Простой индикатор напряжения на светодиодах: Индикатор напряжения на светодиодах своими руками: схемы с описанием

Содержание

Индикатор напряжения на светодиодах своими руками: схемы с описанием

Светодиоды давно применяется в любой технике из-за своего малого потребления, компактности и высокой надежности в качестве визуального отображения работы системы. Индикатор напряжения на светодиодах это полезное устройство, необходимое любителям и профессионалам для работы с электричеством. Принцип используется в подсветках настенных выключателей и выключателей в сетевых фильтрах, указателях напряжения, тестерных отвертках. Подобное устройство можно сделать своими руками из-за его относительной примитивности.

Индикатор переменного напряжения 220 В

Рассмотрим первый, наиболее простой вариант индикатора сети на светодиоде. Его применяют в отвертках для нахождения фазы 220 В. Для реализации нам понадобится:

  • светодиод;
  • резистор;
  • диод.

Светодиод (HL) вы можете выбрать абсолютно любой. Характеристики диода (VD) должны быть ориентировочно такими: прямое напряжение, при прямом токе 10-100 мА – 1-1,1 В.

Обратное напряжение 30-75 В. Резистор (R) должен иметь сопротивление не меньше 100 кОм, но и не больше 150 кОм, иначе просядет яркость свечения индикатора. Такое устройство можно самостоятельно выполнить в навесной форме, даже без использования печатной платы.

Схема примитивного индикатора тока будет выглядеть аналогичным образом, только необходимо использовать емкостное сопротивление.

Индикатор переменного и постоянного напряжения до 600 В

Следующий вариант представляет собой немного более сложную систему, из-за наличия в схеме кроме уже известных нам элементов, двух транзисторов и емкости. Но универсальность этого индикатора вас приятно удивит. Ему доступна безопасная проверка наличия напряжения от 5 до 600 В, как постоянного, так и переменного.

Основным элементом схемы индикатора напряжения выступает полевой транзистор (VT2). Пороговое значение напряжения, которое позволит сработать индикатору фиксируется разностью потенциалов затвор-исток, а максимально возможное напряжение определяет падение на сток-истоке. Он выполняет функции стабилизатора тока. Через биполярный транзистор (VT1) осуществляется обратная связь для поддержания заданного значения.

Принцип работы светодиодного индикатора заключается в следующем. При подаче на вход разности потенциалов, в контуре возникнет ток, значение которого определяется сопротивлением (R2) и напряжением перехода база-эмиттер биполярного транзистора (VT1). Для того чтобы слабенький светодиод загорелся, достаточно тока стабилизации 100 мкА. Для этого сопротивление (R2) должно быть 500-600 Ом, если напряжение база-эмиттер примерно 0,5 В. Конденсатор (С) необходим неполярный, емкостью 0,1 мкФ, служит он защитой светодиода от скачков тока. Резистор (R1) выбираем величиной 1 МОм, он исполняет роль нагрузки для биполярного транзистора (VT1). Функции диода (VD) в случае индикации постоянного напряжения – это проверка полюсов и защита. А для проверки переменного напряжения он играет роль выпрямителя, срезая отрицательную полуволну. Его обратное напряжение должно быть не меньше 600 В. Что касается светодиода (HL), то выбирайте сверхъяркий, для того, чтобы его свечение при минимальных токах было заметно.

Автомобильный индикатор напряжения

Среди областей, где применение индикатора напряжения на светодиодах имеет неоспоримую пользу, можно выделить эксплуатацию автомобильного аккумулятора. Для того чтобы аккумулятор служил долго, необходимо контролировать напряжение на его клеммах и поддерживать в заданных пределах.

Предлагаем вам обратить внимание на схему автомобильного индикатора напряжения на RGB-светодиоде, с помощью которой вы поймете, как изготовить устройство самостоятельно. RGB-светодиод отличается от обычного, наличием 3-х разноцветных кристаллов внутри своего корпуса. Данное свойство мы будем использовать для того, чтобы каждый цвет сигнализировал нам об уровне напряжения.

Схема состоит из девяти резисторов, трех стабилитронов, трех биполярных транзисторов и одного 3-цветного светодиода. Обратите внимание, какие элементы рекомендуется выбирать для реализации схемы.

  1. R1=1, R2=10, R3=10, R4=2.2, R5=10, R6=47, R7=2.2, R8=100, R9=100 (кОм).
  2. VD1=10, VD2=8.2, VD3=5.6 (В).
  3. VT – BC847C.
  4. HL – LED RGB.

Результат такой системы следующий. Светодиод загорается:

  • зеленым – напряжение 12-14 В;
  • синим – напряжение ниже 11,5 В;
  • красным – напряжение свыше 14,4 В.

Это происходит за счет правильно собранной схемы. С помощью потенциометра (R4) и стабилитрона (VD2) выставляется низший предел напряжения. Как только разность потенциалов между клеммами батареи становится меньше указанного значения – транзистор (VT2) закрывается, VT3 открывается, синий кристалл индуцирует. Если напряжение на клеммах находится в указанном диапазоне, то ток проходит через резисторы (R5,R9), стабилитрон (VD3), светодиод (HL), естественно, светит зеленым, транзистор (VT3) находится в закрытом состоянии, а второй (VT2) – в открытом. С помощью настройки переменного резистора (R2), превышение напряжения больше 14,4 В будет отображаться свечением светодиода красного цвета.

Индикатор напряжения на двухцветном светодиоде

Еще одна популярная схема индикации, это схема с использованием двухцветного светодиода для отображения степени заряда батареи или же сигнализации о включении или выключении лампы в другом помещении. Это может быть очень удобно, например, если выключатель света в подвале расположен до лестницы ведущей вниз (кстати, не забудьте прочитать интересную статью о том как сделать подсветку лестницы светодиодной лентой). До того как спуститься туда, вы зажигаете свет, и индикатор загорается красным, в выключенном состоянии вы видите зеленое свечение на клавише. В этом случае вам не придется заходить в темную комнату и уже там нащупывать выключатель. Когда вы покинули подвал, вы по цвету светодиода знаете, горит свет в подвале или нет. Одновременно с этим, вы контролируете исправность лампочки, потому что в случае ее перегорания, красным светодиод светиться не будет. Вот схема индикатора напряжения на двухцветном светодиоде.

В заключении можно сказать, что это лишь основные возможные схемы использования светодиодов для индикации напряжения. Все они несложные, и в своей реализации под силу даже дилетанту. В них не использовалось никаких дорогостоящих интегральных микросхем и тому подобное. Рекомендуем обзавестись таким устройством всем любителям и профессионалам электрикам, чтобы никогда не подвергать свое здоровье опасности, приступая к ремонтным работам, не проверив наличие напряжения.

Индикатор АКБ на светодиодах схема для начинающих

Сегодня по вашим просьбам покажу наверное самый простой вариант схемы индикатора заряда аккумуляторов, этот индикатор по сути может работать с любыми аккумуляторами это простой вольтметр и индикатор напряжения построенный на доступных компонентах.

Схема не содержат никаких транзисторов, микросхем, поэтому ее сможет собрать абсолютно любой человек буквально за пять минут. В качестве самих индикаторов задействованы светодиоды их количество в принципе может быть любым,  в нашем варианте 6 штук.

Работает это устройство очень простым образом, но перед тем как пояснять основу работы скажу, что данный образец заточен под двенадцати вольтовые аккумуляторы. Каждый индикаторный светодиоды имеет свой токо ограничивающий резистор, мощность этих резисторов в принципе неважна, подойдут любые.

В разрыв питания светодиодов подключины стабилитроны, именно они служат в качестве датчика напряжения. Стабилитроны подобранны на определенное напряжение срабатывания, а в частности на 9 10 11 12 и 13 вольт. Один из светодиодов подключен к источнику питания без стабилитрона, он в качестве индикатора наличия аккумулятора и светится постоянно если подключен аккумулятор.

Если напряжение на аккумуляторе выше напряжения срабатывания определенного стабилитроны то последний откроется по открытому переходу стабилитрона обеспечивается питания светодиода, последний начинает светиться.

При разряде аккумулятора происходит обратный процесс, если напряжение на АКБ меньше напряжения срабатывания светодиода, последняя закроется и прекращается подача питания на светодиод и тот потухает, всё очень просто.

Светодиоды буквально любые, цвета и диаметр на ваше усмотрение. Такой индикатор естественно имеет некоторую погрешность и связано это с напряжением свечения конкретного светодиода, но в целом никогда не врет и всегда работает безотказно, а самое главное минимальные затраты на комплектующие.

Я сделал также для вас и печатную плату, ее можете скачать переходя по ссылки в конце статьи. Думаю для многих информация была полезна, возможно кто-то и сделает себе такой простой индикатор АКБ. Всем добра.

Архив к статье: скачать…

Автор; АКА КАСЬЯН

Схемы индикаторов для радиолюбительских измерений


Схема гетеродинного индикатора резонанса (ГИР) со светодиодным индикатором

Гетеродинный индикатор резонанса (ГИР), это прибор, предназначенный для измерения резонансной частоты высокочастотного колебательного контура.Обычно такие приборы в качестве индикатора резонанса используют магнитодинамические индикаторы (со стрелками), здесь же описывается прибор с индикатором …

1 243 0

Индикатор провалов напряжения в сети 220В на светодиодах

Этот прибор предназначен для регистрации коротких по времени снижений напряжения в электросети. Он может быть полезен при анализе причин возникновения сбоев в работе различного оборудования. Прибор работает как триггер, как только напряжение в сети снижается ниже предварительно заданного …

1 335 1

Индикатор силы тока на микросхеме AN6884

Применение поликомпараторных индикаторных микросхем в индикаторахтока лабораторных источников питания дает определенные преимущества. Во-первых, может быть очень низким падение напряжения на измерительном сопротивлении (для AN6884 0.25V на R1 при максимальном токе). Во-вторых, есть несколько …

1 775 0

Светодиодный мигающий индикатор на двухцветных светодиодах

Обычно светодиодная индикация включенного или работающего состояния какого-то устройства, например, охранной сигнализации это один светодиод, который мигает. Схема индикатора обычно состоит из мультивибратора или другого источника импульсов и светодиода. Согласитесь, это слишком уныло. Хотя …

0 354 0

Восьмиканальный индикатор напряжений с светодиодным таблом 8х8

Принципиальная схема индикатора уровней восьми сигналов с выводом значений светодиодными столбиками на табло 8х8. В некоторых случаях необходимо наблюдать за уровнями сигналов, поступающих от разных источников, и иметь возможность визуального сравнения этих уровней. Данный индикатор позволяет …

1 1202 0

Восьмиканальный индикатор уровней аналоговых сигналов

В промышленности часто приходится контролировать уровень аналоговых сигналов в определенный момент времени или за промежуток времени исследования оборудования. Данные контроля в виде комбинации свечения светодиодов доказывают работоспособность исследуемого прибора. Индикатор сигналов можно …

0 1516 0

Светодиодный индикатор напряжения с автоматической регулировкой яркости

Схема индикатора, который предназначен для установки на приборную панель автомобиля с номинальным напряжением борт-сети 12V. Индикатор на линейном табло из десяти светодиодов показывает напряжение от 9V горит один светодиод) до 16V (горят все светодиоды). Несложными регулировками можно установить …

1 1116 0

Электронный щуп-сигнализатор для поиска очагов влажности в материалах

Схема простого самодельного прибора — щупа для поиска очагов влажности в различных строительных материалах. При ремонте или строительстве дома, гаража и других построек будет очень полезным знать сухие ли пиломатериалы или они требуют дополнительной сушки, а так же очень важно определить сухие или …

0 1303 0

Индикатор+сигнализатор для контроля за превышением или понижением температуры

Принципиальная схема простого индикатора, который предназначен для предупреждения о выходе температуры объекта за предварительно установленные пределы.При превышении верхнего предела температуры загорается мигающий светодиод красного цвета и раздается прерывающийся звуковой сигнал …

1 2766 0

Схема индикатора напряжения аккумулятора на 12В (АЛ307+стабилитроны)

Схема самодельного индикатора напряжения, который предназначен для использования с автомобильным аккумулятором на 12В. Все светодиоды типа АЛ307 красные, напряжение зажигания равно сумме напряжения стабилизации стабилитрона и прямого напряжения светодиода. То есть, примерно …

0 2708 0


Радиодетали, электронные блоки и игрушки из китая:

РадиоДом — Сайт радиолюбителей

Предлагаемая в статье схема цифрового тахометра предназначена для установки на автомобили с 4-х тактным бензиновым двигателем, имеющим контактный или электронный прерыватель. Информация о частоте отображается на 2-х разрядном индикаторе, показывающем число тысяч и сотен оборотов в минуту.

Добавлено: 14.01.2019 | Просмотров: 4382 | АвтоЭлектрика

Автолюбителя занимающимся эксплуатацией автомобиля в зимнее время года неплохим дополнением в гараже будет пусковое устройство, так как оно не только продлевает срок службы АКБ, но и позволяет с легкостью решить проблему запуска холодного двигателя, даже при не полностью заряженном АКБ.

Добавлено: 29.12.2018 | Просмотров: 5471 | АвтоЭлектрика

Принципиальная схема-картинка электрооборудования отечественных автомобилей марки УАЗ — 31512. Статья поможет автовладельцам данных автомобилей найти неисправность самому в гаражных условиях без помощи мастера авто-электрика. Незаменимый визуальный помощник для начинающих автолюбителей желающих своими руками разобраться в своём авто.

Добавлено: 30.12.2016 | Просмотров: 3355 | АвтоЭлектрика

Светодиодный индикатор батареи позволяет следить за уровнем заряда АКБ. При напряжении ниже 9 вольт загорается светодиод. Схема очень проста и в настройке не нуждается. Работа схемы заключается на базовом смещении транзистора, когда напряжение выше 9 вольт, напряжение на базе и эмиттере транзистора одинаково, но когда напряжение батареи падает ниже 9 вольт.

Добавлено: 23.12.2016 | Просмотров: 4457 | АвтоЭлектрика

​Данная простейшая схема даёт возможность контролировать уровень заряда автомобильного АКБ, схема основана на зарубежной интегральной микросхеме LM3914. Подаём на вход индикатора напряжение 12.7 вольт и резистором R2 подстройте его так чтобы светодиод №10 загорался, одновременно убедитесь что остальные светодиоды не светятся. Далее при напряжении 11,9 вольт убедитесь в свечении первого светодиода.

Добавлено: 20.12.2016 | Просмотров: 7193 | АвтоЭлектрика

В ночное время при перевозке пассажиров бывает случай когда необходим свет в салоне автомобиля, но яркий свет точно помешает водителю. Чтобы избежать можно воспользоваться схемой представленная в статье, которая позволяет плавно регулировать освещение. Ещё одна важная особенность схемки это низкое энергопотребление в ждущем режиме.
Сердцем является зарубежная NE555 и полевом транзисторе IRF540.

Добавлено: 20.12.2016 | Просмотров: 3338 | АвтоЭлектрика

​Данная схема позволит выключить освещение через некоторое время после закрывания двери.
Но для установки данного устройство необходимо сделать некоторые изменения в электропроводки автомобиля, а именно устройство должно быть подключено к электронным контактам закрывания двери. Когда дверь закрывается выводы дверного выключателя должны быть замкнуты на массу.

Добавлено: 20.12.2016 | Просмотров: 2317 | АвтоЭлектрика

Коммутатор предназначен для бесконтактной системы зажигания отечественных автомобилей марки ВАЗ. В отличие от промышленного образца на выходе конструкции присутствует мощный МДП транзистор — IRF462 выдающий мощность не менее 280 ватт и обеспечивающий током через катушку зажигания до 10 ампер, что в 2-3 раза больше максимального тока стандартного коммутатора.

Добавлено: 16.12.2016 | Просмотров: 5442 | АвтоЭлектрика

Описываемая в статье схема позволит с точностью определить напряжение в бортовой сети автомобиля. В качестве индикатора применён один светодиод зеленого свечения, характер свечения определяет три уровня напряжения сети: менее 12 вольт — ниже нормы — прерывистые редкие вспышки светодиода, 12…14 вольт — нормальное напряжение — постоянное свечение, более 14 вольт — выше нормы — прерывистые частые вспышки.

Добавлено: 12.12.2016 | Просмотров: 3067 | АвтоЭлектрика

Схема индикатора напряжения бортовой сети автомобиля на светодиодах

Устройство, схема которого показана на рис. 1, позволяет быстро и с достаточной точностью определить величину напряжения в бортовой сети автомобиля. Так же, индикатор можно использовать при зарядке аккумуляторных батарей.

На приборной панели автомобиля нужно установить планку со светодиодами Н1-НЗ. При пониженном напряжении в бортовой сети (менее 11,7 В) светится «красный» светодиод НЗ, при напряжении в пределах 11,7—12,7 В «желтый» светодиод Н2, а при напряжении более 12,7 В — «зеленый» светодиод.

 

 

Индикатор работает следующим образом. Когда напряжение в бортовой сети меньше 11,7 В, все транзисторы закрыты. Включен светодиод НЗ красного свечения. При увеличении напряжения бортовой сети более 11,7, но менее 12,7 В, открывается стабилитрон V5. Транзисторы V4 и V6 открываются, первый из них шунтирует светодиод НЗ, и он гаснет, а второй — включает светодиод Н2 желтого свечения.

Если напряжение превысит 12,7 В, открывается стабилитрон V2. Это приведет к открыванию транзисторов V1 и V3. Транзистор V3 шунтирует светодиод Н2, и он гаснет. Транзистор V1 включает светодиод h2 зеленого свечения. Ток, потребляемый индикатором при напряжении 14 В,— около 70 мА.

В устройстве можно использовать советские транзисторы МП10, МП37Б или зарубежный аналог T322N. Стабилитроны V2 и V5 должны быть подобраны по напряжению стабилизации на 12 и 11 В соответственно. Подбором стабилитронов на другие напряжения стабилизации можно сместить уровни индицируемых напряжений.

Настройка индикатора сводится к подбору резистора R3 в пределах от 300 Ом до 5 кОм для достижения четкого включения светодиодов h2 и Н2.

Индикатор можно использовать при зарядке аккумуляторных батарей, если выбрать светодиод НЗ желтого, Н2 зеленого, а h2 красного свечения и соответственно подобрать стабилитрон V2 на напряжение стабилизации 14 В, тогда при напряжении батареи менее 11,7 В будет светиться «желтый» светодиод, сигнализирующий о ее пониженном напряжении. При напряжении 11,7—14,7 Вольт будет светиться «зеленый» светодиод, свидетельствуя о нормальном заряде батареи. При напряжении батареи выше 14,7 В включится «красный» светодиод, индицирующий перезарядку батареи. При измерении напряжения батареи к ней необходимо подключать нагрузочный резистор соответствующего сопротивления.

Самый простой индикатор заряда батарейки. Как сделать индикатор заряда аккумулятора на светодиодах? Какие существуют индикаторы заряда автомобильного аккумулятора

От качества зарядки аккумулятора зависит, насколько успешно пройдет запуск автомобиля. Не многие водители следят за степенью зарядки АКБ. В статье рассматривается такое полезное устройство как индикатор заряда автомобильного аккумулятора: как устроен, работает, дается инструкция и видео, как его самостоятельно изготовить.

[ Скрыть ]

Характеристика индикатора уровня заряда батареи

На современных автомобилях с бортовым компьютером водитель имеет возможность получить информацию об уровне . Старые модели оборудованы аналоговыми вольтметрами, но они не отражают истиной картины состояния аккумулятора. Индикатор напряжения (ИН) аккумулятора — вариант иметь оперативную информацию о напряжении батареи.

Предназначение и устройство

На ИН возложены две функции – показывать, как заряжается АКБ от генератора, и информировать о величине заряда аккумулятора автомобиля. Проще всего собрать такое устройство своими руками. Схема самодельного устройства простая. Приобретя необходимые детали, легко собрать индикатор своими руками. Таким образом можно сэкономить, так как себестоимость прибора получается низкой (автор видео — AKA KASYAN).

Принцип действия

Индикатор уровня заряда имеет три светодиодные лампочки разных цветов. Обычно это: красный, зеленый и синий. Каждый из цветов имеет свою информативную нагрузку. Красный цвет означает низкую зарядку, которая является критичной. Синий цвет соответствует рабочему режиму. Зеленый цвет говорит о полной заряженности аккумулятора.

Разновидности

ИН могут быть размещены на аккумуляторных батареях в виде гидрометра или в виде отдельных устройств с информационным дисплеем. Встроенные ИН обычно размещают на . Они оснащаются поплавковым индикатором (гидрометром). Он имеет простую конструкцию.

Выпускаются заводские ИН:

  1. DC-12 В. Устройство представляет собой конструктор. С его помощью можно контролировать заряженность АКБ и работоспособность реле-регулятора.
  2. Для тех, у кого машина оборудована вторым аккумулятором, полезным устройством будет панель с индикатором от TMC. Это панель из алюминия с размещенным на ней вольтметром и переключателем с одной батареи на другую.
  3. ИН Signature Gold Style и Faria Euro Black Style – определяют уровень заряда аккумулятора. Но их стоимость слишком высокая, поэтому на них небольшой спрос.

Руководство по изготовлению устройства в домашних условиях

Самым простым и дешевым вариантом является ИН, изготовленный своими руками. Его назначение – контролировать, как работает АКБ при значении напряжения в бортовой сети в пределах 6-14В.

Чтобы прибор не работал постоянно, его следует подключать через замок зажигания. В этом случае он будет работать, когда вставлен ключ.

Для схемы понадобятся следующие детали:

  • печатная плата;
  • резисторы: 2 сопротивлением 1 кОМ, 1 сопротивлением 2 кОм и 3 сопротивлением 220 Ом;
  • транзисторы: ВС547 — 1 и ВС557 — 1;
  • стабилитроны: один на 9,1 В, один на 10 В;
  • светодиодные лампочки (RGB): красный, синий, зеленый.

У светодиодов с помощью тестера нужно определить и проверить выводы, чтобы они соответствовали цвету. Собирается прибор согласно схеме.


Компоненты примеряют на плату и вырезают ее соответствующих размеров. Желательно компоновать комплектующие так, чтобы они занимали поменьше места.

Светодиоды лучше припаивать к проводам, а не на плату, чтобы индикаторы удобнее было размещать на приборной панели.

По изготовленному устройству нельзя определить конкретные значения напряжения батареи, можно лишь ориентироваться в каких пределах оно находится:

  • красный горит, если напряжение от 6 до 11 В;
  • синий соответствует напряжению от 11 до 13 В;
  • зеленый означает полную зарядку, то есть напряжение превышает 13 В.

Индикатор напряжения аккумулятора можно устанавливать в любом месте салона. Удобнее всего размещать его в нижней части рулевой колонки: светодиоды будут хорошо видны, и не будут мешать управлению. Кроме того, прибор легко будет подключить к замку зажигания. После установки водитель сможет всегда знать, насколько заряжена батарея его автомобиля и заряжать свой аккумулятор в случае необходимости.

Делаем схему контроля зарядки аккумулятора для авто

В этой статье хочу рассказать, как сделать автоматический контроль за зарядным устройством, то есть, чтобы ЗУ само отключалось по завершению зарядки, а при снижении напряжения на АКБ опять включалось зарядное устройство.

Меня попросил мой отец сделать данный девайс, так как гараж находится далековато от дома и бегать проверять, как там себя чувствует зарядка, поставленная заряжать аккумулятор, не очень удобно. Конечно можно было купить данный девайс на Али, но после введения оплаты за доставку, плата подорожала и поэтому было решено сделать самоделку своими руками. Если кто хочет купить готовую плату, то вот ссылка..http://ali.pub/1pdfut

Поискал плату по инету в формате.lay, так и не нашёл. Решил делать всё сам. А программой Sprint Layout’ познакомился впервые. поэтому о многих функциях просто не знал (например шаблон), рисовал всё вручную. Хорошо, что плата не такая уж и большая, получилось всё нормально.Дальше перекись водорода с лимонной кислотой и травление.Все дорожки пролудил и просверлил отверстия.Дальше пайка деталей, Ну вот и готовый модуль

Схема для повторения;

Плата в формате.lay скачать…

Всего вам доброго…

xn--100—j4dau4ec0ao.xn--p1ai

Простой индикатор заряда и разряда аккумулятора

Данный индикатор заряда аккумулятора основан на регулируемом стабилитроне TL431. С помощью двух резисторов можно установить напряжение пробоя в диапазоне от 2,5 В до 36 В.

Приведу две схемы применения TL431 в качестве индикатора заряда/разряда аккумулятора. Первая схема предназначена для индикатора разрядки, а вторая для индикатора уровня заряда.

Единственная разница — это добавление n-p-n транзистора, который будет включать какой-либо сигнализатор, например, светодиод или зуммер. Ниже приведу способ вычисления сопротивления R1 и примеры на некоторые напряжения.

Схема индикатора разряда аккумулятора

Стабилитрон работает таким образом, что начинает проводить ток при превышении на нем определенного напряжения, порог которого мы можем установить с помощью делителя напряжения на резисторах R1 и R2. В случае индикатора разряда, светодиодный индикатор должен гореть, когда напряжение батареи меньше, чем необходимо. Поэтому в схему добавлен n-p-n транзистор.

Как можно видеть регулируемый стабилитрон регулирует отрицательный потенциал, поэтому в схему добавлен резистор R3, задачей которого является включение транзистора, когда TL431 выключен. Резистор этот на 11k, подобранный методом проб и ошибок. Резистор R4 служит для ограничения тока на светодиоде, его можно вычислить с помощью закона Ома.

Конечно, можно обойтись и без транзистора, но тогда светодиод будет гаснуть, когда напряжение упадет ниже выставленного уровня — схема ниже. Безусловно, такая схема не будет работать при низких напряжениях из-за отсутствия достаточного напряжения и/или тока для питания светодиода. Данная схема имеет один минус, который заключается в постоянном потреблении тока, в районе 10 мА.

Схема индикатора заряда аккумулятора

В данном случае индикатор заряда будет гореть постоянно, когда напряжение больше, чем то, которые мы определили с помощью R1 и R2. Резистор R3 служит для ограничения тока на диод.

Пришло время для того, что всем нравится больше всего — математики

Я уже говорил в начале, что напряжение пробоя может изменяться от 2,5В до 36В посредством входа «Ref». И поэтому, давайте попытаемся кое-что подсчитать. Предположим, что индикатор должен загореться при снижении напряжении аккумулятора ниже 12 вольт.

Сопротивление резистора R2 может быть любого номинала. Однако лучше всего использовать круглые числа (для облегчения подсчета), например 1к (1000 Ом), 10к (10 000 Ом).

Резистор R1 рассчитаем по следующей формуле:

R1=R2*(Vo/2,5В — 1)

Предположим, что наш резистор R2 имеет сопротивление 1к (1000 Ом).

Vo — напряжение, при котором должен произойти пробой (в нашем случае 12В).

R1=1000*((12/2,5) — 1)= 1000(4,8 — 1)= 1000*3,8=3,8к (3800 Ом).

Т. е. сопротивление резисторов для 12В выглядят следующим образом:

А здесь небольшой список для ленивых. Для резистора R2=1к, сопротивление R1 составит:

  • 5В – 1к
  • 7,2В – 1,88к
  • 9В – 2,6к
  • 12В – 3,8к
  • 15В — 5к
  • 18В – 6,2к
  • 20В – 7к
  • 24В – 8,6к

Для низкого напряжения, например, 3,6В резистор R2 должен иметь бОльшее сопротивление, например, 10к поскольку ток потребления схемы при этом будет меньше.

Источник

www.joyta.ru

Простейший индикатор уровня заряда батареи

Самое удивительное то, что схема индикатора уровня заряда аккумуляторной батареи не содержит ни транзисторов, ни микросхем, ни стабилитронов. Только светодиоды и резисторы, включенные таким образом, что обеспечивается индикация уровня подведенного напряжения.

Схема индикатора


Работа устройства основывается на начальном напряжении включения светодиода. Любой светодиод — это полупроводниковый прибор, который имеет граничную точку напряжения, только превысив которую он начинает работать (светить). В отличии от лампы накаливания, которая имеет почти линейные вольтамперные характеристики, светодиоду очень близка характеристика стабилитрона, с резкой крутизной тока при увеличении напряжения.Если включить светодиоды в цепь последовательно с резисторами, то каждый светодиод начнет включаться только после того, как напряжение превысит сумму светодиодов в цепи для каждого отрезка цепи в отдельности. Порог напряжения открытия или начала загорания светодиода может колебаться от 1,8 В до 2,6 В. Все зависит от конкретной марки.В итоге, каждый светодиод загорается только после того, как загорелся предыдущий.

Сборка индикатора уровня заряда батареи


Схему я собрал на универсальной монтажной плате, спаяв вывода элементов между собой. Для лучшего восприятия я взял светодиоды разных цветов.Такой индикатор можно сделать не только на шесть светодиодов, а к примеру, на четыре.Использовать индикатор можно не только для аккумулятора, но для создания индикации уровня на музыкальных колонках. Подключив устройство к выходу усилителя мощности, параллельно колонке. Тем самым можно отслеживать критические уровни для акустической системы.Возможно найти и другие применения этой, по истине, очень простой схемы.

sdelaysam-svoimirukami.ru

Индикатор окончания заряда аккумулятора на светодиодах

Индикатор заряда аккумулятора – нужная штука в хозяйстве любого автомобилиста. Актуальность такого устройства возрастает многократно, когда холодным зимним утром автомобиль, почему-то, отказывается заводиться. В этой ситуации стоит определиться, то ли звонить другу, что бы тот приехал и помог завестись от своей батареи, либо аккумулятор приказал долго жить, разрядившись ниже критического уровня.

Зачем следить за состоянием аккумулятора?

Автомобильный аккумулятор состоит из шести последовательно соединённых аккумуляторных батарей с напряжением питания 2,1 — 2,16В. В норме АКБ должен выдавать 13 — 13,5В. Нельзя допускать значительного разряда аккумуляторной батареи, поскольку при этом падает плотность и, соответственно, повышается температура промерзания электролита.

Чем выше износ аккумулятора, тем меньшее время он удерживает заряд. В тёплое время года это не критично, а вот зимой забытые во включённом состоянии габаритные огни к моменту возвращения способны полностью «убить» аккумулятор, превратив содержимое в кусок льда.

В таблице можно увидеть температуру промерзания электролита, в зависимости от степени заряженности агрегата.

Зависимость температуры промерзания электролита от степени заряда аккумулятора
Плотность электролита, мг/см. куб. Напряжение, В (без нагрузки) Напряжение, В (с нагрузкой 100 А) Степень заряда АКБ, % Температура замерзания электролита, гр. Цельсия
1110 11,7 8,4 0,0 -7
1130 11,8 8,7 10,0 -9
1140 11,9 8,8 20,0 -11
1150 11,9 9,0 25,0 -13
1160 12,0 9,1 30,0 -14
1180 12,1 9,5 45,0 -18
1190 12,2 9,6 50,0 -24
1210 12,3 9,9 60,0 -32
1220 12,4 10,1 70,0 -37
1230 12,4 10,2 75,0 -42
1240 12,5 10,3 80,0 -46
1270 12,7 10,8 100,0 -60

Критическим считается падение уровня заряда ниже 70%. Все автомобильные электроприборы потребляют не напряжение, а ток. Без нагрузки даже сильно разряженный аккумулятор может показывать нормальное напряжение. Но при низком уровне, во время запуска двигателя, будет отмечаться сильная «просадка» напряжения, что является тревожным сигналом.

Своевременно заметить приближающуюся катастрофу возможно лишь в том случае, когда непосредственно в салоне установлен индикатор. Если во время работы автомобиля он постоянно сигнализирует о разрядке – пора ехать на СТО.

Какие существуют индикаторы

Многие АКБ, особенно необслуживаемые, имеют встроенный датчик (гигрометр), принцип работы которого основан на измерении плотности электролита.

Этот датчик контролирует состояние электролит и ценность его показателей относительна. Не очень удобно по несколько раз залазить под капот автомобиля, что бы проконтролировать состояние электролита в разных режимах работы.

Для контроля состояния АКБ значительно удобнее электронные приборы.

Виды индикаторов заряда аккумуляторной батареи

В автомагазинах продаётся множество таких устройств, различающихся дизайном и функционалом. Фабричные приборы условно делятся на нескольких типов.

По способу подключения:

  • к разъёму прикуривателя;
  • к бортовой сети.

По способу отображения сигнала:

  • аналоговые;
  • цифровые.

Принцип работы у них одинаков, определение уровня заряда АКБ и отображение информации в наглядном виде.

Принципиальная схема индикатора

Существуют десятки разнообразных схем контроля, но результат они выдают идентичный. Подобное устройство возможно собрать самостоятельно из подручных материалов. Выбор схемы и комплектующих зависит исключительно от ваших возможностей, фантазии и ассортимента ближайшего магазина радиотоваров.

Вот схема для понимания как работает индикатор заряда аккумулятора на светодиодах. Такую портативную модель можно собрать «на коленке» за несколько минут.

Д809 – стабилитрон на 9В ограничивает напряжение на светодиодах, а на трёх резисторах собран сам дифференциатор. Такой светодиодный индикатор срабатывает на силу тока в цепи. При напряжении 14В и выше сила тока достаточно для свечения всех светодиодов, при напряжении 12-13,5В светятся VD2 и VD3, ниже 12В — VD1.

Более продвинутый вариант при минимуме деталей можно собрать на бюджетном индикаторе напряжения — микросхеме AN6884 (KA2284).

Схема led индикатора уровня заряда АКБ на компараторе напряжения

Схема работает по принципу компаратора. VD1 – стабилитрон на 7,6В, он служит в качестве эталонного источника напряжения. R1 – делитель напряжения. При первоначальной настройке он выставляется в такое положение, чтобы при напряжении 14В светились все светодиоды. Напряжение, поступающее на входы 8 и 9, сравнивается через компаратор, а результат дешифруется на 5 уровней, зажигая соответствующие светодиоды.

Контроллер зарядки АКБ

Что бы отслеживать состояние аккума во время работы зарядного устройства, делаем контроллер заряда АКБ. Схема устройства и используемые компоненты максимально доступны, в то же время обеспечивают полный контроль над процессом подзарядки батарей.

Принцип работы контроллера следующий: пока напряжение на аккумуляторе ниже напряжения заряда – горит зелёный светодиод. Как только напряжение сравняется, открывается транзистор, зажигая красный светодиод. Изменение резистора перед базой транзистора меняет уровень напряжения, необходимого для открытия транзистора.

Это универсальная схема контроля, которую можно использовать как для мощных автомобильных аккумуляторов, так и для миниатюрных литиевых батареек-аккумуляторов.

svetodiodinfo.ru

Как сделать индикатор заряда аккумулятора на светодиодах?

Успешный пуск автомобильного двигателя во многом зависит от состояния заряда аккумулятора. Регулярно проверять напряжение на клеммах с помощью мультиметра – неудобно. Гораздо практичнее воспользоваться цифровым или аналоговым индикатором, расположенным рядом с приборной панелью. Простейший индикатор заряда аккумулятора можно сделать своими руками, в котором пять светодиодов помогают отслеживать постепенный разряд либо заряд батареи.

Принципиальная схема

Рассматриваемая принципиальная схема индикатора уровня заряда представляет собой простейшее устройство, отображающее уровень заряда аккумулятора (АКБ) на 12 вольт.
Её ключевым элементом является микросхема LM339, в корпусе которой собрано 4 однотипных операционных усилителя (компаратора). Общий вид LM339 и назначение выводов показан на рисунке.
Прямые и инверсные входы компараторов подключены через резистивные делители. В качестве нагрузки используются индикаторные светодиоды 5 мм.

Диод VD1 служит защитой микросхемы от случайной смены полярности. Стабилитрон VD2 задаёт опорное напряжение, которое является эталоном для будущих измерений. Резисторы R1-R4 ограничивают ток через светодиоды.

Принцип работы

Работает схема индикатора заряда аккумулятора на светодиодах следующим образом. Застабилизированное с помощью резистора R7 и стабилитрона VD2 напряжение 6,2 вольт поступает на резистивный делитель, собранный из R8-R12. Как видно из схемы между каждой парой этих резисторов формируются опорные напряжения разного уровня, которые поступают на прямые входы компараторов. В свою очередь, инверсные входы объединены между собой и через резисторы R5 и R6 подключены к клеммам аккумуляторной батарее (АКБ).

В процессе заряда (разряда) аккумулятора постепенно изменяется напряжение на инверсных входах, что приводит к поочередному переключению компараторов. Рассмотрим работу операционного усилителя OP1, который отвечает за индикацию максимального уровня заряда АКБ. Зададим условие, если заряженный аккумулятор имеет напряжение 13,5 В, то последний светодиод начинает гореть. Пороговое напряжение на его прямом входе, при котором засветится этот светодиод, рассчитаем по формуле:UOP1+ = UСТ VD2 – UR8,UСТ VD2 =UR8+ UR9+ UR10+ UR11+ UR12 = I*(R8+R9+R10+R11+R12)I= UСТ VD2 /(R8+R9+R10+R11+R12) = 6,2/(5100+1000+1000+1000+10000) = 0,34 мА,UR8 = I*R8=0,34 мА*5,1 кОм=1,7 ВUOP1+ = 6,2-1,7 = 4,5 В

Это означает, что при достижении на инверсном входе потенциала величиной более 4,5 вольт компаратор OP1 переключится и на его выходе появится низкий уровень напряжения, а светодиод засветится. По указанным формулам можно рассчитать потенциал на прямых входах каждого операционного усилителя. Потенциал на инверсных входах находят из равенства: UOP1- = I*R5 = UБАТ – I*R6.

Печатная плата и детали сборки

Печатная плата изготавливается из одностороннего фольгированного текстолита размером 40 на 37 мм, которую можно скачать здесь. Она предназначена для монтажа DIP элементов следующего типа:

  • резисторы МЛТ-0,125 Вт с точностью не менее 5% (ряд Е24)R1, R2, R3, R4, R7, R9, R10, R11– 1 кОм,R5, R8 – 5,1 кОм,R6, R12 – 10 кОм;
  • диод VD1 любой маломощный с обратным напряжением не ниже 30 В, например, 1N4148;
  • стабилитрон VD2 маломощный с напряжением стабилизации 6,2 В. Например, КС162А, BZX55C6V2;
  • светодиоды LED1-LED5 – индикаторные типа АЛ307 любого цвета свечения.

Данную схему можно использовать не только для контроля напряжения на 12 вольтовых аккумуляторах. Пересчитав номиналы резисторов, расположенных во входных цепях, получаем светодиодный индикатор на любое желаемое напряжение. Для этого следует задаться пороговыми напряжениями, при которых будут включаться светодиоды, а затем воспользоваться формулами для пересчёта сопротивлений, приведенные выше.

Читайте так же

ledjournal.info

Схемы индикаторов разряда li-ion аккумуляторов для определения уровня заряда литиевой батареи (например, 18650)

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.

И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений — от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

Внимание! Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Для предупреждения глубокого разряда необходимо вручную отключить нагрузку либо использовать контроллеры разряда.

Вариант №1

Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный — чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.

Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом — переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:
Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше — тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко — между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации — 3 мА, при выключенном светодиоде — 0.3 мА.

Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 — разрешено, 0 — запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:

*катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector»ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD, TCM809TENB713, MCP103T-315E/TT, CAT809TTBI-G;
  • на 2.93V: MCP102T-300E/TT, TPS3809K33DBVRG4, TPS3825-33DBVT, CAT811STBI-T3;
  • серия MN1380 (или 1381, 1382 — они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы — MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Также можно взять советский аналог — КР1171СПхх:

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.

Неоспоримые достоинства схем на мониторах напряжения — чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:

Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую «моргалку» на двух биполярных транзисторах.

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза — коротка вспышка — опять пауза). Это позволяет снизить потребляемый ток до смешных значений — в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом — всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы — инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 — 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.

Вариант №10

Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914:

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4.2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.

Подключив 9-ый вывод микросхемы на «землю», можно перевести ее в режим «точка». В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения, т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментами включения светодиодов дает схема, представленная ниже.

Вариант №11

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339.

Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке.

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В — светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют контроллерами заряда-разряда), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.

Внимание!!! Попадаются платы, включающие защиту от переразряда при недопустимо низком напряжении (2.5В и ниже). Поэтому из всех имеющихся у вас плат необходимо отобрать только те экземпляры, которые срабатывают при правильном напряжении (3.0-3.2V).

Чаще всего PCB-плата представляет собой вот такую схемку:

Микросборка 8205 — это два миллиомных полевика, собранных в одном корпусе.

Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Пожалуйста, учитывайте тот факт, что схемы индикаторов разряда сами потребляют энергию аккумулятора! Во избежание недопустимого разряда, подключайте схемы индикаторов после выключателя питания или используйте схемы защиты, предотвращающие глубокий разряд.

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот — в качестве индикатора заряда.

electro-shema.ru

Индикатор для проверки и контроля уровня зарядки АКБ

Каким образом можно сделать не сложный индикатор напряжения для АКБ на 12V, который эксплуатируют в автомобилях, скутерах, а также прочей технике. Поняв принцип действия схемы индикатора и назначение его деталей, схему можно будет подстроить практически под любой вид заряжаемых батарей, меняя номиналы у соответствующих электронных компонентов.

Не секрет что необходимо контролировать разряд аккумуляторов, поскольку у них существует пороговое напряжение. При разрядке ниже порогового напряжения в аккумуляторе произойдет потеря значительной части его емкости, в результате он не сможет выдать заявленный ток, а покупка нового — удовольствие не из дешевых.

Принципиальная схема с номиналами, что в ней указаны, даст приблизительную информацию о напряжении на выводах АКБ с помощью трех светодиодов. Светодиоды могут быть любых цветов, но рекомендовано использовать такие, как показаны на фото, они дадут более четкое ассоциированное представление о состоянии аккумулятора (фото 3).

Если горит светодиод зеленого цвета — напряжение аккумулятора в приделах нормы (от 11,6 до 13 Вольт). Горит белый – напряжение 13 Вольт и более. Когда горит красный светодиод – необходимо отключать нагрузку, АКБ нуждается в подзарядке током в 0,1А., поскольку напряжение аккумулятора ниже 11,5 В., батарея разряжена более чем на 80%.

Внимание, указаны приблизительные значения, могут быть отличия, все зависит от характеристик компонентов используемых в схеме.

У светодиодов, используемых в схеме, потребляемый ток очень мал, менее15(mA). Те, кого это не устраивает, могут поставить в разрыв тактовую кнопку, в этом случае проверка АКБ будет произведена путем включения кнопки, и аналитики цвета загоревшегося светодиода.Плату необходимо защитить от воды и укрепить на аккумуляторной батарее. Получился примитивный вольтметр с постоянным источником энергии, состояние АКБ можно проверить в любой момент.

Плата очень маленьких размеров — 2,2 см. Использована микросхема Im358 в DIP-8 корпусе, точность прецизионных резисторов 1 %, за исключением ограничителей силы тока. Можно устанавливать любые светодиоды (3 mm, 5 mm) с силой тока 20 mA.

Контроль был произведен при помощи блока питания лабораторного на стабилизаторе линейном LM 317, срабатывание устройства четкое, возможно свечение двух светодиодов одновременно. Для точной настройки рекомендовано применять резисторы для подстройки (фото 2), с их помощью максимально точно можно отрегулировать напряжения, при которых загорятся светодиоды.Работа индикаторной схемы уровня зарядки аккумуляторной батареи. Главная деталь микросхема LM393 либо LM358 (аналоги КР1401СА3 / КФ1401СА3), в которой два компаратора (фото 5).

Как видим из (фото 5) есть восемь ножек, четыре и восемь – питание, остальные – входы и выходы компаратора. Разберем принцип работы одного из них, выводов три, входов два (прямой (не инвертирующий) «+» и инвертирующий «-») выход один. Напряжение опорное поступает на инвертирующий «+» (с ним сравнивается подаваемое на инвертирующий «-» вход).Если на прямом больше напряжение, чем на входе инвертирующем, (-) питания будет на выходе, в том случае когда наоборот (напряжения на инвертирующем большее, чем на прямом) на выходе (+) питания.

В цепь стабилитрон включен наоборот (анод к (-) катод к (+)), у него есть как говорят ток рабочий, при нем он будет хорошо стабилизировать, смотрим на графике (фото 7).

В зависимости от напряжения и мощности стабилитронов отличается ток, в документации указан ток минимума (Iz) и ток максимума (Izm) стабилизации. Необходимо выбрать нужный в указанном промежутке, хотя будет достаточно и минимального, резистор дает возможность достичь необходимого значения тока.

Ознакомимся с расчетом: полное напряжение равно 10 В., стабилитрон рассчитан на 5,6 В., имеем 10-5,6=4,4 В. Согласно документации min Iст=5 mA. В результате имеем R= 4,4 В. / 0,005 А. = 880 Ом. Возможны не большие отклонения в сопротивлении резистора, это не существенно, основным условием является ток не менее Iz.

Разделитель напряжения включает в себя три резистора 100 кОм, 10 кОм,82 кОм. Определенное напряжение «оседает» на данных пассивных компонентах, далее оно подается на вход инвертирующий.

От уровня зарядки АКБ зависит напряжение. Схема работает следующим образом, ZD1 5V6 стабилитрон который подает напряжение в 5,6 В. к прямым входам (напряжение опорное сравнивается с напряжением на входах не прямых).

В случае сильного разряда батареи, к не прямому входу первого компаратора будет подано напряжение меньше, чем на вход прямой. К входу компаратора второго тоже будет подаваться напряжение большее.

В итоге первый даст «-» на выходе, второй же «+», загорится светодиод красного цвета.

Светодиод зеленый будет светить, в случае если первый компаратор выдаст «+», а второй «-». Белый светодиод зажжется, если два компаратора подадут на выходе «+», по этой же причине возможно одновременное свечение зеленого и белого светодиодов.

Индикатор заряда аккумулятора своими руками на двух светодиодах — правильно обслуживаемые аккумуляторы будут работать у вас хорошо и долю. Обслуживание подразумевает, в частности, регулярный контроль напряжения аккумулятора. Изображенная на Рисунке 1 схема подходит для большинства типов аккумуляторов. Она содержит опорный светодиод LED REF , работающий при постоянном токе 1 мА и обеспечивающий эталонный световой поток постоянной интенсивности, не зависящей от напряжения аккумулятора.

Это постоянство обеспечивается резистором R1 включенным последовательно со светодиодом. Поэтому, даже если напряжение полностью заряженного аккумулятора упадет до полного разряда, ток через него изменится всего на 10%. Таким образом, можно считать, что интенсивность излучения остается постоянной в диапазоне напряжений аккумулятора, соответствующем переходу от состояния полного заряда до полного разряда.

Световой поток измерительного светодиода LED VAR меняется в соответствии с изменениями напряжения аккумулятора. Расположив светодиоды поблизости друг от друга, вы получите возможность легко сравнивать яркость их свечения, и, таким образом, определять статус аккумулятора. Используйте светодиоды с диффузно-рассеивающей линзой, поскольку приборы с прозрачной линзой раздражают ваши глаза. Обеспечьте достаточную оптическую изоляцию светодиодов, чтобы свет одного светодиода не попадал на линзу другого.

Работа измерительного светодиода

Измерительный светодиод работает при токе, меняющемся от 10 мА при полностью заряженном аккумуляторе до значений менее 1 мА при полном разряде. Стабилитрон D z с последовательным резистором R 2 необходимы для того, чтобы ток имел резкую зависимость от напряжения батареи. Сумма напряжения стабилитрона и падения напряжения на светодиоде должна быть чуть меньше, чем самое низкое напряжение аккумулятора. Это напряжение падает на резисторе R 2 . Изменения напряжения батареи вызывают большие изменения тока резистора R 2 . Если напряжение равно примерно 1 В, через светодиод LED VAR течет ток 10 мА, и он светится намного ярче, чем LED REF . Если напряжение ниже 0.1 В, интенсивность свечения LED VAR var будет меньше, чем у LED REF . показывая, что аккумулятор разряжен.

Индикатор заряда аккумулятора своими руками — непосредственно после окончания зарядки аккумулятора напряжение на нем превышает 13 В. Для схемы это безопасно, поскольку ток ограничен значением 10 мА. Если светодиоды горят ярко, быстро отпустите кнопку S 1 1(чтобы не допустить их повреждения (Рисунок 2). Хотя в примере на Рисунке 2 индикатор заряда подключен к 12-вольтовой свинцово-кислотной аккумуляторной батарее, вы без труда можете адаптировать эту схему к другим типам аккумуляторов. Кроме того, вы можете использовать ее для контроля напряжения.

Два зеленых светодиода индуцируют состояние, когда заряд батареи превышает 60%. Набор красных светодиодов показывает, что заряд аккумулятора упал ниже 20%. Светодиоды LED REFG и LED REFR подключены через резисторы R 1 и R 2 сопротивлением 10 кОм. Последовательное измерительными светодиодами, яркость свечения которых изменяется, включены стабилитроны и резисторы R 3 и R 4 сопротивлением 100 Ом. Диоды D 1 , D 2 и D 3 задают требуемое напряжение ограничения. Зависимость яркости свечения светодиодов от состояния аккумулятора показана в Табпице1.

Для расчета интенсивности свечения зеленого измерительного светодиода можно использовать следующее выражение:

V BATT = 10 G x 100 +V D1 +V D2 +V LEDG +V DZ1

V BATT =10 3 x 100+0.6+0.6+1.85+9.1=1225B.

Падение напряжения на используемых светодиодах при прямом токе 1 мА равно 1.85 В. Если характеристики светодиодов отличаются, сопротивления резисторов необходимо пересчитать. При этом напряжении светодиоды светятся одинаково, что соответствует заряду аккумулятора на 60%. Описание свинцово-кислотных аккумуляторов можно найти в. Для расчета интенсивности свечения красного измерительного светодиода можно использовать следующее выражение:

V BATT = I R x IOO+V D3 +V LEDR +V ZD2

При токе зеленого светодиода 1 мА

V BATT =10 -3 x 100 +0.6 + 1.85 + 9.1 =11.65 В.

Поскольку при таком напряжении оба красных светодиода светятся одинаково, это означает, что аккумулятор заряжен на 20%. Светодиод LED VARG varg не горит. Рисунок 3 показывает, что оба измерительных светодиода светятся ярче опорных, сообщая о том, что аккумулятор заряжен на 100%

С помощью двух резисторов можно установить напряжение пробоя в диапазоне от 2,5 В до 36 В.

Приведу две схемы применения TL431 в качестве индикатора заряда/разряда аккумулятора. Первая схема предназначена для индикатора разрядки, а вторая для индикатора уровня заряда.

Единственная разница — это добавление n-p-n транзистора, который будет включать какой-либо сигнализатор, например, светодиод или зуммер. Ниже приведу способ вычисления сопротивления R1 и примеры на некоторые напряжения.

Стабилитрон работает таким образом, что начинает проводить ток при превышении на нем определенного напряжения, порог которого мы можем установить с помощью R1 и R2. В случае индикатора разряда, светодиодный индикатор должен гореть, когда напряжение батареи меньше, чем необходимо. Поэтому в схему добавлен n-p-n транзистор.

Как можно видеть регулируемый стабилитрон регулирует отрицательный потенциал, поэтому в схему добавлен резистор R3, задачей которого является включение транзистора, когда TL431 выключен. Резистор этот на 11k, подобранный методом проб и ошибок. Резистор R4 служит для ограничения тока на светодиоде, его можно вычислить с помощью .

Конечно, можно обойтись и без транзистора, но тогда светодиод будет гаснуть, когда напряжение упадет ниже выставленного уровня — схема ниже. Безусловно, такая схема не будет работать при низких напряжениях из-за отсутствия достаточного напряжения и/или тока для питания светодиода. Данная схема имеет один минус, который заключается в постоянном потреблении тока, в районе 10 мА.

В данном случае индикатор заряда будет гореть постоянно, когда напряжение больше, чем то, которые мы определили с помощью R1 и R2. Резистор R3 служит для ограничения тока на диод.

Пришло время для того, что всем нравится больше всего — математики

Я уже говорил в начале, что напряжение пробоя может изменяться от 2,5В до 36В посредством входа «Ref». И поэтому, давайте попытаемся кое-что подсчитать. Предположим, что индикатор должен загореться при снижении напряжении аккумулятора ниже 12 вольт.

Сопротивление резистора R2 может быть любого номинала. Однако лучше всего использовать круглые числа (для облегчения подсчета), например 1к (1000 Ом), 10к (10 000 Ом).

Резистор R1 рассчитаем по следующей формуле:

R1=R2*(Vo/2,5В — 1)

Предположим, что наш резистор R2 имеет сопротивление 1к (1000 Ом).

Vo — напряжение, при котором должен произойти пробой (в нашем случае 12В).

R1=1000*((12/2,5) — 1)= 1000(4,8 — 1)= 1000*3,8=3,8к (3800 Ом).

Т. е. сопротивление резисторов для 12В выглядят следующим образом:

А здесь небольшой список для ленивых. Для резистора R2=1к, сопротивление R1 составит:

  • 5В – 1к
  • 7,2В – 1,88к
  • 9В – 2,6к
  • 12В – 3,8к
  • 15В — 5к
  • 18В – 6,2к
  • 20В – 7к
  • 24В – 8,6к

Для низкого напряжения, например, 3,6В резистор R2 должен иметь бОльшее сопротивление, например, 10к поскольку ток потребления схемы при этом будет меньше.

Успешный пуск автомобильного двигателя во многом зависит от состояния заряда аккумулятора. Регулярно проверять напряжение на клеммах с помощью мультиметра – неудобно. Гораздо практичнее воспользоваться цифровым или аналоговым индикатором, расположенным рядом с приборной панелью. Простейший индикатор заряда аккумулятора можно сделать своими руками, в котором пять светодиодов помогают отслеживать постепенный разряд либо заряд батареи.

Принципиальная схема

Рассматриваемая принципиальная схема индикатора уровня заряда представляет собой простейшее устройство, отображающее уровень заряда аккумулятора (АКБ) на 12 вольт. Её ключевым элементом является микросхема LM339, в корпусе которой собрано 4 однотипных операционных усилителя (компаратора). Общий вид LM339 и назначение выводов показан на рисунке. Прямые и инверсные входы компараторов подключены через резистивные делители. В качестве нагрузки используются индикаторные светодиоды 5 мм.

Диод VD1 служит защитой микросхемы от случайной смены полярности. Стабилитрон VD2 задаёт опорное напряжение, которое является эталоном для будущих измерений. Резисторы R1-R4 ограничивают ток через светодиоды.

Принцип работы

Работает схема индикатора заряда аккумулятора на светодиодах следующим образом. Застабилизированное с помощью резистора R7 и стабилитрона VD2 напряжение 6,2 вольт поступает на резистивный делитель, собранный из R8-R12. Как видно из схемы между каждой парой этих резисторов формируются опорные напряжения разного уровня, которые поступают на прямые входы компараторов. В свою очередь, инверсные входы объединены между собой и через резисторы R5 и R6 подключены к клеммам аккумуляторной батарее (АКБ).

В процессе заряда (разряда) аккумулятора постепенно изменяется напряжение на инверсных входах, что приводит к поочередному переключению компараторов. Рассмотрим работу операционного усилителя OP1, который отвечает за индикацию максимального уровня заряда АКБ. Зададим условие, если заряженный аккумулятор имеет напряжение 13,5 В, то последний светодиод начинает гореть. Пороговое напряжение на его прямом входе, при котором засветится этот светодиод, рассчитаем по формуле:
U OP1+ = U СТ VD2 – U R8 ,
U СТ VD2 =U R8 + U R9 + U R10 + U R11 + U R12 = I*(R8+R9+R10+R11+R12)
I= U СТ VD2 /(R8+R9+R10+R11+R12) = 6,2/(5100+1000+1000+1000+10000) = 0,34 мА,
U R8 = I*R8=0,34 мА*5,1 кОм=1,7 В
U OP1+ = 6,2-1,7 = 4,5 В

Это означает, что при достижении на инверсном входе потенциала величиной более 4,5 вольт компаратор OP1 переключится и на его выходе появится низкий уровень напряжения, а светодиод засветится. По указанным формулам можно рассчитать потенциал на прямых входах каждого операционного усилителя. Потенциал на инверсных входах находят из равенства: U OP1- = I*R5 = U БАТ – I*R6.

Печатная плата и детали сборки

Печатная плата изготавливается из одностороннего фольгированного текстолита размером 40 на 37 мм, которую можно скачать . Она предназначена для монтажа DIP элементов следующего типа:

  • резисторы МЛТ-0,125 Вт с точностью не менее 5% (ряд Е24)
    R1, R2, R3, R4, R7, R9, R10, R11– 1 кОм,
    R5, R8 – 5,1 кОм,
    R6, R12 – 10 кОм;
  • диод VD1 любой маломощный с обратным напряжением не ниже 30 В, например, 1N4148;
  • стабилитрон VD2 маломощный с напряжением стабилизации 6,2 В. Например, КС162А, BZX55C6V2;
  • светодиоды LED1-LED5 – индикаторные типа

Поделись статьей:

Похожие статьи

Простой самодельный индикатор уровня заряда аккумулятора

При разработке или модернизации различных портативных DIY устройств частенько возникает потребность в отображении актуального текущего уровня заряда аккумулятора или батареек. Первое, что приходит на ум — купить готовый модуль, типа такого. Это самый простой вариант, но он вынуждает идти на компромиссы: его придется ждать неопределенное время и останавливать разработку на этот срок; он может не подойти по размерам; может сильно врать по показаниям, и исправить это никак не получится. Я хочу показать довольно простой способ изготовления такого индикатора из минимального количества широкодоступных деталей.

Прошивка, схема и список деталей

Модуль реализован на простейшем микроконтроллере Attiny13A и 4х индикаторных светодиодах. Схема сильно упрощенная, без какой-либо защиты от помех и неправильной полярности, в моем случае это допустимо, т.к. индикатор устанавливается в маломощное устройство. Если предполагается работа в более жестких условиях, то стоит добавить в цепь питания микроконтроллера диод Шоттки и конденсатор 1-10мкФ, а так же пересчитать в прошивке пороговые значения напряжений с учетом падения напряжения на диоде.
Исходные коды, готовые прошивки и прочие нужные материалы можно найти у меня на гитхабе.
Схема:

Для сборки нам понадобятся:

У тех, кто увлекается DIY и всякими ардуинами, перечисленных выше компонентов скорее всего навалом, так что покупать ничего не придется, разве что Attiny13A.

Возможности

Я поставил цель запилить максимально простой, но в то же время достаточно функциональный индикатор. Для отображения уровня заряда в нем используются 4 светодиода, логика работы проста:
  • Горят 4 светодиода — заряд 100% — 75%, напряжение 4.2В — 3.9В
  • 3 светодиода — 75% — 50%, напряжение 3.9В — 3.7В
  • 2 светодиода — 50% — 25%, напряжение 3.7В — 3.5В
  • 1 светодиод — 25% — 0%, напряжение 3.5В — 3.3В

Первый и последний светодиоды могут мигать, сигнализируя соответственно либо о перезаряде (напряжение > 4.25В), либо слишком низком напряжении (

Настройки и режимы работы

На гитхабе в разделе firmware лежат уже готовые «отполированные» мною бинарники прошивок (файлы all_leds.hex и single_led.hex), они рассчитаны на применение резисторов номиналами 18 кОм и 4.7 кОм в делителе напряжений. Но бывает так, что именно таких резисторов может не оказаться, либо может попасться кривой микроконтроллер (по даташиту у Attiny13A заявлена точность измерений ADC в районе 10%), тогда потребуется самостоятельно модифицировать и пересобрать прошивку для себя, сделать это можно в программе Atmel Studio.
Доступные для изменения настройки в прошивке:

UHI здесь задает порог напряжения, выше которого начинает работать индикация перезаряда, остальные (U100, U75, U50, U25) — пороги для зажигания соответствующих светодиодов. При напряжении ниже U25 срабатывает индикация низкого напряжения. Общая формула для вычисления этих пороговых значений в зависимости от номиналов резисторов и напряжения аккумулятора имеет вид:

Где Ubat — напряжение на входе, R1, R2 — значения сопротивлений резисторов делителя. В случае, если МК подключен через диод Шоттки, в формулу добавляется величина падения на диоде Ud:

Но, как я уже говорил, погрешность АЦП у этого типа МК довольно большая, поэтому занесенные мною в прошивку значения слегка отличаются от теоретических. В идеале можно добиться очень высокой точности, но только методом проб и ошибок на конкретном экземпляре микроконтроллера. Для использования индикатора в качестве простого показомера «заряжено» — «разряжено» подойдут и мои значения.
Помимо пороговых значений изменять можно еще 2 параметра: гистерезис UHYS и режим отображения USE_ALL_LEDS. Первый служит для предотвращения мерцания светодиодов при переходе через пороговые напряжения, чем выше значение — тем меньше вероятность мерцаний. Если никаких неожиданных миганий при работе индикатора вы не наблюдаете — то этот параметр трогать нет необходимости. Второй параметр, USE_ALL_LEDS, задает один из двух способов индикации: в случае наличия строки с этим параметром в индикации будут участвовать все «младшие» светодиоды, если же эту строку закомментировать или вовсе удалить — будет гореть только один светодиод, отвечающий за текущий уровень заряда. Как это выглядит — покажу дальше, а пока предлагаю приступить к сборке модуля.

DIY, DIY, DIY

В случае использования МК в исполнении DIP-8 удобнее всего собирать модуль навесным монтажом. В моем случае МК в SOIC-8, поэтому я буду делать плату буквально на коленке и покажу небольшой лайфхак, как можно легко от руки разводить платы для SMD. Первое, что нам для этого нужно — кусок текстолита, размером примерно 20×10мм:

Его даже не обязательно покупать, можно вырезать из ненужной платы какого-либо устройства, покрытые медью площадки такого маленького размера встречаются довольно часто. Далее шкурим и обезжириваем поверхность, затем примеряем наш МК:

Придерживая пинцетом, с помощью тонкого перманентного маркера наносим на будущую плату риски между контактами контроллера:

Так легко и просто мы получаем практически идеальное посадочное место под пайку, и так можно «обрисовать» практически любой SMD компонент:

Далее просто от руки дорисовываем места под резисторы делителя и выводы на светодиоды:

Осталось протравить нарисованную плату, сделать это легко и просто с помощью валяющихся у каждого дома ингредиентов, записываем рецепт:
  • Пол рюмки перекиси водорода из аптечки
  • Кидаем в нее половину чайной ложки поваренной соли
  • Добавляем чайную ложку лимонной кислоты
  • Перемешиваем до полного растворения компонентов, если плохо растворяется — смесь можно подогреть

Кидаем плату в раствор:

О начавшемся процессе травления возвещают появившиеся на поверхности меди пузырьки. Пока плата травится, я распечатал на принтере будущий корпус для индикатора:

Спустя 15-20 минут плата полностью протравилась, а раствор стал бирюзовым:

Вытаскиваем плату, смываем маркер, проверяем дорожки:

Все протравилось идеально, можно паять компоненты, которых не так много: всего 1 МК и 2 резистора. Паять удобнее всего пастой, фен в нашем случае не нужен, можно обойтись обычным паяльником с тонким жалом:

Плата готова, теперь нам нужно подготовить светодиоды. Я использовал обычные дешевые 3мм светодиоды: красный, оранжевый, зеленый и белый. Для удобства пайки я распечатал второй корпус и сделал из него подставку:

Минусовые выводы светодиодов подрезаны и запаяны вместе, к плюсовым паяем ограничительные резисторы:

Я использовал по 220 Ом, но при использовании одинаковых резисторов для всех светодиодов у них будет сильно отличаться яркость. В моем случае это не критично, но для большей красоты следует подбирать резисторы индивидуально.
Далее берем нашу плату, размещаем между выводами светодиодов и паяем минусовой контакт диодов к нижней дорожке земли на плате:

Свободные концы резисторов паяем к соответствующим пятакам платы:

Последний штрих — паяем провода питания. Я забыл развести пятаки для удобства, поэтому пришлось паять так:

Вид с обратной стороны:

Модуль готов, теперь в него необходимо «вдохнуть жизнь» прошивкой.

Заливаем прошивку

Для заливки прошивок в контроллеры я приспособил Arduino Nano. Прямо в Arduino Studio есть специальный скетч, который заливается в Nano и превращает его в AVRISP программатор:

В коде скетча перед заливкой в Arduino необходимо предварительно раскомментировать строку #define USE_OLD_STYLE_WIRING:

В результате мы получаем удобный ISP программатор, который можно использовать с avrdude. Подключаем ардуину к микроконтроллеру в соответствии со схемой:

SOIC клипса в таких делах очень сильно выручает, но при ее отсутствии можно подпаяться напрямую к контроллеру. Конденсатор между RESET и GND можно не использовать, все должно работать и без него.
После подключения и проверки всех проводов пытаемся запустить прошивку командой, подставив нужное название файла:
avrdude -p t13 -c avrisp -b 19200 -u -Uflash:w:название_файла_прошивки.hex:a -Ulfuse:w:0x65:m -Uhfuse:w:0xFD:m

В случае успеха на экране будет что-то типа такого:

Если ошибка — то проверяем в первую очередь провода и правильность установки софта/драйверов, правильность выбора COM-порта. По опыту скажу, что сломать Attiny при прошивке очень сложно, они практически не убиваемые. Ни внезапно отвалившаяся в процессе прошивки клипса, ни баги с софтом на компе ему не страшны. Единственное, чем можно запороть этот МК — это неправильными фьюзами.

Проверяем работоспособность

После удачной прошивки модуль должен сразу заработать, потому что на него подается питание через программатор. Для большей уверенности необходимо подключить его к регулируемому источнику питания и прогнать диапазон 3В — 5В и проверить, что все светодиоды и режимы индикации работают. За неимением ЛБП выйти из положения можно с помощью наборов различных элементов питания: при работе от одной CR2032 модуль должен мигать красным светодиодом, сигнализируя о слишком низком напряжении; при питании от 3xAA или 2xCR2032 должен напротив мигать белый светодиод, обозначая превышение допустимого для Li-ion напряжения. Если при проверке на ЛБП выясняются расхождения с заявленными пороговыми напряжениями и индикацией, то для повышения точности можно методом проб и ошибок найти более точные значения UHI, U100, U…

Примеры работы в гифках

Изменение напряжения от 4.2В до 3.3В и обратно:

Индикация превышения допустимого напряжения:

Те же примеры с удаленной из прошивки строкой USE_ALL_LEDS:


Индикация низкого напряжения:

Продолжаем DIY

Модуль прошит, проверен и отлажен, теперь осталось разместить его в напечатанном ранее корпусе. Вставляем плату:


Для надежности внутренности я залил эпоксидной смолой:

Как оказалось, сделал я это зря) Эпоксидка при застывании расширилась и немного повела корпус, для целей фиксации все же лучше использовать герметик или термоклей.
Переднюю часть для красоты шкурим и тем самым матируем:

Итоговый вид:


Разница в яркости немного портит впечатление, но при желании это можно легко решить.

Выводы

По функциональности самодельный модуль ни в чем не уступает покупным, и при этом имеет кучу преимуществ:
  • В нем легко добиться высокой точности с помощью подгона параметров
  • Легко адаптировать под любой дизайн и встроить куда угодно
  • Его можно собрать на коленке из имеющихся элементов
  • При необходимости можно модифицировать его на работу с 2S и выше, либо вообще на другие элементы питания

Единственный недостаток — сделать его все же несколько сложнее, чем просто заказать и ждать) Цепь индикатора уровня напряжения

— Envirementalb.com

В этом проекте мы покажем вам, как спроектировать простую цепь индикатора уровня напряжения батареи , используя очень простые доступные компоненты.

Батарея Индикатор уровня напряжения показывает состояние тока батареи просто последовательным свечением светодиодов (красный, желтый, зеленый). Светодиоды Res показывают 2 вольта, 2-й красный светодиод указывает на то, что ток теперь составляет 4 вольта, желтый светодиод указывает на то, что сила тока теперь составляет 7 вольт, а зеленый светодиод указывает на то, что ток в батарее теперь составляет 12 вольт.В этой схеме у нас есть резисторы 1 кОм для управления током в светодиодах. Вы можете использовать резистор 560 Ом с последними двумя светодиодами, потому что последние два светодиода находятся на верхнем уровне всех светодиодов, поэтому вы можете использовать меньше резистора. Этот проект объясняет вам, как разработать индикатор уровня заряда батареи с небольшим количеством компонентов. Вы можете использовать эту схему для проверки автомобильного аккумулятора или инвертора. Эта схема помогает продлить срок службы батареи.

Контур 2 с регулируемым измерением напряжения

, вы можете легко изменить эту схему, увеличивая и уменьшая количество светодиодов и резисторов.Если вы хотите изменить эту схему как регулируемую, используйте с ней переменную, как показано на схеме.

В этой схеме я использовал только потенциометр 5 кОм для регулировки измерения вольт. Таким образом, эта схема стала более гибкой, теперь вы можете измерять даже до 40 вольт.

Принцип цепи индикатора уровня напряжения аккумулятора

Схема индикатора уровня тока работает как с помощью светодиода, так и с помощью светодиодов. Резисторы управляют током последовательно с помощью светодиодов. По мере прохождения тока через 1-й светодиод, значение тока замедляется, и таким образом 2-й светодиод светится больше вольт по сравнению с 1-м светодиодом, и, таким образом, 3-й светодиод требует больше вольт для свечения по сравнению с 2-й светодиод.Таким образом, для свечения следующего светодиода требовалось больше вольт по сравнению с предыдущим. мы используем резисторы 1 кОм только для защиты светодиодов, потому что светодиоды могут выдерживать напряжение от 1,5 до 3 В.

Как создать индикатор уровня напряжения с стабилитроном

В этой схеме мы покажем вам, как построить индикатор уровня напряжения на стабилитронах. В этом проекте мы использовали 4 стабилитрона разной мощности, чтобы сделать идеальный индикатор уровня напряжения.

Нормальный диод действует как короткое замыкание в состоянии прямого смещения, в то время как в состоянии обратного смещения он действует как разомкнутая цепь.Стабилитрон выходит из строя при достижении определенного уровня напряжения. Напряжение, которое проходит через стабилитрон, называется напряжением пробоя стабилитрона. Если напряжение пробоя стабилитрона составляет 5,1 В, то после подачи на него 5,1 В или выше он будет пересекать напряжения, питающие нагрузку. В этой схеме используются стабилитроны следующих типов:

  1. 1N4728: 3,3 В
  2. 1N4734: 5,6 В
  3. 1N4739: 9,1 В
  4. 1N4742: 12 В

Согласно стабилитрону 1-й светодиод загорится 3.3v 2-й светодиод будет светиться на 5,6v 3-й светодиод будет гореть на 9,1v, а последний светодиод будет светиться на 12,1 вольт. Таким образом, вы можете увеличить количество стабилитронов и светодиодов, чтобы сделать его более подходящим.

Конечная цепь индикатора уровня тока

Стабилитроны

с пробивными мощностями
S.R Стабилин нет Напряжения
1 1N4728 3.3в
2 1N4729 3,6 В
3 1N4730 3,9 В
4 1N4731 4,3 В
5 1N4732 4,7 В
6 1N4734 5.6в
7 1N4735 6,2 В
8 1N4736 6,8 В
9 1N4737 7,5 В
10 1N4738 8,2 В
11 1N4739 9.1в
12 1N4740 10 В
13 1N4741 11v
14 1N4742 12 В
15 1N4743 13v
16 1N4746 18v

Это разные стабилитроны, которые вы можете использовать по своему усмотрению.Все они имеют разное напряжение пробоя, поэтому они могут устанавливать разное напряжение для цепи индикатора уровня напряжения.

Пожалуйста, прокомментируйте любой вопрос и обратную связь

Большое спасибо

Светодиодный индикатор постоянного напряжения

— ElectroSchematics.com

Эта светодиодная схема индикатора постоянного напряжения представляет собой вольтметр, а не просто тестер батареи. Таким образом, он может измерять напряжение до 3 В.
В нем используются известные операционные усилители LM741, применяемые в качестве компараторов, управляющих светодиодными индикаторами.Пороги напряжения 3, 6, 9 и 12 В. Выше каждого инкрементного порога включается дополнительный светодиод.

Схема цепи индикатора напряжения постоянного тока

Vcc = 18 В

Многие индикаторы напряжения полагаются на напряжение источника измерения для получения питания, но в этом случае индикатора напряжения, использующего LM741, 3 В просто слишком мало для удовлетворительной работы — 741 не предназначен для приложений с низким напряжением. Vcc выше, чем мы обычно видим, потому что необходим достаточный запас для смещения шунтирующего стабилитрона D6.Vcc можно было бы уменьшить до 9 В путем деления всех пороговых опорных напряжений на коэффициент 2, но это помешало бы использовать LM741, потому что его входной синфазный диапазон указан не ниже 3 В от отрицательной шины — он определенно не будет работать при 1,5 В.

Для продления срока службы батареи используется кнопочный переключатель «Нажмите для тестирования». Другой способ сделать это — использовать ± 9 В, а затем при желании он мог бы определять напряжения до нуля вольт. Однако для этого потребуется такое же количество батарей и усложнение кнопочного переключателя.

Не построено и не тестировалось

Обычно то, что я предлагаю, было построено и протестировано, а это — нет. Я создавал подобные вещи раньше и использовал LM741, а также двойную версию (LM1458), поэтому у меня есть высокая степень уверенности, что все будет работать так, как ожидалось. Однако Мерфи всегда где-то прячется, просто ожидая такой возможности. Разработчик проекта будет иметь опыт устранения неполадок в случае, если он не работает должным образом.

Защита входного напряжения

Не рекомендуется направлять входы операционного усилителя во внешний мир, где они могут быть подвержены электростатическому разряду.R1 и D5 обеспечивают необходимую защиту.

D7 защищает от случайного обратного подключения аккумулятора.

Входное сопротивление

Поскольку этот индикатор постоянного напряжения со схемой светодиодов не получает питание от источника измерения, входной импеданс очень высок. Входное сопротивление составляет 1 МОм (высокое, но не бесконечное). Параллельно с этим идет входной ток смещения операционного усилителя, который составляет примерно 4 * 80 нА или 320 нА. Из-за высокого импеданса можно включить все светодиоды, просто прикоснувшись к входу пальцем.Если входной шум является проблемой, вам может помочь конденсатор емкостью 0,1 мкФ на D5.

Яркость светодиода

Яркость светодиода

можно изменять, просто регулируя балластный резистор серии 3,3 кОм. Большинство светодиодов задают максимальный ток 20 или 30 мА, но эффективные зеленые и белые версии при таком токе загораются, поэтому им требуются балластные резисторы более высокого номинала.

Ссылка на исходный файл или исходный файл

Это можно читать и / или редактировать с помощью программного обеспечения RFFlow — отличного, удобного и недорогого программного обеспечения для построения блок-схем и чертежей: www.rff.com Пробную версию можно скачать.

Глоссарий недокументированных слов (для наших друзей по ESL)

Мерфи — ссылка на закон Мерфи (все, что может пойти не так, пойдет не так — Эдсел Мерфи)
http://www.frontiernet.net/~wmooney1/Fixed_files/murphy.pdf

Электротехника — 3-х светодиодный индикатор напряжения (рассказ изобретателя)

Цели и задачи

Мотивация. Показав, как можно изобрести схему с 1 транзистором, теперь я продемонстрирую, как можно изобрести еще одну более сложную схему с 2 транзисторами.Как и раньше, целей у меня две — специфическая (та самая 2-транзисторная схема) и общая (технология изобретения). Рассказом моего изобретателя я просто хочу побудить новичков в схемах проявить творческий подход, показывая им еще один возможный путь к изобретению.

Справочная информация. Моя история основана на трех концептуальных схемах:

  • делитель напряжения , действующий как источник опорного напряжения

  • BJT действует как компаратор и переключатель

  • Светодиод действует как стабилизатор напряжения и диодный переключатель ( ток рулевого управления )

Они известны отдельно… но то, как они здесь сочетаются, дает изобретательское решение.

История. Эта идея пришла ко мне в начале 80-х, когда я был не только увлеченным электроникой, но и фотографом-любителем. Я хотел сделать для своего нового фотоаппарата фотовспышку со светодиодной индикацией.

В этой схеме я преобразовал свет в напряжение с помощью схемы операционного усилителя. Затем я запоминаю импульс напряжения с помощью чего-то вроде схемы выборки и хранения . Наконец, я указал напряжение двумя светодиодами, подключенными к цепи отрицательной обратной связи, чтобы показать, когда свет (напряжение) был выше или ниже желаемого уровня.Но я хотел иметь третий (средний) светодиод, который загорался бы при желании уровня. Таким образом, светодиодный свет будет плавно затухать, и будет получен аналоговый индикатор.

Проблема заключалась в том, как заставить погаснуть средний диод, когда начал светиться один из двух конечных диодов. В других подобных схемах для этого использовался дополнительный транзистор … но мне он не понравился.

И тут я случайно увидел в книжке эту хитрость, заключающуюся в параллельном соединении двух светодиодов с разными пороговыми напряжениями… и сразу применил его в своей схеме. Мне это показалось очень интересным; Я отказался от фотографии и начал экспериментировать с различными схемами светодиодных индикаторов напряжения. Наконец, я получил два патента …

Презентация. Ниже я воспроизвел шаг за шагом пройденный мною путь в форме воображаемого изобретательского сценария . Это хороший пример того, как мыслит изобретатель, изобретая.

Я проиллюстрировал каждый шаг концептуальной принципиальной схемой, на которой визуализируются невидимые электрические величины.Напряжения представлены вертикальными сегментами ( столбиков напряжения ) с пропорциональной высотой красного цвета. Они геометрически суммируются (вычитаются) по КВЛ. Это ясно показывает взаимосвязь между напряжениями. Набор полосок напряжения на принципиальной схеме можно рассматривать как снимок сброса напряжения. Для целей этого качественного представления числовые значения не приводятся, потому что они здесь не имеют значения.

Токовые пути показаны замкнутыми линиями ( токовых петель ) зеленого цвета, которые начинаются от положительной клеммы источника питания и заканчиваются на ее отрицательной клемме.Текущую величину можно показать по толщине линии, но здесь для простоты этот метод не используется.

На последнем шаге 7 я нарисовал принципиальную схему в ее обычной компактной форме — без полосок напряжения, без токовых петель, без цветов, без необычно расположенных элементов … Итак, у вас есть выбор — если вам не нравится шаг — Пошаговое изобретение и визуализация, вы можете сразу перейти к рис. 7.

«Изобретая» схему

1. Получение порогового напряжения VTR. Чтобы сделать схему порогового напряжения, для начала нам нужно установить пороговое (опорное) напряжение. Самый простой способ получить его — использовать вездесущий делитель напряжения . Сначала выберем VREF = VCC / 2 (или ноль, в случае двойного источника питания). Это означает соединение двух одинаковых резисторов R1 = R2 последовательно — рис. 1. Падения напряжения на них также равны — VR1 = VR2, и мы берем меньшее заземленное напряжение в точке A.

Рис. 1. «Выдача» опорного напряжения с помощью делителя напряжения R1-R2 и входного напряжения VIN с помощью потенциометра P.

Аналогичным образом — потенциометром P мы можем эмулировать предыдущий этап, производящий входное напряжение VIN (преобразователь света в напряжение из моей истории выше). Обратите внимание, что потенциометр и источник питания не относятся к изобретенной схеме, выделенной желтым контуром.

2. Вставляем первый (средний) диод. Теперь нам нужно поставить первый (средний) светодиод D1. Вставим его между двумя резисторами — рис. 2, чтобы «поднять» его падение напряжения VD1 на пороговое напряжение VIN / 2.Подбирая сумму их сопротивлений, выставляем нужный ток через D1.

Рис. 2. Включая первый (средний) светодиод D1.

Теперь у нас есть два немного разных опорных напряжения — ниже D1 (точка B) и выше D1 (точка A).

3. Построение верхнего компаратора. Теперь нам нужно сравнить входное напряжение с опорными напряжениями и подключить соответствующий конечный светодиод в зависимости от разницы. Оба могут быть реализованы с помощью биполярного переходного транзистора .

Начнем с верхнего компаратора. Мы можем сделать это с помощью NPN-транзистора (T1), подключив его эмиттер к нижнему опорному напряжению (точка B), а его базу к входному напряжению (через резистор RB) — рис. 3. Но он должен переключить светодиод D3; так что давайте вставим D3 в эмиттер. Его прямое напряжение и напряжение VBE база-эмиттер T1 будут добавлены к более низкому опорному напряжению VR2, таким образом, образуя высокое пороговое напряжение.

Рис. 3. Сборка верхнего компаратора

Когда входное напряжение превышает верхний порог, T1 начинает проводить, а D3 начинает светиться.Но D1 должен начать гаснуть. Как мы делаем это?

Тут нам помогает случай — оказывается, D1 гаснет сам по себе. Но почему?

D1 — зеленый светодиод с прямым напряжением VD1 = 2,5 В, а D3 — красный светодиод с прямым напряжением VD3 = 1,8 В. Они соединены параллельно; таким образом, ток отклоняется (направляется) от D1 к D3 … и они переходят в затухание.

Итак, наш шанс заключался в том, что мы случайно подключили светодиод с более низким прямым напряжением (красный) параллельно светодиоду с более высоким напряжением (зеленый).Если бы мы поступили наоборот, уловка не сработала бы …

4. Построение нижнего компаратора. Теперь мы должны использовать PNP-транзистор (T2), подключив его эмиттер к более высокому опорному напряжению (точка A), а его базу — к входному напряжению — Рис. 4. Он должен переключить светодиод D2; поэтому вставляем D2 в эмиттер. Его прямое напряжение и напряжение база-эмиттер T2 VBE будут вычтены из более высокого опорного напряжения (Vcc — VR1), образуя таким образом низкое пороговое напряжение.

Рис.4. Построение нижнего компаратора.

Теперь, когда входное напряжение падает ниже нижнего порога, T2 начинает подключать D2 параллельно D1. Ток направляется от D1 к D2, и светодиоды гаснут.

5. Объединение двух компараторов. Теперь осталось только объединить два компаратора в один оконный компаратор — рис. 5.

Рис. 5. Объединение двух компараторов в один.

6. Упрощение схемы. Но нам не нравятся эти кросс-соединения.Что произойдет, если мы присоединимся к ним, чтобы сделать схему более аккуратной? Попробуем — Рис. 6.

Рис. 6. Схему можно упростить, объединив эмиттеры.

В результате получилась действительно более красивая трасса. Остается только работать 🙂 И действительно работает … а то и лучше! Посмотрим почему.

В дополнение к предыдущей версии, теперь, когда транзистор T1 / T2 подключает конечный светодиод D3 / D2 параллельно со средним светодиодом D1, он шунтирует другой конечный светодиод D2 / D3 и надежно выключает его.

7. Обычно нарисованная схема. Наконец, снимем все эти наглядные пособия и нарисуем схему обычным способом — рис. 7.

Рис. 7. Схема изображена без визуализации электрических величин (версия с двойным питанием).

Как он аккуратный … маленький, красивый и симметричный!

Недвижимость

Посмотрите на центральную часть схемы, включая два транзистора T1, T2 и три светодиода D1-D3. Это строение имеет уникальные свойства:

Постоянное напряжение. Независимо от того, в каком состоянии он находится (включен D1, D2 или D3 … или промежуточное состояние), падение напряжения на нем (между точками A и B) немного изменяется. Вся конструкция ведет себя как один диод (светодиод).

Постоянный ток. Также, независимо от состояния, весь ток через эту структуру немного изменяется. Он только переключается между диодами (как говорится, между светодиодами «рулит»). Это явление известно как , текущее рулевое управление и обычно связано с дифференциальной парой (длиннохвостой).

Мобильность. Образно говоря, эта структура «растягивается» через два резистора (подтягивающий R1 и подтягивающий R2) между шинами питания. Если мы изменим их сопротивления одновременно и в противоположных направлениях, мы можем «переместить» этот «диод» вверх к V + и вниз к земле или V-, не изменяя напряжение на нем (VA — VB) и ток через него.

Мостовая схема. Если индикатор напряжения управляется потенциометром (как здесь), вся цепь (включая потенциометр) может рассматриваться как мост Уитстона с нулевым индикатором.Он состоит из двух половинных сопротивлений потенциометра и резисторов R1 и R2. Центральная часть служит индикатором нулевого напряжения .

Улучшения

Версия с двойным питанием. Кроме того, мы можем нарисовать его версию с двойным питанием — рис. 7 выше.

Заземленная версия. Если это индикатор нулевого напряжения , мы можем заземлить точку общего эмиттера (показана светло-серым цветом на рис. 7). Таким образом, напряжения на эмиттере будут надежно зафиксированы.

Прямое управление. Схему можно еще упростить, убрав РБ (когда эмиттеры не заземлены). Это сделает его еще более чувствительным. Нет опасности повреждения транзисторов, потому что резисторы R1 и R2 ограничивают базовые токи. Только входное сопротивление цепи будет ниже.

Идентичные светодиоды. Схема может быть реализована одинаковыми светодиодами (с одинаковыми VF). В этом случае мы можем увеличить прямое напряжение D1, вставив последовательно обычный Si-диод.

Узкая мертвая зона. Ширина «мертвой зоны» 2ВБЕ. Его можно сузить, применив напряжение смещения, как предлагает @TonyStewart в своем привлекательном моделировании FS:

Рис. 8. Светодиодный индикатор — моделирование (автор @TonyStewart)

Напряжение смещения создается на диодах, включенных параллельно переходам база-эмиттер. Это хорошо известный метод смещения, широко используемый в выходных каскадах усилителей мощности.

Широкая мертвая зона. И наоборот, мы можем расширить «мертвую зону» (при необходимости), вставив диоды последовательно в переходы база-эмиттер.

опубликовано 10 месяцев назад

9мес. Назад

Операционный усилитель

— Цепь индикатора батареи

Я предлагаю вам следующее, что, я думаю, может оказаться полезным, если вы хотите узнать, как работают делители напряжения и компараторы, вместо того, чтобы углубляться в микроконтроллеры.Все резисторы делителя напряжения должны иметь точность 1% или выше, а показанные потенциометры являются минимальными значениями верхнего предела диапазона (вы можете использовать триммеры 250k \ $ \ Omega \ $ или 500k \ $ \ Omega \ $ для всех из них, но максимально приближенное к этим значениям упростит настройку.

Триммеры дешевы и необходимы для достижения адекватной точности с помощью этого метода. Подстроечный резистор опорного напряжения настраивается на месте с помощью вольтметра, чтобы обеспечить точное значение 2 В. Использование 2 В в качестве эталона, а не чего-то близкого к 5 В, означает, что входное напряжение 29 В требуется для перенапряжения входов компаратора 5 В через делители напряжения, и автомобильный TVS-диод должен предотвратить это.

Когда вы получите резисторы 1% для 4 делителей напряжения, вам придется измерить их фактические значения и отрегулировать подстроечный резистор для каждого делителя в соответствии с инструкциями на схеме, чтобы резистор на стороне высокого напряжения + подстроечный резистор имели правильное соотношение с резистор со стороны низкого напряжения.

Ваш бюджет будет примерно следующим из более уважаемых источников быстрой доставки в Северной Америке (обязательно сделайте покупки по гораздо более низким ценам, см. Схемы для названий / значений компонентов):

резисторы 8-1% — 20c каждый

MCP6544 четырехъядерный компаратор 5 В — 2

долларов

7805 капля на замену — 2 доллара — это дешевый импульсный регулятор .Если вы используете реальный 7805, используйте радиатор, рассчитанный на 20 мА при входном напряжении 24 В

5-миллиметровый светодиод с общим анодом rgb (2v, 3.2v, 3.2v) — 2 $

5-миллиметровый мигающий красный светодиод — $ 0,50

MOSFET для затворов

bs107p 5v — $ 1

Несколько резисторов 5 или 10% для светодиодов — 1

$

Несколько конденсаторов большой емкости на 30 В и выше — 1

долларов США.

А TVS-диод — 0,86 $

Предохранитель

А и кнопка — 1 доллар — Используйте предохранитель на 50 мА, потому что он самый маленький, который я мог найти в формате el cheapo.

4 одноразовых триммера по 250 тыс. \ $ \ Omega \ $ — 4

$

Это примерно то, что вы заплатите, покупая единичные единицы у надежного поставщика. Если вы хотите заниматься электроникой для хобби, вы можете купить комплекты резисторов / конденсаторов / индукторов большого объема и купить некоторые вещи (например, несколько пакетов триммеров el-cheapo) у менее уважаемого поставщика (без прямых ссылок на таблицы и т. Д.) . Только компаратор и 1% резисторы являются деталями с высокими техническими характеристиками. Вы также можете построить точные делители напряжения из сумм фактических измеренных значений 5% резисторов, но использование 1% резисторов и подстроечных резисторов позволит вам использовать очень простую схему схемы.При коммутационном стабилизаторе с КПД> 75% эта конструкция должна потреблять около 0,13 Вт.

Вам понадобятся вольтметр и измеритель сопротивления, и вам нужно будет точно настроить делители напряжения.

Эталонный делитель пропускает примерно 5 В / 5M \ $ \ Omega \ $ = 1uA, а другие делители пропускают примерно 11.6V / 5M \ $ \ Omega \ $ = 2.32uA, что более чем достаточно для питания входных токов pA компараторы, и достаточно низкие, чтобы пренебречь токами светодиодов.

Светодиодные резисторы рассчитаны на ток 6 мА на каждом светодиоде, что, если непрерывно на 4-контактном светодиоде RGB эквивалентно ~ 18 мА, примерно столько, сколько вы хотели бы работать непрерывно (уменьшите до 5 мА, если вы замените кнопку и бегать постоянно.

Вместо того, чтобы использовать оконные компараторы, этот измеритель батареи использует отдельный красный мигающий светодиод, чтобы показать <20%, и подает питание R, затем R + G, затем R + G + B по мере повышения напряжения, давая фактические выходные цвета красного, желтый, белый для заряда 20-50%, 50-90%,> 90%. Это позволяет использовать дешевый (иш) чрезвычайно простой в использовании четырехканальный компаратор с сквозным отверстием 10 мА типа «rail-to-rail» с двухтактным ТТЛ. Условия поиска в кавычках являются ключевыми для простой в использовании части.

Отказ от ответственности, я не инженер, но это то, что вы должны уметь макетировать и полностью понимать, как это работает.Делители напряжения, как следует из их названия, разделяют напряжения в пропорциях, пропорциональных сопротивлению резисторов, из которых они сделаны, а компараторы выполняют сравнение напряжений, выдавая 5 В (истина), если напряжение на клемме + выше. чем на клемме -, в противном случае — 0 В. COMPRF и COMPR проверяют ниже и выше нижнего порога напряжения, COMPG проверяют выше среднего порога напряжения, а COMPB проверяют выше самого высокого порога напряжения. Все, что вам нужно от регулятора 5 В, — это очень стабильный выход 5 В с приличной эффективностью, поэтому эталонное напряжение 2 В останется неизменным в используемом вами диапазоне выходного тока 20 мА.

Вы можете добавить несколько логических вентилей cmos на 5 В между компараторами и МОП-транзисторами, чтобы получить оконные компараторы и более конкретную цветовую схему, такую ​​как красный / оранжевый / желтый / зеленый / синий или что-то в этом роде. Использование МОП-транзисторов вместо транзисторов позволяет обойти некоторые вычисления резисторов и не должно быть проблемой, поскольку вы переключаете крошечные токи и не очень часто.

Вам придется делать покупки самостоятельно, но это все, что вам нужно знать для создания этого проекта. Если вы хотите, я могу добавить математику для выбора резисторов делителя напряжения и подстроечных резисторов, чтобы гарантировать правильное определение напряжения.

смоделировать эту схему — Схема создана с помощью CircuitLab

Схема индикатора уровня напряжения

с использованием микросхемы LM339

Индикатор уровня напряжения — это схема, которая может использоваться для индикации диапазона входного напряжения. Обычно схема состоит из последовательности пороговых точек с соответствующей последовательностью светодиодов, которые загораются, когда входное напряжение достигает значения, равного или превышающего каждое пороговое значение.

Например, опорными точками цепи уровня напряжения являются 3 В, 6 В, 9 В, 12 В, а соответствующие светодиоды — LED1, LED2, LED3, LED4 соответственно.Если мы подадим входное напряжение 8 В, тогда светодиоды 1 и 2 загорятся, а светодиоды 3 и 4 останутся выключенными. Поскольку входное значение выше контрольной точки 3 В и 6 В, но ниже 9 В и 12 В.

В приведенной здесь схеме индикатора уровня напряжения используется схема компаратора для сравнения входных значений, чтобы проверить, находится ли входное значение выше или ниже эталонного значения.

Компаратор — это устройство, которое сравнивает два входа и выдает выходной сигнал, который указывает, какой вход больше.

Два входа компаратора — это инвертирующий (-) и неинвертирующий (+) вход. Выход компаратора будет в высоком состоянии или положительном насыщении, когда входное напряжение на неинвертирующем выводе больше, чем напряжение на инвертирующем выводе. И выход переключается в низкое состояние или отрицательное насыщение, когда входное напряжение на инвертирующем выводе больше, чем на неинвертирующем выводе. Он просто проверяет напряжение между двумя входами и выдает на выходе высокий или низкий уровень, независимо от величины разницы между ними.

Например, если входное напряжение в неинвертирующем (+) = 6В, входное напряжение в инвертирующем (-) = 5,8В. Затем выход становится высоким, поскольку напряжение на неинвертирующем выводе имеет большее значение. Если мы обменяем вышеуказанные значения напряжения между двумя входами, то инвертирующий терминал будет иметь большее значение, а затем выход переключится в состояние НИЗКОГО.

Lm339 Компаратор IC

Основным компонентом этой схемы индикатора уровня напряжения является микросхема LM339, которая представляет собой микросхему четырехканального компаратора с 4 компараторами.Таким образом, мы можем использовать до 4 эталонных значений для сравнения; чтобы проверить, находится ли входное напряжение выше или ниже 4 контрольных точек.

Lm339 Схема выводов

Компаратор Штифт Функция
Компаратор 1 4 — Инвертирующий вход 1
5 + неинвертирующий вход 1
2 Выход 1
Компаратор 2 6 — Инвертирующий вход 2
7 + неинвертирующий вход 2
1 Выход 2
Компаратор 3 8 — Инвертирующий вход 3
9 + неинвертирующий вход 3
14 Выход 3
Компаратор 4 10 — Инвертирующий вход 4
11 + неинвертирующий вход 4
13 Выход 4

Работа контура

Здесь эталонные напряжения получены с помощью схемы делителя напряжения из равных резисторов (1 кОм).Делитель напряжения подключен к источнику питания, и каждая точка подключена к неинвертирующему выводу компараторов. В схеме у нас четыре резистора 1кОм, напряжение на каждом резисторе будет равно Vcc / 4. Если напряжение на всем резисторе составляет 12 В, тогда напряжение на каждом резисторе составляет 12/4 = 3 В. Следовательно, напряжение на резисторах R1, R2, R3, R4 относительно GND будет напряжением на инвертирующем выводе компараторов 1, 2, 3, 4, то есть 3 В, 6 В, 9 В, 12 В соответственно.

Вход обычно подключается к инвертирующей клемме четырех компараторов. Если входной сигнал имеет значение выше каждой контрольной точки, тогда выход соответствующего компаратора действует как приемник, и загорается светодиод.

Здесь мы подключили опорные значения к неинвертирующей клемме компаратора, а входной сигнал — к инвертирующей клемме. Чтобы переключить выход в низкое состояние и действовать как сток, когда напряжение на инвертирующем входе выше, чем на неинвертирующем входе.

Почему не предусмотрено получение высокого состояния на выходе, когда входное напряжение больше опорного значения? Поскольку выход LM399 IC имеет выход с открытым коллектором, следовательно, он не является источником нагрузки, он может действовать только как приемник. Выход обеспечивает только путь к заземляющему контакту, но не к источнику напряжения. Следовательно, мы должны подключать нагрузку через плюсовую клемму источника питания и выходной контакт компаратора, а не между выходом и GND. Итак, здесь в схеме анод светодиодов подключен к Vcc, а катод — к выходу.

В этой схеме мы можем измерить входное напряжение от 0 до 12 В. Поскольку эталонные значения получаются как 3V, 6V, 9V, 12V путем деления на Vcc / 4, Vcc / 2, 3Vcc / 4, Vcc соответственно; Vcc в цепи составляет 12 В, а разница между каждой точкой составляет Vcc / 4.

Масштабируя входное или опорное напряжение, можно использовать одну и ту же схему для проверки широкого диапазона уровней напряжения.

Если входное напряжение имеет меньший диапазон, вы можете отрегулировать уровни опорного напряжения, добавив последовательное сопротивление с резисторами от R1 до R4.Напряжение на всех резисторах R1 — R4 будет VT = Vcc — VR5; Напряжение на резисторах = напряжение питания — падение напряжения на R5. Затем напряжение на делителе напряжения делится на четыре реперных точки VT / 4.

Для измерения более высоких напряжений используйте на входе делитель напряжения, чтобы получить входное напряжение с определенным соотношением.

Тогда напряжение на RB — это масштабированное значение входного напряжения, подаваемое на компаратор в соответствии с входным напряжением.

ВРБ = В (РБ / РА + РБ) | V — напряжение входного сигнала

Например, если входное напряжение находится в диапазоне от 0 до 60 В, тогда вы можете получить шкалу от 0 до 12 В, используя делитель напряжения с резисторами, RA = 12 кОм, RB = 3 кОм,

Тогда VRB = 60 (3000/15000) = 12 В

Таким образом, используя делитель напряжения для диапазона напряжений от 0 до 60 В, входные сигналы компараторов напряжения 3 В, 6 В, 9 В, 12 В генерируются для входных напряжений 15 В, 30 В, 45 В, 60 В соответственно.

Необходимые компоненты

Микросхема — Lm339

Резисторы

R1, R2, R3, R4, R6, R7, R8, R9 — 1 кОм

R5 -10 кОм

светодиод

D1, D2, D3, D4 — 5 мм

Цепь индикатора низкого напряжения батареи

|

Цепь индикатора низкого напряжения батареи

по

Дон Нельсон, N0YE (ex-N0UGY)

Ко мне пришел знакомый радиолюбитель и попросил простую схему для контроля напряжения батареи и включения индикатора, когда напряжение батареи падает ниже установленного уровня.Таким образом, задача заключалась в создании чего-то простого, но эффективного для индикации того, было ли напряжение батареи выше порогового значения или нет.

В данном решении используются пять пассивных компонентов и никаких дополнительных источников питания. Четыре компонента находятся в виде перемычки, а пятый компонент — светодиод через мост в качестве детектора. Мостовая схема проиллюстрирована ниже. Каждая половина моста имеет один резистор и один стабилитрон. Резистор обеспечивает ток смещения стабилитрона.Один стабилитрон подключен к земле и обеспечивает опорное напряжение над землей. Другой стабилитрон подключен к стороне высокого напряжения батареи, обеспечивая опорный сигнал ниже стороны высокого напряжения батареи. Когда светодиод помещается между двумя стабилитронами, светодиод будет проводить ток, когда разница между двумя стабилитронами больше, чем напряжение прямого смещения стабилитрона, которое для некоторых светодиодов составляет 1,7 вольт.

Уравнение того, когда светодиод будет проводить вперед, выглядит следующим образом: если Vbat

Простой светодиодный индикатор сети 220 В

У нас есть множество подходов к выделению или обозначению основной линии переменного тока. Раньше, когда в системных проводах подавалось 220 В переменного тока, неоновый свет использовался для обозначения сети.В настоящее время широко используется светодиодная схема индикатора напряжения сети переменного тока. Таким образом, это может быть идеальным решением, если в вашем магазине есть более типичные детали. Это также побуждает вас сэкономить деньги на дополнительных счетах и ​​обслуживании.

Вот ценный учебник по простой схеме светодиодного индикатора сети 220 В переменного тока. Схема может работать с одним светодиодом 3,6 В напрямую от 220 В переменного тока. Это также продемонстрирует близость сетевого напряжения переменного тока. Между тем, он, как правило, используется с многочисленными проектами DIY или самостоятельно, чтобы показать наличие переменного тока.

В схеме используется всего четыре сегмента: конденсатор 250 нФ / 630 В, диод 1N4004, светодиод и резистор 5,1 кОм / 1 Вт.

Компоненты оборудования

Схема

Схема

Работа схемы

Между тем, эта первичная цепь индикатора переменного тока становится все более распространенной для использования в качестве светового индикатора из-за ее простоты и более длительного срока службы. К сожалению, светодиод работает при низком напряжении всего 5 В. Следовательно, вы должны использовать резистор последовательно.Однако не стоит ограничивать ток при более высоких напряжениях с помощью резистора, потому что рассеянная мощность будет чрезмерно высокой, а резистор будет потреблять.

Поэтому рекомендуется использовать светодиод на 220 В, подключив последовательно конденсатор для ограничения тока. Более того, небольшая свобода в том, что конденсатор не нагревается! Задача диода — защитить светодиод от высокого напряжения. Во время положительного полупериода D1 ограничивает напряжение на светодиоде, а R1 — на 2.7 Вольт. Напротив, полупериод D1 действует как типичный диод, предотвращающий резкое увеличение напряжения.

Цепь не использует гибкую силу. Это законно связано с электросетью. Таким образом, не прикасайтесь к нему, когда он включен или правильно подключен к сети. Эта схема должна быть размещена в нужном уголке.

Приложения и способы использования

  • Используется для обозначения сети переменного тока большой мощности
.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *