Распиновка isp 6: Цоколевки коннекторов ISP | avr

Содержание

Краткий учебный курс — Самоучитель — Программирование микроконтроллеров AVR — быстрый старт с нуля

 

— страница  7 —

Всё о прошивке AVR
микроконтроллеров AVR

Чем и как «прошить» МК AVR, ATmega, ATtiny.

Как загрузить программу в микроконтроллер.

Как запрограммировать микроконтроллер AVR.

Я советую прошивать микроконтроллер AVR из удобного интерфейса программирования встроенного в компилятор CVAVR  CodeVisionAVR

Можно через простейший адаптер — буквально «пять проводков» (схема ниже) соединяющих принтерный порт ПК с прошиваемым микроконтроллером AVR.

Но более удобны программаторы подключаемые в USB или COM порты ПК — особенно в USB.

 

Книги по электронике и микроконтроллерам  скачать в библиотеке

Страницы курса :   заглавная    1   2   3   4   5   6   7   8   9

Задачи-упражнения курса по AVR  —   там
 

Скачать весь курс по AVR одним архивом на заглавной странице курса.

Электрический ток. Закон Ома
Последовательное и параллельное соединение проводников
Правила Кирхгофа для разветвленных цепей
Работа и мощность тока
Электронно-дырочный переход. Транзистор

 


ПРОГРАММИРОВАНИЕ  AVR

Результат написания и компиляции программы — файл-прошивку с расширением .hex (и возможно файл  

.epp  или  .bin  с содержимым для EEPROM МК) нужно записать («зашить», «загрузить», «прожечь») в МК AVR.

МК AVR можно (пере-) программировать не менее 10000 раз, при чем это можно делать прямо в устройстве в котором они будут работать — такое программирование называют «в системе» — «ин систем программин» или ISP.

Компания ATMEL рекомендует установить на плате устройства специальный разъем для подключения программатора. 

Например 6 штырьков для ISP прошивания AVR

Вид сверху платы на штырьки. 

 


или 10 штырьков  в аналогичном порядке ( NC — значит не подключен )

Все контакты ISP разъема подсоединяются к  ножкам  МК в соответствии с названиями сигналов !  Исключения указаны ниже.


Вывод 2 нужно подключить к » + » питания МК если вы собираетесь использовать программатор питающийся от вашего же устройства — например фирменный ISP AVR либо если вы хотите питать ваше устройство от USB при использовании программатора указанного выше.  Для адаптера «5 проводков» этот вывод не подключается.



Для ISP программирования достаточно 5 контактов. Соответственно и разъем который вы будете использовать может быть любым удобным для размещения на плате и имеющий минимум 5 контактов — например в один ряд.

Я использую и считаю это очень удобным 6 штырьков расположенные в 1 ряд, в том порядке как расположены ножки программирования у ATmega16 ( рисунок есть на страничке 6 ) — при этом разводка линий программирования получается простейшей.  Такой разъем легко применять и для 28 выводных AVR  ATmega8  ATmega48 ATmega88  ATmega168 ATmega328 только сделать отдельный проводник для подключения к контакту RESET.

 

     
 

ВНИМАНИЕ !

1) в ATmega64 и ATmega128  выводы MOSI и MISO не применяют для ISP программирования.  Используются другие выводы МК  !

Внимательно смотрите ДатаШит вашего МК !    
 

в ATmega128 ATmega64  сигналы ISP программатора

MISO подключают к ножке PE1

MOSI подключают к ножке PE0


Для ATmega640 -1280 -1281 -2560 -2561 смотрите в даташит 
Table 163. Pin Mapping Serial Programming.

2) Вывод PEN нужно подключить к питанию VCC резистором 1-10  кОм

3) в ATmega128 и ATmega64 есть FUSE бит совместимости со старым МК ATmega103 и с завода он запрограммирован в «0» на совместимость.
См  Table 117. Extended Fuse Byte. 
При прошивании ATmega128 и ATmega64 вам нужно сделать этот fuse «1» —  «не запрограммирован».   

Убрать галочку в CVAVR.
 

Подробней о фьюзах ниже и на стр. 2 курса

 
     

Трудно сразу написать правильно работающую программу, даже после прогона и отладки в софт эмуляторе — симуляторе VMLAB или PROTEUS ваше реальное устройство с реальным AVR может делать не то, что вы от него ожидаете.

Значит в программу нужно будет вносить изменения, перекомпилировать и снова зашивать в МК AVR, и так раз 20-40 и более поэтому разумно использовать отличный программатор AVR в уже имеющемся у вас CVAVR в котором вы правите программу.  


 

В меню CVAVR  «Сеттинс  -> Программер» вам надо выбрать ваш адаптер (подробней про адаптеры ниже!) для программирования.

 

Вариант 1.   Только если вы понимаете что такое фьюзы и знаете как правильно их установить !!!   Вы можете в компиляторе CodeVisionAVR открыть меню «Проджект -> Конфига -> Афта Мэйк»  и отметить чек бокс  «Program the chip». Появится окно программирования-прошивания AVR 

 

В этом окне надо установить параметры программирования — фьюз биты и лок биты — об этом подробней написано ниже. После установки параметров программирования нажмите ОК.

 

Теперь после компиляции программы без ошибок в окне с результатами компиляции вам будет доступна кнопка «Program» — нажмите на нее и, если все подключено правильно, произойдет программирование МК — т.е. файл .hex будет загружен в память программ МК и (если используется в программе) файл EEPROM будет в нее загружен. Затем МК будет «сброшен» (на ножку RESET будет подан лог. 0 а затем опять «1») и AVR начнет выполнять уже новую, только что прошитую (загруженную в него) программу.

Вам даже не нужно будет отсоединять адаптер программирования от вашего устройства  если вы не используете в вашем устройстве последовательный интерфейс SPI. 

… и так до окончательной отладки устройства.

 

Вариант 2.   Если вы не устанавливали чек бокс  «Program the chip» или

Если вы хотите без компиляции прошить с помощью CVAVR готовые файлы прошивки .hex и возможно содержимое EEPROM в микроконтроллер

AVR

1) запустите программатор CVAVR кнопочкой «МИКРОСХЕМА» правее «красного  
    жучка» в верхней панели инструментов.  Появится окно программирования AVR

  

2) Откройте меню «File» затем «Load FLASH» — выберете файл прошивки .hex который нужно прошить в AVR (CVAVR поддерживает и другие форматы, а не только .hex) и щелкните «Открыть».  

3) Если у вас есть информация для загрузки в EEPROM AVR то откройте меню «File» затем «Load EEPROM» — выберете файл .epp  (CVAVR поддерживает и другие форматы) и щелкните «Открыть».

Если вы не используете EEPROM или не меняете ее содержимое — поставьте галочку у «Preserve EEPROM» — это ускорит прошивание.

4) Установите параметры программирования — фьюз биты и лок биты.

Лок биты устанавливают уровень защиты вашей программы от чтения из памяти AVR — это актуально для коммерческих изделий. Для защиты прошивки отключите отладочные интерфейсы JTAG или «уан вая» и  установите «Programming and Verification disabled».

 

ГЛАВНОЕ это правильная установка фьюз битов — fuse AVR …

5) Запрограммируйте AVR не кнопкой «Program All», а через меню «Program» —  Стереть, потом FLASH, потом EEPROM и если надо и

если вы уверены в их установке то и фьюзы. 

После прошивания, если вы сделали все правильно, AVR начнет выполнять уже новую программу.

 

     
 

В А Ж Н О !  

В диалоге настройки прошивания отключите программирование фьюзов МК  уберите галочку у Program Fuse Bit(s) — если не разобрались четко, что они делают и как правильно их установить ! 

Иначе вы можете отключить режим ISP или внутренний RC-генератор и для следующего программирования вам понадобится ставить кварц с конденсаторами или даже искать:

Параллельный программатор для AVR


Но популярному ATtiny2313 даже параллельный программатор
не всегда поможет !    В Errata на ATtiny2313 было написано:

Parallel Programming does not work
Parallel Programming is not functioning correctly. Because of this, reprogramming
of the device is impossible if one of the following modes are selected:
– In-System Programming disabled (SPIEN unprogrammed)
– Reset Disabled (RSTDISBL programmed)
 

 
     

 

в ATmegaXXX с завода включен внутренний RC генератор
на  частоте 1 МГц  
( уточните это по ДШ  и его возможные частоты )

Если вам нужна другая частота или нужно включить внешний кварцевый или керамический резонатор — вам нужно при программировании МК установить фьюзы (Fuses) по таблицам из ДШ ( Даташит AVR на русском языке ) или по таблице фьюзов на стр. 2 или по таблице установки фьюзов ниже :

ЗАПОМНИТЕ :

НЕ запрограммированный  фьюз        1

ЗАпрограммированный   фьюз             0
 

Пример: Чтобы включить в ATmega16 внешний кварцевый резонатор (говорят просто — «кварц») с частотой от 3 до 8 МГц с конденсаторами ( по схеме рис. 12 ДШ ) найдите в ДШ раздел «System Clock» — «системный тактовый сигнал».

В таблице 2 указаны комбинации фьюзов для разных источников тактового сигнала.
Далее написано что с завода МК поставляется с такой комбинацией фьюзов

CKSEL   0001     SUT  10       CKOPT   1


По таблице 4  находим :   в ATmega16 для кварца с частотой от 3 до 8 МГц  нужны конденсаторы от 12 до 22 пФ и  вот  такая  комбинация  фьюзов :

CKSEL   1111     SUT  11       CKOPT   1

Вот скриншот с такой установкой фьюзов в программаторе компилятора  CVAVR


Сняв галочку Program Fuse Bit(s) вы cможете не менять установку фьюзов при прошивании AVR !

НЕ НАЖИМАЙТЕ кнопку «Program All»  —  она прошивает и фьюзы не смотря на отсутствие галочки.

 

Обязательно !!! Прочитайте текущую комбинацию фьюзов в микроконтроллере — «Read» -> «Fuse bit(s)» и скопируйте ее в окно фьюзов.  теперь при случайном нажатии кнопки «Програм ол» в МК прошъется та же комбинация фьюзов которая есть сейчас.

 


Фьюз биты — фьюзы AVR — у которых нет галочки после прошивки AVR будут
равны «1» — т.е. будут  не запрограммированными.

 

Реклама недорогих радиодеталей почтой:


Для прошивания МК используйте меню  «Program»

Вначале  «Erase chip» — стереть чип.

Затем «FLASH»  — прошить программу в МК

И если надо то  «EEPROM» — прошить в EEPROM.


 

Для использования ATmega16 (и других мег) с внешним кварцевым или керамическим резонатором на частотах выше 8 МГц вам нужно установить фьюзы как в примере выше, но запрограммировать CKOPT  
значит сделать его «0».

Т.е. вам нужна такая комбинация:

CKSEL   1111     SUT  11       CKOPT   0

 

CKOPT   — нужен и тогда когда вы хотите взять с XTAL2 тактовый сигнал для другого
микроконтроллер или тактируемого прибора в вашем устройстве.
 

Фьюзы  SUT   — определяют быстроту запуска генератора тактового сигнала,
более детально это описано в даташите в таблицах до 12.
 


Фьюзы ATtiny2313 описаны в конце следующей страницы курса.

 

 

Интерфейс программирования AVR — Адаптер для соединения МК с ПК при прошивании.

Для соединения компьютера с ISP разъемом устройства на AVR Советую сделать адаптер от STK200  — это «правильные 5 проводков» с микросхемой буфером снижающим вероятность случайного повреждения порта ПК.

В установках компилятора CodeVisionAVR интерфейс «5-проводков» называется  «Канда системз STK200+/300».  Меню «сеттингс» — «программер». В этом же диалоге можно понизить частоту с которой программатор будет обмениваться с прошиваемым МК увеличивая множитель задержки.

Частоту тактирования сигнала SCK программатором при прошивании можно установить в диалоге программирования в CVAVR. 



Снижение частоты на SCK повышает помехоустойчивость при прошивке.

Программа узнаёт адаптер STK200 по перемычкам на разъеме параллельного порта к которому он подключается — должны быть соединены двумя перемычками пары выводы: 2 и 12,  3  и 11. 

     
 

Внимание!  

Для программирования к МК должно быть подключено питание. Например +4…+5.5 вольт ко всем выводам МК в названии которых есть VCC , а  0 вольт ко всем выводам GND (это «общий» провод).    

Обязательно поставьте подтягивающий резистор 10 кОм от ножки RESET AVR на питание VCC и конденсатор 0.01-0.15 мкФ (в апноутах AVR040 и AVR042 рекомендуют 0.01 мкФ) от RESET на GND .

Пример схемы там

 
     

 
Если в МК нет внутреннего генератора тактового сигнала (например старые AVR серии AT90sXXXX или мега побывавшая в чьих то шаловливых руках изменивших фьюзы до того как попасть к вам) то нужно подключить кварц
на 1 — 8 МГц и два конденсатора от 15 до 33 пФ. 

Либо подать тактовый сигнал 0.8-1.5 МГц от внешнего источника —
например генератора на микросхеме 74hc14 (аналог 1553ТЛ2) или на таймере LM555.

Вот как сделать простой генератор тактовой частоты :

 


Программатор  AVReAl  может программировать МК без кварца и без конденсаторов ! Он выводит тактовый сигнал на выв. 5 LPT его нужно подать на ножку XTAL1 МК и добавить в командной строке AVReAL специальный ключ  «-o0».  Программатор  AVReAl  позволяет назначать какие ножки LPT порта использовать — это будет полезно когда часть ножек LPT вы уже спалите  
  🙂

 

Если вы считаете эту информацию полезной, пожалуйста, помогите информировать в интернете о курсе — просто щелкните по банеру. Большое спасибо !
Electronic Banner Exchange (ElBE)


Тактовый сигнал генерирует и самодельный программатор AVR
для  USB — смотрите ниже на этой странице.

 

     
 

Я использую самый простой вариант адаптера
STK200 — «для самых ленивых»   

Пять поводков соединяющих линии параллельного (LPT) порта ПК и AVR так же как на схеме STK200 выше, но без микросхемы буфера. 

Лучше все же токоограничительные резисторы от 150 до 270 ом впаять Береженого бог бережет !
 

Проводки не более 15 см длиной !

 
     

 

 

Адаптер «5-проводков» прекрасно работает с компилятором CVAVR  CodeVisionAVR.

Я проверял «проводки» при питании МК ATmega64L от 3,0 до 5,3 вольт, а так же с ATmega16, ATmega48, ATtiny26, ATtiny261, ATtiny13, ATtiny2313 — программирует всегда без сбоев!  

Всё о прошивке AVR Прошивка AVR PIC прошивки Программирование PIC и AVR

     
 

Советую для изготовления адаптера взять » принтерный» шнур — он длинный и экранированный, а не экранированные проводки не стоит делать более 10-15 см.

 
     

 


Питать устройство при программировании можно :

— сетевым адаптеры от бытовых устройств понизив напряжение до 5 вольт. 

— батарейками ! Достаточно три батарейки по 1,5 вольт последовательно. 

+5 вольт можно взять с вывода 1 гейм порта компьютера или из провода включенного в гнездо USB.

Желательно питать устройство от ПК!  В этом случае «земля» вашего устройства будет соединена с корпусом ПК и можно будет безопасно подключать и отключать разъем программирующего адаптера.

 

 
     
 

ВНИМАНИЕ ! 

Вначале старайтесь соединять «земли» (металлические корпуса, «общие» провода) устройств — для уравнивания их потенциалов ! 

Удобно подпаять к проводнику GND устройства проводок с «крокодильчиком» который прицепите к металлу ПК у LPT или COM портов перед подключением разъемов или сигнальных линий, проводов.

Теперь БЕЗОПАСНО соединять разъемы
и затем подавать питание на устройство.

 
     

 

 


Не поленитесь:  спаяйте адаптер STK200 на микросхеме буфере по рисункам внизу страницы  — так как LPT порт компьютера более нежен чем COM — соответственно его спалить проще…     Спалите LPT и будете меня ругать! 

А  я  предупреждал !

 

 

Поставщики AVR говорят что ATTiny2313 поступают с завода с настройкой внутреннего RC-генератора на 4МГц (в даташите указано 8 МГц) с делителем частоты на 8  — т.е. частота тактирования всего 500 КГц. Значит частота на линии SCK, формируемая программатором, не должна быть выше 120..125кГц. 
 


Программатор встроенный в CodeVisionAVR позволяет настроить эту частоту правильно. Выше было написано как.
 

AVReal  тоже.  


 

     
 

Если вы хотите использовать ножки МК SCK, MOSI, MISO в вашем устройстве то подключайте другие компоненты к ним через резисторы 4.7 КОм — чтобы не мешать программированию.

Так рекомендовано в апноуте AVR042

Для Мега64, -128 вместо MOSI и MISO используются другие ножки для ISP программирования !

 
     

 

 

Если у вас нет LPT порта сделайте
Аналог  «5 проводков» для COM-порта.

 


Или соберите простой, дешевый и хороший
USB программатор для AVR

Прошитый микроконтроллер для сборки USB программатора AVR вы можете заказать по почте.

 

     
 


Существуют специальные программы «бутлодеры» (bootloader — начальный загрузчик) 
которые записываются в микроконтроллер способами перечисленными выше и после этого микроконтроллер может сам, при включении, закачивать в себя программу (например из ПК через адаптер USB-UART rs232 COM port — схема в задаче 4 курса) и запускать ее выполнение.

Есть много бесплатных загрузчиков

Вот Bootloader AVR_Arduino.

Вот хороший:   Bootloader AVR.

Вот еще:    MegaLoad Bootloader

STC создал загрузчик bootloader размером 256 байт с поддержкой быстрого страничного режима записи.


Прошитые загрузчиком bootloader микроконтроллеры AVR PIC вы можете заказать по почте.

 
     

 

 

 Дальше — стр. 8 курса.

 

 

Назад на стр. /06.htm — задачи управжнения по AVR

 

 

ниже  

Cписок Апноутов для AVR примеры применения микроконтроллеров.

 

И много полезной информации !
 

РадиоКот :: Программаторы для микроконтроллеров Atmel

РадиоКот >Лаборатория >Цифровые устройства >

Программаторы для микроконтроллеров Atmel

Эта статья — попытка обобщить некоторый разрозненный материал по программаторам для популярных сегодня микроконтроллеров фирмы Atmel. Материал не претендует на полноту, однако основан на личном опыте, в чем и состоит, на мой взгляд, его основная ценность.

Схема программатора Fun-Card

Программатор предназначен для работы под управлением программы ICProg, является функциональным аналогом «5 проводков» (до предела упрощенная схема STK200+/300, о которой ниже) и представляет собой несколько резисторов.
Программатор подключается к LPT-порту. Разъем устанавливается непосредственно на плату программатора, кроме того, на плате предусмотрена кроватка для программирования контроллера AT90S2313, а также выведены сигналы SCK, MOSI/MISO и Reset.
Программируемая микросхема может брать питание с порта LPT, в этом случае, на выводах 2, 3, 4 порта должны быть установлены единицы, а вывод 2 разъёма ISP должет быть подключен к выводу Vcc микросхемы. Некоторые порты могут не потянуть такой нагрузки, в этом случае придётся использовать внешний источник питания (5В).
Источником тактовых импульсов для микросхемы также может служить LPT порт. В этом случае вывод 3 разъёма ISP (LED) должен быть подключен к выводу XTAL 1 программируемой микросхемы.
Естественно, программа программатора на PC должна понимать эти режимы работы (для работы с этой схемой нужно воспользоваться программой IC-Prog, где при выборе типа программатора следует установить «Fun-Card Programmer»).
Печатная плата в формате SL5 – здесь, программа ICProg и драйвер под ХР – здесь.

Схема программатора STK200+/300

Большая часть нижеследующего описания и сама схема взята со странички https://ln.com.ua/~real/avreal/adapters.html, крайне рекомендую посетить ее.
Адаптер получил свое название от комплектующихся им отладочных плат фирмы Atmel для быстрого начала работы с микроконтроллерами At90s8515 и Atmega103. На самом деле приведенная схема соответствует одновременно обоим адаптерам, в ней присутствуют перемычки для определения наличия как адаптера STK200 (выводы 2-12 разъема X1), так и STK300 (выводы 3-11). При необходимости программной генерации тактового сигнала XTAL1 используется линия LED адаптера, исходно предназначенная для включения светодиода (на печатной плате ver.1 установлен только светодиод, сигнал XTAL1 на разъем программирования не заведен, а вот в ver.2 на третьем контакте есть сигнал XTAL1).
Буферизованные адаптеры запитываются от платы с программируемым процессором, т.е. питание подаётся на программируемую плату, а с неё на адаптеры поступает через шлейф.
Адаптер собран на основе шинного формирователя 74HC244 (аналог 1564АП5). Возможно также использование 555АП5 (74LS244) и 1533АП5 (74ALS244) либо, при соответствующем изменении схемы, любые другие неинвертирующие формирователи с тремя состояниями выходов. Применение буфера с третьим (высокоимпедансным) состоянием позволяет по окончании программирования снять сигнал разрешения выходов и, «отключив» адаптер от схемы, не влиять на её работу (за исключением паразитных емкостей между проводами шлейфа от адаптера до платы устройства).
Поскольку разводка рассчитана на установку LPT-разъема непосредственно на плату, для этих адаптеров рекомендуется изготовить удлиннитель порта LPT длиной 1.5-1.8м со всеми линиями (земель не жалеть 🙂 и вывести с программатора шлейф до платы с микроконтроллером длиной 20-25 см.
На плате предусмотрена установка светодиодов «питание» и «программирование» (на схеме не показаны).
Схема работает с программами AVR ISP, CodeVision AVR, WinAVR и другими.
В ряде случаев (например, для программирования нескольких контроллеров одной и той же прошивкой или в случае отсутствия на плате места под ISP-разъем) могут оказаться полезными «платы расширения» для различных контроллеров, содержащие кроватку для установки контроллера и минимально необходимую для работы обвязку. Я сделал такие платы под AT90S2313/ATTiny2313, ATTiny26, ATTiny13, ATMega8 и ATMega16. Кроме того, в версии ver.1 кроватки для ATTiny26 и ATTiny13 есть непосредственно на плате.
Обе версии платы программатора и все «платы расширения» в формате SL5 – здесь.
Вот так выглядит один из моих STK в окружении плат расширения:

Схема программатора AVR910 с универсальным COM/USB интерфейсом

AVR910 – весьма известный аппнот Atmel, давший название целому классу устройств.
Сейчас под AVR910 понимают как правило протокол, по которому происходит обмен данными между компьютером и программатором.
В сети на данный момент можно найти несколько вариантов таких программаторов, различающихся способом реализации интерфейсной части. Традиционно все эти программаторы собираются на основе микроконтроллера AT90S2313 или (в редких случаях, при наличии модифицированной прошивки) ATTiny2313.
На схеме представлен программатор, способный работать как через CОМ, так и через USB.
Переключение типа интерфейса происходит при помощи джампера J1. При работе через USB питание программатора осуществляется непосредственно от этого порта компьютера, причем в этом режиме имеется полная гальваническая развязка программатора (и, соответственно, программируемого устройства) от компьютера, более того, при замыкании перемычки J2 программируемое устройство может питаться от программатора (до 100 мА).
При работе через СОМ-порт развязка отсутствует, а питание программатора осуществляется, как обычно, от программируемого устройства.
Интерфейс USB реализован на микросхеме FT232BM в стандартной схеме включения, в качестве согласователя уровней для СОМ-порта применена MAX232.
Вариант разводки печатной платы, схема и прошивка лежат здесь. Разводка платы не оптимальна, поскольку осуществлялась для конкретного корпуса с заранее заданным расположение разъемов, органов управления и индикации. Кроме того, на плате разведена кнопка для принудительного сброса программируемого МК, реально она не нужна, поскольку сброс корректно осуществляется программным образом. Также на плате присутствует разъем для программирования МК самого программатора.
Для подключения программатора к СОМ-порту служит трехконтактный разъем PLS и потребуется изготовить специальный шнурок.
Замечу, что поскольку здесь используется стандартная разводка шнурка для ISP, с этим программатором можно использовать платы расширения от STK200+/300.
Этот комплект у меня выглядит вот так:

Этот программатор работает у меня под управлением CodeVision AVR 25-ой сборки. Такой выбор обусловлен возможностью регулирования скорости порта непосредственно из программы. Программатору свойственны некоторые особенности в силу применения микросхемы FT232BM, в частности, необходимо выставить минимальную задержку в свойствах соответствующего виртуального СОМ-порта (подробнее смотрите статью USB — RS-232 преобразователи). После этого программирование осуществляется довольно быстро (хотя и чуть медленнее STK200+/300, что, естественно, вызвано последовательным способом передачи данных в программатор).

Схема AVR910-совместимого USB программатора (схема Prottoss»a)

Автором этой конструкции является Рыжков Андрей, известный также под ником PROTTOSS. Описанию этого программатора посвящена одна из страничек его сайта, там же можно найти контакты для связи с автором. Здесь этот материал публикуется с разрешения автора, так что все формальности соблюдены. :)
Программатор выполнен на основе драйвера от Objective Development и полностью совместим по командам с оригинальным программатором AVR910 от ATMEL. Описание оригинальной схемы программатора можно взять в Application Note AVR910: In-System Programming, а список поддерживаемых команд можно посмотреть в Application Note AVR109: Self Programming
Исходно схема устройсва выглядит следующим образом:

Светодиоды VL1, VL2 сигнализируют о текущих действиях программатора, и, соответственно, обозначают режимы чтения и записи. Светодиод VL3 служит для сигнализации подачи питания на программатор. Резисторы R10 — R14 предназначены для согласования уровней сигналов контроллера программатора и программируемого контроллера. С помощью J3 LOW SCK возможно понижать тактовую частоту порта SPI МК программатора до ~20 кГц. При разомкнутом джампере частота SPI нормальная, при замкнутом — пониженная. Переключать джампер можно «на ходу», так как управляющая программа МК программматора проверяет состояние линии PB0 при каждом обращении к порту SPI. Не рекомендуется переключать джампер при запущенном процессе записи/чтения программируемого МК, т.к., скорее всего, это приведет к искажению операции записи/чтения. Данный джампер введен для возможности программирования МК AVR, тактированных от внутреннего генератора 128 кГц.
Схема была несколько переработана, в нее внесены следующие изменения.
Питание МК осуществляется от USB, но не через диоды, как в исходной схеме, а через LDO стабилизатор LM1117 на 3.3В. Замечу, что при таких напряжениях питания (как 3.3 В здесь, так и 3.6 В в исходной схеме) и частоте кварца 12 МГц Atmel не гарантирует устойчивую работу своих МК, однако к чести производителя ни один из тестировавшихся микроконтроллеров работать не отказался. Тем не менее, стоит учитывать такую возможность. Еще раз: чем больше напряжение питания (в пределах до 5В, естественно), тем выше вероятность того, что контроллер запустится и будет устойчиво работать, поэтому многие отказываются от LDO в пользу двух диодов. Да, предохранитель тоже отсутствует, но, если добавить, хуже точно не будет.
В обе цепи питания МК (VCC и AVCC) введены дополнительные LC-фильтры в виде SMD-индуктивностей на 10мкГн и конденсаторов 0.1 мкФ (в принципе, дроссель в AVCC можно заменить перемычкой, его установка — совсем уж перестраховка), кроме того, на плате появился дополнительный джампер, позволяющий запитывать целевую плату от программатора напряжением 5В или 3.3 В или, естественно, вообще не питать ее от программатора. В цепь питания целевой платы также включена индуктивность и установлен диод 1N4148, препятствующий попаданию питающего напряжения с целевой платы (если оно там есть) на программатор. Замечу, что поскольку на диоде имеет место падение напряжения, то напряжение питания целевой платы будет меньше заявленного на величину этого самого падения. В зависимости от диода и некоторых других условий теоретически оно может снизиться настолько, что его не хватит для нормального функционирования целевой платы. Для уменьшения эффекта можно использовать в этой цепи диод Шоттки, а вообще, может быть стоит вообще отказаться от такой возможности, решайте сами, насколько оно вам надо… :)
Исчез джампер NORM/MOD, предназначенный для ввода программатора в режим обновления прошивки, вместо этого на плате установлен полноценный разъем для программирования МК программатора (разъем имеет несколько нестандартный вид и представляет собой контактную гребенку PLS-6, на которую выведены следующие сигналы в последовательности MOSI-MISO-SCK-Reset-Vcc-GND. В такой же последовательности эти сигналы расположены на выводах МК ATMega16 в корпусе DIP-40, именно оттуда я ее и «срисовал». Такой разъем занимает меньше места на плате и как правило проще разводится, чем стандартный 10-ти контактный ISP-коннектор, поэтому лично я часто им пользуюсь в своих конструкциях).
Кроме того, уменьшены до 220 Ом последовательные резисторы в линиях программирования (вообще, их номинал — отдельный открытый вопрос) и до 22 Ом в линиях USB.
Все эти изменения можно проследить на печатной плате (кроме изменения номиналов резисторов, в подписях элементов они оставлены прежними), разводку которой можно скачать в конце статьи. Плата получилась односторонняя с парой перемычек и рассчитана на установку МК ATMega8 в кроватке, у которой удалены неиспользуемые выводы. Можно, конечно, и впаять туда Мегу, откусив лишние выводы, но это на ваш страх и риск. Собранный программатор выглядит так:

После сборки программатора следует прошить МК в нем (прошивка в конце статьи), при этом фьюзы для МК нужно выставить следующим образом:

Теперь, если все собрано правильно, при подключении программатора к ПК обнаружится новое устройство и потребуется установка драйверов. Драйвера, естественно, без цифровой подписи, так что просто игнорируем предупреждения ОС по этому поводу. В общем-то, на этом установка и заканчивается. Если у вас не ХР, а Win2000, то требуются некоторые дополнительные манипуляции, за подробным описанием которых (как, впрочем, и всей конструкции вцелом) я попрошу вас обратиться на сайт автора. В системе должен появиться новый виртуальный СОМ-порт, через который и работает этот программатор, стоит настроить номер этого порта и скорость. Естественно, используемый вами софт нужно будет настроить на работу именно с этим портом.

Вот еще вариант платы этого программатора на микроконтроллере в корпусе TQFP, делал под конкретный корпус, схема та же, работает не хуже:


При всем уважении к автору не могу не заметить, что среди повторивших эту схему встречаются люди, у которых она работать отказывается. Сложно объективно сказать, с чем это может быть связано, однако лишний раз призову к соблюдению рекомендаций и внимательной сборке устройства. В остальном, из личного опыта, претензий к программатору нет, работает достаточно устойчиво (несколько раз наблюдались сложности при длинных шлейфах к программируемому устройству, другие программаторы в этих же условиях сбоя не давали), скорость приемлемая, но не очень высокая, естественно.
В качестве возможных доработок могу предложить не питать МК программатора пониженным напряжением, а поставить на линии USB стабилитроны, чтобы ограничить напряжение на них. Идея не проверялась.

Лично я свой первый МК AT90S2313 программировал с помощью Fun Card, потом собрал и до сих пор плотно использую несколько вариантов STK200+/300, а с AVR910 работаю в основном в «полевых условиях», когда требуется подключение программатора к ноутбуку без LPT-порта.. Вот такая вот эволюция..

Вопросы, как обычно, складываем тут.

Файлы:

Плата Fun Card в формате SL5
Софт для Fun Card
Платы в формате SL5 для STK200+/300
Схема (RusPlan6), плата (SL5) и прошивка (hex) для AVR910
Плата (SL5), прошивка (hex) и драйвера для USB AVR910 от PROTTOSS»a
Плата (P-CAD 2006) для USB AVR910 от PROTTOSS»a на Atmega8 в корпусе TQFP (SMD вариант)


Как вам эта статья?

Заработало ли это устройство у вас?

Делаем простой USB программатор USBTinyISP / Блог им. Ghost_D / RoboCraft. Роботы? Это просто!

Очень многие люди, начиная свое знакомство с микроконтроллерами, испытывают трудности с инструментом для их программирования. И это реально может охладить творческий пыл. Да что там говорить, я и сам после сборки своего первого Arduino долго пытался «вдохнуть» жизнь в «железяку». Здесь очень хорошо описаны мучения. Конечно, самый простой вариант «5 проводков» — это здорово! Но, в моем окружении (как я понимаю, и у многих) дома, на работе в компах и ноутбуках напрочь отсутствует LPT-порт! Да и COM-порт становиться достаточно редкой «экзотикой». Что же делать? Естественно, на сцене появляется вездесущий USB.

Да, готовый программатор для AVR легко можно купить. Но цена на них неадекватно завышена (у нас в г. Минске, на радиорынке что-то около 30..50 у.е.). Как говорил Киса Воробьянинов — «ОДНАКО!!!». Хорошо, что есть братья-китайцы, с нормальными ценами. Только придется прилично подождать. Да и судя по последним тенденциям, ОГРОМНЫЙ поток посылок из Китая ОЧЕНЬ заинтересовал государственные органы… И боюсь, что в скором времени превратится в жалкий ручеек 🙁
Да и к тому же, как говорит мой хороший друг: «Это не наш метод. Мы сделаем сами, пусть по выходу окажется и в два раза дороже!».

Спешу обрадовать, что затраты на изготовление — мизерные. Самые дорогие компоненты — это Attiny2313 (примерно 2$) и разъем USB.

Итак, приступим. Нам нужен программатор который максимально прост и относительно дешев, подключается по USB, и при этом, поддерживается всеми современными ОС (LINUX, WINDOWS, MAC OSX) через программу avrdude. Изначально я рассматривал для повторения самый «примитивный» вариант. Дальнейшие поиски меня привели к — USBTinyISP!!! Стремясь к компактности, я выбрал для «клонирования» версию 1 (без буферной микросхемы). Ниже схема программатора.

Схема осталось оригинальной, за исключением перемычки для программирования (мне эта «фишка» абсолютно не нужна). А вот печатку я переделал под свои нужды.

(Номиналы деталей можно увидеть в SprintLayout при наведении курсора на нужный элемент)

Нам понадобится:

— кусок текстолита 63х33 мм
— МК Attiny2312 с колодкой под нее
— Разъем USB (тип B)
— Разъем 10х2 (как он правильно называется ???? Не знаю..)
— 4 резисторa 1.5 кОм (smd, маркировка 152)
— 1 резистор 1.5кОм (выводной 0.125Вт)
— 2 резисторa 33 Ом (smd, маркировка 330)
— 1 резистор 10к (smd, маркировка 103)
— 2 стабилитрона на 3.6В
— 2 конденсатора 22 pF (smd)
— 1 конденсатор 0.1 мF (smd)
— 2 светодиода (зеленый и красный)
— кварц на 12Mhz
— электролитический конденсатор 100x16V
— самовосстанавл. предохранитель (я выпаял из старой мат. платы). Если нету, можно поставить перемычку (на www.ladyada.net/ так и сделали).
— два штырька для перемычки

Естественно, ЛУТ.

После ЛУТа

После травления:

Мой любимый сплав Розе

Паяем SMD элементы

Теперь перемычки и оставшиеся элементы

Готово!

Небольшое лирическое отступление. Давным давно, в 2000-х годах у меня один приятель жаловался со сложностями в поиске НОРМАЛЬНОЙ работы (он работал водителем). Дело в том, что у него был на тот момент очень маленький стаж вождения :). Чувствуете подвох? На нормальную работу без стажа не берут. Стажа нет, потому что на работу не берут… И так замкнутый круг.

Так и в нашем случае, для изготовления программатора нужно запрограммировать контроллер… т.е. нужен программатор. Слава богу, это нужно проделать всего один раз. Выходов несколько:
— берем пиво и навещаем приятеля с программатором 🙂
— ищем компьютер с LPT-портом и паяем «5-проводков»
— нету LPT, но есть COM? Прекрасно, делаем программатор Громова!
— есть люди, предлагающие свои услуги по прошивке МК за небольшую «денюжку»
— другие варианты

У меня ситуация более, чем шикарная — у меня уже был программатор AVR910. Так, что вся процедура заняла не более минуты. «Прошиваем» МК с помощью AVRDUDE. (Все необходимое для этого сложено в архив и находиться в каталоге Firmware).

avrdude.exe -p t2313 -c avr910 -P COM12 -U flash:w:usbtinyisp_(v.1).hex -U hfuse:w:0xdf:m -U lfuse:w:0xef:m

Кому менее повезло и пришлось прибегнуть к «5 проводкам» (кстати, официально он называется DAPA):

avrdude.exe -p t2313 -c dapa -U flash:w:usbtinyisp_(v.1).hex  -U hfuse:w:0xdf:m -U lfuse:w:0xef:m

вот, вариант когда программатор USBTinyISP используется для прошивки себе подобного, а-ля «овечка Долли»:
avrdude.exe -p t2313 -c usbtiny -U flash:w:usbtinyisp_(v.1).hex -U hfuse:w:0xdf:m -U lfuse:w:0xef:m

Почему вариант с AVRDUDE более предпочтителен для начинающих? При выполнении вышеприведенных команд сразу же прошиваются и нужные фьюзы, т.е. ухера.. «убить» микроконтроллер достаточно сложно.

Итак, устанавливаем на плату свежепрошитый микроконтроллер. Еще раз советую проверить изготовленную плату на качество пайки, отсутствие «коротышей» и тому подобных неприятностей. И только если ВЫ на 100% уверены, подключаем наш программатор к разьему USB. После сообщения об обнаружении нового оборудования (речь идет о Windows), ставим как обычно драйвера. Они сложены в архиве в папке usbtinyisp w32 driver v1.12.

Проверяем, что все хорошо, заглянув в список оборудования:

Если Вам удалось увидеть такую же картинку, то поздравляю! Все готово. У Вас теперь есть USB программатор для AVR!!!
Не знаю как Вы, но мне ОЧЕНЬ захотелось сразу же опробовать изделие в действии. А давайте прошьем бутлодер в Ардуино.

Запускаем Arduino IDE, [Сервис]->[Программатор]->[USBTinyISP]

Жмем [Сервис]->[Записать загрузчик]

Буквально проходит 7 секунд, мерцание красного светодиода на программаторе… и ОПА!!! Все готово. Получите, распишитесь 🙂


А теперь небольшой БОНУС, расширяющий область применения нашего программатора. А именно, маленький адаптер для DIP корпусов наиболее распространеных AVR контроллеров. Мне приходилось иметь дело с ATTiny13/45 — 8 ножек, Attiny 2313 (тут смайлик)- 20 ножек, Atmega 8/48/168 — 28 ножек. За основу берем схему соединения колодок (схема откуда-то из инета):

Для простоты я не использовал сигналы тактирования XT1. (Для всяких неприятных случаев, у меня есть собранный FUSE Doctor :)) И еще, я не ставил на адаптер колодку под Atmega16 (DIP-40). Пока у меня не возникало необходимости в программировании таких контроллеров.

Ну, если осилили изготовление программатора, то сделать такой адаптер — вообще плевое дело!

Кстати, некоторые неиспользуемые контакты я просто-напросто удалил, во избежание ненужного контакта 🙂

Приклеиваем (для удобства) соответствующие надписи:

И вот, все в сборе, программатор и адаптер! Пользуйтесь на здоровье.
Весь материал (печатку, прошивку, драйвера и фото) для повторения можно забрать одним архивом тут.

ATEMP Production / Продукция / Аксессуары

Размеры — 84х58х24мм

Вес — 100гр

+ Кабель ISP 10pin 20см

Посмотреть Отзывы

В комплекте:

Использование программатора

Информацию по подключению программатора к компьютеру можно найти в этой статье.

Использование программатора подразумевает его подключение к программируемому микроконтроллеру. Определите интерфейс связи с микроконтроллером, исходя из его описания, и подключите провода к микроконтроллеру. Внимательно отнеситесь в выбору питающего напряжения микроконтроллера, переключаемого на плате программатора. Доступно 3.3В и 5.0В. Нужное напряжение VCC выбирайте, ориентируясь на информацию из datasheet на микроконтроллер.

Распиновка программатора

Для подключения по ISP интерфейсу используется разъем ISP.

Для подключения по PDI либо TPI интерфейсу используются разъемы PDI и TPI.

Вывод Recovery clock связан с внутренним генератором тактовой частоты 1,5МГц и используется в случае настроек МК на внешний источник тактовой частоты но при его отсутствии на плате. Как правило, подключается к выводу XTAL1 МК.

Прошивка программатора

Перепрошивка программатора производится с помощью программы Flip от Atmel. После установки программы Flip подключите программатор к компьютеру, нажмите кнопку HWB и кратковременно нажмите кнопку RST. Устройство перейдет в режим программирования и объявится в диспетчере задач как AT90USB162 (для установки драйвера вручную укажите путь в папку, где установился FLIP). Далее запускаем программу FLIP, выбираем наш микроконтроллер AT90USB162, подключаемся выбрав Connect — USB, выбираем файл прошивки и прошиваем кнопкой RUN. Прошивка занимает пару секунд.

Внимание! FLIP не увидит файл прошивки hex, если он будет расположен в «длинном» пути или в пути будет присутствовать кириллица! Пользователям WinXP рекомендуется положить файл прошивки в корень любого диска, пользователям Win7 — в корень любого не системного диска.

Прошивки программатора:

1. AVRISP-MKII_8mhz_avrdude (28.27 kB)

2. AVRISP-MKII_8mhz_atmelstudio 6.2 (28.34 kB) build 1153

3. AVRISP-MKII_16mhz_avrdude (27.43 kB)

4. AVRISP-MKII_16mhz_atmelstudio 6.2 (28.36 kB) build 1153

5. AVRISP-MKII 8mhz AtmelStudio 6.2 build 1563

6. AVRISP_MKII 8mhz NOT_LED_AtmelStudio 7 build 7.0.582

Загрузчики (Бутлоудеры) для AT90USB128, AT90USB162, AT90USB64, AT90USB82, ATMega16U4 и ATMega32U4.

Также там доступны исходные файлы прошивки программатора, автором которых является группа LUFA (http://www.fourwalledcubicle.com/LUFA.php)

Список поддерживаемых микроконтроллеров.

Atmel AVR 8- and 32-bit Automotive
ATmega164P, ATmega169P, ATmega324P, ATmega328P, ATmega644P, ATtiny24, ATtiny25, ATtiny44, ATtiny45, ATtiny84, ATtiny85

Atmel AVR 8- and 32-bit — AVR XMEGA
ATxmega128A1, ATxmega128A3, ATxmega128A4, ATxmega128D3, ATxmega128D4, ATxmega16A4, ATxmega16D4, ATxmega192A1, ATxmega192A3, ATxmega192D3, ATxmega256A1, ATxmega256A3, ATxmega256A3B, ATxmega256D3, ATxmega32A4, ATxmega32D4, ATxmega384A1, ATxmega64A1, ATxmega64A3, ATxmega64A4, ATxmega64D3, ATxmega64D4

Atmel AVR 8- and 32-bit — megaAVR
AT90PWM1, AT90PWM2, AT90PWM216, AT90PWM2B, AT90PWM3, AT90PWM316, AT90PWM3B, AT90PWM81, ATmega128, ATmega1280, ATmega1281, ATmega128A, ATmega16, ATmega162, ATmega164A, ATmega164P, ATmega164PA, ATmega165, ATmega165P, ATmega165PA, ATmega168, ATmega168A, ATmega168P, ATmega168PA, ATmega169, ATmega169A, ATmega169P, ATmega169PA, ATmega16A, ATmega2560, ATmega2561, ATmega32, ATmega324A, ATmega324P, ATmega324PA, ATmega325, ATmega3250, ATmega3250A, ATmega3250P, ATmega325A, ATmega325P, ATmega325PA, ATmega328, ATmega328P, ATmega329, ATmega3290, ATmega3290A, ATmega3290P, ATmega329A,  ATmega329P, ATmega329PA, ATmega32A, ATmega48, ATmega48A, ATmega48P, ATmega48PA, ATmega64, ATmega640, ATmega644, ATmega644A, ATmega644P, ATmega644PA, ATmega645, ATmega6450, ATmega6450A, ATmega6450P, ATmega645A, ATmega645P, ATmega649, ATmega6490, ATmega6490A, ATmega6490P, ATmega649A, ATmega649P, ATmega64A, ATmega8, ATmega8515, ATmega8535, ATmega88, ATmega88A, ATmega88P, ATmega88PA, ATmega8A

Atmel AVR 8- and 32-bit — tinyAVR
ATtiny12, ATtiny13, ATtiny13A, ATtiny15L, ATtiny20, ATtiny2313, ATtiny2313A, ATtiny24, ATtiny24A, ATtiny25, ATtiny26, ATtiny40, ATtiny4313, ATtiny43U, ATtiny44, ATtiny44A, ATtiny45, ATtiny48, ATtiny84, ATtiny84A, ATtiny85

MCU Wireless — Bundles
ATmega1280R212, ATmega1280R231, ATmega1281R212, ATmega1281R231, ATmega1284PR231, ATmega1284RZAP, ATmega128RZAV, ATmega128RZBV, ATmega2560R212, ATmega2560R231, ATmega2561R212, ATmega2561R231, ATmega256RZAV, ATmega256RZBV, ATmega644PR231, ATmega644R212, ATmega64RZAPV, ATmega64RZAV

Данный список может быть не полным. Если Ваш МК произведен ATMEL и среди интерфейсов поддерживает SPI, PDI или TPI — то он так же будет поддерживаться.

Схема

AVR Studio 4.19 (build 730)
(130984720, updated September 2011) 

Arduino pro mini подключение. Arduino Pro Mini — распиновка и характеристики. Что для этого нужно

Общие сведения

Arduino Pro Mini построена на микроконтроллере ATmega168 (техническое описание). Платформа содержит 14 цифровых входов и выходов (6 из которых могут использоваться как выходы ШИМ), 6 аналоговых входов, резонатор, кнопку перезагрузки и отверстия для монтажа выводов. Блок из шести выводов может подключаться к кабелю FTDI или плате-конвертеру Sparkfun для обеспечения питания и связи через USB.

Arduino Pro Mini предназначена для непостоянной установки в объекты или экспонаты. Платформа поставляется без установленных выводов, что позволяет пользователям применять собственные выводы и разъемы. Расположение выводов совместимо с платформой Arduino Mini.

Существует две версии платформы Pro Mini. Одна версия работает при напряжении 3.3 В и частоте 8 МГц, другая при напряжения 5 В и частоте 16 МГц.

Arduino Pro Mini разработана и производится SparkFun Electronics.

Схема и исходные данные

Характеристики
Питание

Arduino Pro Mini может получать питание: через кабель FTDI, или от платы-конвертора, или от регулируемого источника питания 3.3 В или 5 В (зависит от модели платформы) через вывод Vcc, или от нерегулируемого источника через вывод RAW.

Выводы питания:

  • RAW . Для подключения нерегулируемого напряжения.
  • VCC . Для подключения регулируемых 3.3 В или 5 В.
  • GND. Выводы заземления.
Память

Микроконтроллер ATmega168 имеет: 16 кБ флеш-памяти для хранения кода программы (2 кБ используется для хранения загрузчика), 1 кБ ОЗУ и 512 байт EEPROM (которая читается и записывается с помощью библиотеки EEPROM).

Входы и Выходы

Каждый из 14 цифровых выводов Pro, используя функции pinMode() , digitalWrite() , и digitalRead() , может настраиваться как вход или выход. Выводы работают при напряжении 3,3 В. Каждый вывод имеет нагрузочный резистор (стандартно отключен) 20-50 кОм и может пропускать до 40 мА. Некоторые выводы имеют особые функции:

  • Последовательная шина: 0 (RX) и 1 (TX) . Выводы используются для получения (RX) и передачи (TX) данных TTL. Данные выводы имеют соединение с выводами TX-0 и RX-1 блока из шести выводов.
  • Внешнее прерывание: 2 и 3 . Данные выводы могут быть сконфигурированы на вызов прерывания либо на младшем значении, либо на переднем или заднем фронте, или при изменении значения. Подробная информация находится в описании функции attachInterrupt().
  • ШИМ: 3, 5, 6, 9, 10, и 11 . Любой из выводов обеспечивает ШИМ с разрешением 8 бит при помощи функции analogWrite() .
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK) . Посредством данных выводов осуществляется связь SPI, которая, хотя и поддерживается аппаратной частью, не включена в язык Arduino.
  • LED: 13 . Встроенный светодиод, подключенный к цифровому выводу 13. Если значение на выводе имеет высокий потенциал, то светодиод горит.

На платформе Pro Mini установлены 6 аналоговых входов, каждый разрешением 10 бит (т.е. может принимать 1024 различных значения). Четыре из них расположены на краю платформы, а другие два (входы 4 и 5) ближе к центру. Измерение происходит относительно земли до значения VCC. Некоторые выводы имеют дополнительные функции:

  • I2C: A4 (SDA) и A5 (SCL) . Посредством выводов осуществляется связь I2C (TWI), для создания которой используется библиотека Wire.

Существует дополнительный вывод на платформе:

  • Reset . Низкий уровень сигнала на выводе перезагружает микроконтроллер. Обычно применяется для подключения кнопки перезагрузки на плате расширения, закрывающей доступ к кнопке на самой плате Arduino.
Связь

На платформе Arduino Pro Mini установлено несколько устройств для осуществления связи с компьютером, другими устройствами Arduino или микроконтроллерами.ATmega168 поддерживает последовательный интерфейс UART TTL, осуществляемый выводами 0 (RX) и 1 (TX). Мониторинг последовательной шины (Serial Monitor) программы Arduino позволяет посылать и получать текстовые данные через подключение USB.

Библиотекой SoftwareSerial возможно создать последовательную передачу данных через любой из цифровых выводов Pro Mini.

ATmega168 поддерживает интерфейсы I2C (TWI) и SPI. В Arduino включена библиотека Wire для удобства использования шины I2C. Более подробная информация находится в документации. Для использования интерфейса SPI обратитесь к техническим данным микроконтроллера ATmega168.

Программирование

Микроконтроллер ATmega168 поставляется с записанным загрузчиком, облегчающим запись новых программ без использования внешних программаторов. Связь осуществляется оригинальным протоколом STK500.

Имеется возможность не использовать загрузчик и запрограммировать ATmega168 с помощью внешнего программатора. Подробная информация находится в данной инструкции.

Автоматическая (программная) перезагрузка

Arduino Pro Mini разработана таким образом, чтобы перед записью нового кода перезагрузка осуществлялась самой программой, а не нажатием кнопки на платформе. Один из выводов на блоке из шести выводов подключен к линии перезагрузки микроконтроллеров ATmega168 через конденсатор 100 нФ. Данный вывод соединен с одной из линий управления потоком конвертора USB-to-serial, подключенного к блоку: к линий RTS при использовании кабеля FTDI или к линии DTR при использовании платы-конвертора Sparkfun. Активация данной линии, т.е. подача сигнала низкого уровня, перезагружает микроконтроллер. Программа Arduino, используя данную функцию, загружает код одним нажатием кнопки Upload в самой среде программирования. Подача сигнала низкого уровня по линии перезагрузки скоординирована с началом записи кода, что сокращает таймаут загрузчика.

Функция имеет еще одно применение. Перезагрузка Pro Mini происходит каждый раз при подключении к программе Arduino на компьютере с ОС Mac X или Linux (через USB). Следующие полсекунды после перезагрузки работает загрузчик. Во время программирования происходит задержка нескольких первых байтов кода во избежание получения платформой некорректных данных (всех, кроме кода новой программы). Если производится разовая отладка скетча, записанного в платформу, или ввод каких-либо других данных при первом запуске, необходимо убедиться, что программа на компьютере ожидает в течение секунды перед передачей данных.

Физические характеристики

Габаритные размеры печатной платы Pro Mini составляют 1,8х3,3 см.

Arduino pro mini – специализированная электронная платформа в виде микросхемы, предназначение которой состоит в создании электронных устройств. Следовательно, в микроконтроллере отсутствует привычная микросхема, роль которой заключается в поддержании связи с помощью USB-UART. Цена намного дешевле, в отличие от других представителей Arduino. Pro Mini или просто pro – модельный ряд, не оснащенный разъемами USB, которые используются для подключения и прошивания устройства.

Вместо этого существует программатор. Начинающий электронщик может выбрать из двух доступных вариантов изделия: Ардуино с 3,3 В и 8 МГц или Ардуино про мини 5 V, в котором доступна распиновка. Статья ниже познакомит читателя с особенностями модели и покажет, где можно использовать электронную плату.

Техническая сторона Arduino mini:

  • рабочее напряжение, требуемое для нормальной работоспособности – 3,3 и 5 Вольт;
  • напряжение, используемое при входе – 3-12 или 5-12 Вольт;
  • количество цифровых входов и выходов – 14 штук, 6 из которых эксплуатируются как выходы ШИМ;
  • состояние постоянного тока, требуемого для входа и выхода – 40 мА;
  • flash-память – 16 Кб, но 2 Кб предназначены для загрузчика;
  • оперативная память – 1 Кб;
  • eeprom – 512 байт;
  • частота тактов – в первой модели 8 МГц, а во второй 16 МГц;
  • Arduino pro включает i2c-интерфейс.

Также стоит отдельно сказать про размеры платы — они, на самом деле очень скромные. Многие кто знакомятся с линейкой ардуино в первый раз всегда удивляются размерам, когда достают МК из коробки. Ниже вы можете оценить плату в дюймах и в сантиметрах.

Аппаратная часть мк Arduino pro mini

В таблице ниже описана аппаратная часть Arduino pro mini. На Arduino mini pro особое внимание уделяется входам и выходам.

Аппаратная часть Особенности
Питание На платформе Ардуино мини про расположен разъем для подсоединения кабеля FTDI, с помощью которого устройство получает питание. Также возможно включать ардуинку через вывод Vcc или RAW. Рассмотрим подробнее источники питания на Ардуино мини:
  1. С помощью RAW-вывода. Напряжение в таком случае будет нерегулируемым.
  2. GND – вывод при заземлении.
  3. VCC. Используется в том случае, когда требуется регулировать напряжение.
Состояние памяти Распределение памяти на схеме Ардуино мини про:
  • 16 килобайт выделено для флеш памяти;
  • 2 килобайт для того, чтобы включился загрузчик;
  • на оперативную память выделен 1 килобайт;
  • 512 байт под чтение и запись библиотеки EEPROM.
Количество входов и выходов и их предназначение Для распиновки разработчики Ардуино про выделили 14 контактов, которые пользователь самостоятельно настраивает, как входы или выходы. На вывод потребуется 3,3 Вольта. В настройках по умолчанию нагрузочный резистор, сделанный для вывода, пропускает 40 мА. Особенные функции для Arduino mini pro pinout:
  1. Шина последовательности. Нужна для принятия 0 и передачи информации 1 в виде TTL.
  2. Led 13. Под этим словосочетанием подразумевается светодиод, который подключен к цифровому выводу под номером 13. Если вывод равняется импульсу, передающему 1, светодиод загорится.
  3. Внешнее прерывание, 2-3. Подробно о данной особенности расписано в attachInterrupt().
  4. ШИМ на 3, 5, 6, 9, 10, 11. Для этого используется функция analogWrite(), которая обеспечивает выводы ШИМ, предназначенные для разрешения 8 бит.

Как мы уже заметили ранее — по размерам Arduino mini pro компактна и подойдет для конструирования любого устройства.

Схема и распиновка Pro Mini

Принципиальная схема микроконтроллера выглядит так:


Теперь перейдем к распиновке платы:


Программирование мк Arduino pro mini

Все программы программируются с помощью бесплатной среды разработки для Arduino pro mini. В Arduino mini включен ATmega328, в который предварительно вшивается загрузчик. Поэтому пользователь может свободно загружать программы в память микроконтроллера. Связь обеспечивает протокол STK500.


Как прошить Ардуино про мини без загрузчика с помощью внешнего программатора? Легко и просто.

Для начала потребуется отменить требование на нажатие кнопки перезагрузки перед тем, как прошивать код написанной программы. Ардуино mini pro сконструирован так, что перезагрузка посредством программного обеспечения доступна напрямую с любого компьютерного устройства. В 6-контактных выводах есть один, который напрямую связан с линией сброса Arduino 328 pro с помощью конденсатора на 100 нФ.

Через управление вышеописанным выводом возможно преобразовать USB или последовательный порт путем подключения к разъему. Если сделать так, что появится уровень ниже нормы в течение продолжительного времени, платформа автоматически перезагрузится.

Arduino IDE дает возможность пользователю, чтобы тот загрузил программный код при одном нажатии на кнопку для загрузки бесплатной среды разработки.


Однако повышается риск неоправданных последствий и поломки платформы. Если на компьютере электронщика установлена операционная система Мак Ос или Линукс, то сбрасывание на микроконтроллере будет происходить каждый раз, когда программное обеспечение с помощью USB-кабеля с платформой.

Спустя половину секунды с момента сброса начинает свою работу загрузчик. В основном, загрузчик устроен так, чтобы не перехватывать другие данные, однако нередко все происходит наоборот: перехватываются первые байты данных программы, которые отправляются на плату при установленном соединении.

Чтобы устранить такой «баг», необходимо в коде программы, которая будет работать на Ардуино, проверить, как осуществляется процесс передачи данных программы с компьютера на платформу. Оптимальное время для отправления кода – секунда с момента установки соединения между устройствами.

Реализация проектов на базе микроконтроллера Arduino pro mini

Сегодня в интернете можно найти любой проект на Ардуино. И это неудивительно, ведь эта платформа популярна среди начинающих разработчиков электронных приспособлений для дома и дачи. Ниже представлено несколько известных и простых проектов, в основе которых используется платформа Ардуино:

  1. Сигнализация, построенная с помощью подключения dfplayer к Ардуино pro.
  2. Управляемая конструкция для квадрокоптера.
  3. Автоматизация аквариума.
  4. Таймер.
  5. Анализатор влажности почвы.
  6. Автополив для комнатных растений.
  7. Датчик, измеряющий осадки и скорость ветра.

– компактная версия платформы Arduino, предназначенная для построения всевозможных проектов, имеющих не большие размеры. Платформа на 100% совместима с другими платформами Arduino, например такой как Arduino UNO, но намного компактнее её. В данной статье я сделаю обзор на китайский аналог Arduino Pro mini, расскажу чем она отличается от оригинала, чем данная плата отличается от других плат платформы Arduino, а так же расскажу как подключить её к компьютеру для заливки в неё скетч. В завершении убедимся в работоспособности платы, на примере скетча «blink».

Вот этот аналог Arduino Pro mini я купил на Aliexpress за $1.30, в то время как оригинальная плата на сайте производителя стоит €13. Разница в цене — это первое главное отличие китайского аналога от оригинала.

Плата пришла в антистатическом пакете. В комплекте так же находились контактные площадки.

Для сравнения, верхняя плата — оригинальная Arduino Pro mini, ниже, мой китайский аналог. По количеству и расположению контактов, плата идентична оригиналу, кроме контактов А4, А5, А6 и А7. На оригинальной плате эти контакты расположены в центре, на аналоге они находятся слева.

Для того что бы иметь визуальное представление о размерах платы, приведу её рядом со своим китайским аналогом Arduino UNO. Pro mini удалось уменьшить в размерах за счёт удаления USB разъёма, схемы согласования платы с USB портом, также был удалён разъём питания. Китайский аналог на 100% совместим со всеми модулями, драйверами, датчиками, которые работают с оригинальной версией.

Оригинальная современная плата Arduino Pro mini построена на базе микроконтроллера ATmega328 , на том же самом что и Arduino UNO . Более ранние модели этой платы строились на микроконтроллере ATmega168 .

Китайские же аналоги Arduino Pro mini на данный момент строятся как на ATmega328 , так и на ATmega168 . В этом второе отличие оригинала от аналога. Плата на ATmega168 будет стоить дешевле, чем на ATmega328. Главное же отличие этих контроллеров в том, что ATmega328 содержит на борту в два раза больше памяти, чем ATmega168.

Отличия микроконтроллеров

ATmega168

ATmega328

16 Kбайт

Но это не значит, что на ATmega168 не получится построить проект, который разрабатывался на плате с ATmega328, ведь 16 Кбайт будет вполне достаточно для многих скетчей. Всё же, если вам необходим двойной объём памяти, изучайте описание платы перед покупкой. При покупке своего китайского аналога, я выбрал плату за $1.30 с ATmega168, вместо платы с ATmega328 за $1.93. Как видно, здесь тоже можем сэкономить на покупке.

Оригинальная плата Pro mini производится с двумя вариантами питания: на 5 и 3,3 вольта. У версии, работающей от 3,3 вольта, микроконтроллер работает на частоте 8 МГц, у 5-ти вольтовой версии — на частоте 16 МГц. Китайские аналоги так же производятся в 2-х вариантах. Моя плата работает от 5 вольт.
Визуально частоту работы контроллера можно определить по установленному на плате кварцу, если он в большом корпусе, на нём отчётливо можно увидеть частоту, на которой он работает: 8 или 16 МГц.

Фрагменты плат с кварцами, работающими на разной частоте.

Про питание Arduino Pro mini.

Для питания платы предназначены выводы GND, VCC и RAW.
GND — это минус питания (земля).
VCC – используется для подачи питания 3,3 или 5 вольт, в зависимости от версии платы. На этот разъём подаётся строго то напряжение, на которое рассчитана плата. Напряжение с этого контакта идёт напрямую на микроконтроллер, если оно будет выше необходимого, последний может выйти со строя.
Если питать плату собираетесь большим напряжением, тогда «+» питания следует подключать к разъёму RAW . На этот разъём можно подавать до 12 в, не зависимо, на какое напряжения рассчитана плата. Напряжение с этого контакта подаётся на стабилизатор напряжения, который преобразует его до необходимого значения, а уже затем подаётся на контролер.

Если так получилось что вы купили плату и не знаете на какое напряжение она рассчитана, подайте на разъём RAW 5 вольт и измерьте напряжение на разъёме VCC. Если плата рассчитана на 3,3 вольта, то соответствующее напряжение будет и на VCC, если будет на VCC 5 вольт, значит плата 5-ти вольтовая.

Цифровые и аналоговые выходы Pro mini соответствуют количеству выходов как и у платы UNO: 14 цифровых и 6 аналоговых. Контакты А4 (SDA) и А5 (SCL) используются для подключения различных устройств по шине I2C.

Про прошивку Arduino Pro mini.

Став одной из самых маленьких плат платформы Arduino, плата Pro mini обрела недостаток — нельзя прошить плату без сторонней помощи. Расскажу про все возможные способы заливки скетчей в Pro mini.

Прошивка Arduino Pro mini с помощью платы Arduino UNO.

Это не самый простой способ, поскольку не у каждого имеется плата UNO и покупать её специально для прошивки плат Pro mini не целесообразно. Но поскольку у меня имеется китайский аналог UNO , я начну с этого способа. Для реализации этого способа, должен быть установлен драйвер на плату UNO и определён номер COM — порта, к которому эта плата подключена. Как это сделать, описано в статье про китайский аналог Arduino UNO.

Соединяем платы как на картинке. Выводы GND , TX и RX соединяем с аналогичными. Вывод «VCC » на плате Pro mini соединяем с выводом «5V » или «3V3 » на плате UNO. Если у вас 5 вольтовая версия Pro mini, то соединяете с выводом «5V», как в моём варианте. Если версия 3-х вольтовая, подключаете к «3V3» на плате UNO. Вывод RESET на плате UNO подключаем к выводу DTR на плате Pro mini. На оригинальной плате вывод DTR обозначен как GRN , в общем это одно и то же.

Когда всё подключено, запускаем Arduino IDE .



Выбираем плату в которую нужно зашить скетч: «Инструменты » — «Плата: » и выбираем свою плату, в данном случае это « Arduino Pro or Pro Mini ».

Поскольку платы Pro Mini могут использовать различные микроконтроллеры (ATmega168 или ATmega328), а так же различное напряжение питания (3,3 v или 5v ), выбираем свою конфигурацию: «Инструменты » — «Процессор: » в данном примере выбираю «ATmega168 (5 V, 16 M H z) ».

Выбираем порт, к которому подключена плата UNO: «Инструменты » — «Порт: » в моём случае это « COM7 ».

Попробуем залить первый скетч и убедится в работоспособности платы. Выбираем скетч « Blink », смысл которого — мигать встроенным в плату светодиодом: «Файл » — «Образцы » — «01. Basics » — « Blink ».

С помощью кнопок «Проверить » и «Вгрузить » проверяется скетч на ошибки и загружается в плату. Если нет ошибок, синий светодиод начнём мигать на плате Pro Mini.

Можно поиграться значениями в скетче и изменить время горения светодиода и время погашенного светодиода, вновь залить скетч и увидеть, что светодиод будет мигать по-другому.

Прошивка Arduino Pro mini с помощью переходника USB to TTL.

Об одном из таких переходников на чипе PL2303 я как то уже рассказывал , теперь пришло время его испытать на практике. Существует две версии этого переходника, один без контакта GRN (DTR), как у меня, второй с данным контактом. Те что с контактом, стоят как минимум в два раза дороже тех, что без контакта.

Если будете использовать переходник без контакта GRN (DTR), подключаете его к Pro mini как на картинке.

Если у вас будет 3-х вольтовый вариант Pro mini, то контакт VCC платы, нужно соединить с контактом 3V3 USB переходника.

Когда всё подключено, запускаем Arduino IDE. Выбираем версию платы, процессор и порт, выбираем скетч «Blink», всё так же, как в приведённом выше примере с UNO.

Для заливки скетча необходимо:
1. Нажать на кнопку «Вгрузить ».
2. Начнётся процесс компиляции скетча, о чём можно понять по надписи «Компиляция скетча… ».
3. Как только данная надпись сменится на «Вгружаем… ».
4. Кратковременно нажимаем на плате Pro mini кнопку RESET .
5. Скетч зальётся в плату, об успешном окончании можно будем наблюдать за надписью «Взрузили » и по мигающему светодиоду на плате.

Если у вас в руках окажется переходника USB to TTL, с контактом DTR (он же GRN, RESET) соедините его с соответствующим контактом RESET на плате Pro mini. В таком случае, при заливки скетча, кнопку RESET нажимать не придётся, плата сама сделает сброс.

Данный переходник так же как и на PL2303 позволяет прошивать плату Arduino. Схема подключения следующая:

Существуют так же другие USB переходники для прошивки Arduino Pro mini, например на микросхеме FT232, но ввиду того что этот переходник стоит дороже, я его не беру во внимание.

Прошивка Arduino Pro mini с помощью программатора на Ch441A.

Программатор на микросхеме Ch441A может работать в режиме UART, а значит им можно прошить Arduino Pro mini.

Программатор может быть представлен в разном визуальном оформлении, основное отличие это цена и наличие дополнительных контактов. Среди этих контактов например, дополнительно может быть разведён контакт на +5В. На том который купил я не было этого контакта, пришлось подпаиваться на плате, что бы получить это напряжение.

Что бы использовать данный программатор как UART переходник, нужно разомкнуть контакты P/S .

Для подключения к Pro mini понадобятся контакты на программаторе: Tx , Rx , GND и +5В . Ещё одна особенность этого программатора в том, что на его борту имеется контакт DTR , соединив который с платой Pro mini, отпадёт необходимость нажимать кнопку Reset , при заливки скетча. Для задействования этого контакта, нужно использовать контакт MOSI , в режиме UART он работает как DTR .

В моём варианте программатора, контакт +5В не был выведен, пришлось это напряжения взять с ножки стабилизатора. В конечном варианте подключение следующее:

Pro mini Ch441A
Tx Rx
Rx Tx
DTR MOSI
GND GND
VCC +5В

Скачать драйвер: Яndex-диск MEGA Облако [email protected]

После установки драйвера, в «Диспетчере устройств» появится виртуальный COM-порт. Заливка скетчей происходит так же, как и через переходники PL2303 / Ch440G, с той лишь разницей, что не нужно нажимать кнопку Reset .

Следует отметить, данный программатор можно подключать только к 5 вольтовым платам Arduino, поскольку он использует уровни 5 вольт! Это же касается и других устройств, для которых нужен UART переходник.

Прошивка Arduino Pro mini через COM — порт.

Напрямую прошить плату через COM – порт не получится, поскольку у COM – порта и Pro mini разные логические уровни. Для их согласования нужно применить переходник на микросхеме MAX232. Сама микросхема не дорогая, но не знаю, стоит ли заморачиваться для прошивки Pro mini сборкой такого переходника, если по цене выйдет не дешевле, чем купить USB переходник на .

В любом случае представляю схему.

Что бы убедится в работоспособности этого метода, пришлось самому собрать эту схему на макетной плате. Плата в процессе…

Обзор Arduino Pro Mini

Arduino – это не только плата Arduino Uno, а целое семейство плат, которые различаются возможностями и функционалом. Arduino Pro Mini (рис. 1) – одна из самых миниатюрных плат. Она может использоваться для установки в готовые изделия.

Рисунок 1.

Размеры платы 33х18 мм, что гораздо меньше размеров остальных плат Arduino (см. рис. 2).


Рисунок 2.

Назначение контактов и количество Arduino Pro Mini идентично плате Arduino Nano, совпадает и расположение контактов (исключение выводы A4-A7).

Миниатиризация платы достигнуты благодаря отсутствию на ней USB-UART конвертера и USB выхода, присутствует самое необходимое – микроконтроллер, кварцевый резонатор, конденсаторы, светодиоды, стабилизатор напряжения. Поэтому для подключения платы к компьютеру, а также для загрузки скетчей из Arduino IDE, надо использовать внешний USB-UART.

На данный момент выпускается несколько вариантов платы Arduino Pro Mini. Платы выпускаются с на контроллере Atmega 168/328, работают от питания 3.3 или 5В на тактовой частоте 8 или 16 МГц.

Технические характеристики Arduino Pro Mini

    Микроконтроллер – ATmega168/328;

    Рабочее напряжение – 3.3В/5В;

    Напряжение питания – 3.35-12В/5 — 12В;

    Цифровые входы/выходы – 14;

    Аналоговые входы – 8;

    Flash-память – 16/32 КБт;

    SRAM – 1/2 КБт;

    EEPROM – 512/1024 байт;

    Тактовая частота – 8/16 МГц;

    Размеры – 33х18 мм;

    Вес – 5 г.

Подключение к компьютеру

Для подключения платы к компьютеру используют внешний USB-UART конвертер. Подключение по схеме представленной на рис. 3.


Рисунок 3.

Компьютер определяет USB-UART конвертер как COM порт, его и выбираем в настройках Инструменты à Порт. В меню Инструменты → Плата выбираем Arduino Pro Mini, и загружаем необходимый скетч на плату (рис. 4).

У очень многих конвертеров отсутствует вывод DTR. В этом случае при каждой загрузке скетча в Arduino необходим в начале загрузки (сразу после окончания компиляции) нажать на кнопку Reset, это требует определенного навыка и не всегда получается.


Рисунок 4.

Использование USB-UART конвертера – это не единственный способ загрузки скетчей на плату Arduino Pro Mini.


Рисунок 5. Схема в сборе

Загрузка скетчей через SPI интерфейс

Интерфейс SPI присутствует на всех платах Arduino. Используются контакты D10-D13 (D50-D53 на Arduino Mega), которые на многих платах продублированы на шестиконтактной колодке ICSP. Колодка располагается в правой части Arduino (см. рис. 6).


Рисунок 6.

Сначала необходимо на плату Arduino (например Arduino Uno) загрузить скетч Файл → Образцы → ArduinoISP (рис. 7). Ее мы будем использовать в качестве программатора.



Схема соединений показана на рис. 8.


Рисунок 8.

В Arduino IDE открываем необходимый скетч. Выбираем в меню Инструменты à Arduino Pro Or Pro Mini, порта подключения и программатора (Arduino as ISP). И теперь внимание!!! Метод загрузки нажатием на кнопку Загрузить не подходит, потому что при этом скетч будет загружен на первую плату, которая выступает в качестве программатора. Чтобы этого не произошло, загружаем через пункт меню Эскиз → Загрузить через программатор (рис. 9).


Рисунок 9.


Загрузка скетчей на Arduino Pro Mini через плату Arduino Uno

Еще один способ загрузки скетчей на Arduino Pro Mini – это использование платы Arduino Uno, в которой используется микроконтроллер ATmega328 в DIP-корпусе. ATmega328 необходимо аккуратно извлечь и на плате останется переходник USB-UART, который подсоединим 5 проводами к плате Arduino Pro Mini согласно таблице 2.



Теперь подключаем Arduino Uno к компьютеру. Выбираем в настройках необходимый порт, плату (Инструменты → Arduino Pro Or Pro Mini ) и загружаем скетч.


Часто задаваемые вопросы

1. Ошибка загрузки скетча на плату при подключении через конвертер USB-Serial.

    Проверьте правильность подключения платы Arduino Pro Mini конвертеру USB-Serial.

    Если у конвертера отсутствует контакт DTR, после компиляции скетча до загрузки, нажмите кнопку RESET на плате Arduino Pro Mini.

2. Ошибка загрузки скетча на плату при подключении интерфейсу SPI.

  • Проверьте правильность подключения платы Arduino Pro Mini согласно табл. 1.

3. Ошибка загрузки скетча на плату при подключении через Arduino Uno.

  • Проверьте правильность подключения платы Arduino Pro Mini согласно табл. 2.

Arduino — это эффективное средство разработки программируемых электронных устройств, которые, в отличие от персональных компьютеров, ориентированы на тесное взаимодействие с окружающим миром. Ардуино — это открытая программируемая аппаратная платформа для работы с различными физическими объектами и представляет собой простую плату с микроконтроллером, а также специальную среду разработки для написания программного обеспечения микроконтроллера.

Ардуино может использоваться для разработки интерактивных систем, управляемых различными датчиками и переключателями. Такие системы, в свою очередь, могут управлять работой различных индикаторов, двигателей и других устройств. Проекты Ардуино могут быть как самостоятельными, так и взаимодействовать с программным обеспечением, работающем на персональном компьютере (например, приложениями Flash, Processing, MaxMSP). Любую плату Ардуино можно собрать вручную или же купить готовое устройство; среда разработки для программирования такой платы имеет открытый исходный код и полностью бесплатна.

Язык программирования Ардуино является реализацией похожей аппаратной платформы «Wiring», основанной на среде программирования мультимедиа «Processing».

Почему именно Arduino?

Существует множество других микроконтроллеров и микропроцессорных устройств, предназначенных для программирования различных аппаратных средств: Parallax Basic Stamp, Netmedia»s BX-24, Phidgets, MIT»s Handyboard и многие другие. Все эти устройства предлагают похожую функциональность и призваны освободить пользователя от необходимости углубляться в мелкие детали внутреннего устройства микроконтроллеров, предоставив ему простой и удобный интерфейс для их программирования. Ардуино также упрощает процесс работы с микроконтроллерами, но в отличие от других систем предоставляет ряд преимуществ для преподавателей, студентов и радиолюбителей:

Компактные платы ардуино:

Ардуино Нано

Платформа Nano, построенная на микроконтроллере ATmega328 (Arduino Nano 3.0) или ATmega168 (Arduino Nano 2.x), имеет небольшие размеры и может использоваться в лабораторных работах. Она имеет схожую с Arduino Duemilanove функциональность, однако отличается сборкой. Отличие заключается в отсутствии силового разъема постоянного тока и работе через кабель Mini-B USB. Nano разработана и продается компанией Gravitech.
Наверное одна из лучших и компактных плат для различных проектов и самоделок, обычно выбираю её :

Ардуино про мини

Arduino Pro Mini построена на микроконтроллере ATmega168 (техническое описание ). Платформа содержит 14 цифровых входов и выходов (6 из которых могут использоваться как выходы ШИМ), 6 аналоговых входов, резонатор, кнопку перезагрузки и отверстия для монтажа выводов.

Плата имеет еще более компактные размеры, но без конвертора сн340. Цена ниже чем у нано.




Arduino pro micro

Плата Arduino Pro Micro построена на микроконтроллере ATmega32U4 , что позволило не применяя конвертер USB-UART подключать плату в USB-порту компьютера. Это исключает необходимость применения программатора для записи скетча в плату.

Возможности:

  • частота: 16МГц
  • 4 канала АЦП (10 бит)
  • 10 портов ввода-вывода общего назначения (из них 5 с ШИМ)
  • выводы Rx/Tx
  • светодиоды: питание, Rx, Tx

Плата имеет регулятор напряжения, что позволяет использовать питание до 12В (вывод RAW, не VCC!)



Полноразмерные платы ардуино
Ардуино Уно

Arduino Uno контроллер построен на ATmega328 (техническое описание , pdf). Платформа имеет 14 цифровых вход/выходов (6 из которых могут использоваться как выходы ШИМ), 6 аналоговых входов, кварцевый генератор 16 МГц, разъем USB, силовой разъем, разъем ICSP и кнопку перезагрузки.

КУпить на алиэкспресс http://ali.pub/1tgxw9


Ардуино DUE
Общие сведения

Arduino Due — плата микроконтроллера на базе процессора Atmel SAM3X8E ARM Cortex-M3 (описание). Это первая плата Arduino на основе 32-битного микроконтроллера с ARM ядром. На ней имеется 54 цифровых вход/выхода (из них 12 можно задействовать под выходы ШИМ), 12 аналоговых входов, 4 UARTа (аппаратных последовательных порта), a генератор тактовой частоты 84 МГц, связь по USB с поддержкой OTG, 2 ЦАП (цифро-аналоговых преобразователя), 2 TWI, разъем питания, разъем SPI, разъем JTAG, кнопка сброса и кнопка стирания.

Внимание! В отличие от других плат Arduino, Arduino Due работает от 3,3 В. Максимальное напряжение, которое выдерживают вход/выходы составляет 3,3 В. Подав более высокое напряжение, например, 5 В, на выводы Arduino Due, можно повредить плату.

Плата содержит все, что необходимо для поддержки микроконтроллера. Чтобы начать работу с ней, достаточно просто подключить её к компьютеру кабелем микро-USB, либо подать питание с AC/DC преобразователя или батарейки. Due совместим со всеми платами расширения Arduino, работающими от 3,3 В, и с цоколевкой Arduino 1.0.


Arduino ESPLORA

Общие сведения

Arduino Esplora — это микропроцессорное устройство, спроектированное на основе Arduino Leonardo . Esplora отличается от всех предыдущих плат Arduino наличием множества встроенных, готовых к использованию датчиков для взаимодействия. Он спроектирован для тех, кто предпочитает сразу начать работу с Ардуино, не изучая перед этим электронику. Пошаговую инструкцию к Esplora вы сможете найти в руководстве Начало работы с Esplora .

Esplora имеет встроенные звуковые и световые индикаторы (для вывода информации), а также несколько датчиков (для ввода информации), таких, как джойстик, слайдер, датчик температуры, акселерометр, микрофон и световой датчик. Помимо этого, на плате есть два входных и выходных разъема Tinkerkit, а также гнездо для подключения жидкокристаллического TFT-экрана, позволяющие значительно расширить возможности устройства.

Как и на плате Leonardo, в Esplora используется AVR-микроконтроллер ATmega32U4 с кварцевым резонатором 16 МГц, а также разъем микро-USB, позволяющий устройству быть USB-гаджетом, подобно мыши или клавиатуре.


Arduino YUN

Arduino Yun – отладочная плата на базе микроконтроллера ATmega32u4 и Atheros AR9331. Процессор Atheros поддерживает дистрибутив Linux, основанный на базе OpenWrt и называемый OpenWrt-Yun. Плата имеет встроенную поддержку Ethernet и WiFi, порт USB-A, слот для карты micro-SD, 20 цифровых входных/выходных выводов (из которых 7 могут использоваться в качестве ШИМ выходов, а 12 – в качестве аналоговых входов), кварцевый резонатор 16 МГц, соединение microUSB, разъем ICSP и 3 кнопки перезагрузки.

Купить на Алиэкспресс http://ali.pub/1tgz6c




Заказываешь на Aliexpress ?Узнай как экономить покупая на али кэшбек

https://cashback.epn.bz/?i=ff2b6

https://cashback.epn.bz/joinusnow?i=ff2b6

Batsocks — Распиновка заголовка AVR ISP

Распиновка заголовка ISP AVR

Есть 6-контактные и 10-контактные версии. Распиновка следующая;

6-ходовая жатка

10-ходовой жаток

Для тех, кто борется с тем, какой путь наверху (это одна из тех вещей, которые, как только вы знаете, вы никогда больше не сомневаетесь), представьте, что схемы выше — это фотографии вида сверху, а булавки выходят из экрана к вам. Вы бы подключили кабель, протолкнув его по направлению к экрану.

Следующие фотографии могут быть полезны;

простой заголовок, вид сверху

необычный заголовок в штучной упаковке

с ленточным кабелем

с другим проводом

  • Контакт 1 часто каким-либо образом отмечен на плате / разъеме.
  • Красный полосатый провод на сером ленточном кабеле всегда является контактом 1.
  • «Вилки» на концах ленточного кабеля называются «розетками IDC».
  • У гнезда IDC лента может выходить с любой стороны.
  • У розеток IDC на фотографиях нет фиксирующих выступов — они сделаны в стиле хит-робинзона путем разрезания кабеля жесткого диска ножовкой.
  • Красный полосатый провод на сером ленточном кабеле обозначает провод 1.
  • «Неподключенный» контакт в 10-контактном разъеме иногда используется для других целей, например, для последовательного вывода логического уровня для отладки.
  • 6-контактные разъемы
  • используются на более современных макетных платах и ​​программаторах.
  • 10-контактные разъемы
  • все еще широко используются, возможно, потому, что 10-контактные разъемы в штучной упаковке и разъемы IDC легче достать.
  • 10-контактные ленточные кабели
  • могут (теоретически) быть более устойчивыми к помехам, поскольку провода RESET, SCK и MISO чередуются между проводами заземления.
  • Рекомендуется, чтобы кабели программирования были «короткими». Мои обычно около 25 см в длину.
  • «Дополнительные» контакты заземления иногда используются для других целей.
  • Нет никакого принуждения использовать эти макеты на вашей плате, но если вы делаете программиста, вы были бы безумны, если бы не сделали этого.
  • Шестиконтактные разъемы
  • , очевидно, занимают меньше места на плате, чем 10-контактные (действительно ли мне нужно было это добавить?).

Pololu — 3. Распиновка и комплектующие

Программатор Pololu USB AVR v2.1, с надписью вид сверху.

Программатор Pololu USB AVR v2.x подключается к USB-порту компьютера с помощью кабеля USB A — Micro-B (не входит в комплект).

Программатор имеет стандартный 6-контактный разъем AVR ISP для программирования AVR. Он подключается к целевому устройству AVR с помощью прилагаемого 6-контактного кабеля ISP. Кабель имеет разъем с ключом, который соответствует заглушке программатора, что делает невозможным подсоединение кабеля к программатору в неправильной ориентации.Старые 10-контактные соединения ISP напрямую не поддерживаются, но легко создать или приобрести адаптер ISP с 6 на 10 контактов. Шесть контактов на разъеме ISP:

  1. MISO : Линия «Главный вход, подчиненный выход» для связи SPI с целевым AVR. В некоторых таблицах данных AVR это называется PDO. Программист является мастером, поэтому эта строка является входом.
  2. VCC : По умолчанию эта строка является входом, который программист использует для измерения напряжения целевого АРН (см. Раздел 7).Эта линия также может быть настроена для питания целевого устройства (см. Раздел 8).
  3. SCK : Линия синхронизации для связи SPI с целевым AVR. Программист является мастером, поэтому эта строка является выходом во время программирования.
  4. MOSI : Линия «Главный выход, подчиненный вход» для связи SPI с целевым AVR. В некоторых таблицах данных AVR это называется PDI. Программист является мастером, поэтому эта строка является выходом во время программирования.
  5. RST : Линия сброса целевого АРН.Эта линия используется как выход, на который во время программирования подается низкий уровень, чтобы удерживать AVR в состоянии сброса.
  6. GND : Земля. Эта линия должна быть подключена к земле целевого устройства.

Когда программист не занимается активным программированием AVR, все выводы MISO, SCK и MOSI являются высокоимпедансными входами.

Конец программатора имеет 6-контактный последовательный разъем с распиновкой, аналогичной общедоступным кабелям FTDI и коммутационным платам. Программатор поставляется с впаянным 6-контактным прямоугольным гнездовым разъемом.Шесть контактов на этом заголовке:

  1. GND : Земля. Он подключен к контакту GND на разъеме ISP и контакту GND кабеля USB.
  2. A : По умолчанию эта линия представляет собой просто подтянутый вход, но ее можно настроить для выполнения функций последовательного управления / подтверждения связи (см. Раздел 6.1).
  3. VCC : Подключен к выводу VCC на разъеме ISP. По умолчанию это вход, но его можно настроить как выход для питания других устройств (см. Раздел 7 и Раздел 8).
  4. TX : Это вывод последовательного вывода TTL, который может отправлять данные на другое устройство (см. Раздел 6.1).
  5. RX : Это контакт последовательного ввода TTL, который может получать данные от другого устройства (см. Раздел 6.1).
  6. B : По умолчанию эта линия настроена как сигнал DTR (готовность терминала данных). Его можно настроить для других функций последовательного порта / квитирования (см. Раздел 6.1) или использовать в качестве выходного тактового сигнала (см. Раздел 5.10).

Программатор Pololu USB AVR v2.1, вид снизу с размерами.

Печатная плата программатора имеет ширину 0,6 дюйма и длину 1,35 дюйма. С прямоугольным женским заголовком он составляет около 1,69 дюйма в длину.

Программатор имеет 4 светодиода, отображающих его состояние. Поведение этих светодиодов подробно описано в разделе 4.4.

Линия VBUS подключается непосредственно к линии питания 5 В кабеля USB. Его можно использовать для питания внешних устройств, если вы будете осторожны, чтобы не потреблять от него слишком большой ток (см. Раздел 8).

Принадлежности в комплекте

Программатор Pololu USB AVR v2.x поставляется с аксессуарами, показанными на рисунке ниже. 6-контактный кабель ISP можно использовать для программирования AVR. Двусторонний штекерный разъем 1 × 6 может быть подключен к последовательному разъему, чтобы эффективно изменить его пол (что позволяет подключить этот разъем к макетной плате или перемычкам с гнездом). Требуется кабель USB A — Micro-B, а не входит в комплект.

Программатор Pololu USB AVR v2 или v2.1 с включенным оборудованием.

Использование программатора AVRISP

Использование программатора AVRISP

Введение

AVRISP выглядит так же, как JTAGICE, за исключением того, что он немного меньше и имеет 6-контактный разъем на конце кабеля вместо 10-контактного разъема на JTAGICE.

Программатор AVRISP не имеет расширенных функций отладки JTAGICE, но все же позволяет загружать вашу программу на ATmega16.Вы должны сначала попробовать использовать AVRISP, а затем, если вы обнаружите, что не можете отлаживать свою программу без пошагового выполнения и установки точек останова, переключитесь на JTAGICE.

Настройка AVRISP отличается от JTAGICE, но вы можете настроить макетную плату с заголовками для подключения обоих устройств, чтобы было легко переключаться между ними.

Подключение AVRISP к плате

Получите разъем 3×2 контакта. Я поместил их в шкаф питания с резисторами.С помощью плоскогубцев согните более длинный набор штифтов, чтобы разъем можно было вставить через одно из отверстий на макетной плате.

Рисунок 1. Загнутый разъем 3×2 штифта

Вставьте заголовок в макет. Вероятно, вы захотите разместить его рядом с контактом 1 на ATmega16, чтобы ваши провода были короткими. На следующей схеме показана распиновка разъема ISP (внутрисистемное программирование):

Рисунок 2. Распиновка разъема ISP

Подключите VCC и GND к VCC и GND на вашей плате и подключите MISO, MOSI, SCK и RESET к соответствующим контактам на вашем ATmega16 (контакты на ATmega16 см. В таблице данных AVR). Это нормально, что вы будете использовать общие провода со светодиодами, которые вы подключили к PORTB. И программатор, и светодиоды будут работать правильно со всем подключенным одновременно. Результат должен выглядеть примерно так:

Рисунок 3. Завершена разводка заголовка ISP

Вставьте 6-контактный разъем на конце кабеля AVRISP в 6-контактный разъем на вашей плате. Красный провод указывает на сторону разъема с контактом 1. Подключите кабель USB к компьютеру и установите драйверы, когда Windows предложит вам. После загрузки драйверов светодиод на AVRISP должен загореться зеленым, указывая на то, что он обнаруживает целевое напряжение на вашей плате.

Первоначальная настройка

В первый раз, когда вы используете AVRISP с вашей платой, вы должны следовать этим инструкциям по установке.Для последующего использования вы можете перейти к разделу «Программирование».

Откройте проект в AVR Studio и нажмите кнопку на панели инструментов, чтобы убедиться, что ваша программа скомпилирована и актуальна. Выберите AVRISP mkII в качестве платформы и USB в качестве порта, затем нажмите кнопку «Подключить»:

Рисунок 4. Выбор программатора

В появившемся окне выберите вкладку Main.Убедитесь, что тип устройства установлен на ATmega16, и нажмите кнопку «Прочитать подпись». В окне должна появиться подпись чипа для ATmega16 (0x1E 0x94 0x03). Это подтверждает, что программист может связываться с ATmega16.

Рисунок 5. Тестирование установки

Если чтение подписи не удается, убедитесь, что на AVRISP горит зеленый свет (в противном случае он неправильно подключен к VCC и GND, или ваша плата не подключена к источнику питания) и что ваша проводка MISO, MOSI, SCK , и строки RESET верны.Если AVRISP по-прежнему не считывает подпись устройства, возможно, программирование ISP отключено в вашем ATmega16 (у нас есть несколько микросхем, все еще настроенных таким образом). Вы можете обменять свой ATmega16 на тот, который правильно запрограммирован с TA.

Затем убедитесь, что частота ISP установлена ​​на 1.000 МГц. Если это не так, нажмите кнопку «Настройки», выберите в появившемся меню 1.000 МГц и нажмите кнопку «Запись».

Теперь вы готовы программировать свой ATmega16 с помощью AVRISP mkII.

Программирование с помощью AVRISP mkII

Чтобы загрузить программу в процессор, сначала нажмите кнопку на панели инструментов (не используйте кнопку «построить и запустить», поскольку платформа отладки не подключена.) Затем нажмите кнопку и перейдите на вкладку «Программа». В разделе «Flash» убедитесь, что выбран шестнадцатеричный файл для вашего проекта, а затем нажмите кнопку «Программа».

Рисунок 6. Программирование ATmega16

Программа будет загружена на ваш ATmega16 и должна запуститься автоматически, хотя никогда не помешает нажать кнопку сброса и убедиться, что ваша программа запускается правильно с самого начала.

Б. Мэйтон, январь 2009 г. Электронное письмо cse466-tas @ cs с вопросами.

Как программировать AVR

На этой странице объясняется, как программировать микроконтроллер AVR с 6-контактный интерфейс ISP.(ISP означает в системном программировании). Распиновка

ISP, 6 контактов: avr_isp-pinouts.html

Адаптерный кабель между компьютером и разъемом ISP есть. нужный. Вот несколько вариантов:
  • Atmel AVR ISP
    (см. Рисунок справа). Это то, что я использую чаще всего. Atmel предоставляет Windows программа под названием Avr Studio. Под Linux адаптер поддерживается многими программами, такими как uisp и Avrdude
  • Atmel AVRISP mkII.
    Это более новая версия AVR ISP, которая использует USB вместо последовательного порта.Конечно, программное обеспечение Atmel, Avr Studio, поддерживает это. Под Linux Я использую этот адаптер с avrdude.
  • PonyProg.
    Этот инструмент может перепрограммировать многие микроконтроллеры AVR через параллельный порт. (Схемы включены)

Atmel AVR ISP

Atmel ISP MKII

Примеры использования UISP:
Прежде всего, обратите внимание, что в следующих примерах / dev / avr является символическим ссылка на устройство последовательного порта, к которому подключен программатор.(например: / dev / ttyS0). Также не забудьте изменить аргумент -dpart, если вы не используете AVR Atmega8.

Программирование предохранителей байт на atmega8:

# uisp -dprog = stk500 -dpart = atmega8 -dserial = / dev / avr --wr_fuse_h = 0xc9 --wr_fuses_l = 0x9f
 

Программирование шестнадцатеричного файла в atmega8:
# uisp -dprog = stk500 -dpart = atmega8 -dserial = / dev / avr --erase --upload --verify if = n64_to_wii.hex
 
Примечание: —erase предназначен для стирания флэш-памяти ПЕРЕД программированием нового файла.—verify предоставляет способ прочитать содержимое флэш-памяти и сравнить его с исходным файлом, чтобы убедиться, что произошли ошибки.

Примеры использования AVRDUDE и USB ISP mkII:

Программирование предохранителей байт на Atmega8:

# avrdude -p m8 -P usb -c avrispmkII -Uhfuse: w: 0xc9: m -Ulfuse: w: 0x9f: m
 
Примечание. Параметр -p используется для указания типа программируемого AVR. К отобразить список поддерживаемых устройств, попробуйте ‘avrdude -p list -P usb -c avrispmkII’ (поскольку ‘list’ не является допустимым типом, avrdude перечисляет поддерживаемые типы).

Программирование шестнадцатеричного файла в atmega8:

# avrdude -p m8 -P usb -c avrispmkII -Uflash: w: n64_to_wii.hex -B 1.0
 
Примечание. Аргумент -B управляет периодом битов ISP (в микросекундах). Эта частота не должна быть выше 1/4 тактовой частоты MCU.

Вот несколько деталей, часто неизвестных новичкам:
  • Источник питания: Обычно программный ключ не подает питание на программируемый микроконтроллер.Для успешного программирования сначала необходимо подать питание на схему.
  • Часы: микроконтроллер не может быть запрограммирован без активных часов. Когда микросхема AVR новая, по умолчанию значение предохранителей, работает внутренний RC-генератор. Если вы затем установите предохранители для внешнего кварцевого генератора, указанный кристалл должен присутствовать для успешного выполнения последующих шагов программирования.

8086 — Продукт — AVRFT234

AVRFT234 небольшой 6-контактный программатор AVR-ISP

Я нашел много довольно больших / громоздких программаторов AVR-ISP в «середине» кабелей (USB-кабель-> программатор-> кабель -> [адаптер ->] 6-контактный разъем), но мне нужно было что-то компактное для случайного использования, которое я мог бы носить с собой Мне нужен был только стандартный кабель micro USB, поэтому я сделал AVRFT234, используя FTDI FT234X.

Его можно использовать с последними версиями Avrdude (6.3) для программирования микросхемы AVR и загрузчиков для многих плат Arduino на базе AVR и клонирования плат с использованием стандартного 6-контактного разъема SPI pinout.

Контакт 1 (MISO) AVRFT234 обозначен на печатной плате треугольником (виден на центральном изображении выше).

Чтобы добавить поддержку Avrdude для AVRFT234, добавьте следующий фрагмент конфигурации в свой файл avrdude.conf. В Linux файл конфигурации системного уровня часто находится в / usr / local / etc / avrdude.conf, если он установлен из исходников.

 программист
  id = "avrft234";
  desc = "AVRFT234 программатор на базе FT234XD";
  type = "ftdi_syncbb";
  connection_type = usb;
  usbvid = 0x403;
  usbpid = 0x6015;
  сброс = 3;
  sck = 0;
  mosi = 1;
  мисо = 2;
; 

При использовании программатора вам необходимо указать параметры для установки программатора (-c) для использования и битовых часов (-B).

  • «-c avrft234» совпадает с «id» в приведенном выше определении программатора.
  • «-B 20000» Устанавливает битовую синхронизацию.
 avrdude -c avrft234 -B 20000 <другие варианты> 

По умолчанию AVRFT234 не обеспечивает питание программируемой цепи.

Если вам нужно питание, вы можете использовать перемычку для пайки на боковой стороне платы, чтобы выбрать 3,3 В или 5 В. Обратите внимание, что 3,3 В может обеспечивать максимум 50 мА (источник питания 5 В подключается напрямую к USB VBUS, поэтому обычно он может обеспечить намного больше).

При использовании AVRFT234 имейте в виду, что это не высокоскоростной программатор , это компактный программатор , поэтому, в зависимости от размера вашего двоичного файла, программирование устройства может занять более минуты.

Программатор ISP


Подключить программатор AVRISPMKII к микропроцессору очень просто. Просто подключите шесть проводов к нужным контактам.

Вам понадобятся следующие вещи:
Макетная плата с подключенным и готовым к работе ATMega8 (ССЫЛКА)
Программатор AVRISPMKII (ССЫЛКА)

Вот руководство пользователя:
Руководство пользователя AVRISPMKII (ССЫЛКА)

Взгляните на руководство пользователя — там много полезной информации

Вот как будет выглядеть ваша система, когда вы закончите.

Это программатор AVRISP MKII. Он подключается через USB к компьютеру с одной стороны, а к вашему чипу — через 6-проводной разъем IDC. Вот распиновка.

Контакты: один (1), три (3), четыре (4) и пять (5) — все подключаются к микросхеме. Контакты два (2) и шесть (6) связаны с питанием (контакт 2) и землей (контакт 6).

Первый контакт (1) обозначен стрелкой на гнезде. Это просто кусок пластика, который трудно увидеть. Красный провод на кабеле также указывает на первый провод (1).

Чтобы упростить задачу, я сделал небольшой выступ, который взял 6 проводов и разложил их по разъемам, чтобы его можно было подключить к макетной плате. На установку уходит 10 минут, и соединение остается устойчивым. Правильное подключение очень важно. Неправильная разводка может привести к повреждению программатора ISP.

ПРИМЕЧАНИЕ — выходные контакты на выступе не являются последовательными. Глядя на выступ слева, на два ряда по три контакта, первый (1) контакт — это нижний правый контакт, который соединен с зеленым проводом.Используйте диаграмму сверху, чтобы сопоставить остальные контакты.

На другом конце платы вставьте выступ или каким методом вы подключаете программатор ISP.

Программатор берет 5 вольт. Мы можем получить это с макета. Подключите питание (контакт 2) и землю (контакт 6). Убедитесь, что это правильно. пересечение этих проводов убьет программиста.

Подключите MOSI / контакт четыре (4) программатора ISP к контакту семнадцать (17) на ATMega8.Распиновку можно найти здесь (ССЫЛКА)

Подключите MISO / контакт один (1) программатора ISP к восемнадцати (18) контактам ATMega8. Распиновку можно найти здесь (ССЫЛКА)

Подключите SCK / контакт три (3) программатора ISP к контактам девятнадцати (19) на ATMega8. Распиновку можно найти здесь (ССЫЛКА)

Последний шаг — подключить провод от контакта 5 (5) программатора ISP к контакту 1 (1) на ATMega8. Он использует контакт один (1) в качестве контакта сброса.

Подключите программатор к компьютеру и вашей плате.Подключите питание к плате. Вы готовы к программированию.

Напишите свою программу

Кабель SF100 ISP — Аксессуары для программатора

Кабель SF100 ISP — Аксессуары для программатора | Dediprog Technology Co., Ltd.

Старая версия браузера, некоторые функции могут быть недоступны.

Кабель ISP SF100

Название Модели: ISP1-CB
Кабель SF100 ISP
Описание

Кабель ISP SF100 используется для подключения программатора ISP SF100 к 2X4 2.54-миллиметровый контактный заголовок ISP на плате, предлагающий возможность напрямую обновлять содержимое SPI Flash. В случае частых подключений необходимо время от времени менять кабель ISP, чтобы обеспечить хороший контакт с сигналами прикладной платы (рабочий или ремонтный канал). Метод обновления ISP можно использовать только в том случае, если он поддерживается вашим приложением или контроллером.

  • Совместимость со стандартным выводом ISP DediProg.

Выводы разъема кабеля ISP (2×4)

1 Vcc ЗЕМЛЯ 2
3 CS CLK 4
5 MISO MOSI 6
7 Vpp / Acc I / O3 8

2021 © Dediprog Все права защищены.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *