Обозначения емкости конденсаторов: Конденсаторы. Кодовая маркировка

Содержание

Маркировка конденсаторов – виды и описание расшифровок


Единицы измерения


Проще всего рассчитывается емкость плоского конденсатора. Если линейные размеры пластин-обкладок значительно превышают расстояние между ними то справедлива формула:

C= e*S/d

e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.

  • S – площадь одной из обкладок(в метрах).
  • d – расстояние между обкладками(в метрах).
  • C – величина емкости вфарадах.

Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.

1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:

  • 1 Микрофарада – одна миллионная часть фарады.10-6
  • 1 нанофарада – одна миллиардная часть фарады. 10-9
  • 1 пикофарада -10-12 фарады.
кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
1091.0 пФ
1591.5 пФ
2292.2 пФ
3393.3 пФ
4794.7 пФ
6896.8 пФ
10010 пФ0.01 нФ
15015 пФ0.015 нФ
22022 пФ0.022 нФ
33033 пФ0.033 нФ
47047 пФ0.047 нФ
68068 пФ0.068 нФ
101100 пФ0.1 нФ
151150 пФ0.15 нФ
221220 пФ0.22 нФ
331330 пФ0.33 нФ
471470 пФ0.47 нФ
681680 пФ0.68 нФ
1021000 пФ1 нФ
1521500 пФ1.5 нФ
2222200 пФ2.2 нФ
3323300 пФ3.3 нФ
4724700 пФ4.7 нФ
6826800 пФ6.8 нФ
10310000 пФ10 нФ0.01 мкФ
15315000 пФ15 нФ0.015 мкФ
22322000 пФ22 нФ0.022 мкФ
33333000 пФ33 нФ0.033 мкФ
47347000 пФ47 нФ0.047 мкФ
68368000 пФ68 нФ0.068 мкФ
104100000 пФ100 нФ0.1 мкФ
154150000 пФ150 нФ0.15 мкФ
224220000 пФ220 нФ0.22 мкФ
334330000 пФ330 нФ0.33 мкФ
474470000 пФ470 нФ0.47 мкФ
684680000 пФ680 нФ0.68 мкФ
1051000000 пФ1000 нФ1 мкФ

Будет интересно➡ Что такое танталовый конденсатор

Маркировка четырьмя цифрами

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например, 1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.


Маркировка конденсатора.

Буквенно-цифровая маркировка

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n». Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например: 0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ.

Материал втему: Что такое кондесатор

Планарные керамические конденсаторы

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой.

Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.

Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.


Таблица маркировки конденсаторов по рабочему напряжению.

Планарные электролитические конденсаторы

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.

Будет интересно➡ Несколько фактов об электролитических конденсаторах

Полоска на таких конденсаторах указывает положительный вывод. Пример: по таблице «A» — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

Единицы емкости конденсаторов и их обозначение

Для прочтения технических характеристик устройств необходимо обладать определенным набором знаний. В первую очередь речь идет о единицах измерения. Емкость принято определять в фарадах (Ф). Однако один фарад является слишком большим значением для используемых в технике электрических цепей. Таким образом, все номиналы устройств указаны чаще всего в следующих единицах:

  • Микрофарад — мкФ.
  • Нанофарад — нФ.
  • Пикофарад — пФ.

Чтобы упростить задачу, были созданы таблицы номиналов конденсаторов.


Маркировка наносится на корпус устройства. Хотя и встречаются некоторые особенности конструкции кода, ориентироваться стоит на единицы измерения. Некоторые обозначения могут быть нанесены прописными буквами, например, M. F. На практике это означает микрофарад (mF). Также можно встретить и маркировку FD — сокращение от слова «farad». В результате надпись mmfd советует одной пикофараде.

На корпусах маленьких конденсаторов можно встретить надпись, содержащую число и букву, скажем, 300 m. На практике это означает 3 пикофарады. Встречаются устройства, на которые нанесены только цифры. Так маркировка «102», соответствует емкости в 1 нанофарад. На корпус также могут быть нанесены и предельные отклонения от номинальной емкости устройства. Данная информация окажется полезной в ситуации, когда в цепи должны использоваться конденсаторы с точным значением емкости.

Если в коде не указан символ %, то необходимо обратить внимание на букву. Она может быть расположена отдельно либо сразу после показателя емкости устройства. Следующим шагом в расшифровке обозначений радиодеталей этого типа является их напряжение. Здесь также используется буквенно-цифровой код. Единицами измерения в данном случае является вольт. В ситуации, когда подобная информация не указана, устройство может быть использовано только в низковольтных схемах. Если устройство рассчитано на постоянный ток, то его нельзя применять в схемах с переменным.

Редакторы сайта советуют ознакомиться с особенностями установки и монтажа охранно-пожарной сигнализации.

Следующим этапом является определение полярности конденсатора. С этим проблем возникнуть не должно, так как используются символы + и — около соответствующего вывода. Если они отсутствуют на корпусе устройства, то его можно подключать к любой клемме. Если размеры конденсатора малы, то полярность может обозначаться цветными полосами.

Цифро-буквенное обозначение

Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».

Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:

  • p – пикофарады,
  • n – нанофарады
  • m – микрофарады.

При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».

Будет интересно➡ Чем отличается пусковой конденсатор от рабочего?

Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:

1R5 =1,5 мкФ.

Типы маркировок

На данный момент производителями используется несколько типов, которые могут располагаться на корпусе как по отдельности, так и взаимозаменяемыми значениями. Все значения ниже будут исключительно теоретическими, предоставленными для наглядного примера.

  • Самый простой тип маркировки – никаких шифров и табличных замещений, емкость напрямую пишется на корпусе, что без лишних движений сразу предоставляет конечному пользователю реальные параметры. И такой способ использовался бы везде, если бы не его громоздкость – полностью написать емкость получится только на довольно больших изделиях, иначе рассмотреть надпись будет невозможно даже с помощью лупы. Например: запись 100 µF±6% означает, что данный конденсатор имеет емкость 100 микрофарад с амортизацией в 6% от общей емкости, что равно значению 94–106 микрофарад. Также допускается использование маркировки вида 100 µF +8%/-10%, что означает неравнозначную амортизацию, равную 90–108 микрофарад. Это самый простой и понятный способ, однако такая маркировка очень громоздкая, поэтому применяется на больших и очень емких конденсаторах.
  • Цифровая маркировка конденсаторов (а также численно-буквенная) используется в тех случаях, когда маленькая площадь изделия не позволяет поместить подробную запись о емкости. Поэтому определенные значения заменяются обычными цифрами и латинскими буквами, которые поочередно расшифровываются для получения полной информации.

Все очень просто – если используются только цифры (а на подобных изделиях их обычно три штуки), то расшифровывать нужно следующим образом:

  • первые две цифры обозначают первые две цифры емкости;
  • третья цифра обозначает количество нулей, которое необходимо дописать после первых двух цифр;
  • такие конденсаторы всегда измеряются в пикофарадах.

Возьмем для примера первый вариант с картинки выше с записью 104. Первые две цифры так и оставляем – 10. К ним приписываем количество нулей, обозначенных третьей цифрой, то есть 4. Получаем значение в 100 000 пикофарад. Возвращаемся к таблице в начале статьи, уменьшаем количество нулей и получаем приемлемое значение в 100 микрофарад.

Если используется одна или две цифры, они так и остаются. Например, обозначения 5 и 15 обозначают 5 и 15 пикофарад соответственно. Маркировка.55 равна 0.55 микрофарад.

Интересная запись выполняется с использованием букв либо вместо точки, либо как другой величины. Например, 8n2 обозначает 8.2 нанофарад, когда как n82 означает 0.82 нанофарад. Для определенного класса конденсаторов в конце может дописываться дополнительная кодовая маркировка, например, 100V.

  • Маркировка керамических конденсаторов численно-буквенным способом является стандартом для этих изделий. Здесь используются точно такие же алгоритмы шифрования, а сами надписи физически наносятся производителем на керамическую поверхность.
  • Устаревшим, однако все еще используемым вариантом, считается цветовая индикация. Она применялась в советском производстве для упрощения считывания маркировки даже на очень маленьких изделиях. Минус в том, что запомнить сходу такую таблицу достаточно проблематично, поэтому желательно иметь ее под рукой, по крайней мере, поначалу. Цвета наносятся на конденсаторы, где маркировка выполняется в виде монотонных полосок. Считываются следующим образом: первые два цвета означают емкость в пикофарадах;
  • третий цвет показывает количество нулей, которые необходимо дописать;
  • четвертый и пятый цвета соответственно показывают возможный допуск и номинал подаваемого напряжения на изделие.
  • Маркировка импортных конденсаторов выполняется аналогичными способами, только вместо кириллицы может использоваться латиница. Например, на отечественных вариантах может встречаться 5мк1, что означает 5.1 микрофарад. Тогда как на импортных это значение будет выглядеть как 5µ Если запись совершенно непонятна, то можно обратиться к официальному производителю за разъяснениями, скорее всего на сайте есть таблицы или программа, которые расшифровывают его маркировку. Однако это встречается только в исключительных случаях и редко попадается.

Небольшие замечания и советы по работе с конденсаторами

Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

Материал по теме: Как подключить конденсатор

Маркировка планарных керамических конденсаторов

Такие конденсаторы маркируются двумя буквами, первая это производитель конденсатора, а вторая это значение в пикофарадах в соответствии с таблицей, приведенной ниже.

МаркировкаЗначениеМаркировкаЗначениеМаркировкаЗначениеМаркировкаЗначение
A1.0J2.2S4.7a2.5
B1.1K2.4T5.1b3.5
C1.2L2.7U5.6d4.0
D1.3M3.0V6.2e4.5
E1.5N3.3W6.8f5.0
F1.6P3.6X7.5m6.0
G1.8Q3.9Y8.2n7.0
H2.0R4.3Z9.1t8.0

Маркировка планарных электролитических конденсаторов

Существую два основных способов маркировки таких конденсаторов:

  1. Буквенно-цифровой. Пример: 10 3.3V что соответсвует 10мкФ и 3.3 Вольтам.
  2. В соответствии с кодом. Пример : G101 где G — это напряжение по таблице, а 101 это10*101 что соответсвует 100пФ.
БукваeGJACDEVH (T для танталовых)
Напряжение2,5 В4 В6,3 В10 В16 В20 В25 В35 В50 В
  • < Назад
  • Вперёд >
Комментарии

ололош 22.12.2015 20:56

Цитировать

mihan 12.03.2016 16:24 Спасибо! Теперь все стало на свои места, долго не мог разобраться с маркировкой конденсаторов.

Цитировать

Alexandr 11.12.2016 12:00 Подскажите плиз. Что вырвано отсюда https://prnt.sc/dhzjl2 https://prnt.sc/dhzjf9 Это древняя видеокарта nvidia 9800gt

Цитировать

vedoeod 19.05.2019 10:00 видео о рыбалке

Цитировать

Обновить список комментариев

Маркировка конденсаторов: расшифровка цифр и букв

Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.

Как маркируются большие конденсаторы

Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10-6 фарад.

При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10-3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10-9 Ф и пикофарадах (пФ), составляющих 10-12 Ф.

Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.

В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 – (6000 х 0,7).

При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.

При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.

Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.

Расшифровка маркировки конденсаторов

Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.

Обозначение цифр

Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.

Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 103 = 45000.

Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.

После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10-12. Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10-6. Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.

Обозначение букв

После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.

При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.

Маркировка керамических конденсаторов

Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» – + 0,25 пФ, D – + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.

Смешанная буквенно-цифровая маркировка

Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30C, X = -55C. Второй цифровой символ – это максимальная температура.

Цифры соответствуют следующим показателям: 2 – 45С, 4 – 65С, 5 – 85С, 6 – 105С, 7 – 125С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.

Прочие маркировки

Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.

В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.

Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.

0 01 мкф маркировка. Советские бумажные конденсаторы

Содержание:

Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с , она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.

Как маркируются большие конденсаторы

Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица — фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10 -6 фарад.

При расчетах может применяться внемаркировочная единица — миллифарад (1мФ), имеющая значение 10 -3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10 -9 Ф и пикофарадах (пФ), составляющих 10 -12 Ф.

Нанесение маркировки с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF — микрофарадам. Также встречается маркировка fd — сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.

В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 — (6000 х 0,7).

При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.

При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.

Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.

Расшифровка маркировки конденсаторов

Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.

Обозначение цифр

Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.

Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 10 3 = 45000.

Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.

После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы — керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10 -12 . Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10 -6 . Единицы измерения могут обозначаться буквами: р — пикофарад, u- микрофарад, n — нанофарад.

Обозначение букв

После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.

При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.

Маркировка керамических конденсаторов

Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» — + 0,25 пФ, D — + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.

Смешанная буквенно-цифровая маркировка

Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30 0 C, X = -55 0 C. Второй цифровой символ — это максимальная температура.

Цифры соответствуют следующим показателям: 2 — 45 0 С, 4 — 65 0 С, 5 — 85 0 С, 6 — 105 0 С, 7 — 125 0 С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным — «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.

Прочие маркировки

Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.

В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 — от 10 до 99 вольт, 2 — от 100 до 999 В и так далее, по такому же принципу.

Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.

Всем привет!
Предлагаю вашему вниманию таблицу
маркировок и расшифровки керамических конденсаторов .
Конденсаторы имеют определённую кодовую маркировку и, умея расшифровывать эти коды, можно узнать их ёмкость. Для чего это нужно — всем понятно.
Итак,
расшифровывать коды нужно так:
Например, на конденсаторе написано «104». Первые две цифры обозначают ёмкость конденсатора в пикофарадах (10 пф), последняя цифра указывает количество нулей, которое нужно прибавить к 10, т.е. 10 и четыре нуля, получится 100000 пф.
Если последняя цифра в коде «9», это значит ёмкость данного конденсатора меньше 10 пф. Если первая цифра «0», то ёмкость меньше 1 пф, например код 010 означает 1 пф. Буква в коде применяется в качестве десятичной запятой, т.е. код, например, 0R5 означает ёмкость конденсатора 0,5 пф.

Также в кодовых обозначениях конденсаторов применяется такой параметр, как температурный коэффициент ёмкости (ТКЕ). Этот параметр показывает изменение ёмкости конденсатора при изменении температуры окружающей среды и выражается в миллионных долях ёмкости на градус (10 — 6х о С). Существуют несколько ТКЕ – положительный (обозначается буквами «Р» или «П»), отрицательный (обозначается буквами «N» или «М») и ненормированный (обозначается «Н»).

Если кодовое число обозначается четырьмя цифрами, то расчёт производится по такой же схеме, но ёмкость обозначают первые три цифры.
Например код 4753=475000пф=475нф=0.475мкф

Э лектрические конденсаторы служат для накопления электроэнергии. Простейший конденсатор состоит из двух металлических пластин — обкладок и диэлектрика находящегося между ними. Если к конденсатору подключить источник питания, то на обкладках возникнут разноименные заряды и появится электрическое поле притягивающее их на встречу, друг к другу. Эти заряды остаются после отключения источника питания, энергия сохраняется в электрическом поле между обкладками.

Параметр конденсатора Тип конденсатора
Керамический Электролитический На основе металлизированной пленки
От 2,2 пФ до 10 нФ От 100 нФ до 68000 мкФ 1 мкФ до 16 мкФ
± 10 и ±20 ±10 и ±50 ±20
50 — 250 6,3 — 400 250 — 600
Стабильность конденсатора Достаточная Плохая Достаточная
От -85 до +85 От -40 до +85 От -25 до +85

В керамических конденсаторах диэлектриком является высококачественная керамика: ультрафарфор,тиконд,ультрастеатит и др. Обкладкой служит слой серебра, нанесенный на поверхность. Керамические конденсаторы применяются в разделительных цепях усилителей высокой частоты.

В электролитических полярных конденсаторах диэлектриком служит слой оксида, нанесенный на металлическую фольгу. Другая обкладка образуется из пропитанной электролитом бумажной ленты.

В твердотельных оксидных конденсаторах жидкий диэлектрик заменен специальным токопроводящим полимером. Это позволяет увеличить срок службы(и надежность). Недостатками твердотельных оксидных конденсаторов являются более высокая цена и ограничения по напряжению(до 35 в).

Оксидные электролитические и твердотельные конденсаторы отличаются большой емкостью, при относительно малых размерах. Эта их особенность определяется тем, что толщина оксида — диэлектрика очень мала.

При включении оксидных конденсаторов в цепь, необходимо соблюдать полярность. В случае нарушения полярности, электролитические конденсаторы взрываются, твердотельные — просто выходят из строя. Что бы полностью избежать возможности взрыва(у электролитических конденсаторов), некоторые модели снабжаются предохранительными клапанами(отсутствуют у твердотельных). Область применения оксидных (электролитических и твердотельных) конденсаторов — разделительные цепи усилителей звуковой частоты, сглаживающие фильтры источников питания постоянного тока.

Конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания.

Таблица 2.


Характеристики слюдяных конденсаторов и конденсаторов на основе полиэстера и полипропилена.
Параметр конденсатора
Тип конденсатора
Слюдяной На основе полиэстера На основе полипропилена
Диапазон изменения емкости конденсаторов От 2,2 пФ до 10 нФ От 10 нФ до 2,2 мкФ От 1 нФ до 470 нФ
Точность (возможный разброс значений емкости конденсатора), % ± 1 ± 20 ± 20
Рабочее напряжение конденсаторов, В 350 250 1000
Стабильность конденсатора Отличная Хорошая Хорошая
Диапазон изменения температуры окружающей среды, о С От -40 до +85 От -40 до +100 От -55 до +100

Слюдяные конденсаторы изготавливаются путем прокладывания между обкладками из фольги слюдяных пластин, или наоборот — металлизацией слюдяных пластин. Слюдяные конденсаторы находят применение в звуковоспроизводящих устройствах, фильтрах высокочастотных помех и генераторах. Конденсаторы на основе полиэстера — это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока.

Таблица 3.


Характеристики слюдяных конденсаторов на основе поликарбоната, полистирена и тантала.

Параметр конденсатора

Тип конденсатора

На основе поликарбоната

На основе полистирена

На основе тантала

Диапазон изменения емкости конденсаторов От 10 нФ до 10 мкФ От 10 пФ до 10 нФ От 100 нФ до 100 мкФ
Точность (возможный разброс значений емкости конденсатора), % ± 20 ± 2,5 ± 20
Рабочее напряжение конденсаторов, В 63 — 630 160 6,3 — 35
Стабильность конденсатора Отличная Хорошая Достаточная
Диапазон изменения температуры окружающей среды, о С
От -55 до +100 От -40 до +70 От -55 до +85

Конденсаторы на основе поликарбоната используются в фильтрах, генераторах и времязадающих цепях. Конденсаторы на основе полистирена и тантала используются тоже, во времязадающих и разделительных цепях. Они считаются конденсаторами общего назначения.
В металлобумажных конденсаторах общего назначения, обкладки изготавливаются путем напыления металла на бумагу пропитанную специальным составом и покрытые тонким слоем лака.

Код
Емкость(пФ)
Емкость(нФ) Емкость(мкФ)
109 1,0(пФ) 0,001(нФ) 0,000001(мкФ)
159 1,5(пФ) 0,0015(нФ) 0,0000015(мкФ)
229 2,2(пФ) 0,0022(нФ) 0,0000022(мкФ)
339 3,3(пФ) 0,0033(нФ)
0,0000033(мкФ)
479 4,7(пФ) 0,0047(нФ) 0,0000047(мкФ)
689 6,8(пФ) 0,0068(нФ) 0,0000068(мкФ)
100 10(пФ) 0,01(нФ) 0,00001(мкФ)
150 15(пФ) 0,015(нФ) 0,000015(мкФ)
220 22(пФ)
0,022(нФ)
0,000022(мкФ)
330 33(пФ) 0,033(нФ) 0,000033(мкФ)
470 47(пФ) 0,047(нФ) 0,000047(мкФ)
680 68(пФ) 0,068(нФ) 0,000068(мкФ)
101 100(пФ) 0,1(нФ) 0,0001(мкФ)
151 150(пФ)
0,15(нФ)
0,00015(мкФ)
221 220(пФ) 0,22(нФ) 0,00022(мкФ)
331 330(пФ) 0,33(нФ) 0,00033(мкФ)
471 470(пФ) 0,47(нФ) 0,00047(мкФ)
681 680(пФ) 0,68(нФ) 0,00068(мкФ)
102 1000(пФ) 1(нФ) 0,001(мкФ)
152 1500(пФ) 1,5(нФ) 0,0015(мкФ)
222 2200(пФ) 2,2(нФ) 0,0022(мкФ)
332 3300(пФ) 3,3(нФ) 0,0033(мкФ)
472 4700(пФ) 4,7(нФ) 0,0047(мкФ)
682 6800(пФ)
6,8(нФ)
0,0068(мкФ)
103 10000(пФ) 10(нФ) 0,01(мкФ)
153 15000(пФ) 15(нФ) 0,015(мкФ)
223 22000(пФ) 22(нФ) 0,022(мкФ)
333 33000(пФ) 33(нФ) 0,033(мкФ)
473 47000(пФ) 47(нФ) 0,047(мкФ)
683 68000(пФ) 68(нФ) 0,068(мкФ)
104 100000(пФ) 100(нФ) 0,1(мкФ)
154 150000(пФ) 150(нФ) 0,15(мкФ)
224 220000(пФ) 220(нФ) 0,22(мкФ)
334 330000(пФ) 330(нФ) 0,33(мкФ)
474 470000(пФ) 470(нФ) 0,47(мкФ)
684 680000(пФ) 680(нФ) 0,68(мкФ)
105 1000000(пФ) 1000(нФ) 1,0(мкФ)


2. Второй вариант — маркировка производится не в пико, а в микрофарадах, причем вместо десятичной точки ставиться буква µ.


3.Третий вариант.

У советских конденсаторов вместо латинской «р» ставилось «п».

Допустимое отклонение номинальной емкости маркируется буквенно, часто буква следует за кодом определяющим емкость(той же строкой).

Конденсаторы с линейной зависимостью от температуры.

ТКЕ(ppm/²C) Буквенный код
100(+130….-49) A
33 N
0(+30….-47) C
-33(+30….-80) H
-75(+30….-80) L
-150(+30….-105) P
-220(+30….-120) R
-330(+60….-180) S
-470(+60….-210) T
-750(+120….-330) U
-500(-250….-670) V
-2200 K

Далее следует напряжение в вольтах, чаще всего — в виде обычного числа.
Например, конденсатор на этой картинке промаркирован двумя строчками. Первая(104J) — означает, что его емкость составляет 0,1мкФ(104), допустимое отклонение емкости не превышает ± 5%(J). Вторая(100V) — напряжение в вольтах.

Напряжение (В) Буквеный код
1 I
1,6 R
3,2 A
4 C
6,3 B
10 D
16 E
20 F
25 G
32 H
40 C
50 J
63 K
80 L
100 N
125 P
160 Q
200 Z
250 W
315 X
400 Y
450 U
500 V

Маркировка СМД (SMD) конденсаторов.

Размеры СМД конденсаторов невелики, поэтому маркировка их производится весьма лаконично. Рабочее напряжение нередко кодируется буквой(2-й и 3-й варианты на рисунке ниже) в соответствии с (вариант 2 на рисунке), либо с использованием двухзначного буквенно-цифровой кода(вариант 1 на рисунке). При использовании последнего, на корпусе можно обнаружить таки две(а не одну букву) с одной цифрой(вариант 3 на рисунке).


Первая буква может является как кодом изготовителя(что не всегда интересно), так и указываеть на номинальное рабочее напряжение(более полезная информация), вторая — закодированным значением в пикоФарадах(мантиссой). Цифра — показатель степени(указывает сколько нулей необходимо добавить к мантиссе).
Например EA3 может означать, что номинальное напряжение конденсатора 16в(E) а емкость — 1,0 *1000 = 1 нанофарада, BF5 соответсвенно, напряжение 6,3в(В), емкость — 1,6* 100000 = 0,1 микрофарад и.т.д.

Буква Мантисса.
A 1,0
B 1,1
C 1,2
D 1,3
E 1,5
F 1,6
G 1,8
H 2,0
J 2,2
K 2,4
L 2,7
M 3,0
N 3,3
P 3,6
Q 3,9
R 4,3
S 4,7
T 5,1
U 5,6
V 6,2
W 6,8
X 7,5
Y 8,2
Z 9,1
a 2,5
b 3,5
d 4,0
e 4,5
f 5,0
m 6,0
n 7,0
t 8,0

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт

Код
Ёмкость
Пикофарад
(пФ, pF)
Нанофарад (нФ, nF)
Микрофорад (мкФ, µF)
109
1.0
0.001
159
1.5
0.0015
229
2.2
0.0022
339
3.3
0.0033
479
4.7
0.0047
689
6.8
0.0068
100
10
0.01
150
15
0.015
220
22
0.022
330
33
0.033
470
47
0.047
680
68
0.068
101
100
0.1
151
150
0.15
221
220
0.22
331
330
0.33
471
470
0.47
681
680
0.68
102
1000
1.0
0.001
152
1500
1.5
0.0015
222
2200
2.2
0.0022
332
3300
3.3
0.0033
472
4700
4.7
0.0047
682
6800
6.8
0.0068
103
10000
10
0.01
153
15000
15
0.015
223
22000
22
0.022
333
33000
33
0.033
473
47000
47
0.047
683
68000
68
0.068
104
100000
100
0.1
154
150000
150
0.15
224
220000
220
0.22
334
330000
330
0.33
474
470000
470
0.47
684
680000
680
0.68
105
1000000
1000
1.0
1622
16200
16.2
0.0162

Маркировка конденсаторов обладает большим разнообразием по сравнению с маркировкой резисторов. Довольно сложно увидеть маркировку маленьких конденсаторов, потому что площадь поверхности их корпусов очень незначительная. В этой статье рассказывается, как читать маркировку практически всех типов современных конденсаторов, произведенных за рубежом. Возможно, на вашем конденсаторе маркировка будет нанесена в другом порядке (по сравнению с описываемым в этой статье). Более того, на некоторых конденсаторах отсутствуют значения напряжения и допуска – для создания низковольтной цепи вам понадобится только значение емкости.

Шаги

Маркировка больших конденсаторов

    Ознакомьтесь с единицами измерения. Основной единицей измерения емкости является фарад (Ф). Один фарад – это огромное значение для обычной цепи, поэтому бытовые конденсаторы маркируются дольными единицами измерения.

  • 1 µF , uF , mF = 1 мкФ (микрофарад) = 10 -6 Ф. (Внимание! В случаях, не связанных с маркировкой конденсаторов, 1 mF = 1 мФ (миллифарад) = 10 -3 Ф)
  • 1 nF = 1 нФ (нанофарад) = 10 -9 Ф.
  • 1 pF , mmF , uuF = 1 пФ (пикофарад) = 10 -12 Ф.
  • Определите значение емкости. В случае больших конденсаторов значение емкости наносится непосредственно на корпус. Конечно, могут быть некоторые различия, но в большинстве случаев ищите число с одной из единиц измерения, описанных выше. Возможно, вам придется учесть следующие моменты:

    Определите значение допуска. На корпус некоторых конденсаторов наносится значение допуска, то есть допустимое отклонение номинальной емкости от указанной; учитывайте эту информацию, если при сборке электроцепи необходимо знать точное значение емкости конденсатора. Например, если на конденсаторе нанесена маркировка «6000uF+50%/-70%», то его максимальная емкость равна 6000+(6000*0,5)=9000 мкФ, а минимальная – 6000-(6000*0,7)=1800 мкФ.

    Определите номинальное напряжение. Если корпус конденсатора довольно большой, на нем проставляется численное значение напряжения, за которым следуют буквы V или VDC, или VDCW, или WV (от английского Working Voltage – рабочее напряжение). Это максимально допустимое напряжение конденсатора, которое измеряется в вольтах (В).

    Поищите символы «+» или «-». Если на корпусе конденсатора присутствует один из этих символов, такой конденсатор поляризован. В этом случае подключите положительный («+») контакт конденсатора к положительной клемме источника питания; в противном случае может произойти короткое замыкание конденсатора или конденсатор может взорваться. Если символов «+» или «-» на корпусе нет, вы можете включать конденсатор в цепь так, как вам угодно.

    Интерпретация маркировки конденсаторов

    1. Запишите первые две цифры значения емкости. Если конденсатор маленький и на его корпусе не помещается значение емкости, оно маркируется в соответствии со стандартом EIA (это справедливо для современных конденсаторов, чего не скажешь про старые конденсаторы). Для начала запишите первые две цифры, а затем сделайте следующее:

      Воспользуйтесь третьей цифрой в качестве множитель нуля. Если емкость конденсатора маркируется тремя цифрами, то такая маркировка интерпретируется следующим образом:

      • Если третей цифрой является цифра от 0 до 6, к двум первым цифрам припишите соответствующее количество нулей. Например, маркировка «453» – это 45 x 10 3 = 45000.
      • Если третьей цифрой является 8, умножьте первые две цифры на 0,01. Например, маркировка «278» – это 27 x 0,01 = 0,27.
      • Если третьей цифрой является 9, умножьте первые две цифры на 0,1. Например, маркировка «309» – это 30 x 0,1 = 3,0.
    2. Определите единицы измерения . В большинстве случаев емкость самых маленьких конденсаторов (керамических, пленочных, танталовых) измеряется в пикофарадах (пФ, pF), которые равны 10 -12 Ф. Емкость больших конденсаторов (алюминиевых электролитических или двухслойных) измеряется в микрофарадах (мкФ, uF или µF), которые равны 10 -6 Ф.

      Интерпретируйте маркировку, включающую буквы . Если одним из первых двух символов маркировки является буква, интерпретируйте это следующим образом:

      Определите значение допуска керамических конденсаторов. Керамические конденсаторы имеют плоскую круглую форму и два контакта. Значение допуска таких конденсаторов приводится в виде одной буквы непосредственно после трехзначного маркера емкости. Допуск – это допустимое отклонение номинальной емкости от указанной. Если необходимо знать точное значение емкости, интерпретируйте маркировку следующим образом:

  • Как неотъемлемые элементы всех без исключения электрических схем конденсаторы отличаются большим разнообразием вариантов конструктивного исполнения. Они выпускаются многими производителями по всему миру с применением различных технологий. Как следствие, маркировка имеет множество вариантов в соответствии с внутренними стандартами производителя, что делает попытки расшифровывать обозначения трудной задачей.

    Зачем нужна маркировка

    Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:

    • собственно, емкость – основная характеристика;
    • максимально допустимое значение напряжения;
    • температурный коэффициент емкости;
    • допустимое отклонение емкости от номинального значения;
    • полярность;
    • год выпуска.

    Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения.

    Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.

    Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.

    Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.

    Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.

    Маркировка отечественных конденсаторов

    Многие отечественные радиоэлементы отличаются максимально полной маркировкой, при чтении которой можно почерпнуть большинство возможных характеристик элемента.

    Емкость

    На первом месте стоит основная характеристика – электрическая емкость. Она имеет буквенно-цифровое обозначение. Для букв применяются следующие символы латинского, греческого или русского алфавита:

    • p или П – пикофарада, 1 pF = 10-3 nF = 10-6 μF = 10-9 mF = 10-12 F;
    • n или Н – нанофарада, 1 nF = 10-3 μF = 10-6 mF = 10-9 F;
    • μ или М – микрофарада, 1 μF = 10-3 mF = 10-6 F;
    • m или И – миллифарада, 1 mF = 10-3 F;
    • F или Ф – фарада.

    Буква, обозначающая величину, ставится на месте запятой в дробном обозначении. Например:

    • 2n2 = 2.2 нанофарад или 2200 пикофарад;
    • 68n = 68 нанофарад или 0,068 микрофарад;
    • 680n или μ68 = 0.68 микрофарад.

    Обратите внимание! Обозначение емкости в миллифарадах встречается крайне редко, а такая величина как фарада является очень большой и также не имеет особого распространения.

    Допустимое отклонение

    Значения ёмкостей, указанные на корпусе, не всегда соответствует реальному значению. Это отклонение характеризует точность изготовления детали и определения его номинала. Величина разброса параметров может быть от тысячных долей процента у прецизионных деталей до десятков процентов у электролитических конденсаторов, предназначенных для фильтрации пульсаций в цепях питания, где точные цифры не имеют особого значения.

    Величина допустимого отклонения обозначается буквами латинского алфавита или русскими буквами у радиодеталей старых годов выпуска.

    Температурный коэффициент емкости

    Маркировка ТКЕ довольно сложна, а поскольку данная величина критична в основном для малогабаритных элементов времязадающих цепей, то возможна как цветная кодировка, так и использование буквенных обозначений или комбинации обоих типов. Таблица возможных вариантов значений встречается в любом справочнике по отечественным радиокомпонентам.

    Многие керамические конденсаторы, как и плёночные, имеют определенные нюансы в маркировке ТКЕ. Данные случаи оговариваются ГОСТами на соответствующие элементы.

    Номинальное напряжение

    Напряжение, при котором сохраняется работоспособность элемента с сохранением характеристик в заданных пределах, называется номинальным. Обычно обозначается верхний порог номинального напряжения, превышать который запрещается ввиду возможного выхода элемента из строя.

    В зависимости от габаритов, возможны варианты как цифрового, так и буквенного обозначения номинального напряжения. Если позволяют габариты корпуса, то напряжение до 800 В обозначается в единицах вольт с символом V (или В для старых конденсаторов) или без него. Более высокие значения наносятся на корпус в виде единиц киловольт с обозначением символами kV или кВ.

    Малогабаритные конденсаторы имеют кодированное буквенное обозначение напряжения, для чего используются буквы латинского алфавита, каждая из которых соответствует определенной величине напряжения.

    Год и месяц выпуска

    Дата производства также имеет буквенное обозначение. Каждому году соответствует буква латинского алфавита. Месяцы с января по сентябрь обозначаются цифрой, соответственно, от 1 до 9, октябрю соответствует 0, ноябрю буква N, декабрю – D.

    Обратите внимание! Кодированное обозначение года выпуска одинаково с другими радиоэлементами.

    Расположение маркировки на корпусе

    Маркировка керамических конденсаторов в первой строке на корпусе имеет значение емкости. В той же строке без каких-либо разделительных знаков или, если не позволяют габариты, под обозначением емкости наносится значение допуска.

    Подобным же методом наносится маркировка пленочных конденсаторов.

    Дальнейшее расположение элементов регламентируется ГОСТ или ТУ на каждый конкретный тип элементов.

    Цветовая маркировка отечественных радиоэлементов

    С распространением линий автоматического монтажа нашла применение цветовая маркировка конденсаторов. Наибольшее распространение получила четырехцветная маркировка при помощи цветных полос.

    Первые две полосы означают номинальную емкость в пикофарадах и множитель, третья полоса – допустимое отклонение, четвертая – номинальное напряжение. Например, на корпусе имеется желтая, голубая, зеленая и фиолетовая полосы. Следовательно, элемент имеет такие характеристики: емкость – 22*106 пикофарад (22 μF), допустимое отклонение от номинала – ±5%, номинальное напряжение – 50 В.

    Первая цветная полоса (в данном случае, которая имеет желтый цвет) делается более широкой или располагается ближе к одному из выводов. Также следует ориентироваться по цвету крайних полос. Такой цвет, как серебряный, золотой и черный, не может быть первым, поскольку обозначает множитель или ТКЕ.

    Маркировка конденсаторов импортного производства

    Для обозначения импортных, а в последние годы и отечественных радиоэлементов приняты рекомендации стандарта IEC, согласно которому на корпусе радиоэлемента наносится кодовая маркировка из трех цифр. Первые две цифры кода обозначают емкость в пикофарадах, третья цифра – число нулей. Например, цифры 476 означают емкость 47000000 pF (47 μF). Если емкость меньше 1 pF, то первая цифра 0, а символ R ставится вместо запятой. Например, 0R5 – 0,5 pF.

    Для высокоточных деталей применяется четырехзнаковая кодировка, где первые три знака определяют емкость, а четвертый – количество нулей. Обозначение допуска, напряжения и прочих характеристик определяется фирмой-производителем.

    Цветовая маркировка импортных конденсаторов

    Цветовое обозначение конденсаторов строится по тому же принципу, что и у резисторов. Первые две полосы означают емкость в пикофарадах, третья полоса – количество нулей, четвертая – допустимое отклонение, пятая – номинальное напряжение. Полос может быть и меньше, если нет необходимости в обозначении напряжения или допуска. Первая полоса делается шире или у одного из выводов. Синие цвета отсутствуют. Вместо них используются голубые полосы.

    Обратите внимание! Две соседние полосы одинакового цвета могут не иметь между собой промежутка, сливаясь в широкую полосу.

    Маркировка SMD компонентов

    SMD компоненты для поверхностного монтажа имеют очень малые размеры, поэтому для них разработана сокращенная буквенно-цифровая кодировка. Буква означает значение емкости в пикофарадах, цифра – множитель в виде степени десяти, например G4 – 1.8*105 пикофарад (180 nF). Если спереди две буквы, то первая означает производителя компонента или рабочее напряжение.

    Электролитические конденсаторы SMD могут иметь на корпусе значение основного параметра в виде десятичной дроби, где вместо точки может быть вставлен символ μ (напряжение обозначается буквой V (5V5 – 5.5 вольт) или могут иметь кодированное значение, зависящее от производителя. Положительный вывод обозначается полосой на корпусе.

    Маркировка конденсаторов имеет большое число вариантов. Особенно этим отличаются импортные конденсаторы. Часто можно встретить малогабаритные элементы, которые вовсе не имеют каких-либо обозначений. Определить параметры можно только непосредственным измерением или, глядя на обозначение конденсаторов на электрической схеме. Произведенные разными фирмами радиоэлементы могут иметь схожие обозначения, но различные параметры. Здесь расшифровка обозначений должна базироваться на том, какой производитель выпускает преимущественное количество подобных элементов в конкретном устройстве.

    Видео

    Выбор редакции

    В лияет ли уникальность текста на ранжирование в поисковой выдаче? – определенно да. Если на сайте публикуется неуникальный контент, он…
    Я запустил тест, при котором половине посетителей показывалась реклама AdSense, а второй половине посетителей — реклама РСЯ. Подробности,…
    Психолог Роберт Стернберг предлагает теорию, согласно которой любовь состоит из трёх обязательных компонентов: интимности, страсти и…
    Бывает, что пользователям нужно отключить комментарии в WordPress. Давайте разберемся как это сделать. Как всегда есть несколько… Для того чтобы наполнять этот сайт лишь полезной и интересной для вас информацией я анализирую запросы людей в интернете.Так вот, кто-то… Как бы не сложились жизненные обстоятельства, ни за что не упусти возможность переспать с каждой из 10-ки этих девушек. Это бесценный… Наверное, любой человек, как и я, при слове «фото на документы» сразу думает в направлении фотосалона. Ведь к фотографии на документы… Ингредиенты: яйца куриные – 3 шт;масло сливочное – 40 грамм;соль – 1/4 чайной ложки;перец черный молотый – 1/4 чайной ложки…. Вписка — это место, где путешественник-автостопщик может переночевать, помыться, поесть и, отдохнув, снова отправиться в путь. Правда,…

    © 2021, buhconsul.ru

    Консультации и советы бухгалтера

    naf-st >> Маркировка и обозначение >> Маркировка и обозначение конденсаторов

    • Маркировка и обозначение

    Конденсатор представляет систему из двух электродов (обкладок), разделенных диэлектриком, и обладает способностью накапливать электрическую энергию. Кондер — элемент электрической цепи, предназначенный для использования его емкости.

    Емкость конденсатора — электрическая емкость между электродами конденсатора, определяемая отношением накопленного в нем заряда к приложенному напряжению.

    Маркировка кондерчиков аналогична маркировке резюков, только буковки немного другие, а принцип тот же. Опять поглядим на табличку:

    Еденица измерения Буковка кода (может быть русской,
    буржуйской и греческой)
    Пределы номинальных емкостей Как есть на самом деле Как отображается на кондере
    пФ п или р до 999 0,47 пФ
    4,7 пФ
    47 пФ
    п47 или р47
    4п7 или 4р7
    47 п или 47 р
    нФ н или n 1…999 4,7 нФ
    47 нФ
    470 пФ
    н47, Н47 или n47
    4н7, 4Н7 или 4n7
    47н, 47Н или 47n
    мкФ мк или µ 1…999 0,47 мкФ
    4,7 мкФ
    47 мкФ
    0,47 мк, µ47 или 0,47µ
    4,7 мк или 4,7 µ
    47 мк или 47 µ

    Необходимо заметить, что в микрофарадах обозначаются не до 999 мкФ, а намного выше, т. е. десятками и сотнями тысяч этих самых мкФ.

    Для обозначения допусков, как и у резиков, используются следующие сокращения:

    • Ж — ±0,1%
    • У — ±0,2%
    • Д — ±0,5%
    • Р — ±1%
    • Л — ±2%
    • И — ±5%
    • С — ±10%
    • В — ±20%
    • Ф — ±30%

    Это старое обозначение, а по новому выглядит так:

    • B — 0,1%
    • С — ±0,25%
    • D — ±0.5%
    • F — ±1%
    • G — ±2%
    • J — ±5%
    • K — ±10%
    • M — ±20%
    • N — ±30%

    Кроме того, для больших допусков:

    • Q ( — ) — -10…+30%
    • T (Э) — -10…+50%
    • Y (Ю) — -10…+100%
    • S (Б) — -20…+50%
    • Z (А) — -20…+80%
    • — (Я) — +100%

    В скобках указаны старые обозначения.

    Поскольку кондер вдобавок обладает рабочим напряжением, то шифруют и его:

    Номинальное напряжение, В Код Номинальное напряжение, В Код Номинальное напряжение, В Код
    500 V 450 U 400 Y
    350 T 315 X 250 W
    200 Z 160 Q 125 P
    100 N 80 L 63 K
    50 J 40 S 32 H
    25 G 20 F 16 E
    10 D 6,3 B 4,0 C

    Кроме буквенно-цифровой маркировки существует и цветная. Она аналогична резиковой.

    Цвет знака Номинальная емкость Допуск, % Номинальное напряжение, В
    Первая и вторая цифры Множитель
      10 1 ±20 4
      12 10 ±1 6,3
      15 102 ±2 10
      18 103 ±0,25 16
      22 104 ±0,5 40
      27 105 ±5 25 или 20
      33 106 ±1 32 или 30
      39 107 -20…+50 50
      47 10-2 -20…+80
      56 10-1 ±10 63
      68 2,5
      82 1,5

    Для расшифровки можете воспользоваться примером маркировки резисторов.

    Новости:





     

    Маркировка конденсаторов. Расчет общей емкости.

    Продолжаем обсуждение и изучение электронных компонентов под названием конденсаторы (ссылка). Основные аспекты устройства и принципа работы мы обсудили в предыдущей статье, а сегодня на очереди маркировка конденсаторов, а также разные варианты их соединения. Сначала разберем теорию, а затем рассмотрим несколько практических примеров. Собственно, приступим к делу!

    Маркировка конденсаторов.

    Существует несколько основных способов маркировки конденсаторов, давайте рассмотрим их все по очереди. Итак, один из вариантов — это маркировка тремя цифрами, например так:

    В данном случае первые две цифры указывают на емкость конденсатора в пикофарадах (пФ), а третья обозначает множитель:

    • если третья цифра от 0 до 5, то емкость в пикофарадах необходимо умножить на 10 в соответствующей степени. Степень как раз и определяется третьим числом
    • если третья цифра — 8, то величину емкости умножаем на 0.01
    • если третья цифра — 9, то величину емкости умножаем на 0.1

    Давайте на практическом примере разберемся как же определить емкость, руководствуясь этими правилами — определим электроемкость изображенных на рисунке конденсаторов.

    Для первого из них имеем маркировку «470» — первые две цифры — 47 — значит емкость равна 47 пФ.2 = 47500\medspace пФ = 47.5\medspace нФ

    Иногда можно встретить маркировку тремя цифрами и буквой. В данном случае буква будет обозначать допустимое отклонение емкости от указанного цифрами значения:

    Что именно означают эти цифры определяют в соответствии с таблицей:

    Кроме того, возможна цифровая маркировка непосредственно емкости в микрофарадах. Десятичная запятая в этом случае заменяется латинской буквой R:

    Емкость здесь определяется очень просто (не забываем, что буква R просто заменяет запятую):

    C_1 = 0.47\medspace мкФ

    C_2 = 4.7\medspace мкФ

    И, наконец, еще одним способом маркировки является цифро-буквенная маркировка. В данном случае величина емкости указывается цифрами, а единица измерения буквой:

    • p — пФ
    • n — нФ
    • m — мФ
    • u — мкФ

    Причем здесь, также как и в предыдущем примере, если буква расположена между цифрами, то она выполняет роль десятичной запятой:

    Определяем емкость:

    C_1 = 1.5\medspace пФ

    C_2 = 15\medspace нФ

    C_3 = 33.5\medspace мкФ

    C_4 = 1\medspace мФ

    На этом мы заканчиваем обсуждение маркировки конденсаторов и переходим к вариантам соединения конденсаторов.

    Последовательное соединение конденсаторов.

    Как и в случае с резисторами первым делом рассмотрим последовательное соединение конденсаторов.

    При таком соединении заряды всех конденсаторов окажутся равны:

    q_1 = q_2 = q_3 = q

    Вспомним формулу для напряжения из предыдущей статьи и определим величины:

    U_1 = \frac{q}{C_1}

    U_2 = \frac{q}{C_2}

    U_3 = \frac{q}{C_3}

    А общее напряжение при последовательном соединении равно сумме напряжений на элементах схемы по отдельности:

    U_0 = U_1 + U_2 + U_3

    Но в то же время общее напряжение можно выразить через общую емкость цепи:

    U_0 = \frac{q}{C_0}

    Приравниваем эти выражения и в результате получаем формулу для определения емкости при последовательном соединении конденсаторов:

    \frac{1}{C_0} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}

    Согласитесь, эта формула напоминает выражение для определения общего сопротивления при параллельном соединении резисторов (ссылка) 🙂

    Что же, с этим разобрались, идем дальше.

    Параллельное соединение конденсаторов.

    При параллельном соединении напряжения на конденсаторах равны:

    U_1 = U_2 = U_3 = U

    А заряды связаны следующим соотношением:

    q_0 = q_1 + q_2 + q_3

    Выразим напряжения на всех конденсаторах через их емкости и заряды:

    q_1 = C_1\medspace U

    q_2 = C_2\medspace U

    q_3 = C_3\medspace U

    Здесь мы учли, что напряжения равны. Данную систему можно условно заменить одним конденсатором, имеющим заряд q_0 и емкость C_0, напряжение на котором составляет величину U. Тогда будет справедливо следующее выражение:

    C_0 = \frac{q_0}{U} = \frac{q_1 + q_2 + q_3}{U}\medspace=\medspace C_1 + C_2 + C_3

    Таким образом, при параллельном соединении конденсаторов их емкости складываются.

    На этом наша сегодняшняя статья подходит к концу, надеюсь, что материал окажется полезным и понятным 🙂 Заходите на наш сайт снова и становитесь постоянными читателями, а я прощаюсь с вами, до встречи в будущих статьях!

    Буквенное обозначение емкости конденсатора. Маркировка конденсаторов

    Код и цветовая маркировка конденсаторов

    Допуски

    В соответствии с требованиями публикаций 62 и 115-2 МЭК для конденсаторов установлены следующие допуски и их кодировка:

    Таблица 1

    Допуск [%] Буквенное обозначение Цвет
    ± 0,1 * Б (Ж)
    ± 0.25 * C (U) оранжевый
    ± 0,5 * D (Г) желтый
    ± 1,0 * Ф (п) коричневый
    ± 2,0 г (л) красный
    ± 5,0 Дж (I) зеленый
    ± 10 К (С) белый
    ± 20 М (В) черный
    ± 30 N (ж)
    -10… + 30 Q (0)
    -10 … + 50 T (E)
    -10 … + 100 Г (г)
    -20 … + 50 S (В) фиолетовый
    -20, .. + 80 Z (А) серый

    * -Для конденсаторов с емкостью

    Пересчитать допуск из% (δ) в фарады (Δ):

    Δ = (δxC / 100%) [F]

    Пример:

    Реальный номинал конденсатора с маркировкой 221J (0.22 нФ ± 5%) лежит в диапазоне: C = 0,22 нФ ± Δ = (0,22 ± 0,01) нФ, где Δ = (0,22 x 10 -9 [F] x 5) x 0,01 = 0,01 нФ, или, соответственно, от 0,21 до 0,23 нФ.

    Температурный коэффициент емкости (ТКЕ)


    Конденсаторы ТКЕ без номинальных значений

    стол 2

    * Современное цветовое кодирование, цветные полосы или точки. Второй цвет может быть цветом корпуса.

    Конденсаторы с линейной температурой

    Таблица 3

    Обозначение
    ГОСТ
    Обозначение
    международный
    ТКЕ
    *
    Letter
    код
    Цвет **
    п100 П100 100 (+130…- 49) A красный + фиолетовый
    P33 33 N серый
    IGO НПО 0 (+30 ..- 75) С черный
    M33 N030 -33 (+30 …- 80] H коричневый
    M75 N080 -75 (+30 …- 80) л красный
    M150 N150 -150 (+30…- 105) R оранжевый
    M220 N220 -220 (+30 …- 120) R желтый
    M330 N330 -330 (+60 …- 180) S зеленый
    M470 N470 -470 (+60 …- 210) т синий
    M750 N750 -750 (+120…- 330) U фиолетовый
    M1500 N1500 -500 (-250 …- 670) В оранжевый + оранжевый
    M2200 N2200 -2200 К желтый + оранжевый

    * Скобки показывают реальный разброс для импортных конденсаторов в диапазоне температур -55 … + 85 ° C.

    ** Современная цветовая кодировка согласно EIA.Цветные полосы или точки. Второй цвет может быть цветом корпуса.

    Конденсаторы с нелинейной температурной зависимостью

    Таблица 4

    Группа ТКЕ * Допуск [%] Температура ** [° C] Letter
    код ***
    Цвет ***
    Y5f ± 7,5 -30 … + 85
    Y5P ± 10 -30… + 85 серебро
    Y5R -30 … + 85 R серый
    Y5S ± 22 -30 … + 85 S коричневый
    Y5U +22 …- 56 -30 … + 85 A
    Y5V (2F) +22 …- 82 -30 … + 85
    X5F ± 7.5 -55 … + 85
    H5P ± 10 -55 … + 85
    X5S ± 22 -55 … + 85
    X5U +22 …- 56 -55 … + 85 синий
    X5V +22 …- 82 -55 .. + 86
    X7R (2R) ± 15 -55… + 125
    Z5F ± 7,5 -10 … + 85 AT
    Z5P ± 10 -10 … + 85 С
    Z5S ± 22 -10 … + 85
    Z5U (2E) +22 …- 56 -10 … + 85 E
    Z5V +22…- 82 -10 … + 85 F зеленый
    SL0 (GP) +150 …- 1500 -55 … + 150 Нет белый

    * Обозначение дано по стандарту EIA, в скобках — IEC.

    ** В зависимости от технологий, которыми обладает компания, ассортимент может быть разным. Например: компания Philips для группы Y5P нормализует -55 … + 125 ° С.

    *** Согласно EIA. Некоторые фирмы, например «Панасоник», используют другую кодировку.

    Рис. Один

    Таблица 5

    Теги
    полоса, кольцо, точка
    1 2 3 4 5 6
    3 метки * 1-я цифра 2-я цифра Фактор
    4 тега 1-я цифра 2-я цифра Фактор Допуск
    4 тега 1-я цифра 2-я цифра Фактор Напряжение
    4 тега 1-я и 2-я цифры Фактор Допуск Напряжение
    5 тегов 1-я цифра 2-я цифра Фактор Допуск Напряжение
    5 тегов 1-я цифра 2-я цифра Фактор Допуск ТКЕ
    6 тегов 1-я цифра 2-я цифра 3-я цифра Фактор Допуск ТКЕ

    * Допуск 20%; возможно сочетание двух колец и точки, обозначающей множитель.

    ** Цвет корпуса указывает значение рабочего напряжения.

    Фиг.2

    Таблица 6

    Цвет 1-я цифра
    мкФ
    2-я цифра
    мкФ
    Умножить
    тел.
    Тенс
    ния
    Черный 0 1 10
    Коричневый 1 1 10
    Красный 2 2 100
    Оранжевый 3 3
    Желтый 4 4 6,3
    зеленый 5 5 16
    Синий 6 6 20
    фиолетовый 7 7
    Серый 8 8 0,01 25
    Белый 9 9 0,1 3
    Розовый 35

    Рис.3

    Таблица 7

    Цвет 1-я цифра
    pf
    2-я цифра
    pf
    3-я цифра
    pf
    Фактор Допуск ТКЕ
    Серебро 0,01 10% Y5P
    Золото 0,1 5%
    Черный 0 0 1 20% * НПО
    Коричневый 1 1 1 10 1% ** Y56 / N33
    Красный 2 2 2 100 2% N75
    Оранжевый 3 3 3 10 3 N150
    Желтый 4 4 4 10 4 N220
    зеленый 5 5 5 10 5 N330
    Синий 6 6 6 10 6 N470
    фиолетовый 7 7 7 10 7 N750
    Серый 8 8 8 10 8 30% Y5R
    Белый 9 9 9 + 80 / -20% SL

    Рис.четыре

    Таблица 8

    Цвет 1-я и
    2-я цифра
    pf
    Фактор Допуск Напряжение
    Черный 10 1 20% 4
    Коричневый 12 10 1% 6,3
    Красный 15 100 2% 10
    Оранжевый 18 10 3 0.25 пФ 16
    Желтый 22 10 4 0,5 пФ 40
    зеленый 27 10 5 5% 20/25
    Синий 33 10 6 1% 30/32
    фиолетовый 39 10 7 -2O … + 50%
    Серый 47 0,01 -20… + 80% 3,2
    Белый 56 0,1 10% 63
    Серебро 68 2,5
    Золото 82 5% 1,6

    Фиг.5

    Таблица 9

    Номинальная емкость [мкФ] Допуск Напряжение
    0,01 ± 10% 250
    0,015
    0,02
    0,03
    0,04
    0,06
    0,10
    0,15
    0,22
    0,33 ± 20 400
    0,47
    0,68
    1,0
    1,5
    2,2
    3,3
    4,7
    6,8
    1 переулок 2-х полосный 3-х полосный 4-х полосный 5 пер.,

    Кодовая маркировка

    А.Маркировка 3-мя цифрами

    Таблица 10

    Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
    109 1,0 0,001 0,000001
    159 1,5 0,0015 0,000001
    229 2,2 0,0022 0,000001
    339 3,3 0,0033 0,000001
    479 4,7 0,0047 0,000001
    689 6,8 0,0068 0,000001
    100 * 10 0,01 0,00001
    150 15 0,015 0,000015
    220 22 0,022 0,000022
    330 33 0,033 0,000033
    470 47 0,047 0,000047
    680 68 0,068 0,000068
    101 100 0,1 0,0001
    151 150 0,15 0,00015
    221 220 0,22 0,00022
    331 330 0,33 0,00033
    471 470 0,47 0,00047
    681 680 0,68 0,00068
    102 1000 1,0 0,001
    152 1500 1,5 0,0015
    222 2200 2,2 0,0022
    332 3300 3,3 0,0033
    472 4700 4,7 0,0047
    682 6800 6,8 0,0068
    103 10000 10 0,01
    153 15000 15 0,015
    223 22000 22 0,022
    333 33000 33 0,033
    473 47000 47 0,047
    683 68000 68 0,068
    104 100000 100 0,1
    154 150000 150 0,15
    224 220000 220 0,22
    334 330000 330 0,33
    474 470000 470 0,47
    684 680000 680 0,68
    105 1000000 1000 1,0

    Б.Маркировка 4 цифры

    Таблица 11

    Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
    1622 16200 16,2 0,0162
    4753 475000 475 0,475

    Фиг.3

    Таблица 7

    Цвет 1-я цифра
    pf
    2-я цифра
    pf
    3-я цифра
    pf
    Фактор Допуск ТКЕ
    Серебро 0,01 10% Y5P
    Золото 0,1 5%
    Черный 0 0 1 20% * НПО
    Коричневый 1 1 1 10 1% ** Y56 / N33
    Красный 2 2 2 100 2% N75
    Оранжевый 3 3 3 10 3 N150
    Желтый 4 4 4 10 4 N220
    зеленый 5 5 5 10 5 N330
    Синий 6 6 6 10 6 N470
    фиолетовый 7 7 7 10 7 N750
    Серый 8 8 8 10 8 30% Y5R
    Белый 9 9 9 + 80 / -20% SL

    * Для емкостей менее 10 пФ ± 2,0 пФ.
    ** Для емкостей менее 10 пФ допуск ± 0,1 пФ.

    Фиг.4

    Таблица 8

    Цвет 1-я и
    2-я цифра
    pf
    Фактор Допуск Напряжение
    Черный 10 1 20% 4
    Коричневый 12 10 1% 6,3
    Красный 15 100 2% 10
    Оранжевый 18 10 3 0.25 пФ 16
    Желтый 22 10 4 0,5 пФ 40
    зеленый 27 10 5 5% 20/25
    Синий 33 10 6 1% 30/32
    фиолетовый 39 10 7 -2O … + 50%
    Серый 47 0,01 -20… + 80% 3,2
    Белый 56 0,1 10% 63
    Серебро 68 2,5
    Золото 82 5% 1,6

    Для маркировки пленочных конденсаторов используйте 5 цветных полосок или точек. Первые три кодируют значение номинальной емкости, четвертый — допуск, пятый — номинальное рабочее напряжение.

    Фиг.5

    Таблица 9

    Номинальная емкость [мкФ] Допуск Напряжение
    0,01 ± 10% 250
    0,015
    0,02
    0,03
    0,04
    0,06
    0,10
    0,15
    0,22
    0,33 ± 20 400
    0,47
    0,68
    1,0
    1,5
    2,2
    3,3
    4,7
    6,8
    1 пер. 2-х полосный 3-х полосный 4-х полосный 5 пер.

    Кодовая маркировка

    В соответствии со стандартами IEC на практике существует четыре способа кодирования номинальной емкости.

    A. Маркировка 3 цифрами

    Первые две цифры указывают значение емкости в пигофарадах (пФ), последняя — количество нулей. Если емкость конденсатора меньше 10 пФ, последняя цифра может быть «9». При емкостях менее 1,0 пФ первая цифра — «0». Буква R используется как десятичная точка. Например, код 010 — 1,0 пФ, код 0R5 — 0,5 пФ.

    Таблица 10

    Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
    109 1,0 0,001 0,000001
    159 1,5 0,0015 0,000001
    229 2,2 0,0022 0,000001
    339 3,3 0,0033 0,000001
    479 4,7 0,0047 0,000001
    689 6,8 0,0068 0,000001
    100 * 10 0,01 0,00001
    150 15 0,015 0,000015
    220 22 0,022 0,000022
    330 33 0,033 0,000033
    470 47 0,047 0,000047
    680 68 0,068 0,000068
    101 100 0,1 0,0001
    151 150 0,15 0,00015
    221 220 0,22 0,00022
    331 330 0,33 0,00033
    471 470 0,47 0,00047
    681 680 0,68 0,00068
    102 1000 1,0 0,001
    152 1500 1,5 0,0015
    222 2200 2,2 0,0022
    332 3300 3,3 0,0033
    472 4700 4,7 0,0047
    682 6800 6,8 0,0068
    103 10000 10 0,01
    153 15000 15 0,015
    223 22000 22 0,022
    333 33000 33 0,033
    473 47000 47 0,047
    683 68000 68 0,068
    104 100000 100 0,1
    154 150000 150 0,15
    224 220000 220 0,22
    334 330000 330 0,33
    474 470000 470 0,47
    684 680000 680 0,68
    105 1000000 1000 1,0

    * Иногда последний ноль не указывается.

    Б. Маркировка 4 цифры

    Возможные варианты кодирования 4-х значное число. Но в этом случае последняя цифра указывает количество нулей, а первые три указывают емкость в пикофарадах.

    Таблица 11

    Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
    1622 16200 16,2 0,0162
    4753 475000 475 0,475

    Рис.6

    C. Маркировка емкости в микрофарадах

    Вместо десятичной точки можно поставить букву R.

    Таблица 12

    Код Емкость [мкФ]
    R1 0,1
    R47 0,47
    1 1,0
    4R7 4,7
    10 10
    100 100

    Рис.7

    D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

    В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение разных компаний имеет разную буквенно-цифровую маркировку.

    Таблица 13

    Код Вместимость
    п10 0,1 пФ
    IP5 1,5 пФ
    332p 332 пФ
    1НО или 1НО 1.0 нФ
    15H или 15n 15 нФ
    33х3 или 33н2 33,2 нФ
    590H или 590n 590 нФ
    м15 0,15 мкФ
    1м5 1,5 мкФ
    33м2 33,2 мкФ
    330 кв.м 330 мкФ
    1 МО 1 мФ или 1000 мкФ
    10 кв.м. 10 мФ

    Рис.восемь

    Кодовая маркировка электролитических конденсаторов для поверхностного монтажа

    Приведенные ниже принципы кодовой маркировки используются такими известными компаниями, как «Panasonic», «Hitachi» и т. Д. Существует три основных метода кодирования.

    A. Маркировка из 2 или 3 знаков

    Код состоит из двух или трех знаков (букв или цифр), обозначающих рабочее напряжение и номинальную мощность. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель.В случае двузначного обозначения код рабочего напряжения не указывается.

    Фиг.9

    Таблица 14

    Код Емкость [мкФ] Напряжение [В]
    A6 1,0 16/35
    A7 10 4
    AA7 10 10
    AE7 15 10
    AJ6 2,2 10
    AJ7 22 10
    AN6 3,3 10
    AN7 33 10
    AS6 4,7 10
    AW6 6,8 10
    CA7 10 16
    CE6 1,5 16
    CE7 15 16
    CJ6 2,2 16
    CN6 3,3 16
    CS6 4,7 16
    CW6 6,8 16
    DA6 1,0 20
    DA7 10 20
    DE6 1,5 20
    DJ6 2,2 20
    DN6 3,3 20
    DS6 4,7 20
    DW6 6,8 20
    E6 1,5 10/25
    EA6 1,0 25
    EE6 1,5 25
    Ej6 2,2 25
    EN6 3,3 25
    ES6 4,7 25
    EW5 0,68 25
    GA7 10 4
    GE7 15 4
    Gj7 22 4
    GN7 33 4
    GS6 4,7 4
    GS7 47 4
    GW6 6,8 4
    GW7 68 4
    J6 2,2 6,3 / 7/20
    Ja7 10 6,3 / 7
    Je7 15 6,3 / 7
    Jj7 22 6,3 / 7
    Jn6 3,3 6,3 / 7
    Jn7 33 6,3 / 7
    Js6 4,7 6,3 / 7
    Js7 47 6,3 / 7
    Jw6 6,8 6,3 / 7
    N5 0,33 35
    N6 3,3 4/16
    S5 0,47 25/35
    VA6 1,0 35
    VE6 1,5 35
    VJ6 2,2 35
    ВН6 3,3 35
    VS5 0,47 35
    Vw5 0,68 35
    W5 0,68 20/35

    Фиг.десять

    B. Маркировка 4-х знаков

    Код состоит из четырех знаков (букв и цифр), обозначающих емкость и рабочее напряжение. Буква в начале указывает рабочее напряжение, последующие знаки указывают номинальную емкость в пикофарадах (пФ), а последняя цифра указывает количество нулей. Возможны 2 варианта кодирования емкости: а) первые две цифры указывают значение в пикофарадах, третья — количество нулей; б) емкость указывается в микрофарадах, знак m выполняет функцию десятичной точки.Ниже приведены примеры маркировки конденсаторов емкостью 4,7 мкФ и рабочим напряжением 10 В.

    Рис. Одиннадцать

    C. Маркировка в две строки

    Если размеры корпуса позволяют, код размещается в двух строках: в верхней строке указывается номинальная емкость, во второй строке — рабочее напряжение. Емкость может быть указана непосредственно в микрофарадах (мкФ) или пикофарадах (ПФ) с количеством нулей (см. Метод B). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

    Фиг.12

    Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

    Фиг.13

    Свое название она получила благодаря основному цвету корпуса — красному и его оттенкам (из-за чего их еще называют «красными»). Конечно, есть и желтые корпуса. Этот тип конденсатора представляет собой «подушку» из соединения, которая наносится на пластину конденсатора и окрашивается в красный, оранжевый или желтый цвета. Емкости и размеры у этих конденсаторов разные, вывод надо откусывать «по корешку», чтобы ничего не осталось.Несмотря на высокую цену, подобная «миксу», «смесь» конденсаторов разного типа, конечно, отличается от стоимости «зеленых» в меньшую сторону. В первую очередь это связано со значительным весом тела по сравнению с содержимым. Обратите внимание, что, как правило, «выход» на содержание металлов в значительной степени зависит от многих факторов, но считается, что чем меньше размер конденсатора, тем больше вес его корпуса и выводов внутри него. тело по сравнению с содержанием.Вот почему маленькие конденсаторы часто дешевле больших. Обратите внимание, что не все конденсаторы или радиокомпоненты, которые считаются «красными» для конденсаторов, таковыми. На фото показаны примеры принимаемых непосредственно «красных» конденсаторов.

    Загрязнение и единица измерения конденсаторов КМ

    Очень часто в смеси возникает так называемый «засор» — детали похожи на красные конденсаторы, но их нет. Это положение весовое, поэтому необходимо взвесить общее количество конденсаторов, предназначенных для доставки.За единицу веса принято использовать килограмм, для которого указана цена. Это очень просто: например, 100 граммов будут считаться 0,1 кг, 20 граммов — 0,02 кг, 7 граммов — 0,007 кг. Стоит отметить, что часто эта позиция доставляется именно в килограммах, по 10-15 килограмм в каждой, поэтому за единицу веса для расчета принимается килограмм.

    Где найти конденсаторы КМ

    Такие конденсаторы можно встретить в различных приборах советского и постсоветского производства.Как правило, это генераторы, осциллографы, разные. Эти элементы размещаются на печатных платах вышеупомянутых (и не только) устройств, и нередко можно получить 300 граммов конденсаторов из одного устройства. Для демонтажа этих конденсаторов необходимо разобрать устройство и вынуть (откусить) конденсаторы в емкость с кусачками, стараясь действовать таким образом, чтобы провода выводов конденсаторов оставались на плате, а не на корпусе конденсатора ( как я писал под спиной).Бывает, что эти конденсаторы покрыты лаком на плате, приклеены, их можно выводить, на них поставлен камбр. Это усложняет разборку и увеличивает засорение. Бывает даже, что в некоторых модулях конденсаторы заполнены резиноподобной массой, часто прозрачной, что сильно затрудняет демонтаж этих деталей. Непосредственно, обычно пластина конденсатора внутри его окрашенного корпуса имеет форму конденсатора без упаковки и окрашена в бежевый или коричневый цвет. При растрескивании можно увидеть так называемые «слои», из которых состоит сам элемент.Посмотрите еще раз на фото, думаю, однажды вспомнив, как выглядят элементы этой позиции, вы их ни с чем не перепутаете, ведь конденсаторы СМ по праву (а точнее по содержанию драгоценных металлов) — одни самых дорогих позиций, за которые можно выручить неплохие деньги.

    Правильная подготовка конденсаторов КМ красный

    Когда конденсаторов мало, есть смысл рассортировать их по позициям, начиная хотя бы с размера.С другой стороны, не все могут это сделать в соответствии с содержанием драгоценных металлов, которое, конечно, у разных конденсаторов разное. Когда килограммы уже есть, их обычно не сортируют, а берут в аренду с «миксом» (миксом), кто-то находит для себя, что сортировка ему невыгодна, кто-то просто из-за того, что зрение дает сбой, сортировку обеспечить не может. Это не страшно, ведь наши специалисты помогут в любом случае, это наша работа. Значит, сняв конденсаторы с плат, необходимо их перевесить.Для этого берется любая тара, устанавливается на весы, весы калибруются (это означает, что они обнуляются при установленной пустой таре. В этом случае на них будет отображаться вес содержимого тары, а не весы). вес банки или упаковки). Объясняю это, потому что не все работали продавцами и умеют пользоваться весами, и для контроля это не будет лишним). После этого счастливый обладатель «CM Reds» звонит нам по телефону, договаривается о приезде, либо о самовывозе с нашей стороны, либо уточняет адрес.В случае самостоятельного прибытия вы получаете деньги сразу, оплата немедленно, в случае посылки — при получении и пересчете содержимого, отправьте на банковскую карту или по другим указанным вами почтовым реквизитам.

    Основным параметром конденсатора является его номинальная емкость, измеряемая в фарадах (ф) микрофарадах (мкФ) или пикофарадах (пФ).

    Конденсаторы

    Допуск емкости конденсатора от номинала, указанного в стандартах, и определения класса его точности.Для конденсаторов Что касается сопротивлений, чаще всего используются три класса точности I (E24), II (E12) и III (E6), соответствующие допускам ± 5%, ± 10% и ± 20%.

    По типу изменения емкости конденсаторы делятся на изделия с постоянной емкостью, переменной и саморегулирующейся. Номинальная емкость указана на корпусе конденсатора. Для сокращения записи применяется специальная кодировка:

    • П — пикофарад — пФ
    • Н — одна нанофарада
    • М — микрофарад — мкФ

    Пример обозначений кодированных конденсаторов:

    • 51П — 51 пФ
    • 5П1 — 5.1 пФ
    • h2 — 100 пФ
    • 1H — 1000 пФ
    • 1х3 — 1200 пФ
    • 68H — 68000 пФ = 0,068 мкФ
    • 100H — 100000 пФ = 0,1 мкФ
    • MH — 300000 пФ = 0,3 мкФ
    • 3М3 — 3,3 мкФ
    • 10М — 10 мкФ

    Числовые значения емкостей 130 пФ и 7500 пФ являются целыми числами (от 0 до 9999 пФ)

    Конструкции конденсаторов постоянной емкости и материала, из которого они изготовлены, определяются их назначением и диапазоном рабочих частот.

    Высокочастотные конденсаторы обладают большей стабильностью, заключающейся в небольшом изменении емкости с температурой, малых отклонениях емкости от номинала, малых габаритах и ​​весе. Это керамические (типы КЛГ, КЛС, КМ, КД, КДУ, КТ, КГК, КТП и др.), Слюдяные (КСО, КГС, СГМ), стеклокерамические (СКМ), стеклоэмалевые (КС) и стеклянные ( К21У).

    Фракционный конденсатор
    от 0 до 9999 PF

    Для постоянного, переменного и пульсирующего тока низкой частоты требуются конденсаторы с большой емкостью, измеряемой тысячами микрофарад.В связи с этим бумажные (типы БМ, КБГ), металлобумажные (МБГ, МБМ), электролитические (CE, EGC, ETO, K50, K52, K53 и др.) И пленочные (PM, PO, K73, K74, K76 ) производятся конденсаторы.

    Конструкций конденсаторов постоянной емкости различной. Так, слюдяные, стеклоэмалевые, стеклокерамические и некоторые виды керамических конденсаторов имеют корпусную конструкцию. В них пластины из металлической фольги или в виде металлических пленок чередуются с пластинами из диэлектрика (например, слюды).

    Емкость конденсатора 0,015 мкФ

    Конденсатор 1 мкФ

    Для получения значительной емкости формируют корпус из большого количества таких элементарных конденсаторов.Электрически соедините между собой все верхние пластины и по отдельности — нижние. К местам соединений припаиваем проводники, которые служат выводами конденсатора. Затем пакет сжимается и помещается в футляр.

    Б / у и дисковая конструкция керамические конденсаторы . В них роль пластин выполняют металлические пленки, нанесенные с обеих сторон керамического диска. Бумажные конденсаторы часто имеют рулонную конструкцию. Полосы алюминиевой фольги, разделенные бумажными лентами с высокими диэлектрическими свойствами, свернуты в рулон.Для получения большой емкости рулоны соединяют друг с другом и помещают в герметичный корпус.

    В электролитических конденсаторах диэлектрик представляет собой оксидную пленку, нанесенную на алюминиевую или танталовую пластину, которая является одной из пластин конденсатора, вторая облицовка представляет собой электролит.

    Конденсатор электролитический 20,0 × 25 В

    Металлический стержень (анод) должен быть подключен к точке с более высоким потенциалом, чем корпус конденсатора (катод), подключенный к электролиту.Если это условие не выполняется, сопротивление оксидной пленки резко снижается, что приводит к увеличению тока, проходящего через конденсатор, и может вызвать его разрушение.

    В данной конструкции электролитических конденсаторов типа КЕ. Также выпускаются электролитические конденсаторы с твердым электролитом (типа К50).

    Конденсатор проходной

    Площадь перекрытия пластин или расстояние между ними конденсаторов переменной емкости можно изменять различными способами.В этом случае изменяется емкость конденсатора. Одна из возможных конструкций конденсатора переменной емкости (КПИ) показана на рисунке справа.

    Конденсатор переменной емкости от 9 пФ до 270 пФ

    Здесь мощность изменяется за счет иного расположения пластин ротора (подвижных) относительно статора (неподвижных). Зависимость емкости от угла поворота определяется конфигурацией пластин. Значение минимальной и максимальной емкости зависит от площади плит и расстояния между ними.Обычно минимальная емкость C min, измеренная с полностью удаленными пластинами ротора, составляет одну (до 10-20) пикофарад, а максимальная емкость C max, измеренная с полностью выведенными пластинами ротора, составляет сотни пикофарад.

    В радиооборудовании часто используются блоки KPI, состоящие из двух, трех или более переменных конденсаторов, механически связанных друг с другом.

    Конденсатор переменной емкости от 12 пФ до 497 пФ

    Благодаря блокам KPU, можно одновременно изменять на одинаковую величину мощности различных цепей устройства.

    Разнообразие КПЭ триммеров. конденсаторы . Их мощность, как и сопротивление триммеров, меняется только отверткой. В качестве диэлектрика в таких конденсаторах можно использовать воздух или керамику.

    Подстроечный конденсатор от 5 пФ до 30 пФ

    В электрических цепях конденсаторы постоянной емкости обозначены двумя параллельными сегментами, символизирующими пластины конденсатора, с выводами от их середин. Рядом указывают условное буквенное обозначение конденсатора — буква С (от лат. Конденсатор — конденсатор).

    После буквы С ставится порядковый номер конденсатора в этой схеме, а рядом с ним пишется еще одно число, обозначающее номинальную емкость.

    Емкость конденсаторов от 0 до 9999 пФ указывается без единицы измерения, если емкость выражается целым числом, и с единицей измерения — пФ, если емкость выражается дробным числом.

    Подстроечные конденсаторы

    Емкость конденсаторов от 10000 пФ (0.01 мкФ) до 99

    00 пФ (999 мкФ) указывается в микрофарадах в виде десятичной дроби или целого числа, за которым следует запятая и ноль. В обозначениях электролитических конденсаторов знаком «+» обозначен сегмент, соответствующий положительному выводу, аноду, а после знака «х» — номинальному рабочему напряжению.

    Конденсаторы переменного тока (КПЭ) обозначаются двумя параллельными сегментами, перечеркнутыми стрелкой.

    Если необходимо, чтобы пластины ротора были подключены к определенной точке устройства, то они обозначаются на схеме короткой дугой.Рядом указаны минимальный и максимальный пределы изменения емкости.

    В обозначении подстроечных конденсаторов параллельные линии пересекаются отрезком с короткой чертой, перпендикулярным одному из его концов.

    Маркировка конденсатора

    1. Артикул тремя цифрами .

    В данном случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, чтобы получить значение в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1».Если первая цифра «0», то емкость меньше 1 пФ (010 = 1,0 пФ).

    код пикофарад, пФ, пФ нанофарад, нФ, нФ микрофарад, мкФ, мкФ
    109 1,0 пФ
    159 1,5 пФ
    229 2.2 пФ
    339 3,3 пФ
    479 4,7 пФ
    689 6,8 пФ
    100 10 пФ 0.01 нФ
    150 15 пФ 0,015 нФ
    220 22 пФ 0,022 нФ
    330 33 пФ 0,033 нФ
    470 47 пФ 0.047 нФ
    680 68 пФ 0,068 нФ
    101 100 пФ 0,1 нФ
    151 150 пФ 0,15 нФ
    221 220 пФ 0.22 нФ
    331 330 пФ 0,33 нФ
    471 470 пФ 0,47 нФ
    681 680 пФ 0,68 нФ
    102 1000 пФ 1 нФ
    152 1500 пФ 1.5 нФ
    222 2200 пФ 2,2 нФ
    332 3300 пФ 3,3 нФ
    472 4700 пФ 4,7 нФ
    682 6800 пФ 6.8 нФ
    103 10 000 пФ 10 нФ 0,01 мкФ
    153 15000 пФ 15 нФ 0,015 мкФ
    223 22000 пФ 22 нФ 0.022 мкФ
    333 33000 пФ 33 нФ 0,033 мкФ
    473 47000 пФ 47 нФ 0,047 мкФ
    683 68000 пФ 68 нФ 0.068 мкФ
    104 100000 пФ 100 нФ 0,1 мкФ
    154 150000 пФ 150 нФ 0,15 мкФ
    224 220 000 пФ 220 нФ 0.22 мкФ
    334 330000 пФ 330 нФ 0,33 мкФ
    474 470000 пФ 470 нФ 0,47 мкФ
    684 680000 пФ 680 нФ 0,68 мкФ
    105 1000000 пФ 1000 нФ 1 мкФ

    2. Четырехзначная маркировка .

    Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, чтобы получить емкость в пикофарадах. Например:

    1622 = 162 * 10 2 пФ = 16200 пФ = 16,2 нФ .

    3. Буквенно-цифровая маркировка .

    При такой маркировке буква обозначает десятичную точку и обозначение (мкФ, нФ, пФ), а цифры обозначают значение емкости:

    15p = 15 пФ, 22p = 22 пФ, 2n2 = 2.2 нФ, 4n7 = 4,7 нФ, μ33 = 0,33 мкФ

    Часто бывает сложно отличить русскую букву «р» от английской «н».

    Иногда для обозначения десятичной точки используется буква R. Обычно это маркированные емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

    0R5 = 0,5 пФ, R47 = 0,47 мкФ, 6R8 = 6,8 мкФ

    4. Плоские керамические конденсаторы .

    Керамические конденсаторы SMD обычно или не маркируются вообще, кроме цвета (цветную маркировку я не знаю, если кто-то подскажет — буду рад, знаю только, что чем светлее, тем меньше емкость) либо помечены одним или две буквы и цифра.Первая буква, если она указывает производителя, вторая буква указывает мантиссу в соответствии с таблицей ниже, цифра представляет собой показатель степени по основанию 10, чтобы получить емкость в пикофарадах. Пример:

    N1 / по таблице определяем мантиссу: N = 3,3 / = 3,3 * 10 1 пФ = 33 пФ

    S3 / по таблице S = 4,7 / = 4,7 * 10 3 пФ = 4700 пФ = 4,7 нФ

    маркировка значение маркировка значение маркировка значение маркировка значение
    А 1.0 Дж 2,2 S 4,7 a 2,5
    В 1,1 К 2,4 Т 5,1 б 3,5
    С 1.2 л 2,7 U 5,6 д 4,0
    D 1,3 M 3,0 В 6,2 e 4,5
    E 1.5 N 3,3 Вт 6,8 f 5,0
    ф 1,6 п. 3,6 X 7,5 кв.м 6,0
    G 1.8 К 3,9 Y 8,2 n 7,0
    H 2,0 R 4,3 Z 9,1 т 8,0

    5. Планарные электролитические конденсаторы .

    Электролитические конденсаторы SMD маркируются двумя способами:

    1) Емкость в микрофарадах и рабочее напряжение, например: 10 6,3 В = 10 мкФ при 6,3 В.

    2) Буква и три цифры, в то время как буква обозначает рабочее напряжение в соответствии с таблицей ниже, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, чтобы получить емкость в пикофарадах. Полоска на таких конденсаторах указывает на положительный вывод.Пример:

    По таблице «А» — напряжение 10В, 105 — 10 * 10 5 пФ = 1 мкФ, т.е. это конденсатор на 1 мкФ на 10В

    письмо e G Дж А С D E В H (T для тантала)
    напряжение 2.5 В 4V 6,3 В 10 В 16 В 20 В 25 В 35 В 50 В

    Обозначение кода, дополнение

    В соответствии со стандартами IEC на практике существует четыре способа кодирования номинальной емкости.

    A. Маркировка 3 цифрами

    Первые две цифры указывают значение емкости в пигофарадах (пФ), последняя — количество нулей.Если емкость конденсатора меньше 10 пФ, последняя цифра может быть «9». При емкостях менее 1,0 пФ первая цифра — «0». Буква R используется как десятичная точка. Например, код 010 — 1,0 пФ, код 0R5 — 0,5 пФ.

    Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
    109 1,0 0,001 0,000001
    159 1,5 0,0015 0,000001
    229 2,2 0,0022 0,000001
    339 3,3 0,0033 0,000001
    479 4,7 0,0047 0,000001
    689 6,8 0,0068 0,000001
    100 * 10 0,01 0,00001
    150 15 0,015 0,000015
    220 22 0,022 0,000022
    330 33 0,033 0,000033
    470 47 0,047 0,000047
    680 68 0,068 0,000068
    101 100 0,1 0,0001
    151 150 0,15 0,00015
    221 220 0,22 0,00022
    331 330 0,33 0,00033
    471 470 0,47 0,00047
    681 680 0,68 0,00068
    102 1000 1,0 0,001
    152 1500 1,5 0,0015
    222 2200 2,2 0,0022
    332 3300 3,3 0,0033
    472 4700 4,7 0,0047
    682 6800 6,8 0,0068
    103 10000 10 0,01
    153 15000 15 0,015
    223 22000 22 0,022
    333 33000 33 0,033
    473 47000 47 0,047
    683 68000 68 0,068
    104 100000 100 0,1
    154 150000 150 0,15
    224 220000 220 0,22
    334 330000 330 0,33
    474 470000 470 0,47
    684 680000 680 0,68
    105 1000000 1000 1,0

    * Иногда последний ноль не указывается.

    Б. Маркировка 4 цифры

    Возможные варианты кодирования 4-х значное число. Но в этом случае последняя цифра указывает количество нулей, а первые три указывают емкость в пикофарадах.

    Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
    1622 16200 16,2 0,0162
    4753 475000 475 0,475

    Рис.6

    C. Маркировка емкости в микрофарадах

    Вместо десятичной точки можно поставить букву R.

    Код Емкость [мкФ]
    R1 0,1
    R47 0,47
    1 1,0
    4R7 4,7
    10 10
    100 100

    Д.Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

    В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение разных компаний имеет разную буквенно-цифровую маркировку.

    Кодовая маркировка электролитических конденсаторов для поверхностного монтажа

    Следующие принципы кодовой маркировки применяют такие известные компании, как Panasonic, Hitachi и другие. Существует три основных метода кодирования:

    А.Маркировка двумя или тремя знаками

    Код состоит из двух или трех знаков (букв или цифр), обозначающих рабочее напряжение и номинальную мощность. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двузначного обозначения код рабочего напряжения не указывается.

    Код Емкость [мкФ] Напряжение [В]
    A6 1,0 16/35
    A7 10 4
    AA7 10 10
    AE7 15 10
    AJ6 2,2 10
    AJ7 22 10
    AN6 3,3 10
    AN7 33 10
    AS6 4,7 10
    AW6 6,8 10
    CA7 10 16
    CE6 1,5 16
    CE7 15 16
    CJ6 2,2 16
    CN6 3,3 16
    CS6 4,7 16
    CW6 6,8 16
    DA6 1,0 20
    DA7 10 20
    DE6 1,5 20
    DJ6 2,2 20
    DN6 3,3 20
    DS6 4,7 20
    DW6 6,8 20
    E6 1,5 10/25
    EA6 1,0 25
    EE6 1,5 25
    Ej6 2,2 25
    EN6 3,3 25
    ES6 4,7 25
    EW5 0,68 25
    GA7 10 4
    GE7 15 4
    Gj7 22 4
    GN7 33 4
    GS6 4,7 4
    GS7 47 4
    GW6 6,8 4
    GW7 68 4
    J6 2,2 6,3 / 7/20
    Ja7 10 6,3 / 7
    Je7 15 6,3 / 7
    Jj7 22 6,3 / 7
    Jn6 3,3 6,3 / 7
    Jn7 33 6,3 / 7
    Js6 4,7 6,3 / 7
    Js7 47 6,3 / 7
    Jw6 6,8 6,3 / 7
    N5 0,33 35
    N6 3,3 4/16
    S5 0,47 25/35
    VA6 1,0 35
    VE6 1,5 35
    VJ6 2,2 35
    VN6 3,3 35
    VS5 0,47 35
    Vw5 0,68 35
    W5 0,68 20/35

    Б.Маркировка 4-мя знаками

    Код состоит из четырех знаков (букв и цифр), обозначающих емкость и рабочее напряжение. Буква в начале указывает рабочее напряжение, последующие знаки указывают номинальную емкость в пикофарадах (пФ), а последняя цифра указывает количество нулей. Возможны 2 варианта кодирования емкости: а) первые две цифры указывают значение в пикофарадах, третья — количество нулей; б) емкость указывается в микрофарадах, знак m выполняет функцию десятичной точки.Ниже приведены примеры маркировки конденсаторов емкостью 4,7 мкФ и рабочим напряжением 10 В.

    C. Маркировка в две строки

    Если размеры корпуса позволяют, код размещается в двух строках: в верхней строке указывается номинальная емкость, во второй строке — рабочее напряжение. Емкость может быть указана непосредственно в микрофарадах (мкФ) или пикофарадах (ПФ) с количеством нулей (см. Метод B). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

    Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

    Конденсатор — простейший элемент с двумя металлическими пластинами, разделенными диэлектрическим веществом. Принцип действия этих устройств основан на способности сохранять электрический заряд: то есть заряжать и в нужный момент разряжать. Есть много способов записать на корпусе номинальную емкость этого устройства. Таким образом, маркировка конденсаторов может состоять только из цифр (три или четыре) или буквенно-цифрового кода, а также цветных индикаторов.В этой статье мы рассмотрим основные типы записей. контейнеры электрических параметров.

    Цифровая маркировка конденсатора

    При трехзначном кодировании первые две цифры указывают емкость устройства, а последняя указывает показатель степени по основанию 10, чтобы получить значение в пикофарадах. При такой записи последний символ «9» будет соответствовать «-1». Соответственно, если первая цифра — ноль (010), то емкость будет 1 пФ. Маркировка конденсаторов, состоящая из четырех цифр, аналогична тройной, только здесь первые три цифры означают емкость, а последняя — градус.Например, если запись имеет вид 1722, то это означает, что емкость прибора составляет 17,2 нФ (172 * 102 пФ = 17200 пФ или 17,2 нФ).

    Буквенно-цифровая маркировка конденсаторов

    При таком способе записи буква обозначает десятичную точку, а числа обозначают значение емкости. Этот способ кодирования может быть таким: 16 n означает 16 пФ (25 p — 25 пФ), 3n2 соответствует 3,2 нФ (6n6 — 6,6 нФ), μ35 соответственно 0,35 мкФ. Иногда при обозначении десятичной точки используется буква R.Таким образом, принято обозначать значение емкости в микрофарадах, однако, если перед буквой R стоит ноль, это означает емкость в пикофарадах. Пример: 0R7 соответствует 0,7 пФ (R67 — 0,67 мкФ), 5R6 означает 5,6 мкФ. Таким образом, осуществляется маркировка как импортных конденсаторов, так и конденсаторов отечественного производства. По способу записи различаются только планарные керамические устройства. Из-за их небольшого размера используются специальные цветовые коды, значение которых можно сравнить с таблицами, приведенными в технических характеристиках каждого такого элемента.Приводить их в этой статье бесполезно, так как каждый производитель использует свои методы цветовой кодировки.

    Маркировка керамических конденсаторов

    На устройства этого типа обычно наносится цифровая форма записи значения емкости. Например, метка 214 будет соответствовать значению 210 000 пикофарад (210 нФ и 0,21 мкФ). При значении 211 — 210 пФ, при 210 — 21 пФ. Помимо емкости на керамических конденсаторах указывают величину допуска. Этот параметр обозначается цифрами в процентах (например, ± 5%, 20%) или латинским алфавитом.Как исключение есть конденсаторы, у которых допуск закодирован русской буквой. Например, если прибор имеет маркировку M75S, это означает, что значение емкости будет 0,075 мкФ, а допуск будет составлять ± 10%. Чаще всего в бытовых приборах используются конденсаторы с допуском H, M, J, K. Эти символы всегда наносятся после номинальной емкости прибора. Например, 25нК, 120нМ, 450нДж. Таблицы расшифровки значений допустимых отклонений приведены в техническом описании каждого конденсатора.

    Часть 8 — Классификация диэлектриков

    Добро пожаловать в серию «Основы работы с конденсаторами», где мы расскажем вам обо всех особенностях микросхем конденсаторов — их свойствах, классификации продуктов, стандартах испытаний и сценариях использования — чтобы помочь вам принимать обоснованные решения о подходящие конденсаторы для ваших конкретных приложений. После описания линейных диэлектриков в нашей предыдущей статье давайте обсудим различные типы диэлектриков.

    Различные диэлектрические материалы имеют свои особенности и практическое применение.Вообще говоря, существует компромисс, заключающийся в том, что диэлектрики с более высокой диэлектрической проницаемостью K имеют большие потери и меньшую стабильность с точки зрения температуры, напряжения и времени. Диэлектрические составы классифицируются в промышленности по их температурному коэффициенту емкости (T CC ) или по тому, насколько емкость изменяется с температурой. Классы I и II обычно используются для изготовления конденсаторов с керамическими кристаллами, а класс III — для изготовления дисковых конденсаторов.

    Диэлектрики I класса

    Диэлектрики I класса состоят из несегнетоэлектрических линейных диэлектриков, которые обладают наиболее стабильными характеристиками и имеют диэлектрическую проницаемость менее 150.Класс I также включает подгруппу «расширенной» термокомпенсирующей керамики с небольшими добавками сегнетоэлектрических оксидов (таких как CaTiO 3 или SrTiO 3 ), которые демонстрируют почти линейные и предсказуемые температурные характеристики с диэлектрической проницаемостью до 500. И то, и другое. группы обычно используются в схемах, требующих стабильности конденсатора из-за таких характеристик, как:

    • Низкое или нулевое старение диэлектрической проницаемости
    • Низкие потери, при которых коэффициент рассеяния (DF) меньше 0.001 или менее 0,002 для керамики с расширенной температурной компенсацией
    • Незначительное или нулевое изменение емкости или диэлектрических потерь при изменении напряжения или частоты
    • Прогнозируемое линейное поведение при температуре в пределах заданных допусков

    Стандарт 198 ассоциации электронной промышленности (EIA) определяет буквенно-цифровой код для описания температурного коэффициента диэлектриков класса I следующим образом:

    Таблица 1. Обозначения EIA для диэлектриков класса I

    Наиболее распространенным диэлектриком класса I для конденсаторов микросхем является обозначение C0G (выделено красным текстом в таблице 1) и также известно как NP0 (отрицательный-положительный-ноль) в U.Спецификация S. Military (MIL) для плоского температурного коэффициента. Допустимое изменение емкости составляет ± 30 ppm / ° C в диапазоне рабочих температур от -55 ° C до 125 ° C.

    C0G стабилен по напряжению, имеет незначительное старение и имеет коэффициент DF не более 0,15% (что меньше, чем у диэлектриков X7R, описанных ниже). При работе на высоких частотах этот более низкий DF означает, что потери мощности в конденсаторе уменьшаются, и компонент менее подвержен перегреву. Как правило, диэлектрики C0G имеют значения K от 20 до 100 и используются для создания стабильных частей с более низкой емкостью в диапазоне от пикофарада (пФ) до нанофарада (нФ).Обычно они используются для схем фильтрации, балансировки и синхронизации.

    Рисунок 1. Температурные коэффициенты линейных диэлектриков

    Диэлектрики класса II

    Сегнетоэлектрические составы относятся к диэлектрикам класса II. Они обладают гораздо более высокими диэлектрическими постоянными, чем диэлектрики класса I, но обладают менее стабильными свойствами в отношении температуры, напряжения, частоты и времени. Разнообразный диапазон свойств сегнетоэлектрической керамики разделен на две подгруппы, определяемые температурными характеристиками:

    • «Стабильный Mid-K», класс II Диэлектрики имеют максимальный температурный коэффициент ± 15% от эталонного значения 25 ° C в диапазоне температур от -55 ° C до 125 ° C.Эти материалы обычно имеют диэлектрическую проницаемость от 600 до 4000 и соответствуют характеристикам EIA X7R (см. Таблицу 2 ниже).
    • Диэлектрики «High K» класса II имеют температурные коэффициенты, превышающие требования X7R. Эти составы с высоким содержанием K имеют диэлектрическую проницаемость от 4000 до 18000, но с очень крутыми температурными коэффициентами (из-за того, что точка Кюри смещена в сторону комнатной температуры для достижения максимальных диэлектрических постоянных).

    Таблица 2.Обозначения EIA для диэлектриков класса II

    X7R (выделен красным текстом в таблице 2) является одним из наиболее часто используемых диэлектриков класса II. «X» и «7» определяют нижний и верхний диапазон рабочих температур (т.е. -55 ° C и + 125 ° C соответственно). «R» обозначает стабильность в пределах температуры (т. Е. Допуск ± 15%). DF составляет максимум 2,5%, а скорость старения для X7R составляет от 1% до 2% за десятилетие (что означает, что при старении 1% 2% значения емкости будут потеряны между 10 часами и 1000 часами. ).X7R имеет высокое значение K, около 3000, и используется для значений емкости в диапазоне от нФ до микрофарад (мкФ). Благодаря этим характеристикам X7R обычно используются в приложениях для накопления энергии, сглаживания и фильтрации.

    Военная спецификация США для конденсаторов с керамическими микросхемами (MIL-C-55681) также попадает в подгруппу Stable Mid-K и обозначается как «BX». Фактически, характеристика BX аналогична обозначению X7R, если совокупный коэффициент напряжения и температурный коэффициент не превышают + 15% -25% ΔC.На рисунке 2 в качестве примера показаны некоторые типичные кривые температурного коэффициента класса II.

    Рисунок 2. Температурные коэффициенты сегнетоэлектрических диэлектриков

    Надеюсь, часть 8 дала вам лучшее понимание классификации диэлектриков и того, как их свойства могут повлиять на ваше конкретное применение. В части 9 мы подробно рассмотрим параметры испытаний конденсаторов и их электрические свойства. Также ознакомьтесь с нашими конденсаторами Knowles Precision Devices, чтобы ознакомиться с полным ассортиментом нашей продукции.


    Чтобы узнать больше о конденсаторах, загрузите нашу электронную книгу «Руководство по выбору правильного конденсатора для вашего конкретного применения».

    Чему в инженерной школе не учат о керамических конденсаторах

    Керамика — это наиболее широко используемые неполяризованные диэлектрики. Причина в том, что они предлагают привлекательное сочетание объемной эффективности, технологичности и стоимости. Некоторые приложения, такие как высокочастотные сигнальные цепи и высокоточные измерительные схемы, используют преимущества параметрических характеристик, доступных от других диэлектриков, но доступные в настоящее время керамические составы хорошо работают в широком диапазоне интерфейсов питания, связи сигналов, фильтрации и схемы синхронизации.

    Керамические конденсаторы

    имеют кодовое обозначение на паспортной табличке, которое указывает не только емкость, но и максимальное рабочее напряжение. Кроме того, он определяет тепловые характеристики конденсаторов в соответствии со стандартом 198 EIA (Electronic Industries Alliance). Стандарт делит тепловые характеристики конденсаторов на три класса.

    Устройства

    класса I характеризуются своими tempcos (температурные коэффициенты емкости), которые по семи обозначениям находятся в диапазоне от ± 30 ppm / ° C до ± 2500 ppm / ° C.Керамические составы с такими низкими колебаниями температуры имеют тенденцию проявлять низкие диэлектрические постоянные и, следовательно, не обеспечивают объемный КПД, близкий к керамике для конденсаторов класса II. Их температурная стабильность делает их привлекательными для приложений фильтрации и синхронизации, но такая точность не требуется для обхода источника питания, где более низкая стоимость на единицу емкости и больший объемный КПД делают диэлектрики класса II более практичными.

    Устройства

    класса II охватывают широкий диапазон температурных режимов.Разработчики должны рассмотреть полный спектр сценариев использования своих продуктов, прежде чем выбирать характеристики для обхода приложений. Например, некоторые OEM-производители десятилетиями использовали конденсаторы с рейтингом Z (низкотемпературный предел + 10 ° C) в потребительских, малых и домашних офисах, а также в некоторых коммерческих продуктах малой грузоподъемности. Но тенденция к отказу от стационарных установок продуктов означает, что операционная среда системы гораздо менее предсказуема, чем это было раньше. А с растущим сектором Интернета вещей возрастает вероятность выхода за пределы нижнего предела рабочей температуры конденсаторов с рейтингом Z.

    Точно так же байпасные конденсаторы для потребительских приложений часто демонстрируют большие колебания емкости в диапазоне рабочих температур. Например, диэлектрики Z5U могут потерять более половины своей емкости при комнатной температуре в сравнительно узком диапазоне рабочих температур. По мере того, как мы все активнее продвигаем функциональную электронику, обеспечение надежных шин питания становится все более важным. Экономия на байпасных конденсаторах может сэкономить несколько копеек, но может поставить под угрозу производительность продукта, что трудно диагностировать.

    Температура — не единственное рабочее состояние, которое влияет на емкость керамических устройств. Приложенное напряжение тоже. Увы, на паспортных табличках керамических конденсаторов нет обозначения, описывающего связь между ними. Ситуация усложняется тем, что конкретные обозначения, такие как X7R, не указывают на конкретные диэлектрические составы. Любая керамика, которая обеспечивает такое же или лучшее поведение емкости в зависимости от температуры, указанное в обозначении X7R, может быть маркирована как таковая.

    Различные составы, отвечающие этим критериям, будут иметь разное напряжение (коэффициенты напряжения емкости).Чтобы узнать, что вы получаете, вам нужно обратиться к паспорту конденсатора.

    Как правило, устройство с большей площадью основания будет показывать меньшее напряжение, чем устройство с меньшим форм-фактором. Также, как правило, конденсаторы с более высокими значениями максимального рабочего напряжения имеют более низкое напряжение, чем устройства с более низким напряжением. Но состав диэлектриков каждого производителя конденсаторов потенциально уникален для этого производителя. Недостаточно указать, например, конденсатор X7R емкостью 4,7 мкФ 10 В и занимаемую площадь 0805.Если вы будете измерять образцы от пяти разных производителей компонентов, вы можете наблюдать пять различных характеристик напряжения. Как минимум, вам необходимо проверить таблицы данных производителей, а также проверить AVL (список утвержденных поставщиков) вашей компании для каждого номера детали керамической крышки.

    Наконец, емкость керамических колпачков изменяется в зависимости от частоты. Таблица технических характеристик обычно дает указанную на паспортной табличке емкость на одной частоте — часто 1 кГц. Имея современные импульсные силовые каскады, работающие на частотах более 1 МГц, вы захотите ознакомиться с тем, как работают ваши байпасные конденсаторы в интересующем вас диапазоне.Общая тенденция отрицательная с увеличением частоты и может составлять более -10% при частоте переключения вашего источника питания.

    Подробнее: Советы по применению электролитических конденсаторов

    Вот чем отличаются диэлектрики MLCC

    Класс III: Z5U и Y5V

    Существует третий класс диэлектриков MLCC. Этот тип известен двумя вещами: очень высокой емкостью и температурной нестабильностью. Хотя они по-прежнему изготовлены из титаната бария, как и X7R и X5R, они намного менее стабильны, чем класс II.Например, Z5U может варьироваться до -56% в относительно узком диапазоне от 10 ° C до 85 ° C. Но как они могут быть такими разными, если сделаны из одних и тех же материалов? Что ж, именно здесь разные производители применяют свой опыт в области материаловедения. К материалу титаната бария добавляют определенные легирующие добавки, чтобы сгладить кривую относительной диэлектрической проницаемости в зависимости от температуры, так что она становится более стабильной при изменении температуры.

    С помощью нашего инструмента моделирования K-SIM вы можете изучить, как температура влияет на конденсаторы.В следующем примере мы сравниваем U2J, X7R и Z5U с аналогичными значениями емкости.

    Щелкните здесь, чтобы просмотреть этот проект K-SIM 3.0.

    Керамический конденсатор с физикой

    Температурные коэффициенты и допуск в диапазоне температур — это прекрасно, но полное объяснение следующих эффектов требует небольшого погружения в физику и даже химию самого диэлектрического материала. Присоединяйтесь, это станет интересным.

    Все дело в диполях

    Большая часть магии конденсатора заключается в самом диэлектрическом материале.Некоторые люди описывают диэлектрик как изолятор, предотвращающий короткое замыкание двух электродов. Это правда, но диэлектрики — это нечто большее. Одним словом, диполи. Быстрый поиск в Википедии покажет, что диэлектрик — это «электрический изолятор, который можно поляризовать» с приложением внешнего электрического поля. Кусок резины — отличный изолятор, но ужасный диэлектрик. Вы не можете поляризовать резину (очень эффективно). Именно наличие этих диполей в диэлектрическом материале обеспечивает эффективный конденсатор.KEMET использует два основных типа материалов для керамических диэлектриков. Готовы ли вы к некоторым фразам, которые вернут вас на урок химии? Во-первых, это титанат бария (BaTiO3), который используется для наших диэлектриков класса II / III. Среди прочего, это наши X5R и X7R. Далее идет цирконат кальция, который мы используем в диэлектриках класса I. Это были бы C0G и U2J. Здесь все становится действительно интересным: цирконат кальция является параэлектриком, а титанат бария — сегнетоэлектриком. Эти свойства имеют некоторое сходство с концепциями парамагнетизма и ферромагнетизма, которые вводятся на ранних уроках физики.

    В сегнетоэлектрических материалах диполи присутствуют постоянно и выстраиваются в электрическом поле. В параэлектрических материалах диполи появляются самопроизвольно выровненными при приложении внешнего электрического поля. Диполи, создаваемые диэлектриками класса II, являются результатом материалов и структуры самого титаната бария.

    После обжига и спекания микрокристаллическая структура титаната бария представляет собой гранецентрально-кубическую (ГЦК) структуру с атомом титана в середине решетки.По мере того как материал сжимается в размерах, атом титана смещается со своего положения в центре куба и создает разницу в плотности заряда по всей структуре. Это источник диполя в MLCC класса II. Весь керамический материал не поляризуется в одном и том же направлении равномерно, поскольку керамический материал выравнивается, границы зерен образуются из-за дефектов и различий в размерах частиц. Это формирует домены с общим направлением поляризации. Именно эти домены обычно выстраиваются в электрическом поле и вносят вклад в емкость.Это все из-за того смещенного атома титана, который находится в диэлектриках класса II.

    Проектирование и разработка керамических конденсаторов класса II

    Эффекты, вызванные сегнетоэлектрической природой диэлектриков класса II, сказываются на технике и схемах, в которых используются конденсаторы класса II. Так называемый эффект смещения постоянного тока, микрофонность и старение — все это связано с диполями, создаваемыми смещением атома титана в титанате бария.

    Изменение емкости в зависимости от приложенного напряжения

    Термины «смещение постоянного тока» и «коэффициент напряжения» относятся к потере емкости при подаче напряжения.Этот эффект возникает в сегнетоэлектрических материалах, таких как титанат бария, используемый в большинстве конденсаторов X5R и X7R. В зависимости от состава диэлектрика эти конденсаторы могут терять более 70% своей номинальной емкости под действием приложенного напряжения! Один из способов добиться меньших размеров кристалла при сохранении того же уровня емкости — уменьшить толщину диэлектрика. Это конструктивное различие приводит к более высокому напряжению, что приводит к большим потерям емкости.

    K-SIM

    KEMET позволяет моделировать напряжение керамического конденсатора с приложенным постоянным напряжением.Он также может отображать ожидаемое изменение емкости в зависимости от приложенного напряжения. Он доступен на ksim.kemet.com. Диэлектрики класса I не проявляют смещения постоянного тока, особенно те, которые созданы с цирконатом кальция.

    На приведенном выше графике K-SIM показано сравнение эффекта смещения постоянного тока между конденсаторами класса II и класса I.

    Щелкните здесь, чтобы увидеть проект K-SIM 3.0.

    Керамический конденсатор старения

    Старение — еще одна характеристика сегнетоэлектриков или диэлектриков классов II и III.При изготовлении керамического конденсатора диэлектрик подвергается воздействию температур более 1000 ° C. Для устройств с титанатом бария температура Кюри может находиться в диапазоне от 130 ° C до 150 ° C, в зависимости от конкретной рецептуры. Под воздействием температуры Кюри кристаллическая структура становится тетрагональной. После охлаждения кристаллическая структура керамики меняется на кубическую. По мере изменения этой структуры изменяется и диэлектрическая проницаемость материала.

    Со временем емкость будет продолжать уменьшаться.Можно сбросить этот цикл старения, «переустановив» материал, подвергнув его воздействию температуры Кюри, что обычно происходит во время оплавления. Как правило, вы можете найти скорость старения в каталоге для определенного типа деталей. Ниже приведен пример скорости старения:

    K-SIM 3.0 также включает калькулятор старения керамических конденсаторов.

    Например, свежеобжигаемый конденсатор X5R емкостью 22 мкФ будет иметь емкость 16,8 мкФ через 5000 часов или примерно полгода.

    Щелкните здесь, чтобы просмотреть K-SIM 3.0 Проект.

    Микрофон

    Наконец, кристаллическая структура титаната бария придает керамике ее пьезоэлектрические или микрофонные характеристики. Когда к диэлектрическому материалу прикладываются внешние напряжения, молекула титана колеблется взад и вперед. Электрические сигналы могут механически деформировать диэлектрик. Это искажение или движение создает характерный «жужжащий» шум, который испытывают некоторые клиенты при использовании керамических конденсаторов в своей конструкции. Это механическое искажение может резонировать с самой печатной платой, вызывая звук в слышимом диапазоне.

    Несмотря на простоту на первый взгляд, в физике и науке керамических конденсаторов многое происходит. Такие инструменты, как K-SIM 3.0, призваны облегчить выбор этих компонентов, позволяя моделировать эти эффекты при определенных условиях схемы.

    Tecate Group — Конденсаторы безопасности переменного тока

    Основные сведения о предохранительных конденсаторах X и Y

    Существует два основных типа предохранительных конденсаторов для подавления помех / сетевого фильтра переменного тока, типа X и типа Y. Эти конденсаторы предназначены для защиты от скачков и переходных процессов, а также для фильтрации электромагнитных помех.Конденсаторы безопасности зависят от схемы и служат для защиты схемы и пользователя. от скачков высокого напряжения путем шунтирования энергии импульса на землю. Одна из частых причин таких скачков напряжения — удары молнии.

    X Конденсаторы: Также известны как «линейные конденсаторы». Конденсаторы безопасности класса X используются между «живыми» проводами, по которым проходит входящий переменный ток. Эти конденсаторы используются в приложениях, где отказ конденсатора , а не , приведет к риску поражения электрическим током пользователя.Отказ конденсатора в этом положении обычно приводит к размыканию предохранителя или автоматического выключателя.

    Y Конденсаторы: Также известны как «конденсаторы между фазой и землей» (байпас линии). Конденсаторы типа Y используются в приложениях, где выход из строя конденсатора может привести к поражению пользователя электрическим током в случае потери заземления.

    Конденсаторы X / Y: Некоторые предохранительные конденсаторы имеют комбинированное обозначение, например X1 / Y2. Это просто означает, что конденсатор можно использовать как конденсатор X1 в подключении через линию или как конденсатор Y2 в части цепи между фазой и землей.Tecate предлагает многослойные керамические предохранительные конденсаторы X1 / Y2 и X2 / Y3.

    Типичная схема сетевого фильтра: Конденсаторы безопасности показаны на C1 и C2. C1 будет конденсатором типа X, подключенным к сети, а C2 будет конденсатором безопасности типа Y, между фазой и землей.

    Тестирование

    В процессе сертификации выполняются два ключевых теста: импульсный тест и тест на выносливость, показанные ниже. Это делается для проверки того, что конденсатор X / Y может выдержать 10 импульсов переменной полярности, за которыми следует 1000-часовой ресурсный тест на выносливость переменного тока.После завершения этих двух испытаний конденсаторы должны по-прежнему надежно работать в цепи в условиях переменного напряжения. Эти испытания являются частью сертификационных требований IEC 384-14.


    Импульсный тестовый сигнал

    T1 = 10 секунд, T2 = 700 секунд в телекоммуникационных приложениях (IEC 60950)

    T1 = 1,2 секунды, T2 = 500 секунд в приложениях питания от сети (IEC 60384-14)

    Это испытание на срок службы 1000 часов переменного тока, при котором детали подвергаются воздействию 425 В переменного тока / 60 Гц с импульсом 10000 В среднеквадратичного значения, один раз в час, длительностью 0 секунд.1 секунда.

    RJ11 (стандартная телефонная линия)

    • xDSL
    • VOIP телефоны
    • POS-терминалы
    • Приставки

    Фильтрует электромагнитные помехи между наконечником, кольцевыми линиями и землей. Шум телефонной линии должен быть отфильтрован согласно EN55024.

    Помимо фильтрации, защитные колпачки должны выдерживать любые импульсные напряжения, указанные в таблице номинальных напряжений выше.

    Конденсаторы

    X / Y также используются в цепи изоляции в приложениях RJ11, чтобы создать изоляцию между напряжением телефонной сети (TNV) и безопасным сверхнизким напряжением (SELV).

    В приложениях

    RJ11 используются предохранительные конденсаторы X2 / Y3 или X1 / Y2. X1 / Y2 предлагает лучшую защиту от перенапряжения по сравнению с X2 / Y3, но также обычно будет дороже.

    Источники питания переменного / постоянного тока

    Конденсаторы

    X / Y используются на входе или на стороне переменного тока источника питания для обеспечения фильтрации электромагнитных помех.

    Конденсаторы также должны выдерживать скачки напряжения, поскольку конденсаторы перекрывают изолирующий барьер.

    В источниках питания

    AC / DC обычно используются предохранительные конденсаторы X1 / Y2.

    Диэлектрические свойства конденсатора

    — RF Cafe

    Все время возникает вопрос, какой тип конденсатора использовать для конкретного заявление. В этой таблице приведены рекомендации для начинающих, но она никоим образом не является исчерпывающей. (DA = диэлектрическое поглощение)

    Неофициальные обозначения температурных коэффициентов конденсаторов следующие: Температурный коэффициент задается как «P» для положительного значения, «N» для отрицательного значения, за которым следует Трехзначное значение температурного коэффициента в ppm / ° C.Например, «N220», это -200 частей на миллион / ° C, а «P100» составляет +100 ppm / ° C. Единственным исключением в этой системе является «НПО», где вместо «О» «0», но довольно много людей используют «NP0». В любом случае «НПО» означает стабильное с температура.

    НПО Керамика

    (COG)

    <0,1% Жесткий допуск

    Высокая добротность, низкая K

    Маленький размер корпуса

    Недорого

    Хорошая стабильность

    Широкий диапазон значений

    Низкая индуктивность

    DA обычно низкий, но не может быть указан

    Ограничено небольшими значениями (10 нФ)

    Приложения с малыми потерями, синхронизацией и настройкой
    Монолитный

    Керамический

    (High K)

    > 0.2% Низкая индуктивность

    Широкий диапазон значений

    Плохая стабильность

    Плохая DA

    Высокий коэффициент напряжения

    X7R (BX)

    (титанат бария)

    Недорого

    Доступен низкий DA

    Широкий диапазон значений

    Меньший размер корпуса

    Повреждено температурой

    > + 85 ° C

    Слабые допуски

    Высокая индуктивность

    Цепи обхода, связи и частотной селективности
    Z5U и Y5V Наименьший размер корпуса

    Очень большие значения

    Повреждены напряжением

    > 25 WVDC

    Очень слабые допуски

    Байпас и муфта
    полистирол 0.001%

    до 0,02%

    Недорого

    Доступен низкий DA

    Широкий диапазон значений

    Хорошая стабильность

    Повреждено температурой

    > + 85 ° C

    Большой размер корпуса

    Высокая индуктивность

    Таймеры и фильтры
    Полипропилен 0,001%

    до 0,02%

    Недорого

    Доступен низкий DA

    Высокая диэлектрическая прочность

    Широкий диапазон значений

    Отрицательный ТК

    Повреждено температурой

    > + 105 ° C

    Большой размер корпуса

    Высокая индуктивность

    Стабильные генераторы и фильтры, схемы выборки и хранения, а также схемы обработки импульсов
    тефлон 0.003%

    до 0,02%

    Доступен низкий DA

    Превосходная стабильность

    Эксплуатация> + 125 ° C

    Широкий диапазон значений

    Относительно дорого

    Большой размер

    Высокая индуктивность

    Цепи синхронизации и формирования импульсов
    МОП 0,01% Good DA

    Small

    Эксплуатация при температуре выше + 125 ° C

    Низкая индуктивность

    Ограниченная доступность

    Доступна только для малых значений емкости

    Поликарбонат 0.1% Хорошая долговременная стабильность

    Низкая стоимость

    Широкий диапазон температур

    Большой размер

    DA ограничивает 8-битные приложения

    Высокая индуктивность

    Таймеры, фильтры и приложения для высоких температур окружающей среды
    Полиэстер 0,3%

    до 0,5%

    Средняя стабильность

    Низкая стоимость

    Широкий диапазон температур

    Низкая индуктивность (многослойная пленка)

    Самовосстановление

    Большой размер

    DA ограничивает 8-битные приложения

    Высокая индуктивность

    Байпас и муфта
    Слюда > 0.003% Низкие потери на ВЧ

    Низкая индуктивность

    Очень стабильная

    Доступны значения 1% или лучше

    Довольно большой

    Низкие значения (<10 нФ)

    Дорого

    Алюминий электролитический Высокая Большие значения

    Высокие токи

    Высокие напряжения

    Малые размеры

    Высокая утечка

    Обычно поляризованная

    Низкая стабильность

    Низкая точность

    Индуктивная

    Тантал электролитический Высокая Малый размер

    Большие значения

    Средняя индуктивность

    Высокая температура плавления

    Высокая диэлектрическая проницаемость прочность

    Хорошая пластичность

    Довольно высокая утечка

    Обычно поляризованная

    Дорого

    Низкая стабильность

    Низкая точность

    Связанные страницы по RF Cafe

    — Конденсаторы и Расчет емкости

    — Конденсатор Цветовые коды

    — Преобразование емкости

    — Конденсатор Диэлектрики

    — Стандартные значения конденсаторов

    — Продавцы конденсаторов

    — Благородное искусство разъединения

    Интернет-магазин керамических конденсаторов

    | Future Electronics

    Дополнительная информация о керамических конденсаторах…

    Что такое керамический конденсатор?

    Керамический конденсатор — это конденсатор с фиксированной величиной, в котором керамический материал действует как диэлектрик. Он состоит из двух или более чередующихся слоев керамики и металлического слоя, действующих как электроды. Состав керамического материала определяет электрические характеристики и, следовательно, области применения.

    Чаще всего используются дисковые конденсаторы, особенно многослойные керамические конденсаторы или многослойные микросхемные конденсаторы MLCC.

    Керамический конденсатор — Характеристики
    • Точные допуски и прецизионность — Керамические конденсаторы в основном используются для обеспечения высокой стабильности и в устройствах с низкими потерями. Эти устройства обеспечивают очень точные результаты, а также значения емкости этих конденсаторов стабильны по отношению к приложенному напряжению, частоте и температуре.
    • Преимущества небольшого размера — в случаях, когда требуется плотность упаковки для компонентов с высокой плотностью упаковки, эти устройства имеют большое преимущество по сравнению с другими конденсаторами.Например, многослойный керамический конденсатор «0402» имеет размеры около 0,4 мм x 0,2 мм.
    • Высокая мощность и высокое напряжение. Керамические конденсаторы изготовлены таким образом, чтобы выдерживать более высокие напряжения, и такие конденсаторы являются силовыми керамическими конденсаторами. Эти конденсаторы намного больше, чем те, что используются на печатных платах. У них также есть специализированные клеммы, используемые для более безопасного подключения источника высокого напряжения. Керамические конденсаторы Power выдерживают напряжения в диапазоне от 2 кВ до 100 кВ.

    Керамические конденсаторы делятся на три класса применения:

    Керамические конденсаторы класса 1 обеспечивают высокую стабильность и низкие потери для применения в резонансных цепях.. Они очень точны, а значение емкости стабильно в зависимости от приложенного напряжения, температуры и частоты.

    Конденсаторы серии NP0 обладают емкостной термической стабильностью ± 0,54% в общем диапазоне температур от -55 до +125 ° C.

    Допуски номинальной емкости могут составлять всего 1%.

    Обычно в качестве диэлектриков используются титанат магния для положительного температурного коэффициента или титанат кальция для конденсаторов с отрицательным температурным коэффициентом.Используя комбинации этих и других соединений, можно получить диэлектрическую проницаемость от 5 до 150.

    Также можно получить температурные коэффициенты от +40 до -5000 ppm / C.

    Конденсаторы

    класса 1 также обладают лучшими характеристиками в отношении коэффициента рассеяния. Это может быть важно во многих приложениях. Типичный показатель может составлять 0,15%. Также возможно получить конденсаторы класса 1 с очень высокой точностью (~ 1%), а не более обычные версии с допуском 5% или 10%.Конденсаторы высшего класса точности 1 имеют обозначение C0G или NP0.

    Конденсаторы класса 2 имеют высокую емкость на единицу объема и используются для менее чувствительных приложений.

    • Диапазон температур: от -50 ° C до + 85 ° C
    • Коэффициент рассеяния: 2,5%.
    • Точность: от средней до плохой

    Конденсаторы класса 2 обеспечивают лучшую производительность в отношении объемного КПД. Обычно они используются для развязки, соединения и байпаса, где точность не имеет первостепенного значения.

    Керамические конденсаторы класса 3 обеспечивают по-прежнему высокий объемный КПД за счет низкой точности и стабильности, а также низкого коэффициента рассеяния.

    Они также обычно не выдерживают высокого напряжения.

    В качестве диэлектрика часто используется титанат бария.

    • Изменит свою емкость на -22% до + 50%
    • Диапазон температур от + 10 ° C до + 55 ° C.
    • Коэффициент рассеяния: от 3 до 5%.
    • У него будет довольно низкая точность (обычно 20% или -20 / + 80%).

    В результате керамические конденсаторы класса 3 обычно используются в качестве развязки или в других источниках питания, где точность не является проблемой.

    Керамические конденсаторы сейчас доступны в трех основных типах, хотя доступны и другие стили:
    • Керамические конденсаторы с выводным диском для монтажа в сквозные отверстия, покрытые смолой
    • Многослойные керамические конденсаторы для поверхностного монтажа MLCCs
    • Специальная микроволновая печь без свинцовых керамических дисков конденсаторы, которые предназначены для установки в разъем на печатной плате и припаяны на месте.

    Керамические конденсаторы SMD / SMT

    Подавляющее большинство керамических конденсаторов, которые используются сегодня, имеют форму устройств для поверхностного монтажа — SMT.

    Керамические конденсаторы SMD / SMT имеют форму прямоугольного блока или куба. Сам конденсатор состоит из керамического диэлектрика, в котором содержится несколько чередующихся электродов из драгоценных металлов. Эта структура обеспечивает высокую емкость на единицу объема.

    Обозначение упаковки керамического конденсатора
    Обозначение упаковки Размер (мм) Размер (дюймы)
    1812 4.6 x 3,0 0,18 x 0,12
    1206 3,0 x 1,5 0,12 x 0,06
    0805 2,0 x 1,3 0,08 x 0,05
    0603 1,5 x 0,8 0,06 x 0,03
    0402 1,0 x 0,5 0,04 x 0,02
    0201 0,6 x 0,3 0,02 x 0,01

    Применение керамических конденсаторов

    Применение керамики конденсаторы включают в себя передающие станции, индукционные печи, источники питания высоковольтных лазеров, силовые выключатели, устройства с высокой плотностью размещения, печатные платы, преобразователи постоянного тока в постоянный и т.

    Оставить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *