Рассчитать сопротивление резистора: Ошибка 404: страница не найдена

Содержание

Как рассчитать сопротивление резистора для светодиода: формула, онлайн калькулятор

Светодиоды пришли на смену традиционным системам освещения – лампам накаливания и энергосберегающим лампам. Чтобы диод работал правильно и не перегорел, его нельзя подключать напрямую в питающую сеть. Дело в том, что он имеет низкое внутреннее сопротивление, потому если подключить его напрямую, то сила тока окажется высокой, и он перегорит. Ограничить силу тока можно резисторами. Но нужно подобрать правильный резистор для светодиода. Для этого проводятся специальные расчеты.

Расчет резистора для светодиода

Чтобы компенсировать сопротивление светодиода, нужно прежде всего подобрать резистор с более высоким сопротивлением. Такой расчет не составит труда для тех, кто знает, что такое закон Ома.

Математический расчет

Исходя из закона Ома, рассчитываем по такой формуле:

где Un – напряжение сети; Uvd – напряжение, на которое рассчитана работа светодиода; Ivd – ток.

Допустим, у нас светодиод с характеристиками:

2,1 -3, 4 вольт – рабочее напряжение (Uvd). Возьмем среднее значение 2, 8 вольт.

20 ампер – рабочий ток (Ivd)

220 вольт – напряжение сети (Un)

В таком случае мы получаем величину сопротивления R = 10, 86. Однако этих расчетов недостаточно. Резистор может перегреваться. Для предотвращения перегрева нужно учитывать при выборе его мощность, которая рассчитывается по следующей формуле:

Обратите внимание, что резистор подведен на плюсовой контакт диода.

Для наглядности рекомендуем посмотреть видео:

Графический расчет

Графический способ – менее популярный для расчета резистора на светодиод, но может быть даже более удобный. Зная напряжение и ток диода (их называют еще вольтамперными характеристиками – ВАХ), вы можете узнать сопротивление нужного резистора по графику, представленному ниже:

Тут изображен расчет для диода с номинальным током 20мА и напряжением источника питания 5 вольт. Проводя пунктирную линию от 20 мА до пересечения с «кривой led» (синий цвет), чертим пересекающую линию от прямой Uled до прямой и получаем максимальное значение тока около 50 мА. Далее рассчитываем сопротивление по формуле:

Получаем значение 100 Ом для резистора. Находим для него мощность рассеивания (Силу тока берем из Imax):

Онлайн-калькулятор расчета сопротивления

Задача усложняется, если вы хотите подключить не один, а несколько диодов.

Для облегчения самостоятельных расчетов мы подготовили онлайн-калькулятор расчета сопротивления резисторов. Если подключать несколько светодиодов, то нужно будет выбрать между параллельным и последовательным соединениями между ними. И для этих схем нужны дополнительные расчеты для источника питания. Можно их легко найти в интернете, но мы советуем воспользоваться нашим калькулятором.

 

Вам понадобится знать:

  1. Напряжение источника питания.
  2. Характеристику напряжения диода.
  3. Характеристику тока диода.
  4. Количество диодов.

А также нужно выбрать параллельную или последовательную схему подключения. Рекомендуем ознакомиться с разницей между соединениями в главах, которые мы подготовили ниже.

Читайте также: Основные способы определения полярности у светодиода.

В каких случаях допускается подключение светодиода через резистор

Никакие диоды, в том числе светодиоды, нельзя включать без ограничения проходящего тока. Резисторы в таком случае просто необходимы. Даже небольшое изменения напряжения вызывают очень сильное изменение тока и, следовательно, перегрев диода.

Если вы планируете подключать несколько диодов, рекомендуем выбирать модели одной фирмы. Одинаковые образцы лучше работают вместе.

Параллельное соединение

Для тех, кто уже сталкивался на практике со схемами подключения светодиодного освещения, вопрос о выборе между параллельным и последовательным соединением обычно не стоит. Чаще всего выбирают схему последовательного соединения. У параллельного соединения для светодиодов есть один важный недостаток – это удорожание и усложнение конструкции, потому что для каждого диода нужен отдельный резистор. Но такая схема имеет и большой плюс – если сгорела одна линия, то перестанет светить только один диод, остальные продолжат работу.

Читайте также: Схема для плавного включения ламп накаливания 220 В.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Объясняется достаточно просто: если перегорит один светодиод, то на другой (-ие) может попасть больший ток и начнется перегрев. Потому при параллельной схеме подключения каждому диоду нужен отдельный резистор.

Неправильно:

 

Правильно:

 

Последовательное соединение светодиодов

Именно такое соединение пользуется популярностью. Объясняется такой частый выбор простым примером. Представьте, что в елочной гирлянде для каждого светодиода подобран резистор. А в гирлянде этих лампочек бывает более сотни! Параллельное соединение в данном случае невыгодно и трудоемко.

Только в самодельных гирляндах можно встретить параллельное соединение. В заводских моделях всегда последовательное.

Можно ли обойтись без резисторов

В бюджетных или просто старых приборах используются резисторы. Также они используются для подключения всего только нескольких светодиодов.

Но есть более современный способ – это понижение тока через светодиодный драйвер. Так, в светильниках в 90% встречаются именно драйверы. Это специальные блоки, которые через схему преобразуют характеристики тока и напряжения питающей сети. Главное их достоинство – они обеспечивают стабильную силу тока при изменении/колебании входного напряжения.

Читайте также: Как сделать блок питания из энергосберегающей лампы своими руками.

Сегодня можно подобрать драйвер под любое количество светодиодов. Но рекомендуем не брать китайские аналоги! Кроме того, что они быстрей изнашиваются, ещё могут выдавать не те характеристики в работе, которые заявлены на упаковке.

Если светодиодов не так много, подойдут и резисторы вместо достаточно высокого по цене драйвера.

Интересное видео по теме:

В заключение

Пишите комментарии и делитесь статьей в социальных сетях! Если возникли вопросы, можно найти в интернете дополнительные видео для расчета сопротивления резистора и на другие близкие темы.

Расчет резистора для светодиодов: примеры, онлайн калькулятор

При подключении светодиодов небольшой мощности чаще всего используется гасящий резистор.  Это наиболее простая схема подключения, которая позволяет получить требуемую яркость без использования дорогостоящих драйверов. Однако, при всей ее простоте, для обеспечения оптимального режима работы необходимо провести расчет резистора для светодиода.

Светодиод как нелинейный элемент

Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов:

Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему.

Как видно на рисунке, характеристики имеют нелинейный характер. Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз.

Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

На рисунке показаны типовые значения рабочих точек для красных, зеленых, белых и голубых светодиодов при токе 20 мА. Здесь можно заметить, что led разных цветов при одинаковом токе имеют разное падение напряжения в рабочей области. Эту особенность следует учитывать при проектировании схем.

Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду, как показано на картинке справа:

Полная же ВАХ выглядит следующим образом:

Здесь видно, что обратное включение бессмысленно, поскольку светодиод не будет излучать, а при превышении некоторого порога обратного напряжения выйдет из строя в результате пробоя. Излучение же происходит только при включении в прямом направлении, причем интенсивность свечения зависит от тока, проходящего через led. Если этот ток ничем не ограничивать, то led перейдет в область пробоя и перегорит. Если нужно установить рабочий светодиод или нет, то Вам будет полезна статья подробно раскрывающая все способы проверки led.

Как подобрать резистор для одиночного светодиода

Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:

Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:

где U пит  — напряжение питания,

U пад- падение напряжения на светодиоде,

I — требуемый ток светодиода.

При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:

Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять

Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит

Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.

Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:

Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.

Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.

Расчет резистора при подключении нескольких светодиодов

Подключить несколько led можно двумя способами: последовательно и параллельно. Схемы включения показаны ниже. Не забудьте почитать более подробно про способы подключения светодиодов.

При последовательном соединении используется один резистор, задающий одинаковый ток всей цепочке led. При этом следует учитывать, что источник питания должен обеспечивать напряжение, превышающее общее падение напряжения на диодах. То есть при соединении 4 светодиодов с падением 2.5 В потребуется источник напряжением более 10 В. Ток при этом для всех будет одинаковым. Сопротивление резистора в этом случае можно рассчитать по формуле:

где  — напряжение питания,

— сумма падений напряжения на светодиодах,

— ток потребления.

Так, 4 зеленых светодиода Kingbright L-132XGD напряжением 2.5 В и током 10 мА при питании 12 В потребуют резистора сопротивлением

При этом он должен рассеивать мощность

При параллельном подключении каждому светоизлучающему диоду ток ограничивает свой резистор. В таком случае можно использовать низковольтный источник питания, но ток потребления всей цепи будет складываться из токов, потребляемых каждым светодиодом. Например, 4 желтых светодиода BL-L513UYD фирмы Betlux Electronics с потреблением 20 мА каждый, потребуют от источника ток не менее 80 мА при параллельном включении. Здесь сопротивление и мощность резисторов для каждой пары «резистор – led» рассчитываются так же, как при подключении одиночного светодиода.

Обратите внимание, что и при последовательном, и при параллельном соединении используются источники питания одинаковой мощности. Только в первом случае потребуется источник с большим напряжением, а во втором – с большим током.

Нельзя подключать параллельно несколько светодиодов к одному резистору, т.к. либо они все будут гореть очень тускло, либо один из них может открыться чуть раньше других, и через него пойдет очень большой ток, который выведет его из строя.

Программы для расчета сопротивления

При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным.

Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления. Очень удобным в этом плане является онлайн калькулятор на сайте cxem.net:

https://cxem.net/calc/ledcalc.php

Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.

Например, с помощью этого калькулятора был рассчитан резистор для трех светодиодов CREE XLamp MX3 при напряжении питания 12 В:

Также программа обладает очень полезной функцией: она подскажет цветовую маркировку требуемого резистора.

Еще одна простая программа для расчета сопротивления разработана Сергеем Войтевичем. Скачать программу можно по этой ссылке.

Здесь уже вручную выбирается способ подключения светодиодов, напряжение и ток. Программа не требует установки, достаточно распаковать ее в любую директорию.

Заключение

Гасящий резистор – самый простой ограничитель тока для светодиодной цепи. От его подбора зависит ток, а значит, интенсивность свечения и долговечность led. Однако следует помнить, что при больших токах на резисторе будет выделяться значительная мощность, поэтому для питания мощных светодиодов лучше применять драйверы.

Расчет сопротивления цепи

Расчет сопротивления цепи необходим при решении различных задач по электротехнике. Суть заключается в приведении сложной разветвленной электрической цепи к цепи с единственным эквивалентным сопротивлением, которую называют простой электрической цепью. 

Пример 1

 

Цепь в данном примере состоит из двух последовательно соединенных сопротивлений, следовательно, их общее сопротивление будет равно сумме их сопротивлений. Подробнее о видах соединений тут.

Допустим, что R1=10 Ом R2=20 Ом, тогда 

Пример 2

 

Два сопротивления соединены параллельно, значит при сворачивании схемы, общее сопротивление будет равно (значения R1,R2 такие же как и в примере 1) 

Можно заметить, что при параллельном соединении общее сопротивление меньше, чем при последовательном в несколько раз. 

Пример 3

 

В данном примере ситуация аналогична примеру 2, за тем лишь исключением, что сопротивлений три. Тогда общее сопротивление будет равно (R1,R2 прежние, R3=105 Ом) 

 

Пример 4

 

Чтобы рассчитать общее сопротивление смешанного соединения проводников, необходимо для начала найти общее сопротивление резисторов R1 и R2 соединенных параллельно, а затем общее сопротивление, как сумму R12 и R3 соединенных последовательно. 

 Пример 5

Данная электрическая цепь сложнее, чем предыдущие, но как можно увидеть, она также состоит из последовательно или параллельно соединенных сопротивлений, которые можно постепенно сворачивать, приводя цепь к единственному эквивалентному сопротивлению R.

R4=20 Ом, R5=40 Ом, R6=15 Ом 

Путем сворачивания цепи с помощью преобразований последовательно и параллельно соединенных проводников, можно максимально упростить для дальнейшего расчета сколь угодно сложную схему. Исключением служат цепи содержащие сопротивления, соединенные по схеме звезда и треугольник.  

  • Просмотров: 59016
  • Как рассчитать сопротивление для светодиода

    На чтение 13 мин. Просмотров 7 Обновлено

    Вот тут я обещал рассказать о том, как можно рассчитать номинал резистора для того, чтобы бортовая сеть вашего автомобиля не сожгла светодиоды, которые вы к ней подключите.
    Для начала определимся с терминологией (люди, знакомые с электроникой, могут перейти к следующему пункту).

    Падение напряжения — напряжение U (измеряется в вольтах, V) — которое потребляет светодиод (да-да, совершенно нагло съедает его!).
    Оно же — напряжение питания. Не путать с напряжением источника питания.
    Рабочий ток — ток I (измеряется в амперах, А. мы будем измерять в миллиамперах — 1 мА = 0.001 А).
    СопротивлениеR измеряется в омах — Ом. Именно в этих единицах измеряются резисторы (сопротивления).
    Напряжение источника питания — в нашем случае напряжение бортовой сети автомобиля и равно примерно 12V при заглушенном двигателе и 14V при заведённом (при условии исправной работы генератора).

    С терминологией вроде всё. Перейдём к теории.
    Вот примерное падение напряжения для каждого из основных цветов светодиодов.

    Красный — 1,6-2,03
    Оранжевый — 2,03-2,1в
    Жёлтый — 2,1-2,2в
    Зелёный — 2,2-3,5в
    Синий — 2,5-3,7в
    Фиолетовый — 2,8-4в
    Белый — 3-3,7в

    Реальные значения могут немного колебаться в ту или иную сторону. О том, как точно выяснить сколько потребляет конкретный светодиод — ссылка ниже.
    Разница связана с использованием в них разных материалов кристалла, что и даёт, собственно говоря, разную длину испускаемой волны, а равно и разный цвет.

    Средний же рабочий ток для маломощных светодиодов составляет около 0.02А = 20мА.
    В чём же, спросите вы, загвоздка? Всё ведь просто — подключил светодиод соблюдая полярность и он светит тебе.
    Да, всё так, но светодиод – предмет тёмный, изучению не подлежит интересный.
    Тогда как напряжения питания он забирает на себя ровно столько, сколько ему требуется, ток превышающий его рабочий ток, попросту сожжёт кристалл.

    Давайте возьмём пример. Имеется светодиод оранжевого цвета, который, согласно приведённой выше таблице, имеет напряжение питания порядка 2,1V, и рабочий ток 20мА. Если мы обрушим на него всю мощь бортовой сети нашего автомобиля, то напряжение в цепи, в которую он включен, снизится на

    2.1V, правда, избыточный ток тут же его сожжёт…
    Как же быть, если нам, например, нужно установить светодиод для подсветки замка зажигания?
    Всё просто – нужно лишить участок цепи, в которую включен светодиод, избыточного тока.

    Как? – спросите вы. Всё просто. Был такой дядя, Георг Ом, который вывел известную любому старшекласснику формулу (закон Ома для участка цепи) – U=I*R (где U – напряжение, I – ток, R – сопротивление.)
    Переворачиваем эту прекрасную формулу, получая R=U/I.
    В нашем случае R – сопротивление (номинал резистора), которое нам потребуется; U – напряжение в участке цепи, I – рабочий ток нашего светодиода.
    Vs – напряжение источника питания
    Vl – напряжение питания светодиода
    Таким образом R=(Vs-Vl)/I=(12-2.1)/0.02=9.9/0.02=495 Ом – номинал резистора, который необходимо включить в цепь, дабы напрямую подключить светодиод к бортовой сети при выключенном двигателе.
    Для работы при включенном двигателе рассчитываем так же, только Vs берём уже 14В.
    Настоятельно рекомендую производить расчёты для авто, беря за напряжение бортовой сети 14В, иначе ваши светодиоды достаточно быстро выйдут из строя.

    Если взять номинал больше, например 550-600 Ом, то светодиод будет светить чуть менее ярко.
    Если номинал будет меньше, то «свет твоей звезды будет коротким, хоть и очень ярким».

    Достоверно узнать, сколько вольт потребляет конкретный светодиод, можно подключив его к источнику постоянного напряжения в 3-5 вольт, подсоединив последовательно вольтметр (можно использовать электронный мультиметр, включив его в соответствующий режим), после чего посчитать насколько снизилось напряжение в цепи. И исходя уже их этих, конкретных данных, рассчитать требуемый вам резистор. Подробнее об этом методе читайте здесь.

    В конце хочу сказать вам, что настоятельно рекомендую использовать номинал резистора немного выше чем расчётный, что, несомненно, продлит жизнь светодиодам.
    Для определения резистора по цветовой маркировке (а именно так обозначены все современные резисторы) рекомендую использовать этот онлайн-калькулятор.
    www.chipdip.ru/info/rescalc

    Спасибо, что читаете мой БЖ, мне очень приятно. Если остались вопросы — задавайте не стесняясь — всем отвечу.

    Светодиод (светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.

    Такой резистор часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.

    Расчет резистора для светодиода

    Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:

    • V — напряжение источника питания
    • VLED — напряжение падения на светодиоде
    • I – рабочий ток светодиода

    Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:

    Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы (драйверы для светодиодов) которые обладают большей эффективностью.

    Давайте, на примере выполним расчет сопротивления резистора для светодиода.

    • источник питания: 12 вольт
    • напряжение светодиода: 2 вольта
    • рабочий ток светодиода: 30 мА

    Рассчитаем токоограничивающий резистор, используя формулу:

    Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из номинального ряда резисторов подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).

    Последовательное соединение светодиодов

    Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.

    Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.

    Пример расчета сопротивления резистора при последовательном подключении.

    В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.

    Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.

    Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:

    Резистор должен иметь значение не менее 183,3 Ом.

    Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)

    Параллельное соединение светодиодов

    Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.

    Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.

    И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.

    Онлайн калькулятор расчета резистора для светодиода

    Этот онлайн калькулятор поможет вам найти нужный номинал резистора для светодиода, подключенного по следующей схеме:

    примечание: разделителем десятых является точка, а не запятая

    Формула расчета сопротивления резистора онлайн калькулятора

    • U – источник питания;
    • UF – прямое напряжение светодиода;
    • IF – ток светодиода (в миллиамперах).

    Примечание: Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то выберите ближайшее бо́льшее значение сопротивления, которое вы рассчитали.

    Например, если у вас получилось сопротивление 313,4 Ом, то возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем последовательного или параллельного соединения нескольких резисторов.

    При подключении светодиодов небольшой мощности чаще всего используется гасящий резистор. Это наиболее простая схема подключения, которая позволяет получить требуемую яркость без использования дорогостоящих драйверов. Однако, при всей ее простоте, для обеспечения оптимального режима работы необходимо провести расчет резистора для светодиода.

    Светодиод как нелинейный элемент

    Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов:

    Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему.

    Как видно на рисунке, характеристики имеют нелинейный характер. Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз.

    Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

    На рисунке показаны типовые значения рабочих точек для красных, зеленых, белых и голубых светодиодов при токе 20 мА. Здесь можно заметить, что led разных цветов при одинаковом токе имеют разное падение напряжения в рабочей области. Эту особенность следует учитывать при проектировании схем.

    Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду, как показано на картинке справа:

    Полная же ВАХ выглядит следующим образом:

    Здесь видно, что обратное включение бессмысленно, поскольку светодиод не будет излучать, а при превышении некоторого порога обратного напряжения выйдет из строя в результате пробоя. Излучение же происходит только при включении в прямом направлении, причем интенсивность свечения зависит от тока, проходящего через led. Если этот ток ничем не ограничивать, то led перейдет в область пробоя и перегорит. Если нужно установить рабочий светодиод или нет, то Вам будет полезна статья подробно раскрывающая все способы проверки led.

    Как подобрать резистор для одиночного светодиода

    Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:

    Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:

    где U пит — напряжение питания,

    U пад- падение напряжения на светодиоде,

    I — требуемый ток светодиода.

    При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:

    Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять

    Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит

    Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.

    Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:

    Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.

    Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.

    Расчет резистора при подключении нескольких светодиодов

    Подключить несколько led можно двумя способами: последовательно и параллельно. Схемы включения показаны ниже. Не забудьте почитать более подробно про способы подключения светодиодов.

    При последовательном соединении используется один резистор, задающий одинаковый ток всей цепочке led. При этом следует учитывать, что источник питания должен обеспечивать напряжение, превышающее общее падение напряжения на диодах. То есть при соединении 4 светодиодов с падением 2.5 В потребуется источник напряжением более 10 В. Ток при этом для всех будет одинаковым. Сопротивление резистора в этом случае можно рассчитать по формуле:

    где — напряжение питания,

    — сумма падений напряжения на светодиодах,

    Так, 4 зеленых светодиода Kingbright L-132XGD напряжением 2.5 В и током 10 мА при питании 12 В потребуют резистора сопротивлением

    При этом он должен рассеивать мощность

    При параллельном подключении каждому светоизлучающему диоду ток ограничивает свой резистор. В таком случае можно использовать низковольтный источник питания, но ток потребления всей цепи будет складываться из токов, потребляемых каждым светодиодом. Например, 4 желтых светодиода BL-L513UYD фирмы Betlux Electronics с потреблением 20 мА каждый, потребуют от источника ток не менее 80 мА при параллельном включении. Здесь сопротивление и мощность резисторов для каждой пары «резистор – led» рассчитываются так же, как при подключении одиночного светодиода.

    Обратите внимание, что и при последовательном, и при параллельном соединении используются источники питания одинаковой мощности. Только в первом случае потребуется источник с большим напряжением, а во втором – с большим током.

    Нельзя подключать параллельно несколько светодиодов к одному резистору, т.к. либо они все будут гореть очень тускло, либо один из них может открыться чуть раньше других, и через него пойдет очень большой ток, который выведет его из строя.

    Программы для расчета сопротивления

    При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным.

    Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления. Очень удобным в этом плане является онлайн калькулятор на сайте cxem.net:

    Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.

    Например, с помощью этого калькулятора был рассчитан резистор для трех светодиодов CREE XLamp MX3 при напряжении питания 12 В:

    Также программа обладает очень полезной функцией: она подскажет цветовую маркировку требуемого резистора.

    Еще одна простая программа для расчета сопротивления распространенная на просторах интернета разработана Сергеем Войтевичем с портала ledz.org.

    Здесь уже вручную выбирается способ подключения светодиодов, напряжение и ток. Программа не требует установки, достаточно распаковать ее в любую директорию.

    Заключение

    Гасящий резистор – самый простой ограничитель тока для светодиодной цепи. От его подбора зависит ток, а значит, интенсивность свечения и долговечность led. Однако следует помнить, что при больших токах на резисторе будет выделяться значительная мощность, поэтому для питания мощных светодиодов лучше применять драйверы.

    Как рассчитать падение напряжения на резисторе калькулятор

    Формулы для радиолюбительских расчетов.

    Каждый уважающий себя радио-мастер обязан знать формулы для расчета различных электрических величин. Ведь при ремонте электронных устройств или сборке электронных самоделок очень часто приходится проводить подобные расчеты. Не зная таких формул очень сложно и трудоемко, а порой и невозможно справиться с подобного рода задачей!

    Как рассчитать емкость конденсатора, как рассчитать сопротивление резистора или узнать мощность устройства – в этом помогут формулы для радиолюбительских расчетов.

    Первое, что нужно усвоить – ВСЕ ВЕЛЕЧИНЫ В ФОРМУЛАХ УКАЗЫВАЮТЬСЯ В АМПЕРАХ, ВОЛЬТАХ, ОМАХ, МЕТРАХ И КИЛОГЕРЦАХ.

    Закон Ома.

    Известный из школьного курса физики ЗАКОН ОМА. На нем строится большинство расчетов в радиоэлектронике. Закон Ома выражается в трех формулах:

    Где: I – сила тока (А), U – напряжение (В), R– сопротивление, имеющееся в цепи (Ом).

    Теперь рассмотрим на практике применение формул в радиолюбительских расчетах.

    Как рассчитать сопротивление гасящего резистора.

    Сопротивление гасящего резистора рассчитывают по формуле: R= U /I

    Где: U – излишек напряжения, который необходимо погасить (В), I – ток потребляемый цепью или устройством (А).

    Как рассчитать мощность гасящего резистора.

    Расчет мощности гасящего резистора проводят по формуле: P=I 2 R

    Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).

    Как рассчитать напряжение падения на сопротивлении.

    Напряжение падения на сопротивлении можно рассчитать по формуле: Uпад . =RI

    Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).

    Как рассчитать ток потребляемый устройством или цепью.

    Рассчитать ток потребляемый устройством или цепью можно по формуле: I=P/U

    Где P– мощность устройства (Вт), U– напряжение питания устройства (В).

    Как рассчитать мощность устройства в Вт.

    Рассчитать мощность устройства в Вт. можно по формуле: P=IU

    Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).

    Как рассчитать длину радиоволны.

    Рассчитать длину радиоволны можно по формуле: ƛ=300000/ƒ

    Где ƒ-частота в килогерцах, ƛ- длинна волны в метрах.

    Как рассчитать частоту радиосигнала.

    Частоту радиосигнала можно рассчитать по формуле: ƒ=300000/ƛ

    Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.

    Как рассчитать номинальную выходную мощность звуковой частоты.

    Рассчитать номинальную выходную мощность звуковоспроизводящего устройства (усилитель, проигрыватель и т.п.) можно по формуле: P=U 2 вых./ R ном .

    Где U 2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.

    И в завершении еще несколько формул. По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях, когда возникает необходимость в параллельном или последовательном их соединении.

    Как рассчитать сопротивление двух параллельно включенных резисторов.

    Расчет соединенных параллельно двух резисторов производят по формуле: R=R1R2/(R1+R2)

    Где R1 и R2 — сопротивление первого и второго резистора соответственно (Ом).

    Как рассчитать сопротивление более двух включенных параллельно резисторов.

    Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле: 1/R=1/R1+1/R2+1/Rn…

    Где R1, R2, Rn — сопротивление первого, второго и последующих резисторов соответственно (Ом).

    Как рассчитать емкость включенных параллельно двух или более конденсаторов.

    Расчет емкости соединенных параллельно нескольких конденсаторов проводят по формуле: C=C1+ C2+Cn

    Где C1 , C2 и Cn– емкость первого, второго и последующих конденсаторов соответственно (мФ).

    Как рассчитать емкость включенных последовательно двух конденсаторов.

    Расчет емкости двух соединенных последовательно конденсаторов проводят по формуле: C=C1 C2/C1+C2

    Где C1 и C2 – емкость первого и второго конденсаторов соответственно (мФ).

    Как рассчитать емкость включенных последовательно более двух конденсаторов.

    Расчет емкости включенных последовательно более чем двух конденсаторов проводят по формуле: 1/C=1/C1+1/C2+1/Cn

    Где C1, C2 и Cn — емкость первого, второго и последующих конденсаторов (мФ).

    Рекомендуем посмотреть:

    Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.

    Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.

    Схема делителя напряжения на резисторах

    Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

    Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

    Расчет делителя напряжения на резисторах

    Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

    Формула делителя напряжения

    Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

    Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

    Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

    Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

    Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

    И, на какое-то время, мы можем упростить схему:

    Закон Ома в его наиболее простом вид: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

    А так как I1 равно I2, то:

    Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

    Делитель напряжения — калькулятор онлайн

    Применение делителя напряжения на резисторах

    В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

    Потенциометры

    Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

    Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

    Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

    Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

    Резистивные датчики

    Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

    Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

    Пример работы делителя напряжения на фоторезисторе.

    Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

    Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

    21 комментарий

    Короче,делитель напряжения — это следящая ( сравнивающая ) цепочка в системах автоматического регулирования. Её можно увидеть в регуляторах напряжеия генераторов.

    Отличная статья, жаль, что про рассеиваемую мощность не сказано ни слова.

    спасибо,понравилось.вопрос-схема где показаны способы присоединения делителей
    правый(внизу) измеряют снимаемое (Uout) c
    Uout и минуса входящего?

    Просто и понятно описано, чтобы понять даже ребенку.

    За калькуляторы отдельное спасибо — очень удобно!

    Увы. Врет калькулятор безбожно!
    Пытался рассчитать делитель с 6В на 2.5В.
    Жаль нельзя скриншот вставить.
    Результаты:
    По формуле 1: R1 = 4.8K, R2 = 22K, Vin = 6В, Vout = 4.4В. (Значения резисторов взяты из результатов формулы 3)
    По формуле2: Vin = 6В, Vout = 2.5В, R1+R2 = 26,4K. Результат: R1 = 666,667, R2 = 3,333K. В сумме ну никак не 26К, которые в исходных данных забиты.
    По формуле3: Vin=6B, Vout = 2,5B, R2=22K. Результат: R1 = 4,4K. (при расчете вручную 30800)
    Т.е. результаты ну совсем рядом не стояли. А по идее формулы должны сходные результаты давать.
    Кроме этого, в формуле 1. R1 указано 4.8К, при этом Vout = 4.4В. Если указать R1 4.84, то результат уже 1.245. Добавили 0.04К, а напряжение упало аж в 4 раза? А если добавить еще 0.004К, то на выходе уже 152 мВ. Т.е. в 10 раз меньше предыдущего.
    В общем не фонтан.

    Читайте примечание внизу калькулятора…

    вполне приличный калькулятор.спасибо.

    Спасибо за отличный и удобный калькулятор!

    Рассчитать резистор R2 для выходного напряжения (Uout) и резистора R1-добавить для удобства расчетов

    смысла формулы не пойму , почему в делителе нужно умножать именно на R2, Ток течет от плюса к минусу чисто условно, он с таким же успехом идет и наоборот, Впечатление , что формула хоть и верная но притянута за уши .

    При умножении на R1 ты вычислишь разницу напряжений Uin-Uout

    А как будет влиять на систему нагрузка? Она снизит сопротивление цепи.

    Без учета нарузки это сферический конь в вакууме.

    Сама идея создать калькуляторы хорошая.
    Только вот изначально необходимо вводить условие нагрузки. Без этого такие калькуляторы совершенно бессмысленные, и годятся разве что для демонстрации закона Ома.
    И хорошо бы сделать калькулятор на несколько коэффициентов деления, например 1:1 — 1:10 — 1:100 — 1:1000, и конечно же с условием входного сопротивления нагрузки.
    И в этом же калькуляторе должны быть строки для отображения мощности рассеяния резисторов делителя.
    И при этом необходимо ещё учитывать температуру резисторов. Собственно, все проекты начинаются с задания диапазона рабочих температур. А иначе при работе все эти резисторы перекосит по сопротивлению напрочь.
    Вобщем, в таком виде это не калькуляторы, а бессмысленные игрушки.

    Блин, ребята! Такие делители применяются исключительно для задания какого-нибудь опорного напряжения для компаратора или для задания точки смещения транзистора. В таких условиях просто принимается что сопротивление нагрузки (т.е. входа этого самого компаратора) на порядки больше, и, соответственно сопротивление такой нагрузки почти не влияет на конечный результат. Да и отклонение резисторов а также температурный дрейф будут вносить бОльшие искажения, нежели сопротивление входа компаратора. А если требуется более точное напряжение, то ставят точные стабилитроны или вобще специализированную микросхему — ИОН (источник опорного напряжения). Но никто через такие делители не запитывает именно полноценную нагрузку. Частный случай такого делителя, это если вместо нижнего резистора ставится стабилитрон. Тогда расчёт по мощности упирается в допустимую мощность стабилитрона, а мощность нагрузки должа быть в разы меньше, т.е. таким образом можно разве что подать питание на одну-две микросхемы маломощные.

    отличная подборка, присоединюсь к уже озвученному, жаль нет расчёта по мощности )))

    да кстати сколько ват рассеит резистор как посчитать?

    Тупит ваш калькулятор, у меня практическая схема R1=260 Ом 10W, R2=120 Ом 5W, при входном 56В на выходе 18В. Мигалка для электропогрузчика с бортовым 56В. Ваш калькулятор перекрывает выходные значения сообщением о мощности и величине сопротивления.

    Хороший калькулятор, спасибо автору. Но для полного удобства не хватает расчёта R2 при известном R1 и напряжениях. Как раз столкнулся с такой задачей, пришлось решать методом перебора с последовательным приближением. Все равно это будет переменный резистор, главное понять какой туда повесить чтобы покрыть весь диапазон выходных напряжений, не рискуя разорвать ОС при «шуршании» бегунка резистора (регулируемый БП).

    Нужно еще один калькулятор — чтобы по Uin, Uout и I выдавал нужные сопротивления (когда нужно, чтобы ток был определенной величины — не больше заданной, но и не на порядки меньше: например, ток 10мА при 10В->3В, если брать килоомные сопротивления, меня не устраивает)

    Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.

    Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.

    Схема делителя напряжения на резисторах

    Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

    Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

    Расчет делителя напряжения на резисторах

    Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

    Формула делителя напряжения

    Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

    Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

    Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

    Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

    Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

    И, на какое-то время, мы можем упростить схему:

    Закон Ома в его наиболее простом вид: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

    А так как I1 равно I2, то:

    Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

    Делитель напряжения — калькулятор онлайн

    Применение делителя напряжения на резисторах

    В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

    Потенциометры

    Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

    Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

    Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

    Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

    Резистивные датчики

    Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

    Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

    Пример работы делителя напряжения на фоторезисторе.

    Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

    Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

    21 комментарий

    Короче,делитель напряжения — это следящая ( сравнивающая ) цепочка в системах автоматического регулирования. Её можно увидеть в регуляторах напряжеия генераторов.

    Отличная статья, жаль, что про рассеиваемую мощность не сказано ни слова.

    спасибо,понравилось.вопрос-схема где показаны способы присоединения делителей
    правый(внизу) измеряют снимаемое (Uout) c
    Uout и минуса входящего?

    Просто и понятно описано, чтобы понять даже ребенку.

    За калькуляторы отдельное спасибо — очень удобно!

    Увы. Врет калькулятор безбожно!
    Пытался рассчитать делитель с 6В на 2.5В.
    Жаль нельзя скриншот вставить.
    Результаты:
    По формуле 1: R1 = 4.8K, R2 = 22K, Vin = 6В, Vout = 4.4В. (Значения резисторов взяты из результатов формулы 3)
    По формуле2: Vin = 6В, Vout = 2.5В, R1+R2 = 26,4K. Результат: R1 = 666,667, R2 = 3,333K. В сумме ну никак не 26К, которые в исходных данных забиты.
    По формуле3: Vin=6B, Vout = 2,5B, R2=22K. Результат: R1 = 4,4K. (при расчете вручную 30800)
    Т.е. результаты ну совсем рядом не стояли. А по идее формулы должны сходные результаты давать.
    Кроме этого, в формуле 1. R1 указано 4.8К, при этом Vout = 4.4В. Если указать R1 4.84, то результат уже 1.245. Добавили 0.04К, а напряжение упало аж в 4 раза? А если добавить еще 0.004К, то на выходе уже 152 мВ. Т.е. в 10 раз меньше предыдущего.
    В общем не фонтан.

    Читайте примечание внизу калькулятора…

    вполне приличный калькулятор.спасибо.

    Спасибо за отличный и удобный калькулятор!

    Рассчитать резистор R2 для выходного напряжения (Uout) и резистора R1-добавить для удобства расчетов

    смысла формулы не пойму , почему в делителе нужно умножать именно на R2, Ток течет от плюса к минусу чисто условно, он с таким же успехом идет и наоборот, Впечатление , что формула хоть и верная но притянута за уши .

    При умножении на R1 ты вычислишь разницу напряжений Uin-Uout

    А как будет влиять на систему нагрузка? Она снизит сопротивление цепи.

    Без учета нарузки это сферический конь в вакууме.

    Сама идея создать калькуляторы хорошая.
    Только вот изначально необходимо вводить условие нагрузки. Без этого такие калькуляторы совершенно бессмысленные, и годятся разве что для демонстрации закона Ома.
    И хорошо бы сделать калькулятор на несколько коэффициентов деления, например 1:1 — 1:10 — 1:100 — 1:1000, и конечно же с условием входного сопротивления нагрузки.
    И в этом же калькуляторе должны быть строки для отображения мощности рассеяния резисторов делителя.
    И при этом необходимо ещё учитывать температуру резисторов. Собственно, все проекты начинаются с задания диапазона рабочих температур. А иначе при работе все эти резисторы перекосит по сопротивлению напрочь.
    Вобщем, в таком виде это не калькуляторы, а бессмысленные игрушки.

    Блин, ребята! Такие делители применяются исключительно для задания какого-нибудь опорного напряжения для компаратора или для задания точки смещения транзистора. В таких условиях просто принимается что сопротивление нагрузки (т.е. входа этого самого компаратора) на порядки больше, и, соответственно сопротивление такой нагрузки почти не влияет на конечный результат. Да и отклонение резисторов а также температурный дрейф будут вносить бОльшие искажения, нежели сопротивление входа компаратора. А если требуется более точное напряжение, то ставят точные стабилитроны или вобще специализированную микросхему — ИОН (источник опорного напряжения). Но никто через такие делители не запитывает именно полноценную нагрузку. Частный случай такого делителя, это если вместо нижнего резистора ставится стабилитрон. Тогда расчёт по мощности упирается в допустимую мощность стабилитрона, а мощность нагрузки должа быть в разы меньше, т.е. таким образом можно разве что подать питание на одну-две микросхемы маломощные.

    отличная подборка, присоединюсь к уже озвученному, жаль нет расчёта по мощности )))

    да кстати сколько ват рассеит резистор как посчитать?

    Тупит ваш калькулятор, у меня практическая схема R1=260 Ом 10W, R2=120 Ом 5W, при входном 56В на выходе 18В. Мигалка для электропогрузчика с бортовым 56В. Ваш калькулятор перекрывает выходные значения сообщением о мощности и величине сопротивления.

    Хороший калькулятор, спасибо автору. Но для полного удобства не хватает расчёта R2 при известном R1 и напряжениях. Как раз столкнулся с такой задачей, пришлось решать методом перебора с последовательным приближением. Все равно это будет переменный резистор, главное понять какой туда повесить чтобы покрыть весь диапазон выходных напряжений, не рискуя разорвать ОС при «шуршании» бегунка резистора (регулируемый БП).

    Нужно еще один калькулятор — чтобы по Uin, Uout и I выдавал нужные сопротивления (когда нужно, чтобы ток был определенной величины — не больше заданной, но и не на порядки меньше: например, ток 10мА при 10В->3В, если брать килоомные сопротивления, меня не устраивает)

    Расчет резистора (сопротивления) для светодиода

    Светодиод – это полупроводниковый элемент электрической схемы. Его особенностью является нелинейная вольт-амперная характеристика. Стабильность и срок службы прибора во многом обусловлены силой тока. Малейшие перегрузки приведут к ухудшению качества светодиода (деградации)  или его поломке.

    Зачем резистор перед светодиодом.

    В идеале для работы диоды следует подключать к источнику постоянного тока. В этом случае элемент будет работать стабильно. Но на практике для подключения чаще всего используют более распространенные блоки питания с постоянным напряжением. При этом для ограничения силы тока, которая протекает через LED элемент, нужно включать в электрическую цепь дополнительное сопротивление − резистор. В статье рассмотрены методы расчета резистора для светодиода.

    Когда следует подключать светодиод через резистор

    Существует несколько случаев, когда такая электрическая схема уместна. Во-первых, токоограничивающий резистор стоит использовать, если эффективность схемы не первоочередная задача. В качестве примера можно привести применение светодиода в качестве индикатора в приборах. В таком случае важно самом свечение, а не его яркость.

    Во-вторых, применение резистора оправдано в случаях, когда необходимо выяснить полярность и работоспособность LED элемента. Одним из методов является подключение прибора к блоку питания. В этом качестве часто используют аккумуляторы от мобильных телефонов или батарейки. Напряжение на них может достигать 12 В. Это очень высокая величина, и прямое подключение светодиода приведет к поломке. Для ограничения напряжения в цепь вставляют резистор.

    В-третьих, резистор используют в исследовательских целях для изучения работы новых образцов светодиодов.

    В других случаях можно воспользоваться драйвером – прибором, стабилизирующим ток.

    Математический расчет.

    Для подбора сопротивления придется вспомнить школьный курс физики.

    На рисунке представлена простая последовательная электрическая схема соединения резистора и диода. На схеме применены следующие обозначения:

    • U – входное напряжение блока питания;
    • R – резистор с падением напряжения UR;
    • LED – светодиод с падением напряжения ULED (паспортное значение) и дифференциальным сопротивлением RLED;

    Поскольку элементы соединены последовательно, то сила тока I в них одинакова.

    По второму закону Кирхгофа: 

    U =  UR + ULED.   (1)

     Одновременно используем закон Ома:

    U=I*R.   (2)

    Подставим формулу (2) в формулу (1) и получим:

    U = I*R + I*RLED.   (3)

    Путем простых математических преобразований из формул (1) и (3) найдем искомое сопротивление резистора R:

    R = (U — ULED) / I.   (4)

    Для более точного подбора можно рассчитать мощность рассеивания резистора Р.

    Р = U*I.   (5)

    Примем напряжение блока питания U = 10 В.

    Характеристики диода: ULED  = 2В, I = 40 мА = 0,04A.

    Подставим нужные цифры в формулу (4), получим: R = (10 — 2) / 0,04 = 200 (Ом).

    Стоит учесть, что если полученной величины нет в стандартном ряду сопротивлений, то следует выбирать более высокоомный элемент.

    Мощность рассеивания (5): составит Р = (10 – 2) * 0,04 = 0,32 (Вт).

    Графический расчет.

    При наличии вольт-амперной характеристики несложно определить сопротивление резистора графическим способом. Метод применяется редко, но полезно про него знать.

    Для определения искомого сопротивления нужно знать ток нагрузки ILED и напряжение блока питания U. Далее следует перпендикуляр, соответствующий значению тока, до пересечения с вольт-амперной кривой. Затем через точку на графике и значению U провести прямую, которая покажет на оси тока максимальное его значение IMAX. Эти цифры подставляем в закон Ома (2) и вычисляем сопротивление резистора.

    Например, ILED = 10 мА, а U = 5 В. По графику IMAX  примерно равна 25 мА.

    По закону Ома (2) R = U / IMAX = 5 / 0,025 = 200 (Ом).

    Примеры вычислений сопротивления для светодиода.

    Разберем некоторые наглядные случаи вычисления сопротивления элемента в конкретных схемах.

    Вычисление токоограничивающего сопротивления при последовательном соединении нескольких светодиодов.

    Из курса физики известно, что в такой схеме значение тока постоянное, а напряжение на LED элементах суммируется.

    Возьмем напряжение источника питания U = 12 В.

    Характеристики диодов одинаковы: ULED  = 2В, ILED = 10 мА.

    Преобразуем формулу (4), учитывая три LED элемента.

    R = (U – 3*ULED) / I.

    R = (12 – 3* 2) / 0,01 = 600 (Ом).

    Мощность рассеивания (5) составит: Р = (12 – 2 * 3) * 0,01 = 0,6 (Вт).

    Вычисление сопротивления при параллельном соединении светодиодов.

    В этом случае постоянным сохраняется напряжение, а силы тока складываются. Поэтому при тех же входных данных (напряжение источника питания U = 12 В, напряжение и ток на диодах  ULED  = 2В, ILED = 10 мА), расчет будет несколько другим.

    Используем формулу (4), учитывая три LED элемента.

    R = (U – ULED) /3* I.

    R = (12 – 2) / 3*0,01 = 333,3 (Ом).

    Мощность рассеивания (5) составит: Р = (12 – 2) * 3*0,01 = 0,3 (Вт).

    Однако данное подключение не стоит применять на практике. Даже светодиоды из одной партии не гарантируют одинакового падения напряжений. Из-за этого ток на отдельном LED элементе может превысить допустимый, что может спровоцировать выход элементов из строя.

    Для параллельного соединения светодиодов необходимо к каждому из них подключать свой резистор.

    Вычисление сопротивления при параллельно-последовательном соединении LED элементов.

    Для подключения большого количества светодиодов уместно использовать параллельно-последовательную электрическую схему. Поскольку в параллельных ветках напряжение одинаковое, то достаточно узнать сопротивление резистора в одной цепи. А количество веток не имеет значения.

    Напряжение блока питания U = 12 В.

    Характеристики диодов одинаковы: ULED  = 2В, ILED = 10 мА.

    Максимальное количество LED элементов n для одной ветки рассчитывается так:

    n = (U — ULED) / ULED   (6)

    В нашем случае n = (12 — 2) / 2 = 5 (шт).

    Сопротивление резистора для одной ветки:

    R = (U — n* ULED) / ILED .   (7)

    Для трех светодиодов оно составит: R = (12 – 3*2)/ 0,01 = 600 (Ом).


     

    Расчет резистора для светодиода – как правильно рассчитать, примеры и формулы

    Любой светодиод имеет маленькое сопротивление. Если его подключить прямо к блоку питания, он немедленно перегорит, так как сила тока будет слишком высока. Провода, которыми он подключается к внешним выводам сделаны из меди или золота и не могут выдержать скачка тока. Именно поэтому важно правильно произвести расчет резистора для светодиода.

    От правильности произведенного расчета зависит сколько долго будет работать данный светодиод. Если резистор имеет недостаточное сопротивление, светодиод может перегореть, если же наоборот, сила тока будет меньше номинальной, лампочка будет иметь тусклый свет. Для того чтобы провести расчеты, существуют специальные формулы и сделать это не сложно. Кроме того, существуют специальные программы, которые автоматически произведут все необходимые расчеты на основании введенных данных.

    В данной статье будут рассмотрены все аспекты и тонкости произведения подобных расчетов. Также в качестве бонуса в статье присутствует видеоролик на данную тему и научная статья, которою можно скачать.

    Расчет сопротивления светодиода.

    Результат расчёта

    Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал. Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W. При использовании питания на 12В, последовательно можно подключить до 3 LED.

    Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону. Не забываем учитывать и мощность токоограничивающего резистора, это его способность рассеивать определенное количество тепла. Если она будет мала, то он перегреется и выйдет из строя, тем самым разорвав электрическую цепь. Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.

    Таблица зависимости рабочего напряжения светодиода от его цвета.

    Так же при расчёте светодиодов следует учитывать разброс параметров, для дешевых они будут максимальны, для дорогих они будут более одинаковыми. Чтобы проверить этот параметр, необходимо включить их в равных условиях, то есть последовательно.

    Уменьшая тока или напряжение снизить яркость до слегка светящихся точек. Визуально вы сможете оценить, некоторые будут светится ярче, другие тускло. Чем равномернее они горят, тем меньше разброс. Калькулятор расчёта резистора для светодиода подразумевает, что характеристики светодиодных чипов идеальные, то есть отличие равно нулю.

    Напряжение падения для распространенных моделей маломощных до 10W может быть от 2В до 12В. С ростом мощности увеличивается количество кристаллов в COB диоде, на каждом есть падение. Кристаллы включаются цепочками последовательно, затем они объединяются в параллельные цепи. На мощностях от 10W до 100W снижение растёт с 12В до 36В. Этот параметр должен быть указан в технических характеристиках LED чипа и зависит от назначения цвета:

    • синий;
    • красный;
    • зелёный;
    • желтый;
    • трёхцветный RGB;
    • четырёхцветный RGBW;
    • двухцветный;
    • теплый и холодный белый.

    Светодиоды.

    Прежде чем подобрать резистор для светодиода на онлайн калькуляторе, следует убедится в параметрах диодов. Китайцы на Aliexpress продают множество led, выдавая их за фирменные. Наиболее популярны модели SMD3014, SMD 3528, SMD2835, SMD 5050, SMD5630, SMD5730. Например, чаще всего китайцы обманывают на SMD5630 и SMD5730. Цифры в маркировке обозначают лишь размер корпуса 5,6мм на 3,0мм.

    В фирменных такой большой корпус используется для установки мощных кристаллов на 0,5W , поэтому у покупателей диодов СМД5630 напрямую ассоциируется с мощностью 0,5W. Хитрый китаец этим пользуется, и в корпус 5630 устанавливает дешевый и слабенький кристалл в среднем на 0,1W , при этом указывая потребление энергии 0,5W.

    Наглядным примером будут автомобильные лампы и светодиодные кукурузы, в которых поставлено большое количество слабеньких и некачественных ЛЕД чипов. Обычный покупатель считает, чем больше светодиодов чем лучше светит и выше мощность. Автомобильные лампы на самых слабых лед 0,1W Чтобы сэкономить денежку, мои светодиодные коллеги ищут приличные ЛЕД на Aliexpress. Ищут хорошего продавца, который обещает определённые параметры, заказывают , ждут доставку месяц. После тестов оказывается, что китайский продавец обманул, продал барахло. Повезёт, если на седьмой раз придут приличные диоды, а не барахло. Обычно сделают 5 заказов, и не добившись результата и идут делать заказ в отечественный магазин, который может сделать обмен.

    Материал в тему: как устроен тороидальный трансформатор и в чем его преимущества.

    Вычисление светодиодного резистора с использованием Закон Ома

    Закон Ома гласит, что сопротивление резистора R = V / I, где V = напряжение через резистор (V = S – V L в данном случае),  I = ток через резистор.  Итак R = (V S – V L) / I. Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды. Все светодиоды, которые соединены последовательно, долдны быть одного типа. Блок питания должен иметь достаточную мощность и обеспечить соответствующее напряжение.

    Пример расчета: Красный, желтый и зеленый диоды – при последовательном соединении необходимо напряжение питания – не менее 8V, так 9-вольтовая батарея будет практически идеальным источником.  V L = 2V + 2V + 2V = 6V (три диода, их напряжения суммируются).  Если напряжение питания V S 9 В и ток диода = 0.015A, Резистором R = (V S – V L) / I = (9 – 6) /0,015 = 200 Ом. Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

    Избегайте подключения светодиодов в параллели!

    Светодиод как нелинейный элемент

    Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов. Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему. Как видно на рисунке, характеристики имеют нелинейный характер.

    Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз. Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

     

    Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду

    Расчёт резистора для светодиода

    Расчёт резистора для светодиода – очень важный момент перед подключением светодиода к источнику питания. Ведь от этого зависит то, как будет работать светодиод. Если резистор будет иметь слишком маленькое сопротивление, то светодиод может выйти из строя (перегореть), а если сопротивление будет слишком велико, то светодиод будет излучать свет слабо. Расчёт резистора для светодиода производится по следующей формуле:

    • R = (VS – VL) / I
    • VS – напряжение источника питания (В).
    • VL – напряжение питания светодиода (обычно 2 вольта и 4 вольта для голубых и белых светодиодов).
    • I – ток светодиода (например 10 мА = 0.01 А или 20 мА = 0.02 А)

    Убедитесь, что выбранный вами электрический ток меньше максимального, на который рассчитан светодиод. Переведите эту величину из миллиампер в амперы. Таким образом результатом вычисления будет величина сопротивления резистора в омах (Ом). Если рассчитанная величина сопротивления резистора не совпадает со стандартным номиналом резисторов, необходимо выбрать ближайший больший номинал.

    Впрочем, Вы можете изначально захотеть выбрать несколько большее сопротивление, для экономии электричества например. Но надо помнить, что излучение светодиода в этом случае будет менее ярким. Если напряжение источника питания = 9 Вольт и у Вас красный светодиод (VL = 2V), требуемый ток I = 20 мА = 0.02A, R = (9V – 2V) / 0.02A = 350 Ом. Необходимо выбрать резистор сопротивлением 390 Ом (ближайшее большее значение).

    Расчёт резистора для светодиода.

     Мигающие светодиоды

    Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек. Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны.

    При последовательном соединении надо учитывать падение напряжения на каждом диоде, эту сумму сложить и из напряжения питания вычесть вышеозначенную сумму и уже для неё посчитать ток, еа который рассчитан один светодиод. При параллельном несколько сложнее, когда ставишь в параллель второй диод, резистор, необходимый для одного, делишь пополам, а когда три – тогда номинал резистора для двух диодов надо умножить на 0.7, когда четыре диода – номинал для трёх умножаешь на 0.69, для пяти – номинал для четырёх умножаешь на 0.68 и т.д.

    При последовательном соединении мощность резистора как для одного диода, независимо от количества, а при параллельном, при каждом добавлении диода, мощность надо пропорционально увеличивать. Только в параллельном и последовательном соединении должны быть диоды одного типа. Но я всегда ставлю на каждый диод свой резистор, потому как диоды имеют довольно большой разброс параметров. И, как показывает практика, обязательно находится слабое звено.

    Материал в тему: как устроен тороидальный трансформатор и в чем его преимущества.

    Расчет гасящего резистора для светодиода

    Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания. Ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

    Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники. Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

    Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

    • красный – 1,8…2В;
    • зеленый и желтый – 2…2,4В;
    • белые и синие – 3…3,5В.

    Допустим что мы будем использовать синий светодиод, падение напряжения на нем – 3В. Производим расчет напряжения на гасящем резисторе – Uгрез = Uпит – Uсвет = 5В – 3В = 2В. Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

    Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

    R = U / I = 2В / 0,02А = 100 Ом.

    В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора:

    P = U * I = 2В * 0,02А = 0,04 Вт.

    Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт). Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).

     

    • Uгрез = Uпит – Uсвет = 5В – 2В = 3В.
    • R = U / I = 3В / 0,015А = 200 Ом.
    • P = U * I = 3В * 0,015А = 0,045 Вт.

    При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр. Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

     

    Расчет гасящего резистора для светодиода.

     

    Программы для расчета сопротивления

    При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным. Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления.

    Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.

    В данной статье были рассмотрены основные вопросы расчета подключения светодиодов посредством резистора. По ссылке можно скачать статью “Как рассчитать резистор для подключения светодиодов”.

    Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

    www.led-obzor.ru

    www.www.casemods.ru

    www.katod-anod.ru

    www.radiostorage.net

    www.ledno.ru

    Предыдущая

    РезисторыЧто такое делитель напряжения и как он используется на резисторах?

    Следующая

    РезисторыКак отличается параллельное и последовательное соединение резисторов?

    Как рассчитать последовательные и параллельные резисторы — Kitronik Ltd

    Резисторы серии

    Когда резисторы подключаются друг за другом, это называется последовательным соединением. Это показано ниже. Чтобы рассчитать общее общее сопротивление ряда резисторов, подключенных таким образом, вы складываете отдельные сопротивления. Это делается по следующей формуле: Rtotal = R1 + R2 + R3 и так далее. Пример: чтобы рассчитать полное сопротивление для этих трех последовательно соединенных резисторов.
    Rtotal = R1 + R2 + R3 = 100 + 82 + 1 Ом = 183 Ом

    Задача 1:

    Рассчитайте общее сопротивление следующего последовательно включенного резистора.
    R Итого = _______________
    = _______________
    R Итого = _______________
    = _______________
    R Итого = _______________
    = _______________

    Параллельные резисторы

    Когда резисторы подключаются друг к другу (бок о бок), это называется параллельным подключением.Это показано ниже.

    Два параллельных резистора

    Для расчета общего полного сопротивления двух резисторов, подключенных таким образом, вы можете использовать следующую формулу:
    Пример: чтобы рассчитать полное сопротивление для этих двух резисторов, включенных параллельно.

    Задача 2:

    Рассчитайте полное сопротивление следующего резистора, включенного параллельно.

    Три или более резистора параллельно

    Для расчета общего общего сопротивления ряда из трех или более резисторов, подключенных таким образом, вы можете использовать следующую формулу: Пример: Чтобы вычислить общее сопротивление для этих трех резисторов, подключенных параллельно

    Задача 3:

    Рассчитайте полное сопротивление следующего резистора, включенного параллельно.

    Ответы

    Задача 1

    1 = 1492 Ом 2 = 2242 Ом 3 = 4847 Ом

    Задача 2

    1 = 5 Ом 2 = 9,57 Ом 3 = 248,12 Ом

    Задача 3

    1 = 5,95 Ом 2 = 23,76 Ом Загрузите pdf-версию этой страницы здесь. Узнать больше об авторе подробнее »

    © Kitronik Ltd — Вы можете распечатать эту страницу и ссылку на нее, но не должны копировать страницу или ее часть без предварительного письменного согласия Kitronik.

    Сопротивление резистора

    — стенограмма видео и урока

    Расчет сопротивления

    Поскольку сопротивление резистора зависит от материала, из которого он сделан, это учитывается в формуле для расчета сопротивления, которая математически может быть прочитана как:

    В этом уравнении R означает сопротивление.Греческая буква ρ, похожая на букву p , обозначает удельное сопротивление материала, из которого изготовлен резистор. L обозначает длину резистора. А А обозначает площадь поперечного сечения резистора. Сопротивление измеряется в Ом.

    Можно использовать два резистора одинакового размера из разных материалов с разным сопротивлением. Но не думайте, что сопротивление есть только у резисторов. Провода, которые сами проводят электричество, также имеют определенное сопротивление.Все, что проводит электричество, имеет определенное сопротивление. Провода обычно имеют гораздо меньшее сопротивление, чем резистор, предназначенный для защиты от электричества. Вы можете иметь сопротивление от нескольких Ом до миллионов Ом.

    Вот пример расчета сопротивления углеродного резистора длиной 0,005 метра (5 миллиметров) и диаметром 0,001 метра (1 миллиметр). Этот конкретный углеродный резистор имеет удельное сопротивление 45 x 10-5 Ом-метр.Итак, в основном, мы умножаем это удельное сопротивление на 0,005 метра и делим его на π, умноженный на 0,0005 метра в квадрате.

    Как мы видим, этот угольный резистор имеет сопротивление примерно 2,86 Ом. Обратите внимание, что символ ома — большая греческая буква омега (Ω).

    Закон Ома

    Все цепи, проводящие электричество, подчиняются так называемому закону Ома. Этот закон говорит вам, как ваше напряжение и ток связаны с вашим сопротивлением.

    R обозначает сопротивление, V обозначает напряжение, а I обозначает ток. Единицами измерения являются омы для сопротивления, вольт для напряжения и амперы для тока. Эта формула говорит вам, что ваше сопротивление всегда равно напряжению, деленному на ток. Вы также можете сказать, что ваше напряжение равно вашему току, умноженному на ваше сопротивление, или В = IR в форме уравнения, где R = В / I .

    Итак, если ваш резистор в вашей цепи имеет сопротивление 100 Ом, а ток, протекающий по цепи, составляет 0,5 А, тогда напряжение вашей цепи рассчитывается следующим образом:

    Напряжение в вашей цепи составляет 50 В.

    Расположение резисторов

    Способ размещения резисторов также может по-разному изменить значение сопротивления.

    Если ваши резисторы расположены последовательно, так что они соединены друг с другом, как в ожерелье, то полное или эквивалентное сопротивление является суммой значений ваших резисторов.Ток, протекающий через каждый резистор, будет одинаковым, но напряжение, протекающее через каждый резистор, разное.

    Например, у вас есть резисторы на 200, 50 и 25 Ом, включенные последовательно. Общее сопротивление вашей цепи составляет 200 + 50 + 25 = 275 Ом.

    Если ваши резисторы расположены параллельно, то есть каждый резистор подключен к одному источнику напряжения, то эквивалентное сопротивление находится по следующей формуле:

    Напряжение для каждого резистора будет одинаковым, но ток, проходящий через каждый резистор, будет разным.

    Например, предположим, что у вас сейчас параллельно подключены те же резисторы на 200 Ом, 50 Ом и 25 Ом. Общее сопротивление можно найти следующим образом:

    1/200 + 1/50 + 1/25 = 1/200 + 4/200 + 8/200 = 13/200 = 1 / 15,38

    Обратите внимание, как последний шаг делит числитель и знаменатель на числитель. Это дает вам единицу по общему сопротивлению. Как только вы это сделаете, ваше полное сопротивление окажется 15,38 Ом.

    Итоги урока

    Хорошо, давайте рассмотрим.Резистор представляет собой кусок материала, препятствующий прохождению электрического тока. Сопротивление резистора рассчитывается по следующей формуле:

    Как мы узнали, в этой формуле R означает сопротивление. Греческая буква ρ, похожая на букву p , обозначает удельное сопротивление материала, из которого изготовлен резистор. L обозначает длину резистора. И, наконец, A обозначает площадь поперечного сечения резистора.Сопротивление измеряется в омах, а ваша длина и площадь измеряются в метрах.

    Все цепи следуют закону Ома, который говорит вам, что напряжение в цепи равно току, умноженному на сопротивление, или В = IR в форме уравнения, где R = В / I . И в этом случае R обозначает сопротивление, V обозначает напряжение, а I обозначает ток. Единицами измерения являются омы для сопротивления, вольт для напряжения и амперы для тока.

    Если ваши резисторы включены последовательно, то эквивалентное сопротивление, которое видит схема, является суммой значений ваших резисторов. С другой стороны, если ваши резисторы размещены параллельно, то эквивалентное сопротивление определяется путем сложения значений, обратных вашим значениям резисторов.

    Сопротивление резистора | Основы резистора

    Сопротивление резистора

    Функция резистора — противодействовать прохождению через него электрического тока. Это называется электрическим сопротивлением и измеряется в единицах Ом (обозначается греческой заглавной буквой омега, Ом).Сопротивление можно рассчитать по закону Ома, когда известны падение напряжения на резисторе и ток через резистор:

    $$ R = \ frac {V} {I} $$

    Сопротивление резистора зависит от его материала и формы. Некоторые материалы имеют более высокое удельное сопротивление, что приводит к более высокому значению сопротивления. Значение сопротивления часто печатается на резисторе с буквенно-цифровым кодом для резисторов SMD или в виде цветового кода для резисторов со сквозным отверстием.

    Что такое сопротивление?

    Понятия тока, напряжения и сопротивления можно объяснить с помощью гидравлической аналогии. Поток воды по трубе ограничен сужением. Это вызывает падение давления после сужения. Течение воды эквивалентно электрическому току. Падение давления равно падению напряжения. Перетяжка эквивалентна резистору и имеет определенное сопротивление. Сопротивление пропорционально падению напряжения или давления для данного тока.

    В гидравлическом примере сопротивление может быть увеличено, например, за счет уменьшения диаметра сужения. Для резистора или провода сопротивление обычно зависит от материала и геометрической формы. Влияние геометрической формы легко объяснить на примере гидравлики. Длинная и узкая трубка будет иметь более высокое сопротивление, чем короткая и широкая трубка.

    Сопротивление резистора прямоугольного сечения площадью сечения A и длиной L.

    Сопротивление материала называется удельным сопротивлением. Электрическое сопротивление резистора пропорционально удельному сопротивлению материала. Для резистора прямоугольного сечения сопротивление R определяется по формуле:

    $$ R = \ frac {\ rho · l} {A} $$

    , где ρ — удельное сопротивление материала резистора (Ом · м), l — длина резистора вдоль направления тока (м), а A — площадь поперечного сечения, перпендикулярного току. (м 2 ).n R_i = R_1 + R_2 + \ точки + R_n $$

    Ток через все последовательно включенные резисторы одинаков, а напряжение — нет. Для более подробного объяснения и практических примеров, обратитесь к статье резисторов в серии. Иногда желаемое значение недоступно со стандартными предпочтительными значениями. {n} \ frac {1} {R_i} = \ frac {1} {R_1} + \ frac {1} { R_2} + \ точки + \ frac {1} {R_n} $$

    Напряжение на каждом резисторе, включенном параллельно, равно, а ток — нет.Для более подробного объяснения и практических примеров обратитесь к статье резисторов параллельно.

    последовательно соединенных резисторов — Расчет сопротивления — CCEA — Редакция GCSE Physics (Single Science) — CCEA

    Ток

    При последовательном подключении резисторов ток через каждый резистор одинаков.

    Ток одинаков во всех точках последовательной цепи.

    В схеме ниже: I S = I 1 = I 2 = I 3

    Напряжение В (или разность потенциалов)

    При последовательном соединении резисторов общая сумма напряжение (иногда называемое разностью потенциалов) на каждом компоненте равно напряжению на источнике питания.

    В приведенной выше схеме:

    V S = V 1 + V 2 + V 3

    Это просто форма закона сохранения энергии .

    Напряжение питания — это мера энергии, подводимой к каждому электрону.

    Напряжение на каждом компоненте — это электрическая энергия, преобразованная каждым компонентом.

    Следовательно, поданная энергия равна преобразованной энергии — энергия не была создана или разрушена в цепи.

    В последовательной цепи напряжение на источнике питания равно сумме напряжений на каждом компоненте.

    Сопротивление

    Общее сопротивление R двух или более резисторов, соединенных последовательно, является суммой отдельных сопротивлений резисторов.

    Для схемы выше общее сопротивление R определяется по формуле:

    R = R 1 + R 2 + R 3

    Пример

    Найдите полное сопротивление цепи выше.

    Ответ

    Это последовательная цепь, поэтому полное сопротивление определяется по формуле:

    R = R 1 + R 2 + R 3 + R 4

    R = \ ({ 4} \ Omega + {8} \ Omega + {2} \ Omega + {12} \ Omega \)

    R = \ ({26} \ Omega \)

    Общее сопротивление цепи резисторов равно \ ( {26} \ Omega \). Это означает, что четыре отдельных резистора можно заменить одним резистором из \ ({26} \ Omega \).

    Последовательное добавление резисторов всегда увеличивает общее сопротивление.

    Ток должен проходить через каждый резистор по очереди, поэтому добавление дополнительного резистора увеличивает уже встреченное сопротивление.

    Параллельные резисторы

    Ток

    При параллельном подключении резисторов ток от источника питания равен сумме токов, протекающих через каждую ветвь цепи.

    Другими словами, токи в ветвях параллельной цепи складываются с током питания.

    В приведенной выше схеме:

    I S = I 1 + I 2 + I 3

    Это соотношение выражает закон сохранения заряда.

    Все электроны, вышедшие из источника питания, должны вернуться в источник питания, и каждый электрон может пройти только через одну параллельную ветвь.

    В параллельной цепи ток от источника питания равен сумме токов в каждой ветви цепи.

    Напряжение

    В параллельной цепи напряжение на каждой ветви цепи равно напряжению питания.

    Для схемы выше:

    V S = V 1 = V 2 = V 3

    В параллельной цепи напряжение на каждой ветви равно напряжению питания.

    Сопротивление

    При параллельном подключении резисторов общее сопротивление R рассчитывается по формуле:

    \ [\ frac {1} {R} = \ frac {1} {R} _ {1} + \ frac {1} {R} _ {2} + \ frac {1} {R} _ {3} \]

    Закон Ома: сопротивление и простые схемы

    Цели обучения

    К концу этого раздела вы сможете:

    • Объясните происхождение закона Ома.
    • Рассчитайте напряжения, токи или сопротивления по закону Ома.
    • Объясните, что такое омический материал.
    • Опишите простую схему.

    Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов В , которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток.

    Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В . Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению :

    [латекс] I \ propto {V} \\ [/ латекс].

    Это важное соотношение известно как закон Ома . Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием.Это эмпирический закон, подобный закону трения — явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.

    Сопротивление и простые схемы

    Если напряжение управляет током, что ему мешает? Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением R . Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток.Сопротивление обратно пропорционально току, или

    [латекс] I \ propto \ frac {1} {R} \\ [/ latex].

    Таким образом, например, ток уменьшается вдвое, если сопротивление увеличивается вдвое. Комбинируя отношения тока к напряжению и тока к сопротивлению, получаем

    [латекс] I = \ frac {V} {R} \\ [/ латекс].

    Это соотношение также называется законом Ома. Закон Ома в такой форме действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален.Многие вещества, для которых действует закон Ома, называются омическими . К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы имеют сопротивление R , которое не зависит от напряжения В и тока I . Объект с простым сопротивлением называется резистором , даже если его сопротивление невелико. Единицей измерения сопротивления является Ом и обозначается символом Ω (греческая омега в верхнем регистре).Перестановка I = V / R дает R = V / I , поэтому единицы сопротивления: 1 Ом = 1 вольт на ампер:

    [латекс] 1 \ Omega = 1 \ frac {V} {A} \\ [/ latex].

    На рисунке 1 показана схема простой схемы. Простая схема имеет один источник напряжения и один резистор. Можно предположить, что провода, соединяющие источник напряжения с резистором, имеют незначительное сопротивление, или их сопротивление можно включить в R .

    Рисунок 1.Простая электрическая цепь, в которой замкнутый путь для прохождения тока обеспечивается проводниками (обычно металлическими проводами), соединяющими нагрузку с выводами батареи, представленными красными параллельными линиями. Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

    Пример 1. Расчет сопротивления: автомобильная фара

    Каково сопротивление автомобильной фары, через которую проходит 2,50 А при 12.0 В к нему приложено?

    Стратегия

    Мы можем изменить закон Ома в соответствии с формулой I = V / R и использовать его для определения сопротивления.

    Решение

    Перестановка I = V / R и замена известных значений дает

    [латекс] R = \ frac {V} {I} = \ frac {\ text {12} \ text {.} \ Text {0 V}} {2 \ text {.} \ Text {50 A}} = \ text {4} \ text {.} \ text {80 \ Omega} \\ [/ latex].

    Обсуждение

    Это относительно небольшое сопротивление, но оно больше, чем хладостойкость фары.Как мы увидим в разделе «Сопротивление и удельное сопротивление», сопротивление обычно увеличивается с температурой, поэтому лампа имеет меньшее сопротивление при первом включении и потребляет значительно больший ток во время короткого периода прогрева.

    Сопротивление может быть разным. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 10 12 Ом или более. Сопротивление между руками и ногами у сухого человека может составлять 10 5 Ом, в то время как сопротивление человеческого сердца составляет около 10 3 Ом.Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10 −5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в разделах «Сопротивление и удельное сопротивление». Дополнительную информацию можно получить, решив I = V / R для V , что дает

    В = ИК

    Это выражение для В можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока I .Для этого напряжения часто используется фраза IR drop . Например, фара в Примере 1 выше имеет падение IR на 12,0 В. Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывающему ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления.Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию). В простой схеме (с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, поскольку PE = q Δ В , и через каждую из них протекает то же самое q . Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны.(См. Рисунок 2.)

    Рис. 2. Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

    Установление соединений: сохранение энергии

    В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму. Здесь о сохранении энергии свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму только с помощью резистора. Мы обнаружим, что сохранение энергии имеет другие важные применения в схемах и является мощным инструментом анализа схем.

    Исследования PhET: закон Ома

    Посмотрите, как уравнение закона Ома соотносится с простой схемой. Отрегулируйте напряжение и сопротивление и посмотрите, как изменяется ток по закону Ома. Размеры символов в уравнении изменяются в соответствии с принципиальной схемой.

    Щелкните, чтобы запустить моделирование.

    Сводка раздела

    • Простая схема — это схема , в которой есть один источник напряжения и одно сопротивление.
    • Одно из утверждений закона Ома дает соотношение между током I , напряжением В и сопротивлением R в простой схеме как [латекс] I = \ frac {V} {R} \\ [/ latex] .
    • Сопротивление выражается в единицах Ом (Ом), относящихся к вольтам и амперам на 1 Ом = 1 В / А.
    • Имеется падение напряжения или IR на резисторе, вызванное протекающим через него током, равным В = IR .

    Концептуальные вопросы

    1. Падение напряжения IR на резисторе означает изменение потенциала или напряжения на резисторе.Изменится ли ток при прохождении через резистор? Объяснять.
    2. Чем падение IR в резисторе похоже на падение давления в жидкости, протекающей по трубе?

    Задачи и упражнения

    1. Какой ток протекает через лампочку фонаря на 3,00 В, когда ее горячее сопротивление составляет 3,60 Ом?

    2. Вычислите эффективное сопротивление карманного калькулятора с батареей на 1,35 В, через которую протекает ток 0,200 мА.

    3.Каково эффективное сопротивление стартера автомобиля, когда через него проходит 150 А, когда автомобильный аккумулятор подает на двигатель 11,0 В?

    4. Сколько вольт подается для работы светового индикатора DVD-плеера с сопротивлением 140 Ом, если через него проходит 25,0 мА?

    5. (a) Найдите падение напряжения на удлинителе с сопротивлением 0,0600 Ом, через который проходит ток 5,00 А. (b) Более дешевый шнур использует более тонкую проволоку и имеет сопротивление 0.300 Ом. Какое в нем падение напряжения при протекании 5.00 А? (c) Почему напряжение на любом используемом приборе снижается на эту величину? Как это повлияет на прибор?

    6. ЛЭП подвешена к металлическим опорам со стеклянными изоляторами, имеющими сопротивление 1,00 × 10 9 Ом. Какой ток протекает через изолятор при напряжении 200 кВ? (Некоторые линии высокого напряжения — постоянного тока.)

    Глоссарий

    Закон Ома:
    — эмпирическое соотношение, указывающее, что ток I пропорционален разности потенциалов В , В ; его часто записывают как I = V / R , где R — это сопротивление
    сопротивление:
    электрическое свойство, препятствующее току; для омических материалов это отношение напряжения к току, R = V / I
    Ом:
    единица сопротивления, равная 1Ω = 1 В / А
    омическое:
    тип материала, для которого действует закон Ома
    простая схема:
    схема с одним источником напряжения и одним резистором

    Избранные решения проблем и упражнения

    1.0,833 А

    3. 7,33 × 10 −2 Ом

    5. (а) 0,300 В

    (б) 1,50 В

    (c) Напряжение, подаваемое на любой используемый прибор, снижается, поскольку общее падение напряжения от стены до конечной мощности прибора является фиксированным. Таким образом, если падение напряжения на удлинителе велико, падение напряжения на приборе значительно уменьшается, поэтому выходная мощность прибора может быть значительно уменьшена, что снижает способность прибора работать должным образом.

    резисторов последовательно и параллельно

    Резисторы серии

    Общее сопротивление в цепи с последовательно включенными резисторами равно сумме отдельных сопротивлений.

    Цели обучения

    Рассчитайте общее сопротивление в цепи с последовательно включенными резисторами

    Основные выводы

    Ключевые моменты
    • Одинаковый ток течет последовательно через каждый резистор.
    • Отдельные последовательно включенные резисторы не получают полное напряжение источника, а делят его.
    • Общее сопротивление в последовательной цепи равно сумме отдельных сопротивлений: [латекс] \ text {RN} (\ text {series}) = \ text {R} _1 + \ text {R} _2 + \ text {R} _3 +… + \ text {R} _ \ text {N} [/ latex].
    Ключевые термины
    • серия : ряд элементов, которые следуют одно за другим или связаны друг за другом.
    • сопротивление : Противодействие прохождению электрического тока через этот элемент.

    Обзор

    Большинство схем имеет более одного компонента, называемого резистором, который ограничивает поток заряда в цепи. Мера этого предела для потока заряда называется сопротивлением. Самыми простыми комбинациями резисторов являются последовательное и параллельное соединение. Общее сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения.

    Последовательные цепи : Краткое введение в анализ последовательных и последовательных цепей, включая закон Кирхгофа по току (KCL) и закон Кирхгофа по напряжению (KVL).

    Резисторы серии

    Резисторы

    включены последовательно всякий раз, когда поток заряда или ток должен проходить через компоненты последовательно.

    Резисторы в серии : Эти четыре резистора подключены последовательно, потому что, если бы ток подавался на один конец, он бы протекал через каждый резистор последовательно до конца.

    показывает резисторы, последовательно подключенные к источнику напряжения. Общее сопротивление в цепи равно сумме отдельных сопротивлений, поскольку ток должен последовательно проходить через каждый резистор.

    Резисторы, подключенные последовательно : три резистора, подключенные последовательно к батарее (слева), и эквивалентное одиночное или последовательное сопротивление (справа).

    Использование закона Ома для расчета изменений напряжения в резисторах серии

    В соответствии с законом Ома падение напряжения V на резисторе при протекании через него тока рассчитывается по формуле V = IR, где I — ток в амперах (A), а R — сопротивление в омах (Ω). .

    Таким образом, падение напряжения на R 1 равно V 1 = IR 1 , на R 2 равно V 2 = IR 2 , а на R 3 равно V 3 = IR 3 .Сумма напряжений будет равна: V = V 1 + V 2 + V 3 , исходя из сохранения энергии и заряда. Если подставить значения отдельных напряжений, получим:

    [латекс] \ text {V} = \ text {IR} _1 + \ text {IR} _2 + \ text {IR} _3 [/ latex]

    или

    [латекс] \ text {V} = \ text {I} (\ text {R} _1 + \ text {R} _2 + \ text {R} _3) [/ латекс]

    Это означает, что полное сопротивление в серии равно сумме отдельных сопротивлений. Следовательно, для каждой цепи с Н количество резисторов, включенных последовательно:

    [латекс] \ text {RN} (\ text {series}) = \ text {R} _1 + \ text {R} _2 + \ text {R} _3 +… + \ text {R} _ \ text {N }.[/ латекс]

    Поскольку весь ток должен проходить через каждый резистор, он испытывает сопротивление каждого, и последовательно соединенные сопротивления просто складываются.

    Поскольку напряжение и сопротивление имеют обратную зависимость, отдельные последовательно включенные резисторы не получают полное напряжение источника, а делят его. Об этом свидетельствует пример, когда две лампочки соединены в последовательную цепь с аккумулятором. В простой схеме, состоящей из одной батареи 1,5 В и одной лампочки, падение напряжения на лампочке будет равно 1.5V через него. Однако, если бы две лампочки были соединены последовательно с одной и той же батареей, на каждой из них было бы падение напряжения 1,5 В / 2 или 0,75 В. Это будет очевидно по яркости огней: каждая из двух последовательно соединенных лампочек будет в два раза слабее, чем одиночная лампочка. Следовательно, резисторы, соединенные последовательно, потребляют такое же количество энергии, как и один резистор, но эта энергия распределяется между резисторами в зависимости от их сопротивлений.

    Параллельные резисторы

    Общее сопротивление в параллельной цепи равно сумме обратных сопротивлений каждого отдельного сопротивления.

    Цели обучения

    Рассчитайте общее сопротивление в цепи с параллельно включенными резисторами

    Основные выводы

    Ключевые моменты
    • Общее сопротивление в параллельной цепи меньше наименьшего из отдельных сопротивлений.
    • Каждый резистор, включенный параллельно, имеет то же напряжение, что и приложенный к нему источник (напряжение в параллельной цепи постоянно).
    • Параллельные резисторы не получают суммарный ток каждый; они делят его (ток зависит от номинала каждого резистора и общего количества резисторов в цепи).
    Ключевые термины
    • сопротивление : Противодействие прохождению электрического тока через этот элемент.
    • параллельно : Расположение электрических компонентов, при котором ток течет по двум или более путям.

    Обзор

    Резисторы в цепи могут быть включены последовательно или параллельно. Общее сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения.

    Параллельные схемы : Краткий обзор анализа параллельных цепей с использованием таблиц VIRP для студентов-физиков средней школы.

    Параллельные резисторы

    Резисторы

    включены параллельно, когда каждый резистор подключен непосредственно к источнику напряжения путем соединения проводов с незначительным сопротивлением. Таким образом, к каждому резистору приложено полное напряжение источника.

    Параллельное соединение резисторов : Параллельное соединение резисторов.

    Каждый резистор потребляет такой же ток, как если бы он был единственным резистором, подключенным к источнику напряжения. Это верно для схем в доме или квартире. Каждая розетка, подключенная к устройству («резистор»), может работать независимо, и ток не должен проходить через каждое устройство последовательно.

    Закон и параллельные резисторы

    На каждый резистор в цепи подается полное напряжение. Согласно закону Ома токи, протекающие через отдельные резисторы, равны [латекс] \ text {I} _1 = \ frac {\ text {V}} {\ text {R} _1} [/ latex], [latex] \ text {I} _2 = \ frac {\ text {V}} {\ text {R} _2} [/ latex] и [latex] \ text {I} _3 = \ frac {\ text {V}} {\ text {R} _3} [/ латекс].Сохранение заряда подразумевает, что полный ток является суммой этих токов: 90 · 109

    Параллельные резисторы : Три резистора, подключенные параллельно батарее, и эквивалентное одиночное или параллельное сопротивление.

    [латекс] \ text {I} = \ text {I} _1 + \ text {I} _2 + \ text {I} _3. [/ Latex]

    Подстановка выражений для отдельных токов дает:

    [латекс] \ text {I} = \ frac {\ text {V}} {\ text {R} _1} + \ frac {\ text {V}} {\ text {R} _2} + \ frac {\ текст {V}} {\ text {R} _3} [/ latex]

    или

    [латекс] \ text {I} = \ text {V} (\ frac {1} {\ text {R} _1} + \ frac {1} {\ text {R} _2} + \ frac {1} { \ text {R} _3}) [/ latex]

    Это означает, что полное сопротивление в параллельной цепи равно сумме обратных сопротивлений каждого отдельного сопротивления.Следовательно, для каждой цепи с числом [latex] \ text {n} [/ latex] или параллельно подключенных резисторов

    [латекс] \ text {R} _ {\ text {n} \; (\ text {parallel})} = \ frac {1} {\ text {R} _1} + \ frac {1} {\ text { R} _2} + \ frac {1} {\ text {R} _3}… + \ frac {1} {\ text {R} _ \ text {n}}. [/ Latex]

    Это соотношение приводит к общему сопротивлению, которое меньше наименьшего из отдельных сопротивлений. Когда резисторы подключены параллельно, от источника течет больше тока, чем протекает для любого из них по отдельности, поэтому общее сопротивление ниже.

    Каждый резистор, включенный параллельно, имеет такое же полное напряжение источника, как на него, но делит общий ток между ними. Примером может служить соединение двух лампочек в параллельную цепь с аккумулятором на 1,5 В. В последовательной цепи две лампочки будут вдвое менее тусклыми при подключении к одному источнику батареи. Однако, если бы две лампочки были подключены параллельно, они были бы столь же яркими, как если бы они были подключены к батарее по отдельности. Поскольку к обеим лампочкам подается одинаковое полное напряжение, батарея также разряжается быстрее, поскольку она по существу обеспечивает полную энергию для обеих лампочек.В последовательной цепи батарея будет работать столько же, сколько и с одной лампочкой, только тогда яркость будет разделена между лампочками.

    Комбинированные схемы

    Комбинированная цепь может быть разбита на аналогичные части, которые работают последовательно или параллельно.

    Цели обучения

    Описать расположение резисторов в комбинированной цепи и его практическое значение

    Основные выводы

    Ключевые моменты
    • Более сложные соединения резисторов иногда представляют собой просто комбинации последовательного и параллельного.
    • Различные части комбинированной схемы могут быть идентифицированы как последовательные или параллельные, уменьшены до их эквивалентов, а затем уменьшены до тех пор, пока не останется единственное сопротивление.
    • Сопротивление в проводах снижает ток и мощность, подаваемые на резистор. Если сопротивление в проводах относительно велико, как в изношенном (или очень длинном) удлинителе, то эти потери могут быть значительными и повлиять на выходную мощность в бытовые приборы.
    Ключевые термины
    • серия : ряд элементов, которые следуют одно за другим или связаны друг за другом.
    • параллельно : Расположение электрических компонентов, при котором ток течет по двум или более путям.
    • Комбинированная схема : электрическая цепь, содержащая несколько резисторов, которые соединены как последовательным, так и параллельным соединением.

    Комбинированные схемы

    Более сложные соединения резисторов иногда представляют собой просто комбинации последовательного и параллельного. Это часто встречается, особенно если учитывать сопротивление проводов.В этом случае сопротивление провода включено последовательно с другими сопротивлениями, включенными параллельно.

    Комбинированная цепь может быть разбита на аналогичные части, которые являются последовательными или параллельными, как показано на схеме. На рисунке общее сопротивление может быть вычислено путем соединения трех резисторов друг с другом последовательно или параллельно. R 1 и R 2 соединены параллельно по отношению друг к другу, поэтому мы знаем, что для этого подмножества сопротивление, обратное сопротивлению, будет равно:

    Сеть резисторов : В этой комбинированной схеме цепь может быть разбита на последовательный компонент и параллельный компонент.

    Комбинированные схемы : Два параллельно включенных резистора с одним резистором.

    [латекс] \ frac {1} {\ text {R} _1} + \ frac {1} {\ text {R} _2} [/ latex] или [латекс] \ frac {\ text {R} _1 \ text {R} _2} {\ text {R} _1 + \ text {R} _2} [/ latex]

    R 3 соединен последовательно с как R 1 , так и R 2 , поэтому сопротивление будет рассчитываться как:

    [латекс] \ text {R} = \ frac {\ text {R} _1 \ text {R} _2} {\ text {R} _1 + \ text {R} _2} + \ text {R} _3 [/ latex ]

    Сложные комбинированные схемы

    Для более сложных комбинированных схем различные части могут быть идентифицированы как последовательные или параллельные, уменьшены до их эквивалентов, а затем уменьшены до тех пор, пока не останется единственное сопротивление, как показано на.На этом рисунке комбинация из семи резисторов была идентифицирована как включенные последовательно или параллельно. На исходном изображении две обведенные кружком секции показывают резисторы, включенные параллельно.

    Сокращение комбинированной схемы : Эта комбинация из семи резисторов имеет как последовательные, так и параллельные части. Каждое из них идентифицируется и приводится к эквивалентному сопротивлению, а затем уменьшается до тех пор, пока не будет достигнуто единичное эквивалентное сопротивление.

    Уменьшение этих параллельных резисторов до одного значения R позволяет нам визуализировать схему в более упрощенном виде.На верхнем правом изображении мы видим, что обведенная кружком часть содержит два последовательно соединенных резистора. Мы можем дополнительно уменьшить это до другого значения R, добавив их. Следующий шаг показывает, что два обведенных резистора включены параллельно. Уменьшение тех бликов, что последние два соединены последовательно и, таким образом, могут быть уменьшены до одного значения сопротивления для всей цепи.

    Одним из практических следствий комбинированной схемы является то, что сопротивление в проводах снижает ток и мощность, подаваемую на резистор.Комбинированная цепь может быть преобразована в последовательную цепь на основе понимания эквивалентного сопротивления параллельных ветвей комбинированной цепи. Последовательная цепь может использоваться для определения общего сопротивления цепи. По сути, сопротивление провода является последовательным с резистором. Таким образом, увеличивается общее сопротивление и уменьшается ток. Если сопротивление провода относительно велико, как в изношенном (или очень длинном) удлинителе, то эти потери могут быть значительными. Если потребляется большой ток, падение ИК-излучения в проводах также может быть значительным.

    Зарядка аккумулятора: последовательные и параллельные ЭДС

    При последовательном включении источников напряжения их ЭДС и внутренние сопротивления складываются; параллельно они остаются прежними.

    Цели обучения

    Сравните сопротивления и электродвижущие силы для источников напряжения, подключенных с одинаковой и противоположной полярностью, последовательно и параллельно

    Основные выводы

    Ключевые моменты
    • ЭДС, соединенные последовательно с одинаковой полярностью, являются аддитивными и приводят к более высокой общей ЭДС.
    • Две ЭДС, соединенные последовательно с противоположной полярностью, имеют общую ЭДС, равную разнице между ними, и могут использоваться для зарядки источника более низкого напряжения.
    • Два источника напряжения с идентичными ЭДС, соединенные параллельно, имеют чистую ЭДС, эквивалентную одному источнику ЭДС, однако чистое внутреннее сопротивление меньше и, следовательно, дает более высокий ток.
    Ключевые термины
    • параллельно : Расположение электрических компонентов, при котором ток течет по двум или более путям.
    • электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
    • серия : ряд вещей, которые следуют одна за другой или связаны одна за другой.

    Когда используется более одного источника напряжения, они могут быть подключены последовательно или параллельно, аналогично резисторам в цепи.Когда источники напряжения включены последовательно в одном направлении, их внутренние сопротивления складываются, а их электродвижущая сила или ЭДС складываются алгебраически. Эти типы источников напряжения распространены в фонариках, игрушках и других приборах. Обычно ячейки включены последовательно, чтобы обеспечить большую суммарную ЭДС.

    Фонарик и лампочка : Последовательное соединение двух источников напряжения в одном направлении. Эта схема представляет собой фонарик с двумя последовательно включенными ячейками (источниками напряжения) и одной лампочкой (сопротивление нагрузки).

    Батарея — это соединение нескольких гальванических элементов. Однако недостатком такого последовательного соединения ячеек является то, что их внутреннее сопротивление увеличивается. Иногда это может быть проблематично. Например, если вы поместите в машину две батареи на 6 В вместо обычной батареи на 12 В, вы добавите как ЭДС, так и внутреннее сопротивление каждой батареи. Таким образом, у вас будет такая же ЭДС 12 В, хотя внутреннее сопротивление тогда будет удвоено, что вызовет у вас проблемы, когда вы захотите запустить двигатель.

    Но если ячейки противостоят друг другу — например, когда одна вставляется в прибор задом наперед, — общая ЭДС меньше, так как это алгебраическая сумма отдельных ЭДС. Когда он перевернут, он создает ЭДС, которая противодействует другой, и приводит к разнице между двумя источниками напряжения.

    Зарядное устройство : представляет два источника напряжения, соединенных последовательно с противоположными ЭДС. Ток течет в направлении большей ЭДС и ограничивается суммой внутренних сопротивлений.(Обратите внимание, что каждая ЭДС представлена ​​на рисунке буквой E.) Зарядное устройство, подключенное к аккумулятору, является примером такого подключения. Зарядное устройство должно иметь большую ЭДС, чем батарея, чтобы через него протекал обратный ток.

    Когда два источника напряжения с идентичными ЭДС соединены параллельно и также подключены к сопротивлению нагрузки, общая ЭДС равна индивидуальной ЭДС. Но общее внутреннее сопротивление уменьшается, поскольку внутренние сопротивления параллельны. Таким образом, параллельное соединение может производить больший ток.

    Два идентичных ЭДС : Два источника напряжения с одинаковыми ЭДС (каждый помечен буквой E), соединенные параллельно, создают одинаковую ЭДС, но имеют меньшее общее внутреннее сопротивление, чем отдельные источники. Параллельные комбинации часто используются для подачи большего тока.

    ЭДС и напряжение на клеммах

    Выходное напряжение или напряжение на клеммах источника напряжения, такого как аккумулятор, зависит от его электродвижущей силы и внутреннего сопротивления.

    Цели обучения

    Выразите взаимосвязь между электродвижущей силой и напряжением на клеммах в форме уравнения

    Основные выводы

    Ключевые моменты
    • Электродвижущая сила (ЭДС) — это разность потенциалов источника при отсутствии тока.
    • Напряжение на клеммах — это выходное напряжение устройства, измеренное на его клеммах.
    • Напряжение на клеммах рассчитывается по формуле V = ЭДС — Ir.
    Ключевые термины
    • электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
    • напряжение на клеммах : Выходное напряжение устройства, измеренное на его клеммах.
    • разность потенциалов : разница в потенциальной энергии между двумя точками в электрическом поле; разница в заряде между двумя точками в электрической цепи; Напряжение.

    Когда вы забываете выключить автомобильные фары, они постепенно тускнеют по мере разрядки аккумулятора. Почему они просто не мигают, когда батарея разряжена? Их постепенное затемнение означает, что выходное напряжение батареи уменьшается по мере разряда батареи. Причина снижения выходного напряжения для разряженных или перегруженных батарей заключается в том, что все источники напряжения состоят из двух основных частей — источника электрической энергии и внутреннего сопротивления.

    Электродвижущая сила

    Все источники напряжения создают разность потенциалов и могут подавать ток, если подключены к сопротивлению. В небольшом масштабе разность потенциалов создает электрическое поле, которое воздействует на заряды, вызывая ток. Мы называем эту разность потенциалов электродвижущей силой (сокращенно ЭДС). ЭДС — это вообще не сила; это особый тип разности потенциалов источника при отсутствии тока. Единицы измерения ЭДС — вольты.

    Электродвижущая сила напрямую связана с источником разности потенциалов, например с конкретной комбинацией химических веществ в батарее.Однако при протекании тока ЭДС отличается от выходного напряжения устройства. Напряжение на выводах батареи, например, меньше, чем ЭДС, когда батарея подает ток, и оно падает дальше, когда батарея разряжается или разряжается. Однако, если выходное напряжение устройства можно измерить без потребления тока, то выходное напряжение будет равно ЭДС (даже для сильно разряженной батареи).

    Напряжение на клеммах

    представляет схематическое изображение источника напряжения.Выходное напряжение устройства измеряется на его выводах и называется напряжением на выводах В . Напряжение на клеммах определяется уравнением:

    Схематическое изображение источника напряжения : Любой источник напряжения (в данном случае углеродно-цинковый сухой элемент) имеет ЭДС, связанную с источником разности потенциалов, и внутреннее сопротивление r, связанное с его конструкцией. (Обратите внимание, что сценарий E означает ЭДС.) Также показаны выходные клеммы, на которых измеряется напряжение на клеммах V.Поскольку V = ЭДС-Ir, напряжение на клеммах равно ЭДС, только если ток не течет.

    [латекс] \ text {V} = \ text {emf} — \ text {Ir} [/ latex],

    где r — внутреннее сопротивление, а I — ток, протекающий во время измерения.

    I является положительным, если ток течет от положительного вывода. Чем больше ток, тем меньше напряжение на клеммах. Точно так же верно, что чем больше внутреннее сопротивление, тем меньше напряжение на клеммах.

    Калькулятор параллельных резисторов

    R1 + R2 = эквивалентный резистор R схема сопротивления, эквивалентная общая сумма резисторов, упрощенная комбинация = параллельная

    параллельная калькуляция резисторов R1 + R2 = эквивалентный резистор R, эквивалентная схема сопротивления, эквивалентная общая схема поиска резисторов, упрощенная комбинация = параллельная — sengpielaudio Sengpiel Berlin


    R итого Формула:
    R всего = R1 × R2 / (R1 + R2)

    Введите два значения резистора , будет рассчитано третье значение параллельной цепи.
    Вы даже можете ввести общее сопротивление R общее и одно известное сопротивление R 1 или R 2 .

    Формула (уравнение) для расчета двух сопротивлений R 1 и R 2 , соединенных параллельно:

    Расчет необходимого параллельного резистора R 2 , при R 1 и общее сопротивление R дается всего :

    Решение формулы R итого = ( R 1 × R 2 ) / ( R 1 + R 2 ) для R 1 Первый шаг — очистить все дроби путем умножения на наименьшее значение
    . общий знаменатель, то есть R t × R 1 × R 2 … итого получаем:
    1/ R итого = 1/ R 1 + 1/ R 2
    R итого × R 1 × R 2 [1/ R итого = 1/ R 1 + 1/ R 2 ]
    R 1 × R 2 6 = всего × R 2 + R итого × R 1 затем соберите члены с помощью R 1 и решите
    R 1 × R 32 — R всего × R 1 = R всего × R 2
    R 1 ( R 2

    3 — R

    3 всего) = R 2 × R итого 9033 2
    Последний шаг:
    R 1 = R 2 × R всего / (

    R всего )
    или:
    R 2 = R 1 × R 1 R всего )

    Примечание: Этот калькулятор также может решать другие математические задачи.Расчет резисторов параллельно
    точно так же, как вычисления, необходимые для параллельных катушек индуктивности или для конденсаторов, включенных последовательно.

    Два резистора, включенных параллельно, и результирующее общее сопротивление: Два одинаковых значения,
    также покажите уравнение, что результаты всегда равны половине. Это упрощает работу, когда
    проектирование схем или прототипирование. С кепками всегда вдвое больше, потом с кепками всего
    просто сложите параллельно.

    • Сопротивления поиска R 1 и R 2 , когда заданное сопротивление (эквивалентное сопротивление) известно •

    Расчет: пары резисторов — вычислитель с обратной конструкцией
    Поиск R 1 и R 2 с известным целевым сопротивлением

    ● Рассчитать несколько резисторов параллельно ●

    Этот калькулятор определяет сопротивление от до 10 параллельно включенных резисторов .
    Введите сопротивления в поля ниже и, когда все значения будут введены,
    нажмите кнопку «рассчитать», и результат появится в поле под этой кнопкой.
    В качестве теста, если мы введем сопротивления 4, 6 и 12 Ом, ответ должен быть 2 Ом.
    Примечание. При снятии флажков вручную сохраненные значения не сбрасываются. Воспользуйтесь «сбросом».

    Закон Ома — калькулятор и формулы

    Два резистора, включенных параллельно, и результирующее общее сопротивление
    Сопротивление в диапазоне от 1 Ом до 100 Ом

    R2 R1
    1 1.5 2,2 3,3 4,7 6,8 10 15 22 33 47 68
    1 0,5 0,6 0,69 0.77 0,83 0,87 0,91 0,93 0,95 0,97 0,98 0,99
    1,5 0,6 0,75 0,89 1.03 1,14 1,22 1,30 1,36 1,40 1,43 1.45 1,46
    2,2 0,69 0,89 1,1 1,32 1,50 1,66 1,82 1,92 2,0 2,06 2,10 2,13
    3,3 0,77 1.03 1,32 1.65 1,94 2,22 2,48 2,70 2,87 3,00 3,08 3,14
    4,7 0,83 1,14 1,50 1,94 2,35 2,78 3,20 3,58 3,87 4,12 4.27 4,39
    6,8 0,87 1,22 1,66 2,22 2,78 3,40 4,05 4,68 5,19 5,64 5,94 6,18
    10 0,91 1,30 1,82 2.48 3,20 4,05 5,0 6,0 6,9 7,7 8,3 8,7
    15 0,93 1,36 1,92 2,70 3,58 4,68 6,0 7,50 8,9 10,3 11,4 12.2
    22 0,95 1,40 2,00 2,87 3,87 5,19 6,9 8,9 11,0 13,2 15,0 16,6
    33 0,97 1,43 2,06 3,0 4.12 5,64 7,7 10,3 13,2 16,5 19,4 22,2
    47 0,98 1,45 2,1 3,08 4,27 5,94 8,3 11,4 15,0 19,4 23,5 27.8
    68 0,99 1,46 2,13 3,14 4,39 6,18 8,7 12,2 16,6 22,2 27,8 34,0

    Примечание: Этот калькулятор также может решать другие математические задачи. Расчет резисторов параллельно
    точно так же, как вычисления, необходимые для параллельных катушек индуктивности или для конденсаторов, включенных последовательно.

    Мощность, рассеиваемая в резисторе: P = В × I , P = В 2 / R , P = I R 2 × R

    Примечание: Для последовательно соединенных резисторов ток одинаков для каждого резистора,
    а для резисторов, включенных параллельно, напряжение одинаково для каждого резистора.

    Оставить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *