Простой регулятор напряжения на тиристоре. Схема и описание
Во время использования различных электронагревателей, электроосветительной лампы, электрического паяльника и прочих потребителей электрической энергии, не мешало бы еще осуществлять регулирование питающего напряжения, и тем самым дозируя поступающую мощность. Для подобных приборов, обычно, не нужно осуществлять регулирование питающего напряжения от нуля.
Описание работы тиристорного регулятора
Данный регулятор напряжения на тиристоре, работает на одной полуволне сетевого напряжения. Это позволяет осуществлять регулировку напряжения от 110 до 215 вольт.
При полностью закрытом тиристоре VS1, сквозь диод VD1 к нагрузке будет подаваться всего лишь один полупериод сетевого напряжения. Для управления тиристором собран генератор коротких импульсов. Основа генератора – однопереходной транзистор VT1. За счет пульсации питания на однопереходном транзисторе, происходит синхронизация импульсов генератора.
Характер сдвига определяется емкостью С1 и сопротивлениями R5, R6. Изменяя сопротивление резистора R6, изменяется и время включения тиристора, а следовательно и фактическое выходное напряжение тиристорного регулятора, питающее активную нагрузку.
При сборке тиристорного регулятора, возможно, потребуется подобрать сопротивление R5, так чтобы при минимальном сопротивлении R6 на выходе было максимальное напряжение. В случае если нет необходимого сопротивления, то его можно получить путем последовательного соединения нескольких резисторов, либо же путем параллельного соединения резисторов.
Детали конструкции тиристорного регулятора напряжения
Конденсатор С1 — К1017. Диод VD1 — любым на ток более 3…5 А, к примеру, КД257Б;VD2 — на ток до 100 мА. Резисторы – МЛТ. Тиристор VS1 возможно применить Т112-16-6, Т122-25-6 или Т112-10-6.
При указанных на схеме номиналах максимальная мощность составляет 500 Вт. При выборе диода VD1 на больший прямой ток, мощность подключаемой нагрузки к тиристорному регулятору, возможно, увеличить до 2 кВт.
Допустимая предельная мощность регулируемой нагрузки определяется максимальным током, протекающим через тиристор VS1 и диод VD1 (хорошо бы взять с двойным запасом по току).
Источник: «Полезные схемы», Шелестов И.П.
Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…
Регулятор мощности тиристорный, схемы регуляторов напряжения на тиристорах
В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.
В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.
Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников. Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.
Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.
Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.
Между прочим, такое устройство является регулятором общей мощности. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.
Как совершает свою работу тиристор?
Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.
Тиристор обладает сразу тремя выводами тока:
- Катод.
- Анод.
- Управляемый электрод.
Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.
Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.
Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.
С использованием современной элементной базы
Старые радиодетали хороши тем, что они «дубовые» в смысле надежности эксплуатации. Но они уже действительно старые. У многих временной ресурс на пределе и служат они далеко не так долго, как «свежие». Это первая проблема. И вторая — их все сложнее найти. Хорошо что есть уже много схем регуляторов паяльников на новой элементной базе. Некоторые из них простые, другие посложнее, используются различные виды современных радиодеталей.
Схема регулятора для паяльника без помех на микросхеме
Этот вариант простым не назовешь, но зато он не выдает в сеть помех. С наличием большого количества электроники в каждом доме это может быть важным. Если вы паяете лишь от случая к случаю — можно и не обращать на это внимания. Но вот если вы часто сидите с паяльником, помехи могут доставлять серьезные неудобства.
Регулировать данная схема может нагрузку до 2 кВт, обеспечивает плавное изменение от 0 до максимума.
Самодельный регулятор паяльника без помех
По элементной базе. Микросхема К561ЛА7 может быть заменена на К176ЛА7. Переменный резистор R1 — любой из группы А. Остальные резисторы — лучше МЛТ, конденсаторы C1, C3 — керамические. Диоды в схеме использованы КД503А, можно заменить КД514А и КД522А. ТАкже есть вариант замены транзистора КТ361В — на КТ326В или КТ361А.
На базе фазовых регуляторов мощности PR1500S
В этой схеме использован фазовый регулятор мощности. Кроме него, в регуляторе используется лишь пара деталей, так что времени на сборку надо минимум, ошибиться практически невозможно.
Регулятор температуры жала паяльника своими руками
Нужен будет только переменный резистор, можно с выключателем — тогда не надо будет паяльник вытаскивать из сети. Для устранения помех нужен будет конденсатор на 100 пФ, на 630 В, лучше специальный плёночный для фильтров. Единственное, с чем может возникнуть сложность — намотка дросселя, его параметры есть в таблице.
Параметры для намотки дросселя
Нужно будет кольцо из феррита с наружным диаметром 20 мм. Чем больше проницаемость феррита тем лучше. Данный фазовый регулятор может регулировать нагрузку до 1,5 кВт, так что выбирать можно любой их столбиков. Можно сделать с запасом, мало ли что потом захотите регулировать. Проволока естественно, медная лакированная, специально для намотки дросселей.
То, что получилось после сборки
При сборке для дросселя и фазового регулятора лучше сделать теплоотвод. Особенно он пригодится при работе с большими нагрузками. Для паяльника можно и обойтись, но мало ли что потом подключите и лучше собрать сразу с запасом прочности.
На оптосимисторе МОС204х/306х/308х
Схема обкатанная много раз и работает отлично без каких-либо проблем. Использовать желательно оптические симисторы указанных марок, так как они открываются в случае перехода напряжения через ноль
Состояние светодиода при этом неважно. Все другие работают по другому принципу, потому схему надо будет переделывать под них. Также в схеме присутствует биполярный таймер 555 серии
Найти его не проблема, цена нормальная.
Регулятор мощности паяльника на оптосимисторах
Все компоненты подобраны миниатюрных габаритов, чтобы в готовом виде плата вошла в корпус от зарядки мобильника. Номинал резистора R5 зависит от типа используемого светодиода. На красном падение напряжения 1,6-2 В, на зелёном 1,9-4 В, на жёлтом 2,1-2,2 В, на синем 2,5-3,7 В. Соответственно резистор подбирается в зависимости от фактических параметров.
С ШИМ-контроллером
Современная элементная база очень обширна, а одни и те же задачи можно решать по разному. Например, для регулятора мощности использовать ШИМ-контроллер. Для этой схемы подойдёт любая модель, работающая на частоте 0,5-1 Гц. Коммутирующий элемент полевой транзистор, его можно найти на старых материнских платах или купить. Его тип не указан, но подойдет любой n-канальный транзистор с напряжением не менее 12 В, током — 6 А и мощностью — 60 Вт.
Регулятор паяльника на ШИМ контроллере и полевом транзисторе
Светодиод VD3 необязательная часть схемы, но он мигает с разной частотой в зависимости от нагрева. Когда приноровишься, удобно ориентироваться и не надо смотреть на ручку регулятора. Но вообще, его из схемы можно безболезненно выкинуть
Обратите внимание: шины питания от микросхемы идут параллельно проводами, это минимизирует влияние более мощной нагрузки
Область использования тиристорных устройств
В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.
Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?
Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.
Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.
Конструкция и принцип работы
Стабилизатор обеспечивает постоянство тока при его отклонении
Стабилизатор обеспечивает постоянство показателей рабочего тока LED-диодов при его отклонении от нормы. Он предотвращает перегрев и выгорание светодиодов, поддерживает постоянство потока при перепадах напряжения или разрядке АКБ.
Простейшее устройство состоит из трансформатора, выпрямительного моста, соединенного с резисторами и конденсаторами. Действие стабилизатора основывается на следующих принципах:
- подача тока на трансформатор и изменение его предельной частоты до частоты электросети – 50 Гц;
- регулировка напряжения на повышение и понижение с последующим выравниванием частоты до 30 Гц.
В процессе преобразования также задействуются выпрямители высоковольтного типа. Они определяют полярность. Стабилизация электрического тока осуществляется при помощи конденсаторов. Для снижения помех применяются резисторы.
Как работает такое устройство?
Описанные ниже характеристики будет соответствовать большинству схем.
- Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
- Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.
При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.
Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).
В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.
Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.
Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.
Назначение и принцип работы
С помощью регуляторов напряжения можно изменять не только яркость свечения ламп накаливания, но и скорость вращение электромоторов, температуру жала паяльника
и так далее. Нередко эти устройства называют регуляторами мощности, что не совсем правильно. Устройства, предназначенные для регулирования мощности, основаны на ШИМ (широтно-импульсная модуляция) схемах.
Это позволяет получить на выходе различную частоту следования импульсов, амплитуда которых остается неизменной. Однако если параллельно нагрузке в такую схему включить вольтметр, то напряжение также будет изменяться. Дело в том, что прибор просто не успевает точно измерять амплитуду импульсов.
Следует заметить, что регуляторы напряжения будут максимально эффективны при работе с резистивной нагрузкой, например, лампами накаливания. А вот использовать их для подключения к индуктивной нагрузке нецелесообразно. Дело в том, что показатель индуктивного электротока значительно ниже в сравнении с резистивным.
Собрать самодельный диммер довольно просто. Для этого потребуются начальные знания в области электроники и несколько деталей.
На основе симистора
Такой прибор работает по принципу фазового смещения открывания ключа. Ниже представлена простейшая схема диммера на основе симистора:
Структурно прибор можно разделить на два блока:
- Силовой ключ, в роли которого используется симистор.
- Узел создания управляющих импульсов на основе симметричного динистора.
С помощью резисторов R1-R2 создан делитель напряжения
Следует обратить внимание, что сопротивление R1 – переменное. Это позволяет менять напряжение в линии R2-C1
Между этими элементами включен динистор DB3. Как только показатель напряжения на конденсаторе C1 достигает значения порога открытия динистора, на ключ (симистор VS1) подается управляющий импульс.
На базе тиристора
Эти проборы также достаточно эффективны, а их схемы не отличаются высокой сложностью. Роль ключа в таком устройстве выполняет тиристор. Если внимательно изучить схему прибора, то сразу можно заметить главное отличие этой схемы от предыдущей – для каждой полуволны используется собственный ключ с управляющим динистором.
Принцип работы тиристорного прибора следующий:
- Когда через линию R5-R4-R3 проходит положительная полуволна, конденсатор C1 заряжается.
- После достижения порога включения динистора V3 он срабатывает, и электроток поступает на ключ V1.
- При прохождении отрицательной полуволны наблюдается аналогичная ситуация для линии R1-R2-R5, управляющего динистора V4 и ключа V2.
Также в быту используются конденсаторные регуляторы. Однако в отличие от полупроводниковых приборов, они не позволяют плавно изменять напряжение. Таким образом, для самостоятельного изготовления лучше всего подходят тиристорная и симисторная схемы
.
Найти все необходимые для изготовления регулятора детали не составит труда. При этом их не обязательно покупать, а можно выпаять из старого телевизора или другой радиоаппаратуры. При желании на основе выбранной схемы можно сделать печатную плату, а затем впаять в нее все элементы. Также детали можно соединить обычными проводами. Домашний мастер может выбрать тот способ, который покажется ему наиболее привлекательным.
Оба рассмотренных устройства довольно легко собрать, и для выполнения всех работ не нужно обладать серьезными знаниями в области электроники. Даже начинающий радиолюбитель сможет изготовить своими руками схему регулятора напряжения 220в. При невысокой стоимости, они практически ни в чем не уступают заводским аналогам.
Тиристорный регулятор напряжения своими руками
Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.
Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.
Схема номер 2
В новой схеме также присутствует трёхвыводной эл. компонент (но это уже не транзистор) постоянный и переменный резисторы, светодиод со своим ограничителем. Добавлено только два электролитических конденсатора. Обычно на типовых схемах указаны минимальные значения C1 и C2 (С1=0,1 мкФ и С2=1 мкФ) которые необходимы для устойчивой работы стабилизатора. На практике значения емкостей составляют от десятков до сотен микрофарад. Ёмкости должны располагаться как можно ближе к микросхеме. При больших емкостях обязательно условие C1>>C2. Если ёмкость конденсатора на выходе будет превышать ёмкость конденсатора на входе, то возникает ситуация при которой выходное напряжение превышает входное, что приводит к порче микросхемы стабилизатора. Для её исключения устанавливают защитный диод VD1.
У этой схемы уже совсем другие возможности. Входное напряжение от 5 до 40 вольт, выходное 1,2 — 37 вольт. Да, имеется падение напряжения вход — выход равное примерно 3,5 вольтам, однако роз без шипов не бывает. Зато микросхема КР142ЕН12А именуемая линейным регулируемым стабилизатором напряжения имеет неплохую защиту по превышению тока нагрузки и кратковременную защиту от короткого замыкания на выходе. Её рабочая температура до + 70 градусов по Цельсию, работает с внешним делителем напряжения. Выходной ток нагрузки до 1 А при длительной работе и 1,5 А при непродолжительной. Максимально допустимая мощность при работе без теплоотвода 1 Вт, если микросхему установить на радиатор достаточного размера (100 см.кв.) то Р макс. = 10 Вт.
Способы регулирования фазового напряжения в сети
- Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
- Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
- Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.
На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.
Как сделать стабилизатор тока для светодиодов самостоятельно
Изготовление стабилизатора для светодиодов своими руками осуществляется несколькими способами. Новичку целесообразно работать с простыми схемами.
На основе драйверов
Понадобится выбрать микросхему, которую трудно выжечь – LM317. Она будет выполнять роль стабилизатора. Второй элемент – переменный резистор с сопротивлением в 0,5 кОм с тремя выводами и ручкой регулировки.
Сборка осуществляется по следующему алгоритму:
- Припаять проводники к среднему и крайнему выводу резистора.
- Перевести мультиметр в режим сопротивления.
- Замерить параметры резистора – они должны равняться 500 Ом.
- Проверить соединения на целостность и собрать цепь.
На выходе получится модуль с мощностью 1,5 А. Для увеличения тока до 10 А можно добавить полевик.
Стабилизатор для автомобильной подсветки
Стабилизатор L7812
Для работы потребуется линейный прибор в виде микросхемы L7812, две клеммы, конденсатор 100n (1-2 шт.), текстолитовый материал и трубка с термоусадкой. Изготовление производится пошагово:
- Выбор схемы под L7805 из даташита.
- Вырезать из текстолита нужный по размеру кусок.
- Наметить дорожки, делая насечки отверткой.
- Припаять элементы так, чтобы вход был слева, а выход – справа.
- Сделать корпус из термотрубки.
Стабилизирующее устройство выдерживает до 1,5 А нагрузки, монтируется на радиатор.
Схемы на тиристорах
Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.
Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.
- VD — КД209 (либо близкие по его общим характеристикам).
- R 1 — сопротивление с особым номиналом в 15 кОм.
- R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
- Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).
Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.
Разновидности регуляторов мощности
Для разных целей используются различные регуляторы мощности.
Тиристорный прибор управления
Конструкция устройства довольно простая. Обычно тиристоры применяются в маломощных приборах. Тиристорный терморегулятор состоит из биполярных транзисторов, самого тиристора, конденсатора и нескольких резисторов.
Тиристорный транзисторный регулятор
Транзисторы образуют импульсный сигнал, когда конденсаторное напряжение уравнивается с рабочим, они открываются. Электросигнал передается на вывод тиристора, после чего происходит разрядка конденсатора и запирание ключа. Вся последовательность действий повторяется циклически.
Обратите внимание! Величина задержки обратно пропорциональна мощности, которая поступает в нагрузку
Симисторный преобразователь мощности
Симистор — подвид тиристора, в котором несколько больше переходов p-n, из-за чего его принцип работы несколько иной. Но часто симистор считают отдельным видом стабилизатора мощности. Конструкция представляет собой 2 тиристора, подключенных параллельно и имеющих общее управление.
К сведению! Отсюда и происходит название «симистор» — «симметричные тиристоры». Иногда он еще называется ТРИАК (TRIAC).
Схема 2 параллельно подключенных тиристоров (слева) и симистора (справа)
На схеме видно, что у симистора вместо анода и катода указаны обозначения Т1 и Т2. Все потому, что понятия «катод» и «анод» в данном случае не имеют смысла, так как электроток может выходить через оба вывода.
Симисторные универсальные регуляторы имеют ряд плюсов, в их числе небольшая цена, долгий срок службы и отсутствие подвижных контактов, которые могут быть источниками помех. Но есть и недостатки: подверженность помехам и шумам, отсутствие поддержки высоких частот переключения.
Важно! Их не применяют в мощных промышленных установках, вместо этого там используют тиристоры или IGBT транзисторы
Фазовый способ трансформации
Фазовая трансформация происходит в так называемых диммерах. Используются такие приборы, к примеру, для изменения интенсивности освещения галогенных ламп или лампочек накаливания. Электросхема обычно воплощается на специальных микроконтроллерах, в которых используется своя интегрированная электросхема снижения напряжения. Благодаря своей конструкции диммеры могут плавно снижать мощность.
Светодиодный диммер
Из минусов таких устройств высокая чувствительность к помехам, высокий коэффициент пульсаций и маленький коэффициент мощности сигнала на выходе. Чтобы стабилизировать диммер, используются сдвоенные тиристоры.
Общие сведения
Электродвигатели переменного тока получили широкое распространение во многих сферах жизнедеятельности человека, а именно — модели асинхронного типа. Основное назначение двигателя как электрической машины — трансформация электрической энергии в механическую. Асинхронный в переводе означает неодновременный, так как частота вращения ротора отличается от частоты переменного напряжения (U) в статоре. Существует две разновидности асинхронных двигателей по типу питания:
- Однофазные.
- Трехфазные.
Однофазные применяются для домашних бытовых нужд, а трехфазные используются на производстве. В трехфазных асинхронных двигателях (далее ТАД) используются два вида роторов:
- замкнутые;
- фазные.
Замкнутые составляют около 95% от всех применяемых двигателей и обладают значительной мощностью (от 250 Вт и выше). Фазный тип конструктивно отличается от АД, но применяется достаточно редко по сравнению с первым. Ротор представляет собой стальную фигуру цилиндрической формы, которая помещается внутрь статора, причем на его поверхность напрессован сердечник.
Короткозамкнутый и фазный роторы
Впаянные или залитые в поверхность сердечника и накоротко замкнутые с торцов двумя кольцами высокопроводящие медные (для машин большой мощности) или алюминиевые стержни (для машин меньшей мощности) играют роль электромагнитов с полюсами, обращенными к статору. Стержни обмотки не имеют какой-либо изоляции, так как напряжение в такой обмотке нулевое.
Более часто используемый для стержней двигателей средней мощности алюминий отличается малой плотностью и высокой электропроводностью.
Для уменьшения высших гармоник электродвижущей силы (ЭДС) и исключения пульсации магнитного поля стержни ротора имеют определенным образом рассчитанный угол наклона относительно оси вращения. Если используется электромотор маленькой мощности, то пазы представляют собой закрытые конструкции, которые отделяют ротор от зазора с целью увеличения индуктивной составляющей сопротивления.
Ротор в виде фазного исполнения или типа характеризуются обмоткой, концы ее соединены по типу «звезда» и присоединены к контактным кольцам (на валу), по которым скользят графитовые щетки. Для устранения вихревых токов поверхность обмоток покрывается оксидной пленкой. Кроме того, в цепь обмотки ротора добавляется резистор, позволяющий изменять активное сопротивление (R) роторной цепи для уменьшения значений пусковых токов (Iп). Пусковые токи отрицательно влияют на электрическую и механическую части электромотора. Переменные резисторы, используемые для регулирования Iп:
- Металлические или ступенчатые с ручным переключением.
- Жидкостные (за счет погружения на глубину электродов).
Щетки, выполненные из графита, изнашиваются, и некоторые модели оборудованы короткозамкнутым конструктивным исполнением, которое поднимает щетки и замыкает кольца после запуска мотора. АД с фазным ротором являются более гибкими в плане регулирования Iп.
Конструктивные особенности
Асинхронный двигатель не имеет выраженных полюсов в отличие от электромотора постоянного тока. Число полюсов определяется количеством катушек в обмотках неподвижной части (статор) и способом соединения. В асинхронной машине с 4-мя катушками проходит магнитный поток. Статор выполняется из листов спецстали (электротехническая сталь), сводящих к нулю вихревые токи, при которых происходит значительный нагрев обмоток. Он приводит к массовому межвитковому замыканию.
Железняк или сердечник ротора напрессовывается непосредственно на вал. Между ротором и статором существует минимальный воздушный зазор. Обмотка ротора выполняется в виде «беличьей клетки» и сделана из медных или алюминиевых стержней.
В электромоторах мощностью до 100 кВт применяется алюминий, обладающий незначительной плотностью — для заливки в пазы сердечника ротора. Но несмотря на такое устройство, двигатели этого типа греются. Для решения этой проблемы используются вентиляторы для принудительного охлаждения, которые насаживаются на вал. Эти двигатели просты и надежны. Однако двигатели потребляют при пуске большой ток, в 7 раз больше номинального. Из-за этого они имеют низкий пусковой момент, так как большая часть энергии электричества идет на нагрев обмоток.
Электромоторы, у которых повышенный момент пуска, отличаются от обыкновенных асинхронных конструкцией ротора. Ротор изготавливается в виде двойной «беличьей клетки». Эти модели имеют сходство с фазными типами изготовления ротора. Он состоит из внутренней и наружной «беличьих клеток», причем наружная является пусковой и обладает большим активным и малым реактивным R. Наружная обладает незначительным активным и высоким реактивным R. При увеличении частоты вращения I переключается на внутреннюю клетку и работает в виде короткозамкнутого ротора.
Принцип работы
При протекании I по статорной обмотке в каждой из них создается магнитный поток (Ф). Эти Ф сдвинуты на 120 градусов относительно друг друга. Полученный Ф является вращающимся, создающим электродвижущую силу (ЭДС) в алюминиевых или медных проводниках. В результате этого и создается пусковой магнитный момент электромотора, и ротор начинает вращаться. Этот процесс называется еще в некоторых источниках скольжением (S), показывающим разность частоты n1 электромагнитного поля стартера, которое становится больше, чем частота, полученная при вращении ротора n2. Вычисляется в процентах и имеет вид: S = ((n1-n2)/n1) * 100%.
Значение S при начальном старте электромотора равно примерно 1, но при возрастании значений n2 становится меньше. В этот момент I в роторе уменьшается, следовательно, и ЭДС становится меньше номиналом. При холостом ходе S минимально, но при увеличении момента статического взаимодействия ротора и статора эта величина достигает критического значения. Если выполняется неравенство: S > Sкр, то мотор работает нормально, однако при превышении значения Sкр он может «опрокинуться». Опрокидывание вызывает нестабильную работу, но с течением времени исчезает.
Методы настройки оборотов
Для предотвращения отрицательного влияния во время пуска нужно уменьшить обороты электродвигателя 220 в или 380 в. Существует несколько способов достижения этой цели:
- Изменение значения R цепи ротора.
- Изменение U в обмотке статора.
- Изменение частоты U.
- Переключение полюсов.
При изменении значения R роторной части при помощи дополнительных резисторов приводит к снижению частоты вращения, но в результате этого уменьшается мощность. Следовательно, получается значительная потеря электроэнергии. Этот тип регулирования следует применять для фазного ротора.
При изменении значений U на статорной катушке возможно механическое или электрическое управление частотой вращения ротора. В этом случае используется регулятор U. Использование такого способа позволяет применять его только при вентиляторном характере нагрузки (например, регулятор оборотов вентилятора 220в). Для всех остальных случаев применяют трехфазные автоматические трансформаторы, позволяющие плавно изменять значения U, или тиристорные регуляторы.
Исходя из формулы зависимости частоты вращения от частоты питающего U можно производить регулирование количества оборотов ротора. Частота вращающегося магнитного поля статора вычисляется по формуле: Nст = 60 * f /p (f — частота тока питающей сети, p — число пар полюсов). Этот способ обеспечивает возможность плавного регулирования частоты вращения роторной части. Для получения высокого коэффициента полезного действия нужно изменять частоту и U. Этот способ является оптимальным для двигателей с короткозамкнутым ротором, так как потери мощности минимальны. Существует два метода изменения количества пар полюсов:
- В статор (в пазы) нужно уложить 2 обмотки с различным числом p.
- Обмотка состоит из двух частей, соединенных параллельно или последовательно.
Основным недостатком этого метода является поддержание ступенчатого характера изменения частоты электромотора с короткозамкнутым ротором.
Применение регулятора в быту и техника безопасности
Нельзя не сказать о том, что данная схема не обеспечивает гальванической развязки от сети, поэтому существует опасность поражения электрическим током. Это значит, что не стоит касаться руками элементов регулятора. Необходимо использовать изолированный корпус. Следует проектировать конструкцию вашего прибора так, чтобы по возможности вы могли спрятать её в регулируемом устройстве, найти свободное место в корпусе. Если регулируемый прибор располагается стационарно, то вообще имеет смысл подключить его через выключатель с регулятором яркости света. Такое решение частично обезопасит от поражения током, избавит от необходимости поиска подходящего корпуса, имеет привлекательный внешний вид и изготовлено промышленным методом.
В электротехнике довольно часто приходиться встречаться с задачами регулирования переменного напряжения, тока или мощности. Например, для регулирования частоты вращения вала коллекторного двигателя необходимо регулировать напряжение на его зажимах, для управления температурой внутри сушильной камеры нужно регулировать мощность, выделяемую в нагревательных элементах, для достижения плавного безударного пуска асинхронного двигателя – ограничивать его пусковой ток. Распространенным решением является устройство, называемое тиристорный регулятор.
Устройство и принцип действия однофазного тиристорного регулятора напряжения
Тиристорные регуляторы бывают однофазные и трехфазные соответственно для однофазных и трехфазных сетей и нагрузок. В этой статье мы рассмотрим простейший однофазный тиристорный регулятор, трехфазные – в других статьях. Итак, на рисунке 1 ниже представлен однофазный тиристорный регулятор напряжения:
Рис.1 Простой однофазный тиристорный регулятор с активной нагрузкой
Сам тиристорный регулятор обведен голубыми линиями и включает в себя тиристоры VS1-VS2 и систему импульсно-фазового управления ( далее – СИФУ). Тиристоры VS1-VS2 – полупроводниковые приборы, имеющие свойство быть закрытыми для протекания тока в нормальном состоянии и быть открытыми для протекания тока одной полярности при подаче напряжения управления на его управляющий электрод. Поэтому для работы в сетях переменного тока необходимо два тиристора, включенных разнонаправлено – один для протекания положительной полуволны тока, второй – отрицательной полуволны. Такое включение тиристоров называется встречно-параллельным.
Однофазный тиристорный регулятор с активной нагрузкой
Работает тиристорный регулятор так. В начальный момент времени подается напряжение L-N ( фаза и ноль в нашем примере), при этом импульсы управляющего напряжения на тиристоры не подаются, тиристоры закрыты, ток в нагрузке Rн отсутствует. После получения команды на запуск СИФУ начинает формировать импульсы управления по определенному алгоритму ( см.рис. 2).
Рис.2 Диаграмма напряжения и тока в активной нагрузке
Сначала система управления синхронизируется с сетью, то есть определяет момент времени, в который напряжение сети L-N равно нулю. Эта точка называется моментом перехода через ноль ( в иностранной литературе – Zero Cross). Далее отсчитывается определенное время T1 от момента перехода через ноль и подается импульс управления на тиристор VS1. При этом тиристор VS1 открывается и через нагрузку протекает ток по пути L-VS1-Rн-N. При достижении следующего перехода через ноль тиристор автоматически закрывается, так как не может проводить ток в обратном направлении. Далее начинается отрицательный полупериод сетевого напряжения. СИФУ снова отсчитывает время Т1 относительно уже нового момента перехода напряжения через ноль и формирует второй импульс управления уже тиристором VS2, который открывается, и через нагрузку протекает ток по пути N-Rн-VS2-L. Такой способ регулирования напряжения называется фазо-импульсный
.
Время Т1 называется временем задержки отпирания тиристоров, время Т2 – время проводимости тиристоров. Изменяя время задержки отпирания T1 можно регулировать величину выходного напряжения от нуля ( импульсы не подаются, тиристоры закрыты) до полного сетевого, если импульсы подаются сразу в момент перехода через ноль. Время задержки отпирания T1 варьируется в пределах 0..10 мс (10 мс – это длительность одного полупериода напряжения стандартной сети 50 Гц). Также иногда говорят о временах T1 и Т2, но оперируют при этом не временем, а электрическими градусами. Один полупериод составляет 180 эл.градусов.
Что представляет выходное напряжение тиристорного регулятора? Как видно из рисунка 2, оно напоминает « обрезки» синусоиды. Причем чем больше время Т1, тем меньше этот „обрезок“ напоминает синусоиду. Из этого следует важный практический вывод – при фазо-импульсном регулировании выходного напряжение несинусоидально. Это обуславливает ограничение области применения — тиристорный регулятор не может быть применен для нагрузок, не допускающих питание несинусоидальным напряжением и током. Так же на рисунке 2 красным цветом показана диаграмма тока в нагрузке. Поскольку нагрузка чисто активная, то форма тока повторяет форму напряжения в соответствии с законом Ома I=U/R.
Случай активной нагрузки является наиболее распространенным. Одно из самых частых применений тиристорного регулятора – регулирование напряжения в ТЭНах. Регулируя напряжение, изменяется ток и выделяемая в нагрузке мощность. Поэтому иногда такой регулятор также называют тиристорным регулятором мощности
. Это верно, но все-таки более верное название – тиристорный регулятор напряжения, так как именно напряжение регулируется в первую очередь, а ток и мощность – это величины уже производные.
Регулирование напряжения и тока в активно-индуктивной нагрузке
Мы рассмотрели простейший случай активной нагрузки. Зададимся вопросом, что изменится, если нагрузка будет иметь помимо активной еще и индуктивную составляющую? Например, активное сопротивление подключено через понижающий трансформатор ( рис.3). Это кстати очень распространенный случай.
Рис.3 Тиристорный регулятор работает на RL-нагрузку
Посмотрим внимательно на рисунок 2 из случая чисто активной нагрузки. На нем видно, что сразу после включения тиристора ток в нагрузке почти мгновенно нарастает от нуля до своего предельного значения, обусловленного текущим значением напряжения и сопротивления нагрузки. Из курса электротехники известно, что индуктивность препятствует такому скачкообразному нарастанию тока, поэтому диаграмма напряжения и тока будет иметь несколько отличный характер:
Рис.4 Диаграмма напряжения и тока для RL-нагрузки
После включения тиристора ток в нагрузке нарастает постепенно, благодаря чему кривая тока сглаживается. Чем больше индуктивность, тем более сглаженная кривая тока. Что это дает практически?
— Наличие достаточной индуктивности позволяет приблизить форму тока к синусоидальной, то есть индуктивность выполняет роль синус фильтра. В данном случае это наличие индуктивности обусловлено свойствами трансформатора, но часто индуктивность вводят преднамеренно в виде дросселя.
— Наличие индуктивности уменьшает величину помех, распространяемых тиристорным регулятором по проводам и в радиоэфир. Резкое, почти мгновенное ( в течение нескольких микросекунд) нарастание тока вызывает помехи которые могут препятствовать нормальной работе другого оборудования. А если питающая сеть « слабая», то бывает и совсем курьез – тиристорный регулятор может „глушить“ сам себя своими же помехами.
Читать также: Как заводить бензопилу stihl
— У тиристоров есть важный параметр – величина критической скорости нарастания тока di/dt. Например, для тиристорного модуля SKKT162 эта величина составляет 200 А/мкс. Превышение этой величины опасно, так как может привести к выходу тиристору из строя. Так вот наличие индуктивности дает возможность тиристору остаться в области безопасной работы, гарантированно не превысив предельную величину di/dt. Если же это условие не выполняется, то может наблюдаться интересное явление – выход тиристоров из строя, притом что ток тиристоров не превышает их номинального значения. Например, тот же SKKT162 может выходить из строя при токе в 100 А, хотя он может нормально работать до 200 А. Причиной будет превышение именно скорости нарастания тока di/dt.
Кстати, надо оговориться, что индуктивность в сети есть всегда, даже если нагрузка носит чисто активный характер. Ее наличие обусловлено, во-первых, индуктивностью обмоток питающей трансформаторной подстанции, во вторых, собственной индуктивностью проводов и кабелей и, в третьих, индуктивностью петли, образованной питающими и нагрузочными проводами и кабелями. И чаще всего этой индуктивности хватает, чтобы обеспечить условие непревышения di/dt критического значения, поэтому производители обычно не ставят в тиристорные регуляторы дроссели, предлагая их как опцию тем, кого беспокоит « чистота» сети и электромагнитная совместимость устройств к ней подключенных.
Также обратим внимание диаграмму напряжения на рисунке 4. На ней также видно, что после перехода через ноль на нагрузке появляется небольшой выброс напряжения обратной полярности. Причина его возникновения – затягивание спадания тока в нагрузке индуктивностью, благодаря чему тиристор продолжает быть открытым даже при отрицательной полуволне напряжения. Запирание тиристора происходит при спадания тока до нуля с некоторым запаздыванием относительно момента перехода через ноль.
Случай индуктивной нагрузки
Что будет если индуктивная составляющая много больше составляющей активной? Тогда можно говорить о случае чисто индуктивной нагрузки. Например, такой случай можно получить, отключив нагрузку с выхода трансформатора из предыдущего примера:
Рисунок 5 Тиристор регулятор с индуктивной нагрузкой
Трансформатор, работающий в режиме холостого хода – почти идеальная индуктивная нагрузка. В этом случае из-за большой индуктивности момент запирания тиристоров смещается ближе к середине полупериода, а форма кривой тока максимально сглаживается до почти синусоидальной формы:
Рисунок 6 Диаграммы тока и напряжение для случая индуктивной нагрузки
При этом напряжение на нагрузке почти равно полному сетевому, хотя время задержки отпирания составляет всего половину полупериода (90 эл.градусов) То есть при большой индуктивности можно говорить о смещении регулировочной характеристики. При активной нагрузке максимальное выходное напряжение будет при угле задержки отпирания 0 эл.градусов, то есть в момент перехода через ноль. При индуктивной нагрузке максимум напряжения можно получить при угле задержки отпирания 90 эл.градусов, то есть при отпирании тиристора в момент максимума сетевого напряжения. Соответственно, случаю активно-индуктивной нагрузки максимум выходного напряжения соответствует углу задержки отпирания в промежуточном диапазоне 0..90 эл.градусов.
Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания). Из этого тиристор в основном применяются для коммутирования переменного тока.
Частотное регулирование
Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.
Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.
На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.
Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.
Однофазные двигатели могут управляться:
- специализированными однофазными ПЧ
- трёхфазными ПЧ с исключением конденсатора
Преобразователи для однофазных двигателей
В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.
Это модель Optidrive E2
Для стабильного запуска и работы двигателя используются специальные алгоритмы.
При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:
Xc=1/2πfC
f — частота тока
С — ёмкость конденсатора
В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:
Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.
Преимущества специализированного частотного преобразователя:
- интеллектуальное управление двигателем
- стабильно устойчивая работа двигателя
- огромные возможности современных ПЧ:
- возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
- многочисленные защиты (двигателя и самого прибора)
- входы для датчиков (цифровые и аналоговые)
- различные выходы
- коммуникационный интерфейс (для управления, мониторинга)
- предустановленные скорости
- ПИД-регулятор
Минусы использования однофазного ПЧ:
- ограниченное управление частотой
- высокая стоимость
Регуляторы напряжения на тиристорах. Регулятор постоянного напряжения на тиристоре
Регуляторы, которые способны изменять напряжение в устройстве, применяются в самых различных областях. Простым примером можно считать контроль яркости свечения лампы. Дополнительно регуляторы такого типа задействованы в паяльниках. Там они играют роль блока контроля температуры. Часто регуляторы напряжения называют димерами. Связано это с тем, что принцип работы данных устройств построен на смене фазы.
Из чего состоит регулятор?
Основным элементом регулятора принято считать тиристор. Стабилитрон в системе, как правило, устанавливается один. В свою очередь, количество резисторов зависит от типа модели. Дополнительно в цепи должен быть предусмотрен резистор, который через предохранитель подсоединяется к конденсатору. На выходе системы имеются специальные резисторы переменного типа.
Принцип работы устройства
Начинается работа регулятора с появления искровых пробоев в системе. На этом этапе в ход включается тиристор. Его основной задачей является подавление сигнала. В этот момент он изменяет величину угла. В зависимости от настроек прибора далее происходит постепенное его наращивание. Увеличение угла осуществляется при помощи транзисторов. Для преобразования энергии в цепи устанавливается конденсатор. С перегрузками простой регулятор напряжения на тиристоре справляется при помощи предохранителя. Дополнительно в моделях могут использоваться диоды.
Выполняемые функции
Главной функцией регулятора напряжения принято считать изменение частоты пробоя. Дополнительно устройства способны влиять на показатель деионизации. Во многом это связано с различными режимами работы. Автоматическое выключение в моделях предусмотрено. Восстановление напряжения при этом происходит довольно быстро. Также следует отметить функцию первичного тока. Заключается она в контроле предельного значения напряжения. Функция вторичного тока подразумевает настройку угла отпирания тиристора. При аварийной ситуации регуляторы напряжения способны блокировать помехи. Диагностика блоков питания также может осуществляться.
Ручной режим работы
Для изменения параметров устройства вручную на регуляторе обычно имеются сенсорные панели. По умолчанию все показатели сбрасываются. Контроль значений при этом осуществляется при помощи управления центральным блоком. Алгоритмы задач зависят от конструктивных элементов устройства
Особенности автоматической эксплуатации
В автоматическом режиме нет необходимости настраивать предельное напряжение. Ток электрофильтра также будет регулироваться самостоятельно. Время деионизации в данном случае зависит от выбранного алгоритма. Шаг снижения напряжения будет зависеть тоже от него. Для нарастания тока вводятся отдельные настройки.
Самодельные регуляторы
Самодельный регулятор напряжения на тиристоре 12В сделать можно. Коэффициент полезного действия у него будет составлять не более 70%. Тиристоры проще всего использовать с маркировкой «КУ202». Стабилитроны устанавливают разной мощности. Многое в данной ситуации зависит от того, какие применяются резисторы. Наиболее простыми считают типы «МЛТ». В свою очередь, транзисторы следует брать как минимум серии «КТ3».
Если рассматривать резисторы серии «МЛТ-2», то у них показатель сопротивления находится на отметке 2 кОм. Таким образом, конденсатор в сети должен находиться хороший. Подбирая модель «К73», следует знать, что она рассчитана на напряжение 250 В. В данном случае предельное отклонение в сети не может превышать 10%. Предохранители в регуляторах обычно устанавливают на 10 А.
Регуляторы с динисторами
Регулятор напряжения 220В на тиристоре данного типа отличается от обычных устройств тем, что у него предусмотрено два вывода. Всего аналоговых каналов в системе установлено, как правило, три. За счет этого измерение амплитуды колебаний происходит довольно быстро. Выходное напряжение многих моделей достигает чуть более 230 В. Система фильтрации в регуляторах имеется. Для синхронизации в моделях есть только один канал.
Минимальное напряжение в нем поддерживается на уровне 210 В. Для дискретного управления устройством предусмотрено два канала. Параметр выходного тока довольно высокий за счет хорошего качества передачи сигнала. Минимальный угол открывания тиристора составляет 160 градусов. Максимум при этом можно выставлять 200 градусов. Потребляемая мощность регуляторов данного типа достигает не более 20 кВт. По габаритам можно сказать, что устройства являются не слишком громоздкими и весят в среднем около 2 кг.
Чем отличаются модели с триодными тиристорами
Триодный регулятор напряжения на тиристоре (схема показана ниже) отличается тем, что он не пропускает обратный сигнал. В результате контролировать импульсы тока довольно сложно. Регуляторы данного типа обычно используются на пару с устройствами низкочастотными. Работают они, как правило, в автоматическом режиме. Аналоговых каналов в данной конфигурации имеется три. Параметр входного напряжения колеблется в районе 24 В.
При этом максимальное отклонение в цепи может составлять 15%. Каналов синхронизации в устройстве имеется два. Таким образом, предельную частоту регулировать можно. Для дискретного управления есть два выходных канала. Минимальный угол тиристора в системе составляет 150 градусов. Максимум есть возможность выставлять его в среднем 180 градусов. Потребляемая мощность многих моделей равняется 220 В. По габаритам данные устройства довольно сильно отличаются.
Свойства регуляторов с запираемыми тиристорами
Данные регуляторы напряжения на тиристорах называются запираемыми, потому что они способны выключаться при помощи импульса тока. В это время также происходит изменение обратного тока. К недостаткам данного типа следует отнести малый коэффициент полезного действия. Большинство моделей данного типа выпускаются однофазными, однако двухфазные модификации также существуют.
Предельное напряжение регуляторы поддерживают на уровне 110 В. Максимум отклонения в цепи может составлять только 10%. Номинальную частоту регуляторы напряжения на тиристорах способны поддерживать на отметке 50 Гц. Нагрузку тока прибор может выдержать 1 А. Автоматическое управление во многих моделях производителем предусмотрено. В результате можно изменять дискретную величину тока. Таким образом, есть возможность напрямую влиять на переменный цикл, от которого зависит мощность электродвигателя.
Системы индикации в устройствах имеются самые разнообразные. Чаще всего на рынке можно встретить четырехразрядные дисплеи. С их помощью можно довольно комфортно наблюдать за всеми показателями регулятора напряжения. Также существуют ступенчатые системы индикации. Их особенность заключается в быстрой обработке данных. Для более точных показателей в регуляторы напряжения на тиристорах устанавливают штриховые индикаторные системы. Они также довольно быстро обрабатывают информацию. Наконец, последним типом индикаторных систем можно назвать светодиодные приборы.
Комбинированно-выключаемые регуляторы
Комбинированно-выключаемый регулятор напряжения на тиристоре (схема показана ниже) очень схож с запираемыми устройствами. При этом выключение у него занимает немного больше времени. Большинство моделей на сегодняшний день изготавливаются однофазными. Параметр подаваемого напряжения у них составляет в среднем около 120 В. Предельная частота таких регуляторов колеблется в районе 30 Гц. Автоматическое управление у них предусмотрено.
Дополнительно следует отметить возможность эксплуатации при помощи обратной связи. В результате качество выходного сигнала значительно увеличивается. Резистивную нагрузку регуляторы напряжения на тиристорах выдерживают плохо, и это следует учитывать. Потребляемая мощность приборов в среднем составляет 8 Вт. Системы индикации, как правило, предусмотрены сенсорные. Однако есть штриховые конфигурации для отображения данных. Дополнительно в регуляторах имеются вентиляторы для охлаждения резисторов. С их помощью можно добиться существенного повышения коэффициента полезного действия. Выпрямители с тиристорным регулятором напряжения данного типа на электродвигатель устанавливаться также могут.
Модели с симисторами
Тиристоры в таких моделях располагаются параллельно друг другу. Пропускная способность тока в этом случае значительно возрастает. Напряжение в цепи может проходить во всех направлениях. Разнополярные импульсы регулятором воспринимаются хорошо из-за большого количества аналоговых каналов. Параметр входного напряжения составляет обычно 50 Вт.
Каналов для синхронизации в устройстве предусмотрено 3. За счет них напряжение в цепи выдерживается большое. Показатель допустимого тока равняется 3 А. Сопротивление транзисторами поддерживается на отметке 4 МПа. Напряжение питания системы составляет во многих моделях 240 В. Таким образом, предельная частота может находиться на уровне 45 Гц. Угол наклона тиристора в регуляторе зависит исключительно от величины напряжения входного сигнала.
Обзор лавинных регуляторов
Лавинный регулятор постоянного напряжения на тиристоре называется так из-за того, что характеристики устройства нарастают со временем, и показатели становятся все большими. Отличительной особенностью данных устройств можно смело считать хорошую устойчивость к различным колебаниям. За счет этого модели данного типа абсолютно не боятся перенапряжений. Сферы использования лавинных регуляторов довольно обширны. Чаще всего их применяют для нормальной работы высокочастотного оборудования по перекачке жидкости.
Среднее количество аналоговых каналов составляет 3. Входное напряжение в цепи поддерживается на уровне 230 В. Для синхронизации в схеме имеется только 1 канал. Предельная частота при этом является довольно стабильной. Если рассматривать регулятор напряжения на тиристоре «Ку202н», то параметр допустимого тока колеблется в районе 2 А. Сопротивление в цепи выдерживается в среднем около 3 МПа. Напряжение питания составляет в моделях 230 В. Потребляемая мощность при этом зависит от производителя.
Простейший регулятор мощности на тиристоре
Данный регулятор напряжения собирался мной для использования в различных направлениях: регулирование скорости вращения двигателя, изменение температуры нагрева паяльника и т.д. Возможно название статьи покажется не совсем корректным, и эта схема иногда встречается как регулятор мощности, но тут надо понимать, что по сути происходит регулировка фазы. То есть времени, в течении которого сетевая полуволна проходит в нагрузку. И с одной стороны регулируется напряжение (через скважность импульса), а с другой – мощность, выделяемая на нагрузке.Следует учесть, что наиболее эффективно данный прибор будет справляться с резистивной нагрузкой – лампы, нагреватели и т.д. Потребители тока индуктивного характера тоже можно подключать, но при слишком малой его величине надёжность регулировки снизится.
Схема данного самодельного тиристорного регулятора не содержит дефицитных деталей. При использовании, указанных на схеме выпрямительных диодов, прибор может выдержать нагрузку до 5А (примерно 1 кВт) с учетом наличия радиаторов.
Для увеличения мощности подключаемого устройства нужно использовать другие диоды или диодные сборки, рассчитанные на необходимый вам ток.
Так-же нужно заменять и тиристор, ведь КУ202 рассчитан на предельный ток до 10А. Из более мощных рекомендуются отечественные тиристоры серии Т122, Т132, Т142 и другие аналогичные.
Деталей в тиристорном регуляторе не так уж и много, в принципе допустим навесной монтаж, однако на печатной плате конструкция будет смотреться красивее и удобнее. Рисунок платы в формате LAY качаем тут. Стабилитрон Д814Г меняется на любой, с напряжением 12-15В.
В качестве корпуса использовал первый попавшийся – подходящий по размерам. Для подключения нагрузки вывел наружу разъем для вилки. Регулятор работает надежно и действительно изменяет напряжение от 0 до 220 В. Автор конструкции: SssaHeKkk.
Обсудить статью ТИРИСТОРНЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ
В современных радиолюбительских схемах широкое распространение получили различные виды деталей, в том числе и тиристорный регулятор мощности. Чаще всего эта деталь используется в паяльниках на 25-40 ватт, которые в обычных условиях легко перегреваются и становятся непригодными к работе. Эта проблема легко решается с помощью регулятора мощности, позволяющего выставлять точную температуру.
Применение тиристорных регуляторов
Как правило, тиристорные регуляторы мощности применяются для улучшения рабочих свойств обычных паяльников. Современные конструкции, оснащенные множеством функций, отличаются высокой стоимостью, а их использование будет неэффективным при небольших объемах паяльных работ. Поэтому, более целесообразным будет оборудование обычного паяльника тиристорным регулятором.
Регулятор мощности на тиристоре широко применяется в системах регулировки яркости светильников. На практике они представляют собой обычные настенные выключатели с вращающейся ручкой-регулятором. Однако такие приспособления способны нормально работать лишь с обычными лампами накаливания. Они совершенно не воспринимаются современными компактными люминесцентными лампами, из-за расположенного внутри них выпрямительного моста с электролитическим конденсатором. Тиристор просто не будет работать во взаимодействии с этой схемой.
Такие же непредсказуемые результаты получаются и при попытках отрегулировать яркость светодиодных ламп. Поэтому для регулируемого источника освещения наиболее оптимальным вариантом будет использование обычных ламп накаливания.
Существуют и другие области применения тиристорных регуляторов мощности. Среди них следует отметить возможность регулировки ручного электроинструмента. Регулирующие устройства устанавливаются внутри корпусов и позволяют изменять количество оборотов дрели, шуруповерта, перфоратора и прочего инструмента.
Принцип работы тиристора
Действие регуляторов мощности тесно связано с принципом работы тиристора. На радиосхемах он обозначается значком, напоминающим обычный диод. Каждому тиристору свойственна односторонняя проводимость и, соответственно, способность к выпрямлению переменного тока. Участие в этом процессе становится возможным при условии подачи к управляющему электроду положительного напряжения. Сам управляющий электрод располагается со стороны катода. В связи с этим, тиристор ранее носил название управляемого диода. До подачи управляющего импульса, тиристор будет закрытым в любом направлении.
Для того чтобы визуально определить исправность тиристора, его включают в общую цепь со светодиодом через источник постоянного напряжения в 9 вольт. Дополнительно вместе со светодиодом подключается ограничительный резистор. Специальная кнопка замыкает цепь и напряжение с делителя подается к управляющему электроду тиристора. В результате, тиристор открывается и светодиод начинает излучать свет.
При отпускании кнопки, когда она перестает удерживаться в нажатом положении, свечение должно продолжаться. В случае повторного или неоднократного нажатия кнопки ничего не изменится – светодиод все так же будет светить с одинаковой яркостью. Это свидетельствует об открытом состоянии тиристора и его технической исправности. Он будет находиться в открытом положении до того момента, пока подобное состояние не прервется под влиянием внешних воздействий.
В некоторых случаях могут быть исключения. То есть при нажатии кнопки светодиод загорается, а при отпускании кнопки – он гаснет. Такая ситуация становится возможной из-за тока, проходящего через светодиод, значение которого меньше по сравнению с током удержания тиристора. Чтобы схема работала нормально, светодиод рекомендуется заменить лампой накаливания, что приведет к увеличению тока. Другим вариантом будет подбор тиристора, у которого ток удержания будет меньше. Параметр тока удержания у различных тиристоров может быть с большим разбросом, в таких случаях приходится подбирать элемент для каждой конкретной схемы.
Схема простейшего регулятора мощности
Тиристор участвует в выпрямлении переменного напряжения так же, как и обыкновенный диод. Это приводит к однополупериодному выпрямлению в незначительных пределах с участием одного тиристора. Для достижения желаемого результата, с помощью регуляторов мощности осуществляется управление двумя полупериодами напряжения сети. Это становится возможным благодаря встречно-параллельному включению тиристоров. Кроме того, тиристоры могут включаться в цепь диагонали выпрямительного моста.
Простейшую схему тиристорного регулятора мощности лучше всего рассматривать на примере регулировки мощности паяльника. Нет смысла начинать регулировку прямо с нулевой отметки. В связи с этим регулировать можно только один полупериод положительного сетевого напряжения. Прохождение отрицательного полупериода осуществляется через диод, без каких-либо изменений, непосредственно к паяльнику, обеспечивая его половинную мощность.
Прохождение положительного полупериода происходит через тиристор, за счет чего и выполняется регулировка. В цепи управления тиристором присутствуют простейшие элементы в виде резисторов и конденсатора. Зарядка конденсатора происходит от верхнего провода схемы, через резисторы и конденсатор, нагрузку и нижний провод схемы.
Управляющий электрод тиристора соединяется с плюсовым выводом конденсатора. Когда на конденсаторе напряжение возрастает до значения, позволяющего включать тиристор, происходит его открытие. В результате, в нагрузку пропускается какая-то часть положительного полупериода напряжения. Одновременно наступает разрядка конденсатора и подготовка к следующему циклу.
Для регулировки скорости заряда конденсатора используется переменный резистор. Чем быстрее произойдет зарядка конденсатора до значения напряжения, при котором открывается тиристор, тем раньше наступит открытие тиристора. Следовательно, в нагрузку поступит большее количество положительного полупериода напряжения. Данная схема, в которой используется тиристорный регулятор мощности, служит основой для других схем, применяющихся в различных областях.
Тиристорный регулятор мощности своими руками
Простой регулятор мощности на тиристоре, электрическая схема которого приведена на рисунке 5.2.1, дозволяет изменять мощность осветительных и нагревательных устройств в диапазоне от 0 до 100%. При приведенных на электросхеме значениях радиоэлементах мощность нагрузки может составлять 150-200 ватт.
Переменный резистор R2 должен быть рассчитан на мощность более 2 Вт. Если диодный мостик VD1 поменять диодами КД202К, то мощность нагрузки возможно поднять до 500 ватт. Электросхему возможно сделать проще, если применить в роли регулирующего элемента симистор. Модификация такого регулятора изображена на рисунке 5.2.2.
Мощность нагрузки должна быть не более 500 ватт. Правда этим электрическим схемам присущи один недостаток, как малая точность регулировки. Помимо того, переменный резистор R2 функционирует в тяжелом тепловом режиме. Электрическая схема, изображенная на рисунке 5.2.3, освобождена от данных изъянов.
Она обеспечивает фазовое управление симистором VS1. Управлением симистора обеспечивает генератор пилообразного напряж. на транзисторах VT1, VT2, подключенных по схеме, равноценной однопереходному транзистору.Частота функционирования генератора синхронизирована с частотой следования напряжения электросети — 50 Гц.
Длительность пилообразных импульсов, а следовательно и момент открытого состояния симистора VS1 возможно менять, меняя момент заряда емкости С1 с помощью переменного резистора R1. Максимальная мощность нагрузки должна быть менее 500 ватт.
Простой тиристорный регулятор мощности своими руками. Регулятор напряжения на тиристоре. Область использования тиристорных устройств
Содержание:В современных радиолюбительских схемах широкое распространение получили различные виды деталей, в том числе и тиристорный регулятор мощности. Чаще всего эта деталь используется в паяльниках на 25-40 ватт, которые в обычных условиях легко перегреваются и становятся непригодными к работе. Эта проблема легко решается с помощью регулятора мощности, позволяющего выставлять точную температуру.
Применение тиристорных регуляторов
Как правило, тиристорные регуляторы мощности применяются для улучшения рабочих свойств обычных паяльников. Современные конструкции, оснащенные множеством функций, отличаются высокой стоимостью, а их использование будет неэффективным при небольших объемах . Поэтому, более целесообразным будет оборудование обычного паяльника тиристорным регулятором.
Регулятор мощности на тиристоре широко применяется в системах светильников. На практике они представляют собой обычные настенные выключатели с вращающейся ручкой-регулятором. Однако такие приспособления способны нормально работать лишь с обычными лампами накаливания. Они совершенно не воспринимаются современными компактными люминесцентными лампами, из-за расположенного внутри них выпрямительного моста с электролитическим конденсатором. Тиристор просто не будет работать во взаимодействии с этой схемой.
Такие же непредсказуемые результаты получаются и при попытках отрегулировать яркость светодиодных ламп. Поэтому для регулируемого источника освещения наиболее оптимальным вариантом будет использование обычных ламп накаливания.
Существуют и другие области применения тиристорных регуляторов мощности. Среди них следует отметить возможность регулировки ручного электроинструмента. Регулирующие устройства устанавливаются внутри корпусов и позволяют изменять количество оборотов дрели, шуруповерта, перфоратора и прочего инструмента.
Принцип работы тиристора
Действие регуляторов мощности тесно связано с принципом работы тиристора. На радиосхемах он обозначается значком, напоминающим обычный диод. Каждому тиристору свойственна односторонняя проводимость и, соответственно, способность к выпрямлению переменного тока. Участие в этом процессе становится возможным при условии подачи к управляющему электроду положительного напряжения. Сам управляющий электрод располагается со стороны катода. В связи с этим, тиристор ранее носил название управляемого диода. До подачи управляющего импульса, тиристор будет закрытым в любом направлении.
Для того чтобы визуально определить исправность тиристора, его включают в общую цепь со светодиодом через источник постоянного напряжения в 9 вольт. Дополнительно вместе со светодиодом подключается ограничительный резистор. Специальная кнопка замыкает цепь и напряжение с делителя подается к управляющему электроду тиристора. В результате, тиристор открывается и светодиод начинает излучать свет.
При отпускании кнопки, когда она перестает удерживаться в нажатом положении, свечение должно продолжаться. В случае повторного или неоднократного нажатия кнопки ничего не изменится — светодиод все так же будет светить с одинаковой яркостью. Это свидетельствует об открытом состоянии тиристора и его технической исправности. Он будет находиться в открытом положении до того момента, пока подобное состояние не прервется под влиянием внешних воздействий.
В некоторых случаях могут быть исключения. То есть при нажатии кнопки светодиод загорается, а при отпускании кнопки — он гаснет. Такая ситуация становится возможной из-за тока, проходящего через светодиод, значение которого меньше по сравнению с током удержания тиристора. Чтобы схема работала нормально, светодиод рекомендуется заменить лампой накаливания, что приведет к увеличению тока. Другим вариантом будет подбор тиристора, у которого ток удержания будет меньше. Параметр тока удержания у различных тиристоров может быть с большим разбросом, в таких случаях приходится подбирать элемент для каждой конкретной схемы.
Схема простейшего регулятора мощности
Тиристор участвует в выпрямлении переменного напряжения так же, как и обыкновенный диод. Это приводит к однополупериодному выпрямлению в незначительных пределах с участием одного тиристора. Для достижения желаемого результата, с помощью регуляторов мощности осуществляется управление двумя полупериодами напряжения сети. Это становится возможным благодаря встречно-параллельному включению тиристоров. Кроме того, тиристоры могут включаться в цепь диагонали выпрямительного моста.
Простейшую схему тиристорного регулятора мощности лучше всего рассматривать на примере регулировки мощности паяльника. Нет смысла начинать регулировку прямо с нулевой отметки. В связи с этим регулировать можно только один полупериод положительного сетевого напряжения. Прохождение отрицательного полупериода осуществляется через диод, без каких-либо изменений, непосредственно к паяльнику, обеспечивая его половинную мощность.
Прохождение положительного полупериода происходит через тиристор, за счет чего и выполняется регулировка. В цепи управления тиристором присутствуют простейшие элементы в виде резисторов и конденсатора. Зарядка конденсатора происходит от верхнего провода схемы, через резисторы и конденсатор, нагрузку и нижний провод схемы.
Управляющий электрод тиристора соединяется с плюсовым выводом конденсатора. Когда на конденсаторе напряжение возрастает до значения, позволяющего включать тиристор, происходит его открытие. В результате, в нагрузку пропускается какая-то часть положительного полупериода напряжения. Одновременно наступает разрядка конденсатора и подготовка к следующему циклу.
Для регулировки скорости заряда конденсатора используется переменный резистор. Чем быстрее произойдет зарядка конденсатора до значения напряжения, при котором открывается тиристор, тем раньше наступит открытие тиристора. Следовательно, в нагрузку поступит большее количество положительного полупериода напряжения. Данная схема, в которой используется тиристорный регулятор мощности, служит основой для других схем, применяющихся в различных областях.
Тиристорный регулятор мощности своими руками
Предыстория создания девайса такова. Задумал я как то покрасить крыло своего автомобиля. Приехал в гараж, подготовился. Так как погода была прохладная, то для быстрой сушки крыла его нужно было нагреть. Из подручных средств, для бесконтактной сушки, я не нашёл ни чего лучше чем прожектор ПКН мощностью 1 кВт. Однако его лампа выдерживала 10-15 включений. А такую лампу в моём городе найти не такая уж легкая задачка. По этой причине я вооружился давно знакомой мне микросхемкой К1182ПМ1, двумя завалявшимися тиристорами и сделал устройство для плавного включения ПКН. Сначала было собрано устройство без внешних органов управления. Но позднее я подумал, что такую мощную штуковину можно использовать не только как плавный пуск, но и как регулятор мощности для устройств, потребляющих чисто активную нагрузку. Например, электронагреватель. И тогда было принято решение «прикрутить» к устройству ещё и переменный резистор для ручной регулировки мощности. Получалось следующее.
Схема устройства проста.
На ней к сети ~220 В последовательно подключается предохранитель на 8 А, нагрузка в виде лампы, и 2 тиристора Т142-80-4-2 включенные встречно параллельно. Для того чтобы через цепи управления каждого из тиристоров, в нерабочий полупериод, не протекал ток управления, используется развязка из диодов КД411ВМ. Это гарантирует правильную работу тиристоров во время рабочего полупериода сетевого напряжения.
Резистор 600 Ом используется для ограничения тока управления. А при помощи регулировочного резистора 68 кОм меняется мощность, отдаваемая в нагрузку (в моём случае в качестве нагрузки выступает прожектор).
Принцип работы устройства можно понять из рисунка. Для регулировки мощности изменяется угол открытия тиристоров. Чем больше угол α, тем меньшая часть синусоиды пропускается в нагрузку. Когда α = 180 0 оба тиристора полностью закрыты и мощность в нагрузку не передаётся. Когда α = 0 0 в нагрузку поступает вся синусоида полностью и соответственно передаётся полная мощность. В первый момент после включения нагрузки угол α всегда равен 180 0 . Далее он начинает плавно уменьшаться до значения соответствующего текущему положению регулировочного резистора. За счёт этого и достигается плавный пуск.
Замечу, что данное устройство можно использовать только с активной нагрузкой, так как в случае реактивной нагрузки используются несколько иные способы регулирования мощности.
Максимально допустимый средний ток в открытом состоянии для данных тиристоров составляет 80 А. Не трудно подсчитать, что максимальная мощность, которую можно через них пропустить, равна Р=220*80=17600 Вт. Однако это теоретическое значение, которое я не проверял на практике и поэтому не возьмусь утверждать что система выдержит мощность в 17 кВт. На практике мной подключалась нагрузка в 1 кВт. При этом радиаторы совершенно не грелись. Такие большие радиаторы я применил только по той причине, что тиристоры уже были прикручены к ним. Поэтому для данной конструкции подойдут и радиаторы, гораздо меньшего размера.
На этой фотографии к устройству ещё не подключена розетка и сетевой шнур.
P.S. Первоначально печатка разводилась под другие диоды. Но потом жизнь внесла свои коррективы. Поэтому, даже если вы будете ставить диоды КД411ВМ, то печатку лучше переделать под их реальные размеры. Хотя у меня и так влезло
Разработано и изготовлено Дмитрием Чупановым ( [email protected])
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
---|---|---|---|---|---|---|
Микросхема | К1182ПМ1 | 1 | В блокнот | |||
Тиристор | Т142-80-4-2 | 2 | В блокнот | |||
Диод | КД411В | 4 | В блокнот | |||
Электролитический конденсатор | 100 мкФ 16В | 1 | В блокнот | |||
Конденсатор | 1мкФ 5В | 2 | В блокнот | |||
Переменный резистор | 68 кОм | 1 | В блокнот | |||
Резистор | 3.3 кОм | 1 |
Здравствуйте, уважаемые хабровчане!
Данный пост посвящен созданию устройства для регулировки мощности бытовых приборов (лампочки, паяльники, обогреватели, электроплитки). Конструкция устройства очень простая, количество элементов минимальное, его способен собрать даже начинающий. Без радиаторов мощность нагрузки до 1 кВт, с использованием радиаторов можно увеличить до 1,5 кВт. Мной устройство было собрано за один вечер. Ниже видео, демонстрирующее работу.
Подробности:
Девайс был размещен в корпусе от старого CD-ROM-а. Для передней и задней стороны корпуса необходимо вырезать пластмассовые стороны 4х14,5 см., и либо прикрутить либо приклеить к корпусу. Девайс в сборе выгладит так:
Перечень элементов, принципиальная схема и описание работы:
Нам понадобится:- Тиристоры: КУ-202Н, М — 2 шт.
- Динисторы: КН-102А, Б — 2 шт
- Резисторы: Любые, R=220 Ом, мощностью 0,5 Вт
- Конденсаторы: 0,1 мкФ, 400 В — 2 шт.
- Любой переменный резистор сопротивлением 220 — 330 кОм (в случае с 220 кОм нижний предел регулировки будет выше чем 330 кОм)
- Провод с вилкой для подключения к сети и розетка для подключения нагрузки
- Для защиты можно добавить предохранитель
Данный регулятор использует принцип фазового управления. Он основан на изменении момента включения тиристора относительно перехода сетевого напряжения через ноль. На начало полу периода тиристор закрыт, ток через него не идет. Через некоторое время (в зависимости от текущего сопротивления переменного резистора) напряжение на конденсаторе достигает уровня необходимого для открытия динистора, он открывается и в свою очередь открывает тиристор. Для второго полу периода все аналогично.
График прохождения тока через нагрузку:
Подробности сборки и окончательный вид:
На момент сборки устройства в моем арсенале не было приспособлений для изготовления печатных плат, поэтому сборка делалась на куске старой платы, на которой до этого был какой то прибор. После соединения всех деталей и упаковки всего внутрь корпуса от CD-ROM-а готовое изделие внутри выглядит вот так:Итоги:
За очень короткое время собрана полезная вещь из старых деталей. Но есть и некоторые недостатки, это то что пределы регулировки немного изменяются в зависимости от нагрузки, наличие радиопомех и некоторая нестабильность на небольшом участке регулировки.Теги: регулятор, сделай сам
Испытанная временем схема регулирования тока мощных потребителей отличается простотой в наладке, надежностью в эксплуатации и широкими потребительскими возможностями. Она хорошо подходит для управления режимом сварки, для пуско-зарядных устройств и для мощных узлов автоматики.
Принципиальная схема
При питании мощных нагрузок постоянным током часто применяется схема (рис.1) выпрямителя на четырех силовых вентилях. Переменное напряжение подводится к одной диагонали «моста», выходное постоянное (пульсирующее) напряжение снимается с другой диагонали. В каждом полупериоде работает одна пара диодов (VD1-VD4 или VD2-VD3).
Это свойство выпрямительного «моста» существенно: суммарная величина выпрямленного тока может достигать удвоенной величины предельного тока для каждого диода. Предельное напряжение диода не должно быть ниже амплитудного входного напряжения.
Поскольку класс напряжения силовых вентилей доходит до четырнадцатого (1400 В), с этим для бытовой электросети проблем нет. Существующий запас по обратному напряжению позволяет использовать вентили с некоторым перегревом, с малыми радиаторами (не злоупотреблять!).
Рис. 1. Схема выпрямителя на четырех силовых вентилях.
Внимание! Силовые диоды с маркировкой «В» проводят ток, «подобно» диодам Д226 (от гибкого вывода к корпусу), диоды с маркировкой «ВЛ» — от корпуса к гибкому выводу.
Использование вентилей различной проводимости позволяет выполнить монтаж всего на двух двойных радиаторах. Если же с корпусом устройства соединить «корпуса» вентилей «ВЛ» (выход «минус»), то останется изолировать всего один радиатор, на котором установлены диоды с маркировкой «В». Такая схема проста в монтаже и «наладке», но возникают трудности, если приходится регулировать ток нагрузки.
Если со сварочным процессом все понятно (присоединять «балласт»), то с пусковым устройством возникают огромные проблемы. После пуска двигателя огромный ток не нужен и вреден, поэтому необходимо его быстро отключить, так как каждое промедление укорачивает срок службы батареи (нередко батареи взрываются!).
Очень удобна для практического исполнения схема, показанная на рис.2, в которой функции регулирования тока выполняют тиристоры VS1, VS2, в этот же выпрямительный мост включены силовые вентили VD1, VD2. Монтаж облегчается тем, что каждая пара «диод-тиристор» крепится на своем радиаторе. Радиаторы можно применить стандартные (промышленного изготовления).
Другой путь — самостоятельное изготовление радиаторов из меди, алюминия толщиной свыше 10 мм. Для подбора размеров радиаторов необходимо собрать макет устройства и «погонять» его в тяжелом режиме. Неплохо, если после 15-минутной нагрузки корпуса тиристоров и диодов не будут «обжигать» руку (напряжение в этот момент отключить!).
Корпус устройства необходимо выполнить так, чтобы обеспечивалась хорошая циркуляция нагретого устройством воздуха. Не помешает установка вентилятора, который «помогает» прогонять воздух снизу вверх. Удобны вентиляторы, устанавливаемые в стойках с компьютерными платами либо в «советских» игровых автоматах.
Рис. 2. Схема регулятора тока на тиристорах.
Возможно выполнение схемы регулируемого выпрямителя полностью на тиристорах (рис.3). Нижняя (по схеме) пара тиристоров VS3, VS4 запускается импульсами от блока управления.
Импульсы приходят одновременно на управляющие электроды обоих тиристоров. Такое построение схемы «диссонирует» с принципами надежности, но время подтвердило работоспособность схемы («сжечь» тиристоры бытовая электросеть не может, поскольку они выдерживают импульсный ток 1600 А).
Тиристор VS1 (VS2) включен как диод — при положительном напряжении на аноде тиристора через диод VD1 (или VD2) и резистор R1 (или R2) на управляющий электрод тиристора будет подан отпирающий ток. Уже при напряжении в несколько вольт тиристор откроется и до окончания полуволны тока будет проводить ток.
Второй тиристор, на аноде которого было отрицательное напряжение, не будет запускаться (это и не нужно). На тиристоры VS3 и VS4 из схемы управления приходит импульс тока. Величина среднего тока в нагрузке зависит от моментов открывания тиристоров — чем раньше приходит открывающий импульс, тем большую часть периода соответствующий тиристор будет открыт.
Рис. 3. Схемы регулируемого выпрямителя полностью на тиристорах.
Открывание тиристоров VS1, VS2 через резисторы несколько «притупляет» схему: при низких входных напряжениях угол открытого состояния тиристоров оказывается малым — в нагрузку проходит заметно меньший ток, чем в схеме с диодами (рис.2).
Таким образом, данная схема вполне пригодна для регулировки сварочного тока по «вторичке» и выпрямления сетевого напряжения, где потеря нескольких вольт несущественна.
Эффективно использовать тиристорный мост для регулирования тока в широком диапазоне питающих напряжений позволяет схема, показанная на рис.4,
Устройство состоит из трех блоков:
- силового;
- схемы фазоимпульсного регулирования;
- двухпредельного вольтметра.
Трансформатор Т1 мощностью 20 Вт обеспечивает питание блока управления тиристорами VS3 и VS4 и открывание «диодов» VS1 и VS2. Открывание тиристоров внешним блоком питания эффективно при низком (автомобильном) напряжении в силовой цепи, а также при питании индуктивной нагрузки.
Рис. 4. Тиристорный мост для регулировки тока в широком диапазоне.
Рис. 5. Принципиальная схема блока управления тиристорами.
Открывающие импульсы тока с 5-вольтовых обмоток трансформатора подводятся в противофазе к управляющим электродам VS1, VS2. Диоды VD1, VD2 пропускают к управляющим электродам только положительные полуволны тока.
Если фазировка открывающих импульсов «подходит», то тиристорный выпрямительный мост будет работать, иначе тока в нагрузке не будет.
Этот недостаток схемы легко устраним: достаточно повернуть наоборот сетевую вилку питания Т1 (и пометить краской, как нужно подключать вилки и клеммы устройств в сеть переменного тока). При использовании схемы в пуско-зарядном устройстве заметно увеличение отдаваемого тока по сравнению со схемой рис.3.
Очень выгодно наличие слаботочной цепи (сетевого трансформатора Т1). Разрывание тока выключателем S1 полностью обесточивает нагрузку. Таким образом, прервать пусковой ток можно маленьким концевым выключателем, автоматическим выключателем или слаботочным реле (добавив узел автоматического отключения).
Это очень существенный момент, поскольку разрывать сильноточные цепи, требующие для прохождения тока хорошего контакта, намного труднее. Мы не случайно вспомнили о фазировке трансформатора Т1. Если бы регулятор тока был «встроен» в зарядно-пусковое устройство или в схему сварочного аппарата, то проблема фазировки была бы решена в момент наладки основного устройства.
Наше устройство специально выполнено широкопрофильным (как пользование пусковым устройством определяется сезоном года, так и сварочные работы приходится вести нерегулярно). Приходится управлять режимом работы мощной электродрели и питать нихромовые обогреватели.
На рис.5 показана схема блока управления тиристорами. Выпрямительный мостик VD1 подает в схему пульсирующее напряжение от 0 до 20 В. Это напряжение через диод VD2 подводится к конденсатору С1, обеспечивается постоянное напряжение питания мощного транзисторного «ключа» на VT2, VT3.
Пульсирующее напряжение через резистор R1 подводится к параллельно соединенным резистору R2 и стабилитрону VD6. Резистор «привязывает» потенциал точки «А» (рис.6) к нулевому, а стабилитрон ограничивает вершины импульсов на уровне порога стабилизации. Ограниченные импульсы напряжения заряжают конденсатор С2 для питания микросхемы DD1.
Эти же импульсы напряжения воздействуют на вход логического элемента. При некотором пороге напряжения логический элемент переключается. С учетом инвертирования сигнала на выходе логического элемента (точка «В») импульсы напряжения будут кратковременными -около момента нулевого входного напряжения.
Рис. 6. Диаграмма импульсов.
Следующий элемент логики инвертирует напряжение «В», поэтому импульсы напряжения «С» имеют значительно большую длительность. Пока действует импульс напряжения «С», через резисторы R3 и R4 происходит заряд конденсатора C3.
Экспоненциально нарастающее напряжение в точке «Е», в момент перехода через логический порог, «переключает» логический элемент. После инвертирования вторым логическим элементом высокому входному напряжению точки «Е» соответствует высокое логическое напряжение в точке «F».
Двум различным величинам сопротивления R4 соответствуют две осциллограммы в точке «Е»:
- меньшее сопротивление R4 — большая крутизна — Е1;
- большее сопротивление R4 — меньшая крутизна — Е2.
Следует обратить внимание также на питание базы транзистора VT1 сигналом «В», во время снижения входного напряжения до нуля транзистор VT1 открывается до насыщения, коллекторный переход транзистора разряжает конденсатор С3 (происходит подготовка к зарядке в следующем полупериоде напряжения). Таким образом, логический высокий уровень появляется в точке «F» раньше или позже, в зависимости от сопротивления R4:
- меньшее сопротивление R4 — раньше появляется импульс — F1;
- большее сопротивление R4 — позже появляется импульс — F2.
Усилитель на транзисторах VT2 и VT3 «повторяет» логические сигналы -точка «G». Осциллограммы в этой точке повторяют F1 и F2, но величина напряжения достигает 20 В.
Через разделительные диоды VD4, VD5 и ограничительные резисторы R9 R10 импульсы тока воздействуют на управляющие электроды тиристоров VS3 VS4 (рис.4). Один из тиристоров открывается, и на выход блока проходит импульс выпрямленного напряжения.
Меньшему значению сопротивления R4 соответствует большая часть полупериода синусоиды — h2, большему — меньшая часть полупериода синусоиды — h3 (рис.4). В конце полупериода ток прекращается, и все тиристоры закрываются.
Рис. 7. Схема автоматического двухпредельного вольтметра.
Таким образом, различным величинам сопротивления R4 соответствует различная длительность «отрезков» синусоидального напряжения на нагрузке. Выходную мощность можно регулировать практически от 0 до 100%. Стабильность работы устройства определяется применением «логики» — пороги переключения элементов стабильны.
Конструкция и налаживание
Если ошибок в монтаже нет, то устройство работает стабильно. При замене конденсатора С3 потребуется подбор резисторов R3 и R4. Замена тиристоров в силовом блоке может потребовать подбора R9, R10 (бывает, даже силовые тиристоры одного типа резко отличаются по токам включения — приходится менее чувствительный отбраковывать).
Измерять напряжение на нагрузке можно каждый раз «подходящим» вольтметром. Исходя из мобильности и универсальности блока регулирования, мы применили автоматический двухпредельный вольтметр (рис.7).
Измерение напряжения до 30 В производится головкой PV1 типа М269 с добавочным сопротивлением R2 (регулируется отклонение на всю шкалу при 30 В входного напряжения). Конденсатор С1 необходим для сглаживания напряжения, подводимого к вольтметру.
Для «загрубления» шкалы в 10 раз служит остальная часть схемы. Через лампу накаливания (бареттер) HL3 и подстроечный резистор R3 запитывается лампа накаливания оптопары U1, стабилитрон VD1 защищает вход оптрона.
Большое входное напряжение приводит к снижению сопротивления резистора оптопары от мегаом до ки-лоом, транзистор VT1 открывается, реле К1 срабатывает. Контакты реле при этом выполняют две функции:
- размыкают подстроечное сопротивление R1 — схема вольтметра переключается на высоковольтный предел;
- вместо зеленого светодиода HL2 включается красный светодиод HL1.
Красный, более заметный, цвет специально выбран для шкалы больших напряжений.
Внимание! Подстройка R1(шкала 0…300) производится после подстройки R2.
Питание к схеме вольтметра взято из блока управления тиристорами. Развязка от измеряемого напряжения осуществлена с помощью оптрона. Порог переключения оптрона можно установить немного выше 30 В, что облегчит подстройку шкал.
Диод VD2 необходим для защиты транзистора от всплесков напряжения в момент обесточивания реле. Автоматическое переключение шкал вольтметра оправдано при использовании блока для питания различных нагрузок. Нумерация выводов оптрона не дана: с помощью тестера нетрудно различить входные и выходные выводы.
Сопротивление лампы оптрона равно сотням ом, а фоторезистора — мегаом (в момент измерения лампа не запитана). На рис.8 показан вид устройства сверху (крышка снята). VS1 и VS2 установлены на общем радиаторе, VS3 и VS4 — на отдельных радиаторах.
Резьбу на радиаторах пришлось нарезать под тиристоры. Гибкие выводы силовых тиристоров обрезаны, монтаж осуществлен более тонким проводом.
Рис. 8. Вид устройства сверху.
На рис.9 показан вид на лицевую панель устройства. Слева расположена ручка регулирования тока нагрузки, справа — шкала вольтметра. Около шкалы закреплены светодиоды, верхний (красный) расположен около надписи «300 В».
Клеммы устройства не очень мощные, так как применяется оно для сварки тонких деталей, где очень важна точность поддержания режима. Время пуска двигателя небольшое, поэтому ресурса клеммных соединений хватает.
Рис. 9. Вид на лицевую панель устройства.
Верхняя крышка крепится к нижней с зазором в пару сантиметров для обеспечения лучшей циркуляции воздуха.
Устройство легко поддается модернизации. Так, для автоматизации режима запуска двигателя автомобиля не нужны дополнительные детали (рис.10).
Необходимо между точками «D» и «E» блока управления включить нормально замкнутую контактную группу реле К1 из схемы двухпредельного вольтметра. Если перестройкой R3 не удастся довести порог переключения вольтметра до 12…13 В, то придется заменить лампу HL3 более мощной (вместо 10 установить 15 Вт).
Пусковые устройства промышленного изготовления настраиваются на порог включения даже 9 В. Мы рекомендуем настраивать порог переключения устройства на более высокое напряжение, так как еще до включения стартера аккумулятор немного подпитывается током (до уровня переключения). Теперь пуск производится немного «подзаряженным» аккумулятором вместе с автоматическим пусковым устройством.
Рис. 10 . Автоматизация режима запуска двигателя автомобиля.
По мере увеличения бортового напряжения автоматика «закрывает» подачу тока от пускового устройства, при повторных пусках в нужные моменты подпитка возобновляется. Имеющийся в устройстве регулятор тока (скважности выпрямленных импульсов) позволяет ограничить величину пускового тока.
Н.П. Горейко, В.С. Стовпец. г. Ладыжин. Винницкая обл. Электрик-2004-08.
Моделей паяльников в магазинах множество — от дешёвых китайских до дорогих, со встроенным регулятором температуры, продаются даже паяльные станции.
Другое дело, нужна ли та же станция, если подобные работы нужно выполнять раз в год, а то и реже? Проще купить недорогой паяльник. А у кого-то дома сохранились простые, но надёжные советские инструменты. Паяльник, не оснащённый дополнительным функционалом, греет на полную, пока вилка в сети. А отключённый, быстро остывает. Перегретый паяльник способен испортить работу: им становится невозможно прочно припаять что-либо, флюс быстро испаряется, жало окисляется и припой скатывается с него. Недостаточно нагретый инструмент и вовсе может испортить детали — из-за того что припой плохо плавится, паяльник можно передержать впритык к деталям.
Чтобы сделать работу комфортнее, можно собрать своими руками регулятор мощности, который ограничит напряжение и тем самым не даст жалу паяльника перегреваться.
Регуляторы для паяльника своими руками. Обзор способов монтажа
В зависимости от вида и набора радиодеталей, регуляторы мощности для паяльника могут быть разных размеров, с разным функционалом. Можно собрать как небольшое простое устройство, в котором нагрев прекращается и возобновляется нажатием кнопки, так и габаритное, с цифровым индикатором и программным управлением.
Возможные виды монтажа в корпус: вилка, розетка, станция
В зависимости от мощности и задач регулятор можно поместить в несколько видов корпуса. Самый простой и довольной удобный — вилка. Для этого можно использовать зарядное устройство для сотового телефона или корпус любого адаптера. Останется только найти ручку и поместить её в стенке корпуса. Если корпус паяльника позволяет (там достаточно места), можно разместить плату с деталями в нём.
Другой вид корпуса для несложных регуляторов — розетка. Она может быть как одинарной, так и представлять собой тройник-удлинитель. В последнем можно очень удобно поставить ручку со шкалой.
Вариантов монтажа регулятора с индикатором напряжения тоже может быть несколько. Все зависит от сообразительности радиолюбителя и фантазии. Это может быть как очевидный вариант — удлинитель с вмонтированным туда индикатором, так и оригинальные решения.
Собрать можно даже подобие паяльной станции, установить на ней подставку для паяльника (её можно купить отдельно). При монтаже нельзя забывать о правилах безопасности. Детали нужно изолировать — например, термоусадочной трубкой.
Варианты схем в зависимости от ограничителя мощности
Регулятор мощности можно собрать по разным схемам. В основном различия состоят в полупроводниковой детали, приборе, который будет регулировать подачу тока. Это может быть тиристор или симистор. Для более точного управления работой тиристора или симистора в схему можно добавить микроконтроллер.
Можно сделать простейший регулятор с диодом и выключателем — для того чтобы оставить паяльник в рабочем состоянии на какое-то (возможно, длительное) время, не давая ему ни остывать, ни перегреваться. Остальные регуляторы дают возможность задать температуру жала паяльника более плавно — под различные нужды. Сборка устройства по любой из схем производится схожим способом. В фотографиях и видеороликах приведены примеры того, как можно собрать регулятор мощности для паяльника своими руками. На их основе можно сделать прибор с нужными лично вам вариациями и по собственной схеме.
Тиристор — своеобразный электронный ключ. Пропускает ток только в одном направлении. В отличие от диода у тиристора 3 выхода — управляющий электрод, анод и катод. Открывается тиристор посредством подачи импульса на электрод. Закрывается при смене направления или прекращении подачи проходящего через него тока.
Или триак — вид тиристора, только в отличие от этого прибора, двусторонний, проводит ток в обоих направлениях. Представляет собой, по сути, два тиристора, соединённые вместе.
Симистор, или триак. Основные части, принцип действия и способ отображения на схемах. А1 и А2 — силовые электроды, G — управляющий затвор
В схему регулятора мощности для паяльника — зависимости от его возможностей — включают следующие редиодетали.
Резистор — служит для преобразования напряжения в силу тока и обратно. Конденсатор — основная роль этого прибора в том, что он перестаёт проводить ток, как только разряжается. И начинает проводить вновь — по мере того как заряд достигает нужной величины. В схемах регуляторов конденсатор служит для того, чтобы выключить тиристор. Диод — полупроводник, элемент, который пропускает ток в прямом направлении и не пропускает в обратном. Подвид диода — стабилитрон — используется в устройствах для стабилизации напряжения. Микроконтроллер — микросхема, при помощи которой обеспечивается электронное управление устройством. Бывает разной степени сложности.
Схема с выключателем и диодом
Такой тип регулятора самый простой в сборке, с наименьшим количеством деталей. Его можно собирать без платы, на весу. Выключатель (кнопка) замыкает цепь — на паяльник подаётся всё напряжение, размыкает — напряжение падает, температура жала тоже. Паяльник при этом остаётся нагретым — такой способ хорош для режима ожидания. Подойдёт выпрямительный диод, рассчитанный на ток от 1 Ампера.
Сборка двухступенчатого регулятора на весу
- Подготовить детали и инструменты: диод (1N4007), выключатель с кнопкой, кабель с вилкой (это может быть кабель паяльника или же удлинителя — если есть страх испортить паяльник), провода, флюс, припой, паяльник, нож.
- Зачистить, а потом залудить провода.
- Залудить диод. Припаять провода к диоду. Удалить лишние концы диода. Надеть термоусадочные трубки, обработать нагревом. Можно также использовать электроизоляционную трубку — кембрик. Подготовить кабель с вилкой в том месте, где удобнее будет крепить выключатель. Разрезать изоляцию, перерезать один из находящихся внутри проводов. Часть изоляции и второй провод оставить целыми. Зачистить концы разрезанного провода.
- Расположить диод внутри выключателя: минус диода — к вилке, плюс — к выключателю.
- Скрутить концы разрезанного провода и проводов, подсоединённых к диоду. Диод должен находиться внутри разрыва. Провода можно спаять. Подключить к клеммам, затянуть винты. Собрать выключатель.
Регулятор с выключателем и диодом — пошагово и наглядно
Регулятор на тиристоре
Регулятор с ограничителем мощности — тиристором — позволяет плавно устанавливать температуру паяльника от 50 до 100%. Для того чтобы расширить эту шкалу (от нуля до 100%), в схему нужно добавить диодный мост. Сборка регуляторов и на тиристоре, и на симисторе совершает сходным образом. Метод можно применить для любого устройства такого типа.
Сборка тиристорного (симисторного) регулятора на печатной плате
- Сделать монтажную схему — наметить удобное расположение всех деталей на плате. Если плата приобретается — монтажная схема идёт в комплекте.
- Подготовить детали и инструменты: печатную плату (её нужно сделать заранее согласно схеме или купить), радиодетали — см. спецификацию к схеме, кусачки, нож, провода, флюс, припой, паяльник.
- Разместить на плате детали согласно монтажной схеме.
- Откусить кусачками лишние концы деталей.
- Смазать флюсом и припаять каждую деталь — сначала резисторы с конденсаторами, потом — диоды, транзисторы, тиристор (симистор), динистор.
- Подготовить корпус для сборки.
- Зачистить, залудить провода, припаять к плате согласно монтажной схеме, установить плату в корпус. Заизолировать места соединения проводов.
- Проверить регулятор — подключить к лампе накаливания.
- Собрать устройство.
Схема с маломощным тиристором
Тиристор небольшой мощности недорогой, занимает мало места. Его особенность — в повышенной чувствительности. Для управления им используются переменный резистор и конденсатор. Подходит для устройств мощностью не более 40 Вт.
Спецификация
Схема с мощным тиристором
Управление тиристором осуществляется за счёт двух транзисторов. Уровень мощности регулирует резистор R2. Регулятор, собранный по такой схеме, рассчитан на нагрузку до 100 Вт.
Спецификация
Сборка тиристорного регулятора по приведённой схеме в корпус — наглядно
Сборка и проверка тиристорного регулятора (обзор деталей, особенности монтажа)
Схема с тиристором и диодным мостом
Такое устройство даёт возможность регулировки мощности от нуля до 100%. В схеме использован минимум деталей.
Спецификация
Регулятор на симисторе
Схема регулятора на симисторе с небольшим количеством радиодеталей. Позволяет регулировать мощность от нуля до 100%. Конденсатор и резистор обеспечат чёткую работу симистора — он будет открываться даже при низкой мощности.
Сборка симисторного регулятора по приведённой схеме пошагово
Регулятор на симисторе с диодным мостом
Схема такого регулятора не очень сложная. При этом варьировать мощность нагрузки можно в довольно большом диапазоне. При мощности более 60 Вт лучше посадить симистор на радиатор. При меньшей мощности охлаждение не нужно. Метод сборки такой же, как и в случае с обычным симисторным регулятором.
Перед монтажом собранный регулятор можно проверить мультиметром. Проверять нужно только с подключённым паяльником , то есть под нагрузкой. Вращаем ручку резистора — напряжение плавно изменяется.
В регуляторах, собранных по некоторым из приведённых здесь схем, уже будут стоять световые индикаторы. По ним можно определить, работает ли устройство. Для остальных самая простая проверка — подключить к регулятору мощности лампочку накаливания. Изменение яркости наглядно отразит уровень подаваемого напряжения.
Регуляторы, где светодиод находится в цепи последовательно с резистором (как на схеме с маломощным тиристором), можно наладить. Если индикатор не горит, нужно подобрать номинал резистора — взять с меньшим сопротивлением, пока яркость не будет приемлемой. Слишком большой яркости добиваться нельзя — сгорит индикатор.
Как правило, регулировка при правильно собранной схеме не требуется. При мощности обычного паяльника (до 100 Вт, средняя мощность — 40 Вт) ни один из регуляторов, собранных по вышеприведённым схемам, не требует дополнительного охлаждения. Если паяльник очень мощный (от 100 Вт), то тиристор или симистор нужно установить на радиатор во избежание перегрева.
Регулятор мощности для паяльника можно собрать своими руками, ориентируясь на собственные возможности и потребности. Существует немало вариантов схем регулятора с различными ограничителями мощности и разными средствами управления. Здесь приведены некоторые, самые простые из них. А небольшой обзор корпусов, в которые можно смонтировать детали, поможет выбрать формат устройства.
Китайский регулятор напряжения 220в схема
Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором. Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.
Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.
Принцип работы
Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.
Делаем своими руками
На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.
Схема прибора
Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.
Основные компоненты:
- симистор VD4, 10 А, 400 В;
- динистор VD3, порог открывания 32 В;
- потенциометр R2.
Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.
Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.
Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.
Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.
Используемые элементы:
- Динистор DB3;
- Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
- Диоды VD1, VD2 типа 1N4007;
- Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
- Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).
Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.
Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.
Схема симисторного регулятора мощности
Сборка
Сборку регулятора мощности необходимо производить в следующей последовательности:
- Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
- Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
- Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
- Закупить необходимые электронные компоненты, радиатор и печатную плату.
- Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
- Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
- Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
- Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
- Поместить собранную схему в пластиковый корпус.
- Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
- Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
- Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.
Симисторный радиатор мощности
Регулировка мощности
За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.
Регуляторы напряжения нашли широкое применение в быту и промышленности. Многим людям известно такое устройство, как диммер, позволяющий бесступенчато регулировать яркость светильников. Оно и является отличным примером регулятора напряжения 220в. Своими руками такой прибор собрать довольно просто. Безусловно, его можно приобрести в магазине, но себестоимость самодельного изделия окажется значительно ниже.
Назначение и принцип работы
С помощью регуляторов напряжения можно изменять не только яркость свечения ламп накаливания, но и скорость вращение электромоторов, температуру жала паяльника и так далее. Нередко эти устройства называют регуляторами мощности, что не совсем правильно. Устройства, предназначенные для регулирования мощности, основаны на ШИМ (широтно-импульсная модуляция) схемах.
Это позволяет получить на выходе различную частоту следования импульсов, амплитуда которых остается неизменной. Однако если параллельно нагрузке в такую схему включить вольтметр, то напряжение также будет изменяться. Дело в том, что прибор просто не успевает точно измерять амплитуду импульсов.
Регуляторы напряжения чаще всего изготовлены на основе полупроводниковых деталей – тиристорах и симисторах. С их помощью изменяется длительность прохождения волны напряжения из сети в нагрузку.
Следует заметить, что регуляторы напряжения будут максимально эффективны при работе с резистивной нагрузкой, например, лампами накаливания. А вот использовать их для подключения к индуктивной нагрузке нецелесообразно. Дело в том, что показатель индуктивного электротока значительно ниже в сравнении с резистивным.
Рекомендации по изготовлению
Собрать самодельный диммер довольно просто. Для этого потребуются начальные знания в области электроники и несколько деталей.
На основе симистора
Такой прибор работает по принципу фазового смещения открывания ключа. Ниже представлена простейшая схема диммера на основе симистора:
Структурно прибор можно разделить на два блока:
- Силовой ключ, в роли которого используется симистор.
- Узел создания управляющих импульсов на основе симметричного динистора.
С помощью резисторов R1-R2 создан делитель напряжения. Следует обратить внимание, что сопротивление R1 – переменное. Это позволяет менять напряжение в линии R2-C1. Между этими элементами включен динистор DB3. Как только показатель напряжения на конденсаторе C1 достигает значения порога открытия динистора, на ключ (симистор VS1) подается управляющий импульс.
В результате силовой ключ включается, и через него начинает проходить электроток на нагрузку. Положение регулятора определяет, в какой части фазы волны должен сработать силовой ключ.
На базе тиристора
Эти проборы также достаточно эффективны, а их схемы не отличаются высокой сложностью. Роль ключа в таком устройстве выполняет тиристор. Если внимательно изучить схему прибора, то сразу можно заметить главное отличие этой схемы от предыдущей – для каждой полуволны используется собственный ключ с управляющим динистором.
Принцип работы тиристорного прибора следующий:
- Когда через линию R5-R4-R3 проходит положительная полуволна, конденсатор C1 заряжается.
- После достижения порога включения динистора V3 он срабатывает, и электроток поступает на ключ V1.
- При прохождении отрицательной полуволны наблюдается аналогичная ситуация для линии R1-R2-R5, управляющего динистора V4 и ключа V2.
С помощью фазных регуляторов можно управлять не только яркостью ламп накаливания, но и другими видами нагрузок, например, количеством оборотов дрели. Однако следует помнить, что прибор на основе тиристора нельзя применять для работы со светодиодными и люминесцентными лампочками.
Также в быту используются конденсаторные регуляторы. Однако в отличие от полупроводниковых приборов, они не позволяют плавно изменять напряжение. Таким образом, для самостоятельного изготовления лучше всего подходят тиристорная и симисторная схемы.
Найти все необходимые для изготовления регулятора детали не составит труда. При этом их не обязательно покупать, а можно выпаять из старого телевизора или другой радиоаппаратуры. При желании на основе выбранной схемы можно сделать печатную плату, а затем впаять в нее все элементы. Также детали можно соединить обычными проводами. Домашний мастер может выбрать тот способ, который покажется ему наиболее привлекательным.
Оба рассмотренных устройства довольно легко собрать, и для выполнения всех работ не нужно обладать серьезными знаниями в области электроники. Даже начинающий радиолюбитель сможет изготовить своими руками схему регулятора напряжения 220в. При невысокой стоимости, они практически ни в чем не уступают заводским аналогам.
Сегодня я вам расскажу об очень полезной схеме, которая пригодится как в лаборатории, так и в хозяйстве. Устройство, о котором пойдет речь, называется симисторный регулятор мощности. Регулятор можно применить для плавной регулировки яркостью освещения, температуры паяльника, оборотами электродвигателя (переменного тока). Мой вариант применения регулятора интересней, я плавно регулирую температуру нагрева тэна мощностью 1кВт в самогонном аппарате. Да-да, я занимаюсь этим благородным делом.
Схема имеет минимум элементов и заводится сразу. Мощность нагрузки для симисторного регулятора определяется током симистора. Симистор BTA12-600 рассчитан на ток 12 Ампер и напряжение 600 Вольт. Симистор нужно выбирать с запасом по току, я выбрал двукратный запас. Например, симистор BTA12-600 с оптимальным охлаждением может в штатном режиме пропускать через себя ток 8 Ампер. Если нужен регулятор мощнее, используйте симистор BTA16-600 или BTA24-600.
Работа схемы описана в статье «Диммер своими руками».
Рабочая температура кристалла симистора от -40 до +125 градусов Цельсия. Необходимо сделать хорошее охлаждение. У меня нагрузка 1кВт, соответственно ток нагрузки около 5А, радиатор площадью 200см кв. греется от 85 до90 градусов Цельсия при длительной работе (до 6ч). Планирую увеличить рабочую площадь радиатора, чтобы повысить надежность устройства.
Симистор имеет управляющий вывод и два вывода, через которые проходит ток нагрузки. Эти два вывода можно менять местами ничего страшного не случиться.
Для безопасности (чтобы не щелкнуло током), симистор необходимо устанавливать на радиатор через диэлектрическую прокладку (полимерную или слюдяную) и диэлектрическую втулку.
Компоненты.
Резистор 4.7кОм мощностью 0,25Вт. Динистор с маркировкой DB3 , полярности не имеет, впаивать любой стороной. Конденсатор пленочный на 100нФ 400В полярности не имеет.
Светодиод любого цвета диаметром 3мм, обратное напряжение 5В, ток 25мА. Короче любой светодиод 3мм. Светодиод дает индикацию нагрузки, не пугайтесь, если при первом включении (естественно без нагрузки) он светиться не будет.
Первое включение необходимо производить кратковременно без нагрузки. Если все нормально, никакие элементы не греются, ничего не щелкнуло, тогда включаем без нагрузки на 15 секунд. Далее цепляем лампу напряжением 220В и мощностью 60-200Вт, крутим ручку переменного резистора и наслаждаемся работой.
Для защиты я установил в разрыв сетевого провода (220В) предохранитель на 12А.
Собранный нами регулятор мощности на симисторе BTA12-600 можно применить для регулировки температуры паяльника (регулируя мощность), тем самым получив паяльную станцию для вашей мастерской.
Печатная плата регулятора мощности на симисторе BTA12-600 СКАЧАТЬ
Радиосхемы. — Простые регуляторы напряжения
Простые радиосхемы для начинающих
материалы в категории
Фазовые регуляторы напряжения довольно широко распространены в быту. Самая частая область их применения это устройства для регулировки яркости освещения.
Ниже приводится несколько простых схем регулировки напряжения для самостоятельного повторения для начинающих радиолюбителей.
Внимание!! Все схемы предназначены для работы с сетевым напряжением 220 Вольт, поэтому при сборке и настройке следует соблюдать осторожность!!
Данная схема является наиболее распространённой в различных зарубежных бытовых приборах, как самая простая и надёжная, но у нас более широкое распространение получила вот такая схема:
В качестве тиристора чаще всего применялся тиристор КУ202Н, но следует учесть что если вы планируете применять мощную нагрузку, то тиристор потребуется установить на радиатор.
Еще одна особенность данной схемы- это динистор КН102А. Так-же не самый распространенный радиоэлемент, но его можно заменить транзисторным аналогом и тогда схема регулятора напряжения получится вот такая:
Ну и последняя схема- на однопереходном транзисторе:
Все рассмотренные конструкции очень просты, надёжны, прекрасно регулируют напряжение, но не лишены недостатков, из-за которых не переводятся энтузиасты предложить свои схемы, пусть и более сложные. Главной проблемой выше приведённых схем является инверсная зависимость фазового угла от уровня питающего напряжения, т.е. при падении напряжения в сети фазовый угол открытия тиристора или симистора увеличивается, что приводит к непропорциональному снижению напряжения на нагрузке. Небольшое снижение напряжения вызовет заметное уменьшение яркости ламп и наоборот. Если в питающей сети имеются небольшие пульсации, например от работы сварочного аппарата, мерцание ламп станет гораздо заметнее.
Ещё одной проблемой этих схем является ограниченный диапазон регулировки выходного напряжения — невозможно регулировать напряжение до 100% из-за наличия «ступеньки» срабатывания порогового узла, запускающего тиристор или симистор.
Автор Кравцов В.Н. http://kravitnik.narod.ru
Обсудить на форуме
SCR Тиристорный лом — Схема защиты от перенапряжения »Электроника
Тиристор или тиристор могут предоставить простое средство обеспечения защиты от перенапряжения для источников питания с использованием схемы лома.
Конструкция схемы тиристора Включает:
Праймер для разработки схемы тиристора
Схема работы
Конструкция цепи запуска / запуска
Лом перенапряжения
Цепи симистора
Источники питания обычно надежны, но если они выйдут из строя, они могут нанести значительный ущерб схемам, которые они питают.
Тиристор или тиристор могут предложить очень простой, но эффективный метод обеспечения цепи лома для защиты от такой возможности.
Режимы отказа аналогового источника питания
Один из видов отказа для многих аналоговых регулируемых источников питания состоит в том, что последовательный транзистор может выйти из строя из-за короткого замыкания между коллектором и эмиттером. Если это произойдет, на выходе может появиться полное нерегулируемое напряжение, что приведет к недопустимо высокому напряжению во всей системе, что приведет к отказу многих микросхем и других компонентов.
Посмотрев на соответствующие напряжения, очень легко понять, почему включение защиты от перенапряжения так важно. Типичный источник питания может обеспечивать стабилизацию логической схемы 5 вольт. Чтобы обеспечить достаточное входное напряжение для обеспечения адекватной стабилизации, подавления пульсаций и т.п., входное напряжение регулятора источника питания может быть в диапазоне от 10 до 15 вольт. Даже 10 вольт было бы достаточно, чтобы вывести из строя многие используемые сегодня микросхемы, особенно более дорогие и сложные.Соответственно предотвращение этого имеет большое значение.
Цепь лома защиты от перенапряжения тиристора / тиристора
Показанная схема тиристорного лома очень проста и состоит из нескольких компонентов. Его можно использовать во многих источниках питания и даже можно дооснастить в ситуациях, когда не может быть встроена защита от перенапряжения.
Он использует всего четыре компонента: кремниевый управляемый выпрямитель или SCR, стабилитрон, резистор и конденсатор.
Схема защиты тиристора от перенапряженияШина SCR от перенапряжения или схема защиты подключается между выходом источника питания и массой.Напряжение на стабилитроне выбирается немного выше, чем на выходной шине. Обычно шина 5 В может работать с стабилитроном на 6,2 В. При достижении напряжения на стабилитроне ток будет проходить через стабилитрон и запускать кремниевый управляемый выпрямитель или тиристор. Затем это приведет к короткому замыканию на землю, тем самым защищая цепь, на которую подается питание, от любых повреждений, а также сработает предохранитель, который затем снимет напряжение с последовательного регулятора.
Поскольку кремниевый управляемый выпрямитель, тиристор или тиристор способен пропускать относительно высокий ток — даже довольно средние устройства могут проводить ток в пять ампер и короткие пики тока могут составлять 50 и более ампер, дешевые устройства могут обеспечить очень хороший уровень защиты. за небольшую стоимость.Кроме того, напряжение на тиристоре будет низким, обычно только вольт, когда он сработал, и в результате отвод тепла не является проблемой.
Небольшой резистор, часто около 100 Ом от затвора тиристора или тиристора до земли, необходим для того, чтобы стабилитрон мог подавать разумный ток при включении. Он также фиксирует напряжение затвора на уровне потенциала земли, пока не включится стабилитрон. Конденсатор C1 присутствует, чтобы гарантировать, что короткие выбросы не вызовут срабатывание цепи. Для выбора правильного значения может потребоваться некоторая оптимизация, хотя 0.1 микрофарад — хорошая отправная точка.
Если источник питания должен использоваться с радиопередатчиками, фильтрация на входе в затвор может быть немного более сложной, иначе RF от передатчика может попасть на затвор и вызвать ложное срабатывание. Конденсатор C1 должен быть в наличии, но небольшая индуктивность также может помочь. Может даже хватить ферритовой бусины. Эксперименты, чтобы убедиться, что задержка срабатывания тиристора не слишком велика, чтобы исключить отключение RF.Также может помочь фильтрация линии электропередачи к / от передатчика.
Ограничения цепи лома
Хотя эта схема защиты от перенапряжения источника питания широко используется, она имеет некоторые ограничения.
- Напряжение зажигания лома: Напряжение зажигания тиристорной цепи лома устанавливается стабилитроном. Необходимо выбрать стабилитрон с подходящим напряжением. Стабилитроны нельзя регулировать, и они имеют допуск в лучшем случае 5%.Напряжение зажигания должно быть значительно выше номинального выходного напряжения источника питания, чтобы любые всплески, которые могут появиться на линии, не привели к срабатыванию цепи.
- Восприимчивость к RF: Если источник питания будет использоваться для питания передатчика, требуется фильтрация на линии к / от передатчика, а также тщательная разработка защиты от всплесков на затворе.
- Порог цепи: С учетом всех допусков и пределов гарантированное напряжение, при котором цепь может загореться, может быть на 20-40% выше номинального в зависимости от напряжения источника питания.Чем ниже напряжение, тем больше требуемый запас. Часто при питании от источника питания 5 вольт может возникнуть трудность спроектировать его так, чтобы лом срабатывал при перенапряжении ниже 7 вольт, что может привести к повреждению защищаемых цепей.
Эта простая схема тиристорного лома может быть очень эффективной. Это просто, хотя и немного грубовато, но может защитить дорогостоящее оборудование от возможного выхода из строя элемента последовательного регулятора.
Другие схемы и схемотехника:
Основы операционных усилителей
Схемы операционных усилителей
Цепи питания
Конструкция транзистора
Транзистор Дарлингтона
Транзисторные схемы
Схемы на полевых транзисторах
Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .
(PDF) Конструкция трехфазного регулятора переменного напряжения с тиристором упрощает схему на основе микроконтроллера STM32
А Конструкция трехфазного регулятора переменного напряжения с тиристором упрощает схему
На основе микроконтроллера STM32
Гуошун Чжоу
1 , a
, Tu Ya
1, b
, Shen Hua
1, c
и Shukun Zhao
1, d
1
Dalian Neusoft University of Information, Далянь, Китай
a
zhouguoshun @ neusoft.edu.cn,
b
c
d
Ключевые слова: trigger circuit , трехфазный асинхронный двигатель, микропроцессор STM32.
Аннотация: В данной статье представлена новая конструкция триггерной схемы регулирования трехфазного переменного напряжения
с кремниевым управляемым выпрямителем (SCR) и представлено ее применение в энергосберегающей конструкции системы управления экстрактором масла
.В конструкции используется технология фотоэлектрической развязки и собственно межфазное соединение трехфазного источника питания
, для управления углами проводимости шести тиристоров
требуются только три группы запускающих сигналов. Генерация высокоточных запускающих сигналов и функции регулятора PID control
реализуются путем программирования нескольких высокопроизводительных таймеров и интерфейса AD
микропроцессора STM32. Эксперименты и полевые испытания показали выполнимость предложенной схемы
.
Введение
Ключевым моментом тиристорного регулятора трехфазного источника питания является вычисление угла срабатывания в
в соответствии с межфазным стабилизатором трехфазного источника питания, а затем запуск
соответствующих шести тиристоры надежно и эффективно собирают сигнал синхронизации напряжения питания или тока
точно. Традиционная схема запуска тиристора делится на режимы запуска аналоговой схемы и цифровой схемы
.Кроме того, режим цифрового запуска подразделяется на двухимпульсный триггер
, синхронизирующий с напряжением питания, синхронизирующий с напряжением питания широкий импульсный триггер, синхронизирующий двухимпульсный триггер
с током фазы питания и т. Д. Эти режимы триггера управляют включением и выключением тиристоров триггера
, при необходимости использования сигнала синхронизации в качестве опорного сигнала в соответствии с заранее разработанной последовательностью
. Даже если посторонние помехи нарушены, последовательность не должна измениться
[1, 2]
.
Для достижения высокой надежности, высокая точность регулирования трехфазного напряжения должна удовлетворять
следующим условиям: точное получение синхронизирующего сигнала, высокая точность и сильная
помехоустойчивость триггерного импульса тиристора и изоляция выхода. . Для достижения целей
, указанных выше, после обращения к другим исследованиям, мы предложили эту конструкцию с использованием 32-битного микроконтроллера STM32 с высокой производительностью
, сочетающего в себе особую синтетическую схему запуска основной схемы
.Этот метод был проверен в ходе реальных экспериментов и подтвердил надежность управления напряжением нагрузки трехфазного двигателя
.
Общие конструкции схемы триггера фазового сдвига
Система регулирования напряжения триггера фазового сдвига состоит из выходного фазового напряжения
цепи обнаружения, схемы обнаружения сигнала синхронизации перехода через нуль, схемы обнаружения последовательности фаз
, ядро STM32 и периферийная схема, генерация импульсов запуска и выходная схема, схема
фотоэлектрической развязки и возбуждения SCR и схема регулирования напряжения SCR, как показано в
Рис.1. Система может рассчитать угол коэффициента мощности в соответствии с обнаруженными сигналами нулевой синхронизации
и разностью фаз тока и напряжения нагрузки. Кроме того, он может регулировать выходное напряжение
, регулируя угол срабатывания выходной последовательности импульсов запуска, чтобы значительно улучшить коэффициент мощности
.
Прикладная механика и материалы Тт. 433-435 (2013) pp 1271-1275
Он-лайн доступен с 15 октября 2013 г. на www.Scientific.net
© (2013) Trans Tech Publications, Швейцария
doi: 10.4028 / www.scientific.net / AMM.433-435.1271
Все права защищены. Никакая часть содержания этого документа не может быть воспроизведена или передана в любой форме и любыми средствами без письменного разрешения TTP,
www.ttp.net. (ID: 59.46.174.226, Neusoft Institute of Information, Далянь, Китай-10/11 / 13,08: 28: 47)
CK 66 UL 94V-0 ЖК-дисплей
Аннотация: CK 99 UL 94V-0 LCD Melcher Mestro 300 lcd CK 66 UL 94V-0 PSB 5A5 РЕГУЛЯТОР ПЕРЕКЛЮЧЕНИЯ MELCHER PSB 5A5 MELCHER smr 56-7 MELCHER SWITCHING REGULATOR smr 53-7 MELCHER SMR 56-7 регулятор напряжения PSR 362-7iR
|
Оригинал |
ответственность8141) I-20159 CK 66 UL 94V-0 ЖК-дисплей CK 99 UL 94V-0 ЖК-дисплей Мельчер Местро 300 ЖК СК 66 УЛ 94В-0 ПСБ 5А5 РЕГУЛЯТОР ПЕРЕКЛЮЧЕНИЯ MELCHER PSB 5A5 MELCHER smr 56-7 РЕГУЛЯТОР ПЕРЕКЛЮЧЕНИЯ MELCHER smr 53-7 Регулятор напряжения MELCHER SMR 56-7 ПСР 362-7иР | |
1996 — СК 66 UL 94V-0 ЖК-дисплей
Аннотация: CK 99 UL 94V-0 LCD Melcher Mestro 300 MELCHER SWITCH REGULATOR PSB 5A5 LCD CK 66 UL 94V-0 MELCHER SWITCHING REGULATOR psr 53-7 MELCHER SMR 56-7 регулятор напряжения MELCHER smr 56-7 melcher PSR 55 MELCHER psb 5a5
|
Оригинал |
I-20159 CK 66 UL 94V-0 ЖК-дисплей CK 99 UL 94V-0 ЖК-дисплей Мельчер Местро 300 РЕГУЛЯТОР ПЕРЕКЛЮЧЕНИЯ MELCHER PSB 5A5 ЖК СК 66 УЛ 94В-0 РЕГУЛЯТОР ПЕРЕКЛЮЧЕНИЯ MELCHER psr 53-7 Регулятор напряжения MELCHER SMR 56-7 MELCHER smr 56-7 мельчер ПСР 55 MELCHER psb 5a5 | |
2007 — «Преобразователь переменного тока в постоянный»
Аннотация: преобразователь переменного тока в постоянный
|
Оригинал |
100 кГц AC1-12S AC1-24S «Преобразователь переменного тока в постоянный» преобразователь переменного тока в постоянный | |
Регулятор напряжения ac-dc с использованием SCR
Реферат: tele vde 0435 SMR 53-7 SCHEMA DC INVERTER melcher LM 1000 mk II Melcher BM 3000 тиристор Melcher zo 402 lm 3000 melcher ericsson pwm bm ds hoe nw
|
Оригинал |
I-20159 регулятор напряжения постоянного и переменного тока с использованием тиристоров tele vde 0435 SMR 53-7 СХЕМА ИНВЕРТОРА ПОСТОЯННОГО ТОКА мельчер LM 1000 mk II Мельчер бм 3000 Мельчер тиристор зо 402 lm 3000 мельчер Эрикссон ШИМ bm ds hoe nw | |
Регулятор напряжения ac-dc с использованием SCR
Реферат: tele vde 0435 melcher SMR 51.5-7 melcher, uster, швейцария преимущества повышающего преобразователя Buck-Boost Prime 15005 ab LSR 3005-7iPCDAX Melcher Mestro 300 Melcher PSB 5A5
|
Оригинал |
v8141) I-20159 регулятор напряжения постоянного и переменного тока с использованием тиристоров tele vde 0435 мельчер СМР 51.5-7 мельчер, устер, швейцария Преимущества Buck-Boost Converter премьер 15005 ab ЛСР 3005-7iPCDAX Мельчер Местро 300 Мельчер ПСБ 5А5 | |
1995 — мельчер LM 3000 MANUEL
Реферат: melcher LM 1000 mk II hacheur Tableau caracteristique des transistors melcher LM 2000 MANUEL melcher psr 57 melcher S-1000 smr 40000 c melcher bM 1000 mk II диод для защиты от напряжения
|
Оригинал |
I-20159 Мельчер LM 3000 MANUEL мельчер LM 1000 mk II hacheur Таблица с характеристиками транзисторов Мельчер LM 2000 MANUEL мельчер пср 57 мельчер С-1000 smr 40000 c Мельчер БМ 1000 мк II диод защиты от напряжения | |
мельчер LM 1000 мк II
Реферат: melcher bM 1000 mk II MELCHER LM 2000 блок питания измельчителя melcher lsr 3005 melcher LM 1000 melcher bM 1000 melcher aM 1000 mk II melcher SMR 51.5-7 смр 53-7 мельчер пср 512
|
Оригинал |
I-20159 мельчер LM 1000 mk II Мельчер БМ 1000 мк II Источник питания измельчителя MELCHER LM 2000 мельчер lsr 3005 мельчер LM 1000 мельчер бм 1000 мельчер AM 1000 мк II мельчер СМР 51.5-7 smr 53-7 мельчер пср 512 | |
1998–1437
Резюме: 507-4538-1433-630 507-4538-1431-630 507-4538-1435-630 nf 749 515 series dialight
|
Оригинал |
||
мельчер LM 1000 мк II
Реферат: Melcher AG smrf 51-6 IEC905 PSC 126-7LiR melcher LM 1000 PSB 483-7LiR melcher bM 1000 mk II EN50125 lm 3000 melcher melcher aM 1000 mk II
|
Оригинал |
I-20159 мельчер LM 1000 mk II Melcher AG smrf 51-6 IEC905 PSC 126-7LiR мельчер LM 1000 ПСБ 483-7ЛиР Мельчер БМ 1000 мк II EN50125 lm 3000 мельчер Мельчер AM 1000 MK II | |
1996 — регулятор напряжения постоянного и переменного тока с использованием SCR
Реферат: FDD 0207 TE 555-2 melcher LM 1000 mk II Melcher Mestro 300 FCR 6-1212-6 MELCHER SWITCHING REGULATOR smr 53-7 melcher SMR 51.5-7 трансформатор постоянного напряжения феррорезонансного типа SMR 53-7 SCHEMA DC INVERTER
|
Оригинал |
I-20159 регулятор напряжения постоянного и переменного тока с использованием тиристоров FDD 0207 TE 555-2 мельчер LM 1000 mk II Мельчер Местро 300 FCR 6-1212-6 РЕГУЛЯТОР ПЕРЕКЛЮЧЕНИЯ MELCHER smr 53-7 мельчер СМР 51.5-7 трансформатор постоянного напряжения феррорезонансного типа SMR 53-7 СХЕМА ИНВЕРТОРА ПОСТОЯННОГО ТОКА | |
1996 — регулятор напряжения постоянного и переменного тока с использованием SCR
Реферат: стабилизатор напряжения постоянного / переменного тока с использованием схемы SCR ремонтная схема smps Buck-Boost Converter преимущества melcher bM 1000 mk II prime 15005 ab melcher LM 1000 mk II Melcher dc-dc converter bm 1000 melcher, uster, швейцария MELCHER SWITCHING MODE REGULATOR SMRF
|
Оригинал |
I-20159 регулятор напряжения постоянного и переменного тока с использованием тиристоров регулятор напряжения постоянного и переменного тока с использованием схемы SCR схема ремонта smps Преимущества Buck-Boost Converter Мельчер БМ 1000 мк II премьер 15005 ab мельчер LM 1000 mk II Конвертер dc-dc melcher BM 1000 мельчер, устер, швейцария РЕГУЛЯТОР ПЕРЕКЛЮЧЕНИЯ РЕЖИМА MELCHER SMRF | |
постоянного тока-постоянного тока
Аннотация: абстрактный текст недоступен
|
Оригинал |
||
1995 — КАНАЛ IRF P
Реферат: melcher LM 1000 mk II melcher LM 3000 MANUEL Melcher Melcher bm 3000 melcher bM 1000 mk II вычисление демпфирующей схемы fonda 4 melcher bM 1000 Cours electrotechnique
|
Оригинал |
I-20159 IRF КАНАЛ P мельчер LM 1000 mk II Мельчер LM 3000 MANUEL Мельчер Мельчер бм 3000 Мельчер БМ 1000 мк II расчётный демпфер фонда 4 мельчер бм 1000 курс электротехники | |
1999 — Преобразователи AC-DC
Реферат: MELCHER THE POWER PARTNERS melcher DC-DC преобразователи melcher m series
|
Оригинал |
||
Нет в наличии
Аннотация: абстрактный текст недоступен
|
OCR сканирование |
10003-iase MIL-STD-883 | |
1997 — ЛК разъем
Аннотация: LK-54H-RSS18
|
Оригинал |
MILC83503 AC500V1 LK-54H-SS18 ЛК-54Н-RSS18 PPSUL94V0 Разъем LK ЛК-54Н-RSS18 | |
Aimtec
Аннотация: AMEPR30-5070AZ
|
Оригинал |
AMEPR30-AZ 90-277VAC / 47-440 Гц AMEPR30-5070AZ AMEPR30-4864AZ AMEPR30-36100AZ AMEPR30-24140AZ AMEPR30-12250AZ Aimtec AMEPR30-5070AZ | |
Преобразователь звенящего дросселя
Аннотация: 100 Вт ИБП tdk dc-dc преобразователь ce RCC преобразователь звенящего дросселя 12-импульсный преобразователь переменного тока в постоянный 1000 ВА ИБП ic dk 17 pfe tdk-lambda RCC1000 1000 Вт mosfet
|
Оригинал |
550см 1200см 1300см 3800см 4500см SGS-COC-004380 Преобразователь звенящего дросселя ИБП 100 Вт tdk dc-dc преобразователь ce Преобразователь кольцевого дросселя RCC 12-импульсный преобразователь переменного тока в постоянный 1000 ва ибп ic dk 17 pfe tdk-lambda RCC1000 МОП-транзистор 1000 Вт | |
блок питания cherokee 48v
Аннотация: Импульсные источники питания Delta electronics 24vdc 2a smps Импульсные источники питания Delta electronics dps magnetek power supply Magnetek hp6 DPS-275DB Delta Electronics dps 1200 Источник питания Cherokee cherokee CMP 200
|
Оригинал |
||
2012 — драйвер постоянного тока ac dc led
Аннотация: абстрактный текст недоступен
|
Оригинал |
||
Схема источник питания переменного и постоянного тока
Абстракция: auo 002 1005-F
|
Оригинал |
UL1950, 609мощ CB-19 CB-24 CB-20 CB-21 CB-25 принципиальная схема питания переменного / постоянного тока auo 002 1005-F | |
1999 — схема питания ac-dc
Реферат: принципиальная схема преобразователя переменного тока в постоянный с высокой мощностью melcher 3015
|
Оригинал |
CB-19 CB-24 CB-20 CB-21 CB-25 принципиальная схема питания переменного / постоянного тока принципиальная схема преобразователя переменного тока в постоянный, высокий выход мельчер 3015 | |
2000 — схема питания ac-dc
Реферат: Преобразователи переменного тока в постоянный 75-15F Выпрямитель переменного тока в постоянный 50-05FC Преобразователи переменного тока в постоянный ток TOKO
|
Оригинал |
СВХ-21Т-П1 MLCK06 CB-24 CB-21 CB-22 принципиальная схема питания переменного / постоянного тока Преобразователи переменного тока в постоянный 75-15F Выпрямитель AC-DC 50-05FC Преобразователи переменного тока в постоянный TOKO | |
Нет в наличии
Аннотация: абстрактный текст недоступен
|
Оригинал |
AMEPR30-AZ 90-305VAC / 47-440 Гц 0-10 В постоянного тока AMEPR30-5070AZ AMEPR30-4864AZ AMEPR30-36100AZ AMEPR30- | |
Нет в наличии
Аннотация: абстрактный текст недоступен
|
OCR сканирование |
Силовой транзистор и регулятор напряжения, Mosfet, набор тиристоров, 82 шт., 24 типа, 78L05 L7805 L7905 LM317 TL431 MAC97A6 BTA06 TIP3c TIP41c TIP42c D882 BC140 IRF540 IRFZ44 TIP122 и т. Д.: Amazon.com: Промышленный и научный
Комплект поставки силового транзистора, МОП-транзистора, тиристора и регулятора напряжения, 82 шт., 24 типа и 4 шт. Радиатора
Регуляторы напряжения:
78L05 (5 В положительный, 100 мА, TO-92), 10 шт.
L7805 (5 В положительный, 1 А, TO-220), 2 шт.
79L05 (5 В отрицательный, 100 мА, TO-92), 5 шт.
L7905 (5 В положительный , 1A, TO-220), 2 шт.
L8L12 (12 В, положительный, 100 мА, TO-92), 5 шт.
L7812 (12 В, положительный, 1A, TO-220), 2 шт.
L7824 (24 В, положительный, 1A, TO-220), 2 шт.
LM317 (1.От 2 до 37 В, положительный, 1,5 А, TO-220), 3 шт.
TL431A (от 2,5 до 36 В, положительный, 100 мА, TO-92), 10 шт.
Тиристоры / симисторы:
MAC97A6 (VDRM 400V, IT (RMS) 0.6A, TO-92), 5 шт.
BT134-600E (VDRM 600V, IT (RMS) 4A, TO-126), 4 шт.
BTA06 (VDRM 600V, IT (RMS) 6A, TO-220), 2 шт.
Силовые транзисторы:
TIP31C (NPN, VCEO 100V, 3A, TO-220), 2 шт.
TIP32C (PNP, VCEO -100V, -3A, TO-220), 2 шт.
TIP41C (NPN, VCEO 100V, 6A, TO-220), 2 шт.
TIP42C (PNP , VCEO -100V, -6A, TO-220), 2 шт.
D882 (NPN, VCEO 30V, 3A, TO-220), 4 шт.
B772 (PNP, VCEO -30V, — 3А, ТО-220), 4 шт.
BD139 (NPN, VCEO 8 0В, 1.5A, TO-220), 2 шт.
BD140 (PNP, VCEO -80V, -1,5A, TO-220), 4 шт.
Полевые МОП-транзисторы:
IRF540 (N- Канал, VDS 100V, ID 30A, TO-220), 2 шт.
IRFZ44 (N-Channel, VDS 60V, ID 35A, TO-220), 2 шт.
Darlingtons:
TIP122 (VCEO 100V, IC 5A, TO-220), 2 шт.
TIP127 (VCEO -100V, IC -5A, TO-220), 2 шт.
Радиаторы:
TO- 220, 4 шт.
Математические модели для анализа электромагнитных процессов в тиристорных схемах регуляторов напряжения переменного тока
ПОКАЗЫВАЕТ 1-10 ИЗ 14 ССЫЛОК
СОРТИРОВАТЬ по актуальностиСамые популярные статьи Недавность
Регуляторы переменного напряжения с переключаемыми конденсаторами
В статье описан новый тип регуляторов напряжения переменного тока с переключаемыми конденсаторами.Основным фактором при разработке новых преобразователей стало сокращение количества полупроводниковых переключателей или… Развернуть
Регулятор напряжения переменного тока с покфазными переключателями
- А. Удовиченко, А. Сидоров
- Машиностроение
- 2017 18-я Международная конференция молодых специалистов по Микро / нанотехнологии и электронные устройства (EDM)
- 2017
Рассматривается бестрансформаторный регулятор напряжения переменного тока с пофазными переключателями, способными повышать напряжение без потери качества тока системы.Такой преобразователь может использоваться как напряжение… Развернуть
Основы силовой электроники
В этой главе дается описание и обзор технологий силовой электроники, включая описание основных систем, которые являются строительными блоками систем силовой электроники.… Развернуть
- Просмотр 1 отрывка, справочная информация
Основы силовой электроники
Преобразователи в равновесии, моделирование устойчивых эквивалентных схем, потери и КПД, а также мощность и гармоники в несинусоидальных системах.РазвернутьKhandakji, «Трехуровневые трехфазные инверторы на базе LCCT,
- IET Power Electronics,
- 2017
S
- В. Брованов,« Аспекты подавления синфазного тока утечки в однофазных фотоэлектрических системах ». генерации систем », 18-я международная конференция молодых специалистов по микро / нанотехнологиям и электронным устройствам, EDM 2017: учеб., Алтай, Эрлагол, 29 июня — 3 июля 2017 г. — Новосибирск: НГТУ
- 2017
Удовиченко, АЦ регуляторы напряжения с высокочастотным трансформатором обзор », 2016 17-я Международная конференция молодых специалистов по микро / нанотехнологиям и электронным устройствам (EDM), Эрлагол
Рожденко,« Исследование трехфазного двухзонного тиристорного регулятора напряжения переменного тока с конденсаторным делителем », 2015
- 16-я Международная конференция молодых специалистов по микро / нанотехнологиям и электронным устройствам, Эрлагол,
- 2015
Введение в Li рядом с регуляторами напряжения
13.02.2016 | Автор: Дэйв Найт,
Линейные регуляторы представляют собой простые схемы регуляторов напряжения, обычно используемые в электронике.В этой статье кратко обсуждается принцип работы линейных регуляторов, их преимущества и недостатки, варианты линейного регулятора и важные параметры из таблицы данных.
Как работают линейные регуляторы
В линейных регуляторахиспользуется замкнутый контур обратной связи для смещения проходного элемента для поддержания постоянного напряжения на его выходных клеммах. На рисунке 1 операционный усилитель управляет базой Q1, чтобы гарантировать, что напряжение на его инвертирующем входе будет равно опорному напряжению на его неинвертирующем входе.
Операционный усилитель в этой схеме имеет небольшую нагрузку, базовый ток и минимальную емкостную нагрузку. Следовательно, он может очень быстро реагировать на изменения нагрузки.
Из этой схемы можно увидеть две вещи:
1.) Линейные регуляторы — это понижающие преобразователи, что означает, что выходное напряжение всегда будет меньше входного. Фактически, существует минимальная разница напряжений между V IN и V OUT , которая позволит линейному регулятору работать.В технических данных это значение называется отпускным напряжением. Если V OUT > V IN — V DROPOUT , то линейный регулятор не может регулировать выходное напряжение при желаемом напряжении.
2.) Мощность рассеивается в проходном транзисторе. Величина мощности P = (V IN -V OUT ) * I НАГРУЗКА . Эта сила — потраченное впустую тепло. Это тепло нагревает регулятор.
Рисунок 1: Пример внутренней работы линейного регулятора
Источник изображения: http: // www.eetimes.com/document.asp?doc_id=1272466
Преимущества линейных регуляторов
Линейные регуляторы обычно имеют высокую степень интеграции, включая проходной элемент и контур обратной связи. Некоторые линейные регуляторы, такие как LM317, можно регулировать при использовании с внешним резистивным делителем.
Недостатки линейных регуляторов
Линейные регуляторы имеют следующие преимущества:
- Простой.
- Дешево.
- Коэффициент отклонения блока питания.Линейные регуляторы быстро реагируют на изменения входного напряжения, создавая выходное напряжение, которое практически не имеет пульсаций на входе.
- Быстро реагировать на изменения напряжения нагрузки.
- Нет шума переключения. Другие схемы преобразования напряжения, известные как преобразователи постоянного тока в постоянный, имеют высокочастотный шум переключения. У линейных регуляторов такой характеристики нет.
Главный недостаток линейных регуляторов — их неэффективность. Это связано с падением напряжения на проходном элементе.Эта неэффективность может привести к перегреву линейного регулятора. Обратите внимание на ожидаемое тепловыделение для вашего приложения и обязательно используйте соответствующий радиатор или медный наполнитель для предотвращения повышения температуры. Если требуется высокая мощность, КПД или повышающий преобразователь, используйте преобразователь постоянного тока в постоянный.
Варианты на линейном регуляторе
Существует множество разновидностей линейных регуляторов. Некоторые линейные регуляторы имеют фиксированные выходы. Некоторые имеют выходы, программируемые резисторным делителем.Некоторые регулируют отрицательное напряжение. Стабилизаторы с малым падением напряжения, известные как LDO, имеют небольшое падение напряжения. Некоторые линейные регуляторы включают в себя умные устройства для зарядки аккумуляторов. Некоторые из них представляют собой сложные программируемые микросхемы, используемые в автоматизированном испытательном оборудовании. Для линейных регуляторов характерно отключение при перегреве.
Важные параметры таблицы данных
Максимальное входное напряжение: Это максимальное напряжение, которое может быть приложено к входной клемме без повреждения или разрушения детали.
Дифференциал входного напряжения и выходного напряжения: Некоторые регулируемые линейные регуляторы имеют максимальную номинальную разность входного и выходного напряжения.
Номинальный ток: Максимальный ток, который может выдавать линейный регулятор. Это зависит от других факторов, таких как перепад входного и выходного напряжения, температура окружающей среды и теплоотвод. Номинальная мощность пакета указывает, сколько мощности может рассеять пакет; это может зависеть от требований к радиатору и компоновке.
Падение напряжения: Это минимальный перепад входного-выходного напряжения, который устройство может принять и произвести регулируемое напряжение.
Заключение
В этой статье дается краткий обзор того, как работают линейные регуляторы, преимущества, недостатки, варианты линейного регулятора и важные параметры из таблицы данных.
Приложения SCR
Способность SCR управлять большими токами нагрузки с помощью малого тока затвора делает устройство очень полезным в приложениях переключения и управления.Некоторые из возможных приложений для SCR перечислены во введении к сообщению в блоге SCR.
Здесь мы рассмотрим шесть применений SCR, таких как управление мощностью, переключение, переключение при нулевом напряжении, защита от перенапряжения , импульсные цепи и регулятор заряда аккумулятора.
1. Power Control.
Цепь управления мощностью SCR
Из-за бистабильных характеристик полупроводниковых устройств, благодаря которым они могут включаться и выключаться, а также эффективности управления затвором для запуска таких устройств, тиристоры идеально подходят для многих промышленных приложений.SCR имеют определенные преимущества перед реакторами с насыщаемой активной зоной и газовыми трубками благодаря их компактности, надежности, низким потерям и быстрому включению и выключению.
Бистабильные состояния (проводящее и непроводящее) SCR и свойство, обеспечивающее быстрый переход из одного состояния в другое, используются при управлении мощностью как в цепях переменного, так и постоянного тока.
- Контроль фазы SCR
В цепях переменного тока тиристор может быть включен затвором под любым углом α относительно приложенного напряжения.Этот угол α называется углом включения, а регулировка мощности достигается изменением угла открытия. Это известно как управление фазой . Простая полуволновая схема показана на рисунке а. для иллюстрации принципа регулирования фазы для индуктивной нагрузки. На рисунке b показаны кривые тока нагрузки, напряжения нагрузки и напряжения питания. SCR отключит естественной коммутацией, когда ток станет нулевым. Угол β известен как угол проводимости. Изменяя угол зажигания a, можно изменять действующее значение напряжения нагрузки.Мощность, потребляемая нагрузкой, уменьшается с увеличением угла стрельбы a. Реактивная мощность, потребляемая от источника питания, увеличивается с увеличением угла зажигания. Форму волны тока нагрузки можно улучшить, подключив безынерционный диод D 1 , как показано пунктирной линией на рис. С этим диодом SCR будет отключен, как только полярность входного напряжения изменится на противоположную. После этого ток нагрузки пройдет через диод, и на тиристоре появится обратное напряжение. Основное преимущество фазового управления состоит в том, что ток нагрузки проходит через естественную нулевую точку в течение каждого полупериода.Таким образом, устройство отключается само по себе в конце каждого периода проводимости, и никакой другой коммутационной цепи не требуется.
Управление мощностью в цепях постоянного тока достигается изменением продолжительности включенного и выключенного времени устройства, и такой режим работы называется двухпозиционным управлением или управлением прерывателем. Другое важное применение SCR — это преобразователи , используемые для преобразования постоянного тока в переменный. Входная частота связана с частотой срабатывания тиристоров в инверторах. Таким образом, источник питания переменной частоты может быть легко получен и использован для управления скоростью двигателей переменного тока, индукционного нагрева, электролитической очистки, люминесцентного освещения и ряда других приложений.Из-за большой пропускной способности SCR управляемый SCR инвертор имеет более или менее замененные мотор-генераторные установки и магнитные умножители частоты для генерации высокой частоты при больших номинальных мощностях.
Работа регулятора мощности в SCR
Типичная схема управления мощностью в нагрузке R L с использованием двух тиристоров показана на рисунке. Потенциометр R контролирует угол проводимости двух тиристоров. Чем больше сопротивление потенциометра, тем меньше будет напряжение на конденсаторах C 1 , , и C 2 , и, следовательно, меньше будет продолжительность времени проведения SCR 1 и SCR 2 в течение цикла.
Во время положительного полупериода конденсатор C 2 заряжается через диод D 1 , потенциометр R и диод D 4 . Когда конденсатор полностью заряжен (заряд конденсатора зависит от значения R), он разряжается через стабилитрон Z. Это дает импульс первичной и, следовательно, вторичной обмотке трансформатора T 2 . Таким образом, SCR 2 , который смещен в прямом направлении, включен на и проводит через нагрузку R L . Во время отрицательного полупериода аналогичное действие происходит из-за зарядки конденсатора C 1 и срабатывает SCR 1 .Таким образом, мощность нагрузки регулируется с помощью тиристоров.
2. Переключение .
Тиристор, являясь бистабильным устройством, широко используется для коммутации силовых сигналов благодаря длительному сроку службы, высокой скорости работы и отсутствию других дефектов, связанных с механическими и электромеханическими переключателями.
Автоматический выключатель переменного тока с использованием SCRНа рисунке показана схема, в которой два SCR используются для включения и отключения цепи переменного тока. Входное напряжение является переменным, и триггерные импульсы подаются на затворы тиристоров через управляющий переключатель S.В цепи затвора предусмотрено сопротивление R для ограничения тока затвора, в то время как резисторы R 1 и R 2 предназначены для защиты диодов D 1 и D 2 соответственно.
Для запуска схемы, когда переключатель S замкнут, SCR 1 будет срабатывать в начале положительного полупериода (предполагается, что ток триггера затвора очень мал), потому что во время положительного полупериода SCR 1 идет вперед пристрастный. Он выключится, когда ток пройдет через нулевое значение.Как только SCR 1 отключается, SCR 2 срабатывает, поскольку полярность напряжения уже изменена, и он получает правильный ток затвора. Цепь может быть прервана путем размыкания переключателя S. Открытие цепи затвора не представляет проблемы, так как ток через этот переключатель небольшой. Поскольку при разомкнутом переключателе S на тиристоры больше не будет подаваться стробирующий сигнал, тиристоры не будут срабатывать, и ток нагрузки будет равен нулю. Максимальное время задержки отключения цепи составляет один полупериод.
Таким образом, несколько сотен ампер тока нагрузки можно включить / выключить, просто подав ток затвора в несколько мА с помощью обычного переключателя. Вышеупомянутая схема также называется статическим контактором, потому что в ней нет движущихся частей.
Автоматический выключатель постоянного тока Применение SCR — автоматический выключатель постоянного тока
Как показано на рисунке, конденсатор C обеспечивает требуемую коммутацию основного SCR, поскольку ток не имеет естественного нулевого значения в цепи постоянного тока. Когда SCR 1 находится в проводящем состоянии, напряжение нагрузки будет равно напряжению питания, и конденсатор C будет заряжаться через резистор R.Цепь разрывается отключением SCR 1 . Это делается путем срабатывания SCR 2 , называемого вспомогательным SCR. Конденсатор C разряжается через SCR 2 и SCR 1 . Этот ток разряда противоположен току, протекающему через SCR 1 , и когда они становятся равными, SCR 2 отключается. Теперь конденсатор C заряжается через нагрузку, и когда конденсатор C полностью заряжен, SCR 2 отключается. Таким образом, схема действует как автоматический выключатель постоянного тока.Резистор R выбирается такой величины, чтобы ток через R был меньше, чем ток удержания.
3. Коммутация при нулевом напряжении .
Приложение переключения тиристоров
В некоторых цепях переменного тока необходимо подавать напряжение на нагрузку, когда мгновенное значение этого напряжения проходит через нулевое значение. Это сделано для того, чтобы избежать высокой скорости увеличения тока в случае чисто резистивных нагрузок, таких как осветительные и печные нагрузки, и, таким образом, уменьшить генерацию радиошумов и температур горячих точек в устройстве, несущем ток нагрузки.Схема для этого показана на рисунке. Здесь используется только полуволновое управление. Часть схемы, показанная пунктирными линиями, относится к отрицательному полупериоду. Каким бы ни был момент времени, когда переключатель S размыкается (во время положительного или отрицательного полупериода), только в начале следующего положительного полупериода приложенного напряжения SCR 1 сработает. Точно так же, когда переключатель S замкнут, SCR 1 перестанет проводить в конце текущего или предыдущего положительного полупериода и больше не сработает.Резисторы R 3 и R 4 разработаны с учетом минимальных токов базы и затвора, необходимых для транзисторов Q 1 и SCR 1 . Резисторы R l и R 2 регулируют скорость заряда и разряда конденсатора C 1 Резистор R 5 используется для предотвращения больших токов разряда при замкнутом переключателе S.
4. Защита от перенапряжения.
Защита от перенапряжения
SCR могут использоваться для защиты другого оборудования от перенапряжений благодаря их быстрому переключению.SCR, используемый для защиты, подключается параллельно нагрузке. Всякий раз, когда напряжение превышает указанный предел, затвор SCR получает питание и запускает SCR. Из питающей сети будет потребляться большой ток, и напряжение на нагрузке будет уменьшено. Используются два SCR — один для положительного полупериода, а другой для отрицательного полупериода, как показано на рисунке. Резистор R 1 ограничивает ток короткого замыкания при срабатывании тиристоров. Стабилитрон D 5 , соединенный последовательно с резисторами R x и R 2 , составляет цепь измерения напряжения.
5. Импульсные цепи. SCR-Pulse Circuit
SCR используются для создания импульсов высокого напряжения / тока желаемой формы и длительности. Конденсатор C заряжается в течение положительного полупериода входного питания, а SCR срабатывает во время отрицательного полупериода. Конденсатор разрядится через выходную цепь, и когда прямой ток SCR станет нулевым, он отключится. Выходная цепь рассчитана на ток разряда длительностью менее миллисекунды.Конденсатор снова будет заряжаться в следующем положительном полупериоде, а SCR снова сработает в отрицательном полупериоде. Таким образом, частота выходного импульса будет равна частоте входного питания. Для ограничения зарядного тока используется резистор R. Импульсы высокого напряжения / тока могут использоваться при точечной сварке, электронном зажигании в автомобилях, генерации сильных магнитных полей короткой продолжительности и при испытании изоляции.
6. Регулятор заряда аккумулятора.
Регулятор заряда аккумулятораОсновные компоненты схем показаны на рисунке. Диоды D 1 и D 2 предназначены для создания двухполупериодного выпрямленного сигнала через SCR 1 и заряжаемый аккумулятор 12 В. Когда аккумулятор находится в разряженном состоянии, SCR 2 находится в выключенном состоянии, что станет ясно после обсуждения. Когда двухполупериодный выпрямленный вход достаточно велик, чтобы дать требуемый ток затвора включения (управляемый резистором R 1 ), SCR 1 включится и начнется зарядка аккумулятора.В начале зарядки батареи напряжение V R , определяемое простой схемой делителя напряжения, слишком мало, чтобы вызвать стабилитронную проводимость 11,0 В. В выключенном состоянии стабилитрон фактически представляет собой разомкнутую цепь, поддерживающую SCR 2 в выключенном состоянии из-за нулевого тока затвора. Конденсатор C включен в схему, чтобы предотвратить случайное включение каких-либо скачков напряжения в цепи SCR 2 . По мере продолжения зарядки напряжение аккумулятора увеличивается до точки, когда V R становится достаточно большим, чтобы оба включили 11.0 В стабилитрон и SCR 2 . Как только SCR 2 сработал, представление короткого замыкания для SCR 2 приведет к цепи делителя напряжения, определенной R 1 и R 2 , которая будет поддерживать V 2 на уровне, слишком маленьком для включения SCR 1 г. Когда это происходит, аккумулятор полностью заряжен, а состояние разомкнутой цепи SCR 1 отключает зарядный ток. Таким образом, регулятор заряжает батарею при падении напряжения и предотвращает перезарядку при полной зарядке.