Простой усилитель на двух транзисторах: Схема простого усилителя звука на транзисторах

Содержание

Схемы усилителей низкой частоты (УНЧ) на транзисторах

Простейшие усилители низкой частоты на транзисторах

Усилители низкой частоты (УНЧ) используют для преобразования слабых сигналов преимущественно звукового диапазона в более мощные сигналы, приемлемые для непосредственного восприятия через электродинамические или иные излучатели звука.

Заметим, что высокочастотные усилители до частот 10. 100 МГц строят по аналогичным схемам, все отличие чаще всего сводится к тому, что значения емкостей конденсаторов таких усилителей уменьшаются во столько раз, во сколько частота высокочастотного сигнала превосходит частоту низкочастотного.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3. 12 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20. 30 кОм и переменный сопротивлением 100. 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 – 4).

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Двухкаскадный усилитель на транзисторах

Соединив последовательно два простейших каскада усиления (рис. 1), можно получить двухкаскадный УНЧ (рис. 5). Усиление такого усилителя равно произведению коэффициентов усиления отдельно взятых каскадов. Однако получить большое устойчивое усиление при последующем наращивании числа каскадов нелегко: усилитель скорее всего самовозбудится.

Рис. 5. Схема простого двухкаскадного усилителя НЧ.

Новые разработки усилителей НЧ, схемы которых часто приводят на страницах журналов последних лет, преследуют цель достижения минимального коэффициента нелинейных искажений, повышения выходной мощности, расширения полосы усиливаемых частот и т.д.

В то же время, при наладке различных устройств и проведении экспериментов зачастую необходим несложный УНЧ, собрать который можно за несколько минут. Такой усилитель должен содержать минимальное число дефицитных элементов и работать в широком интервале изменения напряжения питания и сопротивления нагрузки.

Схема УНЧ на полевом и кремниевом транзисторах

Схема простого усилителя мощности НЧ с непосредственной связью между каскадами приведена на рис. 6 [Рл 3/00-14]. Входное сопротивление усилителя определяется номиналом потенциометра R1 и может изменяться от сотен Ом до десятков МОм. На выход усилителя можно подключать нагрузку сопротивлением от 2. 4 до 64 Ом и выше.

При высокоомной нагрузке в качестве VT2 можно использовать транзистор КТ315. Усилитель работоспособен в диапазоне питающих напряжений от 3 до 15 В, хотя приемлемая работоспособность его сохраняется и при снижении напряжения питания вплоть до 0,6 В.

Емкость конденсатора С1 может быть выбрана в пределах от 1 до 100 мкФ. В последнем случае (С1 =100 мкФ) УНЧ может работать в полосе частот от 50 Гц до 200 кГц и выше.

Рис. 6. Схема простого усилителя низкой частоты на двух транзисторах.

Амплитуда входного сигнала УНЧ не должна превышать 0,5. 0,7 В. Выходная мощность усилителя может изменяться от десятков мВт до единиц Вт в зависимости от сопротивления нагрузки и величины питающего напряжения.

Настройка усилителя заключается в подборе резисторов R2 и R3. С их помощью устанавливают напряжение на стоке транзистора VT1, равное 50. 60% от напряжения источника питания. Транзистор VT2 должен быть установлен на теплоотводя-щей пластине (радиаторе).

Трекаскадный УНЧ с непосредственной связью

На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.

Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.

В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30. 50) к 1. Резистор R1 должен быть 0,1. 2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].

Схемы каскадных УНЧ на биполярных транзисторах

На рис. 8 и 9 показаны схемы каскодных УНЧ на биполярных транзисторах. Такие усилители имеют довольно высокий коэффициент усиления Ку. Усилитель на рис. 8 имеет Ку=5 в полосе частот от 30 Гц до 120 кГц [МК 2/86-15]. УНЧ по схеме на рис. 9 при коэффициенте гармоник менее 1% имеет коэффициент усиления 100 [РЛ 3/99-10].

Рис. 8. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 5.

Рис. 9. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 100.

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.

Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2. 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит – напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Двухкаскадные УНЧ с непосредственной связью между каскадами

Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 – 14. Они имеют высокий коэффициент усиления и хорошую стабильность.

Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).

Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.

Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 – вариант 2.

Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.

В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 – 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.

Рис. 14. Двухкаскадный УНЧ с полевым транзистором.

Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).

Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.

Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.

Схемы УНЧ для работы с низкоОмной нагрузкой

Типовые УНЧ, предназначенные для работы на низкоомную нагрузку и имеющие выходную мощность десятки мВт и выше, изображены на рис. 16, 17.

Рис. 16. Простой УНЧ для работы с включением нагрузки с низким сопротивлением.

Электродинамическая головка ВА1 может быть подключена к выходу усилителя, как показано на рис. 16, либо в диагональ моста (рис. 17). Если источник питания выполнен из двух последовательно соединенных батарей (аккумуляторов), правый по схеме вывод головки ВА1 может быть подключен к их средней точки напрямую, без конденсаторов СЗ, С4.

Рис. 17. Схема усилителя низкой частоты с включением низкоомной нагрузки в диагональ моста.

Если вам нужна схема простого лампового УНЧ то такой усилитель можно собрать даже на одной лампе, смотрите у нас на сайте по электронике в соответствующем разделе.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Исправления в публикации: на рис. 16 и 17 вместо диода Д9 установлена цепочка из диодов.

Усилитель на транзисторах: виды, схемы, простые и сложные

Простейший усилитель на транзисторах может быть хорошим пособием для изучения свойств приборов. Схемы и конструкции достаточно простые, можно самостоятельно изготовить устройство и проверить его работу, произвести замеры всех параметров. Благодаря современным полевым транзисторам можно изготовить буквально из трех элементов миниатюрный микрофонный усилитель. И подключить его к персональному компьютеру для улучшения параметров звукозаписи. Да и собеседники при разговорах будут намного лучше и четче слышать вашу речь.

Частотные характеристики

Усилители низкой (звуковой) частоты имеются практически во всех бытовых приборах – музыкальных центрах, телевизорах, радиоприемниках, магнитолах и даже в персональных компьютерах. Но существуют еще усилители ВЧ на транзисторах, лампах и микросхемах. Отличие их в том, что УНЧ позволяет усилить сигнал только звуковой частоты, которая воспринимается человеческим ухом. Усилители звука на транзисторах позволяют воспроизводить сигналы с частотами в диапазоне от 20 Гц до 20000 Гц.

Классы работы звуковых усилителей

Все усилительные устройства разделяются на несколько классов, в зависимости от того, какая степень протекания в течение периода работы тока через каскад:

  1. Класс «А» – ток протекает безостановочно в течение всего периода работы усилительного каскада.
  2. В классе работы «В» протекает ток в течение половины периода.
  3. Класс «АВ» говорит о том, что ток протекает через усилительный каскад в течение времени, равного 50-100 % от периода.
  4. В режиме «С» электрический ток протекает менее чем половину периода времени работы.
  5. Режим «D» УНЧ применяется в радиолюбительской практике совсем недавно – чуть больше 50 лет. В большинстве случаев эти устройства реализуются на основе цифровых элементов и имеют очень высокий КПД – свыше 90 %.

Наличие искажений в различных классах НЧ-усилителей

Рабочая область транзисторного усилителя класса «А» характеризуется достаточно небольшими нелинейными искажениями. Если входящий сигнал выбрасывает импульсы с более высоким напряжением, это приводит к тому, что транзисторы насыщаются. В выходном сигнале возле каждой гармоники начинают появляться более высокие (до 10 или 11). Из-за этого появляется металлический звук, характерный только для транзисторных усилителей.

При нестабильном питании выходной сигнал будет по амплитуде моделироваться возле частоты сети. Звук станет в левой части частотной характеристики более жестким. Но чем лучше стабилизация питания усилителя, тем сложнее становится конструкция всего устройства. УНЧ, работающие в классе «А», имеют относительно небольшой КПД – менее 20 %. Причина заключается в том, что транзистор постоянно открыт и ток через него протекает постоянно.

Работа в промежуточных классах

У каждого класса имеется несколько разновидностей. Например, существует класс работы усилителей «А+». В нем транзисторы на входе (низковольтные) работают в режиме «А». Но высоковольтные, устанавливаемые в выходных каскадах, работают либо в «В», либо в «АВ». Такие усилители намного экономичнее, нежели работающие в классе «А». Заметно меньшее число нелинейных искажений – не выше 0,003 %. Можно добиться и более высоких результатов, используя биполярные транзисторы. Принцип работы усилителей на этих элементах будет рассмотрен ниже.

Но все равно имеется большое количество высших гармоник в выходном сигнале, отчего звук становится характерным металлическим. Существуют еще схемы усилителей, работающие в классе «АА». В них нелинейные искажения еще меньше – до 0,0005 %. Но главный недостаток транзисторных усилителей все равно имеется – характерный металлический звук.

«Альтернативные» конструкции

  1. Очень низкое значение уровня нелинейных искажений в выходном сигнале.
  2. Высших гармоник меньше, чем в транзисторных конструкциях.

Но есть один огромный минус, который перевешивает все достоинства, – обязательно нужно ставить устройство для согласования. Дело в том, что у лампового каскада очень большое сопротивление – несколько тысяч Ом. Но сопротивление обмотки динамиков – 8 или 4 Ома. Чтобы их согласовать, нужно устанавливать трансформатор.

Конечно, это не очень большой недостаток – существуют и транзисторные устройства, в которых используются трансформаторы для согласования выходного каскада и акустической системы. Некоторые специалисты утверждают, что наиболее эффективной схемой оказывается гибридная – в которой применяются однотактные усилители, не охваченные отрицательной обратной связью. Причем все эти каскады функционируют в режиме УНЧ класса «А». Другими словами, применяется в качестве повторителя усилитель мощности на транзисторе.

Причем КПД у таких устройств достаточно высокий – порядка 50 %. Но не стоит ориентироваться только на показатели КПД и мощности – они не говорят о высоком качестве воспроизведения звука усилителем. Намного большее значение имеют линейность характеристик и их качество. Поэтому нужно обращать внимание в первую очередь на них, а не на мощность.

Схема однотактного УНЧ на транзисторе

Самый простой усилитель, построенный по схеме с общим эмиттером, работает в классе «А». В схеме используется полупроводниковый элемент со структурой n-p-n. В коллекторной цепи установлено сопротивление R3, ограничивающее протекающий ток. Коллекторная цепь соединяется с положительным проводом питания, а эмиттерная – с отрицательным. В случае использования полупроводниковых транзисторов со структурой p-n-p схема будет точно такой же, вот только потребуется поменять полярность.

С помощью разделительного конденсатора С1 удается отделить переменный входной сигнал от источника постоянного тока. При этом конденсатор не является преградой для протекания переменного тока по пути база-эмиттер. Внутреннее сопротивление перехода эмиттер-база вместе с резисторами R1 и R2 представляют собой простейший делитель напряжения питания. Обычно резистор R2 имеет сопротивление 1-1,5 кОм – наиболее типичные значения для таких схем. При этом напряжение питания делится ровно пополам. И если запитать схему напряжением 20 Вольт, то можно увидеть, что значение коэффициента усиления по току h31 составит 150. Нужно отметить, что усилители КВ на транзисторах выполняются по аналогичным схемам, только работают немного иначе.

На резисторе R1 теперь можно вычислить значение падения – это разница между напряжениями базы и питания. При этом напряжение базы можно узнать по формуле – сумма характеристик эмиттера и перехода «Э-Б». При питании от источника 20 Вольт: 20 – 9,7 = 10,3. Отсюда можно вычислить и значение сопротивления R1=10,3В/60 мкА=172 кОм. В схеме присутствует емкость С2, необходимая для реализации цепи, по которой сможет проходить переменная составляющая эмиттерного тока.

Если не устанавливать конденсатор С2, переменная составляющая будет очень сильно ограничиваться. Из-за этого такой усилитель звука на транзисторах будет обладать очень низким коэффициентом усиления по току h31. Нужно обратить внимание на то, что в вышеизложенных расчетах принимались равными токи базы и коллектора. Причем за ток базы брался тот, который втекает в цепь от эмиттера. Возникает он только при условии подачи на вывод базы транзистора напряжения смещения.

Усилители на МДП-транзисторах

Усилитель на полевых транзисторах, представленный на схеме, имеет множество аналогов. В том числе и с использованием биполярных транзисторов. Поэтому можно рассмотреть в качестве аналогичного примера конструкцию усилителя звука, собранную по схеме с общим эмиттером. На фото представлена схема, выполненная по схеме с общим истоком. На входных и выходных цепях собраны R-C-связи, чтобы устройство работало в режиме усилителя класса «А».

Переменный ток от источника сигнала отделяется от постоянного напряжения питания конденсатором С1. Обязательно усилитель на полевых транзисторах должен обладать потенциалом затвора, который будет ниже аналогичной характеристики истока. На представленной схеме затвор соединен с общим проводом посредством резистора R1. Его сопротивление очень большое – обычно применяют в конструкциях резисторы 100-1000 кОм. Такое большое сопротивление выбирается для того, чтобы не шунтировался сигнал на входе.

УНЧ с трансформатором на выходе

Двухтактный усилитель звука

Нельзя сказать, что это простой усилитель на транзисторах, так как его работа немного сложнее, чем у рассмотренных ранее. В двухтактных УНЧ входной сигнал расщепляется на две полуволны, различные по фазе. И каждая из этих полуволн усиливается своим каскадом, выполненном на транзисторе. После того, как произошло усиление каждой полуволны, оба сигнала соединяются и поступают на динамики. Такие сложные преобразования способны вызвать искажения сигнала, так как динамические и частотные свойства двух, даже одинаковых по типу, транзисторов будут отличны.

Бестрансформаторные УНЧ

Усилитель НЧ на транзисторе, выполненный с использованием трансформатора, невзирая на то, что конструкция может иметь малые габариты, все равно несовершенен. Трансформаторы все равно тяжелые и громоздкие, поэтому лучше от них избавиться. Намного эффективнее оказывается схема, выполненная на комплементарных полупроводниковых элементах с различными типами проводимости. Большая часть современных УНЧ выполняется именно по таким схемам и работают в классе «В».

Два мощных транзистора, используемых в конструкции, работают по схеме эмиттерного повторителя (общий коллектор). При этом напряжение входа передается на выход без потерь и усиления. Если на входе нет сигнала, то транзисторы на грани включения, но все равно еще отключены. При подаче гармонического сигнала на вход происходит открывание положительной полуволной первого транзистора, а второй в это время находится в режиме отсечки.

Схема УНЧ на одном транзисторе

Изучив все вышеописанные особенности, можно собрать усилитель своими руками на простой элементной базе. Транзистор можно использовать отечественный КТ315 или любой его зарубежный аналог – например ВС107. В качестве нагрузки нужно использовать наушники, сопротивление которых 2000-3000 Ом. На базу транзистора необходимо подать напряжение смещения через резистор сопротивлением 1 Мом и конденсатор развязки 10 мкФ. Питание схемы можно осуществить от источника напряжением 4,5-9 Вольт, ток – 0,3-0,5 А.

Коснитесь входа усилителя пальцем – должен появиться характерный шум. Если его нет, то, скорее всего, конструкция собрана неправильно. Перепроверьте все соединения и номиналы элементов. Чтобы нагляднее была демонстрация, подключите к входу УНЧ источник звука – выход от плеера или телефона. Прослушайте музыку и оцените качество звучания.

Схемы усилителей мощности на германиевых транзисторах.


Секреты звучания забытых германиевых УНЧ.

Эх, жалко пацанов – королевство маловато, разгуляться негде!
Ни ламповых тебе однотактников, ни гераниевых раритетов. Что ещё остаётся пытливому уму неоперившегося меломана?
Разве что брейкануть под японское хокку, да кайфануть для большего эффекта под уханье бумбокса.

«Кремний – всему голова» – крикнут яростные члены на форумных дебатах.
«Не надо впаривать нам этот шняга-силикатный экстракт» – вторят им другие, «для начала послушайте своими руками, а потом делайте свои тупоголовые выводы».

На самом деле, слушать надо!
Перелопатить определённое количество разномастной усилительной аппаратуры – тоже надо.
Не обязательно быть музыкантом со стажем, но таить в себе зачатки какого-никакого слуха – опять же, надо.
И тогда любой пацак, владелец старого пепелаца, сможет авторитетно заявить: «Однако разница в звуке есть, и она весьма существенна!»

На этой странице поговорим об УНЧ на германиевых транзисторах.

Своеобразие германиевого звучания, как правило, сводится к двум устойчивым постулатам:
1. Усилители на германиевых транзисторах отличаются музыкальностью,
2. Звук похож на звук ламповика.
И если первый пункт у меня возражений не вызывает, то со вторым мнением коллег позволю вежливо не согласиться – не похож, абсолютно разное звучание.

Электрофон сетевой транзисторный “Вега-101-стерео” с усилителем на германиевых транзисторах, выпускаемый Бердским радиозаводов с начала 1972 по 1982 год, заложил в головы современников основы понимания того, каким должен быть высококачественный стереофонический звук.
Время шло, появлялись на свет и более продвинутые вертушки с магнитными звукоснимателями, и значительно более мощные УНЧ на кремниевых транзисторах с незаурядными характеристиками.
Однако душещипательные воспоминания о том, как звучали в конце 70-ых простенькие Веги с их примитивной схемотехникой открыли историю ожесточённой борьбы человечества с феноменом транзисторного звучания.

Ну да и ладно, пора переходить на новый уровень – нарисовать пару-тройку принципиальных схем усилителей низкой частоты на германиевых транзисторах, но для начала озадачусь вопросом: Что любит и что не любит германий?
1. Германий любит простоту и не приемлет наворотов. Дифференциальный каскад с источником тока в цепи эмиттера – уже является буржуазным излишеством.
2. Германий не любит перегрева, легко может напустить дыма и отправиться к праотцам электроники Амперу и Ому в ответ на потерю бдительности в процессе настройки схемы.

А теперь обещанные схемы.


Рис.1

Номинальная мощность усилителя при коэффициенте гармоник на частоте 1000Гц менее 0,1% – 1 Вт, максимальная – 1,5Вт, чувствительность по входу – 0,2 В.
Усилитель сохраняет работоспособность при понижении напряжения питания до 9В.
Подбором номинала резистора R8 устанавливается значение напряжения на эмиттерах выходных транзисторов, равное половине напряжения питания.
Подбором номинала резистора R2 устанавливается значение напряжения на коллекторе транзистора V1, равное половине напряжения питания.


Рис.2

Схема, приведённая на Рис.2 – для эстетов, желающих порадовать свой слуховой аппарат ни с чем не сравнимым звуком однотактного усилителя, работающего в чистом режиме А.
Для настройки усилителя следует подбором номинала резистора R9 установить ток покоя выходного транзистора – 150мА.


Рис.3

На рис.3 показана принципиальная схема универсального усилителя НЧ, собранного на девяти транзисторах и развивающего выходную мощность до 10 Вт при сопротивлении нагрузки 4 Ом и входном напряжении около 10 мВ.
При налаживании устройства подстроечным резистором R2 устанавливают выходное напряжение в точке соединения транзисторов VT8 и VT9 равным половине напряжения питания.

Схема более мощного усилителя приведена на Рис.4. Усилитель рассчитан на подключение электрогитары и микрофона, но может быть использован также совместно с проигрывателем, магнитофоном или радиоприёмником.
Основные технические данные, приведённые автором:
Номинальная выходная мощность – 30 Вт.
Максимальная выходная мощность – 40 Вт.
Сопротивление нагрузки 3,5-5 Ом.
Полоса рабочих частот 30-16000 Гц.
Коэффициент нелинейных искажений – не более 1,5%.
Чувствительность с выхода микрофона – 10 мВ.
Чувствительность с выхода электрогитары – 0,1 В.
Напряжение 15 В на коллекторе транзистора Т10 устанавливают резистором R19.
Ток покоя всего усилителя не должен превышать 170 мА.


Рис.5

На Рис.5 приведена схема простого и мощного усилителя на германиевых транзисторах DTG110B. При подключении к его входу любого УНЧ мощностью 1,5-2 Вт устройство выдаёт на 8-ми омную нагрузку около 50 Вт чистого германиевого звука.
Согласующий трансформатор Т1 выполнен на железе Ш24 (толщина пакета 20-25мм) и содержит 3 одинаковые обмотки по 120 витков, намотанных на картонном каркасе проводом ПЭВ-1 или ПЭВ-2 диаметром 0,5-0,7мм.
Налаживание устройства заключается в подборе значений резисторов R2 R4 для достижения на выходе схемы нулевого потенциала и тока покоя транзисторов – 120-150 мА.
При снижении напряжения питания на каждом плече до 30В транзисторы DTG110B без каких-либо колебаний могут быть заменены на отечественные П210А.


Рис.6

Схема, представленная на Рис.6, является переработанным под «германий» вариантом усилителя НЧ из статьи Николая Трошина журнале Радио №8 за 1989г (стр. 51-55). Творцом переработки является сам автор статьи. Вот что он пишет на страннице сайта http://vprl.ru:

«Выходная мощность этого усилителя 30 Вт при сопротивлении нагрузки акустических систем 4 Ома, и примерно 18 Вт при сопротивлении нагрузки 8 Ом.
Напряжение питания усилителя (U пит) двухполярное ±25 В;
Диапазон рабочих частот 20Гц…20кГц:

Транзисторы МП40А можно заменить на транзисторы МП21, МП25, МП26. Транзисторы ГТ402Г – на ГТ402В; ГТ404Г – на ГТ404В;
Выходные транзисторы ГТ806 можно ставить любых буквенных индексов. Применять более низкочастотные транзисторы типа П210, П216, П217 в этой схеме не рекомендую, поскольку на частотах выше 10кГц они здесь работают плоховато (заметны искажения), видимо, из-за нехватки усиления тока на высокой частоте.

Площадь радиаторов на выходные транзисторы должна быть не менее 200 см2, на предоконечные транзисторы не менее 10 см2.
На транзисторы типа ГТ402 радиаторы удобно делать из медной (латунной) или алюминиевой пластины, толщиной 0,5 мм, размером 44х26.5 мм.

Настройка правильно собранного из исправных элементов усилителя сводится к установке подстроечным резистором тока покоя выходного каскада 100мА (удобно контролировать на эмиттерном резисторе 1 Ом – напряжение 100мВ).
Диод VD1 желательно приклеить или прижать к радиатору выходного транзистора, что способствует лучшей термостабилизации. Однако если этого не делать, ток покоя выходного каскада от холодного 100мА до горячего 300мА меняется, в общем-то, не катастрофично.

Важно: перед первым включением необходимо выставить подстроечный резистор в нулевое сопротивление.
После настройки желательно подстроечный резистор выпаять из схемы, измерить его реальное сопротивление и заменить на постоянный».

Искусство схемотехники. Часть 11 – Усилитель низкой частоты на транзисторах. Схема № 1

Избранные главы из книги С. А. Гаврилова «Искусство схемотехники. Просто о сложном».

Продолжение

Начало читайте здесь:

Заказать книгу можно в интернет-магазине издательства

Усилитель низкой частоты на транзисторах

Схема № 1

Выбор класса усилителя. Сразу предупредим радиолюбителя – делать усилитель класса A на транзисторах мы не будем. Причина проста – как было сказано во введении, транзистор усиливает не только полезный сигнал, но и поданное на него смещение. Проще говоря, усиливает постоянный ток. Ток этот вместе с полезным сигналом потечет по акустической системе (АС), а динамики, к сожалению, умеют этот постоянный ток воспроизводить. Делают они это самым очевидным образом – вытолкнув или втянув диффузор из нормального положения в противоестественное.

Попробуйте прижать пальцем диффузор динамика – и вы убедитесь, в какой кошмар превратится при этом издаваемый звук. Постоянный ток по своему действию с успехом заменяет ваши пальцы, поэтому динамической головке он абсолютно противопоказан. Отделить же постоянный ток от переменного сигнала можно только двумя средствами – трансформатором или конденсатором, – и оба варианта, что называется, один хуже другого.

Принципиальная схема

Схема первого усилителя, который мы соберем, приведена на рис. 11.18.

Рис. 11.18.Принципиальная схема УНЧ на транзисторах с обратной связью, выходной каскад которого работает в режиме В

Это усилитель с обратной связью, выходной каскад которого работает в режиме В. Единственное достоинство этой схемы – простота, а также однотипность выходных транзисторов (не требуется специальные комплементарные пары). Тем не менее, она достаточно широко применяется в усилителях небольшой мощности. Еще один плюс схемы – она не требует никакой настройки, и при исправных деталях заработает сразу, а нам это сейчас очень важно.

Рассмотрим работу этой схемы. Усиливаемый сигнал подается на базу транзистора VT1. Усиленный этим транзистором сигнал с резистора R4 подается на базу составного транзистора VT2, VT4, а с него – на резистор R5.

Транзистор VT3 включен в режиме эмиттерного повторителя. Он усиливает положительные полуволны сигнала на резисторе R5 и подает их через конденсатор C4 на АС.

Отрицательные же полуволны усиливает составной транзистор VT2, VT4. При этом падение напряжения на диоде VD1 закрывает транзистор VT3. Сигнал с выхода усилителя подается на делитель цепи обратной связи R3, R6, а с него – на эмиттер входного транзистора VT1. Таким образом, транзистор VT1 у нас и играет роль устройства сравнения в цепи обратной связи.

Примечание.
Обратите внимание – последовательно с резистором R3 включен конденсатор C2. Это значит, что делитель напряжения у нас частотно-зависимый.

Постоянный ток он усиливает с коэффициентом усиления, равным единице (потому что сопротивление конденсатора C постоянному току теоретически бесконечно), а полезный сигнал – с коэффициентом, равным соотношению R6/R3.

Как видим, величина емкостного сопротивления конденсатора в этой формуле не учитывается. Частота, начиная с которой конденсатором при расчетах можно пренебречь, называется частотой среза RC-цепочки. Частоту эту можно рассчитать по формуле

Для нашего примера она будет около 18 Гц, т. е. более низкие частоты усилитель будет усиливать хуже, чем он мог бы.

Плата. Усилитель собран на плате из одностороннего стеклотекстолита толщиной 1.5 мм размерами 45×32.5 мм. Разводку печатной платы в зеркальном изображении и схему расположения деталей можно скачать здесь. Видеоролик о работе усилителя в формате MOV скачать для просмотра можно отсюда. Хочу сразу предупредить радиолюбителя – звук, воспроизводимый усилителем, записывался в ролике с помощью встроенного в фотоаппарат микрофона, так что говорить о качестве звука, к сожалению, будет не совсем уместно! Внешний вид усилителя приведен на рис. 11.19.

Рис. 11.19.Внешний вид усилителя

Элементная база. При изготовлении усилителя транзисторы VT3, VT4 можно заменить любыми, рассчитанными на напряжение не менее напряжения питания усилителя, и допустимым током не менее 2 А. На такой же ток должен быть рассчитан и диод VD1.

Остальные транзисторы – любые с допустимым напряжением не менее напряжение питания, и допустимым током не менее 100 мА. Резисторы – любые с допустимой рассеиваемой мощностью не менее 0.125 Вт, конденсаторы – электролитические, с емкостью, не менее указанной на схеме, и рабочим напряжением на менее напряжения питания усилителя.

Радиаторы для усилителя. Прежде чем попробовать изготовить нашу вторую конструкцию, давайте, уважаемый радиолюбитель, остановимся на радиаторах для усилителя и приведем здесь весьма упрощенную методику их расчета.

Во-первых, вычисляем максимальную мощность усилителя по формуле:

где U – напряжение питания усилителя, В; R – сопротивление АС (обычно оно составляет 4 или 8 Ом, хотя бывают и исключения).

Во-вторых, вычисляем мощность, рассеиваемую на коллекторах транзисторов, по формуле:

В-третьих, вычисляем площадь радиатора, необходимую для отвода соответствующего количества тепла:

В-четвертых, выбираем или изготавливаем радиатор, площадь поверхности которого будет не менее рассчитанной.

Примечание.
При изготовлении радиатора не забывайте, что алюминиевая пластина имеет две стороны, а не одну, и, радиатор площадью 100 см 2 будет иметь размеры вовсе не 10×10 см, а 10×5 см!

Указанный расчет носит весьма приблизительный характер, но для радиолюбительской практики его обычно бывает достаточно. Для нашего усилителя при напряжении питания 12 В и сопротивлении АС, равным 8 Ом, «правильным» радиатором была бы алюминиевая пластина размерами 2×3 см и толщиной не менее 5 мм для каждого транзистора. Имейте ввиду, что более тонкая пластина плохо передает тепло от транзистора к краям пластины. Хочется сразу предупредить – радиаторы во всех остальных усилителях тоже должны быть «нормальных» размеров. Каких именно – посчитайте сами!

Качество звучания. Собрав схему, вы обнаружите, что звук усилителя не совсем чистый.

Причина этого – «чистый» режим класса В в выходном каскаде, характерные искажения которого даже обратная связь полностью скомпенсировать не способна. Ради эксперимента попробуйте заменить в схеме транзистор VT1 на КТ3102ЕМ, а транзистор VT2 – на КТ3107Л. Эти транзисторы имеют значительно больший коэффициент усиления, чем КТ315Б и КТ361Б. И вы обнаружите, что звучание усилителя значительно улучшилось, хотя все равно останутся заметными некоторые искажения.

Причина этого также очевидна – больший коэффициент усиления усилителя в целом обеспечивает большую точность работы обратной связи, и больший ее компенсирующий эффект.

Продолжение читайте здесь

Три схемы УНЧ для новичков

После освоения азов электроники, начинающий радиолюбитель готов паять свои первые электронные конструкции. Усилители мощности звуковой частоты, как правило самые повторяемые конструкции. Схем достаточно много, каждая отличается своими параметрами и конструкцией. В этой статье будут рассмотрены несколько простейших и полностью рабочих схем усилителей, которые успешно могут быть повторены любым радиолюбителем. В статье не использованы сложные термины и расчеты, все максимально упрощено, чтобы не возникло дополнительных вопросов.

Начнем с более мощной схемы.
Итак, первая схема выполнена на известной микросхеме TDA2003. Это монофонический усилитель с выходной мощностью до 7 Ватт на нагрузку 4 Ом. Хочу сказать, что стандартная схема включения этой микросхемы содержит малое количество компонентов, но пару лет назад мною была придумана иная схема на этой микросхеме. В этой схеме количество комплектующих компонентов сведено к минимуму, но усилитель не потерял свои звуковые параметры. После разработки данной схемы, все свои усилители для маломощных колонок стал делать именно на этой схеме.

Схема представленного усилителя имеет широкий диапазон воспроизводимых частот, диапазон питающих напряжений от 4,5 до 18 вольт (типовое 12-14 вольт). Микросхему устанавливают на небольшой теплоотвод, поскольку максимальная мощность достигает до 10 Ватт.

Микросхема способна работать на нагрузку 2 Ом, это значит, что к выходу усилителя можно подключать 2 головки с сопротивлением 4 Ом.
Входной конденсатор можно заменить на любой другой, с емкостью от 0,01 до 4,7 мкФ (желательно от 0,1 до 0,47 мкФ), можно использовать как пленочные, так и керамические конденсаторы. Все остальные компоненты желательно не заменять.

Регулятор громкости от 10 до 47 кОм.
Выходная мощность микросхемы позволяет применять его в маломощных АС для ПК. Очень удобно использовать микросхему для автономных колонок к мобильному телефону и т.п.
Усилитель работает сразу после включения, в дополнительной наладке не нуждается. Советуется минус питания дополнительно подключить к теплоотводу. Все электролитические конденсаторы желательно использовать на 25 Вольт.

Вторая схема собрана на маломощных транзисторах, и больше подойдет в качестве усилителя для наушников.

Это наверное самая качественная схема такого рода, звук чистый, чувствуются весь частотный спектр. С хорошими наушниками, такое ощущение, что у вас полноценный сабвуфер.

Усилитель собран всего на 3-х транзисторах обратной проводимости, как самый дешевый вариант, были использованы транзисторы серии КТ315, но их выбор достаточно широк.

Усилитель может работать на низкоомную нагрузку, вплоть до 4-х Ом, что дает возможность, использовать схему для усиления сигнала плеера, радиоприемника и т.п. В качестве источника питания использована батарейка типа крона с напряжением 9 вольт.
В окончательном каскаде тоже применены транзисторы КТ315. Для повышения выходной мощности можно применить транзисторы КТ815, но тогда придется увеличить напряжение питания до 12 вольт. В этом случае мощность усилителя будет достигать до 1 Ватт. Выходной конденсатор может иметь емкость от 220 до 2200 мкФ.
Транзисторы в этой схеме не нагреваются, следовательно, какое-либо охлаждение не нужно. При использовании более мощных выходных транзисторов, возможно, понадобятся небольшие теплоотводы для каждого транзистора.

И наконец – третья схема. Представлен не менее простой, но проверенный вариант строения усилителя. Усилитель способен работать от пониженного напряжения до 5 вольт, при таком случае выходная мощность УМ будет не более 0,5 Вт, а максимальная мощность при питании 12 вольт достигает до 2-х Ватт.

Выходной каскад усилителя построен на отечественной комплементарной паре. Регулируют усилитель подбором резистора R2. Для этого желательно использовать подстроечный регулятор на 1кОм. Медленно вращаем регулятор до тех пор, пока ток покоя выходного каскада не будет 2-5 мА.

Усилитель не обладает высокой входной чувствительностью, поэтому желательно перед входом применить предварительный усилитель.

Немало важную роль в схеме играет диод, он тут для стабилизации режима выходного каскада.
Транзисторы выходного каскада можно заменить на любую комплементарную пару соответствующих параметров, например КТ816/817. Усилитель может питать маломощные автономные колонки с сопротивлением нагрузки 6-8 Ом.

Простой усилитель класса А.

Данная статья является продолжением работы на тему использования усилителей работающих в А классе для высококачественного звуко-усиления.
Представляю на Ваше рассмотрение, хорошо отработанную схему усилителя на кремниевых транзисторах.
Неоспоримым преимуществом кремния – является способность работать при гораздо более высоких температурах (по сравнению с германием). При хорошем тепловом контакте транзистора с радиатором, можно считать допустимой температуру радиатора 90…95 град.

Понятно, что при столь высокой разнице температур радиатора и окружающей среды, теплообмен происходит очень эффективно.
Поэтому при одинаковых площадях радиаторов выходных транзисторов, на кремнии можно получить примерно в 2 раза больше мощности по сравнению с германием.
Большой ассортимент кремниевых средне и высокочастотных транзисторов большой мощности, позволяет построить высококачественный усилитель А класса при совсем простой схеме.

Данная схема обеспечивает выходную мощность 20 ватт на нагрузке 4 ом. Диапазон рабочих частот усилителя 20…25000 Гц.
В качестве транзистора VT1 здесь можно использовать КТ208Д, КТ209Д, КТ361Г, Е, КТ3107Б, Г, И, К. В качестве транзистора VT2 можно использовать транзисторы КТ815, КТ801, П701, транзистор VT3 КТ814, VT4 – КТ818БМ, ГМ, транзистор VT5 – КТ819БМ, ГМ.
Схема может работать без подбора транзисторов по коэффициенту усиления, однако поскольку она содержит всего 2 каскада усиления, желательно иметь коэффициент усиления транзистора VT1 – не менее 150, транзисторов VT2, VT5 – не менее 50, транзистора VT4 – не менее 80.
Оценить коэффициент усиления транзистора не сложно. Достаточно включить испытуемый транзистор по вот такой схеме (для мощных транзисторов).

Резистор R1 обеспечивает ток в базу примерно 1 ма. Измерительный миллиамперметр измеряет ток коллектора (я использовал стрелочный тестер с пределом измерений 300 ма). Отношение тока коллектора к базовому току – будет коэффициентом усиления транзистора.
Для транзисторов средней мощности, надо уменьшить базовый ток в 10 раз (R1 36k), а для транзистора малой мощности, базовый ток уменьшаем в 100 раз (R1 360k). В качестве источника питания, я использовал 3 щелочные (алкалиновые) батарейки размера АА, которые просто спаял между собой хорошо разогретым паяльником, с использованием не толстого провода (паять надо быстро, чтобы не перегреть батарейку).

При использовании нагрузки 8 ом, напряжение питания нужно увеличить до 39…40 вольт, резистор R10 до 0,25 Ом.
Настройка усилителя сводится к установке половины напряжения питания на коллекторе VT5.
Усилитель потребляет значительную мощность, примерно 100 ватт на каждый канал. Поэтому источник питания должен быть серьезным.
Силовой трансформатор для блока питания, нужно применять мощностью не менее 250 ватт, либо использовать два однотипных трансформатора (на каждый канал) с такой же общей мощностью.
Схема источника питания показана на рисунке ниже.

Вторичная обмотка силового трансформатора должна иметь выходное напряжение ХХ 26 – 27 вольт. Такая схема должна быть на каждый канал усилителя, причем при нагрузке 4 ом, возможно лучше сразу поставить конденсаторы по 22000 мкФ.
Диодный мост с номинальным током не менее 10 А либо 4 диода на 10 А. Большая емкость конденсаторов объясняется значительным током потребления, в том числе и в режиме покоя усилителя, когда пульсации особенно заметны.
Применять электронные фильтры или стабилизаторы я не стал, поскольку они иногда являются причиной самовозбуждения усилителя и источником помех и наводок.

Детали для усилителя:
Резисторы могут быть любой мощности не менее 0.125 ватт за исключением R9 5 ватт, R10 2 ватт. Очень важен номинал резистора R10. От этого зависит правильный режим работы усилителя.
Конденсатор С1 лучше поставить пленочный, С4 пленочный или слюдяной.
Выходные транзисторы КТ818, КТ819 обязательно с буквой “М” в конце (в металлическом корпусе), БМ, ГМ. Радиаторы под них я использовал ребристые размером 120*170, толщиной 35 мм. Если радиаторы будут меньше, то необходим принудительный обдув.
На КТ815 небольшой радиатор-пластинка 2-3 кв. см. На П701 радиатор не нужен.
На резисторе R9 рассеивается значительная мощность. При наличии осциллографа и генератора можно попробовать ее уменьшить. Подаем сигнал на вход,на выход подключаем эквивалент нагрузки и осциллограф. Резистором R4 добиваемся симметричного ограничения максимально возможной амплитуды сигнала. Далее увеличивая резистор R9 добиваемся начала ограничения сигнала сверху. Выпаиваем и измеряем номинал. После этого устанавливаем резистор на 25…30% меньше.
При желании поэкспериментировать можно собрать совсем упрощенную схему.

Транзисторы здесь должны иметь больший К ус. Первый не менее 200, второй не менее 100.
Резистор R7 мощностью не менее 50 ватт. При отсутствии такого можно использовать электрический чайник и утюг по 2000 ватт на220в, соединенные параллельно, либо 2 ТЭН на 2000 ватт. – получается сопротивление около 10 ом. Кстати это можно использовать и как эквивалент нагрузки.
Данная схема позволяет получить 4…5 ватт (потреблять будет все равно около 90 ватт.) На коллекторе VT2 нужно выставить 12 вольт.

Схемы усилителей нч на транзисторах. Простейшие усилители низкой частоты на транзисторах

Схема простого усилителя звука на транзисторах , которая реализована на двух мощных составных транзисторах TIP142-TIP147 установленных в выходном каскаде, двух маломощных BC556B в дифференциальном тракте и один BD241C в цепи предварительного усиления сигнала — всего пять транзисторов на всю схему! Такая конструкция УМЗЧ свободно может быть использована например в составе домашнего музыкального центра или для раскачки сабвуфера установленного в автомобиле, на дискотеке.

Главная привлекательность данного усилителя мощности звука заключается в легкости его сборки даже начинающими радиолюбителями, нет необходимости в какой либо специальной его настройке, не возникает проблем в приобретении комплектующих по доступной цене. Представленная здесь схема УМ обладает электрическими характеристиками с высокой линейностью работы в частотном диапазоне от 20Гц до 20000Гц. p>

При выборе или самостоятельном изготовлении трансформатора для блока питания нужно учитывать такой фактор: — трансформатор должен иметь достаточный запас по мощности, например: 300 Вт из расчета на один канал, в случае двухканального варианта, то естественно и мощность удваивается. Можно применить для каждого свой отдельный трансформатор, а если использовать стерео вариант усилителя, то тогда вообще получится аппарат типа «двойное моно», что естественно повысит эффективность усиления звука.

Действующее напряжение во вторичных обмотках трансформатора должно составлять ~34v переменки, тогда постоянное напряжение после выпрямителя получится в районе 48v — 50v. В каждом плече по питанию необходимо установить плавкий предохранитель рассчитанный на рабочий ток 6А, соответственно для стерео при работе на одном блоке питания — 12А.


Всем Привет! В этой статье я буду подробно описывать как изготовить классный усилитель для дома или авто . Усилитель несложный в сборке и настройке, и имеет хорошее качество звучания. Ниже вашему вниманию представлена принципиальная схема самого усилителя.


Схема выполнена на транзисторах и не имеет дефицитных деталей. Питание усилителя двуполярное +/- 35 вольт, при сопротивлении нагрузки в 4 Ома. При подключении 8-ми Омной нагрузки, питание можно увеличить до +/- 42 вольт.

Резисторы R7, R8, R10, R11, R14 — 0,5 Вт; R12, R13 — 5 Вт; остальные 0.25 Вт.
R15 подстроечный 2-3 кОм.
Транзисторы: Vt1, Vt2, Vt3, Vt5 — 2sc945 (на корпусе пишется обычно c945).

Vt4, Vt7 — BD140 (Vt4 можно заменить нашим Кт814).
Vt6 — BD139.
Vt8 — 2SA1943.
Vt9 — 2SC5200.

ВНИМАНИЕ! У транзисторов c945 есть разная цоколевка: ЭКБ и ЭБК. Поэтому перед впайкой нужно проверять мультиметром.
Светодиод обычный, зеленого цвета, именно ЗЕЛЕНОГО! Он здесь не для красоты! И НЕ должен быть сверхъярким. Ну а остальные детали видно на схеме.

И так, Погнали!

Для изготовления усилителя нам понадобятся инструменты :
-паяльник
-олово
-канифоль (желательно жидкий), но можно обойтись и обычным
-ножницы по металлу
-кусачки
-шило
-медицинский шприц, любой
-сверло 0.8-1 мм
-сверло 1.5 мм

-дрель (лучше какую-нибудь мини дрель)
-наждачная бумага
-и мультиметр.

Материалы:
-односторонняя текстолитовая плата размером 10х6 см
-лист тетрадной бумаги
-ручка
-лак для дерева (желательно темного цвета)
-небольшой контейнер
-пищевая сода
-лимонная кислота
-соль.

Список радиодеталей я перечислять не буду, их видно на схеме.
Шаг 1 Готовим плату
И так, нам нужно изготовить плату. Так как лазерного принтера у меня нет (вообще нет ни каково), плату мы будем изготавливать «по старинке»!
Для начала нужно просверлить отверстия на плате для будущих деталей. У кого есть принтер, просто распечатайте эту картинку:


если нет, то тогда нам надо перенести на бумагу разметку для сверловки. Как это сделать вы поймете на фото ниже:


когда будете переводить, не забудьте про размер платы! (10 на 6 см)


вот как то так!
Отрезаем ножницами по металлу нужный нам размер платы.


Теперь прикладываем листок к вырезанной плате и фиксируем скотчем, чтобы не съехала. Далее берем шило и намечаем (по точкам) где будем сверлить.


Можно конечно обойтись без шила и сверлить сразу, но сверло может съехать!


Теперь можно и начать сверловку. Сверлим дырки 0.8 — 1 мм.Как я говорил выше: лучше использовать мини дрель, так как сверло очень тонкое и легко ломается. Я например использую моторчик от шуруповерта.


Дырки под транзисторы Vt8, Vt9 и под провода сверлим сверлом 1.5 мм. Теперь надо зачистить наждачкой нашу плату.


Вот теперь можно и начать рисовать наши дорожки. Берем шприц, стачиваем иголку, чтоб была не острой, набираем лак и вперед!


Подравнивать косяки лучше когда лак уже застынет.


Шаг 2 Травим плату
Для травления плат я использую самый простой и самый дешевый метод:
100 мл перекиси, 4 ч ложки лимонной кислоты и 2 ч ложки соли.


Размешиваем и погружаем нашу плату.


Далее счищаем лак и получается вот так!


Желательно сразу все дорожки покрыть оловом для удобства пайки деталей.


Шаг 3 Пайка и настройка
Паять удобно будет по этой картинке (вид со стороны деталей)


Для удобства с начало впаиваем все мелкие детали, резисторы и прочее.


А потом уже все остальное.


После пайки плату нужно отмыть от канифоли. Отмыть можно спиртом или ацетоном. На крайняк можно даже бензином.


Теперь можно и пробовать включать! При правильной сборке усилитель работает сразу. При первом включении резистор R15 надо вывернуть в сторону максимального сопротивления (меряем прибором). Колонку не подключать! Выходные транзисторы ОБЯЗАТЕЛЬНО на радиатор, через изолирующие прокладки.

И так: включили усилитель, светодиод должен гореть, меряем мультиметром напряжение на выходе. Постоянки нет, значит все хорошо.

Далее нужно установить ток покоя (75-90mA): для этого замкните вход на землю, нагрузку не подключать! На мультиметре поставьте режим 200mV и подсоедините щупы к коллекторам выходных транзисторов. (на фото отмечено красными точками)


Далее медленным вращением резистора R15 нужно установить 40-45 mV.


Выставили, теперь можно подключить динамик и погонять усилитель на небольшой громкости 10-15 мин. Потом опять нужно будет подкорректировать ток покоя.
Ну вот и все, можно наслаждаться!

Вот видео работы усилителя:

Усилители низкой частоты (УНЧ) используют для преобразования слабых сигналов преимущественно звукового диапазона в более мощные сигналы, приемлемые для непосредственного восприятия через электродинамические или иные излучатели звука.

Заметим, что высокочастотные усилители до частот 10… 100 МГц строят по аналогичным схемам, все отличие чаще всего сводится к тому, что значения емкостей конденсаторов таких усилителей уменьшаются во столько раз, во сколько частота высокочастотного сигнала превосходит частоту низкочастотного.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3…12 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20…30 кОм и переменный сопротивлением 100… 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 — 4).

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Двухкаскадный усилитель на транзисторах

Соединив последовательно два простейших каскада усиления (рис. 1), можно получить двухкаскадный УНЧ (рис. 5). Усиление такого усилителя равно произведению коэффициентов усиления отдельно взятых каскадов. Однако получить большое устойчивое усиление при последующем наращивании числа каскадов нелегко: усилитель скорее всего самовозбудится.

Рис. 5. Схема простого двухкаскадного усилителя НЧ.

Новые разработки усилителей НЧ, схемы которых часто приводят на страницах журналов последних лет, преследуют цель достижения минимального коэффициента нелинейных искажений, повышения выходной мощности, расширения полосы усиливаемых частот и т.д.

В то же время, при наладке различных устройств и проведении экспериментов зачастую необходим несложный УНЧ, собрать который можно за несколько минут. Такой усилитель должен содержать минимальное число дефицитных элементов и работать в широком интервале изменения напряжения питания и сопротивления нагрузки.

Схема УНЧ на полевом и кремниевом транзисторах

Схема простого усилителя мощности НЧ с непосредственной связью между каскадами приведена на рис. 6 [Рл 3/00-14]. Входное сопротивление усилителя определяется номиналом потенциометра R1 и может изменяться от сотен Ом до десятков МОм. На выход усилителя можно подключать нагрузку сопротивлением от 2…4 до 64 Ом и выше.

При высокоомной нагрузке в качестве VT2 можно использовать транзистор КТ315. Усилитель работоспособен в диапазоне питающих напряжений от 3 до 15 В, хотя приемлемая работоспособность его сохраняется и при снижении напряжения питания вплоть до 0,6 В.

Емкость конденсатора С1 может быть выбрана в пределах от 1 до 100 мкФ. В последнем случае (С1 =100 мкФ) УНЧ может работать в полосе частот от 50 Гц до 200 кГц и выше.

Рис. 6. Схема простого усилителя низкой частоты на двух транзисторах.

Амплитуда входного сигнала УНЧ не должна превышать 0,5…0,7 В. Выходная мощность усилителя может изменяться от десятков мВт до единиц Вт в зависимости от сопротивления нагрузки и величины питающего напряжения.

Настройка усилителя заключается в подборе резисторов R2 и R3. С их помощью устанавливают напряжение на стоке транзистора VT1, равное 50…60% от напряжения источника питания. Транзистор VT2 должен быть установлен на теплоотводя-щей пластине (радиаторе).

Трекаскадный УНЧ с непосредственной связью

На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.

Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.

В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30…50) к 1. Резистор R1 должен быть 0,1…2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].

Схемы каскадных УНЧ на биполярных транзисторах

На рис. 8 и 9 показаны схемы каскодных УНЧ на биполярных транзисторах. Такие усилители имеют довольно высокий коэффициент усиления Ку. Усилитель на рис. 8 имеет Ку=5 в полосе частот от 30 Гц до 120 кГц [МК 2/86-15]. УНЧ по схеме на рис. 9 при коэффициенте гармоник менее 1% имеет коэффициент усиления 100 [РЛ 3/99-10].

Рис. 8. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 5.

Рис. 9. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 100.

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.

Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2… 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит — напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Двухкаскадные УНЧ с непосредственной связью между каскадами

Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 — 14. Они имеют высокий коэффициент усиления и хорошую стабильность.

Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).

Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.

Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 — вариант 2.

Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.

В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 — 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.

Рис. 14. Двухкаскадный УНЧ с полевым транзистором.

Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).

Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.

Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.

Схемы УНЧ для работы с низкоОмной нагрузкой

Типовые УНЧ, предназначенные для работы на низкоомную нагрузку и имеющие выходную мощность десятки мВт и выше, изображены на рис. 16, 17.

Рис. 16. Простой УНЧ для работы с включением нагрузки с низким сопротивлением.

Электродинамическая головка ВА1 может быть подключена к выходу усилителя, как показано на рис. 16, либо в диагональ моста (рис. 17). Если источник питания выполнен из двух последовательно соединенных батарей (аккумуляторов), правый по схеме вывод головки ВА1 может быть подключен к их средней точки напрямую, без конденсаторов СЗ, С4.

Рис. 17. Схема усилителя низкой частоты с включением низкоомной нагрузки в диагональ моста.

Если вам нужна схема простого лампового УНЧ то такой усилитель можно собрать даже на одной лампе, смотрите у нас на сайте по электронике в соответствующем разделе.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Исправления в публикации: на рис. 16 и 17 вместо диода Д9 установлена цепочка из диодов.

Усилитель на транзисторах, несмотря на свою уже долгую историю, остается излюбленным предметом исследования как начинающих, так и маститых радиолюбителей. И это понятно. Он является непременной составной частью самых массовых и усилителей низкой (звуковой) частоты. Мы рассмотрим, как строятся простейшие усилители на транзисторах.

Частотная характеристика усилителя

В любом теле- или радиоприемнике, в каждом музыкальном центре или усилителе звука можно найти транзисторные усилители звука (низкой частоты — НЧ). Разница между звуковыми транзисторными усилителями и другими видами заключается в их частотных характеристиках.

Звуковой усилитель на транзисторах имеет равномерную частотную характеристику в полосе частот от 15 Гц до 20 кГц. Это означает, что все входные сигналы с частотой внутри этого диапазона усилитель преобразует (усиливает) примерно одинаково. На рисунке ниже в координатах «коэффициент усиления усилителя Ку — частота входного сигнала» показана идеальная кривая частотной характеристики для звукового усилителя.

Эта кривая практически плоская с 15 Гц по 20 кГц. Это означает, применять такой усилитель следует именно для входных сигналов с частотами между 15 Гц и 20 кГц. Для входных сигналов с частотами выше 20 кГц или ниже 15 Гц эффективность и качество его работы быстро уменьшаются.

Вид частотной характеристики усилителя определяется электрорадиоэлементами (ЭРЭ) его схемы, и прежде всего самими транзисторами. Звуковой усилитель на транзисторах обычно собран на так называемых низко- и среднечастотных транзисторах с суммарной полосой пропускания входных сигналов от десятков и сотен Гц до 30 кГц.

Класс работы усилителя

Как известно, в зависимости от степени непрерывности протекания тока на протяжении его периода через транзисторный усилительный каскад (усилитель) различают следующие классы его работы: «А», «B», «AB», «C», «D».

В классе работы ток «А» через каскад протекает на протяжении 100 % периода входного сигнала. Работу каскада в этом классе иллюстрирует следующий рисунок.

В классе работы усилительного каскада «AB» ток через него протекает более чем 50 %, но менее чем 100 % периода входного сигнала (см. рисунок ниже).

В классе работы каскада «В» ток через него протекает ровно 50 % периода входного сигнала, как это иллюстрирует рисунок.

И наконец в классе работы каскада «C» ток через него протекает менее чем 50 % периода входного сигнала.

НЧ-усилитель на транзисторах: искажения в основных классах работы

В рабочей области транзисторный усилитель класса «А» обладает малым уровнем нелинейных искажений. Но если сигнал имеет импульсные выбросы по напряжению, приводящие к насыщению транзисторов, то вокруг каждой «штатной» гармоники выходного сигнала появляются высшие гармоники (вплоть до 11-й). Это вызывает феномен так называемого транзисторного, или металлического, звука.

Если НЧ-усилители мощности на транзисторах имеют нестабилизированное питание, то их выходные сигналы модулируются по амплитуде вблизи частоты сети. Это ведет к жёсткости звука на левом краю частотной характеристики. Различные же способы стабилизации напряжения делают конструкцию усилителя более сложной.

Типовой КПД однотактного усилителя класса А не превышает 20 % из-за постоянно открытого транзистора и непрерывного протекания постоянной составляющей тока. Можно выполнить усилитель класса А двухтактным, КПД несколько повысится, но полуволны сигнала станут более несимметричными. Перевод же каскада из класса работы «А» в класс работы «АВ» повышает вчетверо нелинейные искажения, хотя КПД его схемы при этом повышается.

В усилителях же классов «АВ» и «В» искажения нарастают по мере снижения уровня сигнала. Невольно хочется врубить такой усилитель погромче для полноты ощущений мощи и динамики музыки, но зачастую это мало помогает.

Промежуточные классы работы

У класса работы «А» имеется разновидность — класс «А+». При этом низковольтные входные транзисторы усилителя этого класса работают в классе «А», а высоковольтные выходные транзисторы усилителя при превышении их входными сигналами определенного уровня переходят в классы «В» или «АВ». Экономичность таких каскадов лучше, чем в чистом классе «А», а нелинейные искажения меньше (до 0,003 %). Однако звук у них также «металлический» из-за наличия высших гармоник в выходном сигнале.

У усилителей еще одного класса — «АА» степень нелинейных искажений еще ниже — около 0,0005 %, но высшие гармоники также присутствуют.

Возврат к транзисторному усилителю класса «А»?

Сегодня многие специалисты в области качественного звуковоспроизведения ратуют за возврат к ламповым усилителям, поскольку уровень нелинейных искажений и высших гармоник, вносимых ими в выходной сигнал, заведомо ниже, чем у транзисторов. Однако эти достоинства в немалой степени нивелируются необходимостью согласующего трансформатора между высокоомным ламповым выходным каскадом и низкоомными звуковыми колонками. Впрочем, с трансформаторным выходом может быть сделан и простой усилитель на транзисторах, что будет показано ниже.

Существует и точка зрения, что предельное качество звучания может обеспечить только гибридный лампово-транзисторный усилитель, все каскады которого являются однотактными, не охвачены и работают в классе «А». То есть такой повторитель мощности представляет собой усилитель на одном транзисторе. Схема его может иметь предельно достижимый КПД (в классе «А») не более 50 %. Но ни мощность, ни КПД усилителя не являются показателями качества звуковоспроизведения. При этом особое значение приобретают качество и линейность характеристик всех ЭРЭ в схеме.

Поскольку однотактные схемы получают такую перспективу, мы рассмотрим ниже их возможные варианты.

Однотактный усилитель на одном транзисторе

Схема его, выполненная с общим эмиттером и R-C-связями по входному и выходному сигналам для работы в классе «А», приведена на рисунке ниже.

На ней показан транзистор Q1 структуры n-p-n. Его коллектор через токоограничивающий резистор R3 присоединен к положительному выводу +Vcc, а эмиттер — к -Vcc. Усилитель на транзисторе структуры p-n-p будет иметь такую же схему, но выводы источника питания поменяются местами.

C1 — разделительный конденсатор, посредством которого источник переменного входного сигнала отделяется от источника постоянного напряжения Vcc. При этом С1 не препятствует прохождению переменного входного тока через переход «база — эмиттер транзистора Q1». Резисторы R1 и R2 совместно с сопротивлением перехода «Э — Б» образуют Vcc для выбора рабочей точки транзистора Q1 в статическом режиме. Типичной для этой схемы является величина R2 = 1 кОм, а положение рабочей точки — Vcc/2. R3 является нагрузочным резистором коллекторной цепи и служит для создания на коллекторе переменного напряжения выходного сигнала.

Предположим, что Vcc = 20 В, R2 = 1 кОм, а коэффициент усиления по току h = 150. Напряжение на эмиттере выбираем Ve = 9 В, а падение напряжения на переходе «Э — Б» принимаем равным Vbe = 0,7 В. Эта величина соответствует так называемому кремниевому транзистору. Если бы мы рассматривали усилитель на германиевых транзисторах, то падение напряжения на открытом переходе «Э — Б» было бы равно Vbe = 0,3 В.

Ток эмиттера, примерно равный току коллектора

Ie = 9 B/1 кОм = 9 мА ≈ Ic.

Ток базы Ib = Ic/h = 9 мА/150 = 60 мкА.

Падение напряжения на резисторе R1

V(R1) = Vcc — Vb = Vcc — (Vbe + Ve) = 20 В — 9,7 В = 10,3 В,

R1 = V(R1)/Ib = 10,3 В/60 мкА = 172 кОм.

С2 нужен для создания цепи прохождения переменной составляющей тока эмиттера (фактически тока коллектора). Если бы его не было, то резистор R2 сильно ограничивал бы переменную составляющую, так что рассматриваемый усилитель на биполярном транзисторе имел бы низкий коэффициент усиления по току.

В наших расчетах мы принимали, что Ic = Ib h, где Ib — ток базы, втекающий в нее из эмиттера и возникающий при подаче на базу напряжения смещения. Однако через базу всегда (как при наличии смещения, так и без него) протекает еще и ток утечки из коллектора Icb0. Поэтому реальный ток коллектора равен Ic = Ib h + Icb0 h, т.е. ток утечки в схеме с ОЭ усиливается в 150 раз. Если бы мы рассматривали усилитель на германиевых транзисторах, то это обстоятельство нужно было бы учитывать при расчетах. Дело в том, что имеют существенный Icb0 порядка нескольких мкА. У кремниевых же он на три порядка меньше (около нескольких нА), так что в расчетах им обычно пренебрегают.

Однотактный усилитель с МДП-транзистором

Как и любой усилитель на полевых транзисторах, рассматриваемая схема имеет свой аналог среди усилителей на Поэтому рассмотрим аналог предыдущей схемы с общим эмиттером. Она выполнена с общим истоком и R-C-связями по входному и выходному сигналам для работы в классе «А» и приведена на рисунке ниже.

Здесь C1 — такой же разделительный конденсатор, посредством которого источник переменного входного сигнала отделяется от источника постоянного напряжения Vdd. Как известно, любой усилитель на полевых транзисторах должен иметь потенциал затвора своих МДП-транзисторов ниже потенциалов их истоков. В данной схеме затвор заземлен резистором R1, имеющим, как правило, большое сопротивление (от 100 кОм до 1 Мом), чтобы он не шунтировал входной сигнал. Ток через R1 практически не проходит, поэтому потенциал затвора при отсутствии входного сигнала равен потенциалу земли. Потенциал же истока выше потенциала земли за счет падения напряжения на резисторе R2. Таким образом, потенциал затвора оказывается ниже потенциала истока, что и нужно для нормальной работы Q1. Конденсатор C2 и резистор R3 имеют такое же назначение, как и в предыдущей схеме. Поскольку эта схема с общим истоком, то входной и выходной сигналы сдвинуты по фазе на 180°.

Усилитель с трансформаторным выходом

Третий одноступенчатый простой усилитель на транзисторах, показанный на рисунке ниже, также выполнен по схеме с общим эмиттером для работы в классе «А», но с низкоомным динамиком он связан через согласующий трансформатор.

Первичная обмотка трансформатора T1 является нагрузкой коллекторной цепи транзистора Q1 и развивает выходной сигнал. T1 передает выходной сигнал на динамик и обеспечивает согласование выходного полного сопротивления транзистора с низким (порядка нескольких Ом) сопротивлением динамика.

Делитель напряжения коллекторного источника питания Vcc, собранный на резисторах R1 и R3, обеспечивает выбор рабочей точки транзистора Q1 (подачу напряжения смещения на его базу). Назначение остальных элементов усилителя такое же, как и в предыдущих схемах.

Двухтактный звуковой усилитель

Двухтактный НЧ-усилитель на двух транзисторах расщепляет входной частоты на две противофазные полуволны, каждая из которых усиливается своим собственным транзисторным каскадом. После выполнения такого усиления полуволны объединяются в целостный гармонический сигнал, который и передается на акустическую систему. Подобное преобразование НЧ-сигнала (расщепление и повторное слияние), естественно, вызывает в нем необратимые искажения, обусловленные различием частотных и динамических свойств двух транзисторов схемы. Эти искажения снижают качество звука на выходе усилителя.

Двухтактные усилители, работающие в классе «А», недостаточно хорошо воспроизводят сложные звуковые сигналы, так как в их плечах непрерывно протекает постоянный ток повышенной величины. Это приводит к несимметрии полуволн сигнала, фазовым искажениям и в конечном итоге к потере разборчивости звука. Нагреваясь, два мощных транзистора увеличивают вдвое искажения сигнала в области низких и инфранизких частот. Но все же основным достоинством двухтактной схемы является ее приемлемый КПД и повышенная выходная мощность.

Двухтактная схема усилителя мощности на транзисторах показана на рисунке.

Это усилитель для работы в классе «А», но может быть использован и класс «АВ», и даже «В».

Бестрансформаторный транзисторный усилитель мощности

Трансформаторы, несмотря на успехи в их миниатюризации, остаются все же самыми громоздкими, тяжелыми и дорогими ЭРЭ. Поэтому был найден путь устранения трансформатора из двухтактной схемы путем выполнения ее на двух мощных комплементарных транзисторах разных типов (n-p-n и p-n-p). Большинство современных усилителей мощности используют именно этот принцип и предназначены для работы в классе «В». Схема такого усилителя мощности показана на рисунке ниже.

Оба ее транзистора включены по схеме с общим коллектором (эмиттерного повторителя). Поэтому схема передает входное напряжение на выход без усиления. Если входного сигнала нет, то оба транзистора находятся на границе включенного состояния, но при этом они выключены.

Когда гармонический сигнал подан на вход, его положительная полуволна открывает TR1, но переводит p-n-p транзистор TR2 полностью в режим отсечки. Таким образом, только положительная полуволна усиленного тока протекает через нагрузку. Отрицательная полуволна входного сигнала открывает только TR2 и запирает TR1, так что в нагрузку подается отрицательная полуволна усиленного тока. В результате на нагрузке выделяется полный усиленный по мощности (за счет усиления по току) синусоидальный сигнал.

Усилитель на одном транзисторе

Для усвоения вышеизложенного соберем простой усилитель на транзисторах своими руками и разберемся, как он работает.

В качестве нагрузки маломощного транзистора Т типа BC107 включим наушники с сопротивлением 2-3 кОм, напряжение смещения на базу подадим с высокоомного резистора R* величиной 1 МОм, развязывающий электролитический конденсатор C емкостью от 10 мкФ до 100 мкФ включим в базовую цепь Т. Питать схему будем от батареи 4,5 В/0,3 А.

Если резистор R* не подключен, то нет ни тока базы Ib, ни тока коллектора Ic. Если резистор подключен, то напряжение на базе поднимается до 0,7 В и через нее протекает ток Ib = 4 мкА. Коэффициент усиления транзистора по току равен 250, что дает Ic = 250Ib = 1 мА.

Собрав простой усилитель на транзисторах своими руками, можем теперь его испытать. Подключите наушники и поставьте палец на точку 1 схемы. Вы услышите шум. Ваше тело воспринимает излучение питающей сети на частоте 50 Гц. Шум, услышанный вами из наушников, и является этим излучением, только усиленным транзистором. Поясним этот процесс подробнее. Напряжение переменного тока с частотой 50 Гц подключено к базе транзистора через конденсатор С. Напряжение на базе теперь равно сумме постоянного напряжения смещения (приблизительно 0,7 В), приходящего с резистора R*, и напряжения переменного тока «от пальца». В результате ток коллектора получает переменную составляющую с частотой 50 Гц. Этот переменный ток используется для сдвига мембраны динамиков вперед-назад с той же частотой, а это означает, что мы сможем услышать тон 50 Гц на выходе.

Слушать уровень шума 50 Гц не очень интересно, поэтому можно подключить к точкам 1 и 2 низкочастотные источника сигнала (CD-плеер или микрофон) и слышать усиленную речь или музыку.

Источник питания должен выдавать стабильное или нестабильное двуполярное напряжение питания ±45V и ток 5А. Эта схема УНЧ на транзисторах весьма проста, так как в выходном каскаде используется пара мощных комплементарных транзисторов Дарлингтона . В соответствии с справочными характеристиками эти транзисторы могут коммутировать ток до 5А при напряжении эмиттерном-коллекторном переходе до 100V.

Схема УНЧ представлена на рисунке чуть ниже.

Сигнал требующий усиления через предварительный УНЧ подается на предварительный дифферециальный усилительный каскад построенный на составных транзисторах VT1 и VT2. Использование дифференциальной схемы в усилительном каскаде, снижает шумовые эффекты и обеспечивает работу отрицательной обратной связи. Напряжение ОС поступает на базу транзистора VT2 с выхода усилителя мощности. ОС по постоянному току реализуется через резистор R6. ОС по переменной состовляющей осуществляется через резистор R6, но её величина зависит от номиналов цепочки R7-C3. Но следует учитовать, что слишком сильное увеличение сопротивления R7 приводет к возбуждению.


Режим работы по постоянному току обеспечивается подбором резистора R6. Выходной каскад на транзисторах Дарлингтона VT3 и VT4 работает в классе АВ. Диоды VD1 и VD2 нужны для стабилизации рабочей точки выходного каскада.

Транзистор VT5 ппредназначен для раскачки выходного каскада, на его базу поступает сигнал с выхода дифференциального предварительного усилителя, а так же постоянное напряжение смещения, которое определяет режим работы выходного каскада по постоянному току.

Все конденсаторы схемы должны быть рассчитаны на максимальное постоянное напряжение не ниже 100V. Транзисторы выходного каскада рекомендуется закрепить на радиаторы площадью не меньше 200 см в квадрате

Рассмотренная схема простого двухкаскадного усилителя разработана для работы с наушниками или для использования в простых устройствах с функцией предварительного усилителя.

Первый транзистор усилителя подсоединен по схеме с общим эмиттером, а второй транзистор с общим коллектором. Первый каскад предназначен для базового усиления сигнала по напряжению, а второй каскада усиливает уже по мощности.

Малое выходное сопротивление второго каскада двухкаскадного усилителя, называемого эмиттерным повторителем, позволяет подсоединять не только наушники с большим сопротивлением, но и другие виды преобразователей акустического сигнала.

Эта тоже двухкаскадная схема УНЧ выполненная на двух транзисторах, но уже противоположной проводимости. Ее главная особенность в том, что связь между каскадами непосредственная. Охваченная ООС через сопротивление R3 напряжение смещения со второго каскада проходит на базу первого транзистора.

Конденсатор СЗ, шунтирует резистор R4, уменьшает ООС по переменному току, тем самым уменьшающая усиление VT2. Путем подбора номинала резистора R3 задают режим работы транзисторов.

УМЗЧ на двух транзисторах

Этот достаточно легкий усилитель мощности звуковой частоты (УМЗЧ) можно спаять всего на двух транзисторах. При напряжении питания 42В постоянного тока выходная мощность усилителя достигает 0,25 Вт при нагрузке 4 Ом. Потребляемый ток всего 23 mA. Усилитель работает в однотактном режиме «А».

Напряжение низкой частоты от источника сигнала подходит к регулятору громкости R1. Далее через защитный резистор R3 и конденсатор C1 сигнал оказывается на базе биполярного транзистора VT1 включенного по схеме с общим эмиттером. Усиленный сигнал через R8 подается на затвор мощного полевого транзистора VT2 включенный по схеме с общим истоком и его нагрузкой служит первичная обмотка понижающего трансформатора К вторичной обмотке трансформатора можно подключить динамическую головку или акустическую систему.

В обоих транзисторных каскадах присутствует местная отрицательная обратная связь по постоянному и переменному току, так и общей цепью ООС.

В случае увеличения напряжения на затворе полевого транзистора сопротивление сток исток его канала уменьшается и напряжение на его стоке уменьшается. Это влияет и на уровень сигнала поступающий на биполярный транзистор, что снижает напряжения затвор-исток.

Совместно с цепями местной отрицательной обратной связи, таким образом, стабилизируются режимы работы обоих транзисторов даже в случае незначительного изменения питающего напряжения. Коэффициент усиления зависит от соотношения сопротивлений резисторов R10 и R7. Стабилитрон VD1 предназначен для предотвращения выхода полевого транзистора из строя. Питание усилительного каскада на VT1 производится через RC фильтр R12C4. Конденсатор C5 блокировочный по цепи питания.

Усилитель может быть собран на печатной плате размерами 80×50 мм,на ней расположены все элементы кроме понижающего трансформатора и динамической головки


Наладку схемы усилителя осуществляют при том напряжении питания, при котором он будет работать. Для тонкой настройки рекомендуется использовать осциллограф, щуп которого подключают к выводу стока полевого транзистора. Подав на вход усилителя синусоидальный сигнал частотой 100 … 4000 Гц, с помощью регулировки подстроечного резистора R5 добиваются того, чтобы отсутствовали заметные искажения синусоиды при как можно большем размахе амплитуды сигнала на выводе стока транзистора.

Выходная мощность усилителя на полевом транзисторе небольшая, всего 0,25Вт, напряжение питания от 42В до 60В. Сопротивление динамической головки 4 Ома.

Аудио сигнал через переменное сопротивление R1, затем R3 и разделительную емкость C1 поступает на усилительный каскад на биполярном транзисторе по схеме с общим эмиттером. Далее с этого транзистора усиленный сигнал через сопротивление R10 проходит на полевой транзистор.

Первичная обмотка трансформатора является нагрузкой для полевого транзистора, а к вторичной обмотки подключен четырех омная динамическая головка. Соотношением сопротивлений R10 и R7 задаем степень усиления по напряжению. С целью защиты униполярного транзистора в схему добавлен стабилитрон VD1.

Все номиналы деталей имеются на схеме. Трансформатор можно использовать типа ТВК110ЛМ или ТВК110Л2, от блока кадровой развертки старого телевизора или аналогичный.

УМЗЧ по схеме Агеева

Наткнулся на эту схему в старом выпуске журнала радио, впечатления от нее остались самыми приятными,во первых схема настолько проста, что ее сможет собрать и начинающий радиолюбитель,во вторых при условии рабочих компонентов и правильной сборки наладки она не требует.

Если вас заинтересовала эта схема, то остальные подробности по ее сборке вы сможете найти в журнале радио №8 за 1982 год.

Высококачественные транзисторные УНЧ

Простой усилитель класса А — Усилители на транзисторах — Звуковоспроизведение

 

Николай Трошин

Данная статья является продолжением работы на тему использования усилителей работающих в А классе для высококачественного звуко-усиления. 
Представляю на Ваше рассмотрение, хорошо отработанную схему усилителя на кремниевых транзисторах.
Неоспоримым преимуществом кремния — является способность работать при гораздо более высоких температурах (по сравнению с германием). При хорошем тепловом контакте транзистора с радиатором, можно считать допустимой температуру радиатора 90…95 град. 

 

Понятно, что при столь высокой разнице температур радиатора и окружающей среды, теплообмен происходит очень эффективно.
Поэтому при одинаковых площадях радиаторов выходных транзисторов, на кремнии можно получить примерно в 2 раза больше мощности по сравнению с германием. 
Большой ассортимент  кремниевых средне и высокочастотных транзисторов большой мощности, позволяет построить высококачественный усилитель  А класса при совсем простой схеме.

Данная схема обеспечивает выходную мощность 20 ватт на нагрузке 4 ом. Диапазон рабочих частот усилителя 20…25000 Гц.
В качестве транзистора VT1 здесь можно использовать КТ208Д, КТ209Д, КТ361Г, Е, КТ3107Б, Г, И, К. В качестве транзистора VT2 можно использовать транзисторы КТ815, КТ801, П701, транзистор VT3 КТ814, VT4 — КТ818БМ, ГМ, транзистор VT5 — КТ819БМ, ГМ.
Схема может работать без подбора транзисторов по коэффициенту усиления, однако поскольку она содержит всего 2 каскада усиления, желательно иметь коэффициент усиления транзистора VT1 — не менее 150, транзисторов VT2, VT5 — не менее 50, транзистора VT4 — не менее 80.
Оценить коэффициент усиления транзистора не сложно. Достаточно включить испытуемый транзистор по вот такой схеме (для мощных транзисторов).

Резистор R1 обеспечивает ток в базу примерно 1 ма. Измерительный миллиамперметр измеряет ток коллектора (я использовал стрелочный тестер с пределом измерений 300 ма). Отношение тока коллектора к базовому току — будет коэффициентом усиления транзистора.
Для транзисторов средней мощности, надо уменьшить базовый ток в 10 раз (R1 36k), а для транзистора малой мощности, базовый ток уменьшаем в 100 раз (R1 360k). В качестве источника питания, я использовал 3 щелочные (алкалиновые) батарейки размера АА, которые просто спаял между собой хорошо разогретым паяльником, с использованием не толстого провода (паять надо быстро, чтобы не перегреть батарейку).

При использовании нагрузки 8 ом, напряжение питания нужно увеличить до 39…40 вольт, резистор R10 до 0,25 Ом.
Настройка усилителя сводится к установке половины напряжения питания на коллекторе VT5.
Усилитель потребляет значительную мощность, примерно 100 ватт на каждый канал. Поэтому источник питания должен быть серьезным.
Силовой трансформатор для блока питания, нужно применять мощностью не менее 250 ватт, либо использовать два однотипных трансформатора (на каждый канал) с такой же общей мощностью.
Схема источника питания показана на рисунке ниже.

Вторичная обмотка силового трансформатора должна иметь выходное напряжение ХХ 26 — 27 вольт. Такая схема должна быть на каждый канал усилителя, причем при нагрузке 4 ом, возможно лучше сразу поставить конденсаторы по 22000 мкФ.
Диодный мост с номинальным током не менее 10 А либо 4 диода на 10 А. Большая емкость конденсаторов объясняется значительным током потребления, в том числе и в режиме покоя усилителя, когда пульсации особенно заметны.
Применять электронные фильтры или стабилизаторы я не стал, поскольку они иногда являются причиной самовозбуждения усилителя и источником помех и наводок.

Детали для усилителя:
Резисторы могут быть любой мощности не менее 0.125 ватт за исключением R9 5 ватт, R10 2 ватт. Очень важен номинал резистора R10. От этого зависит правильный режим работы усилителя.
Конденсатор С1 лучше поставить пленочный, С4 пленочный или слюдяной.
Выходные транзисторы КТ818, КТ819 обязательно с буквой «М» в конце (в металлическом корпусе), БМ, ГМ. Радиаторы под них я использовал ребристые размером 120*170, толщиной 35 мм. Если радиаторы будут меньше, то необходим принудительный обдув.
На КТ815 небольшой радиатор-пластинка 2-3 кв. см. На П701 радиатор не нужен.
На резисторе R9 рассеивается значительная мощность. При наличии осциллографа и генератора можно попробовать ее уменьшить. Подаем сигнал на вход,на выход подключаем эквивалент нагрузки и осциллограф. Резистором R4 добиваемся симметричного ограничения максимально возможной амплитуды сигнала. Далее увеличивая резистор R9 добиваемся начала ограничения сигнала сверху. Выпаиваем и измеряем номинал. После этого устанавливаем резистор на 25…30% меньше.
При желании поэкспериментировать можно собрать совсем упрощенную схему.

Транзисторы здесь должны иметь больший К ус. Первый не менее 200, второй не менее 100.
Резистор R7 мощностью не менее 50 ватт. При отсутствии такого можно использовать электрический чайник и утюг по 2000 ватт на220в, соединенные параллельно, либо 2 ТЭН на 2000 ватт. — получается сопротивление около 10 ом. Кстати это можно использовать и как эквивалент нагрузки.
Данная схема позволяет получить 4…5 ватт (потреблять будет все равно около 90 ватт.) На коллекторе VT2 нужно выставить 12 вольт.

Удачи Вам в творчестве и конструировании!

   

Усилитель на КТ805БМ своими руками

При нынешнем повсеместном внедрении микросхем в радиотехнике все уже просто забыли о том, что усилители можно собирать на базе транзисторов. А ведь этот вариант не только до гениальности простой, но и недорогой, а также гибко настраиваемый. При достаточном опыте, знаниях и различных подходах к проектированию можно создать по-настоящему уникальные схемы.

Принцип работы биполярного транзистора, по сути, и предполагает его работу в качестве простейшего усилителя сигнала:

  • Требуемый уровень напряжения прикладывается к переходу эмиттер-коллектор.
  • Управление пропускной способностью осуществляется с помощью базы.
  • При этом напряжение, прикладываемое к базе, может быть значительно меньшим, чем к эмиттеру-коллектору, отсюда и возникает эффект усиления. Колебания малых импульсов можно превратить в более мощные.

 

Транзистор КТ805БМ

Если вам нужен мощный и простой усилитель «за копейки», то его можно собрать на транзисторе. В качестве основы мы рассмотрим достаточно популярную, но от этого не менее функциональную модель отечественных транзисторов — КТ805БМ.

Она отличается следующими свойствами:

  • Миниатюрные размеры (корпус ТО-220, вес – 2,5 грамма).
  • Максимальное напряжение на переходе коллектор-эмиттер – 60 В.
  • При этом ток коллектора может достигать 5 А.
  • Допустимая мощность нагрузки – до 30 Вт.
  • Граничная частота – 20 МГц (для звуковых колебаний отлично подойдёт).
  • Коэффициент передачи тока (общий эмиттер) – минимум 15.

 

Усилитель на КТ805БМ

Принцип «проще и надёжнее дальше некуда».

Рис. 1. Схема устройства

 

Напряжение можно поменять в соответствии с питанием вашего динамика. А резистор можно использовать переменный, таким образом, усилитель можно будет еще и регулировать!

Сборка может быть произведена «на весу» или с применением макетной платы. При желании и наличии достаточно времени, можно озадачиться даже печатной платой.

На вход можно подключить любой плеер (из 3,5 мм мини-джека) напрямую.

 

Более сложный вариант

Если функционала первой схемы вам недостаточно, можно перейти к более сложным решениям на базе отдельных комплектующих.

Например, усилитель уже может выглядеть вот так.

Рис. 2. Схема усилителя

 

Все номиналы и модели обозначены непосредственно на схеме. Из пояснений:

  • VT1 лучше взять сразу парой (сборкой).
  • VT4 и 9 необходимо закрепить на радиатор (лучше всего при помощи термопасты), можно даже на общий.
  • За ток смещения отвечают резисторы R2 и R5. При необходимости можно подобрать их значения.

Автор: RadioRadar

Самый простой усилитель звука на одном транзисторе. Усилитель низкой частоты на мощных транзисторах

Усилители низкой частоты (УНЧ) используют для преобразования слабых сигналов преимущественно звукового диапазона в более мощные сигналы, приемлемые для непосредственного восприятия через электродинамические или иные излучатели звука.

Заметим, что высокочастотные усилители до частот 10… 100 МГц строят по аналогичным схемам, все отличие чаще всего сводится к тому, что значения емкостей конденсаторов таких усилителей уменьшаются во столько раз, во сколько частота высокочастотного сигнала превосходит частоту низкочастотного.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3…12 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20…30 кОм и переменный сопротивлением 100… 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 — 4).

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Двухкаскадный усилитель на транзисторах

Соединив последовательно два простейших каскада усиления (рис. 1), можно получить двухкаскадный УНЧ (рис. 5). Усиление такого усилителя равно произведению коэффициентов усиления отдельно взятых каскадов. Однако получить большое устойчивое усиление при последующем наращивании числа каскадов нелегко: усилитель скорее всего самовозбудится.


Рис. 5. Схема простого двухкаскадного усилителя НЧ.

Новые разработки усилителей НЧ, схемы которых часто приводят на страницах журналов последних лет, преследуют цель достижения минимального коэффициента нелинейных искажений, повышения выходной мощности, расширения полосы усиливаемых частот и т.д.

В то же время, при наладке различных устройств и проведении экспериментов зачастую необходим несложный УНЧ, собрать который можно за несколько минут. Такой усилитель должен содержать минимальное число дефицитных элементов и работать в широком интервале изменения напряжения питания и сопротивления нагрузки.

Схема УНЧ на полевом и кремниевом транзисторах

Схема простого усилителя мощности НЧ с непосредственной связью между каскадами приведена на рис. 6 [Рл 3/00-14]. Входное сопротивление усилителя определяется номиналом потенциометра R1 и может изменяться от сотен Ом до десятков МОм. На выход усилителя можно подключать нагрузку сопротивлением от 2…4 до 64 Ом и выше.

При высокоомной нагрузке в качестве VT2 можно использовать транзистор КТ315. Усилитель работоспособен в диапазоне питающих напряжений от 3 до 15 В, хотя приемлемая работоспособность его сохраняется и при снижении напряжения питания вплоть до 0,6 В.

Емкость конденсатора С1 может быть выбрана в пределах от 1 до 100 мкФ. В последнем случае (С1 =100 мкФ) УНЧ может работать в полосе частот от 50 Гц до 200 кГц и выше.


Рис. 6. Схема простого усилителя низкой частоты на двух транзисторах.

Амплитуда входного сигнала УНЧ не должна превышать 0,5…0,7 В. Выходная мощность усилителя может изменяться от десятков мВт до единиц Вт в зависимости от сопротивления нагрузки и величины питающего напряжения.

Настройка усилителя заключается в подборе резисторов R2 и R3. С их помощью устанавливают напряжение на стоке транзистора VT1, равное 50…60% от напряжения источника питания. Транзистор VT2 должен быть установлен на теплоотводя-щей пластине (радиаторе).

Трекаскадный УНЧ с непосредственной связью

На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.


Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.

В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30…50) к 1. Резистор R1 должен быть 0,1…2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].

Схемы каскадных УНЧ на биполярных транзисторах

На рис. 8 и 9 показаны схемы каскодных УНЧ на биполярных транзисторах. Такие усилители имеют довольно высокий коэффициент усиления Ку. Усилитель на рис. 8 имеет Ку=5 в полосе частот от 30 Гц до 120 кГц [МК 2/86-15]. УНЧ по схеме на рис. 9 при коэффициенте гармоник менее 1% имеет коэффициент усиления 100 [РЛ 3/99-10].

Рис. 8. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 5.

Рис. 9. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 100.

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.


Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2… 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит — напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Двухкаскадные УНЧ с непосредственной связью между каскадами

Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 — 14. Они имеют высокий коэффициент усиления и хорошую стабильность.


Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).


Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.


Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 — вариант 2.

Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.

В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 — 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.


Рис. 14. Двухкаскадный УНЧ с полевым транзистором.

Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).

Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.


Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.

Схемы УНЧ для работы с низкоОмной нагрузкой

Типовые УНЧ, предназначенные для работы на низкоомную нагрузку и имеющие выходную мощность десятки мВт и выше, изображены на рис. 16, 17.

Рис. 16. Простой УНЧ для работы с включением нагрузки с низким сопротивлением.

Электродинамическая головка ВА1 может быть подключена к выходу усилителя, как показано на рис. 16, либо в диагональ моста (рис. 17). Если источник питания выполнен из двух последовательно соединенных батарей (аккумуляторов), правый по схеме вывод головки ВА1 может быть подключен к их средней точки напрямую, без конденсаторов СЗ, С4.

Рис. 17. Схема усилителя низкой частоты с включением низкоомной нагрузки в диагональ моста.

Если вам нужна схема простого лампового УНЧ то такой усилитель можно собрать даже на одной лампе, смотрите у нас на сайте по электронике в соответствующем разделе.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Исправления в публикации: на рис. 16 и 17 вместо диода Д9 установлена цепочка из диодов.

После освоения азов электроники, начинающий радиолюбитель готов паять свои первые электронные конструкции. Усилители мощности звуковой частоты, как правило самые повторяемые конструкции. Схем достаточно много, каждая отличается своими параметрами и конструкцией. В этой статье будут рассмотрены несколько простейших и полностью рабочих схем усилителей, которые успешно могут быть повторены любым радиолюбителем. В статье не использованы сложные термины и расчеты, все максимально упрощено, чтобы не возникло дополнительных вопросов.

Начнем с более мощной схемы.
Итак, первая схема выполнена на известной микросхеме TDA2003. Это монофонический усилитель с выходной мощностью до 7 Ватт на нагрузку 4 Ом. Хочу сказать, что стандартная схема включения этой микросхемы содержит малое количество компонентов, но пару лет назад мною была придумана иная схема на этой микросхеме. В этой схеме количество комплектующих компонентов сведено к минимуму, но усилитель не потерял свои звуковые параметры. После разработки данной схемы, все свои усилители для маломощных колонок стал делать именно на этой схеме.

Схема представленного усилителя имеет широкий диапазон воспроизводимых частот, диапазон питающих напряжений от 4,5 до 18 вольт (типовое 12-14 вольт). Микросхему устанавливают на небольшой теплоотвод, поскольку максимальная мощность достигает до 10 Ватт.

Микросхема способна работать на нагрузку 2 Ом, это значит, что к выходу усилителя можно подключать 2 головки с сопротивлением 4 Ом.
Входной конденсатор можно заменить на любой другой, с емкостью от 0,01 до 4,7 мкФ (желательно от 0,1 до 0,47 мкФ), можно использовать как пленочные, так и керамические конденсаторы. Все остальные компоненты желательно не заменять.

Регулятор громкости от 10 до 47 кОм.
Выходная мощность микросхемы позволяет применять его в маломощных АС для ПК. Очень удобно использовать микросхему для автономных колонок к мобильному телефону и т.п.
Усилитель работает сразу после включения, в дополнительной наладке не нуждается. Советуется минус питания дополнительно подключить к теплоотводу. Все электролитические конденсаторы желательно использовать на 25 Вольт.

Вторая схема собрана на маломощных транзисторах, и больше подойдет в качестве усилителя для наушников.


Это наверное самая качественная схема такого рода, звук чистый, чувствуются весь частотный спектр. С хорошими наушниками, такое ощущение, что у вас полноценный сабвуфер.

Усилитель собран всего на 3-х транзисторах обратной проводимости, как самый дешевый вариант, были использованы транзисторы серии КТ315, но их выбор достаточно широк.

Усилитель может работать на низкоомную нагрузку, вплоть до 4-х Ом, что дает возможность, использовать схему для усиления сигнала плеера, радиоприемника и т.п. В качестве источника питания использована батарейка типа крона с напряжением 9 вольт.
В окончательном каскаде тоже применены транзисторы КТ315. Для повышения выходной мощности можно применить транзисторы КТ815, но тогда придется увеличить напряжение питания до 12 вольт. В этом случае мощность усилителя будет достигать до 1 Ватт. Выходной конденсатор может иметь емкость от 220 до 2200 мкФ.
Транзисторы в этой схеме не нагреваются, следовательно, какое-либо охлаждение не нужно. При использовании более мощных выходных транзисторов, возможно, понадобятся небольшие теплоотводы для каждого транзистора.

И наконец — третья схема. Представлен не менее простой, но проверенный вариант строения усилителя. Усилитель способен работать от пониженного напряжения до 5 вольт, при таком случае выходная мощность УМ будет не более 0,5 Вт, а максимальная мощность при питании 12 вольт достигает до 2-х Ватт.


Выходной каскад усилителя построен на отечественной комплементарной паре. Регулируют усилитель подбором резистора R2. Для этого желательно использовать подстроечный регулятор на 1кОм. Медленно вращаем регулятор до тех пор, пока ток покоя выходного каскада не будет 2-5 мА.

Усилитель не обладает высокой входной чувствительностью, поэтому желательно перед входом применить предварительный усилитель.


Немало важную роль в схеме играет диод, он тут для стабилизации режима выходного каскада.
Транзисторы выходного каскада можно заменить на любую комплементарную пару соответствующих параметров, например КТ816/817. Усилитель может питать маломощные автономные колонки с сопротивлением нагрузки 6-8 Ом.

Список радиоэлементов
Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Усилитель на микросхеме TDA2003
Аудио усилитель

TDA2003

1 Поиск в Чип и Дип В блокнот
С1 47 мкФ х 25В 1 Поиск в Чип и Дип В блокнот
С2 Конденсатор 100 нФ 1 Пленочный Поиск в Чип и Дип В блокнот
С3 Электролитический конденсатор 1 мкФ х 25В 1 Поиск в Чип и Дип В блокнот
С5 Электролитический конденсатор 470 мкФ х 16В 1 Поиск в Чип и Дип В блокнот
R1 Резистор

100 Ом

1 Поиск в Чип и Дип В блокнот
R2 Переменный резистор 50 кОм 1 От 10 кОм до 50 кОм Поиск в Чип и Дип В блокнот
Ls1 Динамическая головка 2-4 Ом 1 Поиск в Чип и Дип В блокнот
Усилитель на транзисторах схема №2
VT1-VT3 Биполярный транзистор

КТ315А

3 Поиск в Чип и Дип В блокнот
С1 Электролитический конденсатор 1 мкФ х 16В 1 Поиск в Чип и Дип В блокнот
С2, С3 Электролитический конденсатор 1000 мкФ х 16В 2 Поиск в Чип и Дип В блокнот
R1, R2 Резистор

100 кОм

2 Поиск в Чип и Дип В блокнот
R3 Резистор

47 кОм

1 Поиск в Чип и Дип В блокнот
R4 Резистор

1 кОм

1 Поиск в Чип и Дип В блокнот
R5 Переменный резистор 50 кОм 1

В режиме усиления транзистор усилитель работает в схемах приемников и усилителях звуковой частоты (УЗЧ и УНЧ). При работе применяются малые токи в базовой цепи, управляющие большими токами в коллекторе.В этом заключается и отличие режима усиления от режима переключения, который лишь открывает или закрывает транзистор в зависимости от Uб на базе.

В качестве опыта для начинающего радиолюбителя соберем самый простой усилитель транзистор, в соответствии с предлагаемой схемой и рисунком.


К коллектору VT1 подсоединим высокоомный телефон BF2 , между базой и минусом блока питания подключим сопротивление , и развязывающую емкость конденсатора C св .

Конечно, сильного усиления звукового сигнала от такой схемы мы не получим, но услышать звук в телефоне BF1 все таки можно, т.к мы собрали ваш первый усилительный каскад.

Усилительным каскадом называют схему транзистора с резисторами, конденсаторами и другими радиокомпонентами, обеспечивающими последнему условия работы как транзистор усилитель. Кроме того сразу скажем о том, что усилительные каскады можно соединять между собой и получать многокаскадные усилительные устройства.

При подключение источника питания к схеме, на базу транзистора через сопротивление Rб идет небольшое отрицательное напряжение порядка 0,1 – 0,2В, называемое напряжением смещения. Оно немного приоткрывает транзистор, т.е снижает высоту потенциальных барьеров, и через переходы полупроводникового прибора начинает течь небольшой ток, который держит усилитель в дежурном режиме, из которого он способен мгновенно выйти, как только на входе появится входной сигнал.

Без присутствия напряжения смещения эмиттерный переход будет заперт и, как диод, будет не пропускать положительные полупериоды входного напряжения, а усиленный сигнал будет искажаться.

Если на вход усилителя подсоединить еще один телефон и применить его в роли микрофона, то он будет преобразовывать возникающие на его мембране звуковые колебания в переменное напряжение звукового диапазона, которое через емкость Ссв будет следовать на базу транзистора.

Конденсатор Ссв является связующим компонентом между телефоном и базой. Он отлично пропускает напряжение ЗЧ, но создает серьезную преграду постоянному току идущему из базовой цепи к телефону. Кроме того телефон обладает внутренним сопротивлением порядка 1600 Ом, поэтому без этой емкости конденсатора база через внутреннее сопротивление соединялась бы с эмиттером и никакого усиления не было бы.

Теперь, если начать говорить в телефон-микрофон, то эмиттерной цепи появятся колебания тока телефона Iтлф, которые и будут управлять большим током возникающем в коллекторе и эти усиленные колебания, преобразованные вторым телефоном в обычный звук, мы и будем слышать.

Процесс усиления сигнала можно представить так. В момент отсутствия напряжения входного сигнала Uвх, в цепях базы и коллектора протекают незначительные токи (прямые участки диаграммы а, б, в), заданные приложенным напряжением блока питания, напряжением смещения и усилительными характеристиками биполярного транзистора.

Как только на базу поступает входной сигнал (правая часть диаграммы а), то в зависимости от него начнут изменяться и токи в цепях трехвыводного полупроводникового прибора (правая часть диаграммы б, в).

В отрицательной полуволне сигнала, когда Uвх и напряжение БП суммируются на базе — токи протекающие через транзистор возрастают.

При плюсовой волне минусовое напряжение на базе снижается, как и протекающие токи. Вот таким образом и работает транзистор усилитель.

Если на выход подключить не телефон а резистор, то появляющееся на нем напряжение переменной составляющей усиленного сигнала можно подвести ко входной цепи второго каскада для дополнительного усиления. Один прибор способен усиливать сигнал в 30 — 50 раз.

По этому же принципу работают VT противоположной структуры n-p-n. Но для них полярность включения блока питания необходимо поменять на противоположную.

Для работы транзистора усилителя на его базу, относительно эмиттера, вместе с напряжением входного сигнала обязательно должно поступать постоянное напряжение смещения, открывающее полупроводниковый прибор.

Для германиевых VT открывающее напряжение должно быть не более 0,2 вольта, а для кремниевых 0,7 вольта. Напряжение смещения на базу не подают только тогда, когда эмиттерный переход транзистора применяют для детектирования сигнала, но об этом мы поговорим позднее.

Усилитель низкой частоты (УНЧ) является составной частью большинства радиотехнических устройств как то телевизора, плеера, радиоприемника и различных приборов бытового назначения. Рассмотрим две простые схемы двухкаскадного УНЧ на .

Первый вариант УНЧ на транзисторах

В первом варианте усилитель построен на кремниевых транзисторах n-p-n проводимости. Входной сигнал поступает через переменный резистор R1, который в свою очередь является нагрузочным сопротивлением для схемы источника сигнала. подсоединены к коллекторной электроцепи транзистора VT2 усилителя.

Настройка усилителя первого варианта сводится к подбору сопротивлений R2 и R4. Величину сопротивлений нужно подобрать такой, чтобы миллиамперметр, подключенный в коллекторную цепь каждого транзистора, показывал ток в районе 0,5…0,8 мА. По второй схеме необходимо также выставить коллекторный ток второго транзистора путем подбора сопротивления резистора R3.

В первом варианте возможно применить транзисторы марки КТ312, или их зарубежные аналоги, однако при этом необходимо будет выставить правильное смещение напряжения транзисторов путем подбора сопротивлений R2, R4. Во втором варианте в свою очередь, возможно применить кремневые транзисторы марки КТ209, КТ361, или зарубежные аналоги. При этом выставить режимы работы транзисторов можно путем изменения сопротивления R3.

В коллекторную электроцепь транзистора VT2 (обоих усилителей) взамен наушников возможно подключить динамик с высоким сопротивлением. Если же необходимо получить более мощное усиление звука, то можно собрать усилитель на , который обеспечивает усиление до 15 Вт.

Источник питания должен выдавать стабильное или нестабильное двуполярное напряжение питания ±45V и ток 5А. Эта схема УНЧ на транзисторах весьма проста, так как в выходном каскаде используется пара мощных комплементарных транзисторов Дарлингтона . В соответствии с справочными характеристиками эти транзисторы могут коммутировать ток до 5А при напряжении эмиттерном-коллекторном переходе до 100V.

Схема УНЧ представлена на рисунке чуть ниже.

Сигнал требующий усиления через предварительный УНЧ подается на предварительный дифферециальный усилительный каскад построенный на составных транзисторах VT1 и VT2. Использование дифференциальной схемы в усилительном каскаде, снижает шумовые эффекты и обеспечивает работу отрицательной обратной связи. Напряжение ОС поступает на базу транзистора VT2 с выхода усилителя мощности. ОС по постоянному току реализуется через резистор R6. ОС по переменной состовляющей осуществляется через резистор R6, но её величина зависит от номиналов цепочки R7-C3. Но следует учитовать, что слишком сильное увеличение сопротивления R7 приводет к возбуждению.

Режим работы по постоянному току обеспечивается подбором резистора R6. Выходной каскад на транзисторах Дарлингтона VT3 и VT4 работает в классе АВ. Диоды VD1 и VD2 нужны для стабилизации рабочей точки выходного каскада.

Транзистор VT5 ппредназначен для раскачки выходного каскада, на его базу поступает сигнал с выхода дифференциального предварительного усилителя, а так же постоянное напряжение смещения, которое определяет режим работы выходного каскада по постоянному току.

Все конденсаторы схемы должны быть рассчитаны на максимальное постоянное напряжение не ниже 100V. Транзисторы выходного каскада рекомендуется закрепить на радиаторы площадью не меньше 200 см в квадрате

Рассмотренная схема простого двухкаскадного усилителя разработана для работы с наушниками или для использования в простых устройствах с функцией предварительного усилителя.

Первый транзистор усилителя подсоединен по схеме с общим эмиттером, а второй транзистор с общим коллектором. Первый каскад предназначен для базового усиления сигнала по напряжению, а второй каскада усиливает уже по мощности.


Малое выходное сопротивление второго каскада двухкаскадного усилителя, называемого эмиттерным повторителем, позволяет подсоединять не только наушники с большим сопротивлением, но и другие виды преобразователей акустического сигнала.

Эта тоже двухкаскадная схема УНЧ выполненная на двух транзисторах, но уже противоположной проводимости. Ее главная особенность в том, что связь между каскадами непосредственная. Охваченная ООС через сопротивление R3 напряжение смещения со второго каскада проходит на базу первого транзистора.


Конденсатор СЗ, шунтирует резистор R4, уменьшает ООС по переменному току, тем самым уменьшающая усиление VT2. Путем подбора номинала резистора R3 задают режим работы транзисторов.

УМЗЧ на двух транзисторах


Этот достаточно легкий усилитель мощности звуковой частоты (УМЗЧ) можно спаять всего на двух транзисторах. При напряжении питания 42В постоянного тока выходная мощность усилителя достигает 0,25 Вт при нагрузке 4 Ом. Потребляемый ток всего 23 mA. Усилитель работает в однотактном режиме «А».

Напряжение низкой частоты от источника сигнала подходит к регулятору громкости R1. Далее через защитный резистор R3 и конденсатор C1 сигнал оказывается на базе биполярного транзистора VT1 включенного по схеме с общим эмиттером. Усиленный сигнал через R8 подается на затвор мощного полевого транзистора VT2 включенный по схеме с общим истоком и его нагрузкой служит первичная обмотка понижающего трансформатора К вторичной обмотке трансформатора можно подключить динамическую головку или акустическую систему.

В обоих транзисторных каскадах присутствует местная отрицательная обратная связь по постоянному и переменному току, так и общей цепью ООС.

В случае увеличения напряжения на затворе полевого транзистора сопротивление сток исток его канала уменьшается и напряжение на его стоке уменьшается. Это влияет и на уровень сигнала поступающий на биполярный транзистор, что снижает напряжения затвор-исток.

Совместно с цепями местной отрицательной обратной связи, таким образом, стабилизируются режимы работы обоих транзисторов даже в случае незначительного изменения питающего напряжения. Коэффициент усиления зависит от соотношения сопротивлений резисторов R10 и R7. Стабилитрон VD1 предназначен для предотвращения выхода полевого транзистора из строя. Питание усилительного каскада на VT1 производится через RC фильтр R12C4. Конденсатор C5 блокировочный по цепи питания.

Усилитель может быть собран на печатной плате размерами 80×50 мм,на ней расположены все элементы кроме понижающего трансформатора и динамической головки

Наладку схемы усилителя осуществляют при том напряжении питания, при котором он будет работать. Для тонкой настройки рекомендуется использовать осциллограф, щуп которого подключают к выводу стока полевого транзистора. Подав на вход усилителя синусоидальный сигнал частотой 100 … 4000 Гц, с помощью регулировки подстроечного резистора R5 добиваются того, чтобы отсутствовали заметные искажения синусоиды при как можно большем размахе амплитуды сигнала на выводе стока транзистора.

Выходная мощность усилителя на полевом транзисторе небольшая, всего 0,25Вт, напряжение питания от 42В до 60В. Сопротивление динамической головки 4 Ома.

Аудио сигнал через переменное сопротивление R1, затем R3 и разделительную емкость C1 поступает на усилительный каскад на биполярном транзисторе по схеме с общим эмиттером. Далее с этого транзистора усиленный сигнал через сопротивление R10 проходит на полевой транзистор.


Первичная обмотка трансформатора является нагрузкой для полевого транзистора, а к вторичной обмотки подключен четырех омная динамическая головка. Соотношением сопротивлений R10 и R7 задаем степень усиления по напряжению. С целью защиты униполярного транзистора в схему добавлен стабилитрон VD1.

Все номиналы деталей имеются на схеме. Трансформатор можно использовать типа ТВК110ЛМ или ТВК110Л2, от блока кадровой развертки старого телевизора или аналогичный.

УМЗЧ по схеме Агеева

Наткнулся на эту схему в старом выпуске журнала радио, впечатления от нее остались самыми приятными,во первых схема настолько проста, что ее сможет собрать и начинающий радиолюбитель,во вторых при условии рабочих компонентов и правильной сборки наладки она не требует.


Если вас заинтересовала эта схема, то остальные подробности по ее сборке вы сможете найти в журнале радио №8 за 1982 год.

Высококачественные транзисторные УНЧ

Усилитель класса A на 3 транзисторах MJE13003

Самый простой усилитель с хорошим звуком на транзисторах с помойки

Привет, друзья. Эту схему я нашел в старой книге по радиолюбительству издания начала 80-х. Это наверно самый простой в мире усилитель мощности звуковой частоты. Собрать такой усилитель можно за полчаса из деталей от старых «энергосберегающих» лам. Обычно электронный балласт таких ламп делают на паре транзисторов типа MJE13003 или 13005. Чаще всего эти лампы выбрасывают, когда выходит из строя сама трубка лампы. Там перегорают спирали накала, которые используются для инициации разряда внутри лампы в момент включения. При этом элементы схемы балласта остаются исправными. Такие лампы модно использовать как доноры неплохих бесплатных радиодеталей для наших конструкций. кстати можно использовать не только транзисторы, но и импульсный трансформатор, конденсаторы и т.д.

Детали, добытые из старых ламп нужно обязательно проверять перед повторным использованием. особенно транзисторы. Также нужно позаботиться об утилизации самой светоизлучающей трубки, так как внутри нее содержится вредная для здоровья и экологии ртуть.

В каждой лампе мы найдем 2 транзистора. В лампах малой мощности вы найдете транзисторы 13003, а в более мощных — 13005 или, если повезет, даже 13007. Это самые мощные из тех, которые применялись в таких балластах. Можно использовать любые из них. Для усилителя нам нужно три транзистора. Кроме цокольных «энергосберегаек» такие транзисторы можно найти и в электронных балластах для больших ЛДС (трубок). Сейчас многие компании и магазины переходят на светодиодное освещение и я часто вижу на свалках целые горы выброшенных старых ЛДС светильников. Вот где можно разжиться транзисторами MJE13005! :). Если вы не хотите связываться со старыми лампами, можно заказать небольшую партию этих транзисторов на Алиэкспресс. Это хорошие высоковольтные транзисторы и они пригодятся вам в вашем дальнейшем творчестве. Транзисторы очень дешевы, 20 штук MJE13003 стоят в районе одного доллара, а более мощные MJE13005 — чуть дороже.

MJE13003 на Алиэкспресс

MJE13005 на Алиэкспресс

Схема усилителя крайне проста. Она приведена на рисунке ниже:

Три одинаковых транзистора представляют собой составной транзистор (схема Дарлингтона, Darlington transistor). Нагрузкой по постоянному току является резистор R3, а по переменному току — громкоговоритель LS1. Сопротивление катушки громкоговорителя должно быть в районе 8 Ом. Конденсатор C2 должен иметь емкость не менее 1000 микрофарад. Здесь чем больше, тем более низкие частоты будет способен передать усилитель. В качестве C1 можно использовать электролитический конденсатор емкостью от 2.2 до 10 мкФ.

Режим работы и ток покоя схемы устанавливается подстроечным резистором R1. Для настройки усилителя замкнем накоротко его вход, и поворачивая движок RI установим на верхнем по схеме выводе нагрузочного резистора R3 напряжение примерно равное половине напряжения питания, то есть 6В. Резистор R3 будет нагреваться в процессе работы, даже без входного сигнала. Так работает режим класса A. Ток через оконечный каскад, работающий в классе А идет всегда, не зависимо от того есть сигнал или нет.2 / R, то есть в нашем случае она будет P=6*6 / 10 = 3.6 W. То есть, несмотря на то, что написано на схеме, резистор нужно применить мощностью около 5W или использовать два резистора по 20 Ом 2W, соединённых параллельно.

Второй недостаток — это низкая чувствительность усилителя. Для получения на выходе номинальной выходной мощности на вход нужно продать сигнал амплитудой около трех вольт. дело в том, что данная схема — это фактически составной эмиттерный повторитель, а эмиттерный повторитель не дает усиления по напряжению. Для увеличения чувствительности можно использовать дополнительный каскад усиления, но это сводит на нет простоту усилителя, как одно из его главных достоинств.

Поскольку коллекторы всех транзисторов по схеме соединены, можно закрепить все три транзистора на одной алюминиевой пластине, которая будет служить радиатором. Вывод коллектора у этих транзисторов соединен с корпусом.

Также хорошей идеей может быть использование в качестве Q1 и Q2 транзисторов MJE13003 а в качестве третьего — более мощный MJE13005 или 13007

Достоинства усилителя — крайняя простота схемы и довольно качественный звук, свойственный усилителям класса A. Хотя максимальная выходная мощность очень невелика — в районе больше 2,5 W

Блок питания усилителя должен обеспечивать ток как минимум 1 ампер на канал, при напряжении 12 вольт. То есть 2 А в случае стереофонического усилителя. Хорошей идеей будет использование здесь импульсного источника питания, например вот такого>>

Второй вариант схемы

Основной ток схемы течет через переход коллектор — эмиттер третьего транзистора и резистор R3. Это около 0.7A в режиме покоя. Ток, который течет через транзистор Q2 боле чем на порядок меньше и составляет примерно 20mA. Фактически это — ток базы транзистора Q3. Ток, проходящий через первый транзистор — это ток базы второго транзистора, и он еще меньше. Поэтому можно усовершенствовать схему усилителя, использовав в качестве первого транзистора маломощный, но с более высокими параметрами по шумам и коэффициенту передачи тока, чем у мощного MJE13005/13003. Например можно использовать транзистор BC549. Второй вариант схемы я «собрал» в симуляторе Proteus. Возможно чуть позже я проверю его на реальных компонентах и дополню эту статью.

Ниже привожу схему в том виде, как она выглядит в Proteus:

Показы статьи: 454 Посещений сайта: 24364

Схемы усилителей мощности на германиевых транзисторах. Секреты звучания забытых германиевых УНЧ.

Эх, жалко пацанов — королевство маловато, разгуляться негде!
Ни ламповых тебе однотактников, ни гераниевых раритетов… Что ещё остаётся пытливому уму неоперившегося меломана?
Разве что брейкануть под японское хокку, да кайфануть для большего эффекта под уханье бумбокса.

«Кремний — всему голова» — крикнут яростные члены на форумных дебатах.
«Не надо впаривать нам этот шняга-силикатный экстракт» — вторят им другие, «для начала послушайте своими руками, а потом делайте свои тупоголовые выводы».

На самом деле, слушать надо!
Перелопатить определённое количество разномастной усилительной аппаратуры — тоже надо.
Не обязательно быть музыкантом со стажем, но таить в себе зачатки какого-никакого слуха — опять же, надо.
И тогда любой пацак, владелец старого пепелаца, сможет авторитетно заявить: «Однако разница в звуке есть, и она весьма существенна!»

На этой странице поговорим об УНЧ на германиевых транзисторах.

Своеобразие германиевого звучания, как правило, сводится к двум устойчивым постулатам:
1. Усилители на германиевых транзисторах отличаются музыкальностью,
2. Звук похож на звук ламповика.
И если первый пункт у меня возражений не вызывает, то со вторым мнением коллег позволю вежливо не согласиться — не похож, абсолютно разное звучание.

Электрофон сетевой транзисторный «Вега-101-стерео» с усилителем на германиевых транзисторах, выпускаемый Бердским радиозаводов с начала 1972 по 1982 год, заложил в головы современников основы понимания того, каким должен быть высококачественный стереофонический звук.
Время шло, появлялись на свет и более продвинутые вертушки с магнитными звукоснимателями, и значительно более мощные УНЧ на кремниевых транзисторах с незаурядными характеристиками.
Однако душещипательные воспоминания о том, как звучали в конце 70-ых простенькие Веги с их примитивной схемотехникой открыли историю ожесточённой борьбы человечества с феноменом транзисторного звучания.

Ну да и ладно, пора переходить на новый уровень — нарисовать пару-тройку принципиальных схем усилителей низкой частоты на германиевых транзисторах, но для начала озадачусь вопросом: Что любит и что не любит германий?
1. Германий любит простоту и не приемлет наворотов. Дифференциальный каскад с источником тока в цепи эмиттера — уже является буржуазным излишеством.
2. Германий не любит перегрева, легко может напустить дыма и отправиться к праотцам электроники Амперу и Ому в ответ на потерю бдительности в процессе настройки схемы.

А теперь обещанные схемы.


Рис.1 Схема усилителя мощностью 1,5 Вт

Номинальная мощность усилителя при коэффициенте гармоник на частоте 1000Гц менее 0,1% — 1 Вт, максимальная — 1,5Вт, чувствительность по входу — 0,2 В.
Усилитель сохраняет работоспособность при понижении напряжения питания до 9В.
Подбором номинала резистора R8 устанавливается значение напряжения на эмиттерах выходных транзисторов, равное половине напряжения питания.
Подбором номинала резистора R2 устанавливается значение напряжения на коллекторе транзистора V1, равное половине напряжения питания.


Рис.2 Схема однотактного усилителя класса А

Схема, приведённая на Рис.2 — для эстетов, желающих порадовать свой слуховой аппарат ни с чем не сравнимым звуком однотактного усилителя, работающего в чистом режиме А.
Для настройки усилителя следует подбором номинала резистора R9 установить ток покоя выходного транзистора — 150мА.


Рис.3 Схема германиевого усилителя мощностью 10 Вт

На рис.3 показана принципиальная схема универсального усилителя НЧ, собранного на девяти транзисторах и развивающего выходную мощность до 10 Вт при сопротивлении нагрузки 4 Ом и входном напряжении около 10 мВ.
При налаживании устройства подстроечным резистором R2 устанавливают выходное напряжение в точке соединения транзисторов VT8 и VT9 равным половине напряжения питания.

Рис.4 Схема мощного усилителя на германиевых транзисторах

Схема более мощного усилителя приведена на Рис.4. Усилитель рассчитан на подключение электрогитары и микрофона, но может быть использован также совместно с проигрывателем, магнитофоном или радиоприёмником.
Основные технические данные, приведённые автором:
Номинальная выходная мощность — 30 Вт.
Максимальная выходная мощность — 40 Вт.
Сопротивление нагрузки 3,5-5 Ом.
Полоса рабочих частот 30-16000 Гц.
Коэффициент нелинейных искажений — не более 1,5%.
Чувствительность с выхода микрофона — 10 мВ.
Чувствительность с выхода электрогитары — 0,1 В.
Напряжение 15 В на коллекторе транзистора Т10 устанавливают резистором R19.
Ток покоя всего усилителя не должен превышать 170 мА.


Рис.5 Схема простого и мощного усилителя на германиевых транзисторах DTG110B

На Рис.5 приведена схема простого и мощного усилителя на германиевых транзисторах DTG110B. При подключении к его входу любого УНЧ мощностью 1,5-2 Вт устройство выдаёт на 8-ми омную нагрузку около 50 Вт чистого германиевого звука.
Согласующий трансформатор Т1 выполнен на железе Ш24 (толщина пакета 20-25мм) и содержит 3 одинаковые обмотки по 120 витков, намотанных на картонном каркасе проводом ПЭВ-1 или ПЭВ-2 диаметром 0,5-0,7мм.
Налаживание устройства заключается в подборе значений резисторов R2 R4 для достижения на выходе схемы нулевого потенциала и тока покоя транзисторов — 120-150 мА.
При снижении напряжения питания на каждом плече до 30В транзисторы DTG110B без каких-либо колебаний могут быть заменены на отечественные П210А.

Именно таким путём пошёл большой поклонник «германиевого» звука, схемотехник и постоянный участник выставок «Российский Hi-End» Жан Цихисели.
Вот что он пишет про свою конструкцию германиевого УМЗЧ, являющуюся развитием темы усилителя с согласующим трансформатором (Рис.6):

Рис.6 Схема усилителя на транзисторах П-210

«Вашему вниманию представлен германиевый усилитель с выходной мощностью 60 Вт на нагрузке 8 Ом. Выходные транзисторы, используемые в усилителе, П210А, П210Ш. Полоса частот: 20-16000гц. Субъективной нехватки высоких частот практически не ощущается. При нагрузке 4 Ом усилитель выдаёт 100вт.
Согласующий трансформатор выполнен на железе Ш20 на 40. Первичная обмотка разделена на две части и содержит 480 вит.
Вторичная обмотка содержит 72 витка и мотается в два провода одновременно. Сначала наматывается 240 вит первички, затем вторичка, затем снова 240 вит первички.
Диаметр провода первички 0,355 мм, вторички 0,63 мм.
Трансформатор собирается встык (с зазором), зазор — прокладка из кабельной бумаги примерно 0,25 мм.
Резистор номиналом 120 Ом включён для гарантированного отсутствия самовозбуждения при отключённой нагрузке.
Цепочки 250 Ом + 2 по 4.7 Ом, служат для подачи начального смещения на базы выходных транзисторов. С помощью подстроечных резисторов 4,7 Ом устанавливается ток покоя 100ма. Выходные транзисторы П210 должны быть при этом практически едва тёплые.
Для точной установки нулевого потенциала резисторы 250 Ом должны быть точно подобраны. В реальной конструкции они состоят из четырёх резисторов по 1 кОм 2вт.
Для плавной установки тока покоя используются подстроечные резисторы R18, R19 типа СП5-3В 4,7 Ом 5%».

Честно говоря, я не сильно понимаю, каким образом транзисторы П210А с Uкэ max = 65 В будут нормально и надёжно работать в устройстве с напряжением питания ± 40 В. Однако есть такая схема и есть такой автор, и слов из песни не выкинешь, и не пропьёшь талант, тем более, что в материальной жизни этот усилитель существует и наверняка кого-то радует красивым и мощным германиевым звуком.
Ладно, едем дальше.

Рис.7 Усилитель мощностью 30Вт на ГТ806

Схема, представленная на Рис.7, является переработанным под «германий» вариантом усилителя НЧ из статьи Николая Трошина журнале Радио №8 за 1989г (стр. 51-55). Творцом переработки является сам автор статьи. Вот что он пишет на страннице сайта http://vprl.ru:

«Выходная мощность этого усилителя 30 Вт при сопротивлении нагрузки акустических систем 4 Ома, и примерно 18 Вт при сопротивлении нагрузки 8 Ом.
Напряжение питания усилителя (U пит) двухполярное ±25 В;
Диапазон рабочих частот 20Гц…20кГц:

Транзисторы МП40А можно заменить на транзисторы МП21, МП25, МП26. Транзисторы ГТ402Г – на ГТ402В; ГТ404Г – на ГТ404В;
Выходные транзисторы ГТ806 можно ставить любых буквенных индексов. Применять более низкочастотные транзисторы типа П210, П216, П217 в этой схеме не рекомендую, поскольку на частотах выше 10кГц они здесь работают плоховато (заметны искажения), видимо, из-за нехватки усиления тока на высокой частоте.

Площадь радиаторов на выходные транзисторы должна быть не менее 200 см2, на предоконечные транзисторы не менее 10 см2.
На транзисторы типа ГТ402 радиаторы удобно делать из медной (латунной) или алюминиевой пластины, толщиной 0,5 мм, размером 44х26.5 мм.

Настройка правильно собранного из исправных элементов усилителя сводится к установке подстроечным резистором тока покоя выходного каскада 100мА (удобно контролировать на эмиттерном резисторе 1 Ом – напряжение 100мВ).
Диод VD1 желательно приклеить или прижать к радиатору выходного транзистора, что способствует лучшей термостабилизации. Однако если этого не делать, ток покоя выходного каскада от холодного 100мА до горячего 300мА меняется, в общем-то, не катастрофично.

Важно: перед первым включением необходимо выставить подстроечный резистор в нулевое сопротивление.
После настройки желательно подстроечный резистор выпаять из схемы, измерить его реальное сопротивление и заменить на постоянный».

Я никогда не ставил в выходные каскады УМЗЧ высокочастотные транзисторы ГТ806, однако знаю, что при их использовании порой возникают сложности, связанные как с устойчивостью усилителя, так и с надёжностью изделия, связанной с внезапными отказами транзисторов.
Такого же мнения придерживается и Жан Цихисели, который для звуковых целей рекомендует использовать следующий ряд германиевых транзисторов (из числа отечественных): П201, П202, П203, П4, 1Т403, ГТ402, ГТ404, ГТ703, ГТ705, П213-П217, П208, П210.

 

Схема двухтранзисторного усилителя

»Примечания по электронике

Существует множество различных конфигураций транзисторных усилителей — в одном из них используются транзисторы PNP и NPN, а коэффициент усиления определяется двумя резисторами.

Типы транзисторных цепей

Включают:
Типы транзисторных цепей Общий эмиттер Эмиттер-повторитель Общая база Пара Дарлингтона Пара Шиклай Текущее зеркало Длиннохвостая пара Источник постоянного тока Множитель емкости Двухтранзисторный усилитель Фильтр высоких частот

См. Также: Конструкция транзисторной схемы


В этой конструкции электронной схемы показан простой двухтранзисторный усилитель с обратной связью, обеспечивающий определенный уровень усиления, который может определяться резисторами в схеме.

Конструкция включает транзисторы PNP и NPN и принимает общую топологию пары Sziklai, но с дополнительными резисторами, включенными для определения усиления.

Двухтранзисторный усилитель обеспечивает достаточно высокий импеданс при низком выходном сопротивлении. Это идеальная схема транзисторного усилителя для приложений, где требуется более высокий уровень усиления, чем тот, который может быть обеспечен одиночным транзисторным каскадом.

Схема двухтранзисторного усилителя

Av = R4 + R5R5

Резисторы R1 и R2 выбраны для установки базы TR1 примерно на среднюю точку.Если требуется ограничение по току, можно установить резистор между эмиттером TR2 и источником питания.

Двухтранзисторный усилитель — полезная конструкция, которую можно использовать в инструментарии инженеров-электронщиков. Это простая схема, но она эффективно работает в сценариях, где требуется меньшее усиление, чем то, которое может быть обеспечено одним транзистором.

Вернуться к типам транзисторных схем

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Двухтранзисторный усилитель — Envirementalb.com

Для большинства систем одиночный транзисторный усилитель не обеспечивает достаточного согласования коэффициента усиления или выходного сопротивления. Решение состоит только в объединении нескольких каскадов усиления. В этой схеме усилителя мы собираемся показать простой двухтранзисторный усилитель . В схеме однотранзисторного усилителя мы сделали очень простой усилитель с одним транзистором, одним резистором и конденсатором, но усилитель был разработан с двумя транзисторами.

Мы разработали этот усилитель с использованием двух транзисторов, включая транзисторы PNP и NPN, и мы приняли общую топологию пары Sziklai.

Двухтранзисторный усилитель обеспечивает достаточно высокий импеданс при низкой выходной мощности. Это идеальная схема усилителя для приложений, где требуется более высокий выходной уровень, чем у однотранзисторного каскада.

Усилитель, состоящий из двух транзисторов, также известен как двухкаскадный усилитель.Этот тип схемы усилителя имеет два транзистора, подключенных к общему источнику питания. Работу RC-связанного усилителя можно пояснить с помощью следующей схемы.

Преимущества двухкаскадного усилителя

Главное достоинство этого усилителя — отличная частотная характеристика. По сравнению с одиночным транзисторным усилителем эта комбинация имеет следующие преимущества:

  • Повышенная изоляция входа-выхода
  • Более высокое входное сопротивление
  • Более высокое выходное сопротивление
  • Более высокое усиление или более высокая полоса пропускания
  • Меньшая стоимость
  • Легко понять

Коэффициент усиления остается постоянным во всем диапазоне звуковых частот, поэтому он наиболее важен для речи, музыки и т. Д.

Недостаток двухкаскадного усилителя
  • Он использует низкое энергопотребление и эффективное сопротивление нагрузки.
  • Одноступенчатый и буксируемый каскадные усилители с возрастом становятся шумными.
  • Из-за плохого согласования импеданса передача мощности будет низкой.
  • Мощные усилители своего класса дороги и громоздки из-за большого блока питания и радиатора.

Двухкаскадный RC-усилитель

Эта принципиальная схема двухкаскадного RC-связанного усилителя с полной детализацией компонентов.На этой диаграмме все до единого ясно, даже неопытный человек может понять и понять ее работу.

Проекты Easy Two Transistor для школьников

Разнообразные небольшие школьные проекты можно создать, используя всего пару транзисторов. Эта электронная книга включает в себя собрание практических и увлекательных идей схем, состоящих всего из нескольких частей.

В предлагаемой двухтранзисторной схеме можно использовать любой малосигнальный транзистор, например BC547, 2N2222, 2N2907, BC108, BC107, TIP32, TIP31, 188, 8050, 8550, 2N3904 и т. Д.Тип транзистора может зависеть от выходных и входных характеристик приложения.

Вы можете воспользоваться таблицей здесь.

1) Схема транзисторного мультивибратора

По сути, это схема генератора, которая генерирует чередующиеся импульсы ВКЛ / ВЫКЛ на своих двух коллекторах транзисторов.

На схеме выше изображена конструкция стандартного транзисторного нестабильного мультивибратора, использующего всего два транзистора, который можно любым способом реализовать для разработки различных интересных проектов.

Выход, который вырабатывается на коллекторе C TR1, связан с базой TR2 через C1, а коллектор TR2 подключен к базе TR1 через C2.

Резисторы R1 и R2 питают коллекторный и базовый токи для TR1, а истоковые, базовые и коллекторные токи R3 и R4 для TR2.

Транзисторы TR1 и TR2 переключаются поочередно. Перекрестная связь между двумя транзисторными каскадами приводит к нестабильности конструкции в любом из состояний. Поэтому он начинает непрерывно колебаться, пока остается под напряжением.

Каждый BJT последовательно приводит друг друга в состояние проводимости, а также поочередно отключается. Частота, с которой это происходит, зависит от значения сопротивления / емкости или постоянной времени RC цепи.

Имеется в виду через величины резисторов, а также С2 и С1. При соответствующем выборе величин частота может быть в диапазоне от одного или двух импульсов в секунду (или даже ниже) до нескольких килогерц.

Применение транзисторного нестабильного мультивибратора

В результате схема может применяться в приложениях, генерирующих пульсацию и временную задержку.

Кроме того, нестабильное устройство можно использовать в таких приложениях, как генераторы тона и генераторы звука. C3 работает как конденсатор связи, чтобы получить выходной сигнал для последующих каскадов.

Эти приложения могут включать в себя тестовые пробники, гарнитуры, усилитель или, возможно, громкоговоритель, в зависимости от конкретных устройств, в которых используется мультивибратор.

Транзисторные нестабильные устройства могут работать при очень низких напряжениях, например, от одиночного сухого элемента на 1,5 В, и потреблять минимальный ток, составляющий всего несколько мАс.Также они могут быть усилены вариантами транзисторов с высоким током коллектора для увеличения мощности или прямого освещения ламп.

NPN Polarity
Нестабильный транзистор может быть построен с транзисторами NPB, как указано выше. В таких конструкциях эмиттеры подключаются к отрицательной линии питания.

Хотя на схеме использовались BC108, в этой и других подобных схемах можно использовать множество других малосигнальных NPN-транзисторов. Предполагая, что замены относятся к типу NPN, отрицательная полярность «заземляющей» линии должна быть правильно подключена.


Полярность PNP
Таким же образом они могут быть построены с использованием транзисторов PNP.

Чтобы избежать недоразумений, точно такая же схема показана выше, но с использованием транзисторов PNP.

Вывод эмиттера теперь положительный. Еще раз указывается тип транзистора (AC128), тем не менее, можно попробовать и другие транзисторы PNP.

Довольно часто это возможно для работы с транзисторами, фактически имеющимися в ящике для мусора, путем замены других типов, кроме тех, которые показаны на схемах.Однако всегда следите за полярностью линии эмиттера для транзистора, которая должна быть положительной для PNP и отрицательной для транзисторов NPN.

2) Схема дверного звонка с двумя транзисторами

Эта схема, вероятно, улучшит ваш существующий дверной зуммер или электрический звонок. Эта схема работает от источника постоянного тока низкого напряжения. Этого очень легко добиться с помощью батареи, которая может иметь увеличенный срок службы, потому что потребляемый ток на самом деле невелик, а рабочий цикл не является непрерывным.

На рисунке выше показан дизайн. Коллектор одного из транзисторов нестабильного подключается к динамику через C3. Для этого не требуется 15-омная модель, однако значительное или высокое сопротивление может привести к небольшому уменьшению громкости.

Схема дверной сирены

Схема, представленная ниже, предлагает идентичные функции, но ее можно организовать для обеспечения более громкого и высокого тона. Он также может быть быстро разработан для представления уникальных звуков в ответ на последующее нажатие кнопки.

Первичная обмотка трансформатора питает нагрузку коллектора, и каждый транзистор включает цепь базы другого через конденсаторы и параллельные резисторы C1 / R1 и C2 / R2.

Здесь используется трансформатор, который обычно используется для согласования импеданса громкоговорителей. Соотношение первичной и вторичной обмоток может составлять около 8: 1.

Однако это может быть не слишком критично. Трансформатор и громкоговоритель напрямую влияют на выходной уровень громкости схемы.Рекомендуется работать с соотношением выше 8: 1 или с динамиком на 8 Ом, вместо того, чтобы регулировать схему с помощью трансформатора с пониженным коэффициентом, имеющего динамик на 2 Ом.

Шаг звука можно отрегулировать, изменив значение C3. Большие значения уменьшают тон звука.

R1 и R2, а также конденсаторы C1 и C2 также можно было бы поэкспериментировать для получения тех же результатов. Если используется очень большой динамик, можно добиться значительной выходной громкости звука.

Для этого проекта будет важно подходящее жилье, которое может иметь форму перегородки. Перегородка на самом деле представляет собой обычную деревянную панель, состоящую из крошечного отверстия подходящего размера, соответствующего диаметру диффузора динамика.

Размер панели должен быть не менее 10 x 12 дюймов, а может быть и больше. Для питания схемы хватит батареи PP3.

3) Поиск неисправностей звукового инжектора

Быстрая оценка звуковых цепей и неисправных усилителей часто выполняется с помощью звукового генератора или генераторов сигналов с вводимым частотным выходом.

Вы можете использовать это двухтранзисторное устройство для проверки громкоговорителей и их соединений, определенных звуковых каскадов усилителя или частотных каскадов радиоприемника вместе со многими другим подобным оборудованием.

Для этого вы можете использовать трубчатый зонд, который может иметь встроенный генераторный контур.

Для поиска неисправностей аудиосхем вам нужно всего лишь осмотреть сомнительные области с включенным датчиком и прикоснуться к различным узлам аудиокаэда.

Конструкция работает с крошечной одиночной сухой ячейкой, отсюда и все элементы могут быть размещены в цилиндрическом трубчатом корпусе.

Резисторы должны быть как можно меньше, возможно, типа SMD, в то время как C1 и C2 могут быть рассчитаны на 6,3 В снова типа SMD.

Убедитесь, что вы используете этот сигнальный инжектор только для поиска и устранения неисправностей в цепях низкого напряжения постоянного тока, а не в цепях прямого действия от сети переменного тока, прикосновение к которым может привести к летальному исходу.

Поиск и устранение неисправностей усилителя с помощью этого инжектора сигнала

Тестирование можно провести, работая в обратном направлении со стороны громкоговорителя. Рассмотрим пример тестируемой схемы усилителя.

Когда зажим «крокодил» подключен к отрицательной линии питания, а стержень находится в точке A, усиленный сигнал может быть слышен из динамика. Это указывает на то, что выходной каскад работает правильно.

Однако, если сигнал не слышен, проверки можно было бы сосредоточить больше на выходном каскаде.

Предположим, что сигнал слышен на громкоговорителе с датчиком, введенным в точку A. Затем его можно переместить на B, чтобы проверить TR2. Если на этом этапе уровень сигнала снижается, это может указывать на то, что эта ступень неисправна.

Убедитесь, что вы методично продвигаетесь от последнего этапа к передним этапам, начиная с динамика.

Когда этап, на котором обнаружена проблема, пересечен, вы обнаружите, что уровень сигнала на динамике резко падает.

Таким же образом, как описано выше, вы можете приступить к проверке других точек, как показано в приведенном выше примере схемы усилителя.

4) Модель Mini-Flasher

Многоцелевой мультивибратор может быть сконструирован таким образом, чтобы он работал с чрезвычайно низкой частотой, с током коллектора, достаточным для освещения лампочки.

Одно конкретное применение этой формы схемы показано на следующем рисунке.

Целью этой конструкции было бы заменить игрушечный маяк на основе механического переключателя, сигнал игрушечной машины или любое аналогичное применение, в котором желателен постоянно пульсирующий источник света. Используя светодиодную лампу на 6 В, потребление тока можно свести к минимуму.

Конденсаторы C1 и C2 выбраны с существенными значениями, предлагая повторяющийся интервал времени приблизительно 1 секунда включения и 1 секунда выключения.

Схема может работать с питанием от 3В до 6В, однако для приличного освещения колбы и аттракциона, вероятно, потребуется лампа на 6В.

Рабочий ток, вероятно, поступает от существующей батареи, уже используемой в системе для переключения двигателя или выполнения других задач.

5) Схема двухлампового мигающего устройства

Эта схема двухлампового мигающего устройства, как показано на рисунке, может быть заключена в прочный корпус для работы с набором из двух 12-вольтовых 6-ваттных ламп, которые затем могут быть использованы в «аварийных» сценариях путем размещения блок на крыше разбитой машины в ночное время.

Другое приложение, как правило, предназначено для предупреждения водителей, превышающих скорость, в то время как водитель меняет колесо своей поврежденной машины.

В этой конструкции используется пара транзисторов TIP32, однако можно попробовать и другие варианты, при условии, что они рассчитаны на ток лампы. С лампами 12 В 6 Вт ток коллектора может составлять примерно 500 мА.

Свечение ламп имеет тенденцию быть наиболее отчетливым, когда они расположены на расстоянии около 1 фута или более друг от друга, возможно, рядом друг с другом или друг над другом.

6) Схема метронома

Метроном — это устройство, которое издает периодические тикающие или биения звука, и его функция заключается в установлении правильного темпа для любого музыкального исполнения.

При таком использовании он обеспечивает постоянный ритм, чтобы гарантировать, что темп музыки не изменяется музыкантом в процессе обучения, и, кроме того, помогает установить точную скорость исполнения.

Когда дело доходит до быстрых и сложных задач, исполнителю может потребоваться тренировка в соответствующем темпе.Отрывок аудио может иметь указанную на нем скорость относительно количества нот определенной продолжительности в минуту.

Или один из нескольких звуковых терминов, выражающих правильную скорость, может быть идентифицирован в самом начале или в начале мелодии.

Эти термины включают от более медленных до более высоких скоростей и обозначают определенное количество ударов в минуту. Ниже приведены наиболее популярные из них:

С номерами деталей, указанными на диаграмме, можно заметить, что можно регулировать схему от примерно 44 до 200 ударов в минуту.Их можно измерить секундами.

По мере уменьшения значения R1 вы обнаружите увеличение максимального диапазона частоты.

Которая, в свою очередь, может быть установлена ​​через VR1 на минимальное сопротивление. Аналогичным образом, увеличение значений указанных сопротивлений приводит к снижению периодической частоты.

7) Mini Piano Circuit

Минано или мини-пианино на самом деле генерирует органные ноты, богатые гармониками и довольно приятные для слуха.Такой музыкальный инструмент может доставить массу удовольствия.

Возможно, он может создать только один тон за период, что упростит исполнение, поскольку не задействованы никакие аккорды или нет необходимости исполнять несколько мелодий одновременно.

Обратная связь через конденсатор C1 на коллекторе 2N2222 и базе BC547 отвечает за генерацию колебаний.

Значение конденсатора определяет частоту цепи, которая может быть изменена по желанию.Значение R1 не может быть изменено, так как оно должно быть зафиксировано на минимально необходимом значении, обеспечивающем наивысшую частоту ноты.

Для получения более низких частот или мелодий в дизайн добавлены несколько настроек в виде A, B, C, D, пресетов.

Частота будет уменьшаться по мере увеличения регулировки сопротивления на предустановке.

Калибровка около 2 октав, основанная на Middle C, будет вполне подходящей и будет охватывать частоты от 128 до 512 Гц. На самом деле вы найдете широкий ассортимент применимых частотных диапазонов, наиболее популярными из которых, вероятно, являются Standard и Concert Pitch.

Для этих диапазонов обычно достаточно значения сопротивления 100 кОм по умолчанию.

Клавиатура

На приведенной выше схеме изображена клавиатура мини-пианино, имеющая чуть более одной октавы.

Для практического использования клавиатуры убедитесь, что клавиши находятся на расстоянии не менее 25 мм друг от друга и не имеют острых краев.

8) Схема контроллера модельного поезда

Эта схема может использоваться для управления напряжением питания и, таким образом, может использоваться для уменьшения силы света ламп постоянного тока или для управления скоростью, например, в модельных поездах.

На рисунке выше показана основная цепь, которой обычно достаточно для управления большинством моделей поездов. VR1 подключается к линии питания постоянного тока, и его регулировка позволяет установить любое желаемое напряжение на базе первого PNP 2N2907.

Два транзистора соединены как пара Дарлингтона, чтобы увеличить коэффициент усиления пары и минимизировать текущую нагрузку на VR1. Это гарантирует, что базовый ток первого PNP может просто не превышать 0,1 мА, в то время как ток второй PNP TIP32 может превышать 5 мА.O

Напряжение эмиттера этого PNP BJT следует за его изменяющимся базовым потенциалом, чтобы напряжение базы второго транзистора контролировалось точно таким же образом.

Это приводит к выходу, который точно соответствует изменению потенциометра и воспроизводит изменяющееся выходное напряжение на коллекторе TIP32.

Таким образом, настройка потенциометра определяет выходное напряжение, которое может изменяться от 0 до уровня питания с падением 1,2 В, которое является стандартным падением смещения для двух комбинированных PNP.

9) Схема переменного источника питания

Чрезвычайно удобная небольшая схема источника питания с полностью регулируемым выходным напряжением прямо от минимально возможного напряжения показана выше.

Трансформатор понижает входной переменный ток сети до необходимого низкого напряжения переменного тока, который затем выпрямляется мостовым выпрямителем в эквивалентный постоянный ток.

Стабилитрон ZD1 обеспечивает необходимое регулирование выхода. Смещение для этого стабилитрона получается через D5 и связанные с ним детали.C3 и C4 расположены для фильтрации ряби.

VR1 работает как делитель потенциала, что позволяет пользователю прикладывать желаемый потенциал к базе транзистора TR2. Поскольку TR1 и TR2 соединены как эмиттерный повторитель, любое напряжение, которое появляется на базе TR2, воспроизводится на коллекторе TR1.

Это означает, что при настройке VR1 выход TR1 также регулирует эквивалентную величину напряжения на выходных клеммах. Однако, поскольку минимальное падение эмиттера транзистора Дарлингтона составляет около 1.2 В, выход эмиттера всегда будет отставать от этого значения 1,2 В и будет показывать падение на выходе до уровня 1,2 В.

C1 и C2 действуют как электронная сглаживающая сеть и помогают удалить всевозможные помехи и гул от схема.

Поскольку TR1 имеет чисто линейную конструкцию, он может показывать значительный нагрев при увеличении разницы между входом и выходом.

Это означает, что если VR1 настроен на получение 3 В на выходе, а на входе 24 В от трансформатора, то TR1 может рассеивать огромное количество энергии для компенсации разницы между входом и выходом.

Переключатель S1 введен, чтобы предотвратить эту ситуацию и помочь в значительной степени контролировать рассеивание. Поэтому при работе с более низкими настройками выхода рекомендуется переключать S1 на центральный отвод, чтобы дифференциал входа / выхода уменьшился на 50%, что также снижает рассеяние TR1 на 50%.

10) Простая схема детектора лжи

Устройство на детекторе лжи может быть устройством, которое обнаруживает любые изменения в проводимости нашей кожи, поэтому пользователь с этим детектором лжи может подтвердить, ложь или нет цель, которая находится в вопрос.

Эта конструкция на самом деле предназначена только для экспериментальных целей и может быть не слишком надежной для получения гарантированных результатов.

За этим стоит несколько важных факторов. Во-первых, использование устройства обнаружения лжи никогда не считается допустимым методом по закону.

Вторая причина заключается в том, что поскольку схема зависит от уровня влажности руки обвиняемого, это может иногда давать вводящие в заблуждение результаты, поскольку человек может быть на самом деле невиновен, но из-за психологической слабости может сильно потеть, заставляя глюкометр показывать неправильное обнаружение лжи. .

Сопротивление на X вместе с R1 влияет на определенную величину тока коллектора для первого каскада транзистора.

Это приводит к падению потенциала на R2 и, соответственно, также влияет на базовый потенциал второго транзисторного каскада.

VR1 позволяет регулировать эмиттерное напряжение PNP так, чтобы через счетчик проходил только желаемый минимальный ток коллектора.

Для этого приложения можно использовать измеритель с подвижной катушкой типа FSD, 1 мА.R4 гарантирует, что ток, подаваемый на счетчик, никогда не превысит опасные значения ни при каких обстоятельствах.

При соответствующей настройке и настройке детектор лжи можно настроить таким образом, что даже небольшое количество влаги на контрольных точках может привести к заметным отклонениям на измерителе.

11) Детектор лжи со схемой аудиовыхода

Это еще одна схема детектора лжи, в которой для обработки результатов вывода используются наушники или небольшой динамик. Это снова транзисторная нестабильная схема, настроенная для генерации определенной частоты тона на подключенном динамике.

Однако, поскольку эта частота напрямую определяется RC-элементами на коллекторе базы двух транзисторов, становится возможным изменить выходной тон, изменив сопротивление базы одного из транзисторов.

Сопротивление кожи при размещении между точками X преобразует сопротивление кожи в наушниках различного тона. Более высокое сопротивление кожи инициирует вывод для генерации прерывистых низкочастотных импульсов щелчка-щелчка на наушниках с динамиком.

Частота этого сигнала увеличивается по мере увеличения влажности кожи, вероятно, из-за лжи обвиняемого.Это позволяет пользователю понять уровень правды, сказанной обвиняемым.

12) Автоматическое освещение мачты

Эта простая схема автоматического освещения мачты автоматически выключает подключенную лампу каждый день на рассвете и включает ее, когда наступает ночь.

Принцип работы прост. Предварительно установленная настройка VR1 и сопротивление LDR создают потенциал на базе соответствующего BC547.

VR1 настроен таким образом, чтобы этот потенциал был минимальным, пока на LDR присутствует достаточное количество света в дневное время.

Это, в свою очередь, приводит к тому, что напряжение на базе другого транзистора становится значительно низким, так что он остается выключенным, а также удерживает реле и лампу выключенными.

Когда наступает подходящая темнота, сопротивление LDR увеличивается, вызывая пропорциональное увеличение потенциалов на базах двух транзисторов, пока они не включат реле и лампу. Цикл повторяется каждый день и ночь соответственно.

Здесь лампа представляет собой низковольтную лампу, используемую с трансформатором низкого напряжения переменного тока, однако можно также использовать лампу, работающую от сети переменного тока, путем надлежащего подключения контактов реле и лампы к сети переменного тока.

Световая активация лампы без реле

Если вы не хотите включать реле и хотите использовать лампу постоянного тока или светодиодную лампу для предполагаемого автоматического включения дневной ночной лампы, в этом случае можно попробовать следующую простую конфигурацию .

Рабочий процесс аналогичен предыдущей схеме, за исключением реле, которое заменено транзистором TIP122 и лампой постоянного тока или светодиодной лампой.

13) Простая схема внутренней связи

Эта схема внутренней связи обеспечивает двустороннюю связь между выбранными местоположениями или комнатами, с верхнего этажа на нижний или внутри дома простым нажатием кнопки с любого конца.Кроме того, это может быть забавный телефон для школьников.

Эту схему можно также использовать в качестве устройства для прослушивания плачущего ребенка. Конструкция в основном состоит из основной или главной системы, а также удаленной системы, соединенной с помощью двухпроводного удлинителя. S1 и S2 — это нажимной переключатель DPDT, который состоит из контактов, как показано в нормальной ситуации.

Переключатель S3 — это выключатель главного устройства, а S4 работает как переключатель контакта удаленного устройства. Для облегчения работы S1 / S2 обозначены надписью «Нажмите, чтобы позвонить или поговорить».S3 помечен как «Вкл.», А S4 «Нажмите для вызова».

Во время работы, когда удаленный пользователь выбирает связь, человек нажимает S4. Это подключает отрицательную цепь батареи через первичную обмотку трансформатора T1, так что он генерирует обратную связь и активирует звуковой тон в главном динамике.

Затем человек, обслуживающий ведущее устройство, нажимает переключатель S3, чтобы включить интерком. В этой ситуации все, что говорится на удаленном динамике, усиливается и становится отчетливо слышимым через главный динамик.

Чтобы инициировать обратную связь, человек на стороне ведущего устройства активирует переключатели S1 / S2, в результате чего его громкоговоритель работает как микрофон.

Усиленный голос впоследствии передается на удаленное устройство для завершения связи.

T1 и T2 — это небольшие аудиопреобразователи, имеющие соотношение 1: 5, что означает, что если первичная сторона 100 витков, вторичная сторона может иметь 500 витков. Вы также можете попробовать любой небольшой понижающий трансформатор.

14) Аудиомикшер со схемой усилителя

Если вы ищете схему, которая будет смешивать два аудиосигнала и генерировать комбинированный сигнал на выходе, то показанная выше схема 2-х транзисторного аудиомикшера, вероятно, сделает эту работу за вас!

Схема будет не только смешивать и смешивать два аудиосигнала, но и повышать их до более высокого уровня, чтобы ее можно было легко использовать для питания усилителя мощности.

Он имеет пару аудиовходов, которые усиливаются отдельными одиночными транзисторными усилителями, настроенными на усилители с общим эмиттером. VR1 и VR2 позволяют пользователю выбрать, сколько сигнала можно передать через два входа для соответствующего смешивания сигналов.

15) Схема предварительного усилителя

Простую, но очень полезную небольшую схему предварительного усилителя можно построить, подключив всего пару транзисторов. Устройство легко повысит сигнал 1 мВ до 100 мВ или даже выше.Таким образом, он очень удобен для усиления очень слабых сигналов, которые нельзя использовать напрямую с усилителем мощности.

Этот предварительный усилитель имеет очень высокое входное сопротивление. Это часто является важным аспектом при работе с любым высококачественным продуктом. Выход имеет низкое сопротивление и может быть совместим практически со всеми усилителями мощности с достаточно хорошими результатами.

Достигаемое усиление в определенной степени определяется выбором подлинных транзисторов, а также уровнем источника питания, однако вы можете ожидать, что это будет примерно 30 дБ.

Мы видим пару контуров обратной связи в конструкции, одна из которых использует R3 и R5, подключенные к первой базе транзистора, а другая реализована через R6 к эмиттеру.

Указанные величины являются рекомендуемыми значениями, поскольку они дополнительно фиксируют рабочие условия постоянного тока для двух ступеней. Потенциометр 250k используется в качестве регулятора громкости на входе.

16) Схема буфера импеданса (каскад согласования импеданса)

В аудиосхемах часто становится важным объединить два несовместимых каскада, которые имеют разные уровни импеданса.Это может привести к значительным потерям при прямом подключении без каскада буферов.

Раньше для этого у нас были трансформаторы, но у них есть свои недостатки. Трансформаторы могут привлекать гул и шум даже после надлежащего экранирования. Кроме того, трансформаторы могут быть громоздкими и дорогими.

Еще один быстрый метод согласования импеданса — добавление резистора большого номинала. Но этот метод может быть очень неэффективным, поскольку он будет препятствовать действительному сигналу, затрудняя сам процесс усиления.

Буфер на 2 транзистора, как показано выше, преодолевает подобные сложности. Он отличается высоким входным сопротивлением и низким выходным сопротивлением. Коэффициент усиления этой буферной схемы составляет примерно единицу или 1, что означает, что выход будет почти таким же, как вход, даже при оптимальном согласовании импеданса.

Само собой разумеется, что эта схема должна быть закрыта и прикреплена к металлической коробке, чтобы добиться идеального экранирования от внешних паразитных датчиков. Если используется адаптер переменного тока в постоянный, убедитесь, что включен соответствующий регулятор гудения, чтобы предотвратить проблемы, связанные с гудением.

17) Схема усилителя мощности

Если вы думаете, что построить приличный усилитель мощности, используя всего два небольших транзистора, невозможно, то вы можете ошибаться.

Всего пары стандартных транзисторов с малым сигналом на самом деле достаточно для создания достаточно громкого усилителя мощности, который может воспроизводить музыку достаточно громко, чтобы ее можно было с комфортом слышать в комнате.

Как показано на схеме, конструкция включает два NPN-транзистора с высоким коэффициентом усиления. Аудиовход осуществляется через C1.Резистор R1 дает ток смещения базы для этого каскада, R2 работает как нагрузка коллектора. C2 соединяет сигналы через выходной каскад.

Базовое смещение транзистора на выходном каскаде устанавливается с помощью резисторов R3 и R4. Этот транзистор 2N2222 функционирует как усилитель с заземленным коллектором, в котором коллектор на самом деле не соединен с линией заземления, а заземлен относительно вариаций аудиосигнала и через минус батареи, что обеспечивает минимальный импеданс.

Для общего использования динамик на 15 Ом может быть вполне разумным, однако вы, вероятно, можете обнаружить, что громкоговорители с сопротивлением примерно до 75 Ом также могут работать исключительно хорошо.

Потребление тока будет примерно от 25 до 30 мА при использовании динамика с сопротивлением 15 Ом, которое может упасть до 10 или 15 мА с динамиком с сопротивлением 75 Ом. Этот небольшой усилитель мощности, использующий схему на двух транзисторах, может также использоваться как усилитель для наушников.

Наушники с сопротивлением около 1,5 кОм по постоянному току могут работать очень хорошо, при этом ток падает до 2–3 мА.

Простой усилитель, описанный выше, также можно использовать с динамиком, подключенным к стороне коллектора 2N2222. Эта версия может иметь немного лучший уровень усиления, чем аналог на стороне эмиттера, но 2N2222 может показывать немного большее рассеивание и может потребоваться радиатор для управления рассеиванием до безопасных пределов.

Зуммер уровня воды

Для создания этой простой схемы звукового индикатора уровня воды могут потребоваться всего два транзистора. Когда указанные датчики соприкасаются с водой, ток течет к основанию BC547 и запускает его.Это, в свою очередь, включает PNP 2N2907.

Из-за этого на динамик передается скачок напряжения. Громкоговоритель, являющийся индуктивной нагрузкой, реагирует отрицательным всплеском на базу BC547, который мгновенно выключает его через C1. Когда BC547 выключен, 2N2907 и динамик также выключены.

Ситуация возвращает схему в исходное состояние, и BC547 снова получает возможность включиться, и цикл быстро повторяется, генерируя резкий тон в динамике.

Двухтранзисторная защелка

Схема мини-защелки, показанная выше, использующая пару транзисторов, может быть очень полезна в приложениях, требующих защелкивания реле в ответ на мгновенный запуск. Здесь, когда на входе применяется мгновенный положительный триггер, транзисторы дополняют и проводят вместе с реле. В то же время напряжение обратной связи достигает через R3 до базы T1, которая фиксирует сеть и реле на постоянной основе, даже после того, как триггер входа удален.R1 и R3 могут быть 100K, R2, R4 могут быть 10K, транзистор может быть BC547 и BC557 для T1 и T2 соответственно.

C1 должен быть 10 мкФ / 25 В, и предпочтительно он должен быть расположен поперек базы / эмиттера T1.

Малый 2-транзисторный инвертор

Инверторы считаются мощными блоками, которые в большинстве случаев требуют сложных конфигураций и деталей. Однако, как ни странно, простой инвертор с достаточно хорошей выходной мощностью можно построить, настроив всего пару силовых транзисторов, как показано выше.Выходная мощность может достигать 120 Вт, если используемая батарея рассчитана на 12 В 30 Ач, а трансформатор точно рассчитан на 10 ампер.

Guitar Fuzz Circuit

В этой гитарной схеме фузза используется всего пара транзисторов, она была хорошо протестирована несколькими музыкальными исполнителями и оказалась чрезвычайно эффективной. Транзисторы Q1 и Q2 сконфигурированы как усилитель напряжения, имеющий достаточное усиление для «перегрузки» с помощью значительно уменьшенного входа, например, электрогитары.Таким образом, выход Q2 становится вариацией входного сигнала «Squared -Off», обеспечивая заданный звуковой эффект фузза.

Pot RV1 изменяет уровень отрицательной обратной связи, вводимой в схему через C2, что приводит к возведению сигнала в квадрат. Роль резисторов R3 и R4 состоит в том, чтобы минимизировать выходное напряжение до некоторой соответствующей степени, которую можно впоследствии при необходимости настроить с помощью потенциометра VR2 регулировки громкости.

Надеюсь, они вам понравились

Итак, это были две транзисторные схемы, которые можно использовать для различных полезных схем и продуктов.

Транзисторы могут выглядеть крошечными, уязвимыми и несколько незначительными, когда они одни, но по мере их объединения они вместе превращаются в огромные конструкции, способные выполнять огромные задачи.

Даже всего пара из них может быть объединена и позволяет пользователю создавать интересные схемы с огромным потенциалом и универсальностью. Если у вас есть дополнительные подсказки относительно того, как использовать два транзистора для создания чего-то нового, поле для комментариев ждет ваших ценных входных данных.

Схема двухтранзисторного устранения гудения

Можно значительно устранить гудение из аудиосигнала, просто комбинируя противофазный гул эквивалентной величины.

В схеме удаления шума, показанной выше, оба транзистора могут быть недорогими вариантами с низким или высоким коэффициентом усиления.

Предустановку VR1 можно настроить вместе с предустановкой VR2 на низкий уровень, пока вы не обнаружите, что гудение почти исчезло. Затем вы должны переключить SW1 на следующем этапе, где VR2 регулируется до тех пор, пока гул полностью не исчезнет.

Усилитель

класса B и транзисторный усилитель класса B

Для повышения полного энергетического КПД предыдущего усилителя класса A за счет снижения потерь мощности в виде тепла, можно спроектировать схему усилителя мощности с двумя транзисторами в его выходном каскаде, производя то, что обычно называют класса B. Усилитель также известен как конфигурация двухтактного усилителя .

Двухтактные усилители

используют два «дополнительных» или согласующих транзистора, один из которых является NPN-типом, а другой — PNP-типом, причем оба силовых транзистора вместе принимают один и тот же входной сигнал, равный по величине, но в противоположной фазе каждому. Другой. Это приводит к тому, что один транзистор усиливает только одну половину или 180 o цикла входной формы волны, в то время как другой транзистор усиливает другую половину или оставшиеся 180 o цикла входной формы волны, в результате чего «две половины» соединяются вместе. снова на выходной клемме.

Тогда угол проводимости для этого типа схемы усилителя составляет всего 180 o или 50% входного сигнала. Этот толкающий и вытягивающий эффект чередующихся полупериодов транзисторов дает этому типу схемы забавное «двухтактное» название, но более широко известно как усилитель класса B , как показано ниже.

Цепь двухтактного трансформаторного усилителя класса B

На приведенной выше схеме показана стандартная схема усилителя класса B , в которой используется сбалансированный входной трансформатор с центральным отводом, который разделяет входящий сигнал формы на две равные половины, которые на 180 o не совпадают по фазе друг с другом.Другой трансформатор с центральным отводом на выходе используется для рекомбинации двух сигналов, обеспечивая повышенную мощность для нагрузки. Транзисторы, используемые для этого типа трансформаторной схемы двухтактного усилителя, являются транзисторами NPN с соединенными вместе эмиттерными выводами.

Здесь ток нагрузки распределяется между двумя силовыми транзисторными устройствами, поскольку он уменьшается в одном устройстве и увеличивается в другом на протяжении сигнального цикла, уменьшая выходное напряжение и ток до нуля.В результате обе половины выходного сигнала теперь колеблются от нуля до удвоенного тока покоя, тем самым уменьшая рассеяние. Это приводит к увеличению эффективности усилителя почти вдвое, примерно до 70%.

Предполагая, что входной сигнал отсутствует, каждый транзистор несет нормальный ток коллектора покоя, значение которого определяется базовым смещением, которое находится в точке отсечки. Если трансформатор точно отводится по центру, то два коллекторных тока будут течь в противоположных направлениях (идеальное состояние) и не будет намагничивания сердечника трансформатора, что минимизирует возможность искажения.

Когда входной сигнал присутствует на вторичной обмотке управляющего трансформатора T1, входы базы транзистора находятся в «противофазе» друг другу, как показано, таким образом, если база TR1 становится положительной, переводя транзистор в режим сильной проводимости, ток его коллектора будет увеличиваются, но в то же время базовый ток TR2 становится отрицательным до отключения, а ток коллектора этого транзистора уменьшается на равную величину и наоборот. Следовательно, отрицательные половины усиливаются одним транзистором, а положительные — другим транзистором, создавая двухтактный эффект.

В отличие от состояния постоянного тока, эти переменные токи равны ДОБАВЛЯЮЩАЯ , в результате чего два выходных полупериода объединяются для преобразования синусоидальной волны в первичной обмотке выходных трансформаторов, которая затем появляется на нагрузке.

Класс B Усилитель работает с нулевым смещением постоянного тока, поскольку транзисторы смещены в точке отсечки, поэтому каждый транзистор проводит только тогда, когда входной сигнал больше, чем напряжение база-эмиттер. Следовательно, при нулевом входе есть нулевой выход и никакая энергия не потребляется.Это означает, что фактическая точка Q усилителя класса B находится на части Vce линии нагрузки, как показано ниже.

Кривые выходных характеристик класса B

Усилитель класса B имеет большое преимущество перед своими собратьями-усилителями класса A в том, что через транзисторы не протекает ток, когда они находятся в состоянии покоя (т. Е. При отсутствии входного сигнала), поэтому мощность не рассеивается на выходных транзисторах. или трансформатор, когда сигнал отсутствует, в отличие от каскадов усилителя класса A, которые требуют значительного смещения базы, тем самым рассеивая много тепла — даже при отсутствии входного сигнала.

Таким образом, общая эффективность преобразования (η) усилителя выше, чем у эквивалентного класса A, при этом КПД достигает максимально 70%, в результате чего почти все современные типы двухтактных усилителей работают в этом режиме класса B.

Бестрансформаторный двухтактный усилитель класса B

Одним из основных недостатков схемы усилителя класса B, описанной выше, является то, что в ее конструкции используются симметричные трансформаторы с центральным отводом, что делает ее строительство дорогостоящим.Однако есть другой тип усилителя класса B, называемый усилителем дополнительной симметрии класса B , который не использует трансформаторы в своей конструкции, поэтому он является бестрансформаторным, используя вместо этого дополнительные или согласующие пары силовых транзисторов.

Поскольку трансформаторы не требуются, это делает схему усилителя намного меньше при той же выходной мощности, а также отсутствуют паразитные магнитные эффекты или искажения трансформатора, влияющие на качество выходного сигнала. Пример «бестрансформаторной» схемы усилителя класса B приведен ниже.

Бестрансформаторный выходной каскад класса B

В приведенной выше схеме усилителя класса B используются дополнительные транзисторы для каждой половины сигнала, и хотя усилители класса B имеют гораздо более высокое усиление, чем усилители класса A, одним из основных недостатков двухтактных усилителей класса B является то, что они страдают. эффект, широко известный как искажение кроссовера.

Надеюсь, мы помним из наших руководств по транзисторам, что для того, чтобы биполярный транзистор начал проводить, требуется примерно 0,7 В (измеренное от базы до эмиттера).В усилителе чистого класса B выходные транзисторы не «предварительно смещены» в рабочее состояние «включено».

Это означает, что часть формы выходного сигнала, которая находится ниже этого окна 0,7 В, не будет воспроизводиться точно, поскольку переход между двумя транзисторами (когда они переключаются с одного транзистора на другой), транзисторы не останавливаются или не запускаются. проводящие точно в нулевой точке кроссовера, даже если это специально подобранные пары.

Выходные транзисторы для каждой половины сигнала (положительной и отрицательной) будут иметь 0.7 вольт области, в которой они не проводят. В результате оба транзистора выключаются в одно и то же время.

Простым способом устранения перекрестных искажений в усилителе класса B является добавление в схему двух небольших источников напряжения для смещения обоих транзисторов в точке, немного превышающей их точку отсечки. Это дало бы нам то, что обычно называют схемой усилителя класса AB . Однако нецелесообразно добавлять в схему усилителя дополнительные источники напряжения, поэтому используются PN-переходы для создания дополнительного смещения в виде кремниевых диодов.

Усилитель класса AB

Мы знаем, что нам нужно, чтобы напряжение база-эмиттер было больше 0,7 В, чтобы кремниевый биполярный транзистор начал проводить, поэтому, если бы мы должны были заменить два резистора смещения делителя напряжения, подключенных к клеммам базы транзисторов, двумя кремниевыми диодами . Напряжение смещения, приложенное к транзисторам, теперь будет равно прямому падению напряжения этих диодов. Эти два диода обычно называются смещающими диодами или компенсирующими диодами и выбираются в соответствии с характеристиками согласующих транзисторов.На схеме ниже показано смещение диода.

Усилитель класса AB

Схема усилителя класса AB представляет собой компромисс между конфигурациями класса A и класса B. Это очень маленькое напряжение смещения диода вызывает небольшую проводимость обоих транзисторов даже при отсутствии входного сигнала. Форма волны входного сигнала заставит транзисторы нормально работать в их активной области, тем самым устраняя любые перекрестные искажения, присутствующие в конструкциях усилителей чистого класса B.

При отсутствии входного сигнала будет протекать небольшой ток коллектора, но он намного меньше, чем в конфигурации усилителя класса A. Это означает, что транзистор будет находиться в состоянии «ВКЛ» более чем на половину цикла формы волны, но намного меньше, чем полный цикл, что дает угол проводимости от 180 o до 360 o или от 50% до 100% от входной сигнал в зависимости от количества используемого дополнительного смещения. Величина напряжения смещения диода, присутствующего на выводе базы транзистора, может быть увеличена в несколько раз, добавляя дополнительные диоды последовательно.

Усилители класса B намного предпочтительнее, чем конструкции класса A для приложений большой мощности, таких как усилители мощности звука и системы PA. Как и в схеме усилителя класса A, одним из способов значительного увеличения коэффициента усиления по току (A и ) двухтактного усилителя класса B является использование пар транзисторов Дарлингтона вместо одиночных транзисторов в его выходной схеме.

В следующем уроке об усилителях мы более подробно рассмотрим влияние кроссоверных искажений в схемах усилителей класса B и способы уменьшения его эффекта.

Простой операционный усилитель | Дискретные полупроводниковые схемы

ДЕТАЛИ И МАТЕРИАЛЫ

  • Две 6-вольтовые батареи
  • Четыре транзистора NPN — рекомендуются модели 2N2222 или 2N3403 (каталог Radio Shack № 276-1617 представляет собой пакет из пятнадцати транзисторов NPN, идеально подходящих для этого и других экспериментов).
  • Два транзистора PNP — рекомендуются модели 2N2907 или 2N3906 (каталог Radio Shack № 276-1604 представляет собой пакет из пятнадцати транзисторов PNP, идеально подходящих для этого и других экспериментов).
  • Два однооборотных потенциометра 10 кОм с линейным конусом (каталог Radio Shack № 271-1715)
  • Один резистор 270 кОм
  • Три резистора 100 кОм
  • Один резистор 10 кОм

ПЕРЕКРЕСТНЫЕ ССЫЛКИ

Уроки по электрическим схемам , том 3, глава 4: «Биполярные переходные транзисторы» Уроки электрических схем , том 3, глава 8: «Операционные усилители»

ЦЕЛИ ОБУЧЕНИЯ

  • Расчет схемы дифференциального усилителя с использованием токовых зеркал.
  • Влияние отрицательной обратной связи на дифференциальный усилитель с высоким коэффициентом усиления.

СХЕМА

ИЛЛЮСТРАЦИЯ

ИНСТРУКЦИЯ

Эта схема является усовершенствованием дифференциального усилителя, показанного ранее. Вместо того, чтобы использовать резисторы для падения напряжения в цепи дифференциальной пары, вместо них используется набор токовых зеркал, в результате чего достигается более высокий коэффициент усиления по напряжению и более предсказуемые характеристики.

С более высоким коэффициентом усиления по напряжению эта схема может работать как рабочий операционный усилитель или операционный усилитель . Операционные усилители составляют основу множества современных аналоговых полупроводниковых схем, поэтому понимание внутренней работы операционного усилителя очень важно.

PNP-транзисторы Q 1 и Q 2 образуют токовое зеркало, которое пытается поддерживать равное разделение тока через два транзистора дифференциальной пары Q 3 и Q 4 .NPN-транзисторы Q 5 и Q 6 образуют другое токовое зеркало, устанавливая общий ток дифференциальной пары на уровне, заданном резистором R prg .

Измерьте выходное напряжение (напряжение на коллекторе Q 4 относительно земли) при изменении входных напряжений. Обратите внимание, как два потенциометра по-разному влияют на выходное напряжение: один вход имеет тенденцию управлять выходным напряжением в одном и том же направлении (неинвертирующий), а другой стремится управлять выходным напряжением в противоположном направлении (инвертирующий).

Вы заметите, что выходное напряжение наиболее чувствительно к изменениям на входе, когда два входных сигнала почти равны друг другу.

После того, как дифференциальный отклик схемы будет подтвержден (выходное напряжение резко переходит от одного экстремального уровня к другому, когда один вход регулируется выше и ниже уровня другого входного напряжения), вы готовы использовать эту схему в качестве реального операционного усилителя. Простая схема операционного усилителя, называемая повторителем напряжения , является хорошей конфигурацией, чтобы сначала попробовать.

Чтобы создать цепь повторителя напряжения, напрямую подключите выход усилителя к его инвертирующему входу. Это означает соединение клемм коллектора и базы Q 4 вместе и отказ от «инвертирующего» потенциометра:

Обратите внимание на треугольный символ операционного усилителя, показанный на нижней схеме. Инвертирующий и неинвертирующий входы обозначены символами (-) и (+) соответственно, а выходной терминал находится в правом верхнем углу.

Провод обратной связи, соединяющий выход с инвертирующим входом, показан на приведенных выше схемах красным цветом. В качестве повторителя напряжения выходное напряжение должно очень точно «следовать» за входным напряжением, отклоняясь не более чем на несколько сотых вольта.

Это гораздо более точная схема повторителя, чем схема одиночного транзистора с общим коллектором, описанная в более раннем эксперименте! Более сложная схема операционного усилителя называется неинвертирующим усилителем , и в ней используется пара резисторов в контуре обратной связи для «обратной связи» части выходного напряжения на инвертирующий вход, заставляя усилитель выдавать напряжение, равное кратное напряжению на неинвертирующем входе.

Если мы используем два резистора одинакового номинала, напряжение обратной связи будет 1/2 от выходного напряжения, в результате чего выходное напряжение станет вдвое больше напряжения, подаваемого на неинвертирующий вход. Таким образом, мы имеем усилитель напряжения с точным коэффициентом усиления 2:

.

При тестировании этой схемы неинвертирующего усилителя вы можете заметить небольшие расхождения между выходным и входным напряжениями. Согласно значениям резистора обратной связи, коэффициент усиления по напряжению должен быть ровно 2.

Однако вы можете заметить отклонения порядка нескольких сотых вольта между выходным напряжением и тем, каким оно должно быть. Эти отклонения вызваны несовершенством схемы дифференциального усилителя и могут быть значительно уменьшены, если мы добавим больше каскадов усиления для увеличения дифференциального усиления по напряжению.

Однако один из способов повысить точность существующей схемы — это изменить сопротивление R prg . Этот резистор устанавливает контрольную точку нижнего токового зеркала и тем самым влияет на многие рабочие параметры операционного усилителя.

Попробуйте подставить значения разности сопротивлений в диапазоне от 10 кОм до 1 МОм. Не используйте сопротивление менее 10 кОм, иначе транзисторы токового зеркала могут начать перегреваться и термически «разбегаться».

Некоторые операционные усилители, доступные в предварительно упакованных единицах, предоставляют пользователю возможность аналогичным образом «программировать» токовое зеркало дифференциальной пары и называются программируемыми операционными усилителями . Большинство операционных усилителей не являются программируемыми, и их внутренние контрольные точки зеркала тока фиксируются внутренним сопротивлением, настроенным до точного значения на заводе.

Простая принципиальная схема усилителя звука с использованием транзистора

Существует множество схем простых схем усилителя звука с использованием транзистора. В настоящее время ИС используются во многих усилителях звука, особенно в небольших схемах. Транзисторы использовать удобно.

Но когда вам нужно использовать транзисторы, это дает несколько преимуществ, например, экономия, вы можете взять старое оборудование, чтобы сделать небольшие схемы проще, чем IC.

Что может быть трудно найти. Взгляните на эти схемы.Может, вы поняли это.

Вот проекты:

Простой усилитель звука без ICS


1 # Миниусилитель с низким импедансом

Эта схема может применяться к источнику звукового сигнала с низким сопротивлением, например к громкоговорителям с размером 4-16 Ом или телефонные наушники, которые используются для замены микрофонов.

При замене громкоговорителя скорости будет достаточно для проверки звука, рожденного ходьбой. Выход может подавать на вход усилителя высокой мощности другой следующий.

Спасибо: Wintec Это транзистор 2N3904 NPN. Не 2N3094 SCR. Ты прав.

2 # Усилитель мощности OTL с использованием AC176 + AC126

Г-н Сомсак — мой друг, который очень любит делать усилители мощности. но он не ну электронный человек. Я так представляю, что ему нужно сделать легкий проект раньше. Эта схема представляет собой простой усилитель мощности OTL с выходной мощностью в мини-ватт, но является более старой схемой.

Они используют транзисторы, примерные номера которых — AC176, AC126 и BC109.у которых есть несколько других компонентов. Используются только источники питания с напряжением 9В. Я надеюсь, что это будет когда-то трасса, так что вам понравятся и хорошие идеи.

3 # Усилитель мощности OTL Cassette Radio Booster с использованием TIP41 + TIP42

Это мини-усилитель мощности OTL для усилителя кассетного радио. Имеет транзистор TIP41 + схемы динамика TIP42 Drive. Напряжение питания видно на изображении.

4 # Простой усилитель на транзисторе AC128

Я нашел это в своей старой книге по схемной электронике.Это очень маленький усилитель мощности, но хорошего качества аудио усилитель класса AB в hi-fi приложениях.

Компонент, способный выдавать 2 Вт, постоянно использовал транзистор AC128 при нагрузке 8 Ом и пике 5 Вт. с надлежащим 9-вольтовым нерегулируемым источником питания.

5 # Высоковольтный мини-усилитель с транзистором UJT

Это схема усилителя мощности, работающая напрямую с источником высокого напряжения около 125 В. Он состоит из транзистора UJT и обычного транзистора.В этой схеме используется трансформатор, который подает сигнал высокого напряжения, а затем используется громкоговоритель. Затем он попадает в небольшую неприятность. Украсить популярность звука можно с помощью VR1 — 1M. Прочтите подробности, добавленные в схему.

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Усилители звука

Усилители звука

Усилители звука средней мощности для небольших динамиков или другие легкие нагрузки могут быть сконструированы разными способами.Первый выбор обычно интегральная схема, предназначенная для этой цели, такая как LM386 или новые типы коммутации класса D, которые часто принимают цифровые данные вместо простых аудио напряжение. Дискретные конструкции также могут быть построены с доступными транзисторами или операционными усилителями и многие дизайны представлены в примечаниях производителей к применению. Использованы старые дизайны аудио межкаскадные и выходные трансформаторы, но стоимость и размер этих частей заставил их почти исчезнуть.Вот несколько простых в сборке схем аналогового аудиоусилителя для различных приложений для хобби:


Простой усилитель звука LM386

Этот простой усилитель демонстрирует LM386 с высоким коэффициентом усиления. конфигурация (A = 200). Для максимального усиления всего 20 не учитывайте 10 мкФ. подключен от контакта 1 к контакту 8. Может быть реализовано максимальное усиление от 20 до 200 путем добавления выбранного резистора последовательно с тем же конденсатором 10 мкФ. 10к потенциометр даст усилителю регулируемый коэффициент усиления от нуля до этого максимум.


Я переместил эту схему в Площадь 50 как бы немного экспериментальный.


Удивительно низкий уровень шума Усилитель

Усилитель с удивительно низким уровнем шума использует преимущества прекрасные шумовые характеристики полевого транзистора 2SK117, который может похвастаться шумовым напряжением ниже 1 нВ / корень-Гц и практически отсутствует шумовой ток. Шумовое напряжение усилитель всего 1.4 нВ / корень-Гц при 1 кГц, увеличиваясь до 2,7 нВ / корень-Гц при 10 Гц. Шумовой ток сложно измерить, поэтому эта простая утилита Усилитель может видеть шум от резистора 50 Ом и резистора 100 кОм. (Приведенный ко входу шум 1,4 нВ возрастет примерно до 1,7 нВ при сопротивлении 50 Ом. резистор, вместо короткого, и резистор 100 кОм даст указанное на входе шум около 40 нВ с очень небольшим вкладом усилителя.)

Этот усилитель представляет собой «служебный» усилитель с коэффициентом усиления 100, что обычно будет используется в лабораторных условиях для усиления крошечных сигналов для измерения или дальнейшего обработка.Он не предназначен для прямого подключения динамика или наушников. (Это вполне может управлять LM386.) Схема представляет собой простой дискретный транзистор. схема обратной связи с двумя каскадами усиления и уникальным выходным буфером класса A:

  • 2sk117 относится к диапазону тока Idss «BL» и является выбран для Idss около 7 мА. Резистор стока регулируется для достижения около 4 вольт на стоке, и значение зависит от Idss JFET.

  • Большинство резисторов не критично, но значения точности показано, потому что резисторы должны быть металлопленочными для лучшего шума представление. Приблизительные значения постоянного напряжения показаны для помощи с резистором. выбор. Отклонение от указанного напряжения приведет к уменьшению доступной выходной мощности. колебания напряжения, но усилитель может нормально работать и для более слабых сигналов. Выгружен размах должен быть около 6 вольт, размах при входном размахе около 60 мВ, до искажения наблюдается.

  • MPSA18 действует как фильтр шума. Здесь желателен высокий прирост чтобы сохранить разумную емкость конденсатора основного фильтра, но 2N4401 может быть заменяется уменьшением 10k и 120k в 5 раз. Фильтр все равно будет будет снижаться шумовое напряжение от источника питания 15 В выше примерно 0,2 Гц. Но некоторые блоки питания могут быть действительно шумными!

  • Конденсаторы 0,1 мкФ служат как шунтирующие конденсаторы, но в основном как клеммы для крепления компонентов.Это белые прямоугольники на Фото.

  • Резистор обратной связи выбран с коэффициентом усиления ровно 100 и значение намного выше ожидаемого 1k из-за ограниченного усиления разомкнутого контура простая схема.

  • Маленький резистор включен последовательно с выходом для стабильность, и этот резистор может немного уменьшить усиление при движении с более низким сопротивление нагрузки. Дизайнер может выбрать настройку усиления для этого конкретного нагрузка, скажем, 75 Ом, или для нагрузки с высоким сопротивлением.Схема может управлять более низким сопротивление более 100 Ом, но раскачка будет несколько ограничена. Это может можно не использовать резистор 33 Ом без проблем со стабильностью. (Обычно, такой сетевой усилитель управляет нагрузкой с гораздо более высоким сопротивлением, обычно 600 Ом или выше.) Примечание: чтобы дать вам представление о том, как вы может играть с выходным сопротивлением, я только что изменил серийный выход своего устройства резистор на 55 Ом и отрегулировал усиление на 35 дБ при нагрузке 75 Ом.Без нагрузки усиление ровно на 5 дБ выше при 40 дБ. Таким образом, у меня четное число выигрывает независимо от того, управляете ли вы инструментом на 75 Ом или устройством с высоким Z. Выходной буфер не имеет проблем с управлением общей нагрузкой 125 Ом с пределом качания около 3,5 вольт, п-п.

  • Выходной каскад представляет собой необычную схему самосмещения, в которой PNP поддерживает напряжение затвор-исток около 0,6 вольт, что приводит к некоторой нагрузке на JFET. ниже его Idss. 2N5486 был выбран, чтобы не тратить слишком много тока, но более высокий Idss JFET при желании даст больше возможностей привода.

  • Входное сопротивление: 47 МОм (устанавливается резистором смещения), шунтируется 20 пФ

  • Выходное сопротивление: 36 Ом, устанавливается последовательным резистором плюс около 3 Ом. Ом от цепи. Мой резистор на 55 Ом, упомянутый выше дает выход Z около 58 Ом и ровно 5 дБ потерь усиления от холостого хода до 75 Ом.

  • Размах выходного напряжения: 6 В (размах) на нагрузке с высоким сопротивлением.

  • Усиление: 100 (40 дБ) устанавливается резистором обратной связи. Более низкий прирост может быть выбран для более широкой полосы пропускания.

  • Частотная характеристика: ровная от 1 Гц до 2 МГц.

  • Входной шум: 1,4 нВ, возрастающий до 2,7 нВ при 10 Гц. Шумовой ток имеет до сих пор ускользает от измерений, но это действительно мало. С резистором 97,3 кОм (100 кОм параллельно с 3,6 мегапикселями), подключенными ко входу, измеряется напряжение шума в пределах крошечной доли дБ от 40 нВ, так что ток шума практически отсутствует.Фактически, этот усилитель и выбранный резистор по своей природе создают точный шум. источник. Подключите 152 кОм через вход (в экранированной коробке), и у вас будет точный источник шума 5 мкВ / основной Гц во всем звуковом спектре (50 нВ раз 100). Быстрое измерение при 40 Гц дает 770 нВ / корень-Гц без каких-либо подключений; ожидается, что 47 МОм дадут 867 нВ. Это довольно близко и все еще небольшой шумовой ток от полевого транзистора.

Для еще большей производительности биполярные ступени могут быть заменен на малошумящий операционный усилитель.Входной шум немного снизится, возможно до 1 нВ, как и входная емкость, возможно, ниже 10 пФ. Компенсация Операционный усилитель может быть проблемой.


Вот еще версия с некоторыми интересные особенности. Есть двухтранзисторный шумовой шунт, который довольно эффективно очищает блок питания, и он будет хорошо работать с последовательным резистор всего 1 Ом. Но требуемый постоянный ток возрастает, если шум для шунтирования.Как и в случае со схемой «утонченности», она хороша только для удаления случайный шум, скажем, от трехполюсного регулятора, и будет перегружен большие шпоры или гул. Вот что он делает с тестовым источником (красный), вставленным в серия с блоком питания:

Для достижения наилучших результатов используйте транзисторы с высоким коэффициентом усиления. Обычный транзисторы дадут около 30 дБ отклонения, но значения резистора смещения могут необходимо изменить, чтобы увеличить ток примерно до 30 мА, в зависимости от от того, сколько шума нужно шунтировать.Схема имеет отличный минимальный уровень шума. так что начните с хорошего источника питания, и шум будет выражаться в однозначных нановольтах. (Спайс думает меньше 1!)

Для специального применения, требующего минимальной нагрузки, усилитель включает обратную связь для самонастройки входной емкости до низкого значения (около 4 ПФ). Эта техника в сочетании с обратной связью с источником обычно приводит к ужасным звенит при некотором сопротивлении источника, но этот усилитель имеет только 1 дБ пика на худшее значение (около 30к).Запустить Моделирование LTSpice для просмотра кривых отклика для различных значений входного R (измените список по желанию). Щелкните правой кнопкой мыши команду .step param, чтобы оставить комментарий. выключите его и измените {R} на фиксированное значение, скажем 1 Ом, для проверки усилителя при сопротивление одиночного источника. Шум чуть ниже 1 нВ / корень герц. Этот усилитель работает до нижней части BCB для импеданса источника до 30 кОм. Это на данный момент это лишь небольшая реализация — следите за обновлениями.

Примечание: я подключил верх резистора 220 Ом. непосредственно к источнику питания, чтобы уменьшить падение напряжения 4.Резистор 7 Ом. Если лишнее падение не проблема, схема работает немного лучше с верхом 220 Ом, подключенного к правой стороне резистора 4,7 Ом.

Когда я говорю «при использовании этой схемы питание может быть ужасным», я означает в терминах случайного шума, скажем, от трехполюсного регулятора LM7815 (сотни нВ / корень-Гц). Этот шумовой шунт не может работать с нерегулируемыми источниками или много огромных скачков мощности. Какой бы ни был шум, он будет генерировать ток в небольшом резисторе (при условии, что цепь работает) и в цепи должен иметь возможность шунтировать этот ток.При смещении 30 мА схема выдерживает около + — 25 мА, так что вышеуказанная схема с резистором 4,7 Ом может выдержать чуть меньше 250 мВ p-p. Опустите резистор до 1 Ом и предел больше как 50 мВ p-p, вполне в пределах ожиданий для трехконтактного регулятора, но не способного удаления сильной пульсации или больших переходных процессов.


Источник белого шума

Вот 1 мкВ / корень-Гц источник шумового напряжения, который будет управлять нагрузкой 50 Ом с частотой ниже 10 Гц до более 500 кГц.Шунт шума фактически стабилизирует цепь от батареи. сопротивление, обычный путь обратной связи в таких простых схемах. Потребляемый ток меньше 20 мА.


Примечание: я подключил верх резистора 220 Ом. непосредственно к источнику питания, чтобы уменьшить падение на резисторе 3,3 Ом. Если лишнее падение не проблема, схема работает немного лучше с верхом 220 Ом, подключенного к правой стороне 4.Резистор 7 Ом.


Компьютерный усилитель звука

Вот простой усилитель для поднятия уровня звука от маломощных звуковых карт или другие источники звука, управляющие небольшими динамиками, такими как игрушки или небольшие транзисторные радиоприемники. В Схема обеспечивает около 2 Вт, как показано. Детали не критичны и замены обычно работают. Два резистора 2,2 Ом можно заменить одним Резисторы 3,9 Ом в каждом эмиттере.


4-транзисторный усилитель для малых устройств Приложения для динамиков

На схеме выше показан 4-транзисторный служебный усилитель, подходящий для различных проектов, включая приемники, домофоны, микрофоны, телефонные приемные катушки и общий аудиомониторинг.Усилитель имеет схему развязки по мощности и полосу пропускания. ограничение для уменьшения колебаний и «катания на лодке». Ценности не особо критических и умеренных отклонений от указанных значений не будет. значительно ухудшить производительность.

Трехэлементные аккумуляторные батареи, обеспечивающие около 4,5 Вольт, рекомендуются для большинства Бестрансформаторные усилители звука, управляющие небольшими динамиками на 8 Ом. Срок службы батареи будет значительно длиннее, чем прямоугольная батарея на 9 В, и сопротивление ячейки останется меньше в течение срока службы батареи, что приводит к меньшим искажениям и проблемам со стабильностью.

При желании усилитель может быть модифицирован для работы от 9-вольтовой батареи, перемещая точка смещения выходных транзисторов. Понижение резистора 33к, подключенного со второго база транзистора относительно земли примерно до 10 кОм будет перемещать напряжение на выходе электролитического конденсатор примерно на 1/2 напряжения питания. Это изменение смещения дает больший размах сигнала перед происходит отсечение, и в этом изменении нет необходимости, если громкость достаточна.

Как и раньше, два 4.7 Ом резисторы могут быть заменены одним резистором 10 Ом последовательно с любым эмиттером.


Операционный усилитель звука

Вышеупомянутая схема представляет собой универсальный аудиоусилитель с низкой стоимостью. LM358 операционный усилитель. Дифференциальные входы обеспечивают отличную устойчивость усилителя к синфазным помехам. сигналы, которые являются частой причиной нестабильности усилителя. Пунктирное заземление представляет проводку в типичном проекте, демонстрируя, как вход датчика заземления может быть подключенным к земле в источнике звука, а не в усилителе, где присутствуют высокие токи.Если источником является опорный сигнал источника питания, то один из Входы усилителя подключены к положительному источнику питания. Например, NPN предусилитель с общим эмиттером может быть добавлен для очень высокого усиления и путем подключения дифференциальные входы через резистор коллектора, а не от коллектора к земле, дестабилизирующая обратная связь через источник питания значительно снижается. Кстати, LM358 — довольно плохой аудиоусилитель, и вы, возможно, захотите переключиться на лучший часть для уменьшения искажений.Откровенно говоря, для маленького настольного усилителя вы никогда не обратите внимание на искажение.

Мой служебный усилитель был встроен в алюминиевый ящик для бутылок и со временем заканчивался болтами к нижней части полки, как показано. Хорошо воспитанный и готовый к работе усилитель действительно кстати.

Crystal Radio (и другое назначение) Усилитель звука

Вот простой аудиоусилитель, использующий шунтирующий регулятор TL431.Усилитель обеспечит объем, заполняющий комнату, от обычного кристаллического радиоприемника, снабженного длинным проводом антенна и хорошее заземление. Схема такой магнитолы по сложности аналогична простой однотранзисторной. радио, но производительность выше (за исключением потрясающего однотранзисторный рефлекс). TL431 доступен в корпусе TO-92 и он выглядит как обычный транзистор, поэтому ваши друзья-любители будут впечатлены объем, который вы получаете только с одним транзистором, и усилитель можно использовать для другого проекты тоже.Также можно использовать наушники и динамики с более высоким импедансом. Наушник от старый телефон подарит оглушительную громкость и большую чувствительность! Резистор на 68 Ом может быть увеличено до нескольких сотен Ом при использовании наушников с высоким сопротивлением для экономии заряд батареи.

Вот усилитель, используемый для увеличения выхода простого кристалла. радио. Регулятор громкости находится внизу слева, а остальные компоненты на клеммная колодка внизу рисунка.Это действительно быстрый и легкий звук усилитель мощности!

Усилители звука класса A

Аудиоусилитель класса A довольно расточителен, но при большом количестве мощность доступна, простота привлекательна. Вот простой транзистор Дарлингтона пример, предназначенный для использования с блоком питания 5 вольт:

Эта и следующие схемы не для начинающих; они имеют ограниченную полезность и требуют понимания основные принципы и потенциальные применения.Все они проходят через DC громкоговоритель, который расточителен и может вызвать проблемы у неопытных строитель. Если они построены без изменений, они должны работать, как описано, но делать обязательно прочтите текст.

5 вольт должны обеспечиваться регулируемым источником питания. Эффективность ниже 25%, и в динамике протекает значительный постоянный ток, и эта дополнительная мощность должно соответствовать номинальной мощности динамика. Но посмотрите, как это просто! В коэффициент усиления по напряжению составляет всего около 20, а входное сопротивление составляет около 12 кОм.Схема показывает два значения резистора смещения, которые должны использоваться с соответствующим импедансом динамика. С Резистор смещения 150 кОм и динамик 8 Ом, схема потребляет около 210 мА (1 Вт) и может доставляет около 250 мВт на динамик, что достаточно для большинства небольших проектов. Динамик должен быть рассчитан на 500 мВт или более и иметь сопротивление постоянному току. около 8 Ом (возможно, 7 Ом). Проверить кандидата в громкоговорители омметром; намного ниже 7 Ом вызовет чрезмерное потребление тока.С резистором 220 кОм и динамиком 16 Ом Схема потребляет около 100 мА (500 мВт) и выдает около 125 мВт на динамик. 16 Ом динамик должен быть рассчитан на 200 мВт или более и иметь сопротивление постоянному току почти 16 Ом. (Большинство маленьких динамиков имеют сопротивление постоянному току, близкое к номинальному импедансу, и это сопротивление равно используется для установки уровня тока покоя в этой схеме.) Другие NPN транзисторы Дарлингтона будет работать, но выберите тот, который может рассеивать минимум 1 ватт. Большинству типов мощности не нужен радиатор, но крошечные TO92 могут перегреться.

Если неэффективность класса А вас еще не разубедила, вот 4-транзисторный усилитель для слабых сигналов:

Входное сопротивление составляет около 5000 Ом, а частотная характеристика ровная. от 30 Гц до более 20 000 Гц. С динамиком на 8 Ом потребляемый ток составляет около 215 мА и усиление около 1700 (64 дБ). С динамиком на 16 Ом коэффициент усиления по току составляет около 110 мА. и усиление около 2500 (68 дБ).Регулятор громкости можно добавить, подключив один конец потенциометра 5k на массу, дворник на вход усилителя. Другой конец горшок становится входом.

Посмотрим правде в глаза; практически любой из различных усилителей звука IC дает больше смысл, чем этот неэффективный дизайн. Но в этой схеме используются детали только с 3 ножками. Умм, это не использует конденсаторы большой емкости, за исключением шунтирования источника питания. Посмотрим, это больше веселье. Что ж, давайте посмотрим, сможем ли мы создать проект, в котором используются преимущества неэффективность:

Итак, что это?

Это модулируемый световой излучатель! Подключите вход к источнику звука или микрофон (динамик будет работать) и звук будет амплитудно модулировать свет интенсивность.Неэффективность класса-А сейчас работает в нашу пользу, зажигая лампу до средняя яркость без звука. Собственно при лампочке на 4,7 вольта лампа будет почти полной яркости и будет «перегружен» на пиках звука. Лампа с более высоким напряжением прослужит дольше, но будет тусклее. Попробуйте лампочку на 6,8 вольт как компромисс. С чувствительным детектором, таким как фототранзистор, этот коммуникатор проработает несколько сотен футов (ночью). Наилучший диапазон реализуется, если Лампа устанавливается в типичный отражатель фонарика, и детектор устанавливается аналогичным образом.Входной конденсатор уменьшен до 0,01 мкФ, чтобы придать усилителю характер высоких частот. компенсировать медленный отклик лампочки. В любом случае звук будет немного приглушенным. Умный дизайнер мог бы использовать этот усилитель и для ресивера, переключая динамик. на вход для передачи и на выход для прослушивания. Если вы выберете детектор с хорошим инфракрасным откликом, как штыревой фотодиод, вы можете добавить пластиковые ИК-фильтры к заблокируйте окружающий свет и сделайте коммуникатор более заметным в ночное время.

Повышение напряжения до 12 В постоянного тока, замена лампочки на 3 ваттную, Динамик на 16 Ом и замена 0,01 мкФ на 1 мкФ дает аудиоусилитель, который обеспечивает мощность звука почти 1 ватт.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *