таких нововведений, профессионалы отслеживают изменения нормативных документов, любителям этого делать не нужно, достаточно знать расшифровку основных обозначений.
Виды электрических цепей
В соответствии с нормами ЕСКД под схемами понимаются графические документы, на которых с использованием принятых обозначений отображаются основные элементы или узлы конструкции, а также ссылки, их объединяющие.Согласно принятой классификации выделяют десять типов схем, из которых в электротехнике чаще всего используются три:
Если на схеме изображена только силовая часть установки, то она называется однолинейной, если показаны все элементы, то она завершена.
Если на чертеже отображена разводка квартиры, то на плане указывается расположение осветительных приборов, розеток и прочего оборудования. Иногда можно услышать, как такой документ называется схемой электроснабжения, это неверно, поскольку последняя отражает способ подключения потребителей к подстанции или другому источнику питания.
Разобравшись с электрическими схемами, можно переходить к обозначениям элементов, указанных на них.
Графические символы
Каждый вид графического документа имеет свои обозначения, регламентированные соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для различных типов электрических цепей.
Примеры УГО в функциональных схемах
Ниже представлен рисунок, изображающий основные узлы систем автоматизации.
Примеры обозначений электрических приборов и средств автоматизации по ГОСТ 21.404-85
Описание обозначений:
- A — Базовые (1) и разрешенные (2) изображения устройств, установленных вне электрической панели или распределительной коробки.
- B — То же, что и точка A, за исключением того, что элементы расположены на консоли или электрической панели.
- С — Отображение исполнительных механизмов (ИМ).
- D — Влияние IM на регулирующий орган (далее РО) при отключении питания:
- Открытие RO
- Закрытие RO
- Положение РО остается неизменным.
- E — IM, который дополнительно имеет ручной привод. Этот символ может использоваться для любой из позиций RO, указанных в D. .
- F- Отображение полученных линий связи:
- Общие.
- Нет связи при переходе.
- Подключено при переходе.
УГО в однолинейных и полных схемах подключения
Для этих схем существует несколько групп символов, мы приведем самые распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера госстандартов будут указаны для каждой группы.
Источники питания.
Символы, показанные на рисунке ниже, используются для их обозначения.
Источники питания УГО на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)
Описание обозначений:
- А — источник постоянного напряжения, его полярность обозначена символами «+» и «-».
- В — это значок электричества, обозначающий переменное напряжение.
- C — обозначение переменного и постоянного напряжения, используется в случаях, когда устройство может питаться от любого из этих источников.
- D — батарея дисплея или гальванический источник питания.
- E- символ многоэлементной батареи.
Линии связи
Основные элементы электрических разъемов показаны ниже.
Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)
Описание обозначений:
- A — Общий дисплей, адаптированный для различных типов электрических соединений.
- B — Токоведущая или заземляющая шина.
- C — Обозначение экрана, может быть электростатическим (обозначено символом «E») или электромагнитным («M»).
- D — символ Земли.
- E — Электрическое соединение с корпусом устройства.
- F — На сложных схемах из нескольких составных частей таким образом указывается разрыв связи, в таких случаях «Х» — это информация о том, где будет продлена линия (как правило, указывается номер элемента).
- G — Перекресток без связи.
- H — Подключение на перекрестке.
- I — Филиалы.
Обозначения электромеханических устройств и контактных соединений
Примеры обозначения магнитных пускателей, реле, а также контактов устройств связи можно найти ниже.
УГО, принятый для электромеханических устройств и контакторов (ГОСТ 2.756-76, 2.755-74, 2.755-87)
Описание обозначений:
- А — обозначение катушки электромеханического устройства (реле, магнитного пускателя и др.)).
- Б — УГО приемной части электротепловой защиты.
- C — отображает катушку устройства с механической блокировкой.
- D — контакты коммутационных аппаратов:
- Закрытие.
- Открывалки.
- Переключение.
- E — Условное обозначение ручных переключателей (кнопок).
- F — Групповой переключатель (переключатель).
Машины электрические УГО
Вот несколько примеров отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.
Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)
Описание обозначений:
- Асинхронный (короткозамкнутый ротор).
- То же, что пункт 1, только в двухскоростной версии.
- Асинхронные ЭМ с фазным ротором.
- Синхронные двигатели и генераторы.
- B — Коллектор, питание от постоянного тока:
- EM с возбуждением постоянными магнитами.
- ЭМ с катушкой возбуждения.
Трансформаторы и дроссели УГО
Примеры графических символов для этих устройств можно найти на рисунке ниже.
Правильное обозначение трансформаторов, индукторов и дросселей (ГОСТ 2.723-78)
Описание обозначений:
- A — Этот графический символ может обозначать катушки индуктивности или обмотки трансформатора.
- B — Дроссель, имеющий ферримагнитный сердечник (магнитопровод).
- C — Дисплей двухкатушечного трансформатора.
- D — Устройство с тремя катушками.
- E — Обозначение автотрансформатора.
- F — Графический дисплей ТТ (трансформатор тока).
Обозначение средств измерений и радиодеталей
Краткий обзор данных UGO электронных компонентов показан ниже. Тем, кто хочет более подробно ознакомиться с этой информацией, рекомендуем ознакомиться с ГОСТами 2.729 68 и 2.730 73.
Примеры условных графических обозначений электронных компонентов и средств измерений
Описание обозначений:
- Счетчик электроэнергии.
- Изображение амперметра.
- Устройство для измерения сетевого напряжения.
- Датчик температуры.
- Резистор постоянного тока.
- Переменный резистор.
- Конденсатор (общее обозначение).
- Электролитическая емкость.
- Обозначение диода.
- Светодиод.
- Изображение диодной оптопары. Транзистор УГО
- (в данном случае npn).
- Обозначение предохранителя.
Светильники УГО
Рассмотрим, как на принципиальной схеме изображены электрические лампы.
Описание обозначений:
- A — Общий вид ламп накаливания (ЛН).
- B — LN как сигнализатор.
- C — Обозначение типа газоразрядных ламп.
- D — Газоразрядный источник света повышенного давления (на рисунке показан пример конструкции с двумя электродами)
Обозначение элементов на электросхеме
Завершая тему графических символов, приведем примеры отображения розеток и выключателей.
Как изображены розетки других типов, их легко найти в нормативных документах, имеющихся в сети.
Радиодетали — условные обозначения на схеме. Как прочитать обозначение радиодеталей в схеме?
В статье вы узнаете о том, какие радиодетали существуют. Обозначения на схеме по ГОСТу будут учтены. Начать нужно с самых распространенных — резисторов и конденсаторов.
Для сборки конструкции необходимо знать, как радиодетали выглядят на самом деле, а также как они обозначены на электрических схемах.Радиодеталей очень много — транзисторы, конденсаторы, резисторы, диоды и т.д.
Конденсаторы
Конденсаторы — это детали, которые встречаются в любой конструкции без исключения. Обычно самые простые конденсаторы представляют собой две металлические пластины. А в качестве диэлектрической составляющей выступает воздух. Сразу вспомню уроки физики в школе, когда обсуждалась тема конденсаторов. В качестве модели было два огромных плоских круглых сальника. Они подошли друг к другу, затем удалились. И в каждой позиции производились замеры.Следует отметить, что вместо воздуха можно использовать слюду, а также любой материал, не проводящий электрический ток. Обозначение радиодеталей на импортных концепциях отличается от ГОСТов, принятых в нашей стране.
Обратите внимание на то, что через обычные конденсаторы не проходит постоянный ток. С другой стороны, переменный ток проходит через него без особого труда. Учитывая это свойство, конденсатор устанавливают только там, где необходимо разделить переменную составляющую на постоянном токе.Поэтому можно составить схему замены (по теореме Кирхгофа):
- При работе на переменном токе конденсатор заменяется отрезком проводника с нулевым сопротивлением.
- При работе в цепи постоянного тока конденсатор заменяется (нет, не емкостным!) На сопротивление.
Основная характеристика конденсатора — электрическая емкость. Единица вместимости — Фарад. Он очень большой. На практике, как правило, используются конденсаторы, емкость которых измеряется в микрофарадах, нанофарадах, микрофарадах.На схемах конденсатор обозначен двумя параллельными черточками, от которых проведены изгибы.
Переменные конденсаторы
Есть еще такое устройство, у которого изменяется емкость (в данном случае из-за того, что есть подвижные пластины). Емкость зависит от размера пластины (в формуле S — ее площадь), а также от расстояния между электродами. В конденсаторе переменной емкости с воздушным диэлектриком, например, благодаря наличию подвижной части можно быстро изменять площадь.Следовательно, изменится и емкость. А вот обозначение радиодеталей на зарубежных схемах несколько иное. Резистор, например, изображен на них ломаной кривой.
Одна из разновидностей конденсаторов переменной емкости -трим. Их активно используют в схемах, в которых есть сильная зависимость от паразитных емкостей. А если установить конденсатор постоянного номинала, вся конструкция не будет корректно работать. Поэтому необходимо установить универсальный элемент, который после окончательной установки можно будет отрегулировать и зафиксировать в оптимальном положении.Диаграммы указаны так же, как и константы, но только параллельные пластины перечеркнуты стрелкой.
Конденсаторы постоянной
Эти элементы имеют отличия в конструкции, а также в материалах, из которых они изготовлены. Можно выделить наиболее популярные типы диэлектриков:
- Air.
- Слюда.
- Керамика.
Но это относится исключительно к неполярным элементам. Есть еще конденсаторы электролитические (полярные).Именно эти элементы обладают очень большой емкостью, от десятых долей микрофарад до нескольких тысяч. Помимо емкости у таких элементов есть еще один параметр — максимальное значение напряжения, при котором допускается его использование. Эти параметры прописаны на схемах и на корпусах конденсаторов.
Обозначения конденсаторов в схемах
Стоит отметить, что в случае использования настраиваемых или переменных конденсаторов указываются два значения: минимальная и максимальная емкость.На самом деле на корпусе всегда можно найти диапазон, в котором изменится емкость, если повернуть ось прибора из одного крайнего положения в другое.
Предположим, имеется переменный конденсатор емкостью 9–240 (значение по умолчанию в пикофарадах). Это значит, что при минимальном перекрытии пластин емкость составляет 9 пФ. А на максимуме — 240 пФ. Стоит более подробно рассмотреть обозначение радиодеталей на схеме и их название, чтобы иметь возможность правильно читать техническую документацию.
Соединение конденсаторов
Сразу можно выделить три типа (а их столько) соединений элементов:
- Последовательное — общую емкость всей цепочки легко подсчитать. В этом случае он будет равен произведению всех мощностей элементов, деленному на их сумму.
- Параллельный — в этом случае еще проще рассчитать общую емкость. Необходимо добавить конденсаторы всех конденсаторов, которые входят в цепочку.
- Смешанная — в этом случае схема разбита на несколько частей. Можно сказать, что он упрощен — одна часть содержит только параллельные элементы, вторая — только последовательно.
И это только общие сведения о конденсаторах, на самом деле о них можно много рассказать, привести пример занимательных экспериментов.
Резисторы: общая информация
Эти элементы также можно найти в любом исполнении — даже в радио, даже в цепи управления на микроконтроллере.Это фарфоровая трубка, на которую снаружи напыляется тонкая пленка металла (углерода, в частности, сажи). Впрочем, можно нанести даже графит — эффект будет аналогичный. Если резисторы имеют очень низкое сопротивление и большую мощность, то в качестве токопроводящего слоя используется нихромовая проволока.
Основная характеристика резистора — сопротивление. Используется в электрических цепях для установки необходимого тока в определенных цепях. На уроках физики было проведено сравнение с бочкой, наполненной водой: если изменить диаметр трубы, можно было контролировать скорость струи.Стоит отметить, что толщина токоведущего слоя зависит от сопротивления. Чем тоньше этот слой, тем выше сопротивление. При этом обозначения радиодеталей на схемах не зависят от габаритов элемента.
Постоянные резисторы
Из таких элементов можно выделить наиболее распространенные типы:
- Металлизированные лакированные термостойкие — сокращенно МЛТ.
- Влагостойкость — Солнце.
- Малый лакированный карбон — ULM.
Резисторы имеют два основных параметра — мощность и сопротивление. Последний параметр измеряется в омах. Но эта единица измерения крайне мала, поэтому на практике чаще можно встретить элементы, в которых сопротивление измеряется в мегаомах и киломах. Мощность измеряется исключительно в ваттах. А размеры элемента зависят от мощности. Чем он больше, тем крупнее элемент. А теперь о том, что такое обозначение радиодеталей. На схемах импортных и отечественных устройств все элементы могут быть маркированы по-разному.
На отечественных схемах резистор представляет собой небольшой прямоугольник с соотношением сторон 1: 3, его параметры задаются либо сбоку (если элемент расположен вертикально), либо сверху (при горизонтальном расположении). Сначала указывается латинская буква R, затем порядковый номер резистора в цепи.
Переменный резистор (потенциометр)
Постоянное сопротивление имеет всего два вывода. Но переменных три. На электрических цепях и на корпусе элемента указано сопротивление между двумя концевыми контактами.Но между серединой и любым крайним сопротивлением будет меняться в зависимости от положения, в котором находится ось резистора. В этом случае, если подключить два омметра, можно увидеть, как показание одного изменится в меньшую сторону, а второго — в большую. Необходимо понимать, как читать схемы электронных устройств. Обозначения радиодеталей тоже не будут лишними.
Общее сопротивление (между крайними выводами) остается неизменным.Для регулировки усиления используются переменные резисторы (с их помощью можно изменять громкость в радиоприемниках, телевизорах). Кроме того, в автомобилях активно используются переменные резисторы. Это датчики уровня топлива, регуляторы скорости электродвигателей, яркости освещения.
Подключение резисторов
В данном случае картина полностью такая же, как у конденсаторов:
- Последовательное соединение — сопротивление всех элементов в цепи складывается.
- Параллельное соединение — произведение сопротивлений делится на сумму.
- Смешанная — вся схема разбита на более мелкие цепочки и рассчитывается пошагово.
На этом можно закончить обзор резисторов и приступить к описанию самого интересного элемента — полупроводника (радиодетали на схемах, ГОСТ на УГО, обсуждаются ниже).
Полупроводники
Это самая большая часть всех радиоэлементов, так как в числе полупроводников есть не только стабилитроны, транзисторы, диоды, но и варикапы, вариконды, тиристоры, симисторы, микросхемы и т. Д.Да, микросхемы — это один кристалл, на котором может быть великое множество радиоэлементов — и конденсаторы, и сопротивления, и pn переходы.
Как известно, бывают проводники (например, металлы), диэлектрики (дерево, пластик, ткань). На схеме могут быть различные обозначения радиодеталей (треугольник — это, скорее всего, диод или стабилитрон). Но стоит отметить, что треугольник без дополнительных элементов обозначает логическое заземление в микропроцессорной технике.
Эти материалы либо проводят ток, либо нет, независимо от их агрегатного состояния.Но есть также полупроводники, свойства которых меняются в зависимости от конкретных условий. Это такие материалы, как кремний, германий. Кстати, стекло тоже можно отнести к полупроводникам отчасти — в нормальном состоянии оно не проводит ток, а здесь при нагреве полностью обратный.
Диоды и стабилитроны
Полупроводниковый диод имеет только два электрода: катод (отрицательный) и анод (положительный). Но каковы особенности этой радиокомпоненты? Символы на схеме можно увидеть выше.Итак, вы подключаете плюс питания к аноду и минус к катоду. В этом случае электрический ток будет течь от одного электрода к другому. Стоит отметить, что элемент в этом случае имеет очень небольшое сопротивление. Теперь можно провести эксперимент и снова подключить аккумулятор, тогда сопротивление току увеличивается в несколько раз, и он перестает двигаться. А если пропустить через диод переменный ток, то на выходе вы получите постоянный выход (хотя и с небольшими пульсациями).При использовании мостовой схемы получаются две полуволны (положительные).
Стабилитроны, как и диоды, имеют два электрода — катод и анод. При прямом подключении этот элемент работает так же, как и вышеуказанный диод. Но если пустить ток в обратном направлении, можно увидеть очень интересную картину. Изначально стабилитрон не пропускает ток через себя. Но когда напряжение достигает определенного значения, происходит пробой, и элемент проводит ток. Это напряжение стабилизации.Очень хорошее свойство, благодаря которому получается добиться стабильного напряжения в цепях, полностью избавиться от колебаний, даже самых мелких. Обозначение радиодеталей на схемах выполнено в виде треугольника, а вверху проходит линия, перпендикулярная высоте.
Транзисторы
Если диоды и стабилитроны иногда даже не встречаются в конструкциях, то транзисторы вы найдете в любых (кроме приемника детектора). Транзисторы имеют три электрода:
- Base (обозначается сокращенно «B»).
- Коллектор (К).
- Излучатель (E).
Транзисторы могут работать в нескольких режимах, но чаще всего они используются в усилительном и ключевом (как переключатель). Можно сравнить с рогом — крикнула база, с коллектора послышался усиленный голос. А за эмиттер держите за руку — это тот случай. Основная характеристика транзисторов — коэффициент усиления (соотношение коллекторного тока и базы). Именно этот параметр, наряду со многими другими, является основополагающим для данного радиокомпонента.Обозначения на схеме транзистора — это вертикальная линия и две линии, которые приближаются к нему под углом. Можно выделить несколько распространенных типов транзисторов:
- Полярный.
- Биполярный.
- Поле.
Также существуют транзисторные сборки, состоящие из нескольких усилительных элементов. Вот самые распространенные там радиодетали. Обозначения на схеме были рассмотрены в статье.
p>Как транзистор обозначен на плате.Обозначение электрических элементов на схемах
Чтобы собрать электронное устройство, необходимо знать обозначение радиодеталей на схеме и их название, а также порядок их подключения. Для достижения этой цели были изобретены схемы. На заре радиотехники радиодетали изображались в трех измерениях. Их составление требовало опыта художника и знания внешнего вида деталей. Со временем изображения упрощались, пока не превратились в условные обозначения.
Сама схема, на которой нарисованы условные графические символы (УГО), называется основной. Он не только показывает, как связаны определенные элементы схемы, но и объясняет, как работает все устройство, показывая принцип его действия. Для этого важно правильно показать отдельные группы элементов и связь между ними.
Кроме принципа есть еще и сборочные. Они предназначены для точного отображения каждого элемента по отношению друг к другу.Арсенал радиоэлементов огромен. Постоянно добавляются новые. Тем не менее, УГО на всех схемах практически одинаковое, но буквенный код существенно отличается. Есть 2 типа стандарта:
- , этот стандарт может включать несколько состояний;
- международных, пользуются почти во всем мире.
Но какой бы стандарт ни использовался, он должен четко отображать обозначение радиодеталей на схеме и их названия. В зависимости от функциональности радиодеталей УГО они могут быть простыми или сложными. Например, можно выделить несколько условных групп:
- блоки питания;
- индикаторов, датчиков;
- переключателей;
- полупроводниковых элементов.
Этот список неполный и служит только для ясности. Чтобы облегчить понимание обозначений радиодеталей на схеме, необходимо знать принцип работы этих элементов.
Источники питания
Сюда входят все устройства, способные генерировать, накапливать или преобразовывать энергию.Первую батарею изобрел и продемонстрировал Александро Вольта в 1800 году. Это был набор медных пластин, покрытых влажной тканью. Доработанный рисунок стал состоять из двух параллельных вертикальных линий, между которыми находится многоточие. Заменяет недостающие пластины. Если источник питания состоит из одного элемента, многоточие не используется.
В цепи постоянного тока важно знать, где находится положительное напряжение. Поэтому положительная пластина делается выше, а отрицательная — ниже. Причем обозначение АКБ на схеме и АКБ ничем не отличается.
Также нет разницы в буквенном коде Gb. Солнечные панели, вырабатывающие ток под действием солнечного света, в своих УГО имеют дополнительные стрелки, направленные в сторону батареи.
Если источник питания внешний, например, радиосхема запитана от сети, то вход питания обозначается клеммами. Это могут быть стрелки, кружочки со всякими дополнениями. В них указывается номинальное напряжение и род тока. Переменное напряжение обозначается «тильдой», может быть буквенный код Ac.Для постоянного тока положительный вход — «+», отрицательный «-», или может быть «общий» знак. Обозначается перевернутой Т.
Полупроводники, пожалуй, имеют самую обширную номенклатуру в электронике. Постепенно добавляются новые устройства. Все их условно можно разделить на 3 группы:
- Диоды.
- Транзисторы.
- Микросхемы.
В полупроводниковых приборах используется pn-переход, схемотехника в UGO пытается показать особенности конкретного прибора.Итак, диод способен пропускать ток в одном направлении. Это свойство схематично показано в легенде. Он выполнен в виде треугольника с чертой вверху. Этот штрих показывает, что ток может течь только в направлении треугольника.
Если к этой прямой прикреплен короткий отрезок, обращенный в противоположную сторону от направления треугольника, то это уже стабилитрон. Он способен пропускать небольшой ток в обратном направлении.Это обозначение действительно только для устройств общего назначения. Например, изображение диода с барьером Шоттки отображается с s-образным знаком.
Некоторые радиодетали обладают свойствами двух простых устройств, соединенных вместе. Эта особенность тоже отмечена. При отображении двустороннего стабилитрона оба рисуются так, что вершины треугольников направлены друг к другу. При обозначении двунаправленного диода изображаются 2 параллельных диода, направленных в разные стороны.
Другие устройства обладают свойствами двух разных частей, например варикапом.Это полупроводник, поэтому он нарисован треугольником. Однако в основном используется емкость его pn перехода, а это уже свойства конденсатора. Поэтому на вершине треугольника прикреплен знак конденсатора — две параллельные прямые.
Также отражаются признаки воздействия внешних факторов на устройство. Фотодиод преобразует солнечный свет в электрический ток, некоторые типы — солнечные элементы. Они изображены в виде диода, только по кругу, и на них направлены 2 стрелки, показывающие солнечные лучи.Светодиод, напротив, излучает свет, поэтому стрелки идут от диода.
Полярные и биполярные транзисторы
Транзисторы также являются полупроводниками, но в биполярных транзисторах в основном имеют два pnp-перехода. Средняя область между двумя переходами — это контрольная область. Эмиттер вводит носители заряда, а коллектор принимает их.
Тело показано в круге. Два p-n перехода показаны как один сегмент в этом круге. С одной стороны, к этому отрезку подходит прямая под углом 90 градусов — это база.С другой стороны, 2 наклонные линии. На одном из них есть стрелка — это излучатель, на другом без стрелки — коллектор.
Эмиттер определяет структуру транзистора. Если стрелка идет в сторону перехода, то это транзистор типа p-n-p, если от него, то это транзистор n-p-n. Раньше выпускался однопереходный транзистор, его еще называют двухбазовым диодом, он имеет один p-n-переход. Он обозначен как биполярный, но нет коллектора, а есть две базы.
Полевой транзистор имеет аналогичную схему. Разница в том, что переход называется каналом. Прямая линия со стрелкой подходит к каналу под прямым углом и называется затвором. С противоположной стороны подходят сток и исток. Направление стрелки указывает тип канала. Если стрелка направлена на канал, то канал n-го типа, если от него, то p-типа.
Полевой транзистор с изолированным затвором имеет некоторые отличия.Затвор нарисован в виде буквы g и не подключен к каналу, стрелка помещена между стоком и истоком и имеет то же значение. В транзисторах с двумя изолированными затворами в схему добавляется второй такой затвор. Сток и исток взаимозаменяемы, поэтому полевой транзистор можно подключать как угодно, нужно лишь правильно подключить затвор.
Интегральные схемы
Интегральные схемы — самые сложные электронные компоненты.Выводы обычно входят в общую схему … Их можно разделить на следующие типы:
- аналог
- ;
- цифровой;
- аналого-цифровой.
На схеме они обозначены прямоугольником. Внутри код и (или) название схемы. Исходящие лиды пронумерованы. Операционные усилители нарисованы треугольником, выходной сигнал идет сверху. Для подсчета выводов рядом с первым выводом на корпусе микросхемы ставится отметка.Обычно это квадратная выемка. Для правильного чтения микросхем и условных обозначений прилагаются таблицы.
Элементы прочие
Все радиодетали соединены между собой проводниками. На схеме они изображены прямыми линиями и нанесены строго по горизонтали и вертикали. Если проводники при пересечении друг с другом имеют электрическое соединение, то на этом месте ставится точка. В советской и американской схемах, чтобы показать, что проводники не соединяются, на пересечении ставится полукруг.
Конденсаторы обозначены двумя параллельными участками. Если он электролитический, для подключения которого важно соблюдать полярность, то рядом с его плюсовым выводом ставится +. Могут быть обозначения электролитических конденсаторов в виде двух параллельных прямоугольников, один из которых (отрицательный) окрашен в черный цвет.
Стрелка используется для обозначения переменных конденсаторов; он перечеркивает конденсатор по диагонали. Триммеры используют Т-образный знак вместо стрелки.Вариконд — конденсатор, изменяющий емкость от приложенного напряжения, рисуется, как переменная, но стрелка заменяется короткой прямой линией, возле которой стоит буква u. Емкость обозначается числом, рядом с которым ставится мкФ (мкФ). Если емкость меньше, буквенный код опускается.
Еще один элемент, без которого не обходится ни одна электрическая схема — резистор. Он обозначен на схеме в виде прямоугольника. Чтобы показать, что резистор переменный, сверху нарисована стрелка.Он может быть подключен как к одному из выводов, так и к отдельному выводу. Для триммеров используется знак в виде буквы т. Как правило, его сопротивление указывается рядом с резистором.
Знаки тире могут использоваться для обозначения мощности постоянных резисторов. Мощность 0,05 Вт обозначена тремя наклонными, 0,125 Вт — двумя наклонными, 0,25 Вт — одним наклонным, 0,5 Вт — одним продольным. Высокая мощность указывается римскими цифрами. Из-за разнообразия описать на схеме все обозначения электронных компонентов невозможно.Для определения того или иного радиоэлемента воспользуйтесь справочниками.
Буквенно-цифровой код
Для простоты радиокомпоненты разделены на группы по функциям. Группы делятся на типы, типы — на типы. Ниже приведены коды групп:
Для простоты установки места для радиодеталей обозначены на печатных платах буквенным кодом, рисунком и цифрами. Для деталей с полярными выводами на плюсовом выводе ставится +. В местах для пайки транзисторов каждый вывод маркируется соответствующей буквой.Предохранители и шунты показаны прямой линией. Выводы микросхем обозначены цифрами. У каждого элемента есть свой порядковый номер, который указан на плате.
Любые электрические схемы могут быть представлены в виде чертежей (принципиальных и электрических схем), конструкция которых должна соответствовать нормам ЕСКД. Эти стандарты применяются как к электропроводке или силовым цепям, так и к электронным устройствам. Соответственно, чтобы «читать» такие документы, необходимо понимать символы в электрических схемах.
Положения
Учитывая большое количество электрических элементов, для их буквенно-цифровых (далее БО) и условно-графических обозначений (УГО) разработан ряд нормативных документов, исключающих расхождения. Ниже представлена таблица с основными стандартами.
Таблица 1. Нормы графического обозначения отдельных элементов в монтажных и принципиальных схемах.
Номер ГОСТ | Краткое описание |
2.710 81 | Настоящий документ содержит требования ГОСТ к БО различных типов электрических элементов, в том числе электроприборов. |
2,747 68 | Требования к размеру отображаемых элементов в графической форме. |
21,614 88 | Принятые стандарты для электрических схем и проводки. |
2,755 87 | Отображение на схемах коммутационных аппаратов и контактных соединений |
2.756 76 | Стандарты на чувствительные части электромеханического оборудования. |
2,709 89 | Этот стандарт регулирует стандарты, согласно которым контактные соединения и провода указаны на схемах. |
21,404 85 | Условные обозначения оборудования, используемого в системах автоматизации |
Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения в нормативные документы, хотя этот процесс более инертный.Приведем простой пример, УЗО и дифавтоматы широко используются в России более десяти лет, но до сих пор нет единого стандарта на эти устройства по ГОСТ 2.755-87, в отличие от автоматических выключателей. Вполне возможно, что этот вопрос будет решен в ближайшее время. Чтобы быть в курсе таких нововведений, профессионалы отслеживают изменения нормативных документов, любителям этого делать не нужно, достаточно знать расшифровку основных обозначений.
Виды электрических цепей
В соответствии с нормами ЕСКД под схемами понимаются графические документы, на которых с использованием принятых обозначений отображаются основные элементы или узлы конструкции, а также ссылки, их объединяющие.Согласно принятой классификации выделяют десять типов схем, из которых в электротехнике чаще всего используются три:
Если на схеме изображена только силовая часть установки, то она называется однолинейной, если показаны все элементы, то — комплектной.
Если на чертеже отображена разводка квартиры, то на плане указывается расположение осветительных приборов, розеток и прочего оборудования. Иногда можно услышать, как такой документ называется схемой электроснабжения, это неверно, поскольку последняя отражает способ подключения потребителей к подстанции или другому источнику питания.
Разобравшись с электрическими схемами, можно переходить к обозначениям элементов, указанных на них.
Графические символы
Каждый вид графического документа имеет свои обозначения, регламентированные соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для различных типов электрических цепей.
Примеры УГО в функциональных схемах
Ниже представлен рисунок, изображающий основные узлы систем автоматизации.
Примеры обозначений электрических приборов и средств автоматизации по ГОСТ 21.404-85
Описание обозначений:
- A — Базовые (1) и разрешенные (2) изображения устройств, установленных вне электрической панели или распределительной коробки.
- B — То же, что и точка A, за исключением того, что элементы расположены на консоли или электрической панели.
- С — Отображение исполнительных механизмов (ИМ).
- D — Влияние IM на регулирующий орган (далее РО) при отключении питания:
- Открытие RO
- Закрытие RO
- Положение РО остается неизменным.
- E — IM, который дополнительно имеет ручной привод. Этот символ может использоваться для любой позиции RO, указанной в пункте D.
- F- Отображение полученных линий связи:
- Общие.
- Нет связи при переходе.
- Подключено при переходе.
УГО в однолинейных и полных схемах подключения
Для этих схем существует несколько групп символов, мы приведем самые распространенные. Для полной информации нужно обратиться к нормативным документам, номера ГОСТов будут даны по каждой группе.
Источники питания.
Символы, показанные на рисунке ниже, используются для их обозначения.
Источники питания УГО на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)
Описание обозначений:
- А — источник постоянного напряжения, его полярность обозначена символами «+» и «-».
- В — это значок электричества, обозначающий переменное напряжение.
- C — обозначение переменного и постоянного напряжения, используется в случаях, когда устройство может питаться от любого из этих источников.
- D — батарея дисплея или гальванический источник питания.
- E- символ многоэлементной батареи.
Линии связи
Основные элементы электрических разъемов показаны ниже.
Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)
Описание обозначений:
- A — Общий дисплей, адаптированный для различных типов электрических соединений.
- B — Токоведущая или заземляющая шина.
- C — Обозначение экрана, может быть электростатическим (обозначено символом «E») или электромагнитным («M»).
- D — символ Земли.
- E — Электрическое соединение с корпусом устройства.
- F — На сложных схемах из нескольких составных частей таким образом указывается разрыв связи, в таких случаях «Х» — это информация о том, где будет продлена линия (как правило, указывается номер элемента).
- G — Перекресток без связи.
- H — Подключение на перекрестке.
- I — Филиалы.
Обозначение электромеханических устройств и контактных соединений
Примеры обозначения магнитных пускателей, реле, а также контактов устройств связи можно найти ниже.
УГО, принятый для электромеханических устройств и контакторов (ГОСТ 2.756-76, 2.755-74, 2.755-87)
Описание обозначений:
- А — обозначение катушки электромеханического устройства (реле, магнитного пускателя и др.)).
- Б — УГО приемной части электротепловой защиты.
- C — отображает катушку устройства с механической блокировкой.
- D — контакты коммутационных аппаратов:
- Закрытие.
- Открывалки.
- Переключение.
- E — Условное обозначение ручных переключателей (кнопок).
- F — Групповой переключатель (переключатель).
Машины электрические УГО
Вот несколько примеров отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.
Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)
Описание обозначений:
- Асинхронный (короткозамкнутый ротор).
- То же, что пункт 1, только в двухскоростной версии.
- Асинхронные ЭМ с фазным ротором.
- Синхронные двигатели и генераторы.
- B — Коллектор, питание от постоянного тока:
- EM с возбуждением постоянными магнитами.
- ЭМ с катушкой возбуждения.
Трансформаторы и дроссели УГО
Примеры графических символов для этих устройств можно найти на рисунке ниже.
Правильное обозначение трансформаторов, индукторов и дросселей (ГОСТ 2.723-78)
Описание обозначений:
- A — Этот графический символ может использоваться для обозначения катушек индуктивности или обмоток трансформатора.
- B — Дроссель, имеющий ферримагнитный сердечник (магнитопровод).
- C — Дисплей двухкатушечного трансформатора.
- D — Устройство с тремя катушками.
- E — Обозначение автотрансформатора.
- F — Графический дисплей ТТ (трансформатор тока).
Обозначение средств измерений и радиодеталей
Краткий обзор данных UGO электронных компонентов показан ниже. Тем, кто хочет более подробно ознакомиться с этой информацией, рекомендуем ознакомиться с ГОСТами 2.729 68 и 2.730 73.
Примеры условных графических обозначений электронных компонентов и средств измерений
Описание обозначений:
- Счетчик электроэнергии.
- Изображение амперметра.
- Устройство для измерения сетевого напряжения.
- Датчик температуры.
- Резистор постоянного тока.
- Переменный резистор.
- Конденсатор (общее обозначение).
- Электролитическая емкость.
- Обозначение диода.
- Светодиод.
- Изображение диодной оптопары. Транзистор УГО
- (в данном случае npn).
- Обозначение предохранителя.
Светильники УГО
Рассмотрим, как электрические лампы изображены на принципиальной схеме.
Описание обозначений:
- A — Общий вид ламп накаливания (ЛН).
- B — LN как сигнализатор.
- C — Обозначение типа газоразрядных ламп.
- D — Газоразрядный источник света повышенного давления (на рисунке показан пример конструкции с двумя электродами)
Обозначение элементов на электросхеме
Завершая тему графических символов, приведем примеры отображения розеток и выключателей.
Как изображены розетки других типов, несложно найти в нормативных документах, имеющихся в сети.
Эта статья предназначена для начинающего радиолюбителя, с чего начать. В различных технических изданиях такой материал также встречается редко. Вот почему он ценен.
В таблице приведены буквенные обозначения основных радиоэлементов на радиосхемах в соответствии с ГОСТом. Указанное в таблице буквенное обозначение радиоэлементов не является догмой и, как правило, не соблюдается разработчиками радиосхем.Например, по ГОСТу обозначение потенциометра (переменного резистора) — РП, а на схемах чаще всего встречается просто — Р. Когда специалист любого уровня «читает» радиосхему, он безошибочно определяет, что буквенное обозначение относится именно к этому потенциометру, а не к другому радиоэлементу. Главное, чтобы первая буква обозначения совпадала.
Были времена, когда я проектировал схему, и когда я вводил буквы в схему, я внезапно обнаруживал, что не помню, какая буква использовалась для обозначения редко используемого элемента.Затем я обратился к этой тарелке. Поэтому данная таблица с буквенными обозначениями может быть полезна не только начинающим радиолюбителям.
Базовое обозначение | Название позиции | Дополнительное обозначение | Тип устройства |
A | Устройство | AA AK AKS | Регулятор тока Блок реле Устройство |
B | Преобразователи | BA Bf BK BL BM BS | Динамик Телефон Термодатчик Фотоэлемент Микрофон Звукосниматель |
ИЗ | Конденсаторы | SV CG | Силовой конденсаторный аккумулятор Зарядный конденсаторный блок |
D | Микросхемы, микросборки | DA DD | Аналоговый IC IC цифровой, логический элемент |
E | Элементы разные | EK EL | ТЭН Лампа освещения |
F | Разрядники, предохранители, защитные устройства | FA FP FU FV | Элемент защиты дискретного мгновенного тока Элемент защиты дискретного инерционного тока Предохранитель Искровой разрядник |
G | Генераторы, источники питания | GB GC GE | Аккумуляторная батарея Синхронный компенсатор Генераторный возбудитель |
H | Устройства индикации и сигнализации | HA HG HL HLA HLG HLR HLW HV | Устройство звуковой сигнализации Индикатор Устройство световой сигнализации Табло сигнальное Сигнальная лампа с зеленой линзой Сигнальная лампа с красной линзой Сигнальная лампа с белой линзой Ионные и полупроводниковые индикаторы |
K | Реле, контакторы, пускатели | KA KH KK KM KT KV KCC KCT KL | Реле тока Реле индикатора Электрическое тепловое реле Контактор, магнитный пускатель Реле времени Реле напряжения Реле команды закрытия Реле команды отключения Промежуточное реле |
L | Дроссели, дроссели | LL LR LM | Дроссель люминесцентного света Реактор Обмотка возбуждения электродвигателя |
M | Двигатели | MA | Электродвигатели |
R | Измерительные приборы | PA PC PF PI PK PR PT PV PW | Амперметр Счетчик импульсов Счетчик частоты Счетчик активной энергии Счетчик реактивной энергии Омметр Счетчик времени действия, часы Вольтметр Ваттметр |
Q | Силовые выключатели и разъединители | QF | Автоматический выключатель |
R | Резисторы | RK RP RS RU RR | Термистор Потенциометр Измерительный шунт Варистор Реостат |
S | Устройства управления и коммутации | SA SB SF | Переключатель или переключатель Кнопочный переключатель Автоматический переключатель |
Т | Трансформаторы, автотрансформаторы | TA TV | Трансформатор тока Трансформатор напряжения |
U | Преобразователи | UB UR UG UF | Модулятор Демодулятор Источник питания Преобразователь частоты |
V | Электровакуумные и полупроводниковые приборы | VD VL VT VS | Диод, стабилитрон Электровакуумный прибор Транзистор Тиристор |
X | Штыревые разъемы | XA XP XS XW | Токосъемник Pin Nest Высокочастотный разъем |
Y | Механические устройства с электромагнитным приводом | Я ЯБ | Электромагнит Электромагнитный замок |
ИЗ где начинается практическая электроника? Конечно с радиодеталями! Их разнообразие просто поражает.Здесь вы найдете статьи про всевозможные радиодетали, познакомитесь с их назначением, параметрами и свойствами. Узнайте, где и в каких устройствах используются определенные электронные компоненты.
Для перехода к интересующей статье щелкните ссылку или миниатюру, размещенную рядом с кратким описанием материала.
Как купить радиодетали через интернет? Этот вопрос задают многие радиолюбители. В статье рассказывается, как можно заказать радиодетали в интернет-магазине радиодеталей с доставкой по почте.
В этой статье я расскажу, как купить радиодетали и электронные модули в одном из крупнейших интернет-магазинов AliExpress.com за очень небольшие деньги 🙂
Помимо широко распространенных в электронике плоских SMD-резисторов, используются MELF-резисторы в цилиндрическом корпусе. В чем их преимущества и недостатки? Где они используются и как определить их мощность?
Размеры корпусов резисторов SMDстандартизированы и, вероятно, многим известны. Но так ли все просто? Здесь вы узнаете о двух системах кодирования размеров SMD-компонентов, узнаете, как определить реальный размер чип-резистора по его размеру и наоборот.Познакомьтесь с самыми маленькими представителями SMD резисторов, которые существуют сейчас. Кроме того, представлена таблица типоразмеров SMD резисторов и их сборок.
Здесь вы узнаете, что такое температурный коэффициент сопротивления резистора (TCR), а также какие TCR имеют различные типы постоянных резисторов. Приведена формула для расчета TCS, а также даны пояснения к иностранным обозначениям, таким как T.C.R и ppm / 0 С.
Помимо постоянных резисторов в электронике активно используются переменные и подстроечные резисторы.Как устроены переменные и подстроечные резисторы, об их разновидностях и пойдет речь в этой статье. Материал подкреплен большим количеством фотографий различных резисторов, что обязательно понравится начинающим радиолюбителям, которые смогут более легко сориентироваться во всем многообразии этих элементов.
Как и любой радиокомпонент, переменные и подстроечные резисторы имеют базовые параметры. Оказывается, их не так уж и мало, и начинающим радиолюбителям не помешает познакомиться с такими интересными параметрами переменных резисторов, как ТКС, функциональные характеристики, долговечность и т. Д.
Полупроводниковый диод — один из самых популярных и широко используемых компонентов в электронике. Какие параметры у диода? Где это используется? Какие его разновидности? Это будет тема данной статьи.
Что такое индуктор и почему он используется в электронике? Здесь вы узнаете не только о том, какие параметры имеет индуктор, но и о том, как разные индукторы обозначены на схеме. В статье много фотографий и изображений.
В современной импульсной технике активно применяется диод Шоттки.Чем он отличается от обычных выпрямительных диодов? Как это обозначено на схемах? Каковы его положительные и отрицательные свойства? Обо всем этом вы узнаете из статьи про диод Шоттки.
Стабилитрон— один из важнейших элементов современной электроники. Ни для кого не секрет, что полупроводниковая электроника очень требовательна к качеству питания, а точнее к стабильности питающего напряжения. Здесь на помощь приходит полупроводниковый диод — стабилитрон, который активно применяется для стабилизации напряжения в узлах электронной аппаратуры.
Что такое варикап и где его применяют? В этой статье вы узнаете об удивительном диоде, который используется в качестве переменного конденсатора.
Если вы занимаетесь электроникой, то наверняка сталкивались с задачей подключения нескольких динамиков или динамиков. Это может потребоваться, например, при самостоятельной сборке громкоговорителя, подключении нескольких громкоговорителей к одноканальному усилителю и так далее. Рассмотрены 5 наглядных примеров. Много фото.
Транзистор — это основа современной электроники.Его изобретение произвело революцию в радиотехнике и послужило основой для миниатюризации электроники — создания микросхем. Как транзистор обозначен на принципиальной схеме? Как припаять транзистор к плате? Ответы на эти вопросы вы найдете в этой статье.
Составной транзистор или транзистор Дарлингтона — одна из модификаций биполярного транзистора. О том, где используются составные транзисторы, об их особенностях и отличительных свойствах, вы узнаете из этой статьи.
При выборе аналогов МДП полевых транзисторов необходимо обращаться к технической документации с параметрами и характеристиками конкретного транзистора. В этой статье вы узнаете об основных параметрах силовых MOSFET-транзисторов.
В настоящее время полевые транзисторы все чаще используются в электронике. На принципиальных схемах полевой транзистор обозначается иначе. В статье описано условное графическое обозначение полевых транзисторов на принципиальных схемах.
Что такое транзистор IGBT? Где он используется и как работает? В этой статье вы узнаете о преимуществах транзисторов IGBT, а также о том, как этот тип транзистора обозначен на принципиальных схемах.
Среди огромного количества полупроводниковых приборов есть динистор. Вы можете узнать, чем динистор отличается от полупроводникового диода, прочитав эту статью.
Что такое глушитель? Защитные диоды или супрессоры все чаще используются в электронном оборудовании для защиты его от высоковольтных импульсных помех.О назначении, параметрах и способах использования защитных диодов вы узнаете из этой статьи.
Самовосстанавливающиеся предохранители все чаще используются в электронном оборудовании. Их можно найти в устройствах автоматизации безопасности, компьютерах, портативных устройствах … По-иностранному самовосстанавливающиеся предохранители называются самовосстанавливающимися предохранителями. Каковы свойства и параметры «бессмертного» предохранителя? Об этом вы узнаете из предложенной статьи.
В настоящее время твердотельные реле все чаще используются в электронике.В чем преимущество твердотельных реле перед электромагнитными и герконовыми реле? Устройство, особенности и типы твердотельных реле.
В литературе по электронике кварцевый резонатор незаслуженно обделен вниманием, хотя этот электромеханический компонент чрезвычайно сильно повлиял на активное развитие технологий радиосвязи, навигации и вычислительных систем.
Помимо хорошо известных алюминиевых электролитических конденсаторов в электронике, используется большое количество всевозможных электролитических конденсаторов с разными типами диэлектрика.Среди них, например, танталовые конденсаторы smd, неполярные электролитические и танталовые выходные конденсаторы. Эта статья поможет начинающим радиолюбителям распознать среди всевозможных радиоэлементов различные электролитические конденсаторы.
Электролитические конденсаторы, наряду с другими конденсаторами, обладают некоторыми специфическими свойствами, которые необходимо учитывать при использовании в самодельных электронных устройствах, а также при ремонте электроники.
Обозначение радиодеталей на схеме
В данной статье представлен внешний вид и схематическое обозначение радиодетали
Каждый, наверное, начинающий радиолюбитель видел и внешне радиодетали, и, возможно, схемы, но то, что в схеме, приходится долго думать или искать, и только где-то он может прочитать и увидеть новые для себя слова, такие как резистор, транзистор, диод и так далее.они обозначены. Разберемся в этой статье. И так поехали.
1. Резистор
Чаще всего резистор можно увидеть на платах и схемах, так как на платах их больше всего.
Резисторы могут быть как постоянными, так и переменными (сопротивление можно регулировать ручкой)
Одно из изображений постоянного резистора ниже и обозначения постоянного и переменного на схеме.
А как выглядит переменный резистор? Это все еще картинка ниже. Прошу прощения за написание этой статьи.
2. Транзистор и его обозначение
Об их функциях написано много информации, но поскольку речь идет о нотации, давайте поговорим о нотации.
Транзисторы бывают биполярными и полярными, с переходами PNP и NPN. Все это учитывается при пайке как на плату, так и в схемах.Посмотрите картинку, вы поймете
Обозначение транзистора npn переход npn
Это эмиттер , К этому коллектор , а B — база Транзисторы pnp переходов будут отличаться тем, что стрелка будет не от базы, а на базу. Для подробностей еще одно фото
Есть еще биполярные и полевые транзисторы, обозначения на схеме полевых транзисторов аналогичны, но разные, так как нет базы эмиттера и коллектора, но есть C — сток, I — исток, Z — выход
И напоследок про транзисторы, как они выглядят на самом деле
В общем, если деталь имеет три ножки, то процентов 80 то что это транзистор.
Если у вас есть транзистор и вы не знаете, что это за переход и где находится коллектор, база и вся остальная информация, то загляните в справочник транзисторов.
Конденсатор, внешний вид и обозначение
Конденсаторы бывают полярные и неполярные, в полярных на схеме добавляют плюс, так как он для постоянного тока, и неполярные, соответственно, для переменного тока.
Они имеют определенную емкость в мкФ (микрофарадах) и рассчитаны на определенное напряжение в вольтах.Все это можно прочитать на корпусе конденсатора
.
Микросхемы , внешнее обозначение на схеме
Уфф уважаемые читатели, таких в мире просто огромное количество, начиная от усилителей и заканчивая телевизорами
.47 CFR § 2.1033 — Заявка на сертификацию. | CFR | Закон США
§ 2.1033 Заявление на сертификацию.
(a) Заявка на сертификацию должна быть заполнена по форме 731 Федеральной комиссии по связи, со всеми ответами на вопросы.Пункты, которые не применяются, должны быть отмечены таким образом.
(b) Заявки на оборудование, работающее в соответствии с частями 11, 15 и 18 правил, должны сопровождаться техническим отчетом, содержащим следующую информацию:
(1) Полное наименование и почтовый адрес производителя устройства и заявителя на сертификацию.
(2) Идентификатор FCC.
(3) Копия инструкции по установке и эксплуатации должна быть предоставлена пользователю. Черновик инструкций может быть представлен, если фактический документ недоступен.Фактический документ должен быть предоставлен в FCC, когда он станет доступным.
(4) Краткое описание схемных функций устройства вместе с утверждением, описывающим принцип работы устройства. Это заявление должно содержать описание системы заземления и антенны, если таковая имеется, используемых с устройством.
(5) Блок-схема, показывающая частоту всех генераторов в устройстве. Путь прохождения сигнала и частота должны быть указаны на каждом блоке. Диапазон (ы) настройки и промежуточная частота (ы) должны быть указаны на каждом блоке.Принципиальная схема также требуется для преднамеренных радиаторов.
(6) Отчет об измерениях, показывающий соответствие соответствующим техническим требованиям FCC. В этом отчете должна быть указана использованная процедура тестирования (например, указана процедура тестирования FCC или применяемая отраслевая процедура тестирования), дата проведения измерений, место, где были выполнены измерения, и устройство, которое было протестировано (модель и серийный номер, если есть). В отчет должны быть включены образцы расчетов, показывающие, как результаты измерений были преобразованы для сравнения с техническими требованиями.
(7) Достаточное количество фотографий, чтобы четко показать внешний вид, конструкцию, размещение компонентов на шасси и сборку шасси. Внешний вид должен показывать общий вид, антенну, используемую с устройством (если есть), элементы управления, доступные пользователю, и требуемую идентификационную этикетку с достаточной детализацией, чтобы можно было прочитать имя и идентификатор FCC. Вместо фотографии этикетки может быть предоставлен образец этикетки (или ее факсимиле) вместе с эскизом, показывающим, где эта этикетка будет размещена на оборудовании.Фотографии должны быть формата A4 (21 см × 29,7 см) или 8 × 10 дюймов (20,3 см × 25,4 см). Фотографии меньшего размера могут быть представлены при условии, что они резкие и четкие, демонстрируют необходимые детали и размещены на бумаге формата A4 (21 см × 29,7 см) или 8,5 × 11 дюймов (21,6 см × 27,9 см). Образец этикетки или факсимиле вместе с эскизом, показывающим размещение этой этикетки, должны быть на бумаге того же размера.
(8) Если оборудование, для которого запрашивается сертификация, должно быть протестировано с подключенными или установленными периферийными или дополнительными устройствами, краткое описание этих периферийных устройств или аксессуаров.Периферийные или вспомогательные устройства должны быть немодифицированным коммерчески доступным оборудованием.
(9) Для оборудования, подпадающего под положения части 15 данной главы, в заявке должно быть указано, разрешено ли использование оборудования в соответствии с переходными положениями в § 15.37 данной главы.
(10) Заявки на сертификацию сканирующих приемников должны включать заявление, описывающее методы, используемые для соответствия проектным требованиям всех частей § 15.121 данной главы. Приложение должно включать в себя заявление, оценивающее уязвимость оборудования для возможных модификаций и описывающее конструктивные особенности, которые не позволяют пользователю модифицировать оборудование для приема передач от сотовой радиотелефонной службы. Приложение также должно продемонстрировать соответствие требованию об отклонении сигнала согласно § 15.121 данной главы, включая подробные сведения о процедурах измерения, используемых для демонстрации соответствия.
(11) Заявки на сертификацию передатчиков, работающих в диапазоне 59,0–64,0 ГГц в соответствии с частью 15 настоящей главы, также должны сопровождаться приложением, демонстрирующим соответствие положениям § 15.255 (g) данной главы.
(12) Заявка на сертификацию программно определяемого радио должна включать информацию, требуемую § 2.944.
(13) Заявки на сертификацию устройств U-NII в диапазонах 5,15–5,35 ГГц и 5,47–5,85 ГГц должны включать рабочее описание высокого уровня процедур безопасности, которые контролируют рабочие параметры радиочастоты и гарантируют невозможность несанкционированных модификаций. сделал.
(14) Содержит по крайней мере один рисунок или фотографию, показывающую испытательную установку для каждого из требуемых типов испытаний, применимых к устройству, для которого запрашивается сертификация. Эти чертежи или фотографии должны содержать достаточно деталей, чтобы подтвердить другую информацию, содержащуюся в отчете об испытаниях. Все используемые фотографии должны быть сфокусированными оригиналами без бликов и темных пятен и должны четко отражать используемую тестовую конфигурацию.
(c) Заявки на оборудование, отличное от того, которое работает в соответствии с частями 15, 11 и 18 настоящей главы, должны сопровождаться техническим отчетом, содержащим следующую информацию:
(1) Полное наименование и почтовый адрес производителя устройства и заявителя на сертификацию.
(2) Идентификатор FCC.
(3) Копия инструкции по установке и эксплуатации должна быть предоставлена пользователю. Черновик инструкций может быть представлен, если фактический документ недоступен. Фактический документ должен быть предоставлен в FCC, когда он станет доступным.
(4) Тип или типы излучения.
(5) Диапазон частот.
(6) Диапазон значений рабочей мощности или конкретных уровней рабочей мощности, а также описание любых средств, предусмотренных для изменения рабочей мощности.
(7) Максимальная номинальная мощность, как определено в применимой части (ах) правил.
(8) Постоянное напряжение, приложенное к нескольким элементам оконечного устройства усиления радиочастоты, и постоянные токи для нормальной работы в диапазоне мощностей.
(9) Процедура настройки в диапазоне мощности или при определенных рабочих уровнях мощности.
(10) Принципиальная схема и описание всех схем и устройств, предназначенных для определения и стабилизации частоты, для подавления паразитного излучения, для ограничения модуляции и для ограничения мощности.
(11) Фотография или рисунок паспортной таблички или этикетки оборудования, на которой должна быть размещена информация.
(12) Фотографии (8 ″ × 10 ″) оборудования с достаточной четкостью, чтобы показать конструкцию и расположение оборудования, включая счетчики, если таковые имеются, и этикетки для органов управления и счетчиков, а также достаточные виды внутренней конструкции для определения размещения компонентов и шасси. сборка. Поскольку этим требованиям соответствуют фотографии или рисунки, содержащиеся в инструкциях по эксплуатации, прилагаемых к запросу на сертификацию, дополнительные фотографии необходимы только для завершения требуемого показа.
(13) Для оборудования, использующего методы цифровой модуляции, должно быть представлено подробное описание системы модуляции, которая будет использоваться, включая характеристики отклика (частота, фаза и амплитуда) любых предоставленных фильтров, а также описание модулирующего волнового потока. максимальные номинальные условия, при которых будет эксплуатироваться оборудование.
(14) Данные, требуемые §§ 2.1046–2.1057 включительно, измерены в соответствии с процедурами, изложенными в § 2.1041.
(15) К заявке на сертификацию внешнего усилителя мощности радиочастоты в соответствии с частью 97 данной главы необязательно должны прилагаться данные, требуемые параграфом (b) (14) этого раздела. Вместо этого должны быть представлены измерения, подтверждающие соответствие техническим характеристикам в подразделе C части 97 этой главы и такой информации, которая требуется в соответствии с § 2.1060 этой части.
(16) Заявка на сертификацию радиовещательного стереофонического возбудителя-генератора AM, предназначенного для взаимодействия с существующими сертифицированными или ранее принятыми типами или заявленными передатчиками, должна включать измерения, сделанные на полном стереофоническом передатчике.Инструкция должна включать полные спецификации и требования к схемам для соединения с существующими датчиками. Инструкция должна также содержать полное описание оборудования и процедур измерения для контроля модуляции и проверки того, что комбинация стереовозбудителя-генератора и передатчика соответствует ограничениям на излучение, указанным в § 73.44.
(17) Заявки на сертификацию, требуемые § 25.129 настоящей главы, должны включать любые дополнительные данные испытаний оборудования, требуемые этим разделом.
(18) Заявка на сертификацию программно определяемого радио должна включать информацию, требуемую § 2.944.
(19) Заявки на сертификацию оборудования, работающего в соответствии с частью 27 настоящей главы, которое производитель стремится сертифицировать для работы в:
(i) 1755–1780 МГц, 2155–2180 МГц или обе полосы должны включать заявление, указывающее на соответствие парному выбору 1710–1780 и 2110–2180 МГц, указанному в §§ 27.5 (h) и 27.75 настоящей главы.
(ii) 1695–1710 МГц, 1755–1780 МГц или обе полосы должны включать заявление, указывающее на соответствие § 27.77 данной главы.
(iii) полоса 600 МГц должна включать заявление, указывающее на соответствие § 27.75 настоящей главы.
(20) Прежде чем оборудование, работающее в соответствии с частью 90 данной главы и способное работать на каналах взаимодействия 700 МГц (см. § 90.531 (b) (1) данной главы), может быть продано или продано, его производитель должен иметь сертификат соответствия Декларация соответствия поставщика программы оценки и сводный отчет об испытаниях или, в качестве альтернативы, документ, в котором подробно описывается, как производитель определил, что его оборудование соответствует § 90.548 данной главы и что оборудование совместимо с различными поставщиками. Подача узкополосной радиостанции 700 МГц на сертификацию будет представлять собой заявление производителя о том, что радиостанция будет продемонстрирована в ходе тестирования как совместимая с другими поставщиками до того, как она будет продана на рынок или продана.
(21) Содержит по крайней мере один рисунок или фотографию, показывающую испытательную установку для каждого из требуемых типов испытаний, применимых к устройству, для которого запрашивается сертификация. Эти чертежи или фотографии должны содержать достаточно деталей, чтобы подтвердить другую информацию, содержащуюся в отчете об испытаниях.Все используемые фотографии должны быть сфокусированными оригиналами без бликов и темных пятен и должны четко отражать используемую тестовую конфигурацию.
(d) Заявки на сертификацию оборудования, работающего в соответствии с частью 20 настоящей главы, которое производитель стремится сертифицировать как совместимое со слуховыми аппаратами, как указано в § 20.19 настоящей главы, должны включать заявление, указывающее на соответствие требованиям к испытаниям. § 20.19 настоящей главы. Производитель оборудования несет ответственность за поддержание результатов испытаний.
(e) Можно подать одну заявку на составную систему, которая включает устройства, подлежащие сертификации в соответствии с несколькими частями правил, однако соответствующая плата должна быть включена для каждого устройства. Если для каждого устройства будут использоваться разные идентификаторы FCC, необходимо подавать отдельные заявки.
(f) Радиочастотные устройства, работающие в соответствии с положениями настоящей части, подчиняются требованиям по воздействию радиочастотного излучения, указанным в §§ 1.1307 (b), 1.1310, 2.1091 и 2.1093 данной главы, в зависимости от обстоятельств. Заявки на авторизацию оборудования источников РЧ в соответствии с этим разделом должны содержать заявление, подтверждающее соответствие этим требованиям. Техническая информация, показывающая основу для этого заявления, должна быть предоставлена Комиссии по запросу.
[63 FR 36599, 7 июля 1998 г., с поправками, внесенными в 63 FR 42278, 7 августа 1998 г .; 64 FR 22561, 27 апреля 1999 г .; 67 FR 42734, 25 июня 2002 г .; 68 FR 54175, 16 сентября 2003 г .; 68 FR 68545, 9 декабря 2003 г .; 69 FR 5709, фев.6, 2004; 70 FR 23039, 4 мая 2005 г .; 77 FR 41928, 17 июля 2012 г .; 78 FR 59850, 30 сентября 2013 г .; 79 FR 24578, 1 мая 2014 г .; 79 FR 32410, 4 июня 2014 г .; 79 FR 48536, 15 августа 2014 г .; 79 FR 71325, 2 декабря 2014 г .; 80 FR 33446, 12 июня 2015 г .; 81 FR 66832, 29 сентября 2016 г .; 83 FR 30367, 28 июня 2018 г .; 85 FR 18146, 1 апреля 2020 г .; 86 FR 23625, 4 мая 2021 г.] Радиолокационные системы— обзор
20.7 Частотно-модулированное непрерывное формирование луча
Радиолокационная система, описанная до сих пор, может обнаруживать дальность и скорость или цели, но не может предоставить никакой информации о направлении цели, кроме того, что она находится впереди транспортного средства в пределах ширины луча антенны.Направленность может быть определена, если система имеет возможность качать или управлять направленностью приемной или передающей антенны радара и отслеживать изменения отраженного эхо-сигнала от цели в ходе развертки.
Предполагается, что в описываемой системе используются параболические антенны. Параболическая антенна фокусирует передаваемую или принимаемую электромагнитную волну в определенном направлении. Степень фокусировки зависит в первую очередь от площади антенны и длины волны. Использование радара миллиметрового диапазона позволяет использовать небольшие антенны.
Параболическая антенна может быть «нацелена» путем механического ориентирования ее в желаемом направлении, которое ограничено скоростью механического движения, а также проблемами надежности и стоимости. Вместо этого используется электронное управление лучом. Антенна становится либо линейной, либо прямоугольной решеткой отдельных приемных или передающих антенн. Посредством когерентного комбинирования сигналов отдельных антенн эффекты конструктивного и деструктивного комбинирования волнового фронта приведут к максимальному усилению в определенном направлении и минимальному усилению в других направлениях.
В случае автомобильного радара управление по высоте (вверх и вниз) радара обычно не требуется, поэтому двумерная антенная решетка не требуется. Линейная решетка или линия антенн позволяет управлять антенной по азимуту (из стороны в сторону). Компромисс — стоимость и сложность. В этом случае управление направлением приема является более простым из-за цифровой обработки принимаемого сигнала. Каждый приемник должен индивидуально изменять фазу принимаемого сигнала.
Эта регулировка фазы обеспечивает регулируемую направленность антенного луча.Только когда принимаемый сигнал поступает синфазно через все антенные элементы, достигается максимальная мощность сигнала. Решетчатая антенна дает возможность «нацелить» главный лепесток антенны в желаемом направлении. Каждый антенный элемент должен иметь задержку или настройку фазы, чтобы после этой настройки все элементы имели общую фазу сигнала. Если угол θ = 0, то все элементы будут получать сигнал одновременно, и регулировка фазы не требуется. При ненулевом угле каждый элемент будет иметь задержку для выравнивания волнового фронта по антенной решетке, как показано на рис.20.6.
Рисунок 20.6. Электронные управляемые антенны.
Электронная управляемая антенна требует дублирования аналоговых приемных схем для каждого из N приемных узлов антенны. К счастью для миллиметровых радаров, большая часть схем, включая антенные накладки, фильтры и схемы согласования, может быть реализована непосредственно на печатной плате. МШУ, квадратурные демодуляторы и АЦП также должны быть реплицированы для каждого из N узлов.
В цифровом виде каждый набор входов I и Q из пары АЦП каждого антенного узла должен иметь синфазную задержку.Эта задержка достигается комплексным умножителем с N отдельными комплексными коэффициентами W i для каждого из N принимающих узлов. Управляющий процессор «просматривает» приемную антенну, периодически обновляя N комплексных коэффициентов и отслеживая изменения в амплитудах отраженных сигналов от цели.
В автомобильном радаре дальнего обзора желаемый угол поворота по азимуту может составлять всего 5–10 градусов от осевой линии автомобиля. С точки зрения экономической эффективности можно использовать параболическую передающую антенну с достаточной шириной лепесткового луча и использовать приемную антенну с более узким лепестком, чтобы обеспечить возможность различать цели по разным азимутам.В качестве альтернативы, более сложная передающая и передающая антенна формирования луча также может использоваться для обеспечения большего усиления в желаемом азимутальном направлении передачи, но с большей стоимостью и сложностью.
% PDF-1.6 % 758 0 объект > эндобдж xref 758 212 0000000016 00000 н. 0000005020 00000 н. 0000005147 00000 н. 0000005183 00000 п. 0000005482 00000 н. 0000005628 00000 н. 0000005769 00000 н. 0000006122 00000 п. 0000006532 00000 н. 0000007071 00000 н. 0000007515 00000 н. 0000007920 00000 н. 0000008266 00000 н. 0000008767 00000 н. 0000009231 00000 п. 0000009732 00000 н. 0000009943 00000 н. 0000010034 00000 п. 0000053875 00000 п. 0000054104 00000 п. 0000054612 00000 п. 0000054716 00000 п. 0000104647 00000 н. 0000104871 00000 н. 0000105518 00000 п. 0000105632 00000 п. 0000105664 00000 н. 0000105750 00000 н. 0000105824 00000 н. 0000107857 00000 н. 0000107929 00000 п. 0000108063 00000 н. 0000108177 00000 н. 0000108354 00000 п. 0000108467 00000 н. 0000108589 00000 н. 0000108759 00000 н. 0000108894 00000 н. 0000109015 00000 н. 0000109212 00000 н. 0000109344 00000 п. 0000109482 00000 н. 0000109679 00000 н. 0000109827 00000 н. 0000109969 00000 н. 0000110166 00000 п. 0000110312 00000 н. 0000110466 00000 н. 0000110639 00000 п. 0000110802 00000 н. 0000110977 00000 н. 0000111154 00000 н. 0000111357 00000 н. 0000111509 00000 н. 0000111624 00000 н. 0000111779 00000 н. 0000111917 00000 н. 0000112020 00000 н. 0000112204 00000 н. 0000112355 00000 н. 0000112528 00000 н. 0000112646 00000 н. 0000112770 00000 н. 0000112918 00000 н. 0000113068 00000 н. 0000113245 00000 н. 0000113354 00000 н. 0000113477 00000 н. 0000113666 00000 н. 0000113774 00000 н. 0000113892 00000 н. 0000114059 00000 н. 0000114172 00000 н. 0000114273 00000 н. 0000114451 00000 н. 0000114563 00000 н. 0000114665 00000 н. 0000114793 00000 н. 0000114920 00000 н. 0000115050 00000 н. 0000115191 00000 п. 0000115318 00000 н. 0000115464 00000 н. 0000115561 00000 н. 0000115707 00000 н. 0000115817 00000 н. 0000115945 00000 н. 0000116086 00000 н. 0000116206 00000 н. 0000116317 00000 н. 0000116457 00000 н. 0000116614 00000 н. 0000116739 00000 н. 0000116878 00000 н. 0000116988 00000 н. 0000117129 00000 н. 0000117259 00000 н. 0000117388 00000 н. 0000117535 00000 н. 0000117704 00000 н. 0000117853 00000 н. 0000117984 00000 н. 0000118164 00000 н. 0000118307 00000 н. 0000118442 00000 н. 0000118617 00000 н. 0000118751 00000 н. 0000118880 00000 н. 0000119021 00000 н. 0000119204 00000 н. 0000119331 00000 н. 0000119458 00000 н. 0000119598 00000 н. 0000119728 00000 н. 0000119891 00000 н. 0000120004 00000 н. 0000120117 00000 н. 0000120247 00000 н. 0000120376 00000 н. 0000120505 00000 н. 0000120626 00000 н. 0000120762 00000 н. 0000120902 00000 н. 0000121033 00000 н. 0000121191 00000 н. 0000121358 00000 н. 0000121796 00000 н. 0000122081 00000 н. 0000122413 00000 н. 0000122558 00000 н. 0000122703 00000 н. 0000122883 00000 н. 0000123067 00000 н. 0000123245 00000 н. 0000123496 00000 н. 0000123637 00000 н. 0000123915 00000 н. 0000124127 00000 н. 0000124341 00000 п. 0000124503 00000 н. 0000124723 00000 н. 0000124966 00000 н. 0000125212 00000 н. 0000125485 00000 н. 0000125670 00000 н. 0000125841 00000 н. 0000126031 00000 н. 0000126208 00000 н. 0000126407 00000 н. 0000126667 00000 н. 0000126866 00000 н. 0000127037 00000 н. 0000127246 00000 н. 0000127414 00000 н. 0000127608 00000 н. 0000127753 00000 н. 0000127938 00000 п. 0000128113 00000 н. 0000128284 00000 н. 0000128447 00000 н. 0000128653 00000 н. 0000128838 00000 н. 0000129023 00000 н. 0000129180 00000 н. 0000129410 00000 н. 0000129586 00000 н. 0000129755 00000 н. 0000129925 00000 н. 0000130078 00000 н. 0000130208 00000 н. 0000130351 00000 п. 0000130498 00000 п. 0000130649 00000 н. 0000130813 00000 п. 0000130975 00000 н. 0000131129 00000 н. 0000131265 00000 н. 0000131402 00000 н. 0000131528 00000 н. 0000131660 00000 н. 0000131779 00000 п. 0000131935 00000 н. 0000132086 00000 н. 0000132243 00000 н. 0000132384 00000 п. 0000132546 00000 н. 0000132709 00000 н. 0000132842 00000 н. 0000132988 00000 н. 0000133143 00000 н. 0000133307 00000 н. 0000133452 00000 н. 0000133617 00000 н. 0000133749 00000 н. 0000133871 00000 н. 0000133998 00000 н. 0000134127 00000 н. 0000134277 00000 н. 0000134429 00000 н. 0000134563 00000 н. 0000134716 00000 н. 0000134842 00000 н. 0000134979 00000 п. 0000135106 00000 п. 0000135228 00000 п. 0000135359 00000 н. 0000135491 00000 п. 0000135636 00000 н. 0000135813 00000 н. 0000135922 00000 н. 0000136031 00000 н. 0000004536 00000 н. трейлер ] / Назад 970799 >> startxref 0 %% EOF 969 0 объект > поток hb«b`2g`c«bb @
Компоненты радиочастотной идентификации (RFID)
Справочная информация: Полевые госпитали — это медицинские учреждения с мобильными или стационарными структурами.Хотя существует множество моделей и индикаторов для оценки работы государственных больниц, модели для оценки работы полевых больниц не существует. Цели: Данное исследование было направлено на определение ключевых показателей эффективности при оценке полевых больниц. Методы. В этом исследовании мы провели систематический обзор публикаций на английском или персидском языке, проиндексированных базами данных PubMed, Scopus, Emerald, Elsevier, Ovid, Google Scholar, Springer, ProQuest, ВОЗ и Word Bank. Для поиска в базах данных использовалась стратегия PICO.Оценка качества публикаций проводилась с использованием контрольного списка CASP. Аналогичным образом, предпочтительные элементы отчетности для контрольного списка PRISMA использовались для оценки систематических обзоров. Контрольный список PRISMA использовался для составления отчетов о систематическом обзоре. Описательное резюме с таблицами данных было подготовлено для обобщения литературы. По результатам нашего поиска было отобрано 592 публикации и 352 цитирования были исключены из-за нерелевантности или дублирования. После исключения повторяющихся и нерелевантных элементов мы просмотрели 240 заголовков и аннотаций.Два независимых рецензента оценили 240 потенциально релевантных исследований, и 15 записей соответствовали критериям, которые должны быть включены в этот обзор. Результаты: В литературе мы нашли 13 критериев оценки полевого госпиталя. Все полученные показатели мы классифицировали согласно системному подходу. Результаты этого исследования показали, что входные индикаторы включали 4 индикатора, индикаторы процесса включали 2 индикатора, выходные индикаторы состояли из 4 индикаторов и индикаторы результатов включали 3 индикатора.