Онлайн калькулятор расчета параллельного соединения резисторов
Соединение резисторов, при котором одноименные выводы каждого из элементов собираются в одну точку, называется параллельным. При этом ко всем резисторам подводится один и тот же потенциал, но величина тока через каждый из них будет отличаться. Для составления схем или при замене резисторов в уже существующих цепях важно знать их суммарное сопротивление, как показано на рисунке:

Данный калькулятор позволяет рассчитать суммарное сопротивление параллельно соединенных резисторов с любым количеством элементов.
Для этого вам необходимо:
- Указать в графе «количество резисторов» их число, в нашем примере их три;
- После того, как вы укажите количество элементов, в поле ниже появится три окошка для ввода значения сопротивления каждого из элементов, к примеру, у вас резисторы сопротивлением 20, 30 и 60 Ом;
- Далее нажмите кнопку «рассчитать» и в окошке «параллельное сопротивление в цепи» вы получите значение сопротивления в 10 Ом.
Чтобы рассчитать другую цепь или при подборе других элементов, нажмите кнопку «сбросить», чтобы обнулить значение параллельно включенных элементов калькулятора.
Для расчета суммарного сопротивления калькулятором используется такое соотношение:
Где,
- Rсум — суммарное сопротивление параллельно соединенных элементов
- R1 — сопротивление первого резистора;
- R2 — сопротивление второго резистора;
- R3 — сопротивление третьего резистора;
- Rn — сопротивление n-ого элемента.
Таким образом, в рассматриваемом примере параллельно включены три резистора, поэтому формула для определения суммарного сопротивления будет иметь такой вид:
Чтобы выразить величину суммарного сопротивления необходимо умножить обе половины уравнения на произведение сопротивлений всех трех резисторов. После этого перенести составляющие элементы по правилу пропорции и получить значение сопротивления:
Как видите, расчет параллельного сопротивления резисторов вручную требует немалых усилий, поэтому куда проще его сделать на нашем онлайн калькуляторе.
Обратите внимание, при наличии элементов с сопротивлением в разной размерности Ом, кОм, МОм, их необходимо привести к одной величине, прежде чем производить расчет. К примеру, в Ом и указывать в поле калькулятора для расчета параллельного соединения резисторов значение непосредственно в Омах.
Онлайн калькулятор — закон Ома (ток, напряжение, сопротивление) + Мощность :: АвтоМотоГараж
Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.
В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.
Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению
Так записывается основная формула:
Путем преобразования основной формулы можно найти и другие две величины:


Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
Формула мгновенной электрической мощности:
Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.
Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.
Первая — мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.
Вторая — метод треугольника. Его ещё называют магический треугольник закона Ома.
Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.
Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.
Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.
Этот круг также, как и треугольник можно назвать магическим.
Радио для всех — Лаборатория
В разделе представлены on-line калькуляторы
Цветовая маркировка резисторов
Расчёт реактивного сопротивления конденсатора C и реактивного сопротивления катушки L
Расчёт параллельного соединения резисторов и последовательного конденсаторов
Расчёт резистивного и ёмкостного делителей
Расчёт частоты колебательного контура и цепочки RC. Частота среза фильтра ФНЧ и ФВЧ
Компенсация реактивной мощности
Закон Ома. Расчёт напряжения, сопротивления, тока, мощности
Расчет элементов J антенны
Расчет резонансной частоты LC-контура
Расчет резистивного Пи аттенюатора
Делитель напряжения
Цветовой код конденсаторов
Стабилизация напряжения
Дроссели, намотанные на резисторах МЛТ
Реактивное сопротивление конденсатора
Реактивное сопротивление катушки индуктивности
Расчет значения резистора для LM317
Онлайн калькулятор таймер 555
Расчет «Cantenna» (баночной антенны) для Wi Fi
Расчет усилителя на биполярном транзисторе
Калькулятор расчета компактных монолитных усилителей
Расчет силового трансформатора
Расчет дискоконусной антенны
Сопротивления для согласующего трансформатора
Расчет для тороидальных (ферритовых) сердечников Amidon
Расчет петлевого вибратора
Калькулятор DC-DC преобразователя MC34063A
Расчет выпрямителя для блока питания
Расчет гасящего конденсатора в блоке питания
Расчет резистора для подключения светодиода
Цветовая маркировка резисторов
Расчет индуктивности
Расчёты электронных цепей.
Вписываем значения и кликаем мышкой в таблице
Расчёт реактивного сопротивления конденсатора C и реактивного сопротивления катушки L
Реактивное сопротивление ёмкости |
Реактивное сопротивление индуктивности |
Расчёт параллельного соединения резисторов и последовательного конденсаторов
Параллельное соединение двух сопротивлений |
Последовательное соединение двух ёмкостей |
Расчёт резистивного и ёмкостного делителей
Расчёт резистивного делителя напряжения |
Расчёт ёмкостного делителя напряжения |
Расчёт частоты колебательного контура и цепочки RC. Частота среза фильтра ФНЧ и ФВЧ
Частота резонанса колебательного контура LC |
Пост. времени τ RC и частота среза RC-фильтра |
Компенсация реактивной мощности
Реактивная мощность Q = √((UI)²-P²) |
Закон Ома. Расчёт напряжения, сопротивления, тока, мощности
После сброса ввести два любых известных параметра I=U/R; U=IR; R=U/I; P=UI P=U²/R; P=I²R; R=U²/P; R=P/I² U=√(PR) I= √(P/R) |
Расчет элементов J антенны
Дополнение: Арифметические калькуляторы и конвертеры величин
Расчет резисторов для светодиодов и его сопротивление
Светодиоды все чаще используются нами в различных сферах. Они представляют собой полупроводниковый прибор, превращающий электрический ток в световое излучение.
Для получения света с их помощью, не надо применять специальные дополнительные преобразователи. Достаточно подать на него электрический ток. В этом моменте часто проблемы. Они чувствительны к большим скачкам тока, которые наблюдаются при включении.
Для защиты от таких скачков, в цепь включают специально подобранные резисторы.
Резисторы по праву считаются самыми распространенными радиоэлементами. Главная их характеристика состоит в сопротивлении, в двух словах, они препятствуют протеканию электрического тока.
Резисторы считаются пассивными элементами электрической цепи. Они могут быть постоянными, т.е. такими сопротивлениями, у которых протекание тока остается неизменным. И переменными, где величину сопротивления можно регулировать от 0 до его максимального значения. Их используют как токоограничительные элементы, делители напряжения, шунты для измерительных приборов, и тому подобное.
Основной параметр резистора – это его сопротивление. Сопротивление – это его свойство препятствовать протеканию электрического тока. Измеряемой характеристикой величины сопротивления есть Ом.
Расчет сопротивления для светодиодов
Как произвести расчет:
Для провидения расчета понадобится знать точные параметры светодиода и источника напряжения. Их можно прочитать в паспортных данных, или найти в интернете. По источнику питания нам понадобятся данные выходного напряжения.
По светодиоду, его номинальное напряжение и рабочий ток.
Возьмем, к примеру, простейшую схему на рисунке выше. У нас источник питания Uи = 12В, напряжение на светодиоде Uvd= 2В, номинальный рабочий ток светодиода будет Ivd = 0,02А, в справочнике эта величина может быть показана как 2мА.
Найдем падения напряжения на резисторе.
Для этого, отнимем от напряжения источника питания, падения на светодиоде:
- Ur= Uи – Uvd = 12 – 2 = 10В;
У нас выходит падение напряжения на резисторе 10 вольт.
Используя формулу закона Ома, найдем величину необходимого сопротивления цепи:
- R=U/I = 10/0.02 = 500 Ом.
Подставив в формулу значение напряжения и тока, мы получили величину сопротивления. После этого, находим по справочным таблицам, ближайшее стандартное значение. Если нет точного значения, лучше взять с небольшим запасом в большую сторону.
Расчет онлайн
Для расчета на онлайн-калькуляторе понадобятся все те же данные, что и для расчетов в ручном режиме. Это: напряжение источника питания, номинальный прямой ток и напряжение, количество светодиодов, и их схема подключения.
Ниже приведены ссылки на несколько источников с онлайн-калькуляторами:
- http://forum220.ru/calc-res-led.php. На странице этого калькулятора вам подскажут, как можно найти номинальное прямое напряжение светодиода по цвету его света, если данные об этом отсутствуют.
- http://cxem.net/calc/ledcalc.php. Этот калькулятор не только рассчитает вам значения сопротивления, но и предложит схему подключения. Это будет удобно в случае большого количества светодиодов.
- http://h-t-f.ru/calk/online-calculator-for-resistor-leds. Калькулятор учитывает особенности соединения.
Принцип работы и область применения

Резисторы разной мощности
Принцип работы резистора построен на рассеивании мощности. Номинальной мощностью рассеивания является та мощность, которую резистор может рассеять не повреждаясь. Единица мощности – ватты.
Рассматривая роль резистора с точки зрения электротехники, мощность можно определить по формуле: Р=I ² * R, где P – мощность, I – значение силы тока, R – сопротивление резистора.
Резисторы являются важными элементами электрической цепи, главная их функция – это сопротивление протеканию электрического тока. Этим он способствует стабилизации и ограничении силы тока протекающей по цепи. Его часто используют в качестве балластного резистора, чтобы иметь возможность регулировать напряжение в цепи.
Резисторы, в том числе балластные, используются для поглощения некоторой части напряжения, выравнивают силы тока в различных участках цепи. Тем самым, они поддерживают стабильность напряжения.
Этот принцип используют в резисторах для светодиодов. Светодиоды чувствительны к большим скачкам тока, которые могут возникнуть при их включении, они могут привести их негодность. Включенный последовательно с ним токоограничивающий резистор, уменьшит ток до приемлемой величины.
Подключение и пайка
Светодиоды – это полупроводниковые приборы, при их подключении необходимо соблюдать полярность. При неправильном подключении они работать не будут, и довольно часто выходят со строя.
Анод имеет полярность +, катод соответственно -. Обычно, ножка катода немного меньше по длине. Часто, катод можно опознать по более толстой ножке внутри прибора. В любом случае, данные по контактам можно найти в справочной литературе.
Диоды также боятся перегрева во время пайки. Для пайки нельзя использовать мощные паяльники, лучше использовать приборы мощностью до 100 Вт.
Также, можно в качестве вспомогательных средств для охлаждения использовать пинцет. Он отведет часть тепла. Вместо пинцета, можно использовать и другие металлические инструменты.
Паяльник перед пайкой надо разогреть до его максимальной температуры. Было бы хорошо, чтобы его температура была в пределах 250-280 градусов Цельсия.
Сам процесс пайки одной ножки не должен превышать 4-5 секунд. При этом времени, прибор не успеет перегреться.
При монтаже светодиода на месте установки, старайтесь, чтобы контакты ближе к корпусу, оставались параллельны, как при выходе из производства. Изгибайте контакты небольшими радиусами, уступив подальше от корпуса. Собирайте их на твердом плоском материале. Предварительно, подготовьте отверстия для ножек светодиодов с помощью дрели.
Подбирая источник питания, следует помнить: чем больше разница рабочего напряжения светодиода и источника питания, тем меньше они будут подвержены влиянию скачков напряжения блока питания. Не забывайте устанавливать предохранители.
Если у вас безвыходные SMD светодиоды, у них вместо ножек для пайки контактные площадки. Эти площадки расположены на нижней части их корпуса. Паяют их маломощными паяльниками не более 15 ВТ.
Часто, для этой работы применяют специальное жало. Оно имеет разветвление на рабочем конце. Народные умельцы вместо специального жала наматывают тонкий медный провод на стандартное жало. Оптимальный диаметр такого провода 1 мм.
Легче всего проверить светодиоды с помощью тестера. Проверяется он как обычный диод. Его надо включить в прямом положении, чтобы между анодом и катодом пошло положительное напряжение. Многие современные цифровые приборы имеют встроенную возможность проверки диодов. Главное при проверке – соблюдать полярность.
Статья была полезна?
0,00 (оценок: 0)
схема и расчёт [Амперка / Вики]
Для того, чтобы получить из исходного напряжения лишь его часть используется делитель напряжения (voltage divider). Это схема, строящаяся на основе пары резисторов.
В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе Vout? Или эквивалентный вопрос: какое напряжение покажет вольтметр?
Ток, протекающий через R1 и R2 одинаков пока к выходу Vout ничего не подключено. А суммарное сопротивление пары резисторов при последовательном соединении:
Таким образом, сила тока протекающая через резисторы
Теперь, когда нам известен ток в R2, расчитаем напряжение вокруг него:
Или если отавить формулу в общем виде:
Так с помощью пары резисторов мы изменили значение входного напряжения с 9 до 5 В. Это простой способ получить несколько различных напряжений в одной схеме, оставив при этом только один источник питания.
Применение делителя для считывания показаний датчика
Другое применение делителя напряжения — это снятие показаний с датчиков. Существует множество компонентов, которые меняют своё сопротивление в зависимости от внешних условий. Так термисторы меняют сопротивление от нуля до определённого значения в зависимости от температуры, фоторезисторы меняют сопротивление в зависимости от интенсивности попадающего на них света и т.д.
Если в приведённой выше схеме заменить R1 или R2 на один из таких компонентов, Vout будет меняться в зависимости от внешних условий, влияющих на датчик. Подключив это выходное напряжение к аналоговому входу Ардуино, можно получать информацию о температуре, уровне освещённости и других параметрах среды.
Значение выходного напряжения при определённых параметрах среды можно расчитать, сопоставив документацию на переменный компонент и общую формулу расчёта Vout.
Подключение нагрузки
С делителем напряжения не всё так просто, когда к выходному подключения подключается какой-либо потребитель тока, который ещё называют нагрузкой (load):
В этом случае Vout уже не может быть расчитано лишь на основе значений Vin, R1 и R2: сама нагрузка провоцирует дополнительное падение напряжения (voltage drop). Пусть нагрузкой является нечто, что потребляет ток в 10 мА при предоставленных 5 В. Тогда её сопротивление
В случае с подключеной нагрузкой следует рассматривать нижнюю часть делителя, как два резистора соединённых параллельно:
Подставив значение в общую формулу расчёта Vout, получим:
Как видно, мы потеряли более полутора вольт напряжения из-за подключения нагрузки. И тем ощутимее будут потери, чем больше номинал R2 по отношению к сопротивлению L. Чтобы нивелировать этот эффект мы могли бы использовать в качестве R1 и R2 резисторы, например, в 10 раз меньших номиналов.
Пропорция сохраняется, Vout не меняется:
А потери уменьшатся:
Однако, у снижения сопротивления делящих резисторов есть обратная сторона медали. Большое количество энергии от источника питания будет уходить в землю. В том числе при отсоединённой нагрузке. Это небольшая проблема, если устройство питается от сети, но — нерациональное расточительство в случае питания от батарейки.
Кроме того, нужно помнить, что резисторы расчитаны на определённую предельную мощьность. В нашем с
Расчет понижающего конденсатора
Полученные параметры понижающего конденсатора |
Если у Вас когда нибудь возникала задача понизить напряжение до какого либо уровня, например с 220 Вольт то 12В, то это статья для Вас.
Есть масса способов это сделать подручными материалами. В нашем случае мы будем использовать одну деталь — ёмкость.
В принципе мы можем использовать и обычное сопротивление, но в этом случае, у нас возникнет проблема перегрева данной детали, а там и до пожара недалеко.
В случае, когда в виде понижающего элемента используется ёмкость, ситуация другая.
Ёмкость, включенная в цепь переменного тока обладает (в идеале) только реактивным сопротивлением, значение котрого находится по общеизвестной формуле.
Кроме этого в нашу цепь мы включаем какую то нагрузку ( лампочку, дрель, стиральную машину), которая обладает тоже каким то сопротивлением R
Таким образом общее сопротивление цепи будет находиться как
Наша цепь последовательна, а следовательно общее напряжение цепи есть сумма напряжений на конденсаторе и на нагрузке
По закону ома, вычислим ток, протекающий в этой цепи.
Как видите легко зная параметры цепи, вычислить недостающие значения.
А вспомнив как вычисляется мощность легко рассчитывать параметры конденсатора основываясь на потребляемую мощность нагрузки.
Учитывайте что в такой схеме нельзя использовать полярные конденсаторы то есть такие что включаются в электронную схему в строгом соответствии с указанной полярностью.
Кроме этого необходимо учитывать и частоту сети f. И если у нас в России частота 50Гц, то например в Америке частота 60Гц. Это тоже влияет на окончательне расчеты.
Примеры расчета
Необходимо запитать лампочку мощностью 36Вт, рассчитанное на напряжение 12В. Какая ёмкость понижающего конденсатора тут необходима?
Если речь идет об электрических сетях в России, то входное напряжение 220 Вольт, частота 50Гц.
Ток проходящий через лампочку равен 3 Ампера (36 делим на 12). Тогда ёмкость по вышенаписанной формуле будет равна:
Полученные параметры понижающего конденсатора |
C = 4.334146654694E-5 Фарад |
Что бы не переводит степени минус пятой степени в микро или мимли Фарады, воспользуемся вот этим ботом и получим
Полученный результат конвертации |
полученное число = 0.0433414665469миллиФарад |
Альтернативное представление |
что нам нужен конденсатор ёмкостью 43 мкФ.
- Сопротивление. Зависимость от температуры >>
LED
Калькулятор резисторов серииLED
Для всех светодиодов требуется определенная форма ограничения тока . Подключение светодиода напрямую к источнику питания сожжет его в мгновение ока. Даже кратковременная перегрузка значительно сократит срок службы и светоотдачу.
К счастью, управление одним или цепочкой светодиодов с низким током (20-30 мА) является простой задачей — добавление небольшого резистора в серию — самый простой и дешевый способ ограничить ток.Однако имейте в виду, что светодиоды с большим током (более нескольких сотен мА) сложнее управлять, и, хотя они могут работать с последовательным резистором, для минимизации потерь мощности и обеспечения надежности рекомендуется использовать более дорогие переключатели Регулятор тока .
Наш калькулятор светодиодов поможет вам определить номинал токоограничивающего последовательного резистора при подключении одного или нескольких слаботочных светодиодов. Для начала введите необходимые значения и нажмите кнопку «Рассчитать».
Программа нарисует небольшую схему, отобразит рассчитанное сопротивление и сообщит вам значение и цветовой код ближайшего стандартного резистора более низкого и высокого уровня. Он рассчитает мощность, рассеиваемую резистором и светодиодами, рекомендуемую мощность резистора, общую мощность, потребляемую схемой, и КПД конструкции (мощность, потребляемая светодиодами / общая потребляемая мощность схемы) x 100. ).
Поля ввода
Напряжение питания : Введите напряжение, превышающее падение напряжения светодиода для одной цепи светодиода и параллельного подключения, или сумму всех падений напряжения при последовательном подключении нескольких светодиодов.
Ток светодиода : Введите ток одного светодиода в миллиамперах. Обычные светодиоды 3 мм и 5 мм обычно работают в диапазоне 10-30 мА, но силовые светодиоды, используемые в осветительных и автомобильных приложениях, могут иметь ток, превышающий 200 мА. Ток 20 мА обычно является безопасным значением, если у вас нет доступа к техническому описанию компонента.
Цвет светодиода и Падение напряжения : Выберите цвет светодиода. Поле падения напряжения автоматически заполнится типичным значением для выбранного цвета (например,грамм. 2В для стандартного красного светодиода; 3,6 В для белого светодиода, используемого в освещении, стробоскопе и т. Д .; 1,7 В для инфракрасного светодиода, используемого в пультах дистанционного управления и т. Д.). Однако падение напряжения сильно различается между разными типами светодиодов, а также незначительно меняется в зависимости от тока, поэтому, пожалуйста, измените его, если вы знаете правильное значение для вашего компонента.
Количество светодиодов : Выберите количество светодиодов, которое вы хотите использовать в своей цепи. Для нескольких светодиодов появится второе раскрывающееся меню, в котором вы можете выбрать соединение серии или параллельное соединение .
Примечание. Не следует подключать светодиоды параллельно с одним общим резистором. Идентичные светодиоды могут быть успешно подключены параллельно, но у каждого светодиода может быть немного разное падение напряжения, и яркость светодиодов будет отличаться. Если вы хотите подключить светодиоды параллельно, у каждого из них должен быть свой резистор. Рассчитайте значение для одного светодиода и подключите все пары светодиод-резистор параллельно.
Точность резистора : выберите желаемую стандартную точность резистора: 10% (E12), 5% (E24), 2% (E48) или 1% (E96).Воспользуйтесь нашим калькулятором цветового кода резистора, чтобы узнать цветовые полосы для различных (20%, 0,5% …) прецизионных резисторов.
Как интерпретировать результаты
Простая схема генерируется при каждой загрузке страницы. На схеме показано только ближайшее значение стандартного резистора, и показаны только два подключения светодиодов, независимо от того, сколько светодиодов в цепи (но я уверен, что вы можете легко заполнить недостающие биты).
Справа показаны два резистора .Это ближайшие (верхние и нижние) стандартные значения, наиболее близкие к исходному рассчитанному сопротивлению. Вы должны использовать только один в своей схеме — лучше выбрать тот, который ближе (тот, который отмечен * после значения).
Рекомендуемая мощность резистора рассчитана с небольшим запасом прочности, так что рассеиваемая мощность остается в пределах 60% от номинального значения.
КПД [%] покажет вам, какая часть общей мощности, потребляемой схемой, фактически используется светодиодом (ами).

Как определить выводы светодиода
Светодиод имеет два вывода: положительный (анод) и отрицательный (катод). На схематических диаграммах его символ похож на простой диод, с двумя стрелками, направленными наружу. Анод (+) отмечен треугольником, а катод (-) — линией. Иногда встречаются дополнительные метки: A или + для анода и K или — для катода.
Есть несколько способов идентифицировать выводы светодиода:
- Катод (отрицательный) обычно маркируется плоской кромкой на нижней части корпуса светодиода.
- Большинство светодиодов изготавливаются с одной длинной ножкой, указывающей на плюс (анод).
- Загляните внутрь самого светодиода — меньшая металлическая деталь внутри светодиода подключается к положительному электроду, а большая — к отрицательному.
Калькулятор резисторов
Ниже приведены инструменты для расчета значения сопротивления и допуска на основе цветовой кодировки резистора, общего сопротивления группы резисторов, включенных параллельно или последовательно, и сопротивления проводника в зависимости от размера и проводимости.
Калькулятор цветового кода резистора
Используйте этот калькулятор, чтобы узнать значение сопротивления и допуск на основе цветовой кодировки резистора.
![]() |
Вычислитель параллельных резисторов
Введите все значения сопротивления параллельно, разделенные запятой «,» и нажмите кнопку «Рассчитать», чтобы определить общее сопротивление.
Последовательный калькулятор резисторов
Введите все значения сопротивления последовательно, разделенные запятой «,» и нажмите кнопку «Рассчитать», чтобы определить общее сопротивление.
Сопротивление проводника
Используйте следующее, чтобы рассчитать сопротивление проводника. В этом калькуляторе предполагается, что проводник круглый.
Калькулятор закона ОмсаЦветовой код резистора
Электронный цветовой код — это код, который используется для указания номинальных характеристик определенных электрических компонентов, например сопротивления резистора в Ом. Электронные цветовые коды также используются для оценки конденсаторов, катушек индуктивности, диодов и других электронных компонентов, но чаще всего используются для резисторов.Калькулятор рассчитывает только резисторы.
Как работает цветовая кодировка:
Цветовая кодировка резисторов является международным стандартом, который определен в IEC 60062. Цветовая кодировка резистора, показанная в таблице ниже, включает различные цвета, которые представляют значащие числа, множитель, допуск, надежность и температурный коэффициент. К какому из них относится цвет, зависит от положения цветной полосы на резисторе. В типичном четырехполосном резисторе существует интервал между третьей и четвертой полосами, чтобы указать, как следует считывать показания резистора (слева направо, при этом одинокая полоса после промежутка является самой правой полосой).В объяснении ниже будет использоваться четырехполосный резистор (конкретно показанный ниже). Другие возможные варианты резистора будут описаны позже.
Калькулятор цепи конденсатора резистора— Дюймовый калькулятор
Рассчитайте время заряда, энергию и характеристическую частоту или импеданс, реактивное сопротивление и угловую частоту цепи резистор-конденсатор.
Расчет энергии и времени зарядки
Расчет импеданса и реактивного сопротивления
Цепь резистор-конденсатор, или RC-цепь, представляет собой цепь с последовательно соединенными резистором и конденсатором.Конденсатор в цепи накапливает энергию, а резистор изменяет скорость заряда и разряда конденсатора. Эти схемы чаще всего используются для фильтрации формы сигнала и используются для создания фильтров нижних, верхних и полосовых частот.
Схема, показывающая цепь резисторного конденсатора.Формулы RC цепей
RC-цепи имеют несколько характеристик, включая постоянную времени, накопление энергии, заряд, импеданс, емкостное реактивное сопротивление, характеристическую частоту и угловую частоту.Расчет каждой из этих характеристик схемы можно выполнить по следующим формулам.
Формула постоянной времени
Постоянная времени, выраженная как tau (τ), — это время в секундах, в течение которого конденсатор в RC-цепи достигает заряда 63,2%. Формула для расчета постоянной времени:
τ = RC
Постоянная времени τ равна сопротивлению R в омах, умноженному на емкость C в фарадах. Конденсатор достигнет заряда 63,2% за τ, 86.5% через 2τ и 99,3% через 5τ.
Энергетическая формула
Энергия, запасенная в полностью заряженном конденсаторе RC-цепи, может быть найдена по формуле:
E = CV 2 2
Энергия E в джоулях равна емкости C в фарадах, умноженной на квадрат напряжения V, деленной на два.
Формула заряда
Максимальный заряд в цепи конденсатора резистора можно найти по формуле:
Q = CV
Заряд Q в кулонах равен емкости C в фарадах, умноженной на напряжение V.
Текущая формула
Максимальный ток RC-цепи можно найти с помощью закона Ома. Формула:
I = VR
Ток I в амперах равен напряжению V, деленному на сопротивление R в омах.
Формула характеристической частоты
Характеристическая частота цепи, часто называемая обычной или циклической частотой, может быть найдена по следующей формуле:
f = 12πRC
Частота f в герцах равна 1, деленному на 2, умноженное на π, умноженное на сопротивление R в омах, умноженное на емкость C в фарадах.
Формула угловой частоты
Угловую частоту контура можно найти по формуле:
ω = 2πf
Угловая частота ω в радианах в секунду равна удвоенной π-кратной характеристической частоте f в герцах.
Формула импеданса
Импеданс RC-цепи можно найти с помощью нескольких формул:
Z = R + 1jωC
| Z | = √ (R 2 + 1 (ωC) 2 )
Где j — мнимая единица, Z — импеданс в омах, R — сопротивление в омах, C — емкость в фарадах, а ω — угловая частота в рад / с.
Формула емкостного реактивного сопротивления
Емкостное реактивное сопротивление RC-цепи можно найти по формуле:
X = 1ωC
Емкостное реактивное сопротивление X равно 1, деленному на угловую частоту ω, умноженную на емкость C.
Формула разности фаз
Эта формула выражает разность фаз между полным напряжением и полным током.
φ = загар -1 (-1ωCR)
φ — разность фаз, ω — угловая частота, C — емкость, R — сопротивление.
Калькулятор параллельного сопротивления— Дюймовый калькулятор
Вычислите общее сопротивление резисторов, включенных параллельно, в Ом, указав значение каждого из них ниже.
Хотите рассчитать резисторы последовательно?
Как рассчитать параллельные резисторы
Резистор — это устройство, которое увеличивает сопротивление электрической цепи. Сопротивление измеряется в омах (Ом), и это также показатель, используемый этим калькулятором.
Когда резисторы добавляются в цепь параллельно, они подключаются к тем же точкам, что и друг друга, поэтому существует несколько путей, по которым может проходить напряжение. Из-за этого величина, обратная каждому значению сопротивления, должна быть сложена вместе, чтобы найти общее сопротивление цепи.
Формула параллельного резистора
Когда несколько резисторов добавляются в цепь параллельно, общее сопротивление можно найти по этой формуле.
1R T = 1R 1 + 1R 2 + 1R 3 +… + 1R n
Таким образом, величина, обратная величине общего сопротивления резисторов, соединенных параллельно, является суммой обратной величины каждого сопротивления.

Например, давайте найдем полное сопротивление цепи с резисторами 200, 400 и 500 Ом, соединенными параллельно.
1R T = 1200 Ом + 1400 Ом + 1500 Ом
1R T = 0,005 + 0,0025 + 0,002
1R T = 0,0095
R T = 1 ÷ 0,0095
R T = 105,263 Ом
Калькулятор светодиодного резистора
Используйте этот калькулятор светодиодного резистора, чтобы определить подходящее сопротивление для вашей светодиодной цепи, состоящей из одного или нескольких светодиодов.
Расчет работы светодиодного резистора
Каждый светодиод имеет определенный диапазон рабочего тока, превышающий номинальный уровень тока, который он повредит. Для защиты или ограничения тока мы просто используем резистор последовательно с ним.
Этот калькулятор резисторов светодиодов поможет вам подобрать правильное значение резистора для светодиода в вашей цепи светодиода, вам просто нужно ввести значения Напряжение источника (В s ), Прямой ток светодиода (I f ) и Светодиод прямого напряжения (V f ).
Прямое напряжение или падение напряжения на светодиоде заранее определено (показано в таблице ниже), поскольку оно зависит от цвета, излучаемого светодиодом, типичное значение падения напряжения составляет 2 В.
Цвет |
Падение напряжения (Vf) |
Красный |
2 |
Зеленый |
2.1 |
Синий |
3,6 |
Белый |
3,6 |
Желтый |
2,1 |
Оранжевый |
2,2 |
Янтарь |
2.1 |
Инфракрасный |
1,7 |
Уравнение
Для математического определения значения вы можете использовать следующее уравнение:
Где,
В с = Напряжение источника измеряется в вольтах.
В f = прямое напряжение светодиода или падение напряжения. Если вы не знаете падение напряжения светодиода, вы можете использовать 2 В, поскольку это типичное значение для падения напряжения светодиода.
I f = прямой ток светодиода, если вы не знаете прямой ток светодиода вашего светодиода, вы можете использовать 20 мА, поскольку это типичное значение для прямого тока светодиода.
N = количество светодиодов, подключаемых последовательно.
Расчет делителя напряжения
Пожалуйста, посмотрите схему делителя напряжения, представленную здесь, и рассчитайте выходное напряжение с помощью калькулятора делителя напряжения по следующей формуле делителя напряжения:
V выход = (V дюйм x R 2 ) / (R 1 + R 2 )
Здесь:
- В в — входное напряжение
- R1 — сопротивление 1-го резистора,
- R2 — сопротивление 2-го резистора,
- V out — выходное напряжение.
В качестве альтернативы вы также можете использовать этот калькулятор делителя напряжения, чтобы получить любые 3 известных значения в цепи и вычислить 4-е.
Схема делителя потенциала — это очень распространенная схема, используемая в электронике, где входное напряжение должно быть преобразовано в другое напряжение, меньшее, чем оно. Эта схема очень полезна для всех аналоговых схем, где требуются переменные напряжения, поэтому важно понимать, как эта схема работает и как рассчитывать значения резисторов.
Схема делителя напряжения представляет собой очень простую схему, состоящую всего из двух резисторов (R1 и R2), как показано выше. Требуемое выходное напряжение (Vout) можно получить на резисторе R2. Используя эти два резистора, мы можем преобразовать входное напряжение в любое требуемое выходное напряжение, это выходное напряжение определяется значением сопротивления R1 и R2. Формулы для расчета Vout показаны ниже.
V из = (V дюйм x R 2 ) / (R 1
9025Где, Vout = выходное напряжение Vin = входное напряжение и R1 = верхний резистор R2 = нижний резистор
Мы можем использовать вышеупомянутый калькулятор делителя напряжения для вычисления любого из значений, упомянутых в формулах делителя напряжения , но теперь давайте узнаем, как были получены эти формулы.Рассмотрим схему ниже, которую можно использовать для преобразования входного сигнала 5 В в выходное напряжение 3,3 В для анализа
Чтобы понять, как выводятся формулы потенциального дайвера, нам понадобится калькулятор закона Ома, согласно закону Ома падение напряжения в любом месте является произведением тока, протекающего по цепи, и сопротивления в ней.
Напряжение = Ток, протекающий через × Сопротивление на напряжении
Используем это для расчета входного напряжения (Vin) для вышеуказанной схемы.Здесь есть два резистора на входном напряжении Vin, следовательно,
Входное напряжение = ток × (сопротивление 1 + сопротивление 2)
Vin = I × (R1 + R2) ( 1)
Аналогичным образом рассчитаем выходное напряжение (Vout), здесь есть только один резистор (R2), следовательно,
Выходное напряжение = ток × сопротивление R2
Vout = I × R2 ( 2)
Если мы посмотрим на уравнения 1 и 2, мы можем заметить, что значение тока одинаковое, поэтому давайте перепишем
Уравнение 1 как, I = Vin / (R1 + R2)
Уравнение 2 как, I = Vout / R2
Поскольку ток, протекающий по цепи, постоянен, ток I останется одинаковым для обоих уравнений, поэтому мы можем приравнять их как
Вин / (R1 + R2) = Vout / R2
V из = (V дюйм x R 2 ) / (R 1
9025
Давайте проверим эту формулу делителя напряжения для указанной выше схемы, где Vin = 5 В, R1 = 1000 Ом и R2 = 2000 Ом.
Выход = (5 × 2000) / (1000/2000)
Выход = (10000) / (3000)
Vout = 3.3333V
Еще одним важным фактором, который следует учитывать при выборе номиналов резистора, является его номинальная мощность (P) . Как только вы узнаете значения I (в зависимости от нагрузки), Vin, R1 и R2, сложите R1 и R2 вместе, чтобы получить R ИТОГО , и используйте калькулятор закона Ома, чтобы узнать номинальную мощность (ватт), необходимую для резисторов. Или просто используйте формулы P = VI, чтобы определить номинальную мощность вашего резистора.Если не выбрана правильная номинальная мощность, резистор будет перегреваться и также может сгореть.
.