Понижающий трансформатор что такое: как работает устройство и принцип его действия

Содержание

Трансформатор напряжения , назначение и принцип действия

Трансформатор напряжения — это одна из разновидностей трансформаторов, который нужен для:

  1. преобразования электрической мощности и питания различных устройств,
  2. гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.
  3. измерения напряжения на подстанциях и питания всевозможных реле защиты
измерительный трансформатор напряжения

Измерительный трансформатор напряжения служит для понижения высокого напряжения, подаваемого в установках переменного тока на измерительные приборы и реле защиты и автоматики.

Трансформатор напряжения принцип работы

Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.

Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.

Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чего он обеспечивает безопасность их обслуживания на подстанции.

Основное принципиальное отличие измерительных трансформаторов напряжения (ТН) от трансформаторов тока (ТТ) состоит в том, что они, как и все силовые модели, рассчитаны на обычную работу без закороченной вторичной обмотки.

В то же время, если силовые трансформаторы предназначены для передачи транспортируемой мощности с минимальными потерями, то измерительные трансформаторы напряжения конструируются с целью высокоточного повторения в масштабе векторов первичного напряжения.

измерительный трансформатор напряжения

Принципы работы трансформатора напряжения

Конструкцию трансформатора напряжения, как и трансформатора тока, можно представить магнитопроводом с намотанными вокруг него двумя обмотками:

  • первичной;
  • вторичной.

Специальные сорта стали для магнитопровода, а также металл их обмоток и слой изоляции подбираются для максимально точного преобразования напряжения с наименьшими потерями. Число витков первичной и вторичной катушек рассчитывается таким образом, чтобы номинальное значение высоковольтного линейного напряжения сети, подаваемое на первичную обмотку, всегда воспроизводилось вторичной величиной 100 вольт с тем же направлением вектора для систем, собранных с заземленной нейтралью.

Если же первичная схема передачи энергии создана с изолированной нейтралью, то на выходе измерительной обмотки будет присутствовать 100/√3 вольт.

Для создания разных способов моделирования первичных напряжений на магнитопроводе может располагаться не одна, а несколько вторичных обмоток.

Устройство однофазного трансформатора напряжения

устройство однофазного трансформатора напряжения

Устройство однофазного трансформатора напряжения:

  • а — общий вид трансформатора напряжения;
  • б — выемная часть;
  • 1,5 — проходные изоляторы;
  • 2 — болт для заземления;
  • 3 — сливная пробка;
  • 4 — бак;
  • 6 — обмотка;
  • 7 — сердечник;
  • 8 — винтовая пробка;
  • 9 — контакт высоковольтного ввода

Однофазные трансформаторы напряжения получили наибольшее распространение. Они выпускаются на рабочие напряжения от 380 В до 500 кВ.

Конструктивные размеры и масса ТН определяются не мощностью, как у силовых трансформаторов, а в основном объемом изоляции первичной обмотки и размерами её выводов высокого напряжения.

Трансформаторы напряжения с номинальным напряжением от 380 В до 6 кВ имеют исполнение с сухой изоляцией (обмотки выполняются проводом марки ПЭЛ и пропитываются асфальтовым лаком).

Свердловский завод трансформаторов тока выпускает трансформаторы напряжения на 6, 10, 35 кВ с литой изоляцией.

У трансформаторов напряжением 10 — 500 кВ изоляция масляная (магнитопровод погружен в трансформаторное масло).

Пример назначение и область применение трансформаторов напряжения ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ.

Трансформаторы выполнены в виде опорной конструкции.

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий. Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

схема включения обмоток трансформатора напряжения ЗНОЛ-НТЗ

Схемы включения  трансформаторов напряжения

Измерительные трансформаторы применяются для замера линейных и/или фазных первичных величин. Для этого силовые обмотки включают между:

  • проводами линии с целью контроля линейных напряжений;
  • шиной или проводом и землей, чтобы снимать фазное значение.

Важным элементом безопасности измерительных трансформаторов напряжения является заземление их корпуса и вторичной обмотки.

На заземление трансформаторов напряжения обращается повышенное внимание, ведь при пробое изоляции первичной обмотки на корпус или во вторичные цепи в них появится высоковольтный потенциал, способный травмировать людей и сжечь оборудование.

Преднамеренное заземление корпуса и одной вторичной обмотки отводит этот опасный потенциал на землю, чем предотвращает дальнейшее развитие аварии.

Трансформатор напряжения при напряжении до 35 кВ

Трансформатор напряжения при напряжении до 35 кВ по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из магнитопровода, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. На рис. 2.1. показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение Ub a напряжение вторичной обмотки U2 подведено к измерительному прибору.

рис. 2.1  Схема включения однофазного трансформатора напряжения

Трансформаторы применяются в наружных (типа НОМ-35, серий ЗНОМ и НКФ) или внутренних установках переменного тока напряжением 0,38-500 кВ и номинальной частотой 50 Гц. Трехобмоточные трансформаторы НТМИ предназначены для сетей с изолированной нейтралью, серии НКФ (кроме НКФ-110-5 8) — с заземленной нейтралью.

В электроустановках используются однофазные, трехфазные (пятистержневые) и каскадные трансформаторы напряжения (ТН). Выбор того или иного типа трансформатора напряжения  зависит от напряжения сети, значения и характера нагрузки вторичных цепей и назначения трансформатора напряжения (для целей изменения, для контроля однофазных замыканий на землю, для питания устройств релейной защиты и автоматики).

Ввиду относительно высокой стоимости ТН для сетей 110-750 кВ они в ряде случаев, там, где это возможно по условиям работы с

Понижающие трансформаторы где и для чего применяются, особенности работы понижающих трансформаторов

20.05.2019

Трансформатор — это аппарат без подвижных частей, который преобразует электрическую энергию из одной цепи в другую с изменением напряжения тока и без изменения частоты. Существует два типа трансформаторов, классифицируемых по их функции: повышающий трансформатор и понижающий трансформатор, про принцип работы которого мы и расскажем.


Понижающий трансформатор преобразует высокое напряжение (ВН) и низкий ток с одной стороны в низкое напряжение (НН) и высокое значение тока на другой стороне. Этот тип трансформатора имеет широкое применение в электронных устройствах и электрических системах.

Когда доходит до операций с напряжением, применение трансформатор можно разделить на 2 вида: НН (напряжение тока ниже 1кВ) и ВН (напряжение тока выше 1 кВ).

Первый способ НН относится к трансформаторам в электронных устройствах. Электронные схемы требуют поставки низкого значения напряжения (например, 5В или ещё ниже).

Понижающий трансформатор используется для того чтобы обеспечить соответствие поставляемого низкого напряжения требованиям электроники. Оно преобразовывает бытовое напряжение тока (220/120 В) из первичного в напряжение более низкое на вторичной стороне, которая используется для снабжения электронных приборов.

Если электронные устройства рассчитаны на более высокую номинальную мощность, то используются трансформаторы с высокой рабочей частотой (кГц). Трансформаторы с более высоким номинальным значением мощности и номинальной частотой 50/60 Гц были бы слишком большими и тяжелыми. Также, ежедневно-используемые зарядки используют понижающий трансформатор в своей конструкции.


Понижающие трансформаторы имеют очень большое значение в энергосистеме. Они понижают уровень напряжения и адаптируют его для систем-потребителей энергии. Трансформация выполняется в несколько шагов, описанных ниже:
  1. Система передачи энергии на большие расстояния должна иметь максимально высокий уровень напряжения. С высоким напряжением и низким током, потеря мощности передачи будет значительно уменьшена. Электрическая сеть сконструирована таким образом, что должна соединяться с системой передачи с различными уровнями напряжения тока.
  2. Понижающие трансформаторы используются в соединении систем передачи с различным уровнем напряжения. Они уменьшают уровень напряжения тока от максимального к более низкому значению (например,  765/220 кВ, 410/220 кВ, 220/ 110 кВ). Эти трансформаторы огромны и имеют очень высокую  мощность (даже 1000 МВА). В том случае, когда коэффициент оборотов трансформатора не высок, обычно устанавливаются автоматические трансформаторы.
  3. Следующим шагом преобразования уровня напряжения является адаптация напряжения передачи к уровню распределения. Характерные отношения напряжений в этом случае 220/20 кВ, 110/20 кВ (также можно найти вторичные напряжения ЛВ 35 кВ и 10 кВ). Номинальная мощность этих трансформаторов составляет до 60 мВА (обычно 20 мВА). Переключатель  изменения нагрузки почти всегда установлен в таких трансформаторах.
  4. Заключительный шаг преобразования напряжения — адаптация напряжения к уровню домашнего напряжения. Эти трансформаторы называемые малыми распределительными трансформаторами имеют номинальную силу до 5 мВА (чаще всего 1 мВА) и с номинальными значениями напряжения тока 35, 20, 10 кВ на стороне ВН и 400/200 В на стороне НН. Такие трансформаторы имеют высокий коэффициент оборота.

Виды понижающих трансформаторов

В нашем каталоге понижающих трансформаторов есть разные модели и виды.

Однофазный трансформатор


Самый популярный и распространенный вид. Как правило, используется в быту. Подключается от однофазной сети. Фазный и нулевой провод подключены на первичную обмотку.

Трехфазный трансформатор


По большей части применяется в промышленности, но есть случаи применения и в быту. Призван понижать более высокое напряжение около 380 В до необходимого в трехфазной сети.

Многообмоточный трансформатор

Трансформатор, имеющий две или более обмотки. Устанавливается несколько вторичных обмоток для получения нескольких различных показателей  напряжения тока от одного источника.

Тороидальный трансформатор

По сравнению с другими трансформаторами имеет легкий вес и малые габариты. Используется в радиоэлектронике для получения высокой плотности тока, из-за хорошего охлаждения обмотки. Стоит недорого, так как длина обмотки значительно короче других из-за сердечника в форме тора. Может выдерживать более высокие температуры, чем остальные виды прибора.

Броневой трансформатор


На нем установлена одна катушка, из-за чего очень агрегат прост и дешев в производстве. Броневым он называется из-за того что обмотки покрывают стержень как броня. Однако из-за плотности той же обмотки его трудно осматривать и ремонтировать.

Стержневой трансформатор

Этот вид трансформаторов используется для обработки высоких и средних значений напряжения. Также имеет хорошее охлаждение. Устроен это вид прибора довольно просто, что позволяет легко осматривать и ремонтировать его.

Преимущества

  • Понижает напряжение, что делает передачу энергии проще и дешевле.
  • Более 99% эффективности.
  • Обеспечивает различные требования к напряжению.
  • Бюджетный.
  • Высокая надежность.
  • Высокая длительность работы.

Недостатки

  • Требует внимательного обслуживания, ошибки в котором могут привести к поломке аппарата.
  • Устранение неисправностей занимает много времени.

Мощность в понижающих трансформаторах

Мощность в любом трансформаторе неизменяема, т. е. мощность, поступающая на вторичную обмотку трансформатора такая же как мощность на первичной  обмотке трансформатора. Это применимо и к понижающему трансформатору. Но, поскольку вторичное напряжение в понижающем трансформаторе меньше, чем первичное, сила тока на вторичном будет увеличена, чтобы сбалансировать общую мощность в трансформаторе.


Принцип работы

В большинстве домов ток проходит под напряжением в 220 В. Однако для правильной работы многие приборы подключаются к трансформатору. Но что делать, если вы купили прибор, который работает при более низком напряжении. Если вы подключите прибор к розетке без трансформатора, то, скорее всего, как только вы его включите, он сломается.

Как работает трансформатор? Первый комплект катушки, который называется первичной катушкой или первичной обмоткой, подключен к источнику переменного напряжения, называемому первичным напряжением.

Другая катушка, которая называется вторичной катушкой или вторичная обмотка, соединена с нагрузкой и нагрузка показывает измеренное напряжение (повышенное или пониженное).

Из источника ток проходит через витки первичной обмотки, вызывая появление магнитного потока, он проходит по виткам второй обмотки. Во вторичной обмотке возникает ЭДС (электродвижущая сила) в результате чего образуется напряжение, отличающееся от первичного напряжения. Разница между начальным и конечным напряжением определяется разницей числа витков на первичной и вторичной обмотке.

Если на вторичной витков меньше, чем на первичной  – напряжение понизится, если витков больше – повысится. Напряжение тока меняется без изменения его частоты.

Где используется понижающий трансформатор?

Все уличные трансформаторы, которые мы видим возле наших домов, — это понижающие трансформаторы. Они принимают переменное напряжение 11 кВ на первичной обмотке и преобразуют его в напряжение 220 В для распределения в наших домах.


До широкого использования импульсных источников питания почти все низковольтные настенные адаптеры использовали понижающие трансформаторы.

Как определиться с выбором понижающего трансформатора?

Пользоваться трансформатором в бытовых целях очень легко. Подключите трансформатор к розетке, а устройство к трансформатору. Однако чтобы пользоваться трансформатором, нужно выбрать правильный трансформатор. При выборе подходящего прибора нужно учитывать следующие пять критериев.

Какова средняя мощность, потребляемая приборами, подключаемыми к трансформатору?

Выберите свой аппарат в зависимости от того, сколько ватт потребляет ваше устройство. Например: Playstation 3 потребляет 380 Вт, поэтому вам необходим понижающий трансформатор на 500 Вт. Убедитесь в том, что ваше устройство не превышает мощность выбранного типа трансформатора.

Есть ли в вашем устройстве мотор?
Если мотор присутствует, то добавьте 20% к необходимой мощности.

В каких условиях вы будете работать?
В условиях низких температур, например, вам понадобится тороидальный трансформатор.

Знаете ли вы амперы вашего устройства?

Так вы можете рассчитать необходимые ватты = Ампер х 110 В (например, 5 А х 110 = 550 Вт)

Вы хотите использовать один трансформатор для нескольких устройств? Проверьте общую мощность всех устройств, она должна быть меньше, чем значение ВА трансформатора.

Заключение

Понижающие напряжение трансформаторы применяются повсеместно. В зависимости от типа, прибор может применяться как в бытовых условиях, так и в промышленных, однако чаще всего они используются в источниках питания различных приборов и в электросетях. Выбор конкретного устройства необходимо осуществлять очень тщательно, предварительно посоветовавшись с профессионалом и учитывать все, даже малозначительные, факторы для каждой конкретной ситуации.


Что такое обмотка трансформатора: принципы работы, задачи, возможности

Все прекрасно понимают, что основная задача трансформатора – это преобразовывать получаемые импульсы, и в этом немаловажную роль играет обмотка трансформатора, позволяющая принципиально правильно работать агрегату. В сфере радиоэлектроники, электротехники и энергетики практически невозможно обойтись без трансформатора, ведь в создаваемой цепи обязательным является звено, отвечающее за преобразование переменного напряжения одного (входящего) значения обязательно через обмотку трансформатора в переменное (выходящее) напряжение уже с заданными по нормам показателями.

По предпочтениям выбираются пользователями трансформаторы либо однофазные, либо трехфазные. А в чем между ними разница? Все очень просто, в их техническом комплектовании. Так, в трехфазном агрегате ток проходит по четырем проводам, три из которых – фазные, а один – нейтраль, то есть нулевой. Соответственно, однофазный трансформатор работает, основываясь на двух кабелях, один – фазный, а второй – нулевой. И применяется последний вид трансформаторов чаще всего в быту, обеспечивает электропитание в розетках, трансформируя электрический ток с показателями 220 В.

Как функционирует однофазный трансформатор: основные принципы работы

Первоначально уточним, какие существуют основные комплектующие однофазного трансформатора: магнитопровод, состоящий из пластин стали, по которым и протекает магнитный поток, первичная и вторичная обмотки трансформатора.

Физически объяснимо, что появляются и снимаются в первой обмотке потоки благодаря переменному напряжению. Находясь рядом, вторичная обмотка ловит эти потоки и преобразовывает в переменное напряжение, сохраняя ту же частоту. Напряжение, которое выдается агрегатом со вторичной обмотки, всецело зависит от витков, которые намотаны на имеющиеся в трансформаторе первичные и вторичные обмотки (катушки).

Как правильно понять: что такое виток обмотки?

Виток – это основной технический элемент обмотки, представляющий собой единичные или групповые проводки, расположенные параллельно на стержне магнитопровода. Взятая за единицу измерения совокупность витков, которая, соответственно, образовывается в той или иной электроцепи, и является обмоткой трансформатора.

Сама же обмотка состоит с двух важных компонентов: первый – проводники, второй – изоляционные детали. Задача вторых элементов – защищать витки, предупреждать электрические сбои в сети, препятствовать смещению комплектующих в 1 обмотке трансформаторов.

Важно помнить! Обмотки трансформаторов различаются техническими характеристиками и параметрами. Так, обмотки трансформаторов различаются по способу размещения на стержне, могут быть различными по направлению и способу намотки. Специалисты еще оценивают обмотки трансформатора по числу витков, оценивают применяемый агрегат по классу напряжения, изучают перед применением схему соединения обмоток между собой. Следует учитывать каждый обозначенный фактор при выборе агрегата.

С понятием «виток обмотки» связан и другой термин – «слой обмотки». А что он обозначает, также постараемся раскрыть в данной статье.

Виток – это мера, а вот слой – это уже следствие технического процесса, в ходе которого витками формируются положенные слои, один, два или много. Но помните, что ничего нельзя воспринимать буквально, так как в одном слое может быть один или несколько десятков витков. А сам виток способен формироваться из 6-8 параллельных проводков положенной формы.

На какие эксплуатационные характеристики обмоток обязательно надо обращать внимание?

Когда запланированы работы с электрооборудованием, не стоит упускать из виду даже мелкие технические детали, например, принципы соединения обмоток трансформатора, иначе без сбоев в энергосистеме не обойтись при последующей длительной эксплуатации.

А по каким параметрам в основном оценивают работоспособность агрегата и как определить потенциал обмотки трансформатора? Ответ прост. Специалисты в основном обращают внимание на электрическую прочность элемента, механическую прочность обмотки, а также нагревостойкость, сопротивление обмотки трансформатора и изоляционные характеристики.

Все дело в том, что в процессе эксплуатации изоляция обмоток играет важную роль и отвечает за безопасность и противодействие возможным повреждениям сети из-за коммутационных или атмосферных перенапряжений. Рекомендовано адекватно оценивать и свойства вторичной обмотки трансформатора на ее механическую прочность и способность длительно противостоять в процессе эксплуатации деформациям и повреждениям из-за агрессивной внешней среды, импульсов тока, когда превышаются все нормативные показатели номинального рабочего тока силового агрегата.

Известно, что самый стандартный трансформатор может прослужить верной и правдой более 25 лет, но если его эксплуатация будет выполняться согласно его техническим характеристикам, и удастся избежать нестабильности в сети и перенагрева обмоток. Конечно же, нагрев обмоток и его сопряженных частей происходит при длительной работе агрегата, и это нормально, просто нельзя допускать скачков и повышения разрушительной температуры внутри агрегата, отвечающего за напряжение вторичной обмотки трансформатора. Перенагрев может привести к плачевным последствиям – разрушению и деформации изоляции обмоток, тепловому износу масла, как одной из важных составляющих силовой установки.

Чтобы ознакомиться с техническими эксплуатационными возможностями обмоток трансформаторов напряжения, можете обратить внимание на ряд документов и регламентированных положений. К ним относят «Стандарты по силовым трансформаторам общего назначения, а также на специальные агрегаты», «Инструкции по применению», «Технический паспорт».

Как оценивается электрическая прочность изоляции обмоток?

  • наличие правильно и верно разработанной конструкции агрегата, когда в схеме учтены все тонкости взаимодействия;
  • рассчитаны хорошо и четко изоляционные промежутки;
  • совершен разработчиками продуманный выбор изоляционных материалов;
  • внедрены прогрессивные, а значит, современные технологии обработки изоляции.

Как оценивается механическая прочность обмоток: о чем говорят показатели?

  • учитывается состояние расчета поля рассеяния в магнитостатических полях;
  • определяются соответствующие параметры типа используемой обмотки;
  • узнаются особенности конструкции обмотки, и главное, ее месторасположение;
  • обращается внимание на расположение витков в обмотке, конструктивные особенности катушки, так как этого зависит расчет и соотношение механической силы, возникающей в обмотке, и механической стойкости элемента трансформатора. Идеально, если первый параметр будет минимизирован, а второй – будет соответствовать нормам агрегата и не подводить в процессе эксплуатации.

Как достигается необходимая нагревостойкость обмоткам трансформатора?

Трансформатор в процессе эксплуатации переживает определенную нагрузку, и в дополнение переживает воздействие негативных факторов окружающей среды. И если не обеспечить нормальную теплоотдачу, то негативные последствия не заставят себя ждать. Отметим, что обмотки трансформаторов обладают определенной степенью нагревостойкости, и ее превышение не допускается, поэтому проводить монтажные работы трансформаторов необходимо с определенной тщательностью, учитывать внешние и внутренние факторы, обеспечивать вентиляцию и охлаждение, не забывая о циркуляции воздушных масс и наличия масла внутри системы силового агрегата.Обычно контролирующие службы предприятия регулярно осматривают агрегат, оценивают состояние его контактов, а также всех основополагающих комплектующих.

Чтобы избежать перегрева обмоток трансформатора, необходимо учитывать особенности эксплуатации агрегата и обеспечить нормальную и технически выверенную теплоотдачу, а для этого обязательно надо обеспечить должную площадь поверхности соприкосновения обмоток трансформатора с окружающей средой. Причем способ охлаждения трансформаторов может быть соответствующий его заводским параметрам, предусматривающих систему охлаждения при помощи воздуха или масла.

Какие существуют основные типы обмоток трансформатора: определим общепринятую классификацию

Чтобы правильно выполнить расчет обмоток трансформатора, прежде нужно понимать, с чем придется иметь дело и какой тип обмотки внедрен в агрегат, какие он имеет преимущества. Постараемся в этом детально разобраться.

Итак, какие существуют типы обмоток трансформаторов?

  • Одно-двухслойная обмотка цилиндрической формы, изготовленная из прямоугольного провода. Это элементарный образец обмотки трансформатора, который отличается простотой технологии изготовления, должной и надежной системой охлаждения, но при этом имеет один немаловажный недостаток – низкую механическую прочность, поэтому быстро изнашивается от агрессивного воздействия окружающей среды, а перепады в сети могут вообще стать губительными для энергосистемы, в которой применен агрегат с подобной обмоткой.
  • Многослойная обмотка трансформатора цилиндрической формы, созданная из прямоугольного провода. Данный образец обмотки отличается нормальным сопротивлением первичной обмотки трансформатора, высоким функционалом магнитной системы и элементарной технологией изготовления. Но вот при длительной эксплуатации агрегата могут возникать проблемы, связанные с малой эффективностью системы охлаждения. Основная причина такого недостатка теплоотдачи – отсутствие радиальных каналов на обмотке.

Интересно знать! В классификации обмоток также упоминаются многослойные обмотки. А в чем их особенность! Все просто. В процессе их формирования обязательно слои располагаются концентрически, в соответствии с заданным количеством слоев, но при этом развернутая длина остается одинаковой, без нарушения заводских параметров. Все «наматывается» правильно по отношению к полю рассеяния трансформатора. А когда необходимо переходит при обмотке на новый слой, то используемые провода не обрываются, не заламываются, только на новом витке меняется направление укладки слоя.

  • Многослойная обмотка или катушка, также имеющая форму цилиндра, но уже изготовленная из круглого провода. В этой ситуации агрегат отличается повышенной мощностью, но при этом проигрывает в функционале теплоотдачи и не может похвастаться механической прочностью. Из-за этого износ оборудования значительно ускоряется, требуя от обслуживающего персонала частых контролей оборудования и профилактических осмотров комплектующих.

Интересно знать! Почему некоторые обмотки называют цилиндрическими, то есть имеющими форму цилиндра. Секрет кроется в особенностях витков и слоев. Когда начинают формировать цилиндрическую обмотку, то для ее правильного создания на цилиндрическую поверхность наносят слои витков плотно, ни в коем случае не допуская интервалов.

  • Винтовая обмотка, созданная из прямоугольного провода. Трансформатор с такой катушкой будет стоить дороже, но отличаться высокой механической прочностью, надежной защитной изоляцией. А во время длительной работы агрегата даже не стоит думать о его системе охлаждения. Все сработает на 100%, как это заложено в технические характеристики трансформатора с данным видом обмоток.
  • катушечная обмотка непрерывного типа, когда материалом служит прямоугольный провод. Существует и такой образец обмоток, которые отличаются высокой механической и электрической прочностью и степенью нагревостойкостью. Многие посчитают данный образец идеальной находкой, которую так и хочется ввести в эксплуатацию для эффективной работы предприятия.
  • многослойная катушечная цилиндрическая обмотка, сформированная из алюминиевой фольги. Имеет данный образец только положительные отзывы, но такая эффективность достигнута максимальными усилиями и внедрением сложных технологий изготовления, когда изоляция обмоток трансформатора внушает доверие и веру в длительную и эффективную эксплуатацию. А что еще нужно для успешного предприятия, где создается современная энергосистема или, по крайней мере, модернизируется.

Таким образом, можно сделать вывод, что классификация типов обмоток зависит от конструктивных особенностей детали трансформатора, материла и метода изготовления, а по сложности обмотки различают на простые, многослойные, многослойные, но уже изготовленные из фольги, а не провода.

Понижающий трансформатор: устройство, принцип действия, разновидности

В силу ряда причин электрический ток, транспортируемый по проводам высоковольтных ЛЭП, не может быть использован напрямую. Главная из этих причин – высокое напряжение, достигающее десятков, а то и сотен киловольт. Поэтому перед подачей электроэнергии потребителям используют понижающий трансформатор, преобразующий напряжение 380 вольт в привычные нам 220 вольт.

Во многих случаях даже это напряжение слишком высокое для питания современной электротехники. Данную проблему решают путем повторного понижения напряжения, часто с выпрямлением тока. До недавнего времени каждый бытовой прибор был оборудован собственным понижающим трансформатором. Сегодня уже существуют бестрансформаторные блоки питания, но они не могут в полной мере заменить трансформаторы из-за малой выходной мощности. В электротехнике понижающий трансформатор еще долго будет востребован.

Конструкция и принцип действия

Устройство всех типов (за исключением электронных трансформаторов) мало чем отличается. Главными рабочими элементами понижающих аппаратов являются магнитопроводы и катушки. Различия наблюдаются в конфигурации сердечников и в способах соединения обмоток.

Рис. 1. Схематичное изображение понижающего устройства

Геометрические формы ферромагнетиков производитель выбирает исходя из целесообразности производства. Тип остова существенно не влияет на трансформацию. Критерии преобразования тока больше зависят от состава ферромагнетика и параметров обмоток.

Магнитная система понижающего трансформатора может иметь разные формы, определяемые способом расположения стержней:

  • плоскую;
  • пространственную;
  • симметрическую форму;
  • несимметрическую.

Напомним вкратце принцип действия понижающих трансформаторов.

Переменным током, попадающим на первичную катушку, возбуждается электромагнитная индукция. Переменное электромагнитное поле распространяется по всему магнитопроводу. Во вторичной катушке силами переменных магнитных полей возбуждается ЭДС.

Величина электродвижущей силы (а значит и разница потенциалов между катушками) определяется соотношением: U2/U1 = W2/W1 = k , где U – напряжение, аW – количество витков. Коэффициент трансформации k находится в пределах от 0 до 1. Чем ближе к нулю находится значение k, тем меньшее значение выходных напряжений. Конфигурация сердечника не влияет на работу трансформатора.

Напоследок заметим, что понижающий прибор легко превратить в повышающий трансформатор. Для этого достаточно изменить способ подключения понижающего аппарата: поменять местами первичную и вторичную катушки.Разумеется, нельзя вторичную катушку рассчитанную на 12 В подключать к сети на 220 В. 

Назначение

Основное применение понижающего трансформатора – получение низкого напряжения для питания электрического прибора. Очень часто эти устройства являются главным элементом схем блоков питания бытовых электрических приборов. Так как большинство бытовой электроники потребляет постоянный ток, то после понижения напряжения до приемлемого уровня, полученную электрическую синусоиду еще и выпрямляют.

С целью повышения качества электрического питания применяют стабилизирующие и фильтрующие схемы, отсекающие нежелательные искажения. В ряде случаев в бытовой технике используется переменное напряжение, преобразованное понижающим трансформатором, без выпрямления тока.

Для получения пониженного импульсного напряжения существуют модели импульсных трансформаторов. На выходе этих устройств изменяется не только амплитуда колебаний, но и форма кривой.

Разновидности

Производители поставляют на рынок множество различных моделей. Среди них различают конструкции однофазных трансформаторов броневого типа (рис. 2), модели с сердечниками стержневого или тороидального типа (рис. 3).

Рис. 2. Конструкция броневого типаРис. 3. Тороидальный понижающий трансформатор

В трехфазных конструкциях (рис. 4) один из выводов первичной обмотки подключается к фазе, а другие соединены звездой или треугольником. Аналогичным образом соединяются выводы вторичных обмоток. Такие же схемы применяются для соединения обмоток промышленных силовых трансформаторов.

Рис. 4. Трехфазный понижающий трансформатор

Существуют многообмоточные конструкции, имеющие боле двух вторичных обмоток, с которых можно снимать напряжения различной величины. Это удобно для питания устройств, цепи которых требуют нескольких, различающихся по величине напряжений.

Отдельно упомянем конструкции электронных понижающих моделей, набирающие популярность сегодня (см. рис. 5). К классу трансформаторных устройств их можно отнести весьма условно, так как принцип преобразования переменных напряжений кардинально отличается от классической трансформации. В этих электронных устройствах ток сначала выпрямляется, проходя через диодный мост, потом снова преобразуется в переменное напряжение, но уже с другой частотой.

Рис. 5. Электронный понижающий трансформатор

Зависимость частоты от нагрузки и ограниченная мощность являются недостатком трансформаторов электронного типа. Главное их достоинство – экономичность. Они работают только при подключении нагрузки, все остальное время находятся в режиме ожидания. Данное свойство полезно, например, для питания систем светодиодного освещения.

Разновидности по признакам применения:

  • ТСЗИ – трехфазные конструкции в специальном защитном кожухе;
  • OCM – конструкции для систем сигнализации и освещения. Монтируются на дин-рейку;   
  • TTп, TC-180, ЯTП – применяются для бытовых нужд. Рассчитаны на небольшие нагрузки;  
  • OCOB, OCO – модели, применяемые для работы в бытовых сетях.

Технические характеристики

Понижающие трансформаторы характеризуются следующими важными показателями:

  • величиной входного напряжения;
  • коэффициентом трансформации;
  • параметрами выходного тока;
  • мощностью устройства;
  • частотой.

Такие технические характеристики как габариты, тип системы охлаждения, вес устройств учитываются исходя из конкретных условий применения. Основные данные о трансформаторе указываются на корпусе или в паспорте изделия.

Как

Понижающий трансформатор — виды и принцип работы. Как сделать и подключить трансформатор своими руками?

Очень часто встречается такое понятие как понижающий трансформатор, другие называют его преобразователь тока. Основная задача такого устройства — преобразовать определенное напряжение переменного тока с большого значения в меньшее. То есть если определенному устройству необходимо напряжение 12 Вольт, а с розетки подается стандартно 220 Вольт, придется использовать понижающий трансформатор.

Используется такой трансформатор в сфере энергетики, электротехники, применим в производстве и различных бытовых целях.

Краткое содержимое статьи:

Как работает трансформатор?

Уже сегодня создано огромное количество преобразователей тока, существуют модели низковольтные и высоковольтные. Принцип работы трансформатора достаточно прост — понижающий трансформатор отвечает за снижение поступающего тока, повышающий наоборот — увеличивает напряжение до высшего значения.


В бытовых целях это очень важное устройство, обеспечивает стабильную работу и полную безопасность домашних электрических приборов.

Приведем простой пример. Во многих домах от сети поступает ток 385 Вольт, а стандартные бытовые приборы работают только от 220В. В таком случае без понижающего трансформатора не обойтись, поэтому придется купить однофазный или трехфазный преобразователь.

Важно! Если у вас в помещении трехфазная сеть, к ней подбирается только двухфазный преобразователь. Если же сеть двухфазная, преобразователь должен использоваться только однофазного типа.

Преобразователь 380 Вольт — промышленного типа, трехфазный. Преобразователь 220 Вольт — стандартный бытовой, однофазный.

При использовании стандартного бытового трансформатора, его задача будет более простая, ведь в зависимости от модели он меняет ток на показатель 12, 36, 42 Вольта (зависит от требования бытовых приборов).

Понижающий трансформатор тока имеет несложную конструкцию. В основе лежит медная обмотка, которая намотана на стальные пластины рамки магнитопровода.

Принцип действия конструкции прост — большее значение тока проходит через одну обмотку, после этого со второй обмотки выдается меньший ток. Это стало возможно благодаря тому, что на одной обмотке расположено больше витков, а на второй меньшее количество. Если говорить на научном языке, то такой процесс называется электромагнитная индукция.


Как выбрать понижающий трансформатор?

Если вы мало разбираетесь в электрике, выбрать понижающий трансформатор будет сложно, и доверить это придется специалистам. Но при решении самостоятельно подобрать нужное устройство, обращайте внимание на такие показатели:

  • Указанная мощность бытовых или промышленных приборов должна быть меньшей, чем указанная на трансформаторе;
  • Должно подходить входное напряжение, в которое будет устанавливаться устройство;
  • Выходное напряжение должно соответствовать трансформатору.

Старайтесь не выбирать дешевые модели, ведь качественный современный преобразователь должен выдерживать аварийные ситуации и стабильно работать после их обнаружения. Например, часто случаются короткие замыкания, перенапряжение сети, перегрузка сети.

Выбирается устройство конкретно под ваши требования, главным параметром является величина входного напряжения. При визуальном осмотре на изделии пишут входное напряжение. Например, понижающий трансформатор с 220 V или 380 V. Также на корпусе должна указываться маркировка выходного напряжения, например 12 или 36 Вольт.

Обязательно обращайте внимание на мощность устройства, ведь при подборе стабилизатора напряжения придется прибавить мощность всех будущих используемых приборов и прибавить еще 20% от полученного показателя.

Особенности установки

Правила техники безопасности регламентируют правильную установку понижающих трансформаторов для их стабильной долгой работы. Важно устанавливать устройство в местах, максимально защищенных от попадания воды, пыли и различных масел. Большинство мастеров монтируют трансформаторы в защитные кожухи или шкафы.

Также важно убедиться, что человек не сможет дотронуться к трансформатору во время его работы. В обязательном порядке специалист должен заземлить трансформатор медным проводом. Старайтесь выбирать провод с минимальным сечением 2,5 мм. Также во избежание серьезных поломок время от времени придется осматривать и чинить устройство.


Разновидности трансформаторов

Существует несколько разновидностей преобразователей, которые представлены различными характеристиками и конструкцией. Даже представленные фото понижающих трансформаторов дают понять, насколько мощная и современная модель.

Однофазные — подключаются от однофазной сети, довольно простые и часто используемые в бытовых целях. Фаза и ноль устанавливается на первичную обмотку трансформатора. Считаются самыми популярными трансформаторами.

Трехфазные — более сложное устройство, ведь его задача понизить напряжение от трехфазной сети. Чаще всего используют в промышленных целях, но встречаются трансформаторы в бытовых отраслях.

Отличие от однофазной модели в том, что конструкция предполагает 3 трансформатора в одном. Также отличаются соединением обмоток, ведь могут применяться схемы в виде треугольника или звезды. Качество трехфазных моделей на высоком уровне, ведь на производстве их тщательно тестируют.

Тороидальные — довольно популярная разновидность трансформатора, особенно актуальна при работе с небольшими мощностями.

Изделие имеет круглую форму, небольшие размеры и малый вес. Чаще встречается в различных радиоэлектронных приборах. Преимущество модели в лучшей плотности тока, которая обеспечивается хорошим охлаждением обмотки на сердечнике.

Броневые — основное отличие внешнее, ведь магнитопровод устройства полностью охватывает обмотку, расположенную внутри. Такие показатели как размер, вес и цена на порядок ниже аналогов, также изделия считаются маломощными.


Стержневые — являются противоположной разновидностью броневым трансформаторам, ведь в стержневых моделях обмотка охватывает магнитопровод. Можно встретить понижающий трансформатор с 380 Вольт в подобном исполнении, ведь стержневые модели создаются средней и высокой мощности.

Особенность конструкции позволяет быстро проводить ремонт, а также быть уверенным в лучшем охлаждении трансформатора.

Преимущества понижающих трансформаторов

Понижающие трансформаторы используются в промышленности и бытовых целях уже много лет, благодаря простоте конструкции и различным требованиям электрических приборов, преобразователи играют важную роль для обеспечения безопасной работы.

К другим преимуществам устройства можно отнести:

  • Малый нагрев и безопасная длительная работа;
  • Небольшие размеры;
  • Возможность работать с различным входным напряжением, то есть трансформатор на 220 вольт будет так же стабильно работать и выдавать на выходе стабильное необходимое напряжение;
  • Монтаж и обслуживание устройства довольно простое;
  • Возможность плавной регулировки напряжения.

К сожалению, существует множество моделей сомнительного качества, по отзывам владельцев трансформаторы имеют небольшой срок службы и требуют частой замены. Также некоторые преобразователи не соответствуют указанной мощности и могут работать нестабильно.

Фото понижающих трансформаторов

Принцип работы понижающего трансформатора напряжения и его устройство

Большинство электрических инструментов, приборов, оборудования работает от сетевого напряжения переменного тока, равного 220 В. Но для низковольтных электропотребителей – галогенных осветительных приборов, низковольтных обогревателей, светодиодных светильников и других – его значение снижают до определенной величины. Для решения этой задачи применяются аппараты без подвижных компонентов – понижающие трансформаторы, которые понижают величину напряжения до нужного значения, оставляя частоту неизменной. Различные модели этих аппаратов могут использоваться в энергетической отрасли, промышленности, а также в быту для получения значения напряжения, безопасного для пользователя.

Устройство и принцип работы понижающего трансформатора

В состав аппарата входит ферромагнитный сердечник с двумя обмотками – первичной и вторичной. На обмотки наматываются проводники, каждый слой которых изолируется кабельной бумагой. Поперечное сечение проводника может быть круглым или прямоугольным (шина).

Первичная и вторичная обмотки между собой электрически не контактируют. Отсутствие электроконтакта обеспечивают изоляционные прокладки, изготовленные из электрокартона или других изоляторов. Большинство аппаратов со всеми компонентами заключается в защитный корпус.

Принцип действия:

  • На первичную обмотку, имеющую большее количество витков по сравнению с вторичной, поступает сетевой ток. Он образует магнитное поле, пересекающее вторичную обмотку.
  • Во вторичной обмотке образуется ЭДС, под воздействием которой генерируется выходное напряжение со значением, необходимым для электропитания электронных приборов. Отношение входного (высокого, ВН) напряжения к выходному (низкому, НН) равно отношению количества витков первичной обмотки к числу витков вторичной. Конструкция понижающего трансформатора может предусматривать одновременное подключение нескольких низковольтных потребителей.
  • В ходе трансформации происходят потери мощности, равные примерно 3 %.


Понижающие трансформаторы не меняют частоту тока. Для ее изменения, в том числе для получения постоянного тока, в схему включают выпрямители. Чаще всего они представляют собой диодные мосты. Современные приборы могут дополняться другими полупроводниковыми и интегральными схемами, которые улучшают эксплуатационные характеристики аппаратов.

Чтобы определить, какой перед вами трансформатор – понижающий или повышающий, необходимо посмотреть маркировки обмоток. В понижающем аппарате первичной является высоковольтная обмотка, которая маркируется буквой «Н», вторичной – низковольтная обмотка, обозначаемая буквой «Х». В повышающем устройстве первичной является низковольтная обмотка «Х», вторичной – высоковольтная «Н».

Виды понижающих трансформаторов

В зависимости от конструктивных особенностей и принципа действия выделяют следующие типы устройств:

  • Стержневые. Эти модели, в которых обмотки располагаются вокруг сердечников магнитопровода, обладают средней или высокой мощностью. Стержневые понижающие трансформаторы имеют простую конструкцию, их обмотки легко изолировать, обслуживать и осуществлять ремонт. Их разновидность – броневые аппараты, в которых обмотки «броней» охватывают магнитопровод. Это простой и дешевый аппарат, но его трудно обслуживать и ремонтировать.
  • Тороидальные. Сердечник в таких аппаратах имеет форму тора. Тороидальные модели применяются в маломощных радиоэлектронных устройствах. Они легкие, имеют небольшие размеры, позволяют достигать высокой плотности тока. Ток намагничивания – минимальный. Аппараты могут выдерживать достаточно высокие температуры.
  • Многообмоточные. Имеют две или более вторичных обмоток. Позволяют получать несколько значений выходного напряжения, то есть обеспечивают питание нескольких потребителей.

По роду тока, с которым работают трансформаторы, их разделяют на:

  • Однофазные. Наиболее распространенный тип, имеющий профессиональное и бытовое применение. Фазный и нулевой провода электропроводки подсоединяются к первичной обмотке.
  • Трехфазные. Востребованы в энергетике, на производственных предприятиях, реже – в бытовых условиях. Служат для трансформации трехфазного напряжения.


Для чего нужен понижающий трансформатор

Разнообразие конструкций, имеющихся в продаже, позволяет выбрать оптимальную модель для конкретной области применения:

  • В энергетической индустрии используют понижающие аппараты высокой мощности – до 1000 МВА. Выпускаемые модели – 765/220 кВ, 410/220 кВ, 220/110 кВ.
  • Для адаптации высокого напряжения к параметрам бытовой электросети используют малые распределительные трансформаторы, мощность которых достигает 1-5 МВА. На стороне высокого напряжения могут быть предусмотрены значения 10, 20, 35 кВ, на низкой – 400 или 230 В.
  • Для бытовой техники обычно применяют трансформаторы, изменяющие напряжение с 220-230 В до 42, 36, 12 В. Конкретная величина Uвых определяется требованиями потребителя.

При подборе оптимальных устройств учитывают суммарную мощность потребителей, напряжение на входе и выходе, необходимость (или ее отсутствие) изменения частоты, габариты и массу.


Разница между понижающим и повышающим трансформаторами

Трансформатор необходим для изменения напряжения источника питания в соответствии с потребностями конкретных приборов или машин. Согласно словарю Merriam-Webster, трансформатор — это устройство, изменяющее напряжение электрического тока. Большинство людей не знает, что есть два типа трансформаторов: понижающий и повышающий трансформатор . Разница между этими двумя понятиями очень хитрая, но необходимость знать это очень важна.Неправильное использование повышающего или понижающего трансформатора может повлиять и разрушить наши с трудом заработанные приборы, и, что еще хуже, это может вызвать серьезные проблемы, особенно для наших семей. Позвольте мне представить вам сценарий:

Вы подключили прибор на 110 В, например, светодиодный телевизор, к розетке 220 В с помощью повышающего трансформатора. Как вы думаете, что может случиться? Да, это может привести к немедленному повреждению вашего прибора или, что еще хуже, к серьезной проблеме, которая поставит под угрозу безопасность вашей семьи.Слишком опасно рисковать!

Итак, теперь вы можете спросить, в чем реальная разница между понижающим и повышающим трансформатором?

Понижающие трансформаторы

Понижающие трансформаторы предназначены для понижения электрического напряжения. У него меньше витков во вторичной обмотке. Таким образом, снижается напряжение. Например, здесь, на Филиппинах, у нас есть электроснабжение 220 В. Но поскольку у нас есть родственники или друзья за границей, которые присылают нам бытовую технику, требующую питания 110 В, необходимо использовать понижающий трансформатор.Использование понижающего трансформатора фактически означает, что напряжение было «понижено». Пожалуйста, обратитесь к диаграмме.

Напряжение питания 220 В на Филиппинах снижается до 110 В, которое требуется для вашего устройства. Вход 220 В, выход 110 В. Так работает понижающий трансформатор.

Повышающие трансформаторы

С другой стороны, повышающий трансформатор используется, когда вторичное напряжение больше первичного. У него больше витков во вторичной обмотке.Обычно он используется как пускатель электродвигателя. Для начала вращения двигателя требуется большое напряжение. Повышающий трансформатор также необходим для использования продукта на 220 В в стране с питанием 110 В. Другими словами, напряжение было «повышено». Как вы можете видеть на схеме, входное напряжение 110 В, а выходное — 220 В. Это основная цель повышающего трансформатора.

Итак, вот и разница между понижающим трансформатором и повышающим трансформатором. Лучше не путать их так, иначе вы можете пожалеть о последствиях, верно?

Распродажа понижающих трансформаторов — Распродажа понижающих трансформаторов!

Современное состояние Продажи понижающего трансформатора

Понижающие трансформаторы

TEMCo специализируется на производстве стандартных и custom Понижающие трансформаторы .TEMCo также предлагает другие марки понижающих трансформаторов. Понижающие трансформаторы изменит ваше напряжение в соответствии с требованиями вашего оборудования вольтаж. Многие из наших изолирующих и автотрансформаторов находятся в склад; пользовательские комбинации могут быть созданы с помощью всего 5 коротких дневное время выполнения заказа. Понижающие трансформаторы TEMCo предназначены для быть обратимым, а также может повышать напряжение.

Доставка в тот же день о понижающих трансформаторах в наличии!

Нажмите здесь, чтобы увидеть некоторые из наших Шаг Цены на понижающий трансформатор.Или позвоните 510-490-2187 для конкретного цитата.

Производители TEMCo предлагают высочайшее качество индивидуальные и стандартные понижающие трансформаторы оптом цены с этими опциями:

* 100% медные обмотки трансформатора, другие металлы в наличии
* Энергия Звезда (ТП-1) по рейтингу трансформаторы
* UL и CSA перечислены на большинстве моделей
* Реверсивные (большинство моделей)
* Многие модели понижающих трансформаторов в наличии, индивидуальные заказы имеют быструю, Доставка в течение 1 недели

Предлагаем понижающие трансформаторы на заказ. построен по вашему заказу.

* Понижение Индивидуальные комбинации напряжений трансформатора В наличии *

Понижающие трансформаторы входят в широкий выбор размеров и типов. TEMCo предлагает самый широкий выбор доступных сегодня понижающих трансформаторов мощности. Специализируясь на высококачественных промышленных понижающих трансформаторах, или команда специалистов-трансформаторов готова помочь Вы выбираете правильную мощность понижающий трансформатор для вашего приложения и бюджета.Позвоните нам, чтобы обсудить ваш применение и цель.

Свяжитесь с нашей командой в TEMCo Трансформатор на 510-490-2187, чтобы узнать ваше предложение, разместить заказ и организовать доставку.

Понижение Трансформатор

A понижающий трансформатор преобразует высоковольтную, слаботочную мощность в низковольтная, сильноточная мощность.Они разработаны с высоким поворотом количество первичной обмотки и количество витков вторичной обмотки. В во многих случаях вы увидите провод большего сечения, используемый во вторичной обмотке из-за увеличения тока. Первичная обмотка может быть изготовлена ​​из провод меньшего сечения, потому что он не должен проводить такой большой ток.

Понимание того, как работает понижающий трансформатор

A понижающий трансформатор — это электрическое устройство по конструкции, как и большинство трансформаторы, преобразующие напряжение за счет магнитной связи.Шаг понижающий трансформатор имеет магнитопровод (обычно железный) с одним обмотка провода расположена рядом с одной или несколькими обмотками, которые могут соединять две или более цепей переменного тока вместе, используя индукция между обмотками. Первичная обмотка подключена к источнику питания, а другие обмотки известны как вторичные. Когда вторичное напряжение меньше первичного, устройство известный как понижающий трансформатор .Если вторичное напряжение выше, чем первичный, он называется повышающий трансформатор.

Шаг вниз Применение трансформатора

Шаг понижающие трансформаторы используются широко используется в наших электроэнергетических системах. В электроэнергии В системе повышающий трансформатор используется для повышения напряжения и уменьшения ток для передачи на большие расстояния по проводам.Эти провода нести электричество подстанции, на которых понижающий трансформатор используется для уменьшения напряжение и увеличить ток. Эти подстанции проходят более низкое напряжение при включении и, как правило, до достижения конечного пункта в нашем доме и на работе снова используется понижающий трансформатор снизить напряжение до 120-240В. Понижающие трансформаторы также встречаются во многих электронных устройствах и используются в самых разных промышленного и коммерческого применения.Они доступны в однофазные и трехфазные и бывают самых разных размеров.

КПД понижающего трансформатора

Шаг понижающие трансформаторы ар простые устройства, у которых нет движущихся частей, поэтому они требуют минимального обслуживание и долгая жизнь. Из-за этого целесообразно купите понижающий трансформатор , который эффективен.С участием правильный материал и конструкция понижающего трансформатора может иметь КПД около 99%. Это может быть достигнуто комбинацией факторы конструкции трансформатора, в том числе с использованием специальных стальных сплавов для объединения индуцированных магнитных полей между первичной и вторичной обмотки. В намотке катушки используется два основных типа металла. понижающий трансформатор; один из алюминия, а другой из меди. Медная проводка рассеивает меньше тепла и менее агрессивна, чем алюминий. Меньшее тепловыделение обеспечивает большую эффективность трансформаторы, потому что меньше электроэнергии остается в тепле. Из-за прочный характер меди, этот тип трансформатора также потребует меньше обслуживания. Понижающие трансформаторы с медью проводка и особая конструкция изначально стоят дороже, но экономия на Стоимость электричества с течением времени более чем компенсирует цену.

Позвоните нашим специалистам по понижающим трансформаторам сегодня!

TEMCo — это лидер по качеству, эффективные понижающие трансформаторы , с более 40 лет в бизнесе; мы стали лидером и новатором в трансформаторная конструкция. Благодаря нашему большому инвентарю большинство трансформаторов можно отправлено в течение 24 часов. С нашим хорошо обученным персоналом вы уверен, что вы получаете ввод для правильного типа и размера трансформатор для вашего приложения.Мы не только предлагаем качество понижающие трансформаторы, но мы также гарантируем самые низкие цены. Вызов сегодня и узнайте, почему так много компаний доверяют TEMCo все свои трансформаторы нужды.

Свяжитесь с нашей командой в TEMCo Трансформатор на 510-490-2187, чтобы получить свой снизить цену трансформатора, разместить заказ и организовать доставку.

Повлияет ли понижающий трансформатор на работу HiFi ??

Давайте разберемся с основами.

Электричество — это поток электронов в проводе. «Напряжение» — это мера того, насколько сильно электроны прижимаются, чтобы пройти — это как давление воды в трубе или как сила вращения в колесах нашей машины. «Ток», измеряемый в амперах, является мерой того, насколько быстро движутся электроны — это как поток в галлонах в минуту в трубе или скорость вращения шин на нашей машине в футах в минуту. Общая мощность, подаваемая в электрическую цепь, измеряется в ваттах, которые представляют собой просто вольты, умноженные на токи; Таким же образом, общая мощность, передаваемая автомобилем в нашем примере, представляет собой количество вращательной силы, передаваемой колесами, умноженную на скорость вращения.Количество ватт может представлять собой очень высокое напряжение при относительно низком токе (такое, как мы видим в высоковольтных линиях электропередач) или низкое напряжение при очень высоком токе (например, мы видим, когда автомобильный аккумулятор на 12 В выдает сотни ампер). в стартер).

Давайте добавим ко всему этому новое измерение. Этот параметр называется «частота». В отличие от постоянного тока (DC), который все время течет в одном направлении, переменный ток меняет направление (представленное как + ve и -ve) с заранее заданной частотой циклов в секунду.В США это 60 циклов в секунду или 60 Гц. В Индии скорость потока составляет 50 циклов в секунду или 50 Гц.

Как это влияет на нас? Большинство оборудования переменного тока, такого как ламповые лампы, нагреватели и двигатели, были разработаны для работы с этими циклами. Знаете ли вы, что лампочка мигает (загорается и гаснет) с той же частотой, что и переменный ток?

Что это значит для меня? Что ж, если вы возьмете двигатель американского производства, рассчитанный на 60 Гц, и запустите его в Индии при 110 вольт, но при 50 Гц, он просто не будет даже вращаться или, в лучшем случае, будет вращаться хаотично.

Понижающие трансформаторы, как и любой трансформатор, обычно имеют КПД около 96%. Они никогда не могут быть эффективными на 100%, так как в обмотках происходят потери энергии и тока. Но загвоздка в том, что большинство понижающих трансформаторов не заботятся о частоте. Итак, если вы возьмете понижающий трансформатор и преобразуете 230 вольт в 110, вы получите 110 вольт, но при 50 Гц.

Теперь мы подошли к самому лучшему. Ваше аудиооборудование не должно пострадать? Зачем. Просто потому, что вся аудиотехника работает на постоянном токе.Блоки питания внутри аудиооборудования содержат ТРАНСФОРМАТОР, который преобразует сетевое питание переменного тока в безопасное низкое напряжение переменного тока. Затем переменный ток преобразуется в постоянный ток с помощью мостового выпрямителя, но на выходе изменяется постоянный ток, что не подходит для электронных схем. Итак, следующий шаг — СНИЖЕНИЕ напряжения. Это выполняется с помощью большого электролитического КОНДЕНСАТОРА, подключенного к источнику постоянного тока, который действует как резервуар, подающий ток на выход, когда изменяющееся напряжение постоянного тока от выпрямителя падает.Даже при этом будет подаваться только постоянный ток с небольшими колебаниями напряжения, которые, тем не менее, нельзя подать на электронные схемы. Итак, последний шаг — РЕГУЛЯТОР. Обычно это ИС, состоящая из стабилизатора стабилитрона и резисторов. Независимо от того, какое напряжение подается на диод, он всегда выдает постоянное напряжение, которое может подаваться на электронные схемы.

В идеале вы должны попытаться получить оборудование, которое может принимать как 110, так и 230 вольт при 60 и 50 Гц соответственно. Таким образом, вы избавляетесь от необходимости вводить еще один шаг в подаче питания на аудиооборудование.Например, буквально любое зарядное устройство для мобильного телефона можно использовать во всем мире без каких-либо проблем, поскольку оно может переключаться между 230 и 110 вольт. Обычно они оцениваются как 100–240 ~ с частотами от 50 до 60 Гц.

Поскольку оборудование HiFi выполняет внутреннее преобразование из переменного тока в постоянный и из высокого напряжения, такого как 110/240, примерно до 5–25 вольт, большая часть оборудования может сама по себе хорошо работать при умеренно изменяющихся входных напряжениях (колебания напряжения). Поэтому, если вы установите понижающий трансформатор между источником питания и оборудованием, это не должно иметь большого значения для оборудования.Если частота не регулируется должным образом, это может повлиять на высокочувствительные детали, такие как двигатели постоянного тока (в проигрывателе компакт-дисков). Здесь важную роль играет PSRR источника питания оборудования.

Почему тогда речь идет о стабилизаторах и ИБП? Большая часть оборудования, производимого в США, Европе и других развитых странах, зависит от стабильного источника питания, который выполняет две функции: ОДНО, они обеспечивают бесперебойное питание; и ДВА имеют очень низкие колебания, обычно +/- 5 вольт. В Индии, к сожалению, электроснабжение очень нестабильно, и напряжение падает из-за отключения электроэнергии потребителями.Например, предположим, что рядом с вашим домом проходит мела или политическая программа. Это потребляет огромное количество тока от вашего источника питания, хотя и на короткое время. Когда это произойдет, источник питания в вашем доме будет подвержен сильному падению напряжения, поскольку EB не может компенсировать дополнительную нагрузку. Кроме того, временами из-за низкой производительности (по сравнению со спросом) EB сочтет нужным представить вам отключение электроэнергии.

Понижающий трансформатор, на который подается нестабильный источник питания, в свою очередь, подает нестабильное напряжение на источник питания звукового оборудования.Это повлияет на способность источника питания генерировать постоянное напряжение постоянного тока, что иногда приводит к сгоранию предохранителя или сгоранию всего источника питания.

Еще один важный фактор, который следует понимать и для которого необходимо учитывать, — хорошее заземление. Многие американские и европейские устройства заземлены на корпус оборудования. При прикосновении к живому оборудованию вы можете получить легкий шок. Во-вторых, статическое электричество, создаваемое оборудованием, не заземленным должным образом, может создавать электромагнитные волны, которые могут повлиять на расположенное рядом оборудование.На телевидении это обычно проявляется в виде линий шума, движущихся по экрану под углом 45 градусов и более. Устранить эту проблему поможет хорошее заземление и сетевые фильтры.

Ниже я показываю интересную статью из американского журнала The Audio Critic. В их 26-м выпуске была статья о 10 самых больших заблуждениях в аудиоиндустрии.

8-я по величине ложь в аудио

Ложь стабилизатора мощности

Практически все, что нужно сказать по этому поводу, было сказано Bryston в руководствах по эксплуатации:

«Все усилители Bryston содержат высококачественные специальные схемы в источниках питания для защиты от радиочастотных помех, скачков напряжения в линии и других проблем с линией питания.Для усилителей мощности Bryston не требуются специальные кондиционеры для линий электропередач. Подключите усилитель непосредственно к собственной розетке ».

Они не говорят, что то же самое более или менее верно для всех хорошо спроектированных усилителей. Не все они могут быть равны Brystons в регулировании и PSRR. (*), но если они какие-то хорошие, их можно подключить непосредственно к розетке. Если вы можете позволить себе модный кондиционер питания, вы также можете позволить себе хорошо спроектированный усилитель, и в этом случае модный кондиционер питания вам не понадобится. .Это абсолютно ничего для вас не сделает. (Обратите внимание, что мы не говорим об удлинителях с защитой от перенапряжения для компьютерного оборудования. Они стоят намного меньше, чем волшебный ящик Tice Audio, а компьютеры с их периферийными устройствами электрически более уязвимы, чем приличное аудиооборудование.)

Самый большой и самая глупая ложь из всех, касающаяся «чистого» питания, заключается в том, что вам нужен специально разработанный дорогой сетевой шнур для получения наилучшего звука. Любой сетевой шнур, рассчитанный на работу с домашним переменным напряжением и током, будет работать так же, как и любой другой.Шнуры сверхвысокого класса — это мошенничество. Ваши аудиосхемы не знают и не заботятся о том, что находится на стороне переменного тока силового трансформатора. Все, что их интересует, — это необходимое им постоянное напряжение.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *