Схема адаптера питания на 5 вольт: Схема блока питания на 5 Вольт

Содержание

Все своими руками Блок питания 5В 2А

Опубликовал admin | Дата 5 июля, 2016

Как сделать блок питания своими руками, об этом пойдет речь в данной статье. Выходное стабилизированное напряжение блока – 5 вольт, номинальный ток нагрузки 2 ампера. Выход блока питания имеет защиту от короткого замыкания. Принципиальная схема устройства показана на рисунке 1.


В схеме применен унифицированный накальный трансформатор ТН-220-50. Данные на него можно посмотреть в таблице ниже.

ТН2-127/220-50, параметры

Данные трансформаторы имеют несколько модификаций. Поэтому подключение первичной обмотки у них отличается. Если трансформатор рассчитан только на напряжение 220 вольт, то это напряжение надо подключать к выводам 1 и 5 первичной обмотки, см. рисунок 2.

ТН2-127/220-50, схема включения

Если в своем обозначении трансформатор имеет 127, то его схема показана на рисунке 3. В этом случае надо будет еще поставить перемычку между выводами 2 и 4 первичной обмотки. Выходное переменное напряжение величиной 6,3 вольта поступает на выпрямительный мост, состоящий из четырех диодов

КД202В, можно применить и готовый мост на ток не менее четырех ампер. Например, из импортных, это RS401, KBL005. Шести амперные мосты – KBU6A, RS601, BR605, KBPC6005 и др. Постоянное напряжение на конденсаторе фильтра будет примерно равно 6,6×1,41= 8,8 вольт. Основой стабилизатора служит микросхема К157ХП2, в состав которой входит источник опорного напряжения с устройством управления временем включения и выключения, усилитель сигнала рассогласования, регулирующий элемент с токовой тепловой защитой. Имеет все то, что нам надо! Правда в состав микросхемы входят еще два транзистора для генератора стирания и тока подмагничивания магнитофонов (микросхема то магнитофонная), но мы их использовать не будем. В качестве регулирующего транзистора в схеме используется мощный составной транзистор КТ829А (схема Дарлингтона). В крайнем случае, можно применить менее мощный транзистор КТ972А или соответствующие импортные, какие ни будь TIP120, 121,122, имеющий ток коллектора пять ампер.

И так, как уже говорилось выше, схема имеет вывод включения/выключения — 9. Что бы включить стабилизатор надо на этот вывод подать напряжение не ниже двух вольт. В первый момент после подачи напряжения на вход стабилизатора, это напряжение формируется цепочкой R1 и С2. За время протекания тока заряда этого конденсатора успевает включиться сам стабилизатор и часть его выходного напряжения через резистор обратной связи так же подается на вывод 9. Это удерживающее напряжение для поддержания стабилизатора в рабочем состоянии. Вывод 8 микросхемы, это выход напряжения источника опорного напряжения. У данной микросхемы это напряжение равно 1,3 вольта. С8 – конденсатор фильтра и одновременно конденсатор задержки включения стабилизатора. Таким образом, если у вас не будет включаться стабилизатор, то надо будет увеличить емкость конденсатора С2. Т.е. увеличить время заряда этого конденсатора, что бы успел включиться стабилизатор.

Чтобы выключить стабилизатор, надо нажать на кнопку SA3 – Стоп. Она зашунтирует вывод 9 DA1 на общий провод, открывающее напряжение пропадет, стабилизатор закроется. Прекрасная микросхема, напряжение выключенного стабилизатора в моем случае равно всего 7,6 мВ. То же самое произойдет, т.е. стабилизатор выключится, когда в его выходной цепи произойдет короткое замыкание. Так же пропадет открывающее напряжение. Через резистор R1 напряжение на вывод 9 поступать не будет, так как уже заряженный конденсатор для постоянного тока имеет очень большое сопротивление. В таком состоянии схема может находиться сколько угодно долго. Для повторного запуска стабилизатора необходимо или снять напряжение питания и снова подать, или нажать на кнопку пуск. В этом случае открывающее напряжение на вывод 9 поступит через резистор R1.

Подстроить выходное напряжение стабилизатора можно резистором R4. При токе нагрузки, равному 2 амперам и падении напряжения на регулирующем транзисторе 8,8-5=3,5 вольт, мощность, на нем выделяемая, будет равна P = U x I = 3,5 x 2 = 7 Вт. Отсюда следует, что транзистору необходим соответствующий теплоотвод, площадь которого можно прикинуть, посетив страницу со статьей «Расчет радиаторов». Я тут прикинул и получилось, примерно, 200см2.

На сайте есть другой блок питания с использованием этой же микросхемы, если интересно можете заглянуть в статью «Блок питания от2 до 30 вольт» или же сюда «Стабилизатор 5В»

. Пока все. Удачи. К.В.Ю.
Скачать статью «Блок питания 5В 2А своими руками»

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:12 011


Импульсный блок питания из сгоревшей лампочки

Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

Построить блок питания будет ненамного сложнее, чем прочитать эту статью. И уж точно, это будет проще, чем найти низкочастотный трансформатор подходящей мощности и перемотать его вторичные обмотки под свои нужды.

 

Оглавление статьи.

  1. Вступление.
  2. Отличие схемы КЛЛ от импульсного БП.
  3. Какой мощности блок питания можно изготовить из КЛЛ?
  4. Импульсный трансформатор для блока питания.
  5. Ёмкость входного фильтра и пульсации напряжения.
  6. Блок питания мощностю 20 Ватт.

     

  7. Блок питания мощностью 100 ватт
  8. Выпрямитель.
  9. Как правильно подключить импульсный блок питания к сети?
  10. Как наладить импульсный блок питания?
  11. Каково назначение элементов схемы импульсного блока питания?

 

Вступление.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.

Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

 

Вернуться наверх к меню

 

Отличие схемы КЛЛ от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками 

А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

 

Вернуться наверх к меню

 

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Вернуться наверх к меню

 

Импульсный трансформатор для блока питания.

 

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. 🙂 Проверено на практике.

Здесь подробно рассказано, как произвести самые простые расчёты импульсного трансформатора, а так же, как его правильно намотать… чтобы не пришлось подсчитывать витки. 🙂

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Вернуться наверх к меню

 

Ёмкость входного фильтра и пульсации напряжения.

 

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

 

Вернуться наверх к меню

 

Блок питания мощностью 20 Ватт.

 

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП.

Мощность, подводимая к нагрузке – 20 Ватт. Частота автоколебаний без нагрузки – 26 кГц. Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС Температура транзисторов – 42ºС

 

Вернуться наверх к меню

 

Блок питания мощностью 100 Ватт.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

 

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

 

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.

 

  1. Винт М2,5.
  2. Шайба М2,5.
  3. Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
  4. Корпус транзистора.
  5. Прокладка – отрезок трубки (кембрика).
  6. Прокладка – слюда, керамика, фторопласт и т.д.
  7. Радиатор охлаждения.

А это действующий стоваттный импульсный блок питания.

 

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.

 

Мощность, выделяемая на нагрузке – 100 Ватт.

Частота автоколебаний при максимальной нагрузке – 90 кГц.

Частота автоколебаний без нагрузки – 28,5 кГц.

Температура транзисторов – 75ºC.

Площадь радиаторов каждого транзистора – 27см².

Температура дросселя TV1 – 45ºC.

TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Вернуться наверх к меню

 

Выпрямитель.

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

 

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

 

1. Мостовая схема.

2. Схема с нулевой точкой.

 

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

 

Пример.

Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ватт.

 

100 / 5 * 0,4 = 8(Ватт)

 

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

 

100 / 5 * 0,8 * 2 = 32(Ватт).

 

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности. 🙂


 

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

 

Вернуться наверх к меню

 

Как правильно подключить импульсный блок питания к сети?

 

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

 

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку между исследуемым ИБП и осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

 

А это уже изображение реального стенда для ремонта и наладки импульсных БП, который я изготовил много лет назад по схеме, расположенной выше.

 

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

 

Будьте осторожны, берегитесь ожога!

 

Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!

То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Вернуться наверх к меню

 

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Вернуться наверх к меню

 

Каково назначение элементов схемы импульсного блока питания?

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Вернуться наверх к меню

 

Источник http://oldoctober.com/

Лабораторный блок питания 5…100 Вольт

категория

Схемы источников питания

материалы в категории

С. БИРЮКОВ, г. Москва
Радио, 2002 год, № 7

В радиолюбительской практике часто возникают ситуации когда требуются напряжения выходящие за пределы «любительского диапазона» 5…25 Вольт. Для какой-нибудь конструкции может потребоваться, к примеру, 70 Вольт, для другой и все 100…

Чтобы не собирать несколько источников напряжений предлагается схема лабораторного блока питания, который может работать в двух режимах регулировок- в привычном всем нам диапазоне 5…50 Вольт и одновременно в диапазоне 50…100 Вольт (режим регулировки выбирается при помощи переключателя).

Другие параметры блока питания:
Максимальный выходной ток, мА ………………..200
Уровень ограничения выходного тока, мА…………….250
Пульсации выходного напряжения, мВ, не более……..10
Нестабильность выходного напряжения при изменении напряжения сети в пределах 190…240 В и выходного тока 0…200 мА, %, не более ………………..0,1

Высокая стабильность обеспечена применением в качестве источника образцового напряжения и усилителя сигнала рассогласования микросхемы КР142ЕН19А[1].

Схема источника питания

Выпрямитель собран по схеме с удвоением напряжения на диодах VD1 и VD2, которые для снижения уровня коммутационных помех зашунтированы конденсаторами С1 и С2. Чтобы уменьшить мощность, рассеиваемую на транзисторах стабилизатора, при работе в интервале 5…55 В отключают часть вторичной обмотки трансформатора Т1 переключателем SA2.

Транзистор VT2 служит генератором тока. Напряжение на его базе стабилизировано светодиодом HL1, значение тока коллектора (8…9 мА) задает резистор R2. Через делитель из резисторов R4—R8 часть выходного напряжения стабилизатора поступает на управляющий вход микросхемы DA1. Если напряжение здесь менее 2,5 В, анодный ток микросхемы и коллекторный ток транзистора VT1 не превышают 0,4 мА. Благодаря этому транзистору, включенному по схеме с общей базой, напряжение на аноде микросхемы DA1 не превышает 3,3 В, а рассеиваемая ею мощность не выходит за допустимое значение.

В этом режиме почти весь коллекторный ток транзистора VT2 поступает в базу транзистора VT4, открывая последний. Напряжение на выходе стабилизатора и на входе управления микросхемы DA1 растет. Когда последнее достигнет 2,5 В, анодный ток DA1, а с ним и коллекторный ток транзистора VT1 резко возрастет, ток базы транзистора VT4 уменьшится и напряжение на выходе источника будет стабилизировано на уровне, определяемом соотношением сопротивлений резисторов R4—R8. Плавно регулируют выходное напряжение переменным резистором R5, интервал регулировки выбирают с помощью переключателя SA2.

Транзистор VT3 нормально закрыт. Но при увеличении тока нагрузки и коллекторного тока транзистора VT4 примерно до 250 мА падение напряжения на резисторе R10 достигает значения, при котором транзистор VT3 открывается, шунтируя светодиод HL1. Это приводит к уменьшению коллекторных токов транзисторов VT2 и VT4. В результате выходной ток стабилизатора оказывается ограниченным указанным выше значением. О срабатывании ограничителя тока можно судить по уменьшению яркости свечения светодиода.

Когда в результате действия ограничителя напряжение на выходе стабилизатора снизится примерно до 2,7 В, текущий по цепи HL1R1 ток пойдет в нагрузку через открывшийся диод VD4, несколько увеличивая суммарный протекающий через нее ток. Если бы диода VD4 не было, в результате изменения полярности приложенного напряжения открылся бы коллекторный переход транзистора VT1 и ток, текущий через R1, направился бы в базу транзистора VT4. В результате усиления транзистором VT4 приращение тока нагрузки было бы гораздо большим.

Имеется возможность полностью устранить эффект увеличения тока с помощью диода, включенного в разрыв цепи, соединяющей коллектор транзистора VT1 с базой транзистора VT4 и коллектором транзистора VT2. Но в таком случае транзисторы VT1 и VT2 нельзя будет устанавливать на общий теплоотвод без изолирующих прокладок.

Следует рассказать о назначении диодов VD5 и VD6. Предположим, переключатель SA2 находится в положении «50…100 В», а на выходе установлено минимальное напряжение (движок переменного резистора R5 — в верхнем по схеме положении). После перевода переключателя SA2 в положение «5…55 В» напряжение 50 В, до которого заряжен конденсатор С7, оказывается приложенным к резисторам R6—R9, причем более его половины (около 30 В) — к управляющему входу микросхемы DA1. Последняя из строя не выйдет, но по внутренним цепям микросхемы это напряжение попадет на ее анод и на эмиттер транзистора VT1, закрывая последний. В результате весь коллекторный ток транзистора VT2 потечет в базу транзистора VT4 и на выходе стабилизатора появится максимально возможное напряжение. К сожалению, это состояние устойчиво и самостоятельно стабилизатор выйти из него не сможет.

Диод VD5 служит для исключения подобной критической ситуации. Открываясь, он ограничивает напряжение на входе микросхемы DA1 допустимым значением. Правильный выбор напряжения стабилизации стабилитрона VD3 и номиналов резисторов R7 и R8 гарантирует, что в нормальном рабочем режиме диод VD5 остается закрытым и не влияет на работу стабилизатора.

При резком изменении положения органов управления в сторону уменьшения выходного напряжения возможна ситуация, когда за счет медленной разрядки конденсатора С7 напряжение на эмиттере транзистора VT4 «не поспевает» за напряжением на его базе. Возникает опасность пробоя эмиттер-ного перехода транзистора напряжением, приложенным к нему в обратном направлении. Диод VD6 предотвращает этот обратимый, но нежелательный пробой. Конденсатор С7 разряжается по цепи VD6, VT1, R3, DA1. Благодаря резистору R3 ток разрядки не превышает 100 мА.

В блоке питания применен унифицированный трансформатор ТПП271-127/220-50 [2] с габаритной мощностью 60 Вт. Подобные трансформаторы меньшей мощности имеют слишком большие для работы в предлагаемом устройстве активные сопротивления обмоток. Для некоторого уменьшения напряжения на вторичных обмотках трансформатора выводы его первичных обмоток соединены нестандартным образом. При самостоятельном изготовлении трансформатора следует ориентироваться на указанные на рис. 1 напряжения холостого хода вторичных обмоток. Сечения обмоточных проводов должны быть достаточно большими, чтобы сопротивления обмоток были примерно такими же, как у указанного трансформатора: 1-9 — 56 Ом, 13-16 —2,3 Ом, 17-18 —1,3 Ом.

Все постоянные резисторы в устройстве — С2-23 или МЛТ соответствующей мощности, R5 — ППЗ-40. Конденсаторы С1 и С2 — керамические на напряжение не менее 160 В, например, КМ-5 группы ТКЕ не хуже М1500. СЗ, С4, С7 — импортные аналоги К50-35, С6 — КМ-5 или КМ-6, С5 и С8 — К73-17 на напряжение 250 В. Диоды 1N4007 имеют отечественный аналог — КД243Ж, можно использовать любые диоды на напряжение не менее 200 В и ток 300 мА. Вместо КД509А можно установить любые диоды с допустимым импульсным током не менее 300 мА.

Коэффициенты передачи тока h21э у всех мощных транзисторов должны быть не менее 30, причем этот параметр транзистора VT4 следует проверять при токе коллектора 200 мА. Замену транзисторам VT1, VT2 и VT4 нужно подбирать с предельным напряжением коллектор—эмиттер не менее 160 В и допустимым током коллектора не менее 100 мА (VT1 и VT2) и 1 A (VT4). Транзистор VT3 — любой кремниевый маломощный структуры р-п-р. Светодиод HL1 — любой видимого свечения. Чтобы сохранить неизменным коллекторный ток транзистора VT2 при установке светодиода HL1 зеленого или желтого цвета, придется, возможно, немного увеличить номинал резистора R2. Микросхему КР142ЕН19А можно заменить импортным аналогом TL431.

Основная часть деталей источника питания размещена на печатной плате размерами 50×75 мм из стеклотекстолита толщиной 1,5 мм (вид со стороны печатных проводников)

На ней же находится общий ребристый теплоотвод транзисторов VT1 и VT2 размерами 20x24x38 мм. Транзистор VT4 устанавливают на отдельном ребристом теплоотводе размерами 36x100x140 мм. Диод VD6 припаивают непосредственно к выводам этого транзистора.

Подключать собранное устройство к сети в первый раз желательно через лабораторный регулируемый автотрансформатор, на выходе которого предварительно установлено нулевое напряжение. Движок переменного резистора R5 должен находиться в положении минимального сопротивления, переключатель SA2 — в положении «5…55 В». К выходу источника подключают вольтметр и убеждаются, что по мере вращения рукоятки автотрансформатора в сторону увеличения напряжения показания вольтметра растут, но, дойдя приблизительно до 5 В, остаются на этом уровне. Если это так, можно довести входное напряжение до номинальных 220 В и проверить напряжение на некоторых элементах устройства. На катоде стабилитрона VD3 оно должно быть близким к напряжению его стабилизации (3,9 В), на верхнем по схеме выводе резистора R7 — приблизительно 3,3 В. Падение напряжения на резисторе R2 должно составлять около 1,1 В, если оно больше, следует увеличить номинал указанного резистора таким образом, чтобы текущий через него ток был в пределах 8…9 мА.

Резисторы R4, R6, R8 подбирают в следующем порядке. При переключателе SA2, находящемся в положении «5…55 В», устанавливают с помощью переменного резистора R5 максимальное напряжение на выходе источника. Подбирают резистор R8 таким образом, чтобы оно было немного больше 55 В. Переводят движок резистора R5 в другое крайнее положение и, подбирая резистор R6, добиваются выходного напряжения немного меньше 5 В. Затем переводят переключатель SA2 в положение «50… 100 В» и подбирают резистор R4, добиваясь указанных пределов регулировки выходного напряжения резистором R5.

Следует обязательно проверить работу источника питания с максимальной нагрузкой. Если на каком-либо диапазоне при максимальном выходном напряжении увеличение тока нагрузки приводит к снижению этого напряжения, дело в недостаточном напряжении на соответствующей вторичной обмотке или слишком большом сопротивлении обмоток.

Миллиамперметр для контроля выходного тока можно включить в разрыв провода, идущего от эмиттера транзистора VT4 к другим элементам схемы (кроме диода VD6). Так как через прибор в этом случае, кроме тока нагрузки, будет течь и ток делителя R4—R8, стрелку миллиамперметра следует установить на ноль корректирующим винтом при включенном, но работающем без нагрузки источнике. Устройство можно дополнить переключателем уровня ограничения выходного тока (рис. 3). Сопротивление введенной части цепи резисторов R10—R13 должно быть таким, чтобы при предельном токе на ней падало напряжение около 0,6 В.

Стабилизатор напряжения по приведенной схеме нетрудно рассчитать на любой интервал регулировки выходного напряжения с верхним пределом 50…500 В. Транзисторы (кроме VT3) следует выбрать примерно с полуторакратным запасом по напряжению относительно максимального выходного. Генератор тока на транзисторе VT1 должен выдавать ток примерно в 1,2 раза больше максимального выходного тока стабилизатора, деленного на коэффициент h21э транзистора VT4. При расчетном выходном токе более 1 А в качестве VT4 необходим составной транзистор. Токи через резистор R1 и делитель R4—R8 могут быть выбраны в пределах 4…10 мА. Если стабилизатор проектируют на фиксированное или регулируемое в небольших пределах выходное напряжение, диоды VD4 и VD6 можно не устанавливать.

ЛИТЕРАТУРА
1. Янушенко Е. Микросхема КР142ЕН19. — Радио, 1994, № 4, с. 45, 46.
2. Сидоров И. Н., Мукосеев В. В., Христинин А. А. Малогабаритные трансформаторы и дроссели. Справочник. — М.: Радио и связь, 1985, 416 с.

Источник питания 15 вольт схема. Простой блок питания. Окончательная сборка импульсного преобразователя напряжения

В этом обзоре канала “Обзоры посылок и самоделки от jakson” о простой схеме двухполярного блока питания с выходным напряжением на выходе 15 вольт. Cхема, которую будем собирать, не требует много деталей. Главное – найти то 2 регулятора 7815 и 7915. Их можно заказать в Китае.

Радиодетали, платы можно купить с бесплатной доставкой в этом китайском магазине .

В итоге на выходе должно получиться плюс 15 и минус 15 вольт двухполярного питания. Для этого нам понадобится специальный трансформатор, на выходе из которого сможем получить двухполярное питание со средней точкой.

Этого может добиться двумя методами. Например, если трансформатор построен так, что между двумя его контактами (в нашем случае +15 и -15) есть средняя точка, которая является контактом середины вторичной обмотки. Напряжение между средним и первым контактом будет 15 вольт, а между средним и последним тоже по 15. Между первым и последним – 30 вольт.

Если в конструкции трансформатора не предусмотрена нужная нам точка, можно взять две вторичные обмотки с одинаковым напряжением. Серединная точка между ними будет средней точкой нашего 2-полярного питания. Так и сделаем. Будут не 2 обмотки, а 4, поскольку много вторичных обмоток в этом трансформаторе, соединим несколько, чтобы получить необходимое напряжение.

Будет использован старый советский военный трансформатор, которому уже более 30 лет. Несмотря на это, он отлично работает и по сути тут нечему ломаться, так как полностью залитый, он герметичный. Возможно его качество будет даже лучше, чем у современных китайских трансформаторов. Но его мощность всего лишь 60 ватт.

Сборка блока будет реализована на макетной печатной плате хорошего качества. В диодном мосту диоды IN 5408. Их хватит с запасом. Также нам понадобится четыре электролитических конденсатора. Два из них на 2200 микрофарад, 25 вольт и другие на 100 микрофарад, 35 вольт. Два конденсатора на 0,1 мкф. Также регуляторы, о которых речь шла выше. При пайке регуляторов будьте внимательны, так как распиновка у них разная.

В схеме два светодида – индикаторы, в которых нет особой нужды, их можно не ставить.

Обсуждение

  1. Зачем эти стабилизаторы и вся эта лишняя дичь. Трансформатор ведь с средней точкой два плеча по 18 вольт, то что нужно. Просто выпрямить две фазы пропустить через ёмкости и на усилок. Зачем эти стабилизаторы на 1 ампер, чтобы задушить микросхему и в придачу греться? С таким успехом можно просто автомагнитолу поставить от 12 вольт больше выдаст. По характеристике tda 7294 +/-27 вольт на 4 Ом динамик.
  2. Мощность маловата для питания усилителя. Стабилизаторы выдают около 1,5 Ампер тока, при этом адски нагреваясь! Радиаторов, что на видео, ну никак не хватит для охлаждения. Такую схему можно использовать только для питания небольших нагрузок.
  3. Вопрос от незнайки.)) Зачем нужно двухполярное питание? а чем хуже соединить в параллель две по 15 вольт (усилить силу тока) и собрать два независимых друг от друга одинаковых усилителей и запитать одним плюсом и одним минусом? Вот у меня есть две микросхемы тда 7296, хочу два усилителя из них сделать, на левый и правый канал и на саб из али моно усилок на 60 ватт класс д. И всё это запитать одним выходом из трансформатора

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
Шаг 1: Какие детали необходимы для сборки блока питания…
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие…


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

Схема регулируемого блока питания, приведённого в этой статье, обладает отличными характеристиками и выдерживает максимальный ток нагрузки до 10 Ампер. Для поддержания стабильности на высоком уровне, хорошей фильтрации помех и максимального упрощения схемы, в блоке применён интегрированный стабилизатор напряжения на 15 Вольт и добавлены два транзистора, для усиления тока после регулировочного резистора. Отсутствие защиты от короткого замыкания на выходе, компенсируется применением выходного транзистора с двойным запасом мощности и установкой предохранителя на 10 Ампер.
Для компенсации падения напряжения на выходных транзисторах, в пределах 1 Вольта, средняя ножка стабилизатора подключена к минусовому проводу через диоды, которые поднимают напряжение на выходе микросхемы, обеспечивая этим максимальное выходное напряжение блока питания до 15 Вольт, при установке переменного резистора в верхнее по схеме положение, без применения VD1 и VD2, граничное напряжение регулировки равно примерно 14 вольтам. Для стабилизации выходного напряжения при сильном нагреве транзисторов, рекомендуем установить эти диоды на одном радиаторе охлаждения вместе с VT2.
В этой схеме блока питания, применяются очень распространённые радиодетали, но они легко заменяются на элементы с похожими параметрами. Трансформатор можно устанавливать любой, но достаточной мощности, с напряжением на вторичной обмотке от 15 до 20 Вольт и током не менее 10 Ампер. Конденсаторы подойдут с минимальным граничным напряжением не менее 50 Вольт, резисторы любые, мощностью 0,25 Ватт, переменный резистор R1 в схеме, желательно применять с линейной характеристикой регулировки, для того, чтобы на корпусе блока питания можно было нанести равномерную шкалу напряжений. Диодный мост можно заменить четырьмя диодами, на ток не менее 10 Ампер, микросхема стабилизатора имеет много аналогов, главным параметром при её выборе будет выходное напряжение 15 Вольт. Мощные транзисторы можно заменить импортными аналогами, с достаточным коэффициентом передачи h31э, для обеспечения максимального тока на выходе схемы.

Налаживания блок питания не требует, хорошо работает сразу после сборки схемы, при включении, напряжение на выходе должно плавно регулироваться переменным резистором R1 от 0 до 15 Вольт. Для обеспечения надёжной работы на большую нагрузку, установите выходной транзистор VT2 и диодный мост VDS-1 на радиатор охлаждения достаточной площади, остальные радиоэлементы практически не нагреваются, и могут эксплуатироваться без охлаждения.

Каждый радиолюбитель и конструктор найдёт применение для данного устройства, блок питания построенный по такой схеме очень пригодиться при наладке различных радио схем, испытании низковольтной аппаратуры, которая меняет свои параметры при регулировке напряжения питания, и так далее… Если подключить к выходу устройства амперметр, то его с успехом можно использовать для зарядки автомобильных аккумуляторов, контролируя при этом ток зарядки.

Пролог.

У меня есть два мультиметра, и оба имеют один и тот же недостаток – питание от батареи напряжением 9-ть Вольт типа «Крона».

Всегда старался иметь в запасе свежую 9-тивольтовую батарею, но, почему-то, когда требовалось что-то измерить с точностью выше, чем у стрелочного прибора, «Крона» оказывалась либо неработоспособной, либо её хватало всего на несколько часов работы.

Порядок намотки импульсного трансформатора.

Намотать прокладку на кольцевой сердечник столь малых размеров очень сложно, а мотать провод на голый сердечник неудобно и опасно. Изоляция провода может повредиться об острые грани кольца. Чтобы предотвратить повреждение изоляции, притупите острые кромки магнитопровода, как описано .

Чтобы во время укладки провода, витки не «разбегались», полезно, покрыть сердечник тонким слоем клея «88Н» и просушить до намотки.


Вначале мотаются вторичные обмотки III и IV (см. схему преобразователя). Их нужно намотать сразу в два провода. Витки можно закрепить клеем, например, «БФ-2» или «БФ-4».

У меня не нашлось подходящего провода, и я вместо провода расчётного диаметра 0,16мм использовал провод диаметром 0,18мм, что привело к образованию второго слоя в несколько витков.

Затем, так же в два провода, мотаются первичные обмотки I и II. Витки первичных обмоток также можно закрепить клеем.

Преобразователь я собрал методом навесного монтажа, предварительно связав х/б нитью транзисторы, конденсаторы и трансформатор.

Вход, выход и общую шину преобразователя вывел гибким многожильным проводом.


Настройка преобразователя.

Настройка может потребоваться для установки необходимого уровня выходного напряжения.

Я так подобрал количество витков, чтобы при напряжении на аккумуляторе 1,0 Вольт, на выходе преобразователя было около 7 Вольт. При этом напряжении, в мультиметре зажигается индикатор разряда батареи. Таким образом, можно предотвратить слишком глубокий разряд аккумулятора.

Если вместо предложенных транзисторов КТ209К будут использованы другие, тогда придётся подобрать количество витков вторичной обмотки трансформатора. Это связано с разной величиной падения напряжения на p-n переходах у различных типов транзисторов.

Я испытывал эту схему на транзисторах КТ502 при неизменных параметрах трансформатора. Выходное напряжение при этом снизилось на вольт или около того.

Также нужно иметь в виду, что база-эмиттерные переходы транзисторов одновременно являются выпрямителями выходного напряжения. Поэтому, при выборе транзисторов, нужно обратить внимание на этот параметр. То есть, максимально-допустимое напряжение база-эмиттер должно превышать необходимое выходное напряжение преобразователя.


Если генерация не возникает, проверьте фазировку всех катушек. Точками на схеме преобразователя (см. выше) отмечено начало каждой обмотки.

Чтобы не возникало путаницы при фазировке катушек кольцевого магнитопровода, примите за начало всех обмоток, например , все выводы выходящие снизу, а за конец всех обмоток, все выводы выходящие сверху.


Окончательная сборка импульсного преобразователя напряжения.

Перед окончательной сборкой, все элементы схемы были соединены многожильным проводом, и была проверена способность схемы принимать и отдавать энергию.

Для предотвращения замыкания, импульсный преобразователь напряжения был со стороны контактов заизолирован силиконовым герметиком.


Затем все элементы конструкции были размещены в корпусе от «Кроны». Для того, чтобы передняя крышка с разъёмом не утапливалась внутрь, между передней и задней стенками была вставлена пластинка из целлулоида. После чего, задняя крышка была закреплена клеем «88Н».


Для зарядки модернизированной «Кроны» пришлось изготовить дополнительный кабель со штекером типа Джек 3,5мм на одном из концов. На другом конце кабеля, для снижения вероятности короткого замыкания, были установлены стандартные приборные гнёзда, вместо аналогичных штекеров.

Доработка мультиметра.

Мультиметр DT-830B сразу же заработал от модернизированной «Кроны». А вот тестер M890C+ пришлось немного доработать.

Дело в том, что в большинстве современных мультиметров задействована функция автоматического отключения питания. На картинке показана часть панели управления мультиметра, где обозначена данная функция.


Схема автоотключения (Auto Power Off) работает следующим образом. При подключении батареи, заряжется конденсатор С10. При включении питания, пока конденсатор C10 разряжается через резистор R36, на выходе компаратора IC1 удерживается высокий потенциал, что приводит к отпиранию транзисторов VT2 и VT3. Через открытый транзистор VT3 напряжение питания и попадает в схему мультиметра.

Как видите, для нормальной работы схемы, нужно подать питание на С10 ещё до того, как включится основная нагрузка, что невозможно, так как наша модернизированная «Крона», напротив, включится только тогда, когда появится нагрузка.

В общем, вся доработка заключалась в установке дополнительной перемычки. Для неё я выбрал место, где это было сделать удобнее всего.

К сожалению, обозначения элементов на электрической схеме не совпали с обозначениями на печатной плате моего мультиметра, поэтому точки для установки перемычки нашёл так. Прозвонкой выявил нужный вывод выключателя, а шину питания +9V определил по 8-ой ножке операционного усилителя IC1 (L358).


Мелкие подробности.

Сложно было приобрести всего один аккумулятор. Их в основном продают, либо парами, либо по четыре штуки. Однако некоторые комплекты, например, «Varta», поставляются по пять аккумуляторов в блистере. Если Вам повезёт так же, как и мне, то Вы сможете разделить с кем-нибудь такой комплект. Аккумулятор я купил всего за 3,3$, тогда как одна «Крона» стоит от 1$ до 3,75$. Есть, правда, ещё «Кроны» и по 0,5$, но те и вовсе мёртворождённые.

Что такое схемотехника блоков питания для светодиодных лент и прочего

Что такое схемотехника блоков питания для светодиодных лент и прочего

Схемотехника — научно-техническое направление, занимающееся проектированием, созданием и отладкой (синтезом и анализом) электронных схем и устройств различного назначения.

Светодиоды заменяют таким типы источников света, такие как люминесцентные лампы и лампы накаливания. Практически в каждом доме уже есть светодиодные лампы, они потребляют гораздо меньше двух своих предшественников (до 10 раз меньше чем лампы накаливания и от 2 до 5 раз меньше, чем КЛЛ или энергосберегающие люминесцентные лампы). В ситуациях, когда необходим длинный источник света, или нужно организовать подсветку сложной формы в ход идёт светодиодная лента.

Led лента идеальна для целого ряда ситуаций, главное её преимущество перед отдельными светодиодами и светодиодными матрицами являются источники питания. Их легче найти в продаже почти в любом магазине электротоваров, в отличие от драйверов для мощных светодиодов, к тому же подбор блока питания осуществляется только по потребляемой мощности, т.к. подавляющее большинство светодиодных лент имеют напряжение питания в 12 Вольт.

В то время как для мощных светодиодов и модулей при выборе источника питания нужно искать именно источник тока с требуемой мощностью и номинальным током, т.е. учитывать 2 параметра, что усложняет подбор.

В этой статье рассмотрены типовые схемы блоков питания и их узлы, а также советы по их ремонту для начинающих радиолюбителей и электриков.

Типы и требования к источникам питания для светодиодных лент и 12 В led ламп

Основное требование к источнику питания как для светодиодов, так и для светодиодных лент – качественная стабилизация напряжения/тока, вне зависимости от скачков сетевого напряжения, а также низкие выходные пульсации.

По типу исполнения блоки питания для LED продукции различают:

  • Герметичные. Они сложнее в ремонте, корпус не всегда поддаётся аккуратной разборке, а внутри и вовсе может быть залит герметиком или компаундом.
  • Негерметичные, для применения в помещении. Лучше поддаются ремонту, т.к. плата изымается после откручивания нескольких винтов.

По типу охлаждения:

  • Пассивное воздушное. Блок питания охлаждается за счёт естественной конвекции воздуха через перфорацию его корпуса. Недостаток – невозможность достигнуть высоких мощностей сохранив массогабаритные показатели;
  • Активное воздушное. Блок питания охлаждается с помощью кулера (небольшого вентилятора, как устанавливают на системных блоках ПК). Такой тип охлаждения позволяет достичь большей мощности при аналогичных размерах с пассивным блоком питания.

Схемы блоков питания для светодиодных лент

Стоит понимать, что нет в электронике такого понятия как «блок питания для светодиодной ленты», в принципе к любому устройству подойдёт любой блок питания с подходящим напряжением и током большим чем потребляемый прибором. Это значит, что информация описанная ниже применима к практически любым блокам питания.

Однако в обиходе проще говорить о блоке питания по его предназначению для конкретного устройства.

Общая структура импульсного блока питания

Для питания светодиодных лент и другой техники последние десятилетия применяются импульсные блоки питания (ИБП). Они отличаются от трансформаторных тем, что работают не на частоте питающего напряжения (50 Гц), а на высоких частотах (десятки и сотни килогерц).

Поэтому для его работы нужен генератор высокой частоты, в дешевых и рассчитанных на малые токи (единицы ампер) блоках питания часто встречается автогенераторная схема, она применяется в:

  • электронных трансформаторах;
  • электронных балластах для люминесцентных ламп;
  • зарядных устройствах для мобильного телефона;
  • дешевых ИБП для светодиодных лент (10-20 вт) и других устройствах.

Схему подобного блока питания можно увидеть на рисунке (для увеличения нажмите на картинку):

Его структура следующая:

1. Голубым цветом выделен диодный мост, стоящий на входе блока питания он выпрямляет входное переменное напряжение, для питания следующих узлов постоянным напряжением величиной 220*1.41=310 В. В случае поломки – проверьте наличие и величину напряжения ДО моста и ПОСЛЕ него, если оно отсутствует – потребуется замена диодов или моста, если он собран в отельном корпусе.

На схеме не указан, но по линии 220 В может присутствовать предохранитель или низкоомный резистор, прежде чем приступать к ремонту проверьте его целостность.

2. Коричневым обведен фильтр пульсаций, его главным элементом является C4 – электролитический конденсатор. Его ёмкость зависит от того, насколько сэкономил производитель, обычно до 220 мкФ на 400 Вольт. L1 – фильтр пульсаций и электромагнитных помех, которые возникают при работе импульсного блока питания. В большинстве дешевых блоков питания он отсутствует.

Частая проблема фильтра – высыхание, взрыв или вздутие электролитического конденсатора, приводит к некачественной работе всего импульсного блока питания в целом или его полной неработоспособности. Заменить его можно таким же и большей ёмкости, но подходящим по размеру.

3. Зеленым цветом выделена силовая часть VT1 силовой транзистор, в данном случае полевой, но может быть и биполярный. T1 – импульсный трансформатор с тремя обмотками: первичной, вторичной и базовой.

Третья обмотка необходима для генерации высокочастотных колебаний – если интересен принцип работы автогенераторного блока питания лучше прочитать книги Моина, Зиновьева и другие учебники по источникам питания импульсного типа.

Импульсные трансформаторы гораздо меньше по габаритам, чем сетевые, опять же из-за работы на высоких частотах и выполнены не из железа, а из феррита. Чаще всего выходит из строя силовой ключ.

Прозвоните транзистор мультиметром в режиме проверки диодов, и вы сразу обнаружите его пробой или обрыв. Остальные элементы – это обвязка этого узла, по отдельности редко выходит из строя, в основном вслед за силовым транзистором. Однако всегда стоит убедиться в соответствии номинальным значениям резисторов и конденсаторов.

Диоды в обвязке трансформатора VD7 и VD5 выполняют роль снаббера защищая цепи от всплесков противо-ЭДС, в моменты переключения транзистора. Являются тоже довольно нагруженным и ответственным узлом.

4. Красным цветом выделена цепочка обратной связи по напряжению на базе регулируемого стабилитрона TL431 и их аналогов (любые буквы в обозначении с цифрами «431»). 

 В состав ОС включена оптопара U1, с её помощью в силовую часть автогенератора поступает сигнал с выхода и поддерживается стабильное выходное напряжение. В выходной части может отсутствовать напряжение из-за обрыва диода VD8, часто это сборка Шоттки, подлежит замене. Также часто вызывает проблемы вздутый электролитический конденсатор C10.

Как вы видите всё работает с гораздо меньшим количеством элементов, надёжность соответствующая…

Более дорогие и блоки питания

Схемы, которые вы увидите ниже часто встречаются в блоках питания для светодиодных лент, DVD-проигрывателей, магнитол и других маломощных устройств (десятки Ватт).

Прежде чем перейти к рассмотрению популярных схем, ознакомьтесь со структурой импульсного блока питания с ШИМ-контроллером.

Верхняя часть схемы отвечает за фильтрацию, выпрямление и сглаживание пульсаций сетевого напряжения 220, по сути аналогична как в предыдущем типе, так и в последующих.

Самое интересное – это блок ШИМ, сердце любого достойного блока питания. ШИМ-контроллер – это устройство управляющие коэффициентом заполнения импульсов выходного сигнала на основании уставки, определенной пользователем или обратной связи по току или напряжению. ШИМ может управлять как мощностью нагрузки с помощью полевого (биполярного, IGBT) ключа, так и полупроводниковым управляемым ключом в составе преобразователя с трансформатором или дросселем.

Изменяя ширину импульсов при заданной частоте – вы изменяете и действующее значение напряжение, сохраняя при этом амплитудное, вы можете проинтегрировать его с помощью C- и LC-цепей для устранения пульсаций. Такой метод называется Широтно-Импульсное Моделирование, то есть моделирование сигнала за счёт ширины импульсов (скважности/коэффициента заполнения) при постоянной их частоте.

На английском языке это звучит, как PWM-controller, или Pulse-Width Modulation controller.

На рисунке изображен биполярный ШИМ. Прямоугольные сигналы – это сигналы управления на транзисторах с контроллера, пунктиром изображена форма напряжения в нагрузке этих ключей – действующее напряжение.

Более качественные блоки питания малой средней мощности часто построены на интегральных ШИМ-котроллерах со встроенным силовым ключом. Преимущества перед автогенераторной схемой:

  • Рабочая частота преобразователя не зависит ни от нагрузки, ни от напряжения питания;
  • Более качественная стабилизация выходных параметров;
  • Возможность более простой и надежной настройки рабочей частоты на этапе проектирования и модернизации блока.

Ниже будут расположены несколько типовых схем блоков питания (для увеличения нажмите на картинку):

Здесь RM6203 – и контроллер и ключ в одном корпусе.

В этой схеме используется внешний MOSFET ключ.

То же самое, но на другой микросхеме.

Обратная связь осуществляется с помощью резистора, иногда оптопары подключенной к входу с названием Sense (датчик) или Feedback (обратная связь). Ремонт таких блоков питания в общем аналогичен. Если все элементы исправны, и напряжение питания поступает на микросхему (ножка Vdd или Vcc), значит дело скорее всего в ней, более точно можно определить с помощью осциллографа просмотрев сигналы на выходе (ножка drain, gate).

Практически всегда заменить такой контроллер можно любым аналогом с подобной структурой, для этого нужно сверить datasheet на тот, что установлен на плате и тот, что у вас в наличии и впаять, соблюдая распиновку, как это изображено на следующих фотографиях.

Или вот схематически изображена замена подобных микросхем.

Мощные и дорогие блоки питания

Блоки питания для светодиодных лент, а также некоторые блоки питания для ноутбуков выполняются на ШИМ-контроллере UC3842.

Схема более сложная и надежная. Основным силовым компонентом является транзистор Q2 и трансформатор. При ремонте нужно проверить фильтрующие электролитические конденсаторы, силовой ключ, диоды Шоттки в выходных цепях и выходные LC-фильтры, напряжения питания микросхемы, в остальном методы диагностики аналогичны.

Однако более подробная и точная диагностика возможна лишь с использованием осциллографа, в противном случае – проверьте короткие замыкания платы, пайку элементов и обрывы дороже. Может помочь замена подозрительных узлов на заведомо рабочие.

Более совершенные модели источников питания для светодиодных лент выполнены на практически легендарной микросхеме TL494 (любые буквы с цифрами «494») или её аналоге KA7500. Кстати на этих же контроллерах построено большинство компьютерных блоков питания AT и ATX. 

Вот типовая схема блока питания на этом ШИМ-контроллере (нажмите на схему):

Такие блоки питания отличаются высокой надёжностью и стабильностью работы.

Краткий алгоритм проверки:

1. Запитываем микросхему согласно распиновки от внешнего источника питания 12-15 вольт (12 ножка – плюс, а на 7 ножку – минус).

2. На 14 ножки должно появиться напряжение 5 Вольт, которое будет оставаться стабильным при изменении питания, если оно «плавает» — микросхему под замену.

3. На 5 выводе должно быть пилообразное напряжение «увидеть» его можно только с помощью осциллографа. Если его нет или форма искажена – проверяем соответствие номинальным значениям времязадающей RC-цепи, которая подключена к 5 и 6 выводам, если нет – на схеме это R39 и C35, их под замену, если после этого ничего не изменилось – микросхема вышла из строя.

4. На выходах 8 и 11 должны быть прямоугольные импульсы, но их может не быть из-за конкретной схемы реализации обратной связи (выводы 1-2 и 15-16). Если выключить и подключить 220 В, на какое-то время они там появятся и блок снова уйдёт в защиту – это признак исправной микросхемы.

5. Проверить ШИМ можно закоротив 4 и 7 ножку, ширина импульсов увеличится, а закоротив 4 на 14 ножки – импульсы исчезнут. Если у вас получились другие результаты – проблема в МС.

Это наиболее краткая проверка данного ШИМ-контроллера, о ремонте блоков питания на их основе есть целая книга «Импульсные блоки питания для IBM PC».

Хоть и посвящена она компьютерным блоками питания, но там много полезной информации для любого радиолюбителя.

Вывод

Схемотехника блоков питания для светодиодных лент аналогична любым блокам питания с подобными характеристиками, довольно хорошо поддаётся ремонту, модернизации и перестройки на необходимые напряжения, разумеется, в разумных пределах. 

Ранее ЭлектроВести писали, что депутаты «Слуги народа» зарегистрировали в Верховной Раде законопроект №2352 «Про батареи и аккумуляторы» для создания системы их утилизации.

По материалам: electrik.info.

Получить 3 вольта из 5 вольт. Блок питания

Схема устройства

Схема, изображенная на рисунке 1, представляет собой регулируемый стабилизатор напряжения и позволяет получить выходное напряжение в пределах 1.25 — 30 вольт. Это позволяет использовать данный стабилизатор для питания пейджеров с 1.5 вольтовым питанием (например Ultra Page UP-10 и т.п.), так и для питания 3-х вольтовых устройств. В моем случае она используется для питания пейджера «Moongose PS-3050», то есть выходное напряжение установлено в 3 вольта.

Работа схемы

При помощи переменного резистора R2 можно установить необходимое выходное напряжение. Выходное напряжение можно рассчитать по формуле Uвых=1.25(1 + R2/R1) .
В качестве регулятора напряжения используется микросхема SD 1083/1084 . Без всяких изменений можно использовать российские аналоги этих микросхем 142 КРЕН22А/142 КРЕН22 . Они различаются только выходным током и в нашем случае это несущественно. На микросхему необходимо установить небольшой радиатор, так как при низком выходном напряжении регулятор работает в токовом режиме и существенно нагревается даже на «холостом» ходу.

Монтаж устройства

Устройство собрано на печатной плате размером 20х40мм. Так как схема очень простая рисунок печатной платы не привожу. Можно собрать и без платы с помощью навесного монтажа.
Собранная плата помещается а отдельную коробочку или монтируется непосредственно в корпусе блока питания. Я разместил свою в корпусе AC-DC адаптера на 12 вольт для радиотелефонов.

Примечание.

Необходимо сначала установить рабочее напряжение на выходе стабилизатора (при помощи резистора R2) и лишь, затем подключать нагрузку.

Другие схемы стабилизаторов.

Это одна из самых простых схем, которую можно собрать на доступной микросхеме LM317LZ . Путем подключения/отключения резистора в цепи обратной связи мы получаем на выходе два разных напряжения. При этом, ток нагрузки может достигать 100 мА.

Только обратите внимание на распиновку микросхемы LM317LZ. Она немного отличается от привычных стабилизаторов.

Простой стабилизатор на различные фиксированные напряжения (от 1,5 до 5 вольт) и ток до 1А. можно собрать на микросхеме AMS1117 -X.X (CX1117-X.X) (где X.X — выходное напряжение). Есть экземпляры микросхем на следующие напряжения: 1.5, 1.8, 2.5, 2.85, 3.3, 5.0 вольт. Также есть микросхемы с регулируемым выходом с обозначением ADJ. Этих микросхем очень много на старых компьютерных платах. Одним из достоинств этого стабилизатора является низкое падение напряжения — всего 1,2 вольта и небольшой размер стабилизатора адаптированный под СМД-монтаж.

Для его работы требуется всего пара конденсаторов. Для эффективного отвода тепла при значительных нагрузках необходимо предусмотреть теплоотводную площадку в районе вывода Vout. Этот стабилизатор также доступен в корпусе TO-252.

Метеостанции на .

Подумав, я пришел к выводу, что самой дорогой и объёмной частью метеостанции является плата Arduino Uno. Самым дешевым вариантом замены может стать плата Arduino Pro Mini. Плата Arduino Pro Mini производится в четырех вариантах. Для решения моей задачи подходит вариант с микроконтроллером Mega328P и напряжением питания 5 вольт. Но есть еще вариант на напряжение 3,3 вольта. Чем эти варианты отличаются? Давайте разберемся. Дело в том, что на платах Arduino Pro Mini устанавливается экономичный стабилизатор напряжения. Например такой, как MIC5205 c выходным напряжением 5 вольт. Эти 5 вольт подаются на вывод Vcc платы Arduino Pro Mini, поэтому и плата будет называться «плата Arduino Pro Mini с напряжением питания 5 вольт». А если вместо микросхемы MIC5205 будет поставлена другая микросхема с выходным напряжением 3,3 вольта, то плата будет называться «плата Arduino Pro Mini с напряжением питания 3,3 вольт»

Плата Arduino Pro Mini может получать энергию от внешнего нестабилизированного блока питания с напряжением до 12 вольт. Это питание должно подаваться на вывод RAW платы Arduino Pro Mini. Но, ознакомившись с даташитом (техническим документом) на микросхему MIC5205, я увидел, что диапазон питания, подаваемого на плату Arduino Pro Mini, может быть шире. Если, конечно, на плате стоит именно микросхема MIC5205.

Даташит на микросхема MIC5205:


Входное напряжение, подаваемое на микросхему MIC5205, может быть от 2,5 вольт до 16 вольт. При этом на выходе схемы стандартного включения должно быть напряжение около 5 вольт без заявленной точности в 1%. Если воспользоваться сведениями из даташита: VIN = VOUT + 1V to 16V (Vвходное = Vвыходное + 1V to 16V) и приняв Vвыходное за 5 вольт, мы получим то, что напряжение питания платы Arduino Pro Mini, подаваемое на вывод RAW, может быть от 6 вольт до 16 вольт при точности в 1%.

Даташит на микросхему MIC5205:
Для питания платы GY-BMP280-3.3 для измерения барометрического давления и температуры я хочу применить модуль с микросхемой AMS1117-3.3. Микросхема AMS1117 — это линейный стабилизатор напряжения с малым падением напряжения.
Фото модуль с микросхемой AMS1117-3.3:


Даташиты на микросхему AMS1117:
Схема модуля с микросхемой AMS1117-3.3:


Я указал на схеме модуля с микросхемой AMS1117-3.3 входное напряжение от 6,5 вольт до 12 вольт, основывая это документацией на микросхему AMS1117.


Продавец указывает входное напряжение от 4,5 вольт до 7 вольт. Самое интересное, что другой продавец на Aliexpress.com указывает другой диапазон напряжений — от 4,2 вольт до 10 вольт.


В чем же дело? Я думаю, что производители впаивают во входные цепи конденсаторы с максимально допустимым напряжением меньшим, чем позволяют параметры микросхемы — 7 вольт, 10 вольт. И, может быть, даже ставят бракованные микросхемы с ограниченным диапазоном питающих напряжений. Что произойдет, если на купленную мной плату с микросхемой AMS1117-3.3, подать напряжение 12 вольт, я не знаю.
Возможно для повышения надежности китайской платы с микросхемой AMS1117-3.3 надо будет поменять керамические конденсаторы на электролитические танталовые конденсаторы. Такую схему включения рекомендует производитель микросхем AMS1117А минский завод УП «Завод ТРАНЗИСТОР».

Доступность и относительно невысокие цены на сверхъяркие светодиоды (LED) позволяют использовать их в различных любительских устройствах. Начинающие радиолюбители, впервые применяющие LED в своих конструкциях, часто задаются вопросом, как подключить светодиод к батарейке? Прочтя этот материал, читатель узнает, как зажечь светодиод практически от любой батарейки, какие схемы подключения LED можно использовать в том или ином случае, как выполнить расчет элементов схемы.

К каким батарейкам можно подключать светодиод?

В принципе, просто зажечь светодиод, можно от любой батарейки. Разработанные радиолюбителями и профессионалами электронные схемы позволяют успешно справиться с этой задачей. Другое дело, сколько времени будет непрерывно работать схема с конкретным светодиодом (светодиодами) и конкретной батарейкой или батарейками.

Для оценки этого времени следует знать, что одной из основных характеристик любых батарей, будь то химический элемент или аккумулятор, является емкость. Емкость батареи – С выражается в ампер-часах. Например, емкость распространенных пальчиковых батареек формата ААА, в зависимости от типа и производителя, может составлять от 0.5 до 2.5 ампер-часов. В свою очередь светоизлучающие диоды характеризуются рабочим током, который может составлять десятки и сотни миллиампер. Таким образом, приблизительно рассчитать, на сколько хватит батареи, можно по формуле:

T= (C*U бат)/(U раб. led *I раб. led)

В данной формуле в числителе стоит работа, которую может совершить батарея, а в знаменателе мощность, которую потребляет светоизлучающий диод. Формула не учитывает КПД конкретно схемы и того факта, что полностью использовать всю емкость батареи крайне проблематично.

При конструировании приборов с батарейным питанием обычно стараются, чтобы их ток потребления не превышал 10 – 30% емкости батареи. Руководствуясь этим соображением и приведенной выше формулой можно оценить сколько нужно батареек данной емкости для питания того или иного светодиода.

Как подключить от пальчиковой батарейки АА 1,5В

К сожалению, не существует простого способа запитать светодиод от одной пальчиковой батарейки. Дело в том, что рабочее напряжение светоизлучающих диодов обычно превышает 1.5 В. Для эта величина лежит в диапазоне 3.2 – 3.4В. Поэтому для питания светодиода от одной батарейки потребуется собрать преобразователь напряжения. Ниже приведена схема простого преобразователя напряжения на двух транзисторах с помощью которого можно питать 1 – 2 сверхъярких LED с рабочим током 20 миллиампер.

Данный преобразователь представляет собой блокинг-генератор, собранный на транзисторе VT2, трансформаторе Т1 и резисторе R1. Блокинг-генератор вырабатывает импульсы напряжения, которые в несколько раз превышают напряжение источника питания. Диод VD1 выпрямляет эти импульсы. Дроссель L1, конденсаторы C2 и С3 являются элементами сглаживающего фильтра.

Транзистор VT1, резистор R2 и стабилитрон VD2 являются элементами стабилизатора напряжения. Когда напряжение на конденсаторе С2 превысит 3.3 В, стабилитрон открывается и на резисторе R2 создается падение напряжения. Одновременно откроется первый транзистор и запирет VT2, блокинг-генератор прекратит работу. Тем самым достигается стабилизация выходного напряжения преобразователя на уровне 3.3 В.

В качестве VD1 лучше использовать диоды Шоттки, которые имеют малое падение напряжения в открытом состоянии.

Трансформатор Т1 можно намотать на кольце из феррита марки 2000НН. Диаметр кольца может быть 7 – 15 мм. В качестве сердечника можно использовать кольца от преобразователей энергосберегающих лампочек, катушек фильтров компьютерных блоков питания и т. д. Обмотки выполняют эмалированным проводом диаметром 0.3 мм по 25 витков каждая.

Данную схему можно безболезненно упростить, исключив элементы стабилизации. В принципе схема может обойтись и без дросселя и одного из конденсаторов С2 или С3 . Упрощенную схему может собрать своими руками даже начинающий радиолюбитель.

Cхема хороша еще тем, что будет непрерывно работать, пока напряжение источника питания не снизится до 0.8 В.

Как подключить от 3В батарейки

Подключить сверхъяркий светодиод к батарее 3 В можно не используя никаких дополнительных деталей. Так как рабочее напряжение светодиода несколько больше 3 В, то светодиод будет светить не в полную силу. Иногда это может быть даже полезным. Например, используя светодиод с выключателем и дисковый аккумулятор на 3 В (в народе называемая таблеткой), применяемый в материнских платах компьютера, можно сделать небольшой брелок-фонарик. Такой миниатюрный фонарик может пригодиться в разных ситуациях.

От такой батарейки — таблетки на 3 Вольта можно запитать светодиод

Используя пару батареек 1.5 В и покупной или самодельный преобразователь для питания одного или нескольких LED, можно изготовить более серьезную конструкцию. Схема одного из подобных преобразователей (бустеров) изображена на рисунке.

Бустер на основе микросхемы LM3410 и нескольких навесных элементов имеет следующие характеристики:

  • входное напряжение 2.7 – 5.5 В.
  • максимальный выходной ток до 2.4 А.
  • количество подключаемых LED от 1 до 5.
  • частота преобразования от 0.8 до 1.6 МГц.

Выходной ток преобразователя можно регулировать, изменяя сопротивление измерительного резистора R1. Несмотря на то, что из технической документации следует, что микросхема рассчитана на подключение 5-ти светодиодов, на самом деле к ней можно подключать и 6. Это обусловлено тем, что максимальное выходное напряжение чипа 24 В. Еще LM3410 позволяет свечения светодиодов (диммирование). Для этих целей служит четвертый вывод микросхемы (DIMM). Диммирование можно осуществлять, изменяя входной ток этого вывода.

Как подключить от 9В батарейки Крона

«Крона» имеет относительно небольшую емкость и не очень подходит для питания мощных светодиодов. Максимальный ток такой батареи не должен превышать 30 – 40 мА. Поэтому к ней лучше подключить 3 последовательно соединенных светоизлучающих диода с рабочим током 20 мА. Они, как и в случае подключения к батарейке 3 вольта не будут светить в полную силу, но зато, батарея прослужит дольше.

Схема питания от батарейки крона

В одном материале трудно осветить все многообразие способов подключения светодиодов к батареям с различным напряжением и емкостью. Мы постарались рассказать о самых надежных и простых конструкциях. Надеемся, что этот материал будет полезен как начинающим, так и более опытным радиолюбителям.

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение — это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда «заточены» различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ — это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 — 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона — это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт — уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода — 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Светодиоды разного цвета имеют свою рабочую зону напряжения. Если мы видим светодиод на 3 вольта, то он может давать белый, голубой или зеленый свет. Напрямую подключать его к источнику питания, который генерирует более 3 вольт нельзя.

Расчет сопротивления резистора

Чтобы понизить напряжение на светодиоде, в цепь перед ним последовательно включают резистор. Основная задача электрика или любителя будет заключаться в том, чтобы правильно подобрать сопротивление.

В этом нет особой сложности. Главное, знать электрические параметры светодиодной лампочки, вспомнить закон Ома и определение мощности тока.

R=Uна резисторе/Iсветодиода

Iсветодиода – это допустимый ток для светодиода. Он обязательно указывается в характеристиках прибора вместе с прямым падением напряжения. Нельзя, чтобы ток, проходящий по цепи, превысил допустимую величину. Это может вывести светодиодный прибор из строя.

Зачастую на готовых к использованию светодиодных приборах пишут мощность (Вт) и напряжение или ток. Но зная две из этих характеристик, всегда можно найти третью. Самые простые осветительные приборы потребляют мощность порядка 0,06 Вт.

При последовательном включении общее напряжение источника питания U складывается из Uна рез. и Uна светодиоде. Тогда Uна рез.=U-Uна светодиоде

Предположим, необходимо подключить светодиодную лампочку с прямым напряжением 3 вольта и током 20 мА к источнику питания 12 вольт. Получаем:

R=(12-3)/0,02=450 Ом.

Обычно, сопротивление берут с запасом. Для того ток умножают на коэффициент 0,75. Это равносильно умножению сопротивления на 1,33.

Следовательно, необходимо взять сопротивление 450*1,33=598,5=0,6 кОм или чуть больше.

Мощность резистора

Для определения мощности сопротивления применяется формула:

P=U²/ R= Iсветодиода*(U-Uна светодиоде)

В нашем случае: P=0,02*(12-3)=0,18 Вт

Такой мощности резисторы не выпускаются, поэтому необходимо брать ближайший к нему элемент с большим значением, а именно 0,25 ватта. Если у вас нет резистора мощность 0,25 Вт, то можно включить параллельно два сопротивления меньшей мощности.

Количество светодиодов в гирлянде

Аналогичным образом рассчитывается резистор, если в цепь последовательно включено несколько светодиодов на 3 вольта. В этом случае от общего напряжения вычитается сумма напряжений всех лампочек.

Все светодиоды для гирлянды из нескольких лампочек следует брать одинаковыми, чтобы через цепь проходил постоянный одинаковый ток.

Максимальное количество лампочек можно узнать, если разделить U сети на U одного светодиода и на коэффициент запаса 1,15.

N=12:3:1,15=3,48

К источнику в 12 вольт можно спокойно подключить 3 излучающих свет полупроводника с напряжением 3 вольта и получить яркое свечение каждого из них.

Мощность такой гирлянды довольно маленькая. В этом и заключается преимущество светодиодных лампочек. Даже большая гирлянда будет потреблять у вас минимум энергии. Этим с успехом пользуются дизайнеры, украшая интерьеры, делая подсветку мебели и техники.

На сегодняшний день выпускаются сверхяркие модели с напряжением 3 вольта и повышенным допустимым током. Мощность каждого из них достигает 1 Вт и более, и применение у таких моделей уже несколько иное. Светодиод, потребляющий 1-2 Вт, применяют в модулях для прожекторов, фонарей, фар и рабочего освещения помещений.

Примером может служить продукция компании CREE, которая предлагает светодиодные продукты мощностью 1 Вт, 3Вт и т. д. Они созданы по технологиям, которые открывают новые возможности в этой отрасли.

Блок питания для светодиодной ленты своими руками

Современная электроника часто комплектуется внешними источниками питания на 5В, 12В, 19В. После того как прибор выходит из строя, они часто валяются в кладовке или тумбочке.

  • 5V — это напряжение зарядных устройств для телефонов и USB;
  • 12V — используется в компьютерах, некоторых планшетах, ТВ, сетевых маршрутизаторах.
  • 19V — в ноутбуках, мониторах, моноблоках.

Мы будем рассматривать, каким образом можно адаптировать любой блок питания для светодиодной ленты на 12В. Будут только простые и бюджетные варианты доступные каждому. Зарядники на 5В не подходят. Но из таких зарядников я делаю ночники, на корпус приклеивается от 3 или 6 диодов. Ночью светит не ярко, в самый раз.

Содержание

  • 1. Источники питания на 12V
  • 2. БП на 19V
  • 3. Характеристики импульсных стабилизаторов
  • 4. Простые схемы своими руками
  • 5. Видео, как доработать своими руками
  • 6. Готовые модули из Китая
  • 7. Питание и драйвер в одном модуле
  • 8. Где купить дешево?

Источники питания на 12V

БП от маршрутизатора 12V, 1А

Источники питания на 12В от электроники обычно бывают от 6 до 36 Ватт. 10 Ватт хватает для подсветки рабочей поверхности светодиодной лентой на кухне. Такие блоки делятся на 2 основных вида:

  1. старые на трансформаторах, отличаются большим весом;
  2. современные импульсные, еще называют электронный трансформатор, отличаются малым весом и большой мощностью при малых габаритах.

Использовать на трансформаторах не рекомендую. При установке светодиодной ленты я сперва подключил трансформаторный БП от роутера, мощность которого была в 2 раза больше мощности ленты. Сам выпрямитель стал сильно греться. Поставил диодный мост выпрямителя на самодельный радиатор для охлаждения, все равно греется сильно, долго он так не протянет. Времени не было разбираться в тонкостях, поэтому спросил у специалиста. Он кое-как нашел причину, светодиоды имеют особенную вольт-амперную характеристику (сокращенно ВАХ), что приводит к сильному нагреву. Он подарил мне от телевизора на 12В и 2 Ампера, то есть мощность равна 24W. Теперь все работает без проблем и не греется.

БП на 19V

БП ноутбучного типа на 19В, 90W

Напряжение в 19В широко используется в настольной компьютерной технике, чаще всего в ноутбуках, моноблоках, мониторах, сканерах. В эту категорию можно отнести БП от принтеров, они мощные, бывает 16В, 20В, 24В, 32В.

У меня давно валяется отличный блок питания для светодиодов на 90W и 19V от ноутбука Asus. Такой мощности хватит, чтобы запитать светодиодную ленту на 6000 Люмен, а этого хватит, чтобы сделать диодное освещение комнаты 20 квадратов. Но БП не 12 вольт, и потребуется доработка. Внутрь корпуса мы не полезем, перепаивать схему под 12 вольт сложно, долго и надо быть электронщиком. Сделаем проще, подключим  небольшой  понижатель со стабилизатором. Существует два типа.

Тип №1

Стабилизатор  на 7812

Стабилизатор на микросхеме типа КРЕН 7812 (lm317), выглядит почти как транзистор, при установке на радиатор охлаждения выдерживает ток 1 Ампер. Этот вариант устаревший и громоздкий. Для использования всей мощности ноутбучного БП потребуется 5-6 таких (или 1 большая) и большой алюминиевый радиатор для охлаждения.

Тип №2

Импульсный на специализированных микросхемах

Современный импульсный стабилизатор, миниатюрен, не греется, простой как 3 рубля. В русских магазинах за него просят 600-900 р, цена сильно завышенная. У китайцев на 3 ампера стоит 50 р., 5-7А продается за 100-150 р., поэтому рекомендую заказать пару штук на Aliexpress.

Рекомендую использовать импульсный, КПД у него выше 80-90%, проще и дешевле. Только не покупайте источник тока на LM2596, вам нужен источник напряжения. Чтобы найти в китайском интерне-магазине используйте запросы:

  • LM2596 power supply;
  • 12v switching regulator;
  • voltage regulator 12v 7a;

Характеристики импульсных стабилизаторов

Специалист на видео инструкции расскажет основные технические характеристики современных импульсных стабилизаторов, схемотехнику и рекомендации по их правильному использованию. Чтобы вы своими руками не спалили его во время экспериментов.

Простые схемы своими руками

Примеры готовых импульсных модулей на 36W

..

Если вышеописанные БП вам не подходят, то блок питания для светодиодной ленты 12в можно спаять по схеме своими руками. Для самодельного потребуется много времени и немало деталей, не буду рассматривать полные схемы для подключения к сети 220B. при современном развитии электроники их проще купить у китайцев. Есть схемы для сборки своими руками еще на TL594 и других новых элементах. Но мне больше нравится описанный ниже, легко повторяется за 10 минут.

Рассмотрим оптимальный и современный на LM2596. Потребуется установить всего 4 радиоэлемента. Аналоги, схожие по функционалу, это ST1S10, L5973D, ST1S14.

Существует несколько модификаций микросхемы:

  • фиксированное 12 V, LM2596-12, указано в конце маркировки;
  • регулируемый вариант LM2596ADJ;
  • цена в России одной 170 р.. В Китае весь собранный блок на LM2596 стоит 35р. включая доставку.

Характеристики

Параметр Значение
Входное напряжение, не более 40В
Вольт на выходе 3-37В
Выходной ток
Срабатывание защиты по току
Частота преобразования 150 кГц

Видео, как доработать своими руками

Коллега подобно расскажет, как подключить и настроить стабилизатор к блоку питания от ноутбука на 19V.

Готовые модули из Китая

Вариант с регулятором  на выходе от 3 до 37В

В первой схеме будем использовать LM2596ADJ с регулируемым вольтажом на выходе. Выпускаться она может в разных корпусах, но самый оптимальный как на картинке. Плюсом такой конструкции будет возможность регулировать яркость led ленты без диммера.

Схема с фиксированным 12B

Стабилизатор на микросхеме LM2596-12, отсутствует переменный резистор для регулировки, на выходе ровно 12B. Схема проще на одну детальку.

Питание и драйвер в одном модуле

Универсальный блок с 3 регуляторами

Универсальный вариант, регулируется сила тока и напряжение. Можно запитать не только диодную ленту, но и светодиоды. то есть может выступать в качестве драйвера и электронного трансформатора.

На видео ролике вам покажут как пользоваться и настраивать самостоятельно универсальный вариант модуля с драйвером, регулируемой силой тока.

Где купить дешево?

Бывает, что у вас дома не оказалось БП подходящего от бытовых приборов, но точно есть у других, тоже валяется без дела. Сперва спросите у знакомых или соседей, наверняка что то есть. За пару сотен или жидкую валюту вы можете сними договорится.

Большой ассортимент  вы найдете на Авито и на местных форумах. Многие избавляются от ненужного хлама и продают БП за символическую цену, потому что выбрасывать жалко, а реальную стоимость не знают. Таким образом, я часто покупаю хорошие приборы, тем более торг никто не отменял. Недавно мне удалось купить фирменный ACER от моноблока на 190W за 400 р. Он герметичен и высокого качества, так как компьютерная электроника требует очень стабильного и качественного питания в отличие от диодной ленты.

Многие идеи схемы двойного источника питания 12 В и 5 В при максимальном токе 3 А

См. Различные концепции принципиальной схемы источника питания 12 В и 5 В. Эта схема может когда-либо вызвать у вас головную боль, потому что недоступна или не соответствует работе.

Но эта статья поможет вам сэкономить. Кроме того, это отличное обучение. Самостоятельно создать схему.
Все цепи регулятора постоянного напряжения. Так что им можно доверять, низкий уровень шума.

Как выбрать подходящую концепцию дизайна

Мы должны ответить себе: для чего построена эта схема?

  • 5 вольт
    Когда ваша нагрузка представляет собой цифровую схему семейства TTL или различные микроконтроллеры.Им нужен только постоянный уровень напряжения 5 В. Итак, мы должны использовать схему регулятора постоянного напряжения.

    Когда ток меньше 100 мА. Мы можем использовать транзистор и стабилитрон. (Легко и экономично). Но больше всего, если ток меньше 1А.
    Часто выбираем регулятор IC-7805. Потому что его легко найти, дешево

  • 12 В
    Когда мы используем обычные нагрузки, такие как микросхемы аудиоусилителей, схемы релейных приводов или даже цифровые микросхемы CMOS.Мы можем использовать схему питания 12 В.

    Мы можем использовать нерегулируемый источник питания в некоторых цепях, не требующих высокой точности. Просто есть небольшие пульсации напряжения, например в цепи управления реле.

    Если в цепи требуется постоянный уровень напряжения, также должен быть регулятор на 12 вольт.

Есть идеи? См. Схему ниже, которую вы четко поймете.

Некоторым нужен источник питания 9V вместо батареи. Это хорошая идея, потому что она подходит для использования с низким током.

Источник питания 12 В и 5 В при 1 А

Схема источника питания накопителя компакт-дисков

Если у вас старый дисковод компакт-дисков. Он может воспроизводить только аудио компакт-диск, отличный звук. Но для этого нужна схема питания 12В 5В. У нас есть много способов создать источник питания постоянного тока для проигрывателя аудио компакт-дисков.

Что еще? Сделаем блок питания для Нашего Музыкального плеера.

Схема источника питания 12В 5В с использованием 7805 и LM7812

Посмотрите на схему ниже.Он может обеспечивать постоянное напряжение 5 В и 12 В, при 1 А.

Поскольку привод CD-ROM представляет собой электронные компоненты, требующие регулируемого источника питания. Итак, мы используем 3-контактную интегральную схему с фиксированным напряжением 1А, 7805 и 7812.

Подробнее: Технический паспорт регулятора 7805

Эта схема представляет собой обычную схему источника питания регулятора, которую многие люди, возможно, видели знакомой.

Схема состоит из нерегулируемого и регулируемого источника питания IC7805-7812.

Сначала рассмотрим нерегулируемые поставки.Они состоят из важного оборудования, такого как трансформаторы, диодный выпрямитель и конденсаторный фильтр.

Рекомендуется:

Как это работает

Вот пошаговый процесс.

Сначала сеть переменного тока (230 В / 117 В) проходит в цепь через F1. Это простое устройство. Защищает при отключении электроэнергии.

Затем ступенчатый трансформатор преобразует сеть переменного тока в низкое напряжение 12 В, 6 В с трансформатором тока. Он определяет максимальный требуемый ток. В данном случае нам нужен выходной ток 1А как 5В, так и 12В.Поэтому следует выбирать трансформатор на 2А.

Мы настроили схему как двухполупериодный выпрямитель с помощью четырех дидоэлементов.

Если вы новичок, прочтите сначала:
Принцип нерегулируемого источника питания .
Я вам сейчас не объясняю. Из-за этого статья будет слишком длинной.

Посмотрите на сокращенную принципиальную схему.

Есть два раздела.

  • 5V Секция
    При 6V CT 6V, D2 и D3 преобразуют переменный ток 6V в DCV.Затем конденсатор фильтра C1 до чистого постоянного тока. Также важен C1. Мы должны использовать правильную емкость. Если использовать слишком низкое, мы получим низкое напряжение постоянного тока и высокую пульсацию. Теперь напряжение на C1 составляет около 8,4 В.
  • 12V Раздел
    При 12В CT 12V, D1 и D4 преобразуют переменный ток 12В в постоянный, а C2 также сглаживает его до чистого постоянного тока. Но на C2 он имеет напряжение 17В.

А Затем оба напряжения поступают на регулятор 7805 и 7812. Для поддержания стабильного выходного напряжения — 5 В и 12 В при 1 А.

C3 и C5 тоже фильтры.А C4 и C6 также уменьшают частотные искажения или переходные процессы.

Детали, которые вам понадобятся
D1, D2, D3, D4, D5: 1N4007, 1000V 1A Диоды
IC1: 7805, регуляторы 5V 1A IC
IC2: 7812, регуляторы 12V 1A IC

Электролитические конденсаторы
C1: 2,200 мкФ 25 В
C2: 2200 мкФ 16 В
C3: 100 мкФ 16 В
C5: 100 мкФ 25 В
C4, C6: 0,1 мкФ Керамический конденсатор 50 В
T1: 230 В или 117 (в зависимости от страны) Первичный ток переменного тока до 12 В, 6 В, трансформатор тока при вторичном токе 2 А трансформатор
F1: предохранитель 1A

12V 2A и 5V Схема источника питания

Если вашей нагрузке требуется больше потоков.Например, автомобильные аудиоусилители. Требуется напряжение питания от 12 В до 2 А. Мы можем легко изменить схему выше.

Посмотрите новую схему обновления.

Мы все еще обслуживаем цепь питания 5В. Но измените схему питания 12 В, чтобы она стала версией транзистора и стабилитрона.

Даже с большим количеством оборудования. Но понять не так уж и сложно.

Нам тока нужно больше. Приходится менять диоды на 1N5402. Он может подключать максимальный ток до 3А.

И, добавьте еще один конденсатор C2, чтобы увеличить емкость, если ток больше, чем в 2 раза. Это делает более стабильным ток.

В любом случае, мы видим, что схема представляет собой последовательный транзисторный регулятор напряжения.

Подробнее: Фиксированный стабилизатор на транзисторе и стабилитроне

Эта схема требует большего входного напряжения, что увеличивает эффективность. Падение напряжения на C1 и C2 увеличивается до 15Vx1,414 = 21V. Схема преобразователя постоянного тока

12В 3А на транзисторе и стабилитроне

Это лучше, чем раньше.Мы добавляем два транзистора в форме Дарлингтона (Q1, Q2), чтобы обеспечить максимальный ток до 2 А или 3 А.

Стабилитрон устанавливает постоянное напряжение на 12 В. И мы добавляем два диода, чтобы компенсировать потерю напряжения на выводе BE каждого транзистора (0,6 В + 0,6 В).

Это означает, что выходное напряжение будет точнее 12 В.

Для других устройств Исходная схема — C4: конденсатор фильтрует любой шум. C3 снижает пульсации напряжения.

Необходимые детали
D1, D2, D3, D4, D5: 1N5402, 200V 3A Диоды
IC1: 7805, регуляторы 5V 1A IC
Q1: BC548, 45V 0.1A, транзистор NPN
Q2: TIP3055, 50 В 15A, транзистор NPN

Электролитические конденсаторы
C1, C2: 2200 мкФ 25 В
C5: 2200 мкФ 16 В
C6: 100 мкФ 16 В
C3: 22 мкФ 25 В
C4, 50V7: 0,1 мкФ Керамический конденсатор
R1: 470 Ом, 0,25 Вт, резисторы, допуск: 5%
T1: 230 В или 117 (в зависимости от страны) Первичная обмотка переменного тока на 12 В, 6 В, вторичный трансформатор CT при 2 А
F1: Предохранитель 1 А

12 В 3 А и 5 В 2 А Схема регулятора

Нашему другу (Суреш) нужен источник питания постоянного тока 12 В и 5 В при 2 А.У нас есть много способов сделать это. Но эта схема, представленная ниже, может быть лучшим выбором.

12V 3A и 5V 2A Схема источника питания

Мы немного изменим схему выше.

  • Измените размер трансформатора на 3А.
  • Уход за оборудованием аналогичен 12В. Но он по-прежнему подает ток до 3А.
  • Добавьте силовой транзистор TIP2955, чтобы увеличить ток.

См. 5 В большой ток до 2 А .

Цифровой CMOS и источник питания TTL

Иногда в наших электронных схемах используются разные уровни напряжения. Например, в цифровых схемах, использующих оба семейства микросхем TTL. Для чего требуется только питание 5 В. Подключается к семейству микросхем CMOS, которые используют питание 12 В.

Подключение CMOS к TTL на разных уровнях питания

Узнайте, как использовать CMOS IC

Мы можем легко подключить оба с помощью схемы транзистора, описанной выше.

И мы можем использовать схему питания для цифровой ИС в соответствии со схемой ниже

12В 5В Схема питания для цифровых CMOS и TTL

Эта схема является модифицированной схемой выше.Есть много моментов, которые следует учитывать.

  • Мы используем трансформатор 15 В только с одной первичной обмоткой и поэтому используем схему мостового выпрямителя.
  • Низкий выходной ток не более 1А, которого достаточно для обычных цифровых схем.
  • Сохраните конденсаторный фильтр, но мы получим стабилизатор на 5 В с меньшим шумом, потому что он получает напряжение от регулятора 12 В.

Рекомендуется: Цепь двойного источника питания 15 В с печатной платой

Необходимые детали
D1, D2, D3, D4, D5: 1N4007, 1000V 1A Диоды
IC1: 7812, регуляторы постоянного тока 12 В IC
IC2: 7805, регуляторы постоянного тока 5 В IC

Электролитические конденсаторы
C1: 2200 мкФ 25 В
C3: 100 мкФ 25 В
C2, C4: 0.1 мкФ, 63 В, полиэфирный конденсатор
T1: 230 В или 117 В в зависимости от страны, первичный ток переменного тока до 15 В, вторичный трансформатор 1 А

Также цепи питания 5 В, 9 В, 12 В

Что еще? Вы можете посмотреть другие схемы питания: Нажмите здесь

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Базовый источник питания 5 В | Jaycon Systems

Первая часть любого электронного проекта — это блок питания.В одних проектах используется USB-порт вашего компьютера, в других — дешевый сетевой адаптер. Некоторые из них работают от батарей, а другие — от солнечных батарей. Со всеми этими различными вариантами, как можно привести в действие их электронный проект? Позвольте нам показать вам, как реализовать ваши проекты!

Это довольно просто; Сначала я хочу объяснить, что делает блок питания, а затем я покажу вам, как его построить.

Начнем с аккумулятора и перейдем к сетевому адаптеру. Источник питания отвечает за обеспечение цепи всей мощностью, которая может потребоваться во время нормальной работы.Он обеспечивает схему определенным напряжением и током.

Лучше всего представить себе шланг, по которому течет вода. Давление воды на конце шланга — это напряжение, а количество воды, проходящей через шланг, — это ток. Большинству электроники для работы требуется определенное количество напряжения и тока. Для этого урока давайте сделаем это около 5 В и сохраним ток на потом. Для правильной работы нам нужно найти способ снизить напряжение нашего основного источника питания (батареи или сетевого адаптера) до 5 В.

Здесь на помощь приходит регулятор. Регулятор — это устройство, которое преобразует нерегулируемое напряжение в стабильные 5 В, необходимые для питания нашего проекта. Его задача — поддерживать постоянное напряжение 5 В независимо от того, что делает наша батарея. Единственное предостережение стандартного регулятора напряжения заключается в том, что основное питание должно быть немного выше, чем мы хотим достичь. Итак, если мы хотим 5 В, нам нужно как минимум 7 В, чтобы поддерживать стабильные 5 В, которые мы хотим. Этот блок питания не сможет преобразовать более низкое напряжение в 5В.Так что, как только наша батарея разрядится, наш проект тоже.

В этом руководстве мы будем использовать LM7805 (линейный регулятор напряжения) в качестве источника питания. Прежде чем мы начнем, нам нужно быстро просмотреть таблицу и ознакомиться с рекомендуемыми условиями эксплуатации. Вы можете видеть на странице 3, что входное напряжение должно быть от 7 до 25 В. Он имеет выходное напряжение 5 В и может выдавать до 750 мА при коротком замыкании. Это означает, что ваша схема не может потреблять более 750 мА, иначе регулятор отключится.В большинстве таблиц также есть общая информация о применении. Вы можете увидеть на странице 7, как должна выглядеть типичная схема приложения.

Компромисс между питанием 12 В и 5 В постоянного тока

Введение

При выборе архитектуры питания для приложений CPE обычно возникает вопрос, использовать ли входное напряжение 5 В или 12 В постоянного тока для приложений с низким энергопотреблением (≤15 Вт). В этой статье мы рассмотрим плюсы, минусы и движущие силы каждого подхода.

Приложение в зависимости от выходного напряжения

В шлюзах, маршрутизаторах и телевизионных приставках

CPE обычно используются блоки питания 12 В. Однако компактные IP-приставки с низким энергопотреблением, такие как ключи типа OTT, используют напряжение 5 В, поэтому они могут питаться через стандартный кабель USB.

Преимущества архитектуры 12 В

С выходом 12 В постоянного тока рассеиваемая мощность, связанная с блоком питания, ниже, как и затраты, связанные с управлением тепловым решением.

Более высокий КПД достигается за счет меньшего прямого падения напряжения, которое возникает на выходном выпрямителе, например. в случае диода Шоттки или через сопротивление истока стока, когда используется синхронный выпрямитель. Потери мощности в кабеле постоянного тока и разъеме также ниже из-за более низких выходных токов для данного уровня мощности.

С точки зрения стоимости и температуры, размер корпуса, характеристики компонентов, теплоотвод, срок службы E-cap и падение напряжения в кабеле постоянного тока выиграют от более низких выходных токов из-за более высокого выходного напряжения при заданном уровне мощности — Применяется закон Ома!

Несмотря на то, что эффективность и стоимость блока питания могут показаться оптимизированными с архитектурой 12 В, нам также необходимо учитывать общую стоимость электроэнергии для данного приложения.Для этого мы также должны учитывать эффективность и стоимость дополнительного регулирования мощности в главном устройстве CPE.

Преимущества и проблемы архитектуры 5 В

Принятие архитектуры 5 В постоянного тока может быть очень выгодным в компактных IP-приставках и OTT-адаптерах, поскольку нет компонентов, требующих напряжения выше 5 В. Это упрощает схему DC-DC.

Рабочий цикл внутренних преобразователей постоянного тока в постоянный также может быть оптимизирован, что приводит к очень высокой эффективности и малому количеству компонентов.Это сохраняет компактность конструкции и сводит к минимуму рассеивание тепла.

Выход 5 В чаще всего используется, когда конечному приложению требуется питание через разъем USB, например, разъем mini / micro B или Type-C. Или, если место ограничено, кабель постоянного тока и USB-штекер можно полностью удалить и заменить на гнездовую розетку на корпусе, как в зарядных устройствах для телефонов.

Обычно для блоков питания 5 В с разъемами USB выход блока питания должен быть 5 В 1,0 А (5 Вт) или 5 В 3,0 А (15 Вт) в соответствии со стандартами USB.Компания NetBit ранее разработала оба типа блоков питания с несколькими различными вариантами разъемов и разъемов USB.

Одна из проблем при использовании 5 В постоянного тока с видеоустройствами заключается в том, что порт HDMI должен иметь выход 5 В в соответствии со стандартом HDMI. Как правило, между входом постоянного тока и выходом HDMI есть падение напряжения, что требует повышающего регулятора, чтобы обеспечить 5В на выходном порте HDMI.

Заключение

В заключение можно сказать, что уровень мощности и область применения будут иметь наибольшее влияние на выбор оптимального выходного напряжения постоянного тока от источника питания.Хотя 12В может показаться более оптимизированным с точки зрения затрат и эффективности, чем 5В, следует внимательно рассмотреть вопрос о том, как сбалансировать рассеиваемую мощность, падение напряжения и компромиссы между внешним источником питания и самим CPE.

NetBit обладает опытом, чтобы помочь взаимодействовать с архитекторами оборудования и менеджерами по продукции, чтобы помочь нашим клиентам найти оптимальные решения.

Чтобы получить совет или узнать больше о продуктах NetBit, щелкните здесь.

качества в крохотной дорогой упаковке

Разборка миниатюрного зарядного устройства для iPhone размером с кубический дюйм от Apple показывает технологически продвинутый импульсный источник питания с обратным ходом, который выходит за рамки обычного зарядного устройства.Он просто принимает входной сигнал переменного тока (от 100 до 240 вольт) и производит 5 ватт плавной мощности 5 вольт, но схема для этого на удивление сложна и новаторская.

Как это работает

Адаптер питания iPhone — это импульсный источник питания, в котором входное питание включается и выключается примерно 70 000 раз в секунду, чтобы получить точное требуемое выходное напряжение. Благодаря своей конструкции импульсные источники питания, как правило, компактны и эффективны и выделяют меньше тепла по сравнению с более простыми линейными источниками питания.

Более подробно, мощность линии переменного тока сначала преобразуется в постоянное напряжение высокого напряжения [1] с помощью диодного моста. Постоянный ток включается и выключается транзистором, управляемым микросхемой контроллера источника питания. Прерванный постоянный ток подается на обратноходовой трансформатор [2], который преобразует его в переменный ток низкого напряжения. Наконец, этот переменный ток преобразуется в постоянный ток, который фильтруется для получения плавной мощности без помех, и эта мощность выводится через разъем USB. Схема обратной связи измеряет выходное напряжение и отправляет сигнал на контроллер IC, который регулирует частоту переключения для получения желаемого напряжения.

На приведенном выше виде сбоку показаны некоторые из более крупных компонентов. Зарядное устройство состоит из двух печатных плат, каждая размером чуть меньше одного дюйма [3]. Верхняя плата является первичной и имеет схему высокого напряжения, а нижняя плата, вторичная, имеет схему вывода низкого напряжения. Входной переменный ток сначала проходит через плавкий резистор (полосатый), который разорвет цепь в случае катастрофической перегрузки. Входной переменный ток преобразуется в высоковольтный постоянный ток, который сглаживается двумя большими электролитическими конденсаторами (черный с белым текстом и полосой) и катушкой индуктивности (зеленый).

Затем высоковольтный постоянный ток прерывается с высокой частотой переключающим транзистором MOSFET, который представляет собой большой трехконтактный компонент в верхнем левом углу. (Второй транзистор фиксирует скачки напряжения, как будет объяснено ниже.) Прерванный постоянный ток поступает на обратноходовой трансформатор (желтый, еле видимый за транзисторами), у которого есть выходные провода низкого напряжения, идущие к вторичной плате ниже. (Эти провода были обрезаны во время разборки.) Вторичная плата преобразует низкое напряжение трансформатора в постоянный ток, фильтрует его, а затем подает через разъем USB (серебряный прямоугольник в нижнем левом углу).Серый ленточный кабель (едва виден в правом нижнем углу под конденсатором) обеспечивает обратную связь от вторичной платы к микросхеме контроллера, чтобы поддерживать стабилизированное напряжение.

На приведенном выше рисунке более четко показан обратноходовой трансформатор (желтый) над разъемом USB. Большой синий компонент представляет собой специальный Y-образный конденсатор [4] для уменьшения помех. Микросхема контроллера видна над трансформатором в верхней части первичной платы. [5]

Схема в деталях

Первичная

На первичной печатной плате с обеих сторон размещены компоненты для поверхностного монтажа.На внутренней стороне (диаграмма вверху) находятся большие компоненты, а на внешней стороне (диаграмма внизу) — микросхема контроллера. (Крупные компоненты были удалены на схемах и обозначены курсивом.) Входное питание подключается к углам платы, проходит через 10 & Ом; плавкий резистор и выпрямляется до постоянного тока четырьмя диодами. Две демпфирующие цепи R-C поглощают электромагнитные помехи, создаваемые мостом. [6] Постоянный ток фильтруется двумя большими электролитическими конденсаторами и катушкой индуктивности, создавая 125–340 В постоянного тока.Обратите внимание на толщину дорожек на печатной плате, соединяющих эти конденсаторы и другие сильноточные компоненты, по сравнению с тонкими дорожками управления.

Источником питания управляет 8-контактная микросхема контроллера квазирезонансного SMPS STMicrosystems L6565. [7] Микросхема контроллера управляет переключающим транзистором MOSFET, который прерывает постоянный ток высокого напряжения и подает его на первичную обмотку обратноходового трансформатора. Контроллер IC принимает множество входных сигналов (вторичная обратная связь по напряжению, входное напряжение постоянного тока, первичный ток трансформатора и измерение размагничивания трансформатора) и регулирует частоту переключения и синхронизацию для управления выходным напряжением через сложную внутреннюю схему.Резисторы считывания тока позволяют ИС узнать, сколько тока проходит через первичную обмотку, которая определяет, когда транзистор должен быть выключен.

Второй переключающий транзистор, вместе с некоторыми конденсаторами и диодами, является частью резонансной фиксирующей цепи, которая поглощает скачки напряжения на трансформаторе. Эта необычная и инновационная схема запатентована Flextronics. [8] [9]

Контроллер IC требует питания постоянного тока для работы; это обеспечивается вспомогательной цепью питания, состоящей из отдельной вспомогательной обмотки трансформатора, диода и конденсаторов фильтра.Поскольку микросхема контроллера должна быть включена, прежде чем трансформатор сможет начать генерировать энергию, вы можете задаться вопросом, как решается эта проблема с курицей и яйцом. Решение состоит в том, что высоковольтный постоянный ток снижается до низкого уровня с помощью резисторов пусковой мощности, чтобы обеспечить начальную мощность для ИС до запуска трансформатора. Вспомогательная обмотка также используется ИС для определения размагничивания трансформатора, которое указывает, когда следует включить переключающий транзистор. [7]

Вторичная

На вторичной плате переменный ток низкого напряжения от трансформатора выпрямляется высокоскоростным диодом Шоттки, фильтруется катушкой индуктивности и конденсаторами и подключается к выходу USB.Конденсаторы танталовых фильтров обеспечивают высокую емкость в небольшом корпусе.

USB-выход также имеет определенные сопротивления, подключенные к контактам для передачи данных, чтобы указать iPhone, какой ток может обеспечить зарядное устройство, через собственный протокол Apple. [10] IPhone отображает сообщение «Зарядка не поддерживается с этим аксессуаром», если зарядное устройство имеет неправильное сопротивление.

Вторичная плата содержит стандартную схему обратной связи импульсного источника питания, которая контролирует выходное напряжение с помощью регулятора TL431 и обеспечивает обратную связь с микросхемой контроллера через оптрон.Вторая цепь обратной связи отключает зарядное устройство для защиты, если зарядное устройство перегревается или выходное напряжение слишком высокое. [11] Ленточный кабель обеспечивает эту обратную связь с основной платой.

Изоляция

Поскольку источник питания может иметь внутреннее напряжение до 340 В постоянного тока, безопасность является важной проблемой. Строгие правила регулируют разделение между опасным линейным напряжением и безопасным выходным напряжением, которые изолированы сочетанием расстояния (называемого утечкой и зазором) и изоляции.Стандарты [12] несколько непонятны, но между двумя цепями требуется расстояние примерно 4 мм. (Как я уже говорил в «Крошечном, дешевом, опасном»: внутри (поддельного) зарядного устройства для iPhone дешевые зарядные устройства полностью игнорируют эти правила безопасности.)

Вы можете ожидать, что на первичной плате будет опасное напряжение, а на вторичной плате будет безопасное напряжение, но вторичная плата состоит из двух зон: опасной зоны, соединенной с первичной платой, и зоны низкого напряжения. Граница изоляции между этими областями составляет около 6 мм в зарядном устройстве Apple, что можно увидеть на приведенной выше диаграмме.Эта граница изоляции гарантирует, что опасные напряжения не могут достичь выхода.

Есть три типа компонентов, которые пересекают границу изоляции, и они должны быть специально разработаны для обеспечения безопасности. Ключевым компонентом является трансформатор, который обеспечивает подачу электроэнергии на выход без прямого электрического подключения. Изнутри трансформатор хорошо изолирован, как будет показано ниже. Второй тип компонентов — это оптопары, которые отправляют сигнал обратной связи от вторичной обмотки к первичной.Внутри оптопара содержит светодиод и фототранзистор, поэтому две стороны соединены только светом, а не электрической цепью. (Обратите внимание на силиконовую изоляцию на вторичной стороне оптопар, чтобы обеспечить дополнительную безопасность.) Наконец, Y-конденсатор — это конденсатор особого типа [4], который позволяет избежать электромагнитных помех между высоковольтной первичной и низковольтной. напряжение вторичное.

На рисунке выше показаны некоторые методы изоляции.На вторичной плате (слева) установлен синий Y-конденсатор. Обратите внимание на отсутствие компонентов в середине вторичной платы, образующих границу изоляции. Компоненты справа от вторичной платы подключены к первичной плате серым ленточным кабелем, поэтому они находятся под потенциально высоким напряжением. Другое соединение между платами — это пара проводов от трансформатора обратного хода (желтый), подающего выходную мощность на вторичную плату; они были вырезаны, чтобы разделить доски.

Схема

Я собрал примерную схему, показывающую схему зарядного устройства.[13] Щелкните, чтобы увеличить версию.

Эти цепи очень маленькие

Глядя на эти изображения, легко потерять представление о том, насколько малы эти компоненты, и как зарядное устройство вмещает всю эту сложность в один дюйм. На следующем слегка увеличенном изображении показаны четверть, рисовое зерно и горчичное зерно для сравнения размеров. Большинство компонентов представляют собой устройства для поверхностного монтажа, которые припаяны непосредственно к печатной плате. Самые маленькие компоненты, такие как резистор, показанный на рисунке, известны как размер «0402», потому что они есть.04 дюйма на 0,02 дюйма. Более крупные резисторы слева от горчичного зерна обрабатывают большую мощность и известны как размер «0805», так как их размер составляет 0,08 x 0,05 дюйма.

Разборка трансформатора

Обратный трансформатор является ключевым компонентом зарядного устройства, самым большим и, вероятно, самым дорогим компонентом. [14] Но что внутри? Я разобрал трансформатор, чтобы узнать.

Трансформатор имеет размеры примерно 1/2 на 1/2 на 1/3 дюйма. Внутри трансформатор имеет три обмотки: первичная обмотка высокого напряжения, вспомогательная обмотка низкого напряжения для подачи питания на схемы управления и обмотка высокого напряжения. -токовая низковольтная выходная обмотка.Выходная обмотка подключается к черному и белому проводам, выходящим из трансформатора, а другие обмотки подключаются к контактам, прикрепленным к нижней части трансформатора.

Снаружи трансформатор покрыт парой слоев изоляционной ленты. Вторая строка начинается с «FLEX» для Flextronics. Две заземленные жилы провода намотаны вокруг трансформатора с внешней стороны для обеспечения экранирования.

После удаления экрана и ленты две половинки ферритового сердечника можно снять с обмоток.Феррит — довольно хрупкий керамический материал, поэтому при снятии сердечник сломался. Сердечник окружает обмотки и содержит магнитные поля. Размер каждого сердечника составляет примерно 6 мм x 11 мм x 4 мм; этот стиль ядра известен как EQ. Круглая центральная часть немного короче концов, что создает небольшой воздушный зазор, когда части сердечника соединяются. Этот воздушный зазор 0,28 мм сохраняет магнитную энергию для обратноходового трансформатора.

Под следующими двумя слоями ленты находится обмотка из 17 витков тонкой лакированной проволоки, которая, как мне кажется, является еще одной защитной обмоткой, возвращающей паразитные помехи на землю.

Под экраном и еще двумя слоями ленты находится 6-витковая вторичная выходная обмотка, подключенная к черному и белому проводам. Обратите внимание, что эта обмотка представляет собой проволоку большого сечения, так как она питает выход 1 А. Также обратите внимание, что обмотка имеет тройную изоляцию, что является требованием безопасности UL, чтобы гарантировать, что первичная обмотка высокого напряжения остается изолированной от выхода. Это то место, где обманывают дешевые зарядные устройства — они просто используют обычный провод вместо тройной изоляции, а также экономят на ленте.В результате вас мало что защитит от высокого напряжения, если есть дефект изоляции или скачок напряжения.

Под следующим двойным слоем ленты находится 11-витковая первичная обмотка большой толщины, которая питает ИС контроллера. Поскольку эта обмотка находится на первичной стороне, тройная изоляция не требуется. Его просто покрывают тонким слоем лака.

Под последним двойным слоем ленты находится первичная входная обмотка, состоящая из 4 слоев примерно по 23 витка в каждом.На эту обмотку подается высоковольтный ввод. Поскольку сила тока очень мала, провод может быть очень тонким. Поскольку у первичной обмотки примерно в 15 раз больше витков, чем у вторичной обмотки, вторичное напряжение будет 1/15 первичного напряжения, но в 15 раз больше тока. Таким образом, трансформатор преобразует вход высокого напряжения в выход низкого напряжения с высоким током.

На последней картинке показаны все компоненты трансформатора; слева направо показаны слои от внешней ленты до самой внутренней намотки и шпульки.

Огромная прибыль Apple

Я был удивлен, узнав, насколько огромна прибыль Apple от этих зарядных устройств. Эти зарядные устройства продаются примерно за 30 долларов. (если не подделка), но это почти вся прибыль. Samsung продает очень похожие Зарядное устройство для куба примерно за 6-10 долларов, которое я тоже разобрал (подробности напишу позже). Зарядное устройство Apple более качественное, и, по моим оценкам, внутри него стоят дополнительные компоненты на сумму около доллара. [14] Но он продается на 20 долларов дороже.

Отзыв о безопасности зарядного устройства Apple в 2008 году

В 2008 году Apple отозвала зарядные устройства для iPhone из-за дефекта, когда штыри переменного тока могли выпасть из зарядного устройства и застрять в розетке. [15] К неисправным зарядным устройствам были прикреплены штыри с помощью того, что было описано как не более чем клей и «выдавать желаемое за действительное». [15] Apple заменила зарядные устройства на обновленную модель, обозначенную зеленой точкой, показанной выше (которая неизбежно имитирует поддельные зарядные устройства).

Я решил посмотреть, какие улучшения безопасности Apple внесла в новое зарядное устройство, и сравнить с другими аналогичными зарядными устройствами.Я попытался вытащить штыри из зарядного устройства Apple, зарядного устройства Samsung и поддельного зарядного устройства. Поддельные зубцы достали с помощью плоскогубцев, так как их практически ничем не закрепляло, кроме трения. Штыри Samsung пришлось долго тянуть и крутить плоскогубцами, так как у них есть маленькие металлические язычки, удерживающие их на месте, но в конце концов они вышли.

Когда я перешел к зарядному устройству Apple, зубцы не сдвинулись с места, даже когда я очень сильно тянул плоскогубцами, поэтому я вытащил Dremel и протер его через корпус, чтобы выяснить, что удерживает зубцы.У них есть большие металлические фланцы, встроенные в пластик корпуса, поэтому штырь не может вырваться из-за разрушения зарядного устройства. На фотографии показана вилка Apple (обратите внимание на толщину пластика, удаленного с правой половины), контакт поддельного зарядного устройства, удерживаемый только за счет трения, и контакт Samsung, удерживаемый небольшими, но прочными металлическими язычками.

Я впечатлен усилиями, которые Apple приложила, чтобы сделать зарядное устройство более безопасным после отзыва. Они не просто немного улучшили штыри, чтобы сделать их более безопасными; очевидно, кому-то было сказано сделать все возможное, чтобы убедиться, что зубцы не могут вырваться снова ни при каких обстоятельствах.

Что делает зарядное устройство Apple для iPhone особенным

Адаптер питания Apple, безусловно, представляет собой высококачественный источник питания, предназначенный для выработки тщательно отфильтрованной мощности. Apple явно приложила дополнительные усилия, чтобы уменьшить помехи от электромагнитных помех, вероятно, чтобы зарядное устройство не мешало работе сенсорного экрана. [16] Когда я открыл зарядное устройство, я ожидал найти стандартный дизайн, но я сравнил зарядное устройство с зарядным устройством Samsung и несколькими другими высококачественными промышленными разработками [17], и Apple выходит за рамки этих разработок по нескольким направлениям.

Входной переменный ток фильтруется через крошечное ферритовое кольцо на пластиковом корпусе (см. Фото ниже). Выход диодного моста фильтруется двумя большими конденсаторами и катушкой индуктивности. Два других демпфера R-C фильтруют диодный мост, который я видел только в других источниках питания аудио, чтобы предотвратить гудение 60 Гц; [6] возможно, это улучшает впечатление от прослушивания iTunes. В других разобранных мною зарядных устройствах не используется ферритовое кольцо, а обычно используется только один конденсатор фильтра. Плата первичной схемы имеет заземленный металлический экран над высокочастотными компонентами (см. Фото), которого я больше нигде не видел.Трансформатор имеет экранирующую обмотку для поглощения электромагнитных помех. В выходной цепи используются три конденсатора, включая два относительно дорогих танталовых [14] и катушку индуктивности для фильтрации, когда многие источники питания используют только один конденсатор. Конденсатор Y обычно не используется в других конструкциях. Резонансная зажимная схема является в высшей степени инновационной. [9]

Конструкция Apple обеспечивает дополнительную безопасность несколькими способами, о которых говорилось ранее: сверхсильными контактами переменного тока и сложной схемой отключения при перегреве / перенапряжении.Дистанция изоляции Apple между первичной и вторичной обмотками, похоже, выходит за рамки нормативных требований.

Выводы

Зарядное устройство для iPhone от Apple вмещает множество технологий в небольшом пространстве. Apple приложила дополнительные усилия, чтобы обеспечить более высокое качество и безопасность, чем зарядные устройства других известных брендов, но за это качество приходится платить.

Если вас интересуют источники питания, ознакомьтесь с другими моими статьями: «Крошечный, дешевый, опасный»: «Внутри (поддельного) зарядного устройства для iPhone», где я разбираю 2 доллара.79 зарядное устройство для iPhone и обнаружите, что оно нарушает многие правила безопасности; не покупайте ни одного из них. Также обратите внимание на то, что Apple не произвела революцию в источниках питания; новые транзисторы сделали, что исследует историю импульсных источников питания. Чтобы увидеть, как адаптер Apple разобран, посмотрите видеоролики, созданные scourtheearth и Ladyada. Наконец, если у вас есть интересное зарядное устройство, которое вам не нужно, отправьте его мне, и, возможно, я опишу его подробный разбор.

Также смотрите комментарии к Hacker News.

Примечания и ссылки

[1] Вы можете задаться вопросом, почему напряжение постоянного тока внутри блока питания намного выше, чем напряжение в сети. Напряжение постоянного тока примерно в sqrt (2) раз больше напряжения переменного тока, поскольку диод заряжает конденсатор до пика сигнала переменного тока. Таким образом, входное напряжение от 100 до 240 вольт переменного тока преобразуется в постоянное напряжение от 145 до 345 вольт внутри. Этого недостаточно, чтобы официально считаться высоким напряжением, но для удобства я назову это высоким напряжением. В соответствии со стандартами все, что ниже 50 В переменного тока или 120 В постоянного тока, считается сверхнизким напряжением и считается безопасным при нормальных условиях.Но для удобства я буду называть выход 5 В низким напряжением.

[2] В источнике питания Apple используется обратная схема, в которой трансформатор работает «в обратном направлении», чем вы могли ожидать. Когда в трансформатор подается импульс напряжения, выходной диод блокирует выход, поэтому выход отсутствует — вместо этого создается магнитное поле. Когда подача напряжения прекращается, магнитное поле разрушается, вызывая выход напряжения из трансформатора. Источники питания с обратной связью очень распространены для источников питания с малой мощностью.

[3] Размер первичной платы составляет около 22,5 мм на 20,0 мм, а вторичной платы — около 22,2 мм на 20,2 мм. [4] Для получения дополнительной информации о конденсаторах X и Y см. Презентацию Kemet и «Проектирование источников питания с низким током утечки».

[5] Для наглядности перед тем, как делать снимки в этой статье, была снята изоляция. Конденсатор Y был покрыт черной термоусадочной трубкой, сбоку цепи была обмотана изолента, плавкий резистор был покрыт черной термоусадочной трубкой, а над разъемом USB была черная изолирующая крышка.

[6] Демпфирующие цепи могут использоваться для уменьшения шума 60 Гц, создаваемого диодным мостом в источниках питания аудиосистемы. Подробный справочник по демпферам R-C для диодов источника питания аудиосигнала — это Расчет оптимальных демпферов, а пример проекта — Конструкция источника питания усилителя аудио.

[7] Источником питания управляет микросхема контроллера квазирезонансного SMPS (импульсного источника питания) L6565 (техническое описание). (Разумеется, чип мог быть чем-то другим, но схема точно соответствует L6565 и никакому другому чипу, который я исследовал.)

Для повышения эффективности и уменьшения помех в микросхеме используется метод, известный как квазирезонанс, который впервые был разработан в 1980-х годах. Выходная цепь спроектирована таким образом, что при отключении питания напряжение трансформатора будет колебаться. Когда напряжение достигает нуля, транзистор снова включается. Это известно как переключение при нулевом напряжении, потому что транзистор переключается, когда на нем практически нет напряжения, что сводит к минимуму потери мощности и помехи во время переключения.Схема остается включенной в течение переменного времени (в зависимости от требуемой мощности), а затем снова выключается, повторяя процесс. (Для получения дополнительной информации см. Исследование квазирезонансных преобразователей для источников питания.)

Одним из интересных следствий квазирезонанса является то, что частота переключения меняется в зависимости от нагрузки (типичное значение составляет 70 кГц). В ранних источниках питания, таких как блок питания Apple II, для регулирования мощности использовались простые цепи переменной частоты. Но в 1980-х годах эти схемы были заменены микросхемами контроллеров, которые переключались с фиксированной частотой, но изменяли ширину импульсов (известную как ШИМ).Теперь усовершенствованные ИС контроллеров вернулись к регулированию частоты. Но, кроме того, в сверхдешевых подделках используются схемы переменной частоты, практически идентичные Apple II. Таким образом, и высокопроизводительные, и недорогие зарядные устройства теперь вернулись к переменной частоте.

Мне потребовалось много времени, чтобы понять, что маркировка «FLEX01» на микросхеме контроллера указывает на Flextronics, а X на микросхеме был от логотипа Flextronics: . Я предполагаю, что на чипе есть такая маркировка, потому что он производится для Flextronics.Маркировка «EB936» на микросхеме может быть собственным номером детали Flextronics или кодом даты.

[8] Я думал, что Flextronics — это просто сборщик электроники, и я был удивлен, узнав, что Flextronics занимается множеством инновационных разработок и имеет буквально тысячи патентов. Я думаю, что Flextronics заслуживает большего признания за свои разработки. (Обратите внимание, что Flextronics — это другая компания, чем Foxconn, которая производит iPad и iPhone и вызывает разногласия по поводу условий работы).

Изображение выше взято из патента Flextronics 7,978,489: «Интегрированные преобразователи мощности» описывает адаптер, который выглядит так же, как зарядное устройство для iPhone.Сам патент представляет собой сумку из 63 различных пунктов формулы (пружинные контакты, экраны EMI, термоклейкий материал), большинство из которых фактически не имеют отношения к зарядному устройству iPhone.

[9] Патент Flextronics 7 924 578: Квазирезонансная схема резервуара с двумя выводами описывает резонансную схему, используемую в зарядном устройстве iPhone, которая показана на следующей диаграмме. Транзистор Q2 приводит в действие трансформатор. Транзистор Q1 — это фиксирующий транзистор, который направляет скачок напряжения от трансформатора на резонансный конденсатор C13.Инновационная часть этой схемы заключается в том, что Q1 не требует специальной схемы управления, как другие схемы с активными фиксаторами; он питается от конденсаторов и диодов. В большинстве источников питания зарядных устройств, напротив, используется простой зажим резистор-конденсатор-диод, который рассеивает энергию в резисторе. [18]

Более поздние патенты Flextronics расширяют резонансный контур еще большим количеством диодов и конденсаторов: см. Патенты 7 830 676, 7 760 519 и 8,000 112

[10] Apple указывает тип зарядного устройства с помощью запатентованной технологии сопротивлений на контактах USB D + и D-.Подробнее о протоколах зарядки USB см. В моих предыдущих ссылках.

[11] Одна загадочная особенность зарядного устройства Apple — вторая цепь обратной связи, отслеживающая температуру и выходное напряжение. Эта схема на вторичной плате состоит из термистора, второго регулятора 431 и нескольких других компонентов для контроля температуры и напряжения. Выход подключен через второй оптрон к другим схемам на другой стороне вторичной платы. Два транзистора подключены к SCR-подобной защелке лома, которая закорачивает вспомогательное питание, а также отключает микросхему контроллера.Эта схема кажется чрезмерно сложной для этой задачи, тем более что многие микросхемы контроллеров имеют эту функцию. Я могу неправильно понять эту схему, потому что кажется, что Apple излишне занимала место и дорогие компоненты (возможно, стоимостью 25 центов), реализуя эту функцию в таких условиях. сложный способ.

[12] Обратите внимание на загадочную надпись «Для использования с оборудованием информационных технологий» на внешней стороне зарядного устройства. Это означает, что зарядное устройство соответствует стандарту безопасности UL 60950-1, который определяет различные требуемые изоляционные расстояния.Краткий обзор изоляционных расстояний см. В разделе «Разделение цепей i-Spec» и в некоторых из моих предыдущих ссылок.

[13] Некоторые примечания к используемым компонентам: На первичной плате корпус JS4 представляет собой два диода в одном корпусе. Входные диоды с маркировкой 1JLGE9 представляют собой диоды 1J 600V 1A. Коммутационные транзисторы представляют собой N-канальные полевые МОП-транзисторы 1HNK60, 600 В, 1 А. Значения многих резисторов и конденсаторов указываются с помощью стандартной трехзначной маркировки SMD (две цифры, а затем мощность десять, что дает Ом или пикофарады).

На вторичной плате конденсатор «330 j90» представляет собой танталовый полимерный конденсатор Sanyo POSCAP 300 мФ 6,3 В (j означает 6,3 В, а 90 — это код даты). 1R5 указывает на индуктивность 1,5 мкГн. GB9 — это прецизионный шунтирующий регулятор с низким катодным током AS431I, регулируемый по низкому катодному току, а 431 — это обычный регулятор TL431. SCD34 — это выпрямитель Шоттки на 3 А, 40 В. YCW — это неопознанный транзистор NPN, а GYW — неопознанный транзистор PNP. Конденсатор Y с маркировкой «MC B221K X1 400V Y1 250V» представляет собой Y-конденсатор 220 пФ.Конденсатор «107A» представляет собой танталовый конденсатор емкостью 100 мкФ 10 В (A означает 10 В). Оптопары PS2801-1. (Все эти обозначения компонентов следует рассматривать как предварительные, наряду со схемой.)

[14] Чтобы получить приблизительное представление о том, сколько стоят компоненты в зарядном устройстве, я посмотрел цены на некоторые компоненты на сайте octopart.com. Эти цены — лучшие цены, которые я смог найти после краткого поиска, в количестве 1000 штук, пытаясь точно сопоставить детали. Я должен предположить, что цены Apple значительно лучше этих цен.

9048
Компонент Цена
0402 Резистор SMD $ 0,002
0805 Конденсатор SMD $ 0,007
9049 0,0495 9049 0,0496 0,049 1A 600V (1J) диод $ 0,06
термистор $ 0,07
Y конденсатор $ 0,08
3.Электролитический конденсатор 3 мкФ, 400 В $ 0,10
TL431 $ 0,10
1,5 мкГн индуктивность $ 0,12
SCD 34 диод
SCD 34 диод
0,22 долл.55
Тантал-полимерный конденсатор 330 мкФ
(Sanyo POSCAP)
$ 0,98
Обратный трансформатор $ 1,36

Несколько заметок. Подходящие трансформаторы обычно изготавливаются по индивидуальному заказу, и цены везде разные, поэтому я не очень уверен в этой цене. Я думаю, что цена POSCAP высока, потому что я искал точного производителя, но танталовые конденсаторы в целом довольно дороги. Удивительно, насколько дешевы резисторы и конденсаторы SMD: доли копейки.

[15] Об отзыве зарядных устройств Apple было объявлено в 2008 году. Сообщения в блогах показали, что штыри на зарядном устройстве были прикреплены только с помощью 1/8 дюйма металла и небольшого количества клея. Apple отозвала адаптеры питания iPhone 3G в проводной сети, предоставляет более подробную информацию.

[16] Низкокачественные зарядные устройства мешают работе с сенсорными экранами, и это подробно описано в Noise Wars: Projected Capacity наносит ответный удар. (Клиенты также сообщают о проблемах с сенсорным экраном из-за дешевых зарядных устройств на Amazon и других сайтах.)

[17] Существует множество промышленных конструкций USB-преобразователей переменного / постоянного тока в диапазоне 5 Вт.Образцы образцов доступны в iWatt, Fairchild, STMicroelectronics, Texas Instruments, ON Semiconductor и Maxim.

[18] Когда диод или транзистор переключается, он создает всплеск напряжения, которым можно управлять с помощью демпферной цепи или схемы ограничения. Для получения дополнительной информации о демпферах и зажимах см. «Пассивные демпферы без потерь для высокочастотного преобразования ШИМ» и «Справочное руководство по импульсным источникам питания».

Простой источник питания 5 В

Обзор характеристик схемы

  • Краткое описание работы: дает хорошо регулируемый выход +5 В, выходной ток 100 мА.
  • Защита цепи: встроенная защита от перегрева отключает выход, когда регулятор IC становится слишком горячим
  • Сложность схемы: очень просто и легко построить
  • Характеристики схемы: очень стабильное выходное напряжение +5 В, надежная работа
  • Доступность компонентов: Легко достать, используются только самые распространенные базовые компоненты
  • Тестирование конструкции: на основе примера схемы из таблицы данных, я успешно использовал эту схему как часть многих проектов в области электроники.
  • Область применения: часть электронных устройств, источники питания для небольших лабораторий.
  • Напряжение источника питания: Нерегулируемый источник питания постоянного тока 8-18 В
  • Ток источника питания: Требуемый выходной ток + 5 мА
  • Стоимость компонентов: несколько долларов на электронные компоненты + стоимость входного трансформатора.

Описание цепи

Эта схема представляет собой небольшой источник питания + 5 В, который полезен, когда экспериментирую с цифровой электроникой.Маленькая недорогая стенка трансформаторы с переменным выходным напряжением доступны из любых магазин электроники и супермаркет. Эти трансформаторы легко доступны, но обычно их регулирование напряжения очень плохое, что делает его не очень удобным для экспериментатора цифровых схем если не удастся каким-либо образом добиться лучшего регулирования. В Следующая схема — это ответ на проблему.

Эта схема может выдавать выходное напряжение +5 В при токе около 150 мА, но может при хорошем В микросхему регулятора 7805 добавлено охлаждение.Схема закончилась перегрузка и тепловая защита.


Принципиальная схема блока питания.

Конденсаторы должны иметь достаточно высокое напряжение для безопасного обращения. входное напряжение подается в цепь. Схема очень проста в сборке для пример в кусок верёвки.


Распиновка микросхемы регулятора 7805.

  • 1. Нерегулируемое напряжение в
  • 2. Земля
  • 3. Выход регулируемого напряжения

Список компонентов

 7805 регулятор IC
Электролитический конденсатор 100 мкФ, номинальное напряжение не менее 25 В
Электролитический конденсатор 10 мкФ, номинальное напряжение не менее 6 В
Керамический или полиэфирный конденсатор 100 нФ
 

Идеи модификации

Больше выходной ток

Если вам нужен выходной ток более 150 мА, вы можете обновить выходной ток до 1А делаем следующие доработки:

  • Замените трансформатор, от которого вы подаете питание на схему, на модель, которая может выдавать на выходе столько тока, сколько вам нужно.
  • Поставить на регулятор 7805 радиатор (такой большой, что не перегревается из-за лишних потерь в регуляторе)

Другое выходное напряжение

Если вам нужны другие напряжения, кроме + 5В, вы можете изменить схему, заменив микросхемы 7805 с другим регулятором с другим выходным напряжением от Регулятор семейства микросхем 78xx.Последние цифры в коде чипа говорят выходное напряжение. Помните, что входное напряжение должно быть не менее 3 В. больше, чем выходное напряжение регулятора или иначе регулятор не хорошо работать.


Томи Энгдал <[email protected]>

шагов по преобразованию постоянного тока с 230 В на 5 В для питания цепей

Каждое электрическое и электронное устройство, которое мы используем в повседневной жизни, требует источника питания. Как правило, мы используем источник переменного тока 230 В, 50 Гц, но эту мощность необходимо изменить в требуемую форму с требуемыми значениями или диапазоном напряжения для обеспечения питания различных типов устройств.Существуют различные типы силовых электронных преобразователей, такие как понижающий преобразователь, повышающий преобразователь, стабилизатор напряжения, преобразователь переменного тока в постоянный, преобразователь постоянного тока в постоянный, преобразователь постоянного тока в переменный и так далее. Например, рассмотрим микроконтроллеры, которые часто используются для разработки многих проектов на основе встроенных систем и комплектов, используемых в приложениях реального времени. Эти микроконтроллеры требуют питания 5 В постоянного тока, поэтому 230 В переменного тока необходимо преобразовать в 5 В постоянного тока с помощью понижающего преобразователя в их цепи питания.

Схема источника питания

Схема понижающего преобразователя

Схема источника питания, само название указывает, что эта схема используется для подачи питания на другие электрические и электронные схемы или устройства. Существуют различные типы цепей питания в зависимости от мощности, которую они используют для обеспечения устройств. Например, используются схемы на основе микроконтроллера, обычно это схемы регулируемого источника питания 5 В постоянного тока, которые могут быть спроектированы с использованием различных методов для преобразования имеющейся мощности 230 В переменного тока в мощность 5 В постоянного тока.Обычно преобразователи с выходным напряжением меньше входного напряжения называются понижающими преобразователями.


4 шага для преобразования 230 В переменного тока в 5 В постоянного тока

1. Понижение уровня напряжения

Понижающие преобразователи используются для преобразования высокого напряжения в низкое. Преобразователь с выходным напряжением меньше входного напряжения называется понижающим преобразователем, а преобразователь с выходным напряжением больше входного напряжения называется повышающим преобразователем.Существуют повышающие и понижающие трансформаторы, которые используются для повышения или понижения уровней напряжения. 230 В переменного тока преобразуется в 12 В переменного тока с помощью понижающего трансформатора. Выход 12 В понижающего трансформатора представляет собой среднеквадратичное значение, а его пиковое значение определяется как произведение квадратного корня из двух на среднеквадратичное значение, которое составляет примерно 17 В.

Понижающий трансформатор

Понижающий трансформатор состоит из двух обмоток, а именно первичной и вторичной обмоток, где первичная обмотка может быть спроектирована с использованием провода меньшего сечения с большим количеством витков, поскольку он используется для передачи слаботочной энергии высокого напряжения, и вторичная обмотка с использованием провода большого сечения с меньшим количеством витков, поскольку она используется для передачи сильноточной энергии низкого напряжения.Трансформаторы работают по принципу законов электромагнитной индукции Фарадея.

2. Преобразование переменного тока в постоянный.

Мощность 230 В переменного тока преобразуется в 12 В переменного тока (среднеквадратичное значение 12 В, пиковое значение которого составляет около 17 В), но требуемая мощность составляет 5 В постоянного тока; для этой цели мощность 17 В переменного тока должна быть в первую очередь преобразована в мощность постоянного тока, а затем она может быть понижена до 5 В постоянного тока. Но прежде всего мы должны знать, как преобразовать переменный ток в постоянный? Мощность переменного тока может быть преобразована в постоянный ток с помощью одного из силовых электронных преобразователей, называемых выпрямителем.Существуют различные типы выпрямителей, такие как однополупериодный выпрямитель, двухполупериодный выпрямитель и мостовой выпрямитель. Благодаря преимуществам мостового выпрямителя над полуволновым и двухполупериодным выпрямителями, мостовой выпрямитель часто используется для преобразования переменного тока в постоянный.

Мостовой выпрямитель

Мостовой выпрямитель состоит из четырех диодов, соединенных в виде моста. Мы знаем, что диод — это неуправляемый выпрямитель, который будет проводить только прямое смещение и не проводить при обратном смещении.Если напряжение на аноде диода больше напряжения на катоде, то говорят, что диод находится в прямом смещении. Во время положительного полупериода диоды D2 и D4 будут проводить, а во время отрицательного полупериода диоды D1 и D3 будут проводить. Таким образом, переменный ток преобразуется в постоянный; здесь полученный не является чистым постоянным током, так как он состоит из импульсов. Следовательно, это называется пульсирующей мощностью постоянного тока. Но падение напряжения на диодах составляет (2 * 0,7В) 1,4В; следовательно, пиковое напряжение на выходе этой схемы выпрямителя составляет примерно 15 В (17–1,4).

3. Сглаживание пульсаций с помощью фильтра

15 В постоянного тока можно преобразовать в 5 В постоянного тока с помощью понижающего преобразователя, но перед этим необходимо получить чистую мощность постоянного тока. Выход диодного моста — это постоянный ток, состоящий из пульсаций, также называемый пульсирующим постоянным током. Этот пульсирующий постоянный ток может быть отфильтрован с помощью индуктивного фильтра, конденсаторного фильтра или резистивно-конденсаторного фильтра для удаления пульсаций. Рассмотрим конденсаторный фильтр, который в большинстве случаев часто используется для сглаживания.

Фильтр

Мы знаем, что конденсатор — это элемент, накапливающий энергию. В схеме конденсатор накапливает энергию, в то время как входной сигнал увеличивается от нуля до пикового значения, и, когда напряжение питания уменьшается с пикового значения до нуля, конденсатор начинает разряжаться. Эта зарядка и разрядка конденсатора превратят пульсирующий постоянный ток в чистый постоянный ток, как показано на рисунке.

4. Преобразование 12 В постоянного тока в 5 В постоянного тока с помощью регулятора напряжения

Напряжение 15 В постоянного тока можно понизить до 5 В постоянного тока с помощью понижающего преобразователя постоянного тока, называемого регулятором напряжения IC7805.Первые две цифры «78» регулятора напряжения IC7805 представляют регуляторы напряжения положительной серии, а последние две цифры «05» представляют выходное напряжение регулятора напряжения.

IC7805 регулятор напряжения Внутренний блок-схема

Блок-схема IC7805 регулятора напряжения показана на рисунке состоит из операционных усилителей действует как усилитель ошибки, стабилитрон, используемого для обеспечения опорного напряжения, как показано на рисунке.

стабилитрон, как опорное напряжение

Транзистор как серия проходит элемент, используемый для отвода дополнительной энергии в виде тепла; Защита SOA (безопасная рабочая зона) и радиатор используются для тепловой защиты в случае чрезмерного напряжения питания.В целом, регулятор IC7805 может выдерживать напряжение от 7,2 В до 35 В и обеспечивает максимальную эффективность 7,2 В, а если напряжение превышает 7,2 В, то происходит потеря энергии в виде тепла. Для защиты регулятора от перегрева предусмотрена тепловая защита с помощью радиатора. Таким образом, от источника переменного тока 230 В получается 5 В постоянного тока.

Мы можем напрямую преобразовать 230 В переменного тока в 5 В постоянного тока без использования трансформатора, но нам могут потребоваться высокопроизводительные диоды и другие компоненты, которые обеспечивают меньшую эффективность.Если у нас есть источник питания 230 В постоянного тока, то мы можем преобразовать 230 В постоянного тока в 5 В постоянного тока с помощью понижающего преобразователя постоянного тока в постоянный.

Понижающий преобразователь постоянного тока с напряжением 230 В в 5 В:

Давайте начнем со схемы источника питания постоянного тока, разработанной с использованием понижающего преобразователя постоянного тока. Если у нас есть источник питания 230 В постоянного тока, мы можем использовать понижающий преобразователь постоянного тока для преобразования 230 В постоянного тока в источник питания 5 В постоянного тока. Понижающий преобразователь DC-DC состоит из конденсатора, полевого МОП-транзистора, управления ШИМ, диодов и индукторов. Основная топология понижающего преобразователя постоянного тока показана на рисунке ниже.

Понижающий преобразователь постоянного тока в постоянный

Падение напряжения на катушке индуктивности и изменения электрического тока, протекающего через устройство, пропорциональны друг другу. Следовательно, понижающий преобразователь работает по принципу энергии, запасенной в катушке индуктивности. Силовой полупроводниковый MOSFET или IGBT, используемый в качестве переключающего элемента, может использоваться для переключения схемы понижающего преобразователя между двумя различными состояниями путем замыкания или размыкания и выключения или включения с помощью переключающего элемента. Если переключатель находится во включенном состоянии, то на катушке индуктивности создается потенциал из-за пускового тока, который будет противодействовать напряжению питания, тем самым уменьшая результирующее выходное напряжение.Поскольку диод смещен в обратном направлении, через диод не будет протекать ток.

Если переключатель разомкнут, то ток через катушку индуктивности внезапно прерывается, и диод начинает проводить проводимость, таким образом обеспечивается обратный путь для тока катушки индуктивности. Падение напряжения на катушке индуктивности, находящейся под напряжением, меняется на противоположное, что можно рассматривать как основной источник выходной мощности во время этого цикла переключения, и это связано с быстрым изменением тока. Сохраненная энергия катушки индуктивности непрерывно передается в нагрузку, и, таким образом, ток катушки индуктивности начинает падать до тех пор, пока ток не достигнет своего предыдущего значения или следующего включенного состояния.Продолжение подачи энергии к нагрузке приводит к падению тока катушки индуктивности до тех пор, пока ток не достигнет своего предыдущего значения. Это явление называется пульсацией на выходе, которую можно уменьшить до приемлемого значения, используя сглаживающий конденсатор параллельно выходу. Таким образом, преобразователь постоянного тока в постоянный действует как понижающий преобразователь.

Понижающий преобразователь постоянного тока в постоянный ток с использованием ШИМ Cotrol

На рисунке показан принцип работы понижающего преобразователя постоянного тока, управляемого с помощью генератора ШИМ для высокочастотного переключения, а обратная связь связана с усилителем ошибки.

Все проекты электроники на базе встроенных систем требуют фиксированного или регулируемого регулятора напряжения, который используется для обеспечения необходимого питания электрических и электронных схем или комплектов. Существует множество современных автоматических регуляторов напряжения, способных автоматически регулировать выходное напряжение в зависимости от критериев применения. Для получения дополнительной технической помощи относительно схемы источника питания и понижающего преобразователя, отправляйте свои запросы в виде комментариев в разделе комментариев ниже.

Полное руководство по использованию правильного зарядного устройства или адаптера питания (и что произойдет, если вы этого не сделаете)

На прошлых выходных я сел и перебрал весь свой случайный хлам электроники. В рамках этого процесса я взял все свои блоки питания и адаптеры и бросил их в коробку. В итоге получился довольно большой ящик. Готов поспорить, что в любой семье есть дюжина или больше различных типов зарядных устройств для сотовых телефонов, адаптеров переменного / постоянного тока, блоков питания, кабелей питания и вилок зарядных устройств.

Наличие такого количества зарядных устройств может быть довольно неприятным.Их легко отделить от телефона, ноутбука, планшета или маршрутизатора. И как только это произойдет, может быть невероятно сложно понять, что к чему. Решение по умолчанию — пробовать случайные штекеры, пока не найдете тот, который подходит к вашему устройству. Однако это большая авантюра. Если вы возьмете несовместимый адаптер питания, в лучшем случае он будет работать, хотя и не так, как задумал производитель. Второй наихудший сценарий — вы обжариваете гаджет, который пытаетесь включить.В худшем случае вы сожжете свой дом.

В этой статье я расскажу вам, как рыться в ящике для мусора и найти подходящий адаптер питания для вашего устройства. Затем я расскажу, почему это так важно.

В двух словах:

  • Следующее может привести к повреждению вашего устройства:
    • Обратная полярность
    • Адаптер напряжения, превышающий номинальное значение устройства
  • Следующее может повредить ваш шнур питания или адаптер:
    • Обратная полярность
    • Адаптер тока ниже номинала устройства
  • Следующее может не привести к повреждению, но устройство не будет работать должным образом:
    • Адаптер напряжения ниже номинала устройства
    • Адаптер тока выше номинала устройства

A Очень Краткое введение в электрическую терминологию

Каждый адаптер питания переменного / постоянного тока специально разработан для приема определенного входного переменного тока (обычно стандартного выхода из розетки переменного тока 120 В в вашем доме) и преобразования его в конкретный выход постоянного тока.Точно так же каждое электронное устройство специально разработано для приема определенного входного постоянного тока. Главное — согласовать выход постоянного тока адаптера со входом постоянного тока вашего устройства. Определение выходов и входов ваших адаптеров и устройств — сложная часть.

Адаптеры питания немного похожи на консервы. Некоторые производители помещают на этикетку много информации. Другие приводят лишь некоторые детали. А если на этикетке нет информации, действуйте с особой осторожностью.

Наиболее важными деталями для вас и вашей тонкой электроники являются напряжение и ток .Напряжение измеряется в вольтах (В), а ток — в амперах (А). (Вероятно, вы также слышали о сопротивлении (Ом), но обычно это не отображается на адаптерах питания.)

Чтобы понять, что означают эти три термина, полезно думать об электричестве как о протекающей через него воде. трубка. В этой аналогии напряжение будет давлением воды. Ток, как следует из этого термина, относится к скорости потока. А сопротивление зависит от размера трубы. Настройка любой из этих трех переменных увеличивает или уменьшает количество электроэнергии, отправляемой на ваше устройство.Это важно, потому что слишком мало энергии означает, что ваше устройство не будет заряжаться или работать правильно. Слишком большая мощность генерирует избыточное тепло, что является бичом чувствительной электроники.

Другой важный термин, который необходимо знать, — это полярность . Для постоянного тока есть положительный полюс (+) и отрицательный полюс (-). Для работы адаптера положительная вилка должна совпадать с отрицательной розеткой или наоборот. По своей природе постоянный ток — это улица с односторонним движением, и ничего не получится, если вы попытаетесь подняться по водосточной трубе.

Если вы умножите напряжение на ток, вы получите мощность . Но одно только количество ватт не скажет вам, подходит ли адаптер для вашего устройства.

Чтение этикетки адаптера переменного / постоянного тока

Если производитель был достаточно умен (или был вынужден по закону) включить выход постоянного тока на этикетку, вам повезло. Посмотрите на «кирпичную» часть адаптера и найдите слово ВЫХОД. Здесь вы увидите вольты, за которыми следует символ постоянного тока, а затем — ток.

Символ постоянного тока выглядит следующим образом:

Чтобы проверить полярность, найдите знак + или — рядом с напряжением. Или поищите диаграмму, показывающую полярность. Обычно он состоит из трех кругов, с плюсом или минусом по бокам и сплошным кружком или С в середине. Если знак + справа, значит, адаптер имеет положительную полярность:

Если справа есть знак -, значит, он имеет отрицательную полярность:

Затем вы хотите посмотреть на свое устройство вход постоянного тока.Обычно вы видите, по крайней мере, напряжение около розетки постоянного тока. Но вы также хотите убедиться, что текущие совпадения тоже.

Вы можете найти напряжение и ток в другом месте устройства, на дне или внутри крышки батарейного отсека или в руководстве. Опять же, обратите внимание на полярность, отмечая символ + или — или диаграмму полярности.

Помните: на входе устройства должен быть тот же , что и на выходе адаптера. Это включает полярность.Если устройство имеет вход постоянного тока +12 В / 5,4 А, приобретите адаптер с выходом постоянного тока + 12 В / 5,4 А. Если у вас есть универсальный адаптер, убедитесь, что он имеет соответствующий номинальный ток, и выберите правильную полярность напряжения и .

Fudging It: Что произойдет, если вы воспользуетесь неправильным адаптером?

В идеале у адаптера и устройства должны быть одинаковое напряжение, сила тока и полярность.

Но что, если вы случайно (или намеренно) используете не тот адаптер? В некоторых случаях вилка не подходит.Но во многих случаях к вашему устройству подключается несовместимый адаптер питания. Вот что можно ожидать в каждом сценарии:

  • Неправильная полярность — Если вы измените полярность, может произойти несколько вещей. Если повезет, ничего не произойдет и никаких повреждений не произойдет. Если вам не повезет, ваше устройство будет повреждено. Есть и золотая середина. Некоторые ноутбуки и другие устройства включают защиту от полярности, которая по сути представляет собой предохранитель, который перегорает, если вы используете неправильную полярность.В этом случае вы можете услышать хлопок и увидеть дым. Но устройство может по-прежнему работать от аккумулятора. Однако ваш вход постоянного тока будет тостом. Чтобы исправить это, замените предохранитель защиты полярности или обратитесь в сервисный центр. Хорошая новость в том, что основная схема не перегорела.
  • Слишком низкое напряжение — Если напряжение на адаптере ниже, чем у устройства, но ток такой же, устройство может работать, хотя и нестабильно. Если мы вернемся к нашей аналогии напряжения с давлением воды, это будет означать, что у устройства «низкое кровяное давление».«Эффект низкого напряжения зависит от сложности устройства. Динамик, например, может быть и в порядке, но он не станет таким громким. Более сложные устройства будут давать сбои и могут даже отключиться при обнаружении пониженного напряжения. Обычно пониженное напряжение не приводит к повреждению или сокращению срока службы вашего устройства.
  • Слишком высокое напряжение — Если адаптер имеет более высокое напряжение, но ток такой же, то устройство, скорее всего, отключится при обнаружении перенапряжения.В противном случае оно может стать более горячим, чем обычно, что может сократить срок службы устройства или вызвать немедленное повреждение.
  • Слишком высокий ток — Если адаптер имеет правильное напряжение, но ток больше, чем требуется для входа устройства, проблем не должно быть. Например, если у вас есть ноутбук, который требует входа постоянного тока 19 В / 5 А, но вы используете адаптер постоянного тока 19 В / 8 А, ваш ноутбук по-прежнему будет получать необходимое напряжение 19 В, но потребляет только 5 А. Что касается тока, то устройство делает все возможное, и адаптеру придется выполнять меньше работы.
  • Слишком низкий ток — Если у адаптера правильное напряжение, но номинальный ток адаптера ниже, чем на входе устройства, может произойти несколько вещей. Устройство может включиться и потреблять от адаптера больше тока, чем предназначено. Это может привести к перегреву адаптера или выходу его из строя. Или устройство может включиться, но адаптер может не справиться с этим, что приведет к падению напряжения (см. , слишком низкое напряжение выше). Для ноутбуков, работающих с адаптерами с пониженным током, вы можете видеть заряд аккумулятора, но ноутбук не включается, или он может работать от питания, но аккумулятор не заряжается.Итог: использовать адаптер с более низким номинальным током — плохая идея, так как это может вызвать перегрев.

Все вышеперечисленное — это то, что вы ожидаете увидеть, основываясь на простом понимании полярности, напряжения и тока. В этих прогнозах не принимается во внимание различная защита и универсальность адаптеров и устройств. Производители также могут немного смягчить свои рейтинги. Например, ваш ноутбук может быть рассчитан на ток 8А, но на самом деле он потребляет только около 5А.И наоборот, адаптер может быть рассчитан на 5А, но на самом деле может выдерживать токи до 8А. Кроме того, некоторые адаптеры и устройства будут иметь функции переключения или обнаружения напряжения и тока, которые будут регулировать выход / потребление в зависимости от того, что необходимо. И, как упоминалось выше, многие устройства автоматически отключаются до того, как это приведет к повреждению.

При этом я не рекомендую подтасовывать маржу, предполагая, что вы можете с помощью своих электронных устройств проехать на 5 миль в час сверх установленной скорости.Маржа существует не просто так, и чем сложнее устройство, тем больше вероятность того, что что-то пойдет не так.

Есть какие-нибудь предостережения об использовании неправильного адаптера переменного / постоянного тока? Предупреждайте нас в комментариях!

П.С. Настенные адаптеры, которые предоставляют вам USB-порт для зарядки, не так уж сложны. Стандартные USB-устройства имеют напряжение постоянного тока 5 В и ток до 0,5 А или 500 мА только для зарядки. Это то, что позволяет им хорошо работать с портами USB на вашем компьютере.Большинство настенных USB-адаптеров представляют собой адаптеры на 5 В и имеют номинальный ток значительно выше 0,5 А. Настенный USB-адаптер для iPhone, который я держу в руке, имеет напряжение 5 В / 1 А. Вам также не нужно беспокоиться о полярность с USB. USB-штекер — это USB-штекер, и все, о чем вам обычно нужно беспокоиться, — это форм-фактор (например, микро, мини или стандартный). Кроме того, USB-устройства достаточно умны, чтобы отключать устройства, если что-то не так. Следовательно, часто встречается сообщение «Зарядка не поддерживается с этим аксессуаром».

Изображение функции от Qurren — GFDL (http://www.gnu.org/copyleft/fdl.html) или CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0) /), через Wikimedia Commons

.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *