ДИСКРЕТНЫЙ РЕГУЛЯТОР ГРОМКОСТИ
Традиционно для регулировки уровня звука используют переменный резистор — потенциометр, где изменение сопротивления реализуется с помощью электрического контакта, что скользит по резистивному слою. Примером хорошо известных регуляторов аудио-класса являются японские ALPS. Однако мало кто знает, что ими выпускаются и дискретные ступенчатые регуляторы, которые ставят в том числе в high-end аппаратуру. Это устройство состоит из серии постоянных резисторов, которые переключаются по очереди.
Несмотря на более сложное устройство и конструкцию, они имеют определённые преимущества по сравнению с плавно крутящимся потенциометром, это улучшение качества электрического контакта, в сравнении с ползунком. Улучшенная согласованность между отдельными аудиоканалами и они менее чувствительны к пыли и потертостям. В таком РГ практически исключается треск и шорох. Дискретный регулятор уровня звука практически не изменяет частотную характеристику при регулировании громкости, что положительно сказывается на линейности всего усилительного тракта, на всех уровнях громкости. Цена на них, естественно, гораздо выше, чем на обычные, но мы и не собираемся их покупать, а попробуем сделать сами.
Схема дискретного регулятора громкости
Три варианта схем ДРГ
Выше показаны три практические схемы такого регулятора, которую можно собрать самому. Сколько выбрать ступеней переключения — решайте сами. На практике достаточно 5-10. Резисторы желательно брать качественные, на мощность 0,125-0,25 ватт.
Естественно нужен сдвоенный переключатель, чтоб одновременно регулировалась громкость на обеих каналах стереоусилителя. Сам дискретный переключатель рекомендуется экранировать, чтоб свести уровень электромагнитных помех к нулю. Если вы взяли переключатель со слишком тугим ходом (чем грешат многие советские), разберите его и ослабьте пружину. Заодно почистите контакты мягкой ученической резинкой.
Форум по аудиотехнике
Дискретный регулятор громкости. Цифровой кнопочный потенциометр — регулятор громкости
Регулятор громкости — это устройство, позволяющее изменять величину электрического напряжения на выходе при воздействии на органы управления, либо при поступлении управляющего сигнала. Используется как в составе электронной аппаратуры, так и в виде отдельного изделия.
Регулятор громкости может быть как регулятором напряжения, так и регулятором тока, ведь его задача регулировать выходную мощность усилителя на какой то нагрузке, т.е., если регулятор представляет из себя переменный резистор на входе усилителя, то он регулирует напряжение которое поступает на дифференциальный каскад усилителя, тем самым уменьшая или ограничивая до максимального уровень входного сигнала. Если регулировка выходной мощности осуществляется на выходе усилителя, к примеру, добавочное сопротивление, включаемое последовательно с нагрузкой, то это уже будет регулятором тока, так как без нагрузки, напряжение на выходе усилителя будет неизменным. Так же можно назвать регулятором тока — резистор в цепи обратной связи, который реализован при помощи датчика тока — резистора, последовательно с нагрузкой которого, снимается сигнал и подаётся на инвертирующий вход усилителя.
Таким образом получается, что переменный резистор может выполнять роль и регулятора тока и регулятора напряжения в зависимости от того где он включён.
Так же можно назвать регулятором тока и регулятор громкости в усилителе ИТУН, который стоит на входе схемы. Он регулирует входное напряжение, но благодаря обратной связи по току (с датчика тока – добавочного резистора при прохождении тока снимается напряжение, чем выше ток, который по нему проходит, тем больше на этом резисторе падение напряжения) сам регулятор громкости не регулирует ток в нагрузке, но далее по схеме осуществляется связь по току, к примеру если выкинуть из ИТУНа этот резистор, то связь будет только по напряжению и регулятор громкости будет регулятором напряжения *в чистом виде*. Это как тумблер и электромагнитное реле, сам по себе тумблер не может пропустить большие токи, и он подаёт сигнал реле с мощными контактными группами, а стоят ли последовательно с этими группами контактов добавочные резисторы — тумблеру *глубоко и с большой высоты*.
Регулятором громкости служит переменный резистор, в стерео усилителях, это сдвоенный переменный резистор. На первых двух рисунках представлен внешний вид сдвоенного переменного резистора. Сопротивление переменного резистора может быть в пределах от 20 до 100 кОм, это зависит от конструкции усилителя. На третьем и четвёртом рисунках изображена схема включения регулятора (один канал) и соответствие выводов к схеме. Пятый рисунок показывает, как надо правильно припаять провода.
Регулятором тока может быть магнитный шунт в трансформаторе, такой вид регулировки выходной мощности применяется в сварочных аппаратах для ручной дуговой сварки и как ни странно в довольно дорогих ламповых усилителях.
Так же регулятором громкости может выступать дроссель на входе с изменяющейся индуктивностью (ферритовый сердечник перемещается по резьбе в виде винта), так часто было устроено в старых ламповых радиолах, и по сути там звук никогда не хрипел при повороте ручки, так как механически никакого контакта не было, а значит и стираться было нечему.
Ещё были регуляторы громкости, по средству подмагничивания звуковой катушки в самом динамике. Было это очень просто и эффективно, такой регулятор громкости можешь собрать самому, только придётся делать собственную магнитную систему. Принцип работы простой, вместо постоянного магнита использовался электромагнит, а подаваемое на его обмотку напряжение создавало необходимый ток, который создавал магнитное поле, чем больше было это магнитное поле, тем больше была чувствительность у динамической головки, следовательно чем меньшее напряжение подавалось на обмотку электромагнита — тем тише играл динамик, причём независимо от подводимой к звуковой катушке мощности. В дальнейшем от такого регулятора отказались, и стали делать регуляторы на переменных резисторах по входу схемы, так проще. Но динамики то такие ещё оставались (без постоянных магнитов, с двумя катушками), и их начали подключать к силовым трансформаторам последовательно с нитями накала радиоламп, таким способом (методом) убивали двух, если не трёх зайцев.
Традиционно для регулировки уровня звука используют переменный резистор — потенциометр , где изменение сопротивления реализуется с помощью электрического контакта, что скользит по резистивному слою. Примером хорошо известных регуляторов аудио-класса являются японские ALPS . Однако мало кто знает, что ими выпускаются и дискретные ступенчатые регуляторы, которые ставят в том числе в high-end аппаратуру. Это устройство состоит из серии постоянных резисторов, которые переключаются по очереди.
Несмотря на более сложное устройство и конструкцию, они имеют определённые преимущества по сравнению с плавно крутящимся потенциометром, это улучшение качества электрического контакта, в сравнении с ползунком. Улучшенная согласованность между отдельными аудиоканалами и они менее чувствительны к пыли и потертостям. В таком РГ практически исключается треск и шорох. Дискретный регулятор уровня звука практически не изменяет частотную характеристику при регулировании громкости, что положительно сказывается на линейности всего усилительного тракта, на всех уровнях громкости. Цена на них, естественно, гораздо выше, чем на обычные, но мы и не собираемся их покупать, а попробуем сделать сами.
Схема дискретного регулятора громкости
Три варианта схем ДРГ
Выше показаны три практические схемы такого регулятора, которую можно собрать самому. Сколько выбрать ступеней переключения — решайте сами. На практике достаточно 5-10. Резисторы желательно брать качественные, на мощность 0,125-0,25 ватт.
Естественно нужен сдвоенный переключатель, чтоб одновременно регулировалась громкость на обеих каналах стереоусилителя. Сам дискретный переключатель рекомендуется экранировать, чтоб свести уровень электромагнитных помех к нулю. Если вы взяли переключатель со слишком тугим ходом (чем грешат многие советские), разберите его и ослабьте пружину. Заодно почистите контакты мягкой ученической резинкой.
Схема кнопочного потенциометра (сдвоенного) с цифровым управлением построена на основе специализированной микросхемы DS1267 от компании Dallas. В этом проекте используется версия 100к. Для управления ей служит микроконтроллер ATTiny13, выбранный из-за небольших размеров. Потенциометр позволяет регулировать максимум 256 шагов, однако можно применить ограниченное значение до 128 шагов. Этот показатель свободно устанавливается изменяя исходный код программы. На плате предусмотрен также вывод поляризации системы DS1267, так называемые «VBias», который можно поляризировать отрицательным напряжением, когда требуется перемещение бОльших чем 0,5 В амплитуд сигнала.
В схеме регулятора применены в основном SMD элементы, чтобы максимально уменьшить его размеры. Плата с успехом может быть встроенная в любую часть усилителя звука, так как ее высота всего 1 см. Регулировка громкости осуществляется с помощью двух миниатюрных кнопок (микриков), припаянных непосредственно на плату. Светодиод сигнализирует своим миганием о процессе нажатия и регулировании.
Схема электрическая кнопочного регулятора
Схема принципиальная кнопочного регулятора потенциометра
Основой схемы является микроконтроллер U1 (ATTiny13), работающий на внутреннем источнике синхронизации (внутреннем генераторе). По трех-проводной шине он управляет состоянием U2 (DS1267). Выходами потенциометров будут разъемы P1 и P2. Диод D1 вместе с резистором, ограничивающим его ток, выполняет функцию индикатора работы шины. Короткой вспышкой сообщает о факте отправки данных в м/с U2. Конденсатор C1 (100nF) представляет собой фильтр питания.
Изготовление конструкции
Схема паяется на печатной плате из фольгированного стеклотекстолита. Плата не содержит перемычек, а два кажущихся разрыва в цепи массы будут местами пайки корпуса кнопок. Монтаж следует начать с припаивания интегральных микросхем, потому что это делается гораздо удобнее, когда нет выступающих элементов от другой стороны. Порядок пайки остальных элементов произвольный. Схему необходимо питать напряжением 5 В, желательно стабилизированным.
Готовые для пайки платы
Определенным неудобством является программирование микроконтроллера, так как здесь не предусмотрено разъема программирования. Чтобы запрограммировать МК U1 — подпаяйте аккуратно к его выводам тонкие провода, которые затем будут подключены к программатору. Вывод VB (VBias) соединен с массой схемы, однако, если необходимо подключение этого входа к другой полярности, просто вырежьте фрагмент дорожки между выводами на плате. Когда потенциометр работает для регулировки громкости предусилителя и амплитуда сигнала, что на него подается не превышает 0,5 вольта, то выход VB следует поляризировать относительно отрицательного напряжения -5 В относительно массы. Это обеспечит правильную передачу аналогового сигнала.
кнопочный регулятор — потенциометр
Следует иметь в виду, что потенциометр имеет максимально допустимое напряжение, которое может присутствовать на любом из контактов (относительно GND) от -0.1 до +7 В для Vb = 0 и от -5 до +7 В для Vb = -5 В. При эксплуатации регулятора следует позаботиться о том, чтобы не превышать указанные допустимые границы напряжений. Когда вы питаете схему от отдельного БП, необходимо убедиться, что масса потенциометра (GND) и масса схемы назначения связаны между собой.
Фьюзы биты
На рисунке показаны настройки фузов для микроконтроллера ATTiny13
Управление регулятором
Работа со схемой проста. Изменение громкости осуществляется нажатием кнопок S1 и S2. Удержание нажатой кнопки вызывает плавное перемещение воображаемого ползунка потенциометра в нужном направлении. Светодиод D1 сигнализирует своим миганием факт изменения положения ползунка. Когда он достигнет одной из крайних позиций — индикатор перестанет мигать, хотя вы и продолжите держать нажатой кнопку.
Подключение регулятора
Прошивка и плата
Все необходимые для самостоятельной сборки файлы вы можете .
Для изменения настройки звука существуют специальные регуляторы. По частотности их делят на активные, а также пассивные. Дополнительно разделение осуществляется по типу настройки. Самыми распространенными принято считать цифровые регуляторы. Создаются они под разные виды усилителей и имеют свою канальность. Чтобы понять принцип работы данных приборов, следует подробно разобраться в их устройстве.
Как устроен регулятор?
Важным элементом регулятора принято считать микросхемы. По своим параметрам они довольно сильно могут отличаться. Если рассматривать профессиональные модели, то там имеется до 100 различных контактов. Дополнительно в регуляторе наличествует контроллер, который занимается изменением предельной частоты прибора. С помехами в устройстве справляются конденсаторы. В простой модели их имеется до четырех. Обычно можно встретить в регуляторе Их частотность, как правило, указывается в маркировке.
В профессиональных моделях конденсаторы устанавливаются электролитические. Проводимость у них гораздо лучше, но стоят они дорого. Резисторов в стандартной схеме можно встретить до десяти единиц. Отличаются они между собой по предельному сопротивлению. Самые простые модели способны похвастаться параметром в 2 Ома. Резисторы с такими показателями встречаются довольно часто. Наконец, последним элементом регулятора следует назвать замыкающий механизм. Чаще всего он представлен в виде кнопки, однако есть модели со сложной системой индикации.
Применение электронной модели
Электронный регулятор громкости устанавливается практически на всех звуковых девайсах. Изменять колебания при этом можно различными способами. Чаще всего можно встретить плавные контроллеры, которые позволяют очень тонко настаивать звук, однако есть и скачковые системы. В таком случае изменение параметров осуществляется пошагово и резко. В студиях звукозаписей имеются многоканальные устройства для микшеров. Они позволяют регулировать множество эффектов. Если рассматривать комбинированный электронный регулятор громкости, то многое в данном случае зависит от акустической системы.
Самостоятельная сборка регулятора
Для того чтобы собрать регулятор громкости своими руками для усилителя средней мощности, понадобится микросхема как минимум на 8 бит. Транзисторы для нее лучше всего использовать биполярные. Обычно они в магазине представлены с маркировкой «2НН». Показатель сопротивления у них в среднем колеблется в районе 3 Ом. Контроллеры в основном побираются линейные. Они позволяют довольно плавно изменять предельную частоту. При этом амплитуда помех будет зависеть исключительно от конденсаторов.
Для обычного регулятора будет достаточно установить их три штуки. Светодиоды могут использоваться только на пару с выпрямителями. В некоторых случаях, для того чтобы сделать регулятор громкости своими руками, дополнительно в начале цепи советуют использовать стабилитрон. Данный элемент значительно повышает работоспособность резисторов и регулятора в целом.
Как устроены регуляторы для наушников?
Регулятор громкости для наушников имеет только два конденсатора. Отличительной особенностью таких устройств можно назвать слабую пропускную способность. Сигнал во многих моделях идет долго. Связано это с тем, что транзисторы не рассчитаны на большую мощность. В некоторых моделях регуляторов устанавливаются резонаторы. Существуют они разных типов и имеют свои параметры. Наиболее часто можно встретить Параметр сопротивления у них доходит до 4 Ом. В свою очередь ферритовые аналоги могут выдерживать только 2 Ом. Соединяется регулятор громкости для наушников с динамиком при помощи дросселя.
Схема регулятора тембра
Регуляторы тембра и громкости контроллер имеют операционный. Подходит он для усилителей разной мощности. Диоды в данном случае устанавливаются довольно редко. Выпрямители есть только в моделях, где транзисторов менее трех штук. Резисторы в приборах включаются с маркировкой «ВС». у них довольно хорошая, но они чувствительны к высоким температурам. Конденсаторы во многих моделях стоят биполярные. Предельное сопротивление регуляторы тембра и громкости способны выдерживать на уровне 3 Ом. В стандартной модели гнездо имеется «РРА» для обычного кольца. Дроссель с резистором соединяются только через преобразователь.
Как настроить регулятор в «Виндовс»?
Осуществить настройку регулятора довольно просто. Находится значок данного элемента на панели «Пуск». Нажав на него один раз левой клавишей, можно изменять предельную частоту. В некоторых случаях пользователь не видит указанный значок. Происходит это из-за того, что регулятор громкости Windows не добавлен в область уведомлений. Обычно он переносится в автоматическом режиме операционной системой. Однако данное действие можно выполнить и вручную через панель управления. Также причина может заключаться в отсутствии файла Sndvol.exe. В таком случае его копию нужно сохранить на компьютере.
Параметры стереорегуляторов
Коэффициент шума у них находится в районе 70 дБ. Параметр нелинейного искажения обычно составляет 0.001 %. Диапазон рабочих частот колеблется от 0 до 10000 Гц. Входное напряжение устройства составляет 0.5 В. Во многих моделях контроллеры устанавливаются реверсивные. Выходное напряжение при этом должно равняться не более 0.5 В. Стабилизатор стерео регулятор громкости обычно имеет импульсный. Питание прибора осуществляется через блок с напряжением до 15 В.
Модели микрофонов с регуляторами
Микрофон с регулятором громкости является на сегодняшний день распространенным девайсом, а микросхема в нем обычно имеется серии «МК22». Пропускная способность у моделей довольно высокая, сигнал проходит хорошо. В стандартной схеме диодов имеется два. Один из них, как правило, располагается возле запирающего механизма. Конденсаторы устанавливаются с различными параметрами. Это необходимо для того, чтобы контролировать частоты различной величины.
Сопротивление у них в среднем выдерживается до 4 Ом. Конденсаторы в регуляторе должны быть только электролитические. В данном случае это даст большой прирост к чувствительности прибора. Резисторов в стандартной схеме имеется до восьми единиц. Ими сопротивление в среднем выдерживается на уровне 3 Ом. Непосредственно запирающий механизм регулятор громкости имеет в виде контроллера.
Схема кнопочного регулятора
Кнопочный регулятор громкости (схема показана ниже) отличается от других устройств тем, что диоды у него располагаются попарно. В результате микросхема довольно быстро передает сигнал на резистор. Выпрямители во многих моделях отсутствуют, и это следует учитывать. Конденсаторов в стандартной схеме предусмотрено до трех единиц. Сопротивление у них максимум выдерживается на уровне 2 Ом. Коэффициент шума у таких моделей в среднем колеблется в районе 50 дБ.
Показатель нелинейного искажения, в свою очередь, равен 0.002 %. Из недостатков следует отметить определенные проблемы с неравномерностью. Связано это с малым диапазоном рабочих частот. В некоторых случаях имеет смысл устанавливать усилитель с напряжением более 15 В. В таком случае параметры звука повысятся.
Пассивные регуляторы
Пассивный регулятор громкости отличается от прочих устройств тем, что он производится многоканальным. Сопротивление им в среднем выдерживается на уровне 3 Ом. Запирающие механизмы устанавливаются стандартные. В свою очередь контроллеры в них имеются исключительно цифровые. Благодаря этому синхронизировать стереозвук в приборе получается более точно. Таким образом, проблема с неравномерностью отпадает сама собой.
Резисторы во многих моделях имеются подстроечного типа. Отличительной особенностью профессиональных моделей считается наличие резонатора. Выходное напряжение данного элемента способно доходить до 8 В. Чаще всего в регуляторах они устанавливаются кварцевого типа. Конденсаторов в стандартной схеме имеется два. Микросхема в системе рассчитана на 8 бит.
Применение активных моделей
Активный регулятор громкости, как правило, применяется для приемников, мощность которых не превышает 5 В. Резисторы в нем имеются с сопротивлением около 4 Ом. Резонаторы устанавливаются кварцевые. Отличительной особенностью данных регуляторов можно назвать сигнальные реле. Дроссели, как правило, в приборах не используются. Усилители уславливаются только операционного типа. В связи с этим необходимость в выпрямителях отсутствует. Системы индикации в приборах можно встретить самые разнообразные. Для мобильных устройств такой регулятор громкости не подходит.
Схема комбинированного регулятора
Комбинированный регулятор громкости (схема показана ниже) конденсаторов имеет не более пяти штук. Транзисторы при этом могут использоваться только биполярного типа. Пропускная способность у них довольно высокая. Сопротивление в среднем выдерживается на уровне 3 Ом. Транзисторы линейные в системе предусмотрены. Стабилизаторы уславливаются только в профессиональных моделях. Предельная частота у них не превышает 4000 Гц.
Как устроен тонкомпенсированный регулятор?
Регуляторы данного типа в основном используются в магнитолах. Система их устройства довольно простая. Микросхема в приборе устанавливается серии «КР2». Непосредственно контроллер имеется линейного типа. Транзистор используется только один. Располагается он рядом с микросхемой.
Конденсаторов всего имеется два. Чаще всего можно встретить именно электролитический тип. они способны выдерживать на уровне 16 В. Однако выходной сигнал устройством воспринимается довольно плохо. Резисторов в регуляторе имеется не более пяти. Все они устанавливаются с предельной частотой около 3000 Гц.
Профессиональные модели
Профессиональные регуляторы микросхемы имеют многоканальные. Учитывая это, для нормальной работы им требуется Находится он, как правило, рядом с конденсатором. Рассчитана система на нагрузку 8 бит. Замыкающий механизм в устройстве установлен обычный. Коэффициент шума прибора максимум достигает 55 дБ. Показатель нелинейного искажения в некоторых случаях способен превышать 0.001 %.
Рабочая частота в среднем колеблется в районе 2000 Гц. С равномерностью такие схемы проблемы испытывают редко. Выходное напряжение прибора равняется 0.5 В. Резисторная развязка сопротивление максимум выдерживает 3 Ом. Преобразователи в системе предусмотрены, а крепятся они к плате только через дроссель. Конденсаторов в стандартной модели имеется около трех единиц. Их вполне достаточно, чтобы справляться с различными сигналами. Возле гнезда устройства обязательно располагается
Электронные регуляторы тембра
Все электронные регуляторы отличаются компактными размерами, и предельное напряжение выдерживают большое. В данном случае они не способны работать без усилителя. Стабилизаторы, как правило, применяются только линейные. Цепи диодов располагаются сразу за платой.
Искажения устройством подавляются за счет резисторов. С предельной частотой регулятору помогают справиться стабилизаторы. Выпрямители устанавливаются крайне редко. Энергопотребление таких устройств высокое, а в преобразователях они не нуждаются. Увидеть указанные приборы на микшерах можно довольно часто.
Volume2
— альтернативный регулятор громкости, который полностью заменяет стандартный регулятор громкости Windows и обеспечивает простую настройку горячих клавиш и событий мыши.
Системные требования:
Windows XP | Vista | 7 | 8 | 8.1 | 10
Торрент Регулятор громкости для Windows — Volume2 1.1.6.409 Beta + Portable подробно:
Особенности программы:
·Управление громкостью при вращении колеса мыши над:
— иконкой в трее;
— панелью задач;
— треем;
— рабочим столом;
— заголовком окна.
·Управление громкостью, движением мыши у края экрана монитора.
·Возможность отключения звука одним кликом.
·Управление яркостью экрана.
·Поддержка «горячих» клавиш.
·Позволяет задать шаг изменения громкости звука, добавить звуковой эффект при изменении громкости.
·Наличие OSD (экранное меню).
·Настройка событий мыши.
·Наличие всплывающих подсказок.
·Есть простой планировщик задач, который позволяет запускать приложения или управлять громкостью.
·Возможность изменять общую громкость всей системы, активного приложения или просто конкретной программы.
·Позволяет выбирать красивые скины индикатора звука в трее и изменять вид всплывающего окна изменения громкости.
Изменения в версии:
·Исправлено управление балансом Windows 10
·Исправлен сброс баланса в Windows XP
Особенности Portable:
Портативная версия программы предоставлена разработчиком, работает без инсталляции на компьютер.
Скриншоты Регулятор громкости для Windows — Volume2 1.1.6.409 Beta + Portable торрент:
Что представляют собой потенциометры и где они используются — Радиодеталь78.рф
Большинство пользователей современных гаджетов, компьютерной и бытовой техники знает, что в этих устройствах содержится большое количество электронных компонентов. Наша компания купить радиодетали в СПБ, список которых и ориентировочные цены размещены на сайте. Кроме того, для удобства определения типа и марки изделия нами размещены их фотографии.
Наиболее узнаваемым электронным компонентом является потенциометр (резистор). Кто не увеличивал или не уменьшал громкость звучания радиоприемника или телевизора, вращая регулятор на панели настроек? Вот эта ручка и связана с потенциометром — напрямую или через промежуточный элемент. Словом, потенциометр используется для осуществления настройки и регулировки, то есть обладает переменными характеристиками.
Резистор представляет собой переменное сопротивление, способное изменять величину и служащее для регулировки напряжения или силы тока в электрической цепи.
Различия между потенциометрами
Какими бывают, используемые в электронной технике, резисторы? Это:
- движковый потенциометр, в котором подвижный контакт перемещается по резистивной дорожке;
- дискретный переменный резистор, в котором контактный переключатель подключает необходимый постоянный резистор к электрической цепи.
В современной технике все чаще встречаются электронные потенциометры, представляющие собой устройство на базе микросхемы, как правило, с пошаговой системой изменения сопротивления, что схоже с дискретным резистором.
Потенциометры различаются по конструкции и количеству переменных резисторов в одном корпусе, полосе, величине и точности сопротивления, мощности и другим электрическим характеристикам. Поэтому у каждого такого электронного компонента есть наименование и маркировка, нанесенная на сам элемент. Именно по этим сведениям возможно определить, о каком устройстве имеется дело и насколько оно востребовано.
Кроме потенциометров мы купим радиодетали и других видов по очень достойной цене. Чтобы получить всю дополнительную информацию, достаточно позвонить в офис нашей компании.
По назначению дискретные резисторы делятся на резисторы — Студопедия
— общего назначения,
— прецизионные,
— высокочастотные,
— высоковольтные и
— высокоомные.
По постоянству значения сопротивления резисторы подразделяются на постоянные, переменные и специальные. Постоянные резисторы имеют фиксированную величину сопротивления, у переменных резисторов предусмотрена возможность изменения сопротивления в процессе эксплуатации, сопротивление специальных резисторов изменяется под действием внешних факторов: протекающего тока или приложенного напряжения (варисторы), температуры (терморезисторы), освещения (фоторезисторы) и т.д.
По виду токопроводящего элемента резисторы делятся на проволочные и непроволочные.
По эксплуатационным характеристикам дискретные резисторы делятся на термостойкие, влагостойкие, вибро- и ударопрочные, высоконадежные и т.д.
Резисторы гибридных ИМС изготавливаются в виде резистивных пленок, наносимых на поверхность подложки. Эти резисторы могут быть тонкопленочными (толщина пленки порядка 1 мкм) и толстопленочными (толщина пленки порядка 20 мкм).
Резисторы полупроводниковых ИМС представляют собой тонкую (толщиной 2-3 мкм) локальную область полупроводника, изолированную от подложки и защищенную слоем SiO2.
Основным элементом конструкции постоянного резистора является резистивный элемент, который может быть либо пленочным, либо объемным. Величина объемного сопротивления материала определяется количеством свободных носителей заряда в материале, температурой, напряженностью поля и т.д. и определяется известным соотношением
(2.1) |
где r — удельное электрическое сопротивление материала,
l — длина резистивного слоя,
s — площадь поперечного сечения резистивного слоя.
В чистых металлах всегда имеется большое количество свободных электронов, поэтому они имеют малую величину r и для изготовления резисторов не применяются. Для изготовления проволочных резисторов применяют сплавы никеля, хрома и т.д., имеющие большую величину r.
Для расчета сопротивления тонких пленок пользуются понятием удельного поверхностного сопротивления rs , под которым понимается сопротивление тонкой пленки, имеющей в плане форму квадрата. Величина rs связана с величиной r и легко может быть получена из 2.1, если принять в ней s = dw , где w — ширина резистивной пленки, d — толщина резистивной пленки.
Тогда
(2.2) |
где
— удельное поверхностное сопротивление, зависящее от толщины пленки d и имеющее размерность Ом/ (Ом/квадрат). Если l = w, то R=rs, причем величина сопротивления не зависит от размеров сторон
На рис.2.1 представлено устройство пленочного резистора. На диэлектрическое цилиндрическое основание 1 нанесена резистивная пленка 2. На торцы цилиндра надеты контактные колпачки 3 из проводящего материала с припаянными к ним выводами 4. Для защиты резистивной пленки от воздействия внешних факторов резистор покрывают защитной пленкой 5.
Сопротивление такого резистора определяется соотношением
(2.3) |
где l — длина резистора (расстояние между контактными колпачками), D — диаметр цилиндрического стержня.на резистора (расстояние между контактными колпачками), D — диаметр цилиндрического стержня.
Такая конструкция резистора обеспечивает получение сравнительно небольших сопротивлений ( сотни Ом ). Для увеличения сопротивления резистора резистивнную пленку 2 наносят на поверхность керамического цилиндра 1 в виде спирали ( рис. 2.2 ).
Рис. 2.2
Сопротивление такого резистора определяется соотношением
(2.4) |
где t — шаг спирали, а — ширина канавки (расстояние между соседними виткамиспирали),
число витков спирали.
На рис. 2.3 показана конструкция объемного резистора, представляющего собой стержень 1 из токопроводящей композиции круглого или прямоугольного сечения с запрессованными проволочными выводами 2. Снаружи стержень защищен стеклоэмалевой или стеклокерамической оболочкой 3. Сопротивление такого резистора определяется соотношением (2.1).
Постоянный проволочный резистор представляет собой изоляционный каркас, на который намотана проволока с высоким удельным электрическим сопротивлением. Снаружи резистор покрывают термостойкой эмалью, спрессовывают пластмассой либо герметизируют металлическим корпусом, закрываемым с торцов керамическими шайбами.
Для гибридных ИМС выпускаются микромодульные резисторы, представляющие собой стержень из стекловолокна с нанесенным на поверхность тонким слоем токопро водящей композиции. Такие резисторы приклеиваются к контактным площадкам подложек токопроводящим клеем- контактолом.
Конструкции переменных резисторов гораздо сложнее, чем постоянных. На рис. 2.4 представлена конструкция переменного непроволочного резистора круглой формы.
Рис. 2.4
Он состоит из подвижной и неподвижной частей. Неподвижная часть представляет собой пластмассовый корпус 2, в котором смонтирован токопроводящий элемент 3, имеющий подковообразную форму. Посредством заклепок 6 он крепится к круглому корпусу. Эти заклепки соединены с внешними выводами 4. Подвижная часть представляет собой вращающуюся ось, с торцом которой 7 посредством чеканки соединена изоляционная планка 8, на которой смонтирован подвижный контакт 1 (токосъемник), соединенный с внешним выводом. Угол поворота оси составляет 270° и ограничивается стопором 5.
Существуют и другие конструкции переменных непроволочных резисторов.
Токопроводящий элемент в них бывает тонкослойным металлическим или металлоксидным (резисторы типа СП2), пленочным композиционным (резисторы типа СП4).
Переменные резисторы могут иметь разный закон изменения сопротивления в зависимости от угла поворота оси (рис.2.5).
Рис. 2.5
У линейных резисторов (типа А) сопротивление зависит от угла поворота линейно. У логарифмических резисторов (тип Б) сопротивление изменяется по логарифмическому закону, а у резисторов типа В — по обратнологарифмическому. Кроме того, существуют резисторы, у которых сопротивление изменяется по закону синуса (тип И) или косинуса (тип Б).
Некоторые типы переменных резисторов состоят из двух переменных резисторов объединенных в единую конструкцию, в которой токосъемники расположены на общей оси. Существуют переменные резисторы, содержащие выключатель, контакты которого разомкнуты, если ось резистора повернута в крайнее положение при вращении против движения часовой стрелки. При повороте оси по движению часовой стрелки на небольшой угол контакты выключателя замыкаются. Некоторые типы резисторов комплектуются специальными стопорящими устройствами, жестко фиксирующими положение оси. На рис.2.6 показана конструкция переменного проволочного резистора с круговым перемещением токосъемника. В пластмассовом корпусе 7 с помощью цанговой втулки 3 укреплена поворотная ось 2, на которой закреплен изоляционный диск с контактной пружиной (ползуном) 4, скользящей по проводу обмотки 9, — укрепленной на гетинаксовой дугообразной пластине 6. Концы обмотки соединены с выводами 8, а ползун через контактное кольцо соединен с внешним контактным лепестком 10. Положение оси может быть зафиксировано стопорной разрезной гайкой 1, а угол поворота оси ограничен выступами корпуса, в которые упирается планка-ограничитель 5, закрепленная на оси.
Помимо переменных резисторов с круговым перемещением существуют резисторы с прямолинейным перемещением подвижного контакта. В этом случае контактный ползун укрепляется не на поворотной, а на червячной оси.
Выбор типа резистора (постоянного или переменного) для конкретной схемы производится с учетом условий работы и определяется параметрами резисторов.
Резистор нельзя рассматривать как, элемент, обладающий только активным сопротивлением, определяемым его резистивным элементом.
Помимо сопротивления резистивного элемента он имеет емкость, индуктивность и дополнительные паразитные сопротивления. Эквивалентная схема постоянного резистора представлена на рис. 2.7.
На схеме RR— сопротивление резистивного элемента,
Rиз— сопротивление изоляции, определяемое свойством защитного покрытия и основания, Rk— сопротивление контактов, LR— эквивалентная индуктивность резиcтивного слоя и выводов резистора, СR — эквивалентная емкость резистора, CB1 и CB2— емкости выводов. Активное сопротивление резистора определяется соотношением
(2.5) |
Сопротивление RКимеет существенное значение только для низкоомных резисторов. Сопротивление Rизпрактически влияет на общее сопротивление только высокоомных резисторов.Реактивные элементы определяют частотные свойства резистора. Из-за их наличия сопротивление резистора на высоких частотах становится комплексным.
Относительная частотная погрешность определяется соотношением
(2.6) |
где Z — комплексное сопротивление резистора на частоте w
.На практике, как правило, величины L и С неизвестны. Поэтому для некоторых типов резисторов указывается значение обобщенной постоянной времени tmax , которая связана с относительной частной погрешностью сопротивления приближенным уравнением:
(2.7) |
Частотные свойства непроволочных резисторов значительно лучше, чем проволочных.
схема и применение Дискретный регулятор громкости своими руками схема
Для изменения настройки звука существуют специальные регуляторы. По частотности их делят на активные, а также пассивные. Дополнительно разделение осуществляется по типу настройки. Самыми распространенными принято считать цифровые регуляторы. Создаются они под разные виды усилителей и имеют свою канальность. Чтобы понять принцип работы данных приборов, следует подробно разобраться в их устройстве.
Как устроен регулятор?
Важным элементом регулятора принято считать микросхемы. По своим параметрам они довольно сильно могут отличаться. Если рассматривать профессиональные модели, то там имеется до 100 различных контактов. Дополнительно в регуляторе наличествует контроллер, который занимается изменением предельной частоты прибора. С помехами в устройстве справляются конденсаторы. В простой модели их имеется до четырех. Обычно можно встретить в регуляторе Их частотность, как правило, указывается в маркировке.
В профессиональных моделях конденсаторы устанавливаются электролитические. Проводимость у них гораздо лучше, но стоят они дорого. Резисторов в стандартной схеме можно встретить до десяти единиц. Отличаются они между собой по предельному сопротивлению. Самые простые модели способны похвастаться параметром в 2 Ома. Резисторы с такими показателями встречаются довольно часто. Наконец, последним элементом регулятора следует назвать замыкающий механизм. Чаще всего он представлен в виде кнопки, однако есть модели со сложной системой индикации.
Применение электронной модели
Электронный регулятор громкости устанавливается практически на всех звуковых девайсах. Изменять колебания при этом можно различными способами. Чаще всего можно встретить плавные контроллеры, которые позволяют очень тонко настаивать звук, однако есть и скачковые системы. В таком случае изменение параметров осуществляется пошагово и резко. В студиях звукозаписей имеются многоканальные устройства для микшеров. Они позволяют регулировать множество эффектов. Если рассматривать комбинированный электронный регулятор громкости, то многое в данном случае зависит от акустической системы.
Самостоятельная сборка регулятора
Для того чтобы собрать регулятор громкости своими руками для усилителя средней мощности, понадобится микросхема как минимум на 8 бит. Транзисторы для нее лучше всего использовать биполярные. Обычно они в магазине представлены с маркировкой «2НН». Показатель сопротивления у них в среднем колеблется в районе 3 Ом. Контроллеры в основном побираются линейные. Они позволяют довольно плавно изменять предельную частоту. При этом амплитуда помех будет зависеть исключительно от конденсаторов.
Для обычного регулятора будет достаточно установить их три штуки. Светодиоды могут использоваться только на пару с выпрямителями. В некоторых случаях, для того чтобы сделать регулятор громкости своими руками, дополнительно в начале цепи советуют использовать стабилитрон. Данный элемент значительно повышает работоспособность резисторов и регулятора в целом.
Как устроены регуляторы для наушников?
Регулятор громкости для наушников имеет только два конденсатора. Отличительной особенностью таких устройств можно назвать слабую пропускную способность. Сигнал во многих моделях идет долго. Связано это с тем, что транзисторы не рассчитаны на большую мощность. В некоторых моделях регуляторов устанавливаются резонаторы. Существуют они разных типов и имеют свои параметры. Наиболее часто можно встретить Параметр сопротивления у них доходит до 4 Ом. В свою очередь ферритовые аналоги могут выдерживать только 2 Ом. Соединяется регулятор громкости для наушников с динамиком при помощи дросселя.
Схема регулятора тембра
Регуляторы тембра и громкости контроллер имеют операционный. Подходит он для усилителей разной мощности. Диоды в данном случае устанавливаются довольно редко. Выпрямители есть только в моделях, где транзисторов менее трех штук. Резисторы в приборах включаются с маркировкой «ВС». у них довольно хорошая, но они чувствительны к высоким температурам. Конденсаторы во многих моделях стоят биполярные. Предельное сопротивление регуляторы тембра и громкости способны выдерживать на уровне 3 Ом. В стандартной модели гнездо имеется «РРА» для обычного кольца. Дроссель с резистором соединяются только через преобразователь.
Как настроить регулятор в «Виндовс»?
Осуществить настройку регулятора довольно просто. Находится значок данного элемента на панели «Пуск». Нажав на него один раз левой клавишей, можно изменять предельную частоту. В некоторых случаях пользователь не видит указанный значок. Происходит это из-за того, что регулятор громкости Windows не добавлен в область уведомлений. Обычно он переносится в автоматическом режиме операционной системой. Однако данное действие можно выполнить и вручную через панель управления. Также причина может заключаться в отсутствии файла Sndvol.exe. В таком случае его копию нужно сохранить на компьютере.
Параметры стереорегуляторов
Коэффициент шума у них находится в районе 70 дБ. Параметр нелинейного искажения обычно составляет 0.001 %. Диапазон рабочих частот колеблется от 0 до 10000 Гц. Входное напряжение устройства составляет 0.5 В. Во многих моделях контроллеры устанавливаются реверсивные. Выходное напряжение при этом должно равняться не более 0.5 В. Стабилизатор стерео регулятор громкости обычно имеет импульсный. Питание прибора осуществляется через блок с напряжением до 15 В.
Модели микрофонов с регуляторами
Микрофон с регулятором громкости является на сегодняшний день распространенным девайсом, а микросхема в нем обычно имеется серии «МК22». Пропускная способность у моделей довольно высокая, сигнал проходит хорошо. В стандартной схеме диодов имеется два. Один из них, как правило, располагается возле запирающего механизма. Конденсаторы устанавливаются с различными параметрами. Это необходимо для того, чтобы контролировать частоты различной величины.
Сопротивление у них в среднем выдерживается до 4 Ом. Конденсаторы в регуляторе должны быть только электролитические. В данном случае это даст большой прирост к чувствительности прибора. Резисторов в стандартной схеме имеется до восьми единиц. Ими сопротивление в среднем выдерживается на уровне 3 Ом. Непосредственно запирающий механизм регулятор громкости имеет в виде контроллера.
Схема кнопочного регулятора
Кнопочный регулятор громкости (схема показана ниже) отличается от других устройств тем, что диоды у него располагаются попарно. В результате микросхема довольно быстро передает сигнал на резистор. Выпрямители во многих моделях отсутствуют, и это следует учитывать. Конденсаторов в стандартной схеме предусмотрено до трех единиц. Сопротивление у них максимум выдерживается на уровне 2 Ом. Коэффициент шума у таких моделей в среднем колеблется в районе 50 дБ.
Показатель нелинейного искажения, в свою очередь, равен 0.002 %. Из недостатков следует отметить определенные проблемы с неравномерностью. Связано это с малым диапазоном рабочих частот. В некоторых случаях имеет смысл устанавливать усилитель с напряжением более 15 В. В таком случае параметры звука повысятся.
Пассивные регуляторы
Пассивный регулятор громкости отличается от прочих устройств тем, что он производится многоканальным. Сопротивление им в среднем выдерживается на уровне 3 Ом. Запирающие механизмы устанавливаются стандартные. В свою очередь контроллеры в них имеются исключительно цифровые. Благодаря этому синхронизировать стереозвук в приборе получается более точно. Таким образом, проблема с неравномерностью отпадает сама собой.
Резисторы во многих моделях имеются подстроечного типа. Отличительной особенностью профессиональных моделей считается наличие резонатора. Выходное напряжение данного элемента способно доходить до 8 В. Чаще всего в регуляторах они устанавливаются кварцевого типа. Конденсаторов в стандартной схеме имеется два. Микросхема в системе рассчитана на 8 бит.
Применение активных моделей
Активный регулятор громкости, как правило, применяется для приемников, мощность которых не превышает 5 В. Резисторы в нем имеются с сопротивлением около 4 Ом. Резонаторы устанавливаются кварцевые. Отличительной особенностью данных регуляторов можно назвать сигнальные реле. Дроссели, как правило, в приборах не используются. Усилители уславливаются только операционного типа. В связи с этим необходимость в выпрямителях отсутствует. Системы индикации в приборах можно встретить самые разнообразные. Для мобильных устройств такой регулятор громкости не подходит.
Схема комбинированного регулятора
Комбинированный регулятор громкости (схема показана ниже) конденсаторов имеет не более пяти штук. Транзисторы при этом могут использоваться только биполярного типа. Пропускная способность у них довольно высокая. Сопротивление в среднем выдерживается на уровне 3 Ом. Транзисторы линейные в системе предусмотрены. Стабилизаторы уславливаются только в профессиональных моделях. Предельная частота у них не превышает 4000 Гц.
Как устроен тонкомпенсированный регулятор?
Регуляторы данного типа в основном используются в магнитолах. Система их устройства довольно простая. Микросхема в приборе устанавливается серии «КР2». Непосредственно контроллер имеется линейного типа. Транзистор используется только один. Располагается он рядом с микросхемой.
Конденсаторов всего имеется два. Чаще всего можно встретить именно электролитический тип. они способны выдерживать на уровне 16 В. Однако выходной сигнал устройством воспринимается довольно плохо. Резисторов в регуляторе имеется не более пяти. Все они устанавливаются с предельной частотой около 3000 Гц.
Профессиональные модели
Профессиональные регуляторы микросхемы имеют многоканальные. Учитывая это, для нормальной работы им требуется Находится он, как правило, рядом с конденсатором. Рассчитана система на нагрузку 8 бит. Замыкающий механизм в устройстве установлен обычный. Коэффициент шума прибора максимум достигает 55 дБ. Показатель нелинейного искажения в некоторых случаях способен превышать 0.001 %.
Рабочая частота в среднем колеблется в районе 2000 Гц. С равномерностью такие схемы проблемы испытывают редко. Выходное напряжение прибора равняется 0.5 В. Резисторная развязка сопротивление максимум выдерживает 3 Ом. Преобразователи в системе предусмотрены, а крепятся они к плате только через дроссель. Конденсаторов в стандартной модели имеется около трех единиц. Их вполне достаточно, чтобы справляться с различными сигналами. Возле гнезда устройства обязательно располагается
Электронные регуляторы тембра
Все электронные регуляторы отличаются компактными размерами, и предельное напряжение выдерживают большое. В данном случае они не способны работать без усилителя. Стабилизаторы, как правило, применяются только линейные. Цепи диодов располагаются сразу за платой.
Искажения устройством подавляются за счет резисторов. С предельной частотой регулятору помогают справиться стабилизаторы. Выпрямители устанавливаются крайне редко. Энергопотребление таких устройств высокое, а в преобразователях они не нуждаются. Увидеть указанные приборы на микшерах можно довольно часто.
На микросхеме TDA1552 для управления звуком? Обычный сдвоенный резистор. А если у нас квадровключение на 4 канала? Кто-то подсказывает — счетверённый регулятор:) А если мы собрали домашний кинотеатр на 6 каналов? Тут уже в бой вступают сложные и дорогостоящие электронные регуляторы громкости на специализированных микросхемах. И такой узел по сложности и цене может превосходить сам усилитель. Тем не менее есть простой выход, как реализовать функцию управления громкостью всего на одном транзисторе. Предлагаемая ниже схема из журнала радиолюбитель, позволяет одним переменным резистором управлять громкостью сразу нескольких каналов.
На одной схеме показан один канал ргулятора громкости, а на другой — сразу 4 канала. Естественно их может быть и 5, и 10. Суть метода заключается в том, что подавая на базу транзистора положительный потенциал через резистор, транзистор открывается и шунтирует вход УНЧ — громкость снижается.
С этой схемой был проведён ряд экспериментов. Выяснилось, что питание базы можно брать начиная от 1,5В. Максимальный предел напряжения определяется ограничительным резистором на 1кОм. Если мы нашли в допустим 12В, то и резистор надо увеличить до безопастных для базового тока 30кОм. Ток потребления базовой цепи в открытом состоянии — несколько миллиампер. В общем подберёте.
В открытом состоянии транзистора, возможно будет слышен очень тихий звук из-за падения напряжения на кремниевом кристалле. Чтоб молчание было полным — нужно использовать германиевый транзистор типа МП36 — МП38.
Конденсаторы на входе и выходе электронного регулятора громкости используют неполярные. Транзистор ставим любой маломощный Н-П-Н, типа КТ315, КТ3102, С9014 и т.д. Переменный резистор для электронного регулятора на сопротивление в пределах 10-100кОм. Желательно с линейной характеристикой.
При замыкании движка на массу, все транзисторы закроются и громкость станет максимальной. Перемещая движок к плюсу питания, мы понемногу открываем транзисторы и звук станет затихать. Резистором, что подключен к плюсу питания, выставляем плавность изменения громкости по всему повороту резистора. Чтоб не было так, когда уже после половины поворота громкость исчезла и дальше крутим напрасно. Использование данного электронного регулятора громкости с одной стороны немного увеличит уровень шумов, но с другой — снизит наводки на провода, так как теперь нет необходимости тянуть два раза экранированный провод от выхода предварительного усилителя до входа усилителя мощности.
Традиционно для регулировки уровня звука используют переменный резистор — потенциометр , где изменение сопротивления реализуется с помощью электрического контакта, что скользит по резистивному слою. Примером хорошо известных регуляторов аудио-класса являются японские ALPS . Однако мало кто знает, что ими выпускаются и дискретные ступенчатые регуляторы, которые ставят в том числе в high-end аппаратуру. Это устройство состоит из серии постоянных резисторов, которые переключаются по очереди.
Несмотря на более сложное устройство и конструкцию, они имеют определённые преимущества по сравнению с плавно крутящимся потенциометром, это улучшение качества электрического контакта, в сравнении с ползунком. Улучшенная согласованность между отдельными аудиоканалами и они менее чувствительны к пыли и потертостям. В таком РГ практически исключается треск и шорох. Дискретный регулятор уровня звука практически не изменяет частотную характеристику при регулировании громкости, что положительно сказывается на линейности всего усилительного тракта, на всех уровнях громкости. Цена на них, естественно, гораздо выше, чем на обычные, но мы и не собираемся их покупать, а попробуем сделать сами.
Схема дискретного регулятора громкости
Три варианта схем ДРГ
Выше показаны три практические схемы такого регулятора, которую можно собрать самому. Сколько выбрать ступеней переключения — решайте сами. На практике достаточно 5-10. Резисторы желательно брать качественные, на мощность 0,125-0,25 ватт.
Естественно нужен сдвоенный переключатель, чтоб одновременно регулировалась громкость на обеих каналах стереоусилителя. Сам дискретный переключатель рекомендуется экранировать, чтоб свести уровень электромагнитных помех к нулю. Если вы взяли переключатель со слишком тугим ходом (чем грешат многие советские), разберите его и ослабьте пружину. Заодно почистите контакты мягкой ученической резинкой.
С развитием стереотехники резко обострилась одна из проблем аналоговой аппаратуры — низкое качество и небольшой ресурс работы переменных резисторов, служащих регуляторами громкости. И если для моноаппаратуры еще можно подобрать переменный резистор на замену вышедшему из строя, то для стерео, особенно импортной, это практически нереально.
Найти «примерно такой же» резистор очень сложно даже в крупных городах. Причем чаще всего «ломаются» резисторы регуляторов громкости. Регуляторы тембра и баланса используются реже и служат гораздо дольше. К счастью, полный выход из строя сдвоенного («стерео») переменного резистора случается крайне редко. Обычно хотя бы один из резисторов полностью или частично исправен. И, «зацепившись» за эту часть регулятора. можно «вылечить» все устройство!
При этом даже не придется переводить систему в монофонический режим-достаточно просто добавить специальную микросхему электронного регулятора громкости. Такие микросхемы сравнительно дешевы, почти не искажают звук и практически не требуют подключения внешних элементов. С их помощью автор в свое время вернул жизнь не одному десятку различных магнитол, и ни один владелец не остался разочарованным.
Как правило, подобные микросхемы управляются напряжением. Изменяя напряжение на специальном входе микросхемы с помощью переменного резистора {или того, что от него осталось), мы изменяем громкость фазу в обоих каналах, причем линейность и синхронность ее изменения гораздо выше, чем при использовании сдвоенного переменного резистора.
Знать, как именно устроены подобные микросхемы — совершенно не обязательно (фактически, это с электрически изменяемым коэффициентом усиления), нужно только помнить, что при уменьшении напряжения на регулирующем входе громкость обычно также уменьшается. И даже если переменный резистор «восстановлению не подлежит» — тоже не все потеряно. В таком случае можно использовать цифровой регулятор громкости, который управляется кнопками.
Такие регуляторы бывают двух типов: автономные и требующие использования дополнительного процессора. Первые (например, КА2250, ТС9153) регулируют только громкость. «Качество регулировки» — довольно скверное, но их стоимость сравнительно невелика. «Процессорные» регуляторы раза в два дороже автономных, но гораздо «круче»: и регулировка более линейная, и, помимо регулировки громкости, можно регулировать тембр, баланс, звуковые эффекты (псевдостерео — стерео из моносигнала, как у TDA8425 или псевдоквадра-стерео в микросхемах серии ТЕАбЗхх).
Есть также селектор каналов на входе и некоторые другие «примочки». Но распространение таких регуляторов, даже несмотря на весьма выгодное соотношение цена- качество, ограничивает необходимость использования внешнего, заранее запрограммированного процессора. Специализированные запрограммированные процессоры для работы с подобными микросхемами автор в продаже не встречал.
Большинство микросхем с электронной регулировкой громкости предназначены для работы в кассетном магнитофоне. Они имеют пару чувствительных и малошумящих , пару с электронной регулировкой громкости, и рассчитаны на низковольтное питание (1,8…6,0 В при потребляемом токе около 10 мА).
Схема регулятора громкости на микросхеме TA8119P
Таковы микросхемы ТА8119Р ф.TOSHIBA (рис.1) и ВАЗ520 ф.POHM(рис.2). Как видно из рисунков, отличаются они только количеством выводов, а электрические характеристики у них практически совпадают. Кстати, ИМС ТА8119 выпускается только в DIP-корпусе для монтажа в отверстия. а ВА3520 — в DIP- и SOIC-корпусах (соответственно, ВА3520 и BA3520F, последняя-для поверхностного монтажа). Расстояние между рядами выводов у ТА8119 и SOIC-версии BA3520F — 7,5 мм. у ВА3520 в DIP-корпусе -10 мм.
Цифровой регулятор громкости на BA3520
Операционные усилители (ОУ) внутри — обычные, с той лишь разницей, что некоторые резисторы обратной связи уже установлены в микросхеме. Выходной ток предварительных усилителей — несколько миллиампер, выходных — около сотни миллиампер. На рисунках указаны рекомендуемые схемы включения, но, в принципе, ОУ можно включать по любой стандартной схеме, за исключением, разве что, дифференциальной.
Если слишком большое усиление не требуется, предваритепьные уси- лители можно не использовать, подав входной сигнал непосредственно на выходные усилители (их коэффициент усиления при максимальной громкости — около 7). При этом входы предварительных усилителей желательно соединить с выходом REF микросхемы. Если использовать эти микросхемы для замены переменного резистора, сигнал на входы лучше подавать через резисторы сопротивлением около 100 кОм (для компенсации усиления выходных усилителей), как показано на рис.За.
И вообще, во всех схемах с использованием ВА3520 сигнал на входы оконечных усилителей лучше подавать через резисторы сопротивлением не менее 10 кОм. Это значительно уменьшает шумы на выходе (микросхема «не любит» слишком низкоомные источники сигнала), но выход предварительного усилителя микросхемы можно соединять со входом оконечного непосредственно. К ТА8119 это тоже относится, хотя выражено гораздо слабее.
Для более плавной регулировки громкости в микросхеме ТА8119Р и ВА3520, а также для устранения «шороха» при вращении движка переменного резистора, между движком и общим проводом рекомендуется включить конденсатор емкостью 1…10 мкФ («+» к движку). При «частичной неисправности» переменного резистора (перегорела или истерлась дорожка возле одного из крайних выводов) можно «выкрутиться», несколько усложнив схему.
Переменный регулятор громкости на резисторе, транзисторе, микросхеме
Если перегорел контакт, к которому подводится движок резистора для установки минимальной громкости, используется схема на рис.36 или рис.Зв. Здесь резисторы R1 и R2 образуют делитель напряжения. Но следует отметить, что напряжение в средней точке такого делителя никогда не уменьшится до нуля: при указанных номиналах резисторов оно превышает 0,3 В. т.е. «нулевая» громкость недостижима.
Для устранения этого недостатка в схему добавлен повторитель на транзисторе VT1. При таком напряжении он все еще закрыт (порог открывания — около 0.6 В). В схеме на рис.3б достичь максимальной громкости также невозможно из-за упомянутого выше падения напряжения на транзисторе (около 0,6 В). Поэтому лучше использовать схему, изображенную на рис.3в.
Источник питания (+5 В) должен быть стабилизированным — иначе громкость будет «плавать». При настройке этой схемы, возможно, понадобится подобрать сопротивления R3 и R4 для получения максимальной громкости. Если же перегорел «верхний» вывод переменного резистора, схема для его «лечения» становится еще проще (рис.Зг). Источник питания тоже должен быть стабилизированным.
Но если переменный резистор «восстановлению не подлежит», единственный выход — использование цифровых регуляторов. В принципе, такие регуляторы можно построить и на обычной цифровой логике, пропуская звуковой сигнал через микросхему цифро-аналогового преобразователя (ЦАП). Подобные схемы неоднократно публиковались в отечественной литературе начала 90-х годов, но дешевле и удобней воспользоваться специализированной микросхемой, например, КА2250 (Samsung) или ТС9153 (Toshiba).
Регуляторы громкости на ЦАПе КА2250, ТС9153
Эти микросхемы — полные аналоги по электрическим характеристикам и цоколевке (рис.4), отличия только в названии. Они являются 5-битным стереоЦАПом (шаг регулировки — 2 дБ) с довольно скзерными характеристиками регулирования и не очень сложной схемой управления. Что радует — крайне низкие искажения. По этому параметру микросхемы практически не отличаются от переменного резистора, естественно, если амплитуда входного сигнала не превышает 1,5…2,0 В и правильно разведены «земли».
Также предусмотрено «запоминание» уровня громкости при отключении питания, но в ячейке ОЗУ, т.е. для подпитки самой микросхемы нужна батарейка или конденсатор с малой утечкой.
Для нормальной работы этих микросхем требуется внешний источник образцового напряжения (UREF)- Если у источника сигнала (предварительного усилителя) есть свое UREF. тогда просто подводим его к выводам 4,13 микросхемы (рис.4а). Если же его нет, «сооружаем» внешний делитель напряжения (R1-R2- С1 на рис.4).
В обоих случаях напряжение на выводах 4 и 13 должно быть на 1…2 В меньше напряжения питания, но выше 1…2 В относительно общего провода. Напряжение UREF d каждом канале может быть разным. Собственно регулятор громкости состоит из пары резисторных матриц, коммутируемых через высококачественные полевые транзисторы.
На рисунке эти матрицы обозначены как постоянные резисторы. Для нормального функционирования микросхемы обе матрицы должны быть соединены последовательно и, желательно, через разделительный конденсатор (С4). Так как матрицы содержат только резисторы, то, в принципе, «вход» и «выход» можно поменять местами (что иногда можно обнаружить даже в «фирменных» изделиях), но лучше этого не делать.
Цифровая часть микросхем состоит из генератора с внешними частотозадающими элементами КЗ-С7, двух кнопок SB1, SB2 и коммутатора на диодах VD1, VD2. Громкость изменяется при нажатии и удерживании соответствующей кнопки. У микросхем имеется цифровой выход. Ток через этот выход изменяется от 0 до 1,3 мА (с шагом 0,1 мА) при уменьшении/увеличении громкости. Вывод 7 микросхем служит для «выключения» — при «нуле» на этом входе генератор отключается, а потребляемый микросхемами ток уменьшается до минимума.
«Регулирующая» часть микросхем при этом работает как обычно, но изменять громкость невозможно. Для того, чтобы при отключении питания микросхема «запоминала» уровень громкости, ее желательно подключать так, как показано на рис.46. При отключении питания напряжение на входах «Uпит» уменьшается до нуля, одновременно снижается напряжение на выводе 7, и цифровая часть микросхемы «отключается».
Сама микросхема при этом питается через батарейку, ее заряда хватает на десятки лет. В принципе, использовать батарейку не обязательно — достаточно одного конденсатора емкостью более 1000 мкф, но даже самый лучший конденсатор не «продержится» более недели. Конденсатор С2 служит для начального сброса микросхемы при включении питания, поэтому он обязателен и должен располагаться в непосредственной близости от выводов питания микросхемы.
Продолжение статьи находится
Как-то так получилось, что при всем большом количестве обзоров я практически ни разу не писал обзоры устройств, тем или иным образом относящихся к аудиотехнике. Хотя конечно у меня есть обзор блока питания для усилителя мощности, но на мой взгляд это уж совсем косвенное отношение. И вот решил я обратить внимание на усилители, ЦАПы и прочие аудиоустройства и начну с регулятора громкости.
Данный регулятор громкости выбирался скорее из эстетических соображений, так как функционально он очень прост и потому обзор будет сегодня не очень длинным.
Как вы уже поняли из предисловия, строить я буду некое подобие усилителя, скорее всего с ЦАП, но в данном случае это не особо принципиально. Раньше я много занимался подобной техникой, но прошли годы и одно просто забылось, вместо другого появилось много нового, потому отчасти я буду вспоминать, отчасти заниматься самообразованием потому возможны ошибки и неточности, за что заранее прощу извинить.
Тема аудиотехники была косвенно затронута в , где я показывал блок питания для усилителя мощности. Скорее всего этот БП будет и дальше принимать участие, вероятнее всего в качестве подопытного для понимания разницы между импульсным и обычным блоком питания, но это тема будущих обзоров, а пока перейду к теме сегодняшнего — регулятору громкости.
Понятно что сейчас громкость звука можно регулировать не только вмешательством в электрический тракт, а и программно прямо от источника, но лично мне не очень нравится подобный подход и я придерживаюсь «классических» решений в виде аналогового регулятора громкости.
Для начала стоит сказать, что регуляторы громкости бывают линейные и логарифмические, а также с тонкомпенсацией, касаться их я не вижу смысла так как это скорее дело вкуса, но объясню очень кратко:
1. Линейный или логарифмический.
Линейный изменяет коэффициент деления прямо пропорционально углу поворота вала регулятора.
Логарифмический (а если корректнее, то обратнологарифмический) больше подходит для человеческого слуха так как в самом начале регулировка происходит очень плавно, а к концу более резко. Человеческое ухо лучше отличает уровень громкости слабых звуков, потому в самом начале регулировка плавная. Когда же громкость большая, то разница менее заметна и там регулировка может быть грубой.
Существует три основные характеристики:
А (в импортном варианте В) — линейная, изменение сопротивления линейно зависит от угла поворота. Такие резисторы, например, удобно применять в узлах регулировки напряжения БП.
Б (в импортном варианте С) — логарифмическая, сопротивление сначала меняется резко, а ближе к середине более плавно.
В (в импортном варианте A) — обратно-логарифмическая, сопротивление сначала меняется плавно, ближе к середине более резко. Такие резисторы обычно применяют в регуляторах громкости.
Дополнительный тип — W, производится только в импортном варианте. S-образная характеристика регулировки, гибрид логарифмического и обратно-логарифмического. Если честно, то я не знаю где такие применяются.
Кому интересно, могут почитать подробнее.
Кстати мне попадались импортные переменные резисторы у которых буква регулировочной характеристики совпадала с нашей. Например современный импортный переменный резистор имеющий линейную характеристику и букву А в обозначении.
2. Тонкомпенсация.
При слабом уровне громкости человеческое ухо лучше слышит СЧ диапазон, но хуже НЧ и ВЧ, потому в некоторые регулятора добавляют принудительную коррекцию АЧХ в самом начале регулировки. Обычно тонкомпенсация отключаемая, так как далеко не всем она нравится и тогда есть возможность случать оригинальный звук. Простейшая тонкомпенсация это конденсатор небольшой емкости между входным сигнальным и подвижным контактом резистора. В более «продвинуты» резистор имеет один или несколько отводов, позволяющих настроить коррекцию более точно.
Для лучшего понимания были построены семейства кривых чувствительности человеческого уха – усредненные графики зависимости этой чувствительности для разных частот слышимых акустических колебаний.
На рисунке ниже показаны эти графики, получившие название кривых равной громкости, которые были приняты в качестве международного стандарта.
Вариант включения обычного переменного резистора для получения тонкомпенсации.
И включение специального резистора.
В моем случае по большей части можно было просто применить обычный переменный резистор. Ниже на фото пример простых переменных резисторов, слева подороже, справа попроще, но суть у них одна и та же, переменный резистор. Качественные переменные резисторы выпускает фирма Alps и стоят они весьма недешево.
Но куда более качественный вариант, это ступенчатый регулятор в виде набора переключаемых резисторов. Фактически это многоступенчатый аттенюатор, преимуществом которого является задание произвольных регулировочных характеристик, но что важнее — более точной подгонкой идентичности каналов.
Существуют обычные переменные резисторы с трещеткой, не путайте, это совсем другое, по сути там просто «эмуляция».
Ступенчатые регуляторы чаще всего применяются в высококлассной аппаратуре, например я впервые его встретил в популярном усилителе Одиссей 010. Кстати, при желании и некотором терпении подобный регулятор можно изготовить самостоятельно из многопозиционного переключателя и подобранных резисторов.
Или даже так, по сути просто переключатель с кучей резисторов.
Если заменить переключатель на реле, то можно сделать более красивое решение, к тому же имеющее возможность дистанционного управления. В целях упрощения резисторы в этом случае управляются двоичным кодом. Путем коррекции номиналов резисторов можно также задавать логарифмическую характеристику.
Переключая коэфициент деления при помощи фиксированных резисторов можно получить относительно простым способом большой диапазон регулировки, 1 реле — 2 уровня, 2 реле — 4 уровня, 3 реле — 8 уровней.
Ниже на фото показан регулятор имеющий 256 ступеней регулировки. Управляется он от специальной микросхемы — которая преобразует аналоговый сигнал от переменного резистора в двоичный код. Переменный резистор при этом просто изменяет постоянное напряжения и никак не подключен в цепи сигнала.
Реле при этом надо применять специальные — сигнальные, а не силовые, так как при слабых напряжениях и токах силовые реле не могут обеспечить качественный контакт.
Но кроме того у подобного регулятора есть преимущество, его легко можно сделать многоканальным просто добавив параллельно еще одну плату с реле.
Снизу платы видны пары резисторов около каждого реле. Вообще изначально у меня была мысль купить именно такой регулятор, но потом я передумал и позже объясню, почему.
Примерно по такой же схеме собран и известный регулятор Никитина, его преимущество в том, что входное и выходное сопротивление всегда постоянно, что лучше сказывается на качестве работы и меньшем влиянии на параметры остальной схемы.
Как было написано выше, ступенчатые регуляторы позволяют реализовать дистанционное управление, но при желании можно купить и обычный регулятор «с моторчиком», управляемым специальным контроллером. Фактически так и есть, вал переменного резистора можно вращать как вручную, так и с пульта, тогда это будет делать небольшой двигатель с редуктором, при этом ручка регулировки также будет вращаться, а если добавить к ней какой нибудь светодиод индикации положения, то смотрится это довольно эффектно.
В общем думал я думал, какой регулятор применить и случайно натолкнулся на весьма любопытный вариант, который меня больше заинтересовал типом дисплея, но об этом чуть позже.
В комплект входит:
1. Плата регулятора
2. Плата управления с дисплеем
3. Пульт ИК ДУ
4. Светофильтр
5. Провода подключения питания и выхода
6. Шлейф для соединения плат, длина 280мм
7. Ручка регулятора.
Также отдельно можно докупить
1. Трансформатор питания 12 Вольт 5 Ватт — $2.22
2. Плата управления нагрузкой — $3.7
3. Доплатить за позолоченные RCA разъемы — $1.47
Я покупал в «базовой» комплектации так как трансформатор у меня есть, плату реле можно сделать самому, а в «позолоченные» разъемы за полтора бакса я мало верю. Волновался чтобы в пути не разбили дисплей, но все обошлось.
Комплект всяких мелочей ничего особенного из себя не представляет, синий светофильтр, дешевенькая ручка и пара проводков.
Защитную бумагу со светофильтра я пока снимать не буду так как мне его еще ставить в корпус и не хотелось бы поцарапать.
Пульт похоже от какого-то телевизора AOC, в меру удобный, но имеющий глянцевый корпус. Смотрится неплохо, хотя кнопок могло бы быть и меньше так как большая часть из них не нужна.
Входы можно переключать как кнопкой Input 1-2-3-4, так и кнопками Bright в любом направлении.
Основная плата, на ней расположены реле, регулятор и узел питания всего комплекта.
Не знаю что подразумевалось под «позолоченными» разъемами, за которые надо было доплатить отдельно, но я получил с такими как на фото. Плата умеет коммутировать сигналы от четырех источников, все входы вынесены на один большой блок разъемов.
Пайка местами на троечку, хотя общее качество изготовления понравилось, аккуратно, есть крепежные отверстия, маркировка.
Плата питается переменным напряжением 12 Вольт, хотя у меня она без проблем работала и от 9. На некоторых конденсаторах имеется маркировка фирмы Elna, хотя на мой взгляд в данном случае это не имеет значения, не говоря о том, что китайцы те еще затейники и верить таким маркировкам можно далеко не всегда.
Также судя по всему на плате есть и умножитель напряжения так как дисплею требуется заметно больше чем 12-15 Вольт. Но в умножителе нет ничего плохого, хуже было бы если разработчик поставил импульсный преобразователь напряжения.
Также здесь установлены четыре стабилизатора напряжения, два (78L05 и 79L05) питают регулятор, один 7805 питает реле, второй отвечает за плату управления.
А вот и регулятор с четырехканальным коммутатором.
Регулировкой уровня сигнала занимается специализированный чип производства Cirrus logic. В начале обзора не были указаны характеристики регулятора, но так как фактически они зависят от данного чипа, то корректнее привести их именно в таком виде. Хотя корректность это понятие относительное, так как они относятся к оригинальному чипу, а какой стоит здесь, я сказать не могу.
Выше я не зря писал о ступенчатых регуляторах сигнала. Дело в том, что данный регулятор также ступенчатый. На блок схеме красным выделен узел аттенюатора, т.е. делителя, а зеленым — регулируемый усилитель.
В отличии от обычного переменного резистора регулятор умет работать в двух режимах, ослабления (-95.5 дБ — 0) и усиления (0-31.5 дБ), за ослабление отвечает аттенюатор, а за усиление — усилитель с изменяемым коэффициентом усиления.
Схема включения регулятора предельно проста, потому собственно и определяются характеристики набора именно характеристиками чипа, хотя некоторые параметры можно при желании испортить неправильной трассировкой.
Изначально регулятор двухканальный, но судя по даташиту он допускает каскадирование и его можно применять и в многоканальных системах, нужен просто еще один или несколько таких чипов.
На плате находится разъем для подключения панели управления, а также неизвестный мне чип со стертой маркировкой.
Как было указано выше, плата может управлять включением дополнительной нагрузки. Для этого на плате имеются контакты подключения реле. На этих контактах появляется 5 Вольт при включении регулятора в рабочий режим, коммутация по минусу.
Данный выход можно использовать для управления подачей питания на усилитель мощности.
1. Чип регулятора CS3310
2. Транзисторная сборка ULN2003 для управления реле, она же управляет и дополнительным выходом.
3. Сигнальные реле на напряжение 5 Вольт. Где-то дома должны быть такие же реле, только фирменные, может сравню позже.
4. Неизвестный мне чип, зачем стерли маркировку — загадка.
Снизу платы пусто, большая часть полигонов используется как экран от помех.
Так как чип регулятора имеет цифровое управление, то в комплекте идет плата управления и индикации.
Управление соответственно может быть как от энкодера, так и от пульта, для этого на плате установлен фотоприемник, по понятным причинам светофильтр должен захватывать и его.
А это то, из-за чего я отчасти остановил свой выбор именно на данной модели регулятора, VFD дисплей, или по нашему ВЛИ (Вакуумно Люминесцентный Индикатор).
Собственно из-за этого данную плату можно назвать «теплой и ламповой», так как ВЛИ это и есть самая настоящая радиолампа, правда не имеющая никакого отношения к звуку. Дисплей правда здесь самый обычный, подобные применяются в калькуляторах и подобных устройствах где достаточно 9 знакомест.
Скажу честно, мне действительно нравятся подобные вещи и я бы не отказался от подобных дисплеев, но в виде аналогов обычным 1602, 2004 и т.п., но стоят они обычно , правда и смотрятся красиво.
Контроллер управления и прочие элементы вынесены на обратную сторону платы, а сама плата выполнена в том же дизайне что и плата регулятора. Правда есть замечание, плата не совсем ровная, она немного выгнута в сторону от передней панели.
Контроллер управления регулятором и драйвер дисплея.
На плате имеются контакты для подключения внешней клавиатуры и месте для перемычек.
1. Зеленый — клавиатура — выключение звука, выбор входа, регулировка громкости. В отличии от энкодера здесь есть функция выключения звука, но нет кнопки выключения.
2. Красный — режим работы полный (аттенюатор + усилитель) или только аттенюатор.
3. Желтый — отключение функции запоминания настроек.
1. Микроконтроллер управления — 12C5A60S2
2. Драйвер дисплея —
3. EEPROM, предположительно для хранения настроек.
4. Пайка фотоприемника. сначала решил что все плохо, но позже выяснилось что такой вид только снизу, сверху пайка отличная.
Чтобы проверить регулятор, подключил трансформатор питания 9 Вольт, соединил шлейфом платы и… все, можно включать.
Со вспышкой, да без светофильтра пытаться что либо разглядеть на дисплее нереально, хотя здесь я даже подкорректировал изображение в фотошопе.
Без вспышки или с каким нибудь светофильтром все заметно лучше, сам по себе индикатор весьма яркий.
На странице товара есть примеры применения данного регулятора, а точнее — оформления передней панели с ним, хотя в некоторых вариантах применен явно другой светофильтр, заметно более длинный.
Я же пока временно ограничился кусочком зеленого светофильтра, который нашел дома и ниже расскажу о режимах работы.
1. Выключено, на дисплее светится только точка правого разряда.
2. После короткого нажатия на энкодер регулятор переходит в основной режим работы, при этом на дисплей вылазит надпись Hello, которая затем пропадает. Выше я писал что у платы есть выход включения дополнительной нагрузки, на нем питание появляется сразу после нажатия на энкодер. При подаче питания на плату, она кратковременно щелкает релюшкой, в дежурном режиме все реле отключены. Для перевода платы в дежурный режим надо удерживать энкодер нажатым примерно пару секунд.
3. На дисплей выводится номер включенного канала и уровень ослабления/усиления сигнала.
4. Если на время замкнуть контакты Mute, то в поле уровня выводятся прочерки, повторное замыкание контактов опять включает звук.
5, 6. Минимально может быть -96 дБ, максимально +31.5 дБ. В даташите был указан диапазон -95.5 — +31.5 дБ.
И вот в последнем показанном пункте и кроется небольшая засада, полный диапазон регулировки составляет 256 уровней, а так как энкодер имеет 20 положений на один оборот, то для перехода от минимума до максимума надо сделать почти 13 полных оборотов. Я конечно люблю плавную регулировку, но всему есть свои пределы… На мой взгляд достаточно 30 ступеней регулировки, ну если хочется плавности, то 60-65, но 256…
Немного улучшить ситуацию позволяет отключение встроенного усилителя, это дает два положительных момента:
1. Усилитель меньше вносит искажений в сигнал (предположительно)
2. Вместо 256 ступеней будет «всего» 192 или 9.5 оборотов энкодера.
Еще увеличить удобство можно заменой энкодера на вариант с 24 положениями, тогда будет уже только 8 оборотов.
Если удалить перемычку Р5, то встроенный усилитель отключится, а максимально на дисплее будет уже 00.0, а не 31.5. Также на фото видны разные варианты включенных входов, 1 и 4. Входы переключатся коротким нажатием на энкодер.
Память режимов есть, но после полного снятия питания регулятор включится в режим который был перед корректным
отключением, раздельной памяти на каждый вход нет, уровень громкости один на все входы. Если запаять перемычку блокировки памяти, то при каждом включении будет активирован первый вход и уровень сигнала -46.0 дБ.
Из-за того, что дисплей включен всегда, то потребление от режима работы почти не меняется, 187 мА в дежурном и 236 мА в рабочем режиме. Потребление указано по переменному току, мощность около 1.7 и 2.2 соответственно.
Естественно была проведена небольшая проверка, но по большей части я скорее уперся в возможности моих измерительных приборов и в частности — осциллографа. Для регулятора громкости ключевым является обычно линейность регулировки, вносимые искажения и разделение каналов, но я как-то даже не знаю как проверить все это при помощи одного генератора и простенького осциллографа. При входном напряжении 2.65 Вольта и уровне -70 дБ вольтметр показывает на выходе около 1мВ.
Для теста использовался полностью аналоговый генератор 10 Гц — 100 кГц и осциллограф DS203.
Сначала проверил как выглядит картинка на частоте 10 Гц.
1. Входной сигнал
3. Выходной сигнал на уровне +8.5 дБ
4. На уровне +9.0 дБ началось ограничение, но оно определяется размахом входного сигнала.
5. Уровень -45 дБ
6. Уровень -30 дБ
Частота 20 кГц.
1. Входной сигнал
2. Выходной сигнал на уровне 0 дБ.
3. Выходной сигнал на уровне +12 дБ
4. Так как размах входного сигнала здесь меньше, то ограничение началось на уровне +12,5 дБ, при дальнейшем увеличении усиления сигнал постепенно превращается в прямоугольник.
5. Уровень -45 дБ
6. Уровень -30 дБ
Максимум что умеет мой генератор — 100 кГц, на этой частоте я также решил проверить.
1. Входной сигнал
2. Выходной сигнал на уровне 0 дБ.
3. Выходной сигнал на уровне +11,5 дБ
4. Выходной сигнал на уровне 12.5 дБ, при 12.0 дБ ограничение было почти незаметно потому я выбрал 12.5 для наглядности.
Так как усилители мощности пока не готовы, ЦАП вообще еще не приехал, то пробовал немного с этим усилителем, работает нормально, по крайней мере единственный исправный канал:)
Собственно говоря именно этот усилитель я и буду переделывать, понимаю, явно не Одиссей, но что имеем. Хотя если учитывать что от него по сути останется только корпус, ну возможно еще трансформатор и радиатор, то не думаю что это важно, хотя у того же Одиссея вид и конструкция куда как более солидная.
Пока вкратце могу сказать, что все работает, в этом плане нареканий у меня нет. Звук регулируется, пульт работает, дисплей отображает всю необходимую информацию, искажений звука не замечено. Отмечу отсутствие импульсных преобразователей для питания дисплея, хотя индикация все равно динамическая, но в данном случае это ограничение самого дисплея.
Но есть и недостаток, слишком плавная регулировка сигнала, потому я скорее всего заменю энкодер и отключу встроенный усилитель.
Кроме того хотелось бы иметь раздельную регулировку уровня громкости для каждого входа, но это уже скорее к разряду «хотелок», потому как обычно такое не используется.
Общее качество изготовления неплохое, откровенных косяков не наблюдаю. Оригинальность чипа регулятора проверить не могу, увы.
Спонсором данного обзора выступил посредник , который взял на себя оплату доставки.
Стоимость комплекта вместе с доставкой к посреднику выходит $30.66, стоимость доставки от посредника зависит от разных факторов. Весит набор 364 грамма, информация со страницы заказа у посредника.
На этом у меня пока все, как обычно жду вопросы, советы, пожелания и тому подобное, надеюсь что обзор был полезен.
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
Планирую купить +31 Добавить в избранное Обзор понравился +88 +128TIC10024, TIC12400 — контроллер внешний цепей на 24 канала
Компания Texas Instruments выпустила серию контроллеров внешних цепей/дискретных входов. Данное решение может быть интересно в применениях, где требуется увеличить количество внешних входов простым и надёжным способом. Одна микросхема добавляет 24 канала и берёт все вопросы связанные с ними на себя.
Задача разработки схемотехники внешних интерфейсов не так проста, как кажется на первый взгляда. Необходимо предсусмотреть целый спект аспектов, среди которых можно назвать:
- возможность подключения различных типов нагрузки и схем включения (ключ на землю, ключ на питание, переменный резистор, группа резисторов а параллель),
- возможность подключения различных источников напряжения на внешние цепи,
- учёт колебаний напряжения при коммутации,
- защита от ЭМИ и ЭСР,
- защита от протекания сквозных токов,
- самодиагнотика схемы.
Решение всех этих задач на дискретных компонентах как правило приводит к значительному увеличению перечня компонентов и габаритов печатной платы, где они расположены. Типовое решение на 24 канала включает порядка 80 резисторов, 30 конденсаторов, 24 диода и 6 полевых транзисторов.
Решение от TI позволяет полностью исключить диоды и полевые транзистороы,а также сократить количество резисторов минимум в 3 раза. За счёт чего значительно сохращаются габариты печатной платы. Также стоит отметить, что большое количество элементов приводит к большему потреблению из-за увеличения токов утечки. Ещё одним фактором повышенного потребления тока является необходимость работы в активном режиме МК, который опрашивает выводы GPIO. Устранив оба этих аспекта TIC10024-Q1 позволяет снизить ток до 68 мкА.
Как видно на структурной схеме, TIC10024/TIC12400 содержит всё необходимое в себе: схемы защиты от ЭСР и переходных процессов, независимые источники тока, компаратор, АЦП (только в TIC12400-Q1) для задания порога срабатывания, домен питания, датчик температуры, тактовый генератор и схему диагностики.
Таблица 1: Основные характеристики TIC10024-Q1
Параметр | Значение |
Количество выводов | 24 |
Напряжение питания/коммутируемых цепей (В) | 4.5 — 35 |
Напряжение коммутируемых цепей (В) | от -24 до +40 |
Ток канала (мА) | 1 / 2 / 5 / 10 / 15 |
Интерфейс | SPI |
Уровень логических сигналов (В) | 3 — 5.5 |
Корпус | 38HTSSOP |
Габариты, Ш x Д (мм) | 6.4 x 9.7 |
Диапазон рабочих температур (C) | от -40 до +125 |
В результате семейство TIC10024/TIC12400 решает практически все задачи, которые возникают при работе с большим количеством кнопок, переключателей.
Для начала работа TI предлагает отладочную плату TIC12400EVM-KIT, которая наглядно показывает возможности заложенные в микросхему.
Задать любые вопросы, получить образцы и отладочные платы Вы можете по электронной почте.
Документация на TIC12400-Q1Регулятор громкости на реле для самодельной аудиоаппратуры
Почти у любой аудиоаппаратуры есть ручка или кнопки, задействовав которые, можно изменить громкость музыкальной песни или передачи, которая играет в данный момент. За ручкой или кнопками скрывается устройство, которое называется регулятором громкости. Или кратко РГ. Об одной реализации данного устройства напишу под катом.Регуляторы громкости бывают четырех типов:
1. Аналоговые потенциометры:
2. Дискретные переключатели на резисторах:
3. Специализированные микросхемы:
4. Обработка цифрового сигнала микропроцессором c последующим выводом звука на ЦАП:
Каждое из технических решений имеет свои плюсы и свои минусы. Устройство из обзора — представитель 2 группы — дискретный переключатель. Резисторы переключаются тут не переключателем, а восемью специальными сигнальными реле. Переменный резистор на плате никак не связан со звуковым трактом. Он служит для управления электронной цифровой схемой.
Фотографии устройства:
Чипы:
Питание тут два переменных напряжения по 12В. Можно и просто обойтись постоянным стабилизированным напряжением в 12В. Для этого выпаять два диода-выпрямителя (используют двухполупериодный выпрямитель), стабилизатор напряжения и установить необходимые перемычки.
Потребление у устройства такое:
Для питания будет использоваться трансформатор мощностью 4,5 Ватт:
Доработка
Когда подключил устройство для тестов к звуковой карте, то в некоторых положениях регулятора получил дисбаланс каналов:
Решил отпаять резисторы на обратной стороне платы, проверить их сопротивления и заменить резисторы у которых были не одинаковые значения на обоих каналах:
Новые резисторы подобрал с помощью тестера в радиолюбительских «Закромах Родины». Синие резисторы перепаяны:
Измерения
Условия. На вход РГ на один канал подается сигнал синус 1кГц Vpp (разница напряжений между макс и мин синуса) =4.8 Вольт с генератора сигналов.
Выход РГ подключен к звуковой карте EMU0204. На ней измеряем уровень сигнала в децибелах относительно полного сигнала, поданного на звуковую карту.
Так же на выход РГ на этот канал подключен осциллограф. По нему смотрим уровень сигнала Vpp. На второй канал не подаем сигнал. Подключаем три тестера в режиме измерения сопротивления. Измеряем сопротивление между землей и входом, между входом и выходом, между выходом и землей. См схему на переключателях реле — по схеме понятно, как это все работает. Одновременно могут быть переключены несколько реле (хоть все 8):
На переменный резистор закрепляем бумажный круг с разметкой в 360 градусов и стрелкой.
Итоговая конструкция:
Проводим измерения и результат заносим в таблицу:
Выводы из таблицы:
1. Входное сопротивление меняется в зависимости от положения РГ.
2. Смотрим график:
Очень похоже на линейный потенциометр. Если смотреть в dB тогда:
Вывод — это РГ годиться для УНЧ с небольшим коэф. усиления (10-12 раз по напряжению) — т.е. маломощным (до 30 Ватт). С таким УНЧ и планируется использовать РГ. В случае мощного УНЧ будем получать уже при небольшом повороте ручки от нуля мощный и громкий сигнал.
Итог тестов в RMAA
Первый столбец — подключение линейного выхода зв.карты EMU0204 к ее лин.входу
Второй — регулятор громкости на максимуме
Третий — регулятор громкости на громкости, соотв. подключению к усилителю с коэф. усиления 10 и регулятором громкости на 90 градусов. Что соответствует макс. мощности примерно в 1 Ватт на нагрузку 4 Ома (тихий звук).
Графики не стал размещать — они почти совпадают.
Особенности:
1. Сигнал на выход подается не сразу. Где-то через 2 секунды. При отключении сигнала звук пропадает сразу.
2. Когда крутится регулятор — мигает один светодиод, шуршат реле (слышно). Второй светодиодные горит синим всегда — это индикатор питания.
3. 128 вариантов громкости по китайским расчетам (256 вариантов по другими расчетам)
Плюсы:
1. Два полностью независимых канала.
2. После доработки с балансом между каналами все ок.
3. Нет глюков обычных недорогих потенциометров Например: звук при нулевом положении РГ, разбаланс каналов, треск при вращении.
4. Такой регулятор можно разместить в любом месте корпуса. Например, плату разместить около входных раз’емов, а регулятор выпаять и установить на переднюю панель.
5. Работает нормально — без треска и щелчков в динамиках.
Минусы:
1.Флюс отмыт плохо. Я специально не отмывал. Буду отмывать вместе со всеми платами устройства.
2. Нестандартный штекер питания. Перепаял.
3. Разъемы вход-выход нет. Провода припаиваются сразу на плату.
4. Реле шуршат сильно
5. Разное сопротивление устройства на входе.
6. Иногда при неудачном повороте ручки начинают бешено трещать реле. Это слышно. Нужно немного «довернуть» ручку.
7. На нулевой громкости вход УНЧ (выход РГ) не замкнут на землю. Фон не слышен — но «не по фэн-шую».
8. Из-за почти линейных характеристик такой РГ желательно использовать с УНЧ небольшой мощности (до 30 Ватт).
9. Необходимо отдельное питание для РГ.
Simscape Electrical Документация
Страница, которую вы искали, не существует. Воспользуйтесь окном поиска или просмотрите темы ниже, чтобы найти страницу, которую вы искали.
Моделирование и имитация электронных, мехатронных и электрических систем
Simscape ™ Electrical ™ (ранее SimPowerSystems ™ и SimElectronics ® ) предоставляет библиотеки компонентов для моделирования и имитации электронных, мехатроника и электроэнергетические системы.Он включает модели полупроводников, двигателей и компоненты для таких приложений, как электромеханический привод, интеллектуальные сети и возобновляемые источники энергии. энергетические системы. Вы можете использовать эти компоненты для оценки архитектур аналоговых схем, разрабатывать мехатронные системы с электроприводами и анализировать генерацию, преобразование, передача и потребление электроэнергии на уровне сети.
Simscape Электрооборудование помогает разрабатывать системы управления и тестировать производительность на уровне системы.Вы можете параметризуйте свои модели с помощью переменных и выражений MATLAB ® , а также проектируйте системы управления для электрических систем. в Simulink ® . Вы можете интегрировать механические, гидравлические, тепловые и другие физические системы в вашу модель, используя компоненты из семейства продуктов Simscape. Чтобы развернуть модели в других средах моделирования, включая системы аппаратного обеспечения (HIL), Simscape Electrical поддерживает генерацию C-кода.
Simscape Электрооборудование было разработано в сотрудничестве с Hydro-Québec в Монреале.
Изучите основы Simscape Electrical
Примеры устройств и систем для электроники, мехатроники и электроснабжения системные приложения
Методы построения моделей, передовой опыт и параметризация методы
Совместимость электронных, мехатронных и электрических блоков системы с другими блоками Simscape
Построение систем управления сетью с использованием контроллеров, математических преобразование и широтно-импульсная модуляция
Улучшение производительности, инструменты и методы анализа
Simulink В реальном времени ™ Проверки Simscape, Simscape HDL Workflow Advisor
Моделирование систем электроснабжения с использованием специализированных компонентов и алгоритмов
Simscape Electrical Документация
Страница, которую вы искали, не существует.Воспользуйтесь окном поиска или просмотрите темы ниже, чтобы найти страницу, которую вы искали.
Моделирование и имитация электронных, мехатронных и электрических систем
Simscape ™ Electrical ™ (ранее SimPowerSystems ™ и SimElectronics ® ) предоставляет библиотеки компонентов для моделирования и имитации электронных, мехатроника и электроэнергетические системы. Он включает модели полупроводников, двигателей и компоненты для таких приложений, как электромеханический привод, интеллектуальные сети и возобновляемые источники энергии. энергетические системы.Вы можете использовать эти компоненты для оценки архитектур аналоговых схем, разрабатывать мехатронные системы с электроприводами и анализировать генерацию, преобразование, передача и потребление электроэнергии на уровне сети.
Simscape Электрооборудование помогает разрабатывать системы управления и тестировать производительность на уровне системы. Вы можете параметризуйте свои модели с помощью переменных и выражений MATLAB ® , а также проектируйте системы управления для электрических систем. в Simulink ® .Вы можете интегрировать механические, гидравлические, тепловые и другие физические системы в вашу модель, используя компоненты из семейства продуктов Simscape. Чтобы развернуть модели в других средах моделирования, включая системы аппаратного обеспечения (HIL), Simscape Electrical поддерживает генерацию C-кода.
Simscape Электрооборудование было разработано в сотрудничестве с Hydro-Québec в Монреале.
Изучите основы Simscape Electrical
Примеры устройств и систем для электроники, мехатроники и электроснабжения системные приложения
Методы построения моделей, передовой опыт и параметризация методы
Совместимость электронных, мехатронных и электрических блоков системы с другими блоками Simscape
Построение систем управления сетью с использованием контроллеров, математических преобразование и широтно-импульсная модуляция
Улучшение производительности, инструменты и методы анализа
Simulink В реальном времени ™ Проверки Simscape, Simscape HDL Workflow Advisor
Моделирование систем электроснабжения с использованием специализированных компонентов и алгоритмов
Simscape Electrical Документация
Страница, которую вы искали, не существует.Воспользуйтесь окном поиска или просмотрите темы ниже, чтобы найти страницу, которую вы искали.
Моделирование и имитация электронных, мехатронных и электрических систем
Simscape ™ Electrical ™ (ранее SimPowerSystems ™ и SimElectronics ® ) предоставляет библиотеки компонентов для моделирования и имитации электронных, мехатроника и электроэнергетические системы. Он включает модели полупроводников, двигателей и компоненты для таких приложений, как электромеханический привод, интеллектуальные сети и возобновляемые источники энергии. энергетические системы.Вы можете использовать эти компоненты для оценки архитектур аналоговых схем, разрабатывать мехатронные системы с электроприводами и анализировать генерацию, преобразование, передача и потребление электроэнергии на уровне сети.
Simscape Электрооборудование помогает разрабатывать системы управления и тестировать производительность на уровне системы. Вы можете параметризуйте свои модели с помощью переменных и выражений MATLAB ® , а также проектируйте системы управления для электрических систем. в Simulink ® .Вы можете интегрировать механические, гидравлические, тепловые и другие физические системы в вашу модель, используя компоненты из семейства продуктов Simscape. Чтобы развернуть модели в других средах моделирования, включая системы аппаратного обеспечения (HIL), Simscape Electrical поддерживает генерацию C-кода.
Simscape Электрооборудование было разработано в сотрудничестве с Hydro-Québec в Монреале.
Изучите основы Simscape Electrical
Примеры устройств и систем для электроники, мехатроники и электроснабжения системные приложения
Методы построения моделей, передовой опыт и параметризация методы
Совместимость электронных, мехатронных и электрических блоков системы с другими блоками Simscape
Построение систем управления сетью с использованием контроллеров, математических преобразование и широтно-импульсная модуляция
Улучшение производительности, инструменты и методы анализа
Simulink В реальном времени ™ Проверки Simscape, Simscape HDL Workflow Advisor
Моделирование систем электроснабжения с использованием специализированных компонентов и алгоритмов
Simscape Electrical Документация
Страница, которую вы искали, не существует.Воспользуйтесь окном поиска или просмотрите темы ниже, чтобы найти страницу, которую вы искали.
Моделирование и имитация электронных, мехатронных и электрических систем
Simscape ™ Electrical ™ (ранее SimPowerSystems ™ и SimElectronics ® ) предоставляет библиотеки компонентов для моделирования и имитации электронных, мехатроника и электроэнергетические системы. Он включает модели полупроводников, двигателей и компоненты для таких приложений, как электромеханический привод, интеллектуальные сети и возобновляемые источники энергии. энергетические системы.Вы можете использовать эти компоненты для оценки архитектур аналоговых схем, разрабатывать мехатронные системы с электроприводами и анализировать генерацию, преобразование, передача и потребление электроэнергии на уровне сети.
Simscape Электрооборудование помогает разрабатывать системы управления и тестировать производительность на уровне системы. Вы можете параметризуйте свои модели с помощью переменных и выражений MATLAB ® , а также проектируйте системы управления для электрических систем. в Simulink ® .Вы можете интегрировать механические, гидравлические, тепловые и другие физические системы в вашу модель, используя компоненты из семейства продуктов Simscape. Чтобы развернуть модели в других средах моделирования, включая системы аппаратного обеспечения (HIL), Simscape Electrical поддерживает генерацию C-кода.
Simscape Электрооборудование было разработано в сотрудничестве с Hydro-Québec в Монреале.
Изучите основы Simscape Electrical
Примеры устройств и систем для электроники, мехатроники и электроснабжения системные приложения
Методы построения моделей, передовой опыт и параметризация методы
Совместимость электронных, мехатронных и электрических блоков системы с другими блоками Simscape
Построение систем управления сетью с использованием контроллеров, математических преобразование и широтно-импульсная модуляция
Улучшение производительности, инструменты и методы анализа
Simulink В реальном времени ™ Проверки Simscape, Simscape HDL Workflow Advisor
Моделирование систем электроснабжения с использованием специализированных компонентов и алгоритмов
Типы переменных резисторов и их применения
Переменный резистор — самый важный компонент многих электрических устройств для управления тоном, басами и громкостью.Это связано с тем, что резисторы могут быть соединены вместе с другими компонентами, чтобы сформировать фильтры для желаемого уровня. Их также можно использовать в компьютерных мониторах для цветопередачи или позиционирования, а также для регулировки яркости или переключения ламп. Это достигается за счет преобразования цифрового сигнала в аналоговый и из аналогового в цифровой; Еще одно преимущество состоит в том, что ручку можно поворачивать вместо того, чтобы вводить значение каждый раз, когда вы хотите изменить оттенок или яркость.
Переменный резистор
Типы переменных резисторов?
Переменный резистор — это резистор, значение электрического сопротивления которого регулируется.Переменный резистор — это электромеханический преобразователь, который обычно работает путем скольжения контакта (стеклоочистителя) по резистивному элементу. Переменный резистор используется, потому что делитель потенциала с 3 выводами известен как потенциометр. Когда он имеет две клеммы, он действует как переменный резистор, известный как реостат. Переменный резистор с электронным управлением управляет электроникой вместо механического воздействия. Этот резистор называется цифровым потенциометром.
Типы переменных резисторовПотенциометр
Потенциометр — это обычный переменный резистор.Он функционирует как делитель потенциала, который используется для генерации сигнала напряжения в зависимости от расположения потенциометра. Это сигнал, который можно использовать для самых разных приложений, включая регулировку усиления усилителя, измерение расстояния или углов, настройку цепей и многое другое. Когда для настройки или калибровки схемы или ее применения используются переменные резисторы или подстроечные потенциометры или подстроечные потенциометры, это, как правило, потенциометры с меньшим номиналом, которые устанавливаются на печатной плате и регулируются с помощью отвертки.
Резистор потенциометраРеостат
Реостаты во многом похожи на потенциометры с точки зрения конструкции, но они не используются в качестве делителя потенциала, вместо этого они используются как переменные резисторы. Они могут использовать только 2 клеммы, а не потенциометры с 3 клеммами. Одно соединение подключено к одному концу резистивного элемента, другое — к обойме переменного резистора. В древние времена в качестве устройств регулирования мощности использовались реостаты, которые были подключены последовательно с нагрузкой, как лампочка.В настоящее время реостаты больше не используются в качестве регулятора мощности, так как это неэффективный метод. Для управления мощностью реостаты заменены в высокоэффективной переключающей электронике. При заданной переменной резисторы подключаются как реостаты, которые используются в схемах для выполнения настройки или калибровки.
Резистор реостатаРезистор цифровой
Цифровой переменный резистор — это тип переменного резистора, который используется всякий раз, когда изменение сопротивления осуществляется не механическим движением, а электронными сигналами.Они также могут изменять сопротивление дискретными шагами и часто управляются цифровыми протоколами, такими как I2C, или простыми сигналами вверх и вниз.
Цифровой резисторПредустановки
Пресетыпохожи на маленькие версии переменного резистора. Их можно легко разместить на печатной плате и при необходимости отрегулировать. Величина сопротивления обычно регулируется с помощью отвертки. Они часто используются в приложениях, которые имеют регулируемый частотный тон сигнализации или регулируемые цепи чувствительности.Это самые дешевые устройства из перечисленных выше. Это также узкоспециализированные предустановки с возможностью многооборотного режима. В этом типе предустановок сопротивления увеличиваются или уменьшаются постепенно, и поэтому винт необходимо повернуть несколько раз.
Предустановки резистораПодключение переменного резистора
Переменный резистор используется в качестве реостата, когда один конец сопротивления отслеживается, а вывод стеклоочистителя подсоединен к цепи, а другой вывод резистивной дорожки остается разомкнутым.В этом случае электрическое сопротивление подключается между выводом дорожки и выводом стеклоочистителя, которое зависит от положения дворника (ползунка) на дорожке сопротивлений. Переменный резистор также можно использовать в качестве потенциометра, когда оба конца резистивной дорожки подключены к входной цепи, а один из упомянутых концов резистивной дорожки и клеммы стеклоочистителя подключены к выходной цепи.
Подключение переменного резистораВ этом случае используются все три клеммы. Иногда в схеме электроники может быть требование адаптируемого сопротивления, но эта модификация требуется только один раз или очень часто.Это делается подключением в схему предустановленных резисторов. Предустановленный резистор — это один из видов переменного резистора, значение электрического сопротивления которого можно регулировать с помощью регулировочного винта, прикрепленного к нему.
Принцип работы переменного резистора
Как показано на рисунке ниже, переменный резистор состоит из дорожки, которая обеспечивает путь сопротивления. Два терминала машины подключены к обоим концам пути. Третий вывод связан с дворником, который определяет движение пути.Движение стеклоочистителя по трассе помогает увеличивать и уменьшать сопротивление.
Дорожка обычно изготавливается из смеси керамики и металла или также может быть сделана из углерода. Поскольку требуется резистивный материал, обычно используются переменные резисторы типа углеродной пленки. Они находят применение в схемах радиоприемников, схем аудиоусилителей и телевизионных приемников. Роторный рельсовый резистор имеет два применения: одно — для изменения сопротивления, а другое — метод переключения, который используется для электрического контакта и бесконтактного действия путем включения / выключения переключателя.Существует метод переключения, при котором для управления оборудованием используются переменные резисторы кольцевого сечения. Дорожка, проложенная по прямому пути, называется ползунком. Поскольку положение ползунка невозможно увидеть или подтвердить в соответствии с изменением сопротивления, обычно встроен стопорный механизм для предотвращения опасностей, вызванных чрезмерным вращением.
Использование переменных резисторов
Переменный резисторА можно использовать двумя способами.Когда один конец резистивной дорожки и клеммы стеклоочистителя подключены к цепи, ток через резистор ограничивается в соответствии с положением контакта стеклоочистителя на дорожке сопротивления. По мере того как контакт стеклоочистителя отодвигается от подсоединенного конца дорожки сопротивления, значение сопротивления резистора увеличивается, а ток в цепи падает, а это означает, что переменный резистор ведет себя как реостат.
Другое применение — потенциометр. В этом случае два конца резистивной дорожки соединены с источником напряжения.Следовательно, падение напряжения на дорожке сопротивления равно значению источников напряжения. Теперь цепь выхода или нагрузки подключена к одному концу резистивной дорожки и очищенной клемме. Следовательно, напряжение на клеммах нагрузки является частью напряжения источника и зависит от положения клемм стеклоочистителя на дорожке сопротивления. Это еще одно широко используемое применение переменных резисторов. Потенциометры используются для управления напряжением, а реостаты используются для управления электрическим током.
Применение переменных резисторов
Переменные резисторыможно найти в
- Управление аудиосистемой
- Телевидение
- Управление движением
- Преобразователи
- Расчет
- Бытовые электроприборы
- Генераторы
Future Electronics предлагает полный набор переменных резисторов различных размеров от нескольких производителей при поиске микросхемы переменного резистора, потенциометра переменного резистора, переменного резистора на 12 В, цифрового переменного резистора, переменного резистора высокой мощности или подстроечного резистора.Просто выберите одну из технических характеристик переменного резистора ниже, и результаты поиска будут быстро сужены в соответствии с потребностями вашего конкретного применения переменного резистора.
Таким образом, речь идет о типах переменных резисторов, их работе и применении. Мы надеемся, что вы лучше понимаете эту информацию. Кроме того, по любым вопросам, касающимся этой концепции или проектов в области электрики и электроники, пожалуйста, дайте свои ценные предложения, комментируя в разделе комментариев ниже.Вот вам вопрос, какова функция переменного резистора?
Фото:
Переменный резистор∶ Изучите основы, извлеките из него максимум пользы! — Блог промышленного производства
Резистор на сегодняшний день является одним из наиболее распространенных типов элементов в электрических устройствах. Это компоненты с двумя выводами, которые создают сопротивление току. Резисторы помогают значительно упростить управление током, и они являются обычной частью большинства электронных устройств в современном мире.В этой статье Linquip расскажет, что такое переменный резистор и как он работает. Читай дальше, чтобы узнать больше.
Что такое переменный резистор?
Это электронный компонент. Он применяется в электронной схеме для регулировки сопротивления цепи в зависимости от управляющего напряжения или тока этой цепи или ее части. Электрическое сопротивление изменяется путем скольжения контакта стеклоочистителя по дорожке сопротивления. Иногда сопротивление регулируется на предварительно установленное значение, как требуется во время построения схемы, с помощью регулировочного винта, прикрепленного к нему, а иногда сопротивление может быть отрегулировано по мере необходимости с помощью управляющей ручки, подключенной к нему.Значение активного сопротивления переменного резистора зависит от положения контакта ползунка на дорожке сопротивления.
В основном состоит из контактной дорожки сопротивления и контакта стеклоочистителя. Контакт стеклоочистителя перемещается по дорожке сопротивления при регулировке регулируемого компонента. В этом резисторе используются в основном три различных типа резистивных дорожек: углеродная дорожка, дорожка из кермета (керамика и смесь металлов) и дорожка с проволочной обмоткой. Углеродная дорожка и металлокерамическая дорожка используются для приложений с высоким сопротивлением, тогда как проволочная дорожка используется для переменного резистора с низким сопротивлением.Дорожки сопротивления обычно круглые, но во многих случаях также используется прямая дорожка.
Типы переменного резистора
Различные типы переменных резисторов включают:
Потенциометр — это самый распространенный переменный резистор. Этот делитель потенциала используется для генерации сигнала напряжения в зависимости от положения потенциометра.
Потенциометр состоит из трех клемм, две из которых являются фиксированными, а одна — сменной.Две фиксированные клеммы потенциометра подключены к обоим концам резистивного элемента, называемого дорожкой, а третья клемма подключена к ползунку или скользящему стеклоочистителю. Ползунок или стеклоочиститель, движущийся по резистивной дорожке, изменяет сопротивление потенциометра. Сопротивление потенциометра изменяется, когда стеклоочиститель перемещается по резистивному пути.
Потенциометр можно использовать для самых разных целей, включая регулировку усиления усилителя (громкость звука), измерение расстояния или углов, настройку цепей и многое другое.Когда для настройки или калибровки схемы или приложения используются переменные резисторы, подстроечные потенциометры или подстроечные потенциометры, это в основном небольшие потенциометры, установленные на печатной плате, которые можно регулировать с помощью отвертки.
Слово реостат происходит от греческих слов «реос» и «-статис», что означает устройство управления током или устройство управления потоком. Реостаты очень похожи по конструкции на потенциометры, но используются не как делитель потенциала, а как переменное сопротивление.Они используют только 2 клеммы вместо 3 клемм, используемых потенциометрами: одна подключена к концу дорожки, а другая — к подвижному дворнику. Вращение шпинделя изменяет сопротивление между двумя выводами от нуля до максимального сопротивления.
В прошлом реостаты использовались в качестве устройств регулирования мощности, последовательно соединенных с нагрузкой, например, лампочкой. В настоящее время реостаты больше не используются для регулирования мощности, поскольку это неэффективный метод. Для управления мощностью реостаты заменены более эффективной переключающей электроникой.Предварительно установленные переменные резисторы, подключенные как реостаты, используются в схемах для выполнения настройки или калибровки, например, для управления яркостью лампы или скоростью зарядки конденсатора.
Если реостат установлен на печатной плате, все три клеммы обычно припаяны для лучшей механической прочности. Третий вывод не выполняет никаких электрических функций, но обычно связан с выводом стеклоочистителя.
Цифровой переменный резистор — это тип переменного резистора, в котором изменение сопротивления осуществляется не механическим движением, а электронными сигналами.Они могут изменять сопротивление дискретными шагами и часто управляются цифровыми протоколами, такими как I2C, или простыми сигналами повышения / понижения.
Слово термистор образовано от словосочетания термистор и резистор. Это тип резистора, сопротивление которого изменяется при изменении окружающей температуры.
Термисторыбывают двух типов: термисторы с отрицательным температурным коэффициентом (NTC) и термисторы с положительным температурным коэффициентом (PTC).
Сопротивление термисторов NTC уменьшается при повышении температуры, тогда как сопротивление термисторов PTC увеличивается при повышении температуры.
Сопротивление магниторезистора изменяется при приложении к нему магнитного поля. Когда сила магнитного поля, приложенного к магниторезистору, увеличивается, сопротивление магниторезистора также увеличивается. Точно так же, когда сила магнитного поля, приложенного к магниторезистору, уменьшается, сопротивление магниторезистора также уменьшается.
Слово фоторезистор происходит от сочетания двух слов: фотон и резистор. Сопротивление фоторезистора изменяется при подаче на него световой энергии.Сопротивление фоторезистора уменьшается при увеличении интенсивности подаваемого света. Фоторезисторы бывают двух типов в зависимости от материала, из которого они изготовлены. Это либо собственные фоторезисторы, либо внешние фоторезисторы.
Фоторезисторытакже известны как светозависимые резисторы, полупроводниковые фоторезисторы или фотопроводники.
Название «гумистор» образовано от сочетания двух слов: влажность и резистор. Гумисторы очень чувствительны к влажности.Сопротивление гумистора изменяется при незначительном изменении влажности окружающего воздуха. Хьюмисторы также известны как резистивные датчики влажности или чувствительные к влажности резисторы.
-
Силовые резисторы
Само название говорит о том, что силовые резисторы очень чувствительны к приложенной силе. Когда мы прикладываем силу к силочувствительному резистору, его сопротивление быстро изменяется. Чувствительные к силе резисторы также известны как датчики силы, датчики давления, чувствительные к силе резисторы или FSR.
Presets — это миниатюрные версии стандартных переменных резисторов. Они устанавливаются непосредственно на печатные платы и регулируются только при построении схемы. Например, они могут использоваться для установки частоты сигнала тревоги или чувствительности светочувствительной цепи. Для настройки предварительных настроек обычно требуется небольшая отвертка или аналогичный инструмент.
пресетов доступны в вертикальном и горизонтальном стилях. Они электрически идентичны, но убедитесь, что вы покупаете правильный тип для вашей печатной платы.Горизонтальные предустановки обеспечивают лучшую механическую прочность печатной платы.
Пресеты могут быть открытыми (без футляра) или заключенными в пластиковый футляр для защиты от пыли и грязи. Поскольку они дешевле стандартных переменных резисторов, их часто используют в образовательных и хобби-проектах.
Многооборотные предустановки используются там, где требуются очень точные настройки. Винт необходимо повернуть много раз (10+), чтобы переместить ползунок от одного конца дорожки к другому, обеспечивая точный контроль.
Схема переменного резистораКак упоминалось выше, переменный резистор работает очень просто. Скользящий контакт на длинной катушке проволоки или длине графита изменяет количество материала в цепи. Чем больше длина в цепи, тем выше сопротивление и меньше ток. Таким образом, используя его для увеличения и уменьшения яркости лампы, электрическая схема будет:
Символ переменного резистора
В следующей таблице показаны наиболее распространенные символы резисторов для электронных схем.
Функция переменного резистора
Проще говоря, у переменного резистора можно регулировать электрическое сопротивление. Эти устройства используются при работе с электрическими схемами, поскольку они помогают контролировать напряжение и токи. Они специально работают с напряжением и токами, которые являются частью цепи. Регулировка этих устройств проста. Каждый резистор имеет контакт стеклоочистителя, который можно перемещать вверх и вниз по дорожке сопротивления. Резистор можно отрегулировать на текущие значения, что является требованием при построении схемы.Позже подключаемая ручка управления может вносить изменения. Контакт стеклоочистителя и его место на контактной дорожке сопротивления определяют значение сопротивления переменного резистора.
Переменный резистор Цепь
Переменные резисторы используются для динамического изменения сопротивления для управления током в цепи, а также могут использоваться в качестве делителя напряжения. Например, они используются для регулировки громкости на радио. Потенциометры отличаются от обычных резисторов тем, что имеют три вывода вместо двух.Средняя клемма — это «дворник». Когда в качестве делителя напряжения используется потенциометр, все три клеммы подключаются отдельно. Но когда потенциометр подключен как реостат, требуется только два подключения.
Любая сторона переменного резистора может быть присоединена к печатной плате, а оставшаяся сторона не подсоединена или заземлена, но важно всегда подсоединять стеклоочиститель. Стеклоочиститель должен быть заземлен или прикреплен к источнику напряжения. Например, вы можете прикрепить левую клемму потенциометра к источнику напряжения, а дворник — к земле или использовать правую клемму вместо левой.Изменение стороны влияет на направление вращения для максимального сопротивления потенциометра.
Итак, у вас есть подробное описание переменного резистора и его применения. Если вам понравилась эта статья в Linquip, дайте нам знать, оставив ответ в разделе комментариев. Есть вопросы, с которыми мы можем вам помочь? Не стесняйтесь зарегистрироваться на нашем веб-сайте, чтобы получить самую профессиональную консультацию от наших экспертов.
ADJ PWR RES 50 OHM 25W CHAS MT | $ 6. | 425 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT25-50-ND | AVT | 5 9030 9030 | 9030 25 Вт | ± 10% | Слайд | Внешний диаметр 0,559 дюйма, внутренний диаметр 0,311 дюйма (14,20 мм x 7,90 мм) | 2,000 дюйма (50,80 мм) | Монтаж на шасси | Проушина под пайку | Радиальная, 3-выводная, трубчатая | |||||||||||||||||
ADJ PWR RES 25 OHM 25W CHAS MT | $ 6. | 156 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT25-25-ND | AVT | 7 9030 | 25 Вт | ± 10% | Слайд | Внешний диаметр 0,559 дюйма, внутренний диаметр 0,311 дюйма (14,20 мм x 7,90 мм) | 2,000 дюйма (50,80 мм) | Монтаж на шасси | Проушина под пайку | Радиальная, 3-выводная, трубчатая | |||||||||||||||||
ADJ PWR RES 100 OHM 25W CHAS MT | $ 6. | 128 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT25-100-ND | AVT | 7 9030 9030 | 9030 25 Вт | ± 10% | Слайд | Внешний диаметр 0,559 дюйма, внутренний диаметр 0,311 дюйма (14,20 мм x 7,90 мм) | 2,000 дюйма (50,80 мм) | Монтаж на шасси | Проушина для припоя | Радиальная, 3-выводная, трубчатая | |||||||||||||||||
ADJ PWR RES 1 OHM 25W CHAS MT | $ 6. | 117 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT25-1.0-ND | AVT | 1 9030 9030 | 9030 25 Вт | ± 10% | Слайд | Внешний диаметр 0,559 дюйма, внутренний диаметр 0,311 дюйма (14,20 мм x 7,90 мм) | 2,000 дюйма (50,80 мм) | Монтаж на шасси | Проушина под пайку | Радиальная, 3-выводная, трубчатая | |||||||||||||||||
ADJ PWR RES 1 OHM 50W CHAS MT | $ 10.40000 | 278 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT50-1.0-ND | AVT | 53 9030 мс | 50 Вт | ± 10% | Слайд | Внешний диаметр 0,559 дюйма, внутренний диаметр 0,311 дюйма (14,20 мм x 7,90 мм) | 4,016 дюйма (102,00 мм) | Монтаж на шасси | Проушина под пайку | Радиальный, 3-выводной, трубчатый | |||||||||||||||||
ADJ PWR RES 5 OHM 50W CHAS MT | $ 10.40000 | 199 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT50-5.0-ND | AVT | 9030 9030 50 Вт | ± 10% | Слайд | Внешний диаметр 0,559 дюйма, внутренний диаметр 0,311 дюйма (14,20 мм x 7,90 мм) | 4,016 дюйма (102,00 мм) | Монтаж на шасси | Проушина под пайку | Радиальная, 3-выводная, трубчатая | ||||||||||||||||||
ADJ PWR RES 50 OHM 50W CHAS MT | $ 10.40000 | 194 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT50-50-ND | AVT | 9030 9030 9030 | 9030 50 Вт | ± 10% | Слайд | Внешний диаметр 0,559 дюйма, внутренний диаметр 0,311 дюйма (14,20 мм x 7,90 мм) | 4,016 дюйма (102,00 мм) | Монтаж на шасси | Проушина под пайку | Радиальный, 3-выводной, трубчатый | |||||||||||||||||
ADJ PWR RES 100 OHM 50W CHAS MT | $ 10.40000 | 184 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT50-100-ND | AVT | 53 9030 9030 | 9030 50 Вт | ± 10% | Слайд | Внешний диаметр 0,559 дюйма, внутренний диаметр 0,311 дюйма (14,20 мм x 7,90 мм) | 4,016 дюйма (102,00 мм) | Монтаж на шасси | Проушина под пайку | Радиальная, 3-выводная, трубчатая | |||||||||||||||||
ADJ PWR RES 10 OHM 50W CHAS MT | $ 10.40000 | 144 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT50-10-ND | AVT | 50 Вт | ± 10% | Слайд | Внешний диаметр 0,559 дюйма, внутренний диаметр 0,311 дюйма (14,20 мм x 7,90 мм) | 4,016 дюйма (102,00 мм) | Монтаж на шасси | Проушина под пайку | Радиальный, 3-выводной, трубчатый | ||||||||||||||||||
ADJ PWR RES 1 KOHM 50W CHAS MT | $ 10.40000 | 112 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT50-1.0K-ND | AVT | 53 | 50 Вт | ± 10% | Слайд | Внешний диаметр 0,559 дюйма, внутренний диаметр 0,311 дюйма (14,20 мм x 7,90 мм) | 4,016 дюйма (102,00 мм) | Монтаж на шасси | Проушина под пайку | Радиально, 3 вывода Трубчатый | |||||||||||||||||
ADJ PWR RES 50 OHM 100W CHAS MT | $ 18.74000 | 148 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT100-50-ND | AVT | 9030 9030 9030 | 9030 100 Вт | ± 10% | Слайд | Внешний диаметр 0,748 дюйма, внутренний диаметр 0,500 дюйма (19,00 мм x 12,70 мм) | 6,496 дюйма (165,00 мм) | Монтаж на шасси | Проушина под пайку | Радиальная, 3-выводная, трубчатая | |||||||||||||||||
ADJ PWR RES 100 OHM 100W CHAS MT | $ 18.74000 | 122 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT100-100-ND | AVT | 9 9030 9030 | 9030 100 Вт | ± 10% | Слайд | Внешний диаметр 0,748 дюйма, внутренний диаметр 0,500 дюйма (19,00 мм x 12,70 мм) | 6,496 дюйма (165,00 мм) | Монтаж на шасси | Проушина под пайку | Радиальная, 3-выводная, трубчатая | |||||||||||||||||
ADJ PWR RES 10 OHM 100W CHAS MT | $ 18.74000 | 107 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT100-10-ND | AVT | 100 Вт | ± 10% | Слайд | Внешний диаметр 0,748 дюйма, внутренний диаметр 0,500 дюйма (19,00 мм x 12,70 мм) | 6,496 дюйма (165,00 мм) | Монтаж на шасси | Проушина под пайку | Радиальная, 3-выводная, трубчатая | ||||||||||||||||||
ADJ PWR RES 1 OHM 100W CHAS MT | $ 18.74000 | 103 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT100-1.0-ND | AVT | 1 9030 9030 | 9030 100 Вт | ± 10% | Слайд | Внешний диаметр 0,748 дюйма, внутренний диаметр 0,500 дюйма (19,00 мм x 12,70 мм) | 6,496 дюйма (165,00 мм) | Монтаж на шасси | Проушина под пайку | Радиальная, 3-выводная, трубчатая | |||||||||||||||||
ADJ PWR RES 10 OHM 25W CHAS MT | $ 21.85000 | 152 — Немедленно | Ohmite | Ohmite | 1 | D25K10RE-ND | Dividohm®210 | 7 10338 | 7 Актив | 7 | Слайд | Внешний диаметр 0,563 дюйма, внутренний диаметр 0,313 дюйма (14,30 мм x 7,94 мм) | 2 000 дюйма (50,80 мм) | Крепление на шасси | Проушина под пайку | Радиально, 3 вывода, трубчатая | |||||||||||||||||
9302 | AD PWR RES 8 OHM 300W CHAS MT30 $.04000 | 213 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVE300-8.0-ND | AVE | 53 | 300 Вт | ± 10% | Слайд | Внешний диаметр 1,126 дюйма, внутренний диаметр 0,748 дюйма (28,60 мм x 19,00 мм) | 8,500 дюйма (215,90 мм) | Монтаж на шасси | Проушина под пайку | Радиальная, 3-выводная, трубчатая | |||||||||||||||||
ADJ PWR RES 1.6 OHM 300W CHAS MT | $ 30.04000 | 150 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | 3 AVE300-1.6-ND | Активный | 1,6 Ом | 300 Вт | ± 10% | Слайд | Внешний диаметр 1,126 дюйма, внутренний диаметр 0,748 дюйма (28,60 мм x 19,00 мм) | 8,500 дюйма (215,90 мм) | Крепление на шасси | Проушина под пайкуРадиальный, 3-выводной, трубчатый | ||||||||||||||||||
ADJ PWR RES 20 OHM 300W CHAS MT | 30 долларов США.04000 | 123 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVE300-20-ND | AVE | 300 Вт | ± 10% | Слайд | Внешний диаметр 1,126 дюйма, внутренний диаметр 0,748 дюйма (28,60 мм x 19,00 мм) | 8,500 дюйма (215,90 мм) | Монтаж на шасси | Проушина под пайку | Радиальная, 3-выводная, трубчатая | ||||||||||||||||||
ADJ PWR RES 5 OHM 225W CHAS MT | $ 33.47000 | 115 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT20020E5R000KE-ND 35 | AVT | ± 10% | Слайд | Внешний диаметр 1,126 дюйма, внутренний диаметр 0,748 дюйма (28,60 мм x 19,00 мм) | 267,00 мм (10,512 дюйма) | ||||||||||||||||||||||
ADJ PWR RES 10 OHM 225W CHAS MT | $ 34.80000 | 142 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT20020E10R00KE-ND | 9030 мс | ± 10% | Слайд | Внешний диаметр 1,126 дюйма, внутренний диаметр 0,748 дюйма (28,60 мм x 19,00 мм) | 267,00 мм (10,512 дюйма) | ||||||||||||||||||||||
ADJ PWR RES 50 OHM 225W CHAS MT | $ 61.46000 | 1,437 — Немедленно | Ohmite | Ohmite | 1 | D225K50RE-ND | Dividohm®210% | Dividohm®210% | Слайд | Внешний диаметр 1,126 дюйма, внутренний диаметр 0,752 дюйма (28,60 мм x 19,10 мм) | 10,500 дюйма (266,70 мм) | Крепление на шасси | Проушина под пайку | Радиально, 3 вывода, трубчатая PWR RES 250 OHM 25W CHAS MT | $ 6. | 112 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT25-250-ND | AVT | 9030 9030 | 9030 25 Вт | ± 10% | Слайд | Внешний диаметр 0,559 дюйма, внутренний диаметр 0,311 дюйма (14,20 мм x 7,90 мм) | 2,000 дюйма (50,80 мм) | Монтаж на шасси | Проушина под пайку | Радиальная, 3-выводная, трубчатая | |||
ADJ PWR RES 3 OHM 50W CHAS MT | $ 10.40000 | 133 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT50-3.0-ND | AVT | 9 9030 9030 | 9030 50 Вт | ± 10% | Слайд | Внешний диаметр 0,559 дюйма, внутренний диаметр 0,311 дюйма (14,20 мм x 7,90 мм) | 4,016 дюйма (102,00 мм) | Монтаж на шасси | Проушина под пайку | Радиальный, 3-выводной, трубчатый | |||||||||||||||||
ADJ PWR RES 250 OHM 100W CHAS MT | $ 18.74000 | 160 — Немедленно | Vishay Huntington Electric Inc. | Vishay Huntington Electric Inc. | 1 | AVT100-250-ND | AVT | 3 9030 9030 9030 | 9030 100 Вт | ± 10% | Слайд | Внешний диаметр 0,748 дюйма, внутренний диаметр 0,500 дюйма (19,00 мм x 12,70 мм) | 6,496 дюйма (165,00 мм) | Монтаж на шасси | Проушина под пайку | Радиальная, 3-выводная, трубчатая | |||||||||||||||||
ADJ PWR RES 50 OHM 25W CHAS MT | $ 21. |