Регулятор тембра: Пассивные регуляторы тембра

Содержание

РЕГУЛЯТОР ТЕМБРА С ПСЕВДООБХОДОМ

Схем различных регуляторов тембра (РТ) много, но все они имеют свои недостатки. В этой статье хочется предложить несколько иной вариант РТ,  призванный устранить некоторые недостатки существующих РТ и поднять качество регулировки тембра в целом. Для начала давайте рассмотрим недостатки, как пишут, самого лучшего из РТ (дающего самые меньшие искажения) — пассивного РТ Баксандала (Джонса). Вот его схема, взятая из интернета (Рис.1):

Рисунок 1. Схема пассивного РТ Баксандала

Посмотрите – здесь в среднем положении резисторов-регуляторов НЧ и ВЧ – когда тембр не изменен — сигнал гасится в несколько раз резисторами и конденсаторами. То есть в целом выполняется не какая-либо коррекция, а простое линейное снижение амплитуды сигнала при участии конденсаторов. Это очень не хорошо, т.к. перезарядка обкладок конденсаторов вносит паразитные призвуки в сигнал (об этом много написано в интернете). Для качественного звука требуются дорогие аудиофильские конденсаторы. 

Вторым недостатком в среднем положении является некоторое искривление АЧХ теми же резисторами и конденсаторами. Нужны очень точные резисторы и конденсаторы. Но все равно абсолютной линейности АЧХ не получится.

Поэтому хорошо бы сделать так, чтобы в среднем положении регуляторов НЧ и ВЧ, конденсаторы полностью бы исключались из работы, а включались в работу постепенно, по мере поворота регуляторов к крайним положениям пропорционально величине изменения тембра. Таким образом в среднем положении регуляторов осуществлялся бы режим близкий к «Обходу» (как с помощью переключателя) — характеристика была бы без влияния конденсаторов на звук (без призвуков и нелинейности), а по мере изменения тембра, конденсаторы потихоньку включались бы в работу. Причем такой режим был бы более выгодным даже чем «Обход» с помощью переключателя – так как в положениях близких к средним задуманный РТ задействовал бы конденсаторы постепенно, а РТ Баксандала при выключении «Обхода» включает конденсаторы сразу «на полную». 

Третий недостаток пассивного РТ Баксандала — это не вполне корректное суммирование ветвей НЧ и ВЧ вблизи частоты разделения сигнала (~1000 Гц) – простое суммирование на резисторах. Хотя для точного суммирования необходимо было бы суммирование сигналов ветвей НЧ и ВЧ выполнять на инвертирующем входе ОУ. Об этом так же написано в интернете. Соответственно звуки в районе 1000 Гц несколько размываются. В этом смысле все многополосные эквалайзеры размывают уже несколько частот звукового диапазона, это уже хорошо слышно. Как правило все многополосные эквалайзеры хочется выключить и слушать без них. Правда есть активный РТ Баксандала (схемы в Интернете) – там суммирование ветвей НЧ и ВЧ выполняется уже на инвертирующем входе ОУ – это некоторый плюс.

Четвертый недостаток пассивного РТ баксандала — это зачастую сильные трески при вращении движков регулировочных резисторов. Трески эти обусловлены плохим контактом ползунка, вызванным неоправданно большим током через этот ползунок, так как он участвует и в делении сигнала в несколько раз при любых положениях и в самой регулировке. Было бы лучше, чтобы в среднем положении резистора ток через ползунок вообще бы не шел – то есть можно было бы, грубо говоря, подковырнуть чем-то ползунок и звук бы не изменился. Ну, а по мере вращения ползунка к краям, ток по ползунку увеличивался бы постепенно (примерно так, как описано выше про конденсаторы). В этом случае вероятность треска снизилась бы в десятки раз.

Еще одним свойством РТ Баксандала (думаю, что это то же недостаток) является тот факт, что вблизи частот раздела НЧ и ВЧ (рис. 2) при регулировке тембра происходит очень резкое (не плавное) изменение амплитуд сигнала со слишком большим перемещением по частотам. На мой взгляд на рис. 2 вблизи частот разделения просто какой-то хаос кривых АЧХ. От нуля идет резкий изгиб характеристики. Практически так и есть, а в литературе обычно приводятся слишком красивые кривые, скорее даже желаемые или теоретические. Было бы лучше иметь плавный отход от нуля.

Рис. 2.  Реальная характеристика пассивного РТ Баксандала, взятая из Интернета

Вот пожалуй это и все основные недостатки пассивного РТ Баксандала. Конечно, существует много схем активных РТ, в том числе и активный РТ того же Баксандала. Но везде пишут, что эти схемы дают звук похуже пассивного РТ. Мне кажется объяснить это отставание в качестве можно применением конденсаторов именно в обратной связи ОУ, когда микроискажение от конденсатора начинает циклически прокручиваться через обратную связь по нескольку раз — примерно как если смотреть в два направленных друг на друга зеркала – получаем бесконечное количество отражений. Думаю, можно утверждать, что конденсаторы при прямом прохождении сигнала (пассивном) меньше портят звук, чем находясь в обратной связи усилителя. Так что если стремиться к высококачественному РТ, то вероятно лучше – пассивному. Ну а в обратных связях ОУ применять только постоянные резисторы.

Вот и встала задача сделать РТ с отсутствием указанных выше недостатков. Но в основном он должен быть таким, чтобы в среднем положении регуляторов конденсаторы полностью исключались бы из работы и ток на ползунках в среднем положении был бы нулевым. Это – главное. Ну и, конечно, РТ должен быть пассивным. В целом задача решена. Так что читаем статью дальше и наслаждаемся.

Давайте посмотрим на схему варианта РТ, призванного снизить указанные выше недостатки – рис.3:   

Рис. 3.  Схема регулятора тембра (РТ) с псевдообходом

«С псевдообходом» этот РТ назван потому, что в среднем положении регулировочных резисторов в цепи прохождения сигнала нет ни одного конденсатора и участков резистивных дорожек переменных резисторов. Это почти то же, что и через контакты переключателя «Обход», но все-таки не переключатель – вот и «псевдо». В основе работы схемы лежит суммирование на резистивной дорожке регулировочных резисторов R3 и R4 рис.3 противофазных сигналов. На верхние выводы идет сигнал с А1-1 в фазе с входным, а на нижние выводы сигнал c А1-2 противофазный. В результате в среднем положении регуляторов (резистивной дорожки) сигналы суммируются  и взаимно уничтожаются. На ползунке в среднем положении сигнал становятся равными нулю. 

Благодаря этому нулю нет никакой добавки НЧ или ВЧ в чистый сигнал, который уже идет на инвертирующий смеситель А3 (точку «Е») через R7. Ни конденсаторы, ни переменные резисторы не принимают участие в прохождении сигнала. Ну а при отклонении ползунка регулировочных резисторов от среднего положения, в чистый сигнал с R7 добавляются или вычитаются сигналы с фильтров ВЧ и НЧ (с резисторов R8 и R9). В результате тембр изменяется. Хотя в обратной связи ОУ есть конденсаторы С2, С9, но они работают на частотах значительно выше звуковых – для устранения возможного самовозбуждения и отразиться на звуковых частотах никак не могут.

Данный РТ имеет интересную особенность – средняя точка регулировочных резисторов – обычно обозначаемая «0» или «Обход» или «Defeat» или «System direct» или «Direct tone» находится не в середине резистивной дорожки резисторов регуляторов тембра, а значительно смещена влево. Положение «0» показано на рис. 4. Это обусловлено тем, что вычитание того же числа в большей степени изменяет относительный результат, чем суммирование. Приходится противофазный сигнал при подаче на регулировочные резисторы делать примерно 0,4 от фазного. Только тогда регулировки в + и в – будут одинаковы (в децибелах) относительно входного сигнала.

Рис. 4.  Место нулевой точки (Обхода) на регулировочных резисторах

Важным свойством данного РТ, является то, что он не имеет завала частот на самых краях звукового диапазона (30 Гц и 16 кГц) – рисунок 5, особенно по сравнению с РТ на основе гираторов или колебательных контуров. 

Рис. 5. Практическая характеристика регулятора тембра (РТ) с псевдообходом

Здесь характеристика НЧ плавная от нуля до предела слышимости (~30 Гц), а у других регуляторов ниже 100 Гц усиление может падать. Примерно та же ситуация и с ВЧ – здесь плавная вогнутая кривая идет за частоты предела слышимости. На обычных РТ характеристика горбатая с завалом частот на краях звукового диапазона (после 60 … 100 Гц). Горбатость — это очень прискорбный факт, приводящий к тому, что часто на низких частотах можно услышать бубнение и гул, а на высоких частотах – металлический призвук. Для правильного восприятия звука горбы не желательны. В интернете много графиков РТ с горбатостью. На рис.2 один из них.

Так для высококачественной аппаратуры горбы вообще недопустимы, а, вот для простенькой аппаратуры с небольшими звуковыми колоночками – наоборот хорошо – динамики не будут перегружаться глубокими НЧ, ну и не требуются фильтры, отсекающие глубокие НЧ в некоторых устройствах. Так что предлагаемый РТ подходит в основном для относительно мощных качественных систем с большими колонками, способными воспроизводить глубокий бас. Ну и для качественных наушников. Тогда можно реально насладиться полным и ровным диапазоном звуковых частот. А для маленьких колоночек – пожалуйста РТ Баксандала или те, что с гираторами, индуктивностями или многополосные. 

Наличие резисторов R5, R8 на путях прохождения сигналов с ползунков переменных резисторов гарантирует полное отсутствие потрескиваний при вращении и работе. Здесь важно отметить, что, если, при вращении регулятора своего РТ на своем усилителе Вы услышали потрескивания, значит все очень плохо. Значит и при неподвижном регуляторе под ползунком происходят микро неконтакты или микро изменения сопротивления резистора – звук портится. Надо как — то снижать ток через ползунок. В предлагаемом регуляторе такая плохая ситуация исключена.

Другой особенностью данного РТ является то, что практически сложно получить одинаковую глубину регулировки в + и — более ±10 дБ. Но та же практика показала, что большая глубина регулировки и не требуется. Современные фонограммы достаточно качественные и нечего там значительно регулировать. Здесь выбран диапазон около ±8 дБ, что вполне достаточно. Этот диапазон регулировки измерен на частотах 30 Гц и 16 кГц.

Теперь давайте посмотрим на практическую реализацию опытного варианта предлагаемого РТ, на котором и отрабатывался окончательный вариант схемы. Сразу была задумка сделать РТ вместе с усилителем для наушников (УН) – чтобы все изменения элементов немедленно и максимально хорошо слышать. А так же оценить, возможно ли качественное питание РТ и УН от простого однополярного импульсного блока питания. Вот какое устройство получилось (Рис.6).

Рис. 6. Готовое устройство регулятора тембра (РТ) и усилителя наушников (УН)

На рис. 6 фото собранного устройства РТ + УН. Слева – направо: Гнездо подвода однополярного питания 24 В; фильтр-формирователь напряжения питания; регулятор громкости; транзисторы с ОУ УН; конденсаторы питания УН; гнезда входа-выхода УН и входа в РТ; схема РТ; резисторы-регуляторы тембра и выходные гнезда РТ. Конденсаторы поставлены довольно больших номиналов, т.к. формируют среднюю точку «0» питания, т.е. +12 В и – 12 В. В этом же формировании участвуют и стабилитроны с резисторами (слева).

Все радиодетали среднего качества – не аудиофильские. Разводка платы выполнена в соответствии с рекомендациями статьи «Разводка земли методом Серебряного веера» Волкова И. То есть в одной точке сосредоточены входные гнезда, выходные гнезда, конденсаторы питания, все земляные выводы элементов. Ну и выходные транзисторы «сидят» непосредственно на своих конденсаторах. Каждому транзистору – свой конденсатор. Правда эта точка имеет вид большой кляксы, но по-другому и не сделаешь. У меня именно такая разводка уже неоднократно показывала наилучшие результаты. Вид на печатную разводку платы – рис. 7, 8. Изготовлена по-старинке с помощью рейсфедера, лака для ногтей и хлорного железа. Плата опытная.

Рис. 7  Вид на лицевую сторону платы

Рис. 8.  Вид на тыльную сторону платы

На рис. 9 показано как устройство настраивалось. УН сразу показал отличную работу. Схему давать смысла нет. Это УНЧ Рода Элиота. Подобных схем много в Интернете. Возможно эта схема не самая лучшая. Здесь ОУ и два транзистора симметрично эмиттерными повторителями. Нагрев транзисторов средний, радиаторы не нужны. Регулятор громкости поставлен в обратной связи. Никаких признаков самовозбуждения или искажений или фона мои уши не отметили, а слушал долго. Наушники были разные, R от 22 до 60 Ом. Думаю, из рис. 10 схема УН в общем понятна. 

Рис. 9.  Настройка устройства

Жалко, что у меня нет специальных приборов для измерений искажений и АЧХ, но, думаю, цифры были бы неплохие как у РТ так и у УН. 

Рис. 10.  Вид на усилитель для наушников (УН) устройства

Так же не было никаких отрицательных моментов при применении импульсного питания и того, что это питание однополярное. Сам сетевой блок питания с Алиэкспресса, регулируемый до 24 В, что очень хорошо – не надо делать самому блок питания. Как ни пытался услышать или измерить какие-либо недостатки такого питания – не смог. Главное – было четко организовать среднюю точку, становящуюся нулевой – чтобы относительно этой нулевой точки не было колебаний напряжений + 12 В и – 12 В. Вот такой получился формирователь нуля и одновременно фильтр импульсных помех от блока питания — рис. 11.

Рис 11.  Фильтр-формирователь напряжения питания

Все фильтры-дроссели (L1… L51…, рис. 3, 11)  поставил какие были чисто интуитивно, без расчетов, которых просто не знаю. Откуда выпаяны не помню. В целом никакой разницы с питанием от сетевого трансформатора (50 Гц) не выявил. Возможно от самого блока питания 24 В есть помехи в эфир – не проверял, но они никак не проявлялись. По всей видимости можно было и не ставить дроссели L53, L54 с конденсаторами С53, С54 (рис. 11) – вряд ли им остается что-либо фильтровать. Положение нулевой точки задается на вполне достаточном уровне стабилитронами D51, D52 с резисторами.

Несколько отвлекаясь от темы, скажу, что пытался «отвязаться» от потенциала сети 220 В различными фильтрами – ничего не получилось. Общий потенциал сети так и проходит на устройство, видимо, несколько портя звук. Обидно – хоть от аккумулятора питай. Отрицательное действие потенциала сети выражается в том, что если отключить межблочный кабель от источника сигнала, то резко возрастает фон и разные помехи. Но если при этом отключить штекер питания, то фон в десятки раз снижается (пока держат конденсаторы).

Вот и надо добиться того, чтобы фон не появлялся и при подключении штекера питания. Как это сделать не ясно, но если кто-то смог это сделать — просьба написать. Думаю, что этот вопрос в десятки раз более важный, чем сотни раз обсуждать какая схема УНЧ лучше или правильней, какие конденсаторы лучше и т.п. Ну и кто знает как работают дорогие аудиофильские сетевые кабели – просьба написать.

Очень удобно для настройки РТ брать сигнал звуковых частот со смартфона. Программ генераторов НЧ в интернете много. В этом случае нет никакой привязки к потенциалу источника звука, что очень хорошо.

Интересно проявили себя микросхемы. Если менять по одной – звук на слух не меняется. Но если менять одновременно все четыре микросхемы, то ясно чувствуется разница в звучании. NJM4558, -4556 дают отвратительное звучание. TL072 чуть получше. NE5532 еще лучше, но все эти микросхемы слушать тяжело. Более-менее ровный и качественный звук дают NJM4580, но и эту микросхему лучше не использовать.

Совсем другое дело ОУ LM4562 – самый качественный звук из имеющихся у меня ОУ. Звук явно более чистый. Но эти ОУ и подороже. Слушая их даже не верится, что может быть ОУ с еще лучшим звуком, да и представляется, что и незачем более лучший ОУ, ведь даже с этой микросхемой все упирается в качество фонограммы. У меня из сотни дисков СД только 3-4 % обладают приемлемым для оценки аппаратуры качеством. Все остальные СД имеют грязь. И где брать качественные СД? В Интернете во Флаке ничего качественного не слышал. Кроме самого звука вторым критерием качества, видимо, является правильная передача пространства. Например в начале песни «Зима» Ю. Лозы звук поземки на LM4562 слышится ниже подбородка – можно представить что поземка под ногами. Здорово слушается, очень красиво. Другие микросхемы дают звук поземки где-то под носом – уже не то. Так что в предлагаемом РТ ОУ рекомендую только LM4562. Этим методом можно проверять и наушники. Отбраковка наушников очень большая.

Особых требований к переменным резисторам нет. Те, что недорогие с Алиэкспресса вполне достаточны. Обусловлено это тем, что в среднем положении резистивный слой и бегунок вообще не участвуют в передаче сигнала. Характеристика переменных резисторов безразлична, так как глубина регулировки тембра небольшая. Приводить типы использованных резисторов и конденсаторов нет смысла – все они б/у среднего качества, но чем качественнее Вы примените свои детали, тем, видимо, будет лучше. О качестве радиоэлементов много написано в Интернете – тут я не советчик. Но именно дорогие аудиофильские детали не требуются. Этим схема и хороша. Вероятно даже применение SMD компонентов в простых устройствах будет оправдано именно в данной схеме. Приводить печатную плату то же нет смысла – ведь РТ вставляется внутрь устройства по месту. Это место и определяет компановку, а из фотографий разводка предлагаемой платы итак ясна.  

Рис. 12. Вид на монтаж радиоэлементов регулятора тембра (РТ)

Рис. 13. Вид на монтаж радиоэлементов РТ – 2

Маленькие индуктивности развязки по питанию микросхем (L1… L4, рис. 3, 11) поставлены исходя из единственного условия (их номинал мне даже неизвестен) – минимального сопротивления, чтобы не терять напряжение питания (здесь 0,2 Ома). То есть чтобы было минимальное падение напряжения на этих индуктивностях. Ведь питание ±12 В снижать-то нежелательно. По этой же причине не поставлены последовательные стабилизаторы напряжения – на них будет большое падение напряжения и получится в лучшем случае ±10 В. А это маловато для микросхем. Поэтому точка нуля питания жестко стабилизируется стабилитронами D1, D2 с резисторами R51,  R52 (параллельно питанию (рис.11). В процессе работы они потребляют приличный ток, греются. Но зато нет никакого падения напряжения, как было бы на последовательных стабилизаторах.

И еще, в этом случае в устройстве пришлось поставить несколько завышенные емкости. Если питание было бы трехпроводное (- 12 В, 0, + 12 В) и хорошо стабилизированное, то емкости на микросхемах (1000 мкФ) можно значительно уменьшить. Важно отметить, что иногда в статьях пишут, о необходимости соединять емкостью вывод + и – питания микросхемы. Этого делать нельзя. Только на землю и + и – через свой конденсатор. Естественно электролитический конденсатор должен быть в параллели с пленочным или керамическим. Ну и рекомендуют в фильтрах для импульсных блоков питания ставить параллельно керамические и пленочные конденсаторы (как на рис.11).

Рис. 14. Проверка РТ на звуковых колонках через усилитель

На рис. 14 – фото проверки РТ на колонках через усилитель. Собственно это – самое главное. Можно сравнить со штатным РТ самого усилителя. И что в результате? Сразу отметил, что очень низких частот стало больше и ВЧ чуть другие. Но, что самое главное – это низкое качество звука ресивера по сравнению с прослушиванием в наушниках. Так что тестирование стало совсем не корректным. Надо ресивер покачественнее. Хотя много лет назад звук именно этого Грюндика был явно лучше аналогичных Пионеров, Техниксов … Сравнивали. Но зато в наушниках звучание предлагаемого РТ + УН обалденное. Значительно лучше, даже на порядок и более лучше, чем если брать сигнал с лазерного проигрывателя или усилителя сразу на наушники с выхода собственно на наушники. Редко мне приходилось слушать что-либо более качественное, чем предлагаемый РТ + УН. Интересно отметить, что вполне неплохой звук дает лазерный проигрыватель автомагнитолы JVC. Ее удобно носить туда-сюда. Да и личные уши уже «настроены» на именно этот звук для лучших сравнений. Сам сигнал в магнитоле вывел непосредственно с ЦАП, ну и заменил NJM4580 на LM4562.

Конечно, хорошо бы сравнить чисто два РТ, находящихся рядом – Баксандала и предлагаемый. Но делать опытный РТ Баксандала уже не хочется. За свою жизнь мне пришлось спаять много разных РТ и могу четко сказать – предлагаемый получше. Но для своих задач – только для немаленьких колонок и качественных наушников.

От себя хочется сказать: уверен, что тот, кто повторит предлагаемый РТ тот будет очень доволен и еще много раз будет делать такие РТ. Все указанные выше недостатки РТ Баксандала и других РТ полностью устранены. Кроме того звук предлагаемого РТ получается совершенно естественным и правильным. В других же РТ, например с обратными связями не удается даже толком уменьшить глубину регулировки – звук неестественный, только очень глубокая регулировка дает звук естественный, но глубокая регулировка не нужна на слух и создает новые проблемы. 

Теперь несколько слов о влиянии элементов на звук предлагаемого РТ (рис.3). Емкость С8 отвечает за горбатость характеристики НЧ. Если колоночки небольшие, то эту емкость необходимо уменьшить. Например до 0,1 мк – очень низких частот поуменьшится. А если колонки огромные, усилитель мощный, то можно и добавить емкости до 0,22 мк – тогда НЧ будут еще более глубокие и обволакивающие. Емкость С7 определяет наклон характеристики ВЧ, но вряд ли придется корректировать эту емкость – она оптимальна и практически не зависит от размеров колонок. Увеличение сопротивления резистора R7 увеличит глубину регулировки тембра. Увеличение номинала резистора R2 увеличит глубину регулировки НЧ и ВЧ только в « — «. Резистор R6 нужен для уравнивания пределов регулировки НЧ и ВЧ. Резисторы R5 и R9 по идее должны быть примерно одинаковыми. Оба влияют на наклон, горбатость характеристики НЧ и громкость НЧ. Резистор R8 (сигнал ВЧ) необходимо подгонять в последнюю очередь под соответствие НЧ.

Значительно изменять номиналы деталей не следует, так как потянется цепочка необходимой коррекции смежных деталей. Резистором R10 устанавливается общий уровень сигнала под последующие каскады аппаратуры. Его можно изменять в широких пределах для своих задач. При указанном номинале коэффициент передачи РТ  1:1. Входное сопротивление РТ примерно 15 кОм. В отдельных случаях оно может оказаться маловатым. Поэтому лучше иметь источник сигнала на ОУ. Выходное сопротивление РТ целиком определяется применяемым ОУ. Ну, а, если от РТ требуется очень высокое входное сопротивление, например для ламповых источников, то резисторы R1 и R7 можно перенести с вывода 3 А1-1 на вывод 1. А вывод 3 заземлить через нужное сопротивление. Тогда входное сопротивление РТ целиком будет определяться входным сопротивлением ОУ и этим сопротивлением. Так же эта мера может пригодиться тем аудиофилам, которые неприемлют электролитические конденсаторы. При большом входном сопротивлении можно будет поставить пленочный суперконденсатор С1 (рис.3) относительно недорогой, ведь его емкость будет совсем небольшой. Да и габариты небольшие.

Найти на регуляторах среднюю точку «0» (для графического нанесения, как на рис.4) можно с помощью генератора звуковых частот – подавая сигналы 20… 1000 Гц и 1000 Гц…20 кГц. Именно в точке «0» изменение сигналов на выходе должно быть минимальным соответственно для НЧ и ВЧ. 
Еще очень хочется сказать свое мнение об одном интересном моменте. Если фонограмма и аппаратура не особо качественные, то положение регуляторов тембра можно устанавливать в довольно широких пределах. Слушается приемлемо. Но если фонограмма и аппаратура очень качественные, то положение регуляторов устанавливается на слух очень точно – в место с максимально естественным звуком.

А небольшое отклонение от этого места значительно ухудшает восприятие звука. Создается впечатление, что в музыке есть еще что-то второе кроме тембровой окраски, что сильно влияет на восприятие. В этом смысле мнение многих аудиофилов о том, что регулятор тембра вообще не нужен представляется неверным. Именно поймать тембром вот это второе – очень важно. Здесь и поможет с максимально возможным успехом предлагаемый РТ.

Вот пожалуй и все про данный РТ. Буду рад прочитать отзывы, а особо об усовершенствованиях данного регулятора тембра. Успехов в творчестве и да прибудет с нами совершенство! Всем удачи, Волков И., г. Пермь. 2020 г. Пишите на [email protected]

   Форум по аудио

   Форум по обсуждению материала РЕГУЛЯТОР ТЕМБРА С ПСЕВДООБХОДОМ

Пассивный регулятор громкости и тембра звука

От регулятора тембра мне нужен только подъем крайних частот диапазона для увеличения отдачи дешевых динамиков. Но на Али регуляторов такого типа, увы, не нашлось. Посему недорого приобрел традиционный регулятор НЧ-ВЧ с регулировками как в плюс, так и в минус.

Устройство собрано на компактной плате, комплектуется ручками для регуляторов. Но провода с разъемами в комплект поставки не входят!

Внешне все приемлемо — детали с 5% допуском, конденсаторы полипропиленовые, переменные резисторы B50k.

Схема устройства

Регулятор громкости включен делителем напряжения на входе. Следующий за регулятором громкости регулятор тембра собран по упрощенной схеме Баксандала.

С принципом работы такого регулятора и алгоритмом расчета его элементов можно ознакомиться, например, в статье А.Шихатова в №1 журнала «Радио» за 1999г. http://archive.radio.ru/web/1999/01/013/
Заметил, что номиналы деталей китайского устройства весьма близки к номиналам деталей регулятора на рис.2 в упомянутой статье 😉
Дополнительные ограничивающие резисторы на входе и выходе можно заменить перемычками или разделительными конденсаторами (ФВЧ).

Особенности подключения: пассивный регулятор тембра желательно подключать к источнику с низким выходным сопротивлением, а следующий за регулятором тембра усилитель должен иметь высокое входное сопротивление.
Приобретенное устройство предполагается подключать к выходу на наушники смартфона или плеера. Выходное сопротивление таких усилителей близко к нулю. С учетом разного рода отклонений, принял Zsrc равным 1 кОм.
В качестве усилителя предполагаю использование платки на основе микросхемы TPA3110D2. В даташите на нее ищу фразу «Input impedance» и получаю значение 60 кОм.
АЧХ темброблока при различных положениях регуляторов можно смоделировать в программе ToneStack Calculator http://www.duncanamps.com/tsc/
При средних положениях регуляторов НЧ-ВЧ АЧХ следующая:

Видно, что коэффициент передачи регулятора при этом составляет примерно -20 Дб. Для восстановления уровня громкости до исходного значения требуется дополнительно усилить сигнал в 10 раз по напряжению после регулятора. Или на вход регулятора подать усиленный сигнал, что при малом напряжении питания усилителя может привести к ограничению сигнала.
Этот момент меня не особо тревожит, поскольку я надеюсь, что упомянутая микросхема TPA3110D2 (на 15 Ватт выходной мощности) обеспечит необходимую громкость на имеющихся у меня 2 ваттных динамиках.
Привожу АЧХ при крайних положениях регуляторов.

Как видно, АЧХ далека от идеала. Исправить ее можно уменьшив номинал резистора R3 до 510 Ом.

Привожу АЧХ при крайних положениях регуляторов с измененным номиналом резистора.

Другое дело!

В целом впечатления от этого регулятора положительные, можно рекомендовать к покупке с учетом описанных особенностей

Схемы регуляторов тембра и эквалайзеров, самодельные темброблоки


Самодельный регулятор тембра с псевдообходом, схема и описание

Схем различных регуляторов тембра (РТ) много, но все они имеют свои недостатки. В этой статье хочется предложить несколько иной вариант РТ,  призванный устранить некоторые недостатки существующих РТ и поднять качество регулировки тембра в целом…

5 3725 1

Простые регуляторы громкости на транзисторах КТ315

В современных (даже дешевых) радиоприемниках и магнитофонах все чаще стали применять цифровыерегуляторы громкости. В любительских условиях ввиду определенной сложности не всегда возможно реализовать такие схемы. Применение же традиционных аналоговых схем имеет ряд недостатков — в стерео нужен …

4 6130 2

Схема предварительного усилителя низкой частоты с темброблоком (LM741)

Принципиальная схема самодельного предварительного усилителя низкой частоты (УНЧ) с темброблоком, построена на микросхеме LM741. На рисунке показана схема предварительного УНЧ с регуляторами тембра по НЧ (R2), тембра по ВЧ (R5), громкости (R6) и баланса (R12). УНЧ питается от однополярного …

2 6200 0

Схема графического эквалайзера на девять полос (КР140УД608)

Для коррекции частотной характеристики аудиосигналов применяют эквалайзеры.Наиболее удобны графические эквалайзеры. Регулировки уровней сигнала в частотных полосах в них осуществляются переменными резисторами с линейными характеристиками изменения сопротивления и с ручками регулировки, которые …

2 4530 0

Самодельный эквалайзер на десять полос (32Гц — 16кГц)

Принципиальная схема самодельного эквалайзера на 10 полос, построен на основе операционных усилителей. Эквалайзер предназначен для регулировки частотной характеристики УНЧ, в котором он применяется, в десяти полосах с центральными частотами: 32 Гц, 64 Гц, 125 Гц, 250 Гц, 500 Гц, 1 кГц, 2 кГц, 4 …

3 6076 0

Схема трехполосного темброблока на ОУ TL082 (питание +-5В)

Рассмотрена принципиальная схема самодельного трехполосного регулятора тембра, который выполнен с применением ОУ TL082. Данный активный темброблок подойдет для применения в составе УМЗЧ или же как отдельный модуль в составе самодельной звуковоспроизводящей аппаратуры. Доступные на рынке …

2 6548 0

Схемы активных фильтров на ОУ для применения в аудиотехнике

В аудиотехнике широко применяются фильтры для разделения всего спектрапоступающего на вход усилителя аудиосигнала на несколько полос. Это нужно, если в системе предусмотрена многоканальная, многополосная схема обработки аудиосигнала, например, чтобы выделить общий низкочастотный монофонический …

4 5982 0

Взвешивающий фильтр — звуковой шумоподавитель

Для снижения уровня шумов в отечественных бытовыхкассетных магнитофонах широко используют так называемые динамические фильтры. Принцип действия этих систем шумопонижения (СШП) состоит в автоматическом регулировании полосы пропускания звуковоспроизводящего тракта в зависимости от содержания в …

1 4009 0

Регулятор ширины стереобазы, рокот фильтр (К544УД1А)

В статье Ю. Кузнецова, М. Морозова и А. Шитякова под таким названием («Радио», 1985. № 1, с. 27h;28) было приведено описание устройства, которое, несмотря на свою относительную простоту, могло выполнять сразу две функции: снижение уровня рокота; улучшение разделения …

1 5654 0

Электронный регулятор уровня сигнала (К122УД1Б, КТ312)

В электронных регуляторах уровня сигнала функции регулирующих элементов чаще всего выполняют полевые транзисторы с р-п переходом, которые не позволяют построить регулятор с достаточно высокими техническими характеристиками. Так максимальное напряжение регулируемого сигнала между стоком и …

0 4776 0

1 2  3  4  5  … 6 

Радиодетали, электронные блоки и игрушки из китая:

Выставляем правильный тембр

Любители электроники, самостоятельно проектирующие звуковоспроизводящие устройства нередко сталкиваются с задачей оснащения своего усилителя регулятором тембра или эквалайзером. С точки зрения электроники, это устройство, позволяющее избирательно корректировать амплитуду сигнала в зависимости от частоты сигнала (высоты, тембра звука). Во времена первых опытов звукозаписи студии были оснащены низкокачественными микрофонами и громкоговорителями, которые искажали звук, и эквалайзер или темброблок применялись для амплитудной коррекции по частотам. Однако в настоящее время эквалайзер является мощным средством для получения разнообразных тембров звука (то есть разных оттенков звучания).

История эквалайзеров началась в 1930-х годах в Голливуде, когда появились первые фильмы со звуком. В то время многие обращали внимание на неестественное звучание музыки и голосов актёров. Одним из этих людей был Джон Волкман, который и применил первый эквалайзер для улучшения звучания звуковых систем в кинотеатре. До этого подобные эквалайзеру приборы использовались для коррекции звуковых потерь при передаче сигнала. Однако Волкман был первым, кто внедрил эквалайзер в звукоусилительную систему. Первый такой эквалайзер (EQ-251A) представлял собой прибор с двумя ползунками, каждый из которых имел переключатель выбора частот.

В то же время в голливудских студиях звукозаписи проводились эксперименты с эквалайзерами в целях пост-продакшна и создания эффектов. Тогда компания Cinema Engineering разработала первый настоящий графический эквалайзер (модель 7080), который имел 6 полос, регулируемых в пределах 6 дБ с шагом в 1 дБ, а впоследствии — очень популярный в то время 7-полосный эквалайзер 9062A.

Во время Второй мировой войны в этой сфере наступило затишье, а в 1958 году профессор университета Уэйна Радмоуз успешно разработал и применил свою теорию акустической эквализации. После этого в 1962 году Радмоуз совместно со своим другом Боунером разработали акустический фильтр с очень высокой добротностью — так был разработан эквалайзер White, который помог Боунеру создать теорию акустической обратной связи и эквализации помещений.

В 1967 году Арт Дэвис (из Cinema Engineering), совместно с Джимом Ноблем и Доном Дэвисом, разработали первый набор пассивных 1/3-октавных фильтров, который был назван «Acousta-Voice». Эта система положила начало новой эры современной эквализации.

Современные эквалайзеры являются сложными радиотехническими устройствами, часто с микропроцессорным программным управлением и цифровой обработкой сигнала, но классические двух-трехполосные регуляторы тембра, с которых начиналась история регулировки тембра звучания, не теряют своей актуальности для применения во многих случаях.

Нередко регуляторы тембра совмещают с предварительными усилителями звукового сигнала для компенсации потерь в фильтрах темброрегулировки. При работе с эквалайзером очень важно понимать, что усиление какой-либо частотной полосы приводит к усилению общего уровня аудиосигнала, и чрезмерное усиление полос может зачастую привести к искажениям звукового сигнала. В связи с этим ослабление «ненужных» частот зачастую даёт более качественный результат, нежели усиление «нужных». Поэтому регулятором тембра или эквалайзером следует пользоваться очень аккуратно, чтобы получить улучшение звука, а не его ухудшение.

 

Компания Мастер Кит предлагает несколько видов регуляторов тембра, некоторые их которых и являются героями нашего обзора. Все эти устройства являются бескорпусными «кирпичиками» для сборки самостоятельно проектируемой система усиления и воспроизведения звука и позволяют улучшить качество воспроизводимого звука.

 

  1. BM2112 — встраиваемый темброблок на базе специализированной микросхемы XR

Высококачественный компактный стереофонический темброблок предназначен для регулирования тембра высоких и низких частот с регулировкой уровня громкости в стерео аппаратуре высокого класса. Модуль рассчитан на питание как постоянным, так и переменным напряжением напрямую от трансформатора. На модуле для быстрого подключения установлены гнезда для кабеля с разъёмами типа Jack 3.5 мм. Блок может использоваться в качестве предварительного усилителя аудиокомплекса и будет незаменим для модернизации устаревших усилителей мощности НЧ.

 

Технические характеристики темброблока:

 

Напряжение питания                                         переменное или постоянное 6‐18 В;

Ток потребления при питании 9…16 В                       50 мА;

Частотный диапазон                                          20…20000 Гц;

Отношение сигнал/шум                                    80 дБ;

Разделение каналов                                            75 дБ;

Коэффициент гармоник на частоте 1 кГц       0,06 %;

Входное сопротивление                                    10 кОм;

Выходное сопротивление                                 20 Ом;

Диапазон регулировки громкости                   75 дБ;

Диапазон регулировки тембра                         +/‐15 дБ;

Габаритные размеры                                          70х55×30 мм.

 

  1. MP1243A — Hi-Fi аудиопроцессор на микросхеме TDA8425, расширение для ARDUINO.

Основа модуля — интегральная микросхема TDA8425 — стереофонический аудиопроцессор с цифровым микроконтроллерным управлением.

Модуль позволяет производить регулировку уровня звука в каждом канале отдельно, а также тембра по низким и высоким частотам. Есть возможность переключать входы и  режимы обработки сигнала: псевдостерео, расширенная стереобаза.

Все настройки производятся с помощью контроллера ARDUINO. Специально для этого проекта нами была написана библиотека для языка WIRING.

Применение контроллера ARDUINO позволяет радиолюбителю создать свой собственный и неповторимый домашний кинотеатр, а со временем изменить его архитектуру: усовершенствовать, усложнить, дополнить, кардинально изменить.

 

Технические характеристики устройства:

 

Напряжение питания                                                     12 В;

Максимальный потребляемый ток                              55 мА;

Диапазон воспроизводимых частот                             20-20000 Гц;

Шаг регулировки тембра                                              2 дБ

Максимальный уровень входного сигнала                 2 В;

КНИ на частоте 1 кГц                                                   0,05;

Отношение сигнал/шум                                                96 дБ;

Разделение каналов на частоте 1 кГц                          80 дБ;

Диапазон регулировки уровня выходного сигнала   -78,5…0 дБ;

Количество коммутируемых входов                           2;

Входное сопротивление                                                50 кОм;

Сопротивление нагрузки на выходе, не менее                      2 кОм;

Размеры платы                                                               55х56 мм.

 

  1. MP1235 — предварительный усилитель-темброблок с выходом на сабвуфер, микроконтроллерным управлением, жидкокристаллическим индикатором и пультом дистанционного управления.

Основа модуля интегральная схема TDA7429L — трехканальный аудиопроцессор-эквалайзер с выходом на сабвуфер и цифровым управлением. Модуль раскладывает стереосигнал на 4 стерео и один сабвуферный канал. Он позволяет производить регулировку уровня звука в каждом канале отдельно и во всех каналах одновременно, а также тембра по низким и высоким частотам и уровень громкости сабвуфера. Все настройки производятся с помощью кнопок или пульта ДУ и индицируются на ЖКИ индикаторе. Три линейных входа позволят выбрать источник сигнала с клавиатуры или пульта ДУ. Модуль имеет дополнительную функцию выключения звука MUTE.

 

Технические характеристики модуля:

 

Напряжение питания 1, не более                                 10 В;

Напряжение питания 2, не более                                 5 В;

Максимальный потребляемый ток                              55 мА;

Диапазон воспроизводимых частот                             20-20000 Гц;

Шаг регулировки тембра                                              2 дБ;

Частота среза сабвуферного канала                             100 Гц;

Максимальный уровень входного сигнала                 3 В;

КНИ на частоте 1 кГц                                                   0,01;

Отношение сигнал/шум                                                106 дБ

Разделение каналов на частоте 1 кГц                          100 дБ;

Диапазон регулировки уровня вых. Сигнала             -78,5 … 0 дБ

Количество коммутируемых входов                           3;

Входное сопротивление                                                30 кОм;

Сопротивление нагрузки на выходе не менее                       50 кОм;

Размеры платы ЖК дисплея                                         27 х 90 мм;

Размеры клавиатуры                                                      35 х 90 мм;

Размеры печатной платы                                              85 х 65 мм.

 

Комплект поставки:

 

Модуль темброблока                  1;

ЖК дисплей                                 1;

Плата с кнопками                                   1;

Пульт ДУ                                     1;

Инструкция по эксплуатации   1.

 

  1. NM0104 — набор для пайки предварительного усилителя НЧ с регулятором тембра.

Прежде всего, следует отметить, что устройство представляет собой набор для самостоятельной сборки (пайки). Для сборки понадобятся паяльник, припой с канифолью, радиотехнические бокорезы, желательно мультиметр. Если у вас еще нет этих необходимых для каждого электронщика инструментов, отличным выбором будет приобретение комплекта «Универсальный набор инструментов радиолюбителя».

Набор, состоящий из печатной платы и набора электронных компонентов, позволит вам собрать высококачественный регулятор тембра с предварительным усилителем для использования его в составе полного усилителя и различных усилительных систем. Ркгулятор рекомендован для использования совместно с оконечными УНЧ с входным сопротивлением не менее 10кОм и номинальным входным напряжением не более 1,3В. Радиоконструктор предназначен для детей старшего школьного возраста, а также радиолюбителей любой квалификации.


 

Регулятор тембра с предварительным усилителем можно отнести к классу универсальных. Он является двухканальным с синхронными регулировками громкости и тембров. Основой схемотехнического решения модуля является микросхема КР1434УД1А, содержащая в себе два идентичных малошумящих операционных усилителя.

Модуль питается от собственного стабилизатора напряжения, поэтому его можно питать от блока питания оконечного усилителя мощности, совместно с которым он будет работать. Тем не менее, не рекомендуется превышать значение напряжение питания более +/-35В.

Особенностью устройства является отсутствие на входе и выходе разделительных конденсаторов, поскольку модуль использует двухполярное питание, а нулевой потенциал на выходе поддерживается автоматически операционным усилителем.

 

Основные технические характеристики:

 

Номинальное выходное напряжение               1 В;

Коэффициент нелинейных искажений                       0,1 %;

Диапазон частот                                                 20…20000 Гц;

Отношение сигнал/шум невзвешенное                       -75 дБ;

Чувствительность по входу 1                           250 мВ;

Чувствительность по входу 2                           50 мВ;

Входное сопротивление по входу 1                 47 кОм;

Входное сопротивление по входу 2                 10 кОм;

Напряжение питания двухполярное                20…30 В;

Габаритные размеры                                          76x65x18 мм.

 

Предлагаем также ознакомиться с другими материалами по теме усиления звука и построения домашних и автомобильных звукоусилительных систем на нашем сайте, например:

Обзор усилителей звуковой частоты BM2043M и BM2043Pro

Обзор темброблока BM2112 на микросхеме XR1075 BBE

Обзор ФНЧ для сабвуфера

Обзор темброблока BM2112 на микросхеме XR1075 BBE

Обзор усилителей звуковой частоты BM2043M и BM2043Pro

BM2114dsp — Цифровой процессор звука

Усилитель НЧ D-класс 2х50Вт с регулировкой тембра

Предварительные усилители низкой частоты

 

Подписывайтесь на наши новости,  чтобы всегда быть всегда в курсе новинок и специальных предложения на сайте компании Мастер Кит.

Регулятор тембра (Темброблок)


Обзор темброблока с замерами характеристик.

Решил послушать как звучит усилитель класса Д на IRS2092. После недолгих
поисков на Али был сделан заказ. Ради интереса «как оно звучит» для него был так же заказан и темброблок.
Так как усилитель ещё в дороге а темброблок уже пришёл то решил
сделать обзор пока на него. Как придёт усилитель сделаю обзор и на
него с замерами.
Плата пришла в конверте с пупыркой. В комплект входит сама схема и
четыре ручки на резисторы. Флюс везе отмыт пайка более менее
аккуратная. Разводка платы средняя. Регуляторы на фото — с лева на право — ВЧ, СЧ, НЧ, Громкость.


На плате установлены ОУ NE5532P

Так же на плате расположены цепи стабилизации питания (L7812 и L7912) и выпрямитель.
Можно подавать переменное напряжение с трансформатора для питания
платы.
Принципиальная схема регулятора похожа на эту

Отличаются номиналы некоторых резисторов и отсутствие некоторых проходных
конденсаторов.

Теперь самое главное — тесты.
Тестировал на этой карте

Creative Sound Blaster X-Fi Titanium PRO с небольшой доработкой — полностью за экранирована обратная сторона печатной платы, заменён выходной ОУ на OPA2134, все конденсаторы по питанию шунтированы керамикой.
АЧХ (розовым цветом — со входа на выход миную темброблок, синим цветом
— через темброблок — все регуляторы тембра в среднем положении)

Виден небольшой подъём на на низких частотах (ниже 200Гц) и завал на
высоких (выше 6кГц)
Регуляторы НЧ в крайних положениях

Регуляторы СЧ в крайних положениях

Регуляторы ВЧ в крайних положениях

КНИ «THD», правый канал идёт минуя темброблок для сравнения (с выхода карты на
вход), КНИ темброблока 0.016%, хотелось бы поменьше конечно. Пробовал ставить OPA2134 вместо родных ОУ, искажения немного снизились но незначительно, скорее всего из за не совсем правильной разводки платы.

Зависимость КНИ от частоты (правый канал идёт минуя темброблок,
розовый цвет на графике)

Темброблок не инвертирует фазу сигнала (правый канал идёт минуя темброблок,
розовый цвет на графике)

Довольно средний по качеству блок, для домашних поделок пойдёт если устраивает КНИ.
Ставить в планируемый усилить вряд ли буду из за высоких
гармонических искажений. Буду разводить плату сам, и собирать темброблок.
Надеюсь инфа была полезна.

Стерео регулятор тембра на ОУ

Как говорится в одной из пословиц: «На вкус и цвет друзей нет». Некоторых людей не устраивает сведенная звукорежиссёром дорожка, другим нравится «навалить больше низов» или не позволяет помещение должным образом услышать нужное звучание. В таких случаях помогает скорректировать амплитудно-частотную характеристику (АЧХ) регулятор тембра, ослабляя или усиливая амплитуду в необходимой области звуковой частоты.

Схема проста и взята с набора для самостоятельной сборки. Включается она перед усилителем мощности звуковой частоты. Если используется предусилитель, то подключать регулятор тембра нужно между предусилителем и усилителем мощности звуковой частоты.

Регулятор тембра корректирует АЧХ значительно, особенно это заметно в области низких частот (НЧ).

Ниже представлена схема активного регулятора тембра на операционных усилителях.

Основные технические характеристики регулятора тембра

Напряжение питания (DC) …. 6?20В

Ток потребления ….. 15мА

Напряжение входного сигнала ….. 200мВ

Напряжение выходного сигнала ….. 500мВ

Регулировка полос:

НЧ ….. 10?300Гц

СЧ ….. 300Гц-3кГц

ВЧ ….. 3?20кГц

Напряжение питания регулятора тембра однополярное. С помощью операционного усилителя (ОУ) U2.1 организована виртуальная земля. Он включен по схеме повторителя напряжения. На неинвертирующий вход с помощью делителя напряжения R3R4 подается половина напряжения питания, а инвертирующий вход соединен с выходом ОУ. Таким образом, на выходе U2.1 присутствует половина напряжения питания, которая является в схеме регулятора тембра виртуальной землей, организуя однополярное напряжение в двухполярное.

Активные фильтры левого и правого каналов имеют одинаковые схемы и принцип работы. Переменный резистор RV1 регулирует высокие частоты (ВЧ), RV2 – низкие частоты (НЧ), а RV3 – средние частоты (СЧ).

Конденсатор C2 участвует в фильтре высокой частоты, обрезая НЧ составляющую. При перемещении ползунка потенциометра в низ (ближе к R1) сопротивление резисторов отрицательной обратной связи (R7, RV1.1) увеличивается, тем самым увеличивая коэффициент усиления в области высоких частот. При перемещении ползунка в верхнюю часть схемы происходит обратный процесс (ослабление в области ВЧ).

Переместив ползунок RV2.1 влево, шунтируется (замыкается) конденсатор C1, и низкочастотный сигнал беспрепятственно проходит через резисторы R2 и R5 на инвертирующий вход. В то же время, емкость C3 шунтируется сопротивлением 50кОм, таким образом, сопротивление отрицательной обратной связи является максимальным на низкой частоте, а соответственно и коэффициент усиления на НЧ является максимальным. При увеличении частоты сигнала реактивное сопротивление C3 уменьшается и коэффициент усиления ослабляется.

Потенциометр RV3.1 включен как делитель напряжения. Разделенный сигнал со среднего вывода RV3.1 поступает на полосовой фильтр, границы частот которого главным образом зависят от емкостей C13 и C15.

Компоненты схемы регулятора тембра

Все резисторы могут быть мощностью 0.25Вт.

Электролитические конденсаторы должны быть рассчитаны на напряжение больше напряжения питания на 20-30%. При напряжении питания до +12В электролиты могут быть на напряжение 16В, иначе необходимо подбирать конденсаторы на 25В или более.

Неполярные конденсаторы желательно применить пленочного типа, за исключением C4, C7, C8 и C12 – керамические.

Операционный усилитель TL072 можно заменить на NE5532.

На печатной плате присутствует ряд перемычек, поэтому при монтаже нужно быть внимательным и установить их все.

После выполненного монтажа необходимо обязательно смыть остатки флюса (канифоли) с печатной платы, иначе возможны серьезные искажения звукового сигнала.

Печатная плата регулятора тембра СКАЧАТЬ

Пассивный регулятор тембра | Все своими руками

Как часто хочется нам выделить определенный спектр частот над всеми. Толи убрать бас, то немного украсить музыку обрезав верха, добавив глубокого баса. Да это все возможно при наличае эквалайзера в источнике звука, а если источник звука это обычный касетный магнитофон или скажем запись грам пластинок. В таком случае нам поможет регулятор тембров…

Но опять же стоит задуматься какой регулятор тембра поставить, выбор между активным, тоесть который питается от другого источника питания, то ли пасивный который просто перегибает частоты. Скажу что собрал не мало таких регуляторов как пасивных так и активных. Самыми лучшими считаю именно пасивные и на это много причин.

И так основные причины, почему стоит выбрать именно пасивный регулятор тембра:

Первая причина, это то что не надо мастерить отдельный блок питания. Особенно если активный регулятор тембра собран на ОУ и нужна запитка двух полярным блоком питания. А еще по питанию целая куча фильтров

Вторая немаловажная причин что пасивный регулятор практически не вносит помех в звук, как делают это активные, особенно на ОУ. Нет вы не думайте что я такой не любитель ОУ, просто поимел я с ними мороки из-за недоброкачественных производителей..

Третья причина — это экономичней собрать регулятор тембра как финансово, так объемно… Почему объемно, да потому что посмотрите на первые две причины, большая плата, большей блок питания а места ведь не всегда хватает…

Думаю пока этих причин вполне хватает поэтому выкладываю схему…

Схема пассивного регулятора тембра

Перечень используемых компонентов

C1 = 1нФ
C2 = 2,2нФ
C3 = 150нФ

R1,5,8 = 100к
R2 = 2,2к
R3 = 22к
R4 = 5,6к
R6 = 6,8к
R7 = 1к

Эту схему я срисовал со своих стареньких 25Вт колонок SVEN модель не помню… Но как работает регулятор вообще супер понравилось. Схема была испробована на одном проекте 2.0, о котором я напишу позже. Gока скажу что схема работает с усилителем на TDA2030A и никаких проблем по качеству не возникло…

Для этой схемы была разведена плата 30*65мм специально под корпус, так что не ручаюсь что она подойдет к вам…
Печатная плата пассивного регулятора тембров

Скачать печатную плату
Пароль от архива jhg561bvlkm556
В общем что хотел написать написал, экспериментируйте и у вас все получится. Удачки в сборке…

Похожие материалы: Загрузка…

Tone Control — от Goodhertz, Inc.

В 1950 году скромный звукорежиссер Питер Дж. Баксандалл выиграл часы за 25 долларов за новаторский дизайн схемы высоких и низких частот. 64 года спустя Goodhertz представляет вам Tone Control.

Разработанный с учетом его оригинальной схемы, Tone Control уточняет и расширяет классический стек тембров, создавая великолепный масляно-плавный эквалайзер с достаточной универсальностью для каждого трека в вашем миксе.

  • Низкие / высокие полки Baxandall с регулировкой наклона
  • Фильтры низких / высоких частот с переменным наклоном
  • Фильтр Master Air для очистки самых высоких частот
  • «Мастер-микс» позволяет быстро управлять общим формированием тона.

Знакомство с регулятором тона

Зачем делать еще один плагин EQ?

Существует множество плагинов эквалайзера, и почти каждая DAW теперь включает базовый параметрический эквалайзер — так зачем делать еще один эквалайзер? Потому что Tone Control позволяет получить желаемый тон лучше и быстрее.

Параметрический эквалайзер

отлично подходит, когда он вам нужен, но он часто мешает при формировании тона общей картины. Именно для этого был разработан Tone Control: широкие штрихи с гибкостью, позволяющей выполнить большую часть вашего эквалайзера всего за пару движений ползунка. Конечный результат — меньше ненужной или неэффективной эквализации и лучший контроль глубины, тембра и близости элементов микса.

Я не могу сделать это с пассивным эквалайзером или простой полкой?

Не совсем.Хотя полочные фильтры Tone Control вдохновлены некоторыми великолепными пассивными аналоговыми эквалайзерами прошлого, они также включают в себя совершенно современные функции и усовершенствования: элементы управления Master Air и Master Mix, обрезные фильтры низких / высоких частот с переменным наклоном и формы полочных фильтров, которые никогда не были возможны в пассивной / аналоговой конструкции.

Детализация

Мастер воздуха

В начале нашей работы по аналоговому моделированию для Vulf Compressor мы обнаружили схему тона, которая идеально улавливала скатный верхний и мягкий тон старой виниловой пластинки или магнитофона, работающего на более медленной скорости.Звучало потрясающе — тепло, гладко и пушисто. Ради интереса мы попытались перевернуть конфигурацию, чтобы увеличить верхний предел, а не спустить его. Результат был еще более потрясающим — современные воздушные высокие частоты без малейшей резкости. Этот фильтр стал основой для Master Air Control и полностью уникален для Tone Control.

Регулятор тембра усилителя

  • Изучив этот раздел, вы сможете:
  • Общие сведения о типовых схемах, используемых для регулировки тембра в усилителях звука.
  • • Регулировка тона.
  • • Пассивные низкие частоты — регулировка высоких частот.
  • • Активные низкие частоты — регулировка высоких частот.
  • • IC управление общими функциями усилителя.

Рис. 4.2.1 Простое управление тональным сигналом

Регулировка тона

Tone Control, наиболее простая форма которого показана на рис. 4.2.1, обеспечивает простое средство регулирования количества более высоких частот, присутствующих в выходном сигнале, подаваемом на громкоговорители.простой метод достижения этого состоит в том, чтобы разместить переменную CR-сеть между усилителем напряжения и каскадами усилителя мощности. Значение C1 выбирается для передачи более высоких звуковых частот, это имеет эффект постепенного уменьшения высоких частот в качестве переменного резистора. ползунок перемещается к нижнему краю регулятора тембра. Минимальный уровень ослабления высоких (высоких) частот ограничен R1, что предотвращает прямое подключение C1 к земле. Поскольку схема только снижает высокочастотную составляющую сигнала, ее можно назвать простым регулятором Treble Cut.Использование этих простых схем обычно ограничивается гитарными приложениями или недорогими радиоприемниками.

В усилителях Hi-Fi управление тональностью относится к усилению или уменьшению определенных звуковых частот. Это может быть сделано в соответствии с предпочтениями слушателя, не все воспринимают звук одинаково, например, частотная характеристика человеческого уха меняется с возрастом. Помещение или зал, в котором воспроизводится звук, также влияет на характер звука. для изменения звука используются многие методы, в частности частотная характеристика усилителей, производящих звук.Они варьируются от простых RC-фильтров, пассивных и активных сетей управления частотой до сложной цифровой обработки сигналов.

Цепь управления тоном Баксандала

Рис. 4.2.2 Цепь управления тональным сигналом Баксандала

Обсуждаемая здесь схема является примером схемы регулировки тембра Баксандала, показанной на рис. 4.2.2, которая представляет собой аналоговую схему, обеспечивающую независимое управление низкими и высокими частотами; как низкие, так и высокие частоты могут быть усилены или ослаблены, и, когда оба регулятора находятся в их средних положениях, обеспечивает относительно ровную частотную характеристику, как показано синей линией графика «Уровень чувствительности» на рис.4.2.5. Первоначальная конструкция, предложенная П. Дж. Баксандаллом в 1952 году, использовала ламповый усилитель и обратную связь как часть схемы, чтобы уменьшить значительное затухание (около -20 дБ), вносимое пассивной сетью, и обеспечить истинное усиление низких и высоких частот. До сих пор существует множество вариантов используемых схем, как в виде активных цепей (с усилением, как было предложено изначально), так и в виде пассивных цепей без встроенного усилителя. В пассивных вариантах схемы Баксандалла могут использоваться дополнительные каскады усиления, чтобы компенсировать ослабление приблизительно -20bB, вызванное схемой.

Прочтите оригинальную статью 1952 года «Управление тоном с отрицательной обратной связью» П. Дж. Баксандалла, бакалавра наук (англ.), Опубликованную в «Wireless World» (ныне Electronics World)

Как работает схема Баксандалла.

Рис. 4.2.3 Максимальное усиление низких и высоких частот

С регуляторами низких и высоких частот, установленными на максимальное усиление (оба дворника в верхней части резисторов VR1 и VR2), а неактивные компоненты выделены серым цветом, схема будет выглядеть, как на рис. 4.2.3. Потенциометры как низких, так и высоких частот, которые могут иметь линейные или логарифмические дорожки в зависимости от конструкции схемы, имеют гораздо более высокие значения, чем другие компоненты в цепи, и поэтому, когда дворники VR1 и VR2 установлены на максимальное сопротивление, оба потенциометра можно рассматривать как разомкнутые. схема.Также C4 не способствует работе схемы из-за высокого сопротивления VR2, а C1 эффективно закорачивается из-за того, что стеклоочиститель VR1 находится на верхнем конце его дорожки сопротивления.

Полная полоса частот сигнала подается на вход усилителя с низким выходным сопротивлением, а более высокочастотные компоненты сигнала подаются непосредственно на выход схемы регулировки тембра через конденсатор C3 емкостью 2,2 нФ, который имеет реактивное сопротивление. около 3,6 кОм при 20 кГц, но более 3.6 МОм при 20 Гц, поэтому нижние частоты блокируются.

Полная полоса частот также появляется на стыке R1 и C2, которые вместе образуют фильтр нижних частот с угловой частотой примерно от 70 до 75 Гц, и поэтому частоты, значительно превышающие эту (средние и высокие частоты), проходят через заземление через R2.

Наличие R2, последовательно включенного с C2, предотвращает ослабление частот средней полосы, превышающее примерно -20 дБ. Более низкие частоты поступают на выход через R3. Поскольку R3 имеет довольно большое значение (чтобы эффективно изолировать эффекты двух переменных регуляторов друг от друга, входное сопротивление (Z в ) цепи, следующей за регулятором тембра, должно быть очень высоким, чтобы избежать чрезмерных потерь сигнала из-за эффект делителя потенциала R3 и Z на следующего этапа.

Срезание низких и высоких частот.

Рис. 4.2.4 Схема с VR1 и VR2 на минимуме

Когда регуляторы низких и высоких частот установлены на максимальное срезание (рис. 4.2.4), сигнал полной полосы пропускания проходит через R1, но с ползунком VR1 на нижнем конце его дорожки сопротивления, C1 / R2 теперь формируют проход высоких частот. фильтр, имеющий угловую частоту от 7 до 7,5 кГц, поэтому только частоты, значительно превышающие эту, могут проходить без ослабления. Таким образом, средние и высокие частоты подаются на R3 и C4, которые теперь образуют фильтр нижних частот для постепенного ослабления частот выше примерно 70 Гц, средние частоты (примерно 600 Гц) уменьшаются примерно на -20 дБ, а на 20 кГц на как видно из кривой отклика на рис.4.2.5.

Рис. 4.2.5 Модифицированная кривая отклика Баксандалла

Обратите внимание, что хотя схема обеспечивает то, что называется усилением низких и высоких частот, в пассивной версии схемы Баксандалла (без усиления) все частоты фактически снижаются.

Затухание схемы в средней полосе обычно составляет около -20 дБ, а с полным «усилением», применяемым либо на нижнем, либо на верхнем конце полосы пропускания, ослабление на этих частотах будет примерно от −1 до −3 дБ.

Активная цепь Баксандалла

Чтобы преодолеть существенные потери в пассивной версии этой схемы, которая дает отклик уровня (с обоими регуляторами на среднем уровне), но на -20 дБ ниже входного напряжения, в конструкции обычно включают усилитель. В настоящее время операционный усилитель был бы разумным выбором, поскольку сеть Баксандалла формирует контур отрицательной обратной связи, чтобы обеспечить требуемые значения усиления в необходимой полосе пропускания. Возможны различные конструкции с разными значениями резисторов от R1 до R4 и от C1 до C4 в сети, в зависимости от некоторой степени от выходного импеданса предыдущей и входного импеданса следующих цепей.

При использовании активных схем, таких как показанная на рис. 4.2.6, цель состоит в том, чтобы получить отклик уровня на уровне 0 дБ, чтобы не было усиления и потерь из-за схемы регулировки тембра. Максимально возможное усиление не должно быть достаточным для перегрузки любого каскада, следующего за регулятором тембра, если необходимо избежать искажений. Поэтому конструкция таких схем управления обычно является неотъемлемой частью общей конструкции системы усилителя.

Рис. 4.2.6 Активный регулятор тембра с использованием сети Baxandall и операционного усилителя с NFB.

Микросхемы управления тоном

Рис. 4.2.7 Микросхема управления звуком LM1036

В современных усилителях существует тенденция использовать элементы управления на интегральных схемах, которые могут управляться как цифровыми, так и аналоговыми схемами. Простое решение для регулировки низких и высоких частот, баланса и громкости в аналоговых стереоусилителях предлагают такие микросхемы, как LM1036 от National Instruments.

Блок-схема и схема приложения показаны на рис. 4.2.7. Каждый из четырех элементов управления регулируется путем подачи переменного напряжения в диапазоне 5.4 В (который подается на вывод 17 микросхемы) и 0 В. Половина напряжения, приложенного к контактам 4, 9, 12 и 14 управления, дает частотную характеристику уровня, центральный баланс между левым и правым каналами и половину громкости.

LM1036 также имеет переключатель компенсации громкости. Когда «включено», это изменяет действие регуляторов для усиления низких и высоких частот при низком уровне громкости. Это сделано для того, чтобы компенсировать снижение слуха человека на высоких и низких частотах тихими звуками.

Начало страницы

Tone Control — Idle Thumbs Network

Расписание выпусков

СЕЗОН 2:

15 июня 2018 г .: Карла Зимоня, соучредитель Fullbright
1 июня 2018: Дерек Ю, создатель Spelunky
15 мая 2018 г .: Роберт Ян, создатель сериалов «Радиатор», «Клуб Кобра», «Чайная комната» и др.
1 мая 2018: Шивон Редди, директор студии Media Molecule
Апр.15, 2018: Беннетт Фодди, создатель QWOP и как преодолеть это с Беннеттом Фодди
2 апреля 2018 г .: Ричард Лемаршан, ведущий дизайнер Uncharted 1, 2 и 3
15 марта 2018 г .: Брюс Стрэйли, игровой директор The Last of Us и Uncharted 4
2 марта 2018 г .: Мегган Скавио, президент AIAS, бывший генеральный директор GDC
. 15 февраля 2018: Дэйви Вреден, создатель The Stanley Parable и Beginner’s Guide
1 февраля 2018 г .: Харви Смит, ведущий дизайнер Deus Ex и соавтор серии
Dishonored. Янв.15, 2018: Нина Фриман из Fullbright и создательница Cibele, и как вы это делаете?
1 января 2018 г .: Чарльз Уэбб, старший писатель Mafia III
15 декабря 2017 г .: Мэриэл Картрайт, ведущий аниматор Skullgirls и арт-директор Indivisible
. 1 декабря 2017 г .: Лейтон Грей, соавтор, соавтор и арт-директор Dream Daddy

СЕЗОН 1:

1 мая 2014 г .: Кен Левин, креативный директор BioShock и BioShock Infinite
Апр.15 2014: Джейк Соломон, креативный директор XCOM Enemy Unknown
1 апреля 2014 г .: Тим Шафер из Double Fine Productions
15 марта 2014: Райан Пэйтон из Camouflaj
1 марта 2014 г .: Амир Рао и Грег Касавин из Supergiant Games
15 февраля 2014 г .: Джонатан Блоу, создатель Braid and The Witness
. 1 февраля 2014 г .: Том Фрэнсис, создатель Gunpoint
. 15 января 2014 г .: Брендон Чанг из Blendo Games
1 января 2014 г .: Рэнди Смит, дизайнер серии Thief, создатель Spider и Waking Mars
. Декабрь15 2013: Том Бисселл, сценарист Extra Lives и Gears of War: Judgment
1 декабря 2013 г .: Клинт Хокинг, креативный директор Splinter Cell: Chaos Theory и Far Cry 2
15 ноября 2013 г .: Крейг Хаббард, сценарист и дизайнер фильмов «Никто не живет вечно» и F.E.A.R.
1 ноября 2013 г .: Нил Друкманн, креативный директор The Last of Us
15 октября 2013 г .: Джейк Родкин и Шон Ванаман из The Walking Dead и Campo Santo

Tone Control (или его отсутствие) — PS Audio

Я ранее оплакивал смерть звука в современном аудиооборудовании и писал о нем. дерево в аудиотехнике.Насколько я понимаю, мы говорим о двух сторонах одной медали.

Было время, когда у каждого радио и предусилителя был какой-то тип регулятора тембра, который можно было использовать для компенсации недостатков в записях или, в некоторой степени, в комнате. -Или даже отрегулируйте звук в соответствии с личным вкусом, или просто чтобы усилить басы, когда громовые пелены переходят в цикл Ring, или для вступления Джека Брюса к «Badge». Что вы видите, когда вы смотрите на всеми любимый всеми любимый Audio Research SP-3 , показанный выше?

Регуляторы тембра.Не только обычные высокие и низкие частоты, но и контурный регулятор, изменяющий наклон регуляторов низких и высоких частот. Они были полезны. Не каждая запись идеальна — на самом деле, очень немногие — и эти регуляторы тембра были особенно полезны в те дни, когда ранние компакт-диски и некоторые картриджи с подвижной катушкой были кровоточащими в ушах.

Итак: куда они делись?

Как это часто бывает в истории высококачественного аудио, кредит и / или вина можно приписать Гарри Пирсону. Среди множества статей, которые он написал о SP-3 и множестве его буквенно-цифровых вариантов, HP отметил, что звук стал заметно лучше, когда регуляторы тембра были отключены от цепи (одна из пяти кнопок в нижней части лицевой панели переключилась). из регуляторов тембра).Так оно и было, во многом благодаря уменьшению шума. Если память не изменяет (а в наши дни не работает) , одним из изменений, внесенных модом Паоли в SP-3a-1-et al, было полное устранение схемы регулировки тембра. Снайперский.

С этого момента недостатки одной схемы в одном конкретном предусилителе были преобразованы в своего рода философское движение, объединяющим лозунгом которого был «прямой провод с усилением !!»

Первым продуктом от Mark Levinson Audio Systems , о котором я знал, был явно профессионально выглядящий усилитель LNP-2 ( L ow- N oise P ), разработанный сторонним инженером Диком. Burwen, укомплектованный не двумя, а тремя регуляторами тембра .(Примечание: цена LNP-2 в 1973 году составляла 1750 долларов, что почти в три раза превышало цену SP-3, и сегодня она составляет более 10 000 долларов).

Но продукт Levinson, который прорвался в мир аудиофилов, опять же благодаря HP, был минималистским предусилителем JC-2 , разработанным Джоном Кёрлом. Увидеть разницу? Никаких регуляторов тембра, и высота звука даже основана на этой прямой линии. Обратите внимание, что не было возможности изменить частотную характеристику, но усиление можно было регулировать независимо для каждого канала с шагом 1 дБ, не меньше.Хотя согласование каналов в регуляторах громкости иногда бывает неточным, двойные регуляторы громкости — боль, с которой приходится жить. — Да, я отвлекся. Сожалею.


К тому времени, когда Audio Research выпустила SP-6 (настоящий наследник SP-3 , а не спорных SP-4 и SP-5 ), регуляторов тона нигде не было. найденный. Нюхать.

И все же, и все же: когда Марк Левинсон перешел к основанию Cello , он, очевидно, увидел необходимость в сверхсложном регуляторе тембра (или, что более вероятно, почувствовал рынок для него).Палитра звука для виолончели была более сложной и универсальной, чем что-либо еще со времен Altec Acousta-Voicette , прародителя всех графических эквалайзеров. Audio Palette заменила уродливые ползунки Altec точными поворотными регуляторами. Несмотря на 12 регуляторов на устройстве, только шесть нижних изменяли частотную характеристику — шесть верхних были довольно обширными элементами управления предусилителем.

Как и LNP-2, Audio Palette — это работа Дика Бервена. С точки зрения грубого фанатизма и пристрастия к гаджетам, Palette в значительной степени идеальна.Я никогда не видел, чтобы кто-то мог пройти мимо, не нажав хотя бы на один из ступенчатых поворотных регуляторов.

Итак: вот и мы, в эпоху, когда частотная характеристика может быть измерена в миллиардных долях дБ в цифровом режиме (ужасы!). Кто-нибудь так делает? Если не считать цифровых кроссоверов и устройств коррекции помещения, таких как DEQX, в основном нет. Одно исключение: да, Dick Burwen все еще существует и предлагает Audio Splendor, программные регуляторы тембра и генерацию окружения.Несмотря на мое луддитское сопротивление сложному возиться с частотной характеристикой — особенно через компьютер — зная Дика, я готов поспорить, что это работает, и работает хорошо.

Одна проблема … ручек нет!

Как работает регулятор тембра

Обзор того, как работает регулятор тембра.


В ЭТОЙ СТАТЬЕ
• Управляющие потенциометры и тон
• Конденсаторы и тон
• Сохраняйте «максимумы» с помощью тройного байпасного колпачка

W101-TONECONTROL

Эта информация основана на нашей статье «Какой регулятор выбрать», в которой объясняется, как работает регулятор громкости.Вы захотите сначала прочитать это.

Выбранные вами регуляторы влияют на ваш тон

В нашей статье «Какой регулятор выбрать» мы объясняем, как регулятор позволяет некоторым высоким частотам вашей гитары уходить на землю, а не на усилитель. Это влияет на ваш тон. Например, переключение с 250K на 500K будет означать более яркий звук.

Конденсатор сильнее влияет на тон

Конденсатор позволяет гораздо большему количеству высокочастотного звука уходить на землю.Cap похожи на фильтр: они пропускают самые высокие частоты, но сопротивляются более низким частотам. Подключенный к сигнальному и заземляющему проводам, как показано здесь, конденсатор будет иметь большое влияние на тон (уменьшая высокие частоты), но это влияние будет неконтролируемым.

Теперь, если мы добавим потенциометр, мы получим регулятор тембра: он может набирать количество сигнала, поступающего на конденсатор, поэтому эффект удаления высоких частот с помощью конденсатора является переменным. Когда вы открываете горшок, к крышке поступает больше сигналов.

Хотите сохранить все максимумы

Вот идея, на которую вы, возможно, захотите обратить внимание: «Ограничитель высокочастотного байпаса ». Здесь конденсатор соединяет входные и выходные клеммы на потенциометре; это позволяет высоким частотам обходить горшок и оставаться в сигнале. Более низкие частоты блокируются колпачком и контролируются горшком.

Более или менее высокие и низкие значения конденсаторов будут в большей или меньшей степени влиять на ваш звук. Подробнее читайте в нашей онлайн-статье Understanding Guitar Wiring.

Также смотрите наши DVD «Как подключить гитару Fender» и «Как подключить гитару Gibson».

Hotrod Ваша электрогитара с активным управлением тембром


Даже в наши дни и в век высокофалутинской аудиоэлектроники у новой гитары все еще есть ненулевая вероятность того, что она будет звучать красиво, независимо от того, насколько хороши звукосниматели. У него может быть слабый отклик на низких частотах, или, возможно, настройки высоких частот тусклые. Возможно, в целом качество звука не сильно различается.В этой статье описывается модернизация, которую вы можете сделать, чтобы дать вашей гитаре элементы управления, которых она заслуживает. Даже самый простой инструмент Jane оживает благодаря полному диапазону басов, средних и высоких частот. Лучше всего то, что он делает это тихо; шум, гул и шипение просто не являются проблемой благодаря нескольким трюкам, описанным здесь.

Проблема с пассивом

Чтобы лучше понять ценность того, что будет в будущем, давайте посмотрим, как обрабатываются товары на складе. Регуляторы на типичной электрогитаре с двумя звукоснимателями часто пассивны по своей природе ( Рисунок 1 ).

РИСУНОК 1. Пассивные элементы управления на типичной электрогитаре.


Конденсаторы шунтируют более высокие частоты на землю, а их последовательные потенциометры изменяют величину этого воздействия. Ясно, что самое большее, на что вы могли бы надеяться в таком простом деле, — это возможность плавного спада высоких частот примерно на уровне –6 дБ / октаву.

Эффект настолько слаб, что многие гитаристы просто оставляют регуляторы тембра на полном сопротивлении и изменяют звук на своих усилителях.Завершая цепь, два дополнительных потенциометра расположены параллельно датчикам, обеспечивая управление громкостью. Как правило, такие пассивные регуляторы тембра имеют низкий входной импеданс, который может значительно перегрузить звукосниматели. Как правило, это приводит к ослаблению высоких частот, что приводит к отсутствию блеска или яркости звука.

Чтобы уменьшить этот эффект, повсюду используются потенциометры 500K (действительно, довольно высокое значение). Это увеличивает выходное сопротивление цепи, что дает менее чем оптимальные результаты при подключении аудиокабеля и усилителя.На самом деле, все становится довольно сложно с другими вопросами, такими как соотношение сигнал / шум, радиопомехи и даже емкость соединительного аудиокабеля, что усложняет проблему.

В любом случае, результат обычно хуже, чем мы надеемся, даже с полностью открытыми элементами управления. Итак, нам нужно преодолеть несколько проблем. Пассивная схема, подобная этой: имеет тенденцию перегружать звукосниматели; имеет высокое выходное сопротивление, меньшее, чем идеально подходит для управления усилителем; и предлагает не более -6 дБ / октаву среза, что не очень вдохновляет.

Вход в активные элементы управления

Совершенно очевидно, что решение кроется во внутренней активной электронике. Коммерческие вопросы меня не привлекали из-за цены, а поиск предыдущих проектов DIY не смог найти схемы с теми функциями, которые я хотел. Итак, я решил действовать в одиночку, начав с нуля.

В результате получился крошечный кусочек схемы, полностью вставленный внутри электрогитары. Он предлагает колоссальные 15 дБ как среза, так и усиления в трех отдельных диапазонах.Многие думают, что выделение частотного диапазона является пробным камнем, но на самом деле глубокие сокращения, возможные с этим устройством, не менее важны. Часто звукосниматели сами по себе подчеркивают средние частоты, что (на мой слух) дает мутный результат. С помощью этой схемы можно сгладить отклик, давая более полный звук в двух крайних точках. Конечно, с несколькими полосами можно создавать всевозможные тональные смеси прямо у вас под рукой.

Однако преимущества не заканчиваются.Даже если вы включите это устройство ровно (регуляторы низких, средних и высоких частот установлены на средние значения), ваша гитара все равно будет звучать более живо. Причина этого в том, что звукосниматели теперь полностью буферизированы. Загрузка и затухание высоких частот — не более чем воспоминания.

Кроме того, выход имеет очень низкий импеданс, что позволяет управлять любым усилителем или устройством эффектов без потери четкости. Конечно, это также предусилитель, который может усилить сигнал и может оказаться полезным, среди прочего, для приложений с перегрузкой.Если все это звучит привлекательно, давайте перейдем к деталям схемы.

Посмотрите на схему

На рисунке 2 показана схема активных регуляторов тембра.

РИСУНОК 2. Трехполосный внутренний эквалайзер.


Теперь переместим переключатель звукоснимателя на вход буровой установки, что позволяет нам буферизовать любую выбранную комбинацию; сравните расположение переключателя на рисунках , и , 2, , чтобы убедиться в этом.Электропроводка гитары может измениться, но вам не нужно сверлить новые отверстия или оставлять старые неиспользуемыми. (Многие электрогитары имеют четыре отверстия для потенциометров с дополнительным отверстием для переключателя звукоснимателей).

Пикапы буферизуются IC1a. Напомним, что неинвертирующий вход операционного усилителя имеет чрезвычайно высокий входной импеданс. Итак, теперь вместо потенциометра 500K, соединяющего звукосниматели, как показано на рис. 1 , у нас есть что-то порядка нескольких мегомов. Фактически, мы полностью разгрузили звукосниматели, позволив легко пройти каждому компоненту собственных частот.

Буферизованные звукосниматели затем емкостно связаны посредством C6 с остальной частью схемы, которая реализует трехполосный эквалайзер. Базовая топология для этого взята из таблицы данных производителя Audio Handbook (Санта-Клара: National Semiconductor Corporation, 1977), стр. 2-44–2-49, под редакцией Денниса Бона. Компоненты, определяющие частоту, сгруппированы вокруг потенциометров R9, R10 и R11, которые являются регуляторами низких, средних и высоких частот соответственно.

Обратите внимание, что вся структура из трех потенциометров находится в цепи обратной связи IC1b.Как мы увидим через мгновение, не обязательно понимать математику этой схемы, чтобы настраивать ее. Если вам интересно, в упомянутой таблице приведены подробные сведения о выводе. Кстати, конденсатор С1 предназначен только для подавления паразитных сверхзвуковых колебаний или радиопомех.

Наконец, выход подключается по переменному току через C7 к регулятору громкости R5. При использовании здесь емкостной связи любые небольшие смещения постоянного тока блокируются от сцепления с регулятором громкости, что обычно приводит к царапающему шуму при вращении регулятора.Я полагаю, что можно было бы запустить это дело на одной батарее с некоторыми дополнительными компонентами, но я решил использовать две по нескольким причинам: есть больший запас, даже при всем доступном бусте; обрезка никогда не проблема; большинство операционных усилителей лучше работают от двойного источника питания; разовая поставка требует дополнительных компонентов; и в любом случае две батареи прослужат почти вечно, так как это слаботочная работа.

Персонализация частотной характеристики

Давайте серьезно исследуем, чего можно ожидать от регуляторов тембра.Когда я впервые взялся за этот проект, я провел много часов, размышляя о том, как именно должен работать мой топор. Я решил, что моей целью было добиться полноценного звука с приличным контролем над басами, средними и высокими частотами, но не вдаваться в дикие спецэффекты. Затем я провел несколько симуляций SPICE, чтобы увидеть, как будут взаимодействовать элементы управления. Не обманывай себя. Такая трехполосная схема приведет к невероятно запутанным и сложным уравнениям на бумаге. Единственный разумный подход в настоящее время — смоделировать поведение на компьютере перед фиксацией

.

Значения, показанные на схеме Рис. 2 , взяты из оригинальной таблицы данных, упомянутой ранее, и они очень хорошо работали на моем Gibson Les Paul Standard.С другой стороны, я закончил настройку различных значений, когда построил другую версию для своей менее дорогой гитары Epiphone. Когда три элемента управления центрированы, отклик практически плоский, что подтвердит программное обеспечение компьютерного моделирования (подробнее об этом чуть позже). Рисунок 3 показывает, что происходит, когда вы ослабляете или усиливаете низкие, средние и высокие частоты.

РИСУНОК 3. Кривые отклика для активных регуляторов тембра.


Вертикальные оси измеряются в децибелах, а горизонтальные оси проложены в октавах (каждая отметка означает удвоение частоты).Как видно из кривых, эта схема предлагает больше, чем вы когда-либо могли найти в пассивных элементах управления типичной электрогитары.

Я также проверил, как три группы работают вместе. По сути, я пробовал каждую комбинацию повышения или понижения для каждой из полос в парах, а затем в трио. Не чувствую себя обязанным придерживаться моего выбора. Изменить реакцию так же просто, как изменить номиналы конденсатора или резистора вокруг любого из R9, R10 и R11.

В любом случае базовая топология (и, следовательно, печатная плата; PCB) остается неизменной, поэтому вы можете выбрать любой вариант, какой захотите.Теперь у вас есть шанс персонализировать вещи! Сделайте то, что сделал я — запустите программу моделирования, чтобы получить значения, которые вам больше всего нравятся.

Подготовка к сборке

Итак, теперь мы понимаем основы схемы и, по-видимому, вы пришли к некоторым значениям компонентов, чтобы дать вам ответ, который вам нужен. С точки зрения электроники, это несложный проект, но его установка внутри гитары требует терпения, внимательности и внимания к деталям. Я объясню свои шаги (которые, я должен сказать, сработали на удивление хорошо), но вы здесь сами по себе.Вам нужно будет решить, есть ли у вас все необходимое для аккуратной работы на любимом инструменте. Тем не менее, вот что я сделал.

Первым шагом было избавиться от существующей пассивной схемы гитары. Как упоминалось ранее, сейчас я сделал это на двух гитарах. Чтобы сделать обсуждение здесь конкретным, я покажу вам, как это происходило на моей изношенной, но надежной гитаре Gibson. Аналогичные шаги следует применить и к другим инструментам.

Я начал с открытия трех полостей, в которых размещены существующие элементы управления, селекторный переключатель звукоснимателей и выходной разъем.Я аккуратно распаял кастрюли, выключатель и домкрат. Первым шагом было перемонтировать коммутатор, как показано сзади, как на , рис. 2, . Я поставил себе цель маркировать различные провода, проходящие через каналы в корпусе гитары, по мере продвижения. Горшки были полностью отложены, так как я решил начать заново с четырьмя новыми и более качественными. (Я сохранил их на тот случай, если я когда-нибудь снова захочу вернуться к стоковым.)

Здесь главное — полностью очистить полости, что, вероятно, повлечет за собой откачку опилок, оставленных производителем (я не шучу).Кстати, сейчас самое время заняться делом по замене потенциометров. И у Jameco, и у Mouser были валы с накаткой, которые мне понадобились для моих двух гитар, но вам, возможно, придется осмотреться в зависимости от вашей марки. Главное здесь то, что я использовал только существующие дыры; после завершения внешний вид ни одного инструмента не изменился.

Теперь мы подошли к одному аспекту, который является неотъемлемой частью успеха этого проекта. Большинство гитар просто из дерева и немного больше.Таким образом, полости, в которых размещены элементы управления, переключатель и домкрат, не экранированы и открыты для атак от гула 60 циклов.

Чтобы сэкономить деньги, производители гитар обходят эту проблему, протягивая провод от металлического моста гитары к земле. Общая идея состоит в том, что когда ваше тело контактирует с землей через струны и бридж, оно каким-то странным образом действует как щит. (Не спрашивайте меня, как это работает, но это так). Не знаю, как вы, но мне не очень нравится быть дирижером. Если, скажем, перевернуть горячий и нейтральный источник переменного тока гитарного усилителя и системы громкой связи, то вы действительно подвергаетесь опасности поражения электрическим током.(Вы, наверное, можете сказать, что я провел около 20 с лишним лет своей жизни, играя в полуразрушенные бальные залы с нестандартной проводкой.)

Мое решение заключалось в том, чтобы полностью удалить соединение моста с землей и просто экранировать все внутренние поверхности лентой из медной фольги. Итак, найдите единственный провод, идущий от мостика к главной полости управления, снимите его с земли, оберните, заклейте электротехнической лентой и воткните в труднодоступном месте. Не обрезайте его, если позже вы обнаружите, что он вам действительно нужен, чтобы избежать проблем с гудением.

Затем, используя ленту из медной фольги, полностью закройте внутренние поверхности трех полостей. Лента является токопроводящей как с лицевой, так и с обратной стороны, поэтому вы можете постепенно перекрывать вещи меньшими частями, чтобы покрыть даже самые извилистые участки. На рис. 4 показано, как это происходит для полости управления.

РИСУНОК 4. Экранирование полостей лентой из медной фольги.


Когда вы закончите, ввинтите наконечник припоя в деревянную поверхность так, чтобы он соприкасался с фольгой, и подключите единственный провод заземления (скажем, от выходного гнезда), чтобы гарантировать заземление каждой полости.

Не забудьте наклеить фольгу на обратную сторону крышек; вы также можете увидеть это на Рисунок 4 . После установки уплотнений все кастрюли, выключатель и домкрат полностью закрыты, как если бы вы построили их в металлической коробке. Я поражен, насколько хорошо все это сработало. У меня совсем нет шума, и, что лучше всего, мне никогда больше не придется беспокоиться о искрах из губ. Теперь вы можете закрыть полость переключателя, но оставьте полость управления открытой, поскольку нам еще нужно имплантировать электронику.

Внедрение схемотехники

А теперь самое простое. Создать активный регулятор тембра довольно просто. Поскольку он должен поместиться внутри контрольной зоны вместе с четырьмя горшками и двумя батареями, пространство будет в дефиците. По этой причине печатная плата — единственный выход. Иллюстрации доступны для загрузки, а Рисунок 5 здесь показывает руководство по размещению деталей.

РИСУНОК 5. Руководство по размещению деталей и детали проводки.


Обязательно внимательно проверьте полярность всех электролитических конденсаторов, а также ориентацию IC1.Там же изображена схема подключения потенциометра. Также обратите внимание на то, что наконечники электролизеров пронумерованы на схеме, что помогает предотвратить их обратное подключение. Говоря об этом, имеет смысл предварительно подключить потенциометры как можно больше, поскольку полость управления довольно плотная, чтобы в нее можно было воткнуть паяльник. Рисунок 6 показывает законченную установку, почти готовую к установке в гитаре.

РИСУНОК 6. Предварительная разводка компонентов упрощает установку.


Я еще ничего не сказал о переключении питания. Я думаю, что лучше всего использовать коммутационный разъем. Это 1/4-дюймовый телефонный разъем, который также включает независимый переключатель DPDT. Когда вилка вставлена, часть переключателя выполняет свою работу, закрывая соединения с двумя батареями, в то время как аудиосистема может свободно передавать сигнал, как обычно. На рис. 7 показаны детали используемого мною разъема, но вам следует проверить свой с помощью мультиметра в режиме сопротивления, чтобы убедиться, что вы понимаете конфигурацию контактов.

РИСУНОК 7. Гнездо переключения включает и выключает устройство.


Рисунок 8 показывает завершенную реализацию непосредственно перед герметизацией спинки.

РИСУНОК 8. Работа выполнена и готова к опечатыванию.


Это печатная плата слева, компоненты обращены вниз, а сторона из фольги покрыта черным поролоном. Рядом с ним пара батареек, завернутых в пластиковую пленку и скрепленных вместе в виде блока.Остальная часть полости забита кусками поролона, чтобы вещи не дребезжали. В целом, он красивый, аккуратный и удобный.

Я очень старался спланировать свои движения (вы тоже должны), и не пытался делать слишком много сразу или когда устал. В любом случае, когда накладки были на месте, внешне невозможно было сказать, что эта гитара за это время стала бионической.

И последняя деталь. Активные регуляторы тембра в центральном положении дают ровный отклик.Это означает, что вы должны легко найти эту настройку. Хорошим решением будет использование некоторых никелированных индикаторов ручки, которые закреплены на втулках кастрюли с помощью гаек.

Указатели остаются статичными, в то время как нумерация на ручках совпадает с ними при повороте регуляторов. В моей настройке, когда регуляторы низких, средних и высоких частот нацелены на 5, я знаю, что нахожусь в своей плоской контрольной точке. Более того, когда регулятор громкости также находится на 5, я нахожусь на правильном «нормальном» уровне для моей системы.Список деталей описывает, где можно найти индикаторы ручки и другие необычные предметы.

Итак, если Dullsville — это название вашей гитары, подумайте о том, чтобы реанимировать ее с помощью активных регуляторов тембра. Операция на ценном инструменте требует осторожности и планирования, но в моем случае это действительно принесло большие дивиденды. Надеюсь, вам тоже понравится! NV


ПЕРЕЧЕНЬ ДЕТАЛЕЙ

ПУНКТ ОПИСАНИЕ
R1, R2 1.8K
R3, R4 3,6 К
R5 Линейный потенциометр 10K
R6-R8 11K
R9, R10 Линейный потенциометр 100K
R11 линейный потенциометр 500K
C1 Диск 10 пФ
C2, C3 0,0047 мкФ майлар
C4 0,022 мкФ майлар
C5 0.047 мкФ майлар
C6 1 мкФ электролитический
C7-C9 10 мкФ электролитический
IC1 TL072 двойной операционный усилитель
J1 Штекерное гнездо 1/4 «с переключателем DPDT
B1, B2 аккумулятор 9В

Постоянные резисторы 1/4 Вт, значения 5%. Все конденсаторы 16 В или лучше.

Разное
Печатная плата, гнездо IC, защелки аккумулятора, лента из медной фольги, ручки, индикаторы ручки, провод и т. Д.

Большинство этих деталей можно приобрести у любого количества поставщиков электроники. Более необычную ленту из медной фольги, переключающее гнездо и индикаторы ручки можно приобрести у Stewart-MacDonald ( www.stewmac.com ).


Что делают регуляторы тембра для усилителя? — Carl’s Custom Amps

Большинство усилителей имеют какие-то регуляторы тембра (заметным исключением является почтенный твидовый чемпион — ничего, кроме громкости!). Они варьируются от одного регулятора до полных тоновых стеков, а некоторые усилители даже имеют регуляторы присутствия и резонанса.Так как же элементы управления влияют на звук и универсальность усилителя? Можно ли легко добавить в дизайн элементы управления тоном?

Типы регуляторов тембра:

Регулятор одиночного тембра: они обычно работают, но с понижением высоких частот при повороте регулятора вниз. Они, как правило, очень интерактивны с регулятором громкости. Этот тип достаточно прост, чтобы не вызывать больших потерь сигнала, поэтому им не нужны дополнительные каскады усиления для их управления. Эти типы регуляторов могут иметь меньшую универсальность, но имеют небольшие потери сигнала, поэтому усилитель с такой конфигурацией имеет отличный чистый ламповый звук.Каждая гитара действительно похожа на себя. Обычно этот тип используют только усилители с низким коэффициентом усиления, потому что чем больше усиление, тем более необходимыми становятся все регуляторы тембра.

Регуляторы НЧ, СЧ и ВЧ или НЧ и ВЧ:

Это набор различных типов схем, которые различаются по эффективности, но в основном все они позволяют пользователю несколько изменить частотную характеристику усилителя. Любопытно, что конфигурации Bass и Treble часто используют фиксированный резистор вместо среднего потенциометра и не очень отличаются от настройки Treble, Mid и Bass.Эти полные стеки более универсальны, но вызывают большие потери сигнала, поэтому для компенсации потерь требуется дополнительный каскад усиления. Это приводит к меньшей чистоте тона и чувствительности к силе нажатия, чем при простом управлении тоном. Интересно, что на некоторых усилителях есть потенциометр или переключатель с надписью RAW. Эти элементы управления просто позволяют проигрывателю обойти элементы управления тембром для получения более чистого звука. Таким образом, нельзя просто добавить регуляторы тембра, они требуют лампового каскада, что означает добавление лампы!

Расположение элементов управления в цепи влияет на их эффективность.Например, Blackface Fender имеет элементы управления на ранних этапах трассы, поэтому элементы управления очень эффективны. С полностью опущенными регуляторами громкости вообще нет. Во многих усилителях Marshall звуковой стек ставится после всего остального в предусилителе. Пользователи часто задаются вопросом, работают ли регуляторы тембра в Marshall, потому что они меньше влияют на звук.

Расположение регулятора тембра влияет на звучание усилителя, в котором присутствует много искажений от предусилителя. Если регуляторы тембра находятся на ранней стадии в усилителе, они влияют на то, как выглядит сигнал, который искажается.Если они появляются после появления искажения, они влияют на уже искаженный сигнал. Это звучит иначе. Обычно усилители с более поздними элементами управления звучат жестче и злее, а усилители с более ранними элементами управления — более плавными и менее агрессивными.

Еще одна вещь, которую следует учитывать, — это то, как они реализованы. Если вдаваться в подробности, некоторые регуляторы тембра питаются от пластины, а некоторые используют так называемый катодный повторитель. Разнообразие катодных повторителей добавляет больше гармоник и придает усилителю более хрустящий звук.Это тип, который встречается в большинстве Marshall, а тип с пластинчатым питанием более распространен для чистых усилителей, таких как Fender Twin Reverb.

Еще одна вещь, которую следует учитывать, — насколько эффективными будут регуляторы тембра при перегрузке усилителя. В усилителе с большим количеством искажений предусилителя регуляторы тембра очень важны и эффективны для получения хорошего звука с искажениями. В усилителях, которые получают больше перегруженных тонов от разрыва лампового усилителя, элементы управления менее эффективны.

Элементы управления присутствием и резонансом:

Элементы управления присутствием и резонансом работают по одному и тому же принципу, только присутствие — это тип управления высокими частотами, а резонанс — тип управления низкими частотами.Оба они есть только в усилителях с отрицательной обратной связью. Отрицательная обратная связь — это когда на выход подается небольшая часть сигнала усилителя.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *