Схема блока розжига газовой колонки: Как отремонтировать блок розжига на газовой колонке

Содержание

Горелка проточной газовой колонки — обслуживание и устранение неисправностей


Газовые колонки работают по принципу проточного нагрева. Вода циркулирует по теплообменнику в виде змеевика с радиаторными ребрами. Горелка газовой колонки нагревает теплоноситель сжигая «голубое» топливо.

Пламя загорается в автоматическом и полуавтоматическом режиме. Сбои в розжиге колонки, самостоятельное отключение происходят по причине выхода из строя датчиков, загрязнения форсунок и других проблем.

Устройство и принцип работы горелки колонки

Существует несколько модификаций проточных водонагревателей, отличающихся по конструкции и принципу работы. Несмотря на существующую разницу все горелки работают по одинаковой схеме:

  • открывается кран горячей воды;
  • в водяной узел под давлением подается вода, открывается газовый клапан;
  • поджигается горелка;
  • вода нагревается и направляется потребителю;
  • кран закрывается, подача газа прекращается.


Несмотря на схожий принцип работы присутствуют некоторые отличия. Существует несколько видов газовых колонок, различающихся по устройству горелки и камеры сгорания. Специалисты делят проточные бойлеры на следующие классы:

  • С закрытой горелкой — особенность устройства в том, что подача воздуха на форсунки осуществляется принудительным способом, с помощью вентилятора (турбины). Как правило, в колонках турбированного типа устанавливают модуляционную горелку, с автоматическим изменением мощности. Интенсивность пламени меняется в зависимости от давления воды в трубопроводе. Розжиг осуществляется при помощи искры, в автоматическом режиме.
  • С горелкой открытого типа — классическая конструкция, используемая в большинстве проточных водонагревателей. Подача воздуха на форсунки осуществляется естественным. Кислород забирается из помещения, в котором установлен водонагреватель.

Кроме описанной выше классификации присутствует разделение по типу изменения интенсивности горения:

  • Газовые проточные водонагреватели с модулируемой горелкой — в настройках выставляется температура нагрева воды. Заданные параметры постоянны. При уменьшении давления в трубопроводе, к примеру, при одновременном открытии крана водоснабжения на кухне и ванной, модуль в автоматическом режиме изменяет мощность, подстраиваясь под фактическое потребление ГВС.
    Используемый принцип работы электронной модуляционной горелки в газовом проточном водонагревателе эффективен тем, что благодаря адаптации к условиям обеспечивает равномерную температуру нагрева горячей воды, независимо от внешних факторов. Автоматическая настройка уменьшает затраты на газ, по сравнению с классическими колонками, приблизительно на 30-40%.
  • Горелки с постоянной мощностью — блок управления механический. Вручную выставляют скорость протока воды и интенсивность горения газа, с помощью рычагов или ручек, расположенных на корпусе. После настройки горелка поддерживает постоянную мощность, что приводит к повышению температуры воды при понижении давления в трубопроводе или снижению температуры, если увеличился напор воды.
    Колонки с горелочными устройствами постоянной мощности стоят дешевле, чем водонагреватели с модуляцией пламени. Главный минус — неудобство в эксплуатации.


Горелка газовых колонок сделана из высокоуглеродистой нержавеющей стали. Материал устойчив к высокотемпературному воздействию.

Водонагреватели могут работать на разных видах газа — магистральном и баллонном. Горелки изначально предназначены для природного или для сниженного газа, о чем указано в инструкции по эксплуатации. Существует возможность переоборудования колонки. Так, для работы на сжиженном газе потребуется установить редуктор на баллон, сменить форсунки.

Почему горелка слабо горит или отключается

Причин сбоев в работе несколько. Горелочное устройство тесно взаимосвязано с системой автоматики. Выход из строя одного из датчиков или регуляторов приводит к проблемам и нестабильности в работе. При диагностике колонки обращают внимание на следующие признаки:

  • Горелка не включается — причины:
    1. недостаточное давление воды;
    2. отсутствие искры;
    3. неправильная работа запального фитиля;
    4. плохая тяга.


    Во всех перечисленных случаях пламя отсутствует. Колонка если и включается, то только на время и после неоднократного открытия крана ГВС.

  • Слабое пламя на горелке — причины:
    1. проблемы с водяным узлом (лягушкой), из строя вышла мембрана или шток нуждается в обслуживании;
    2. недостаточное давление воды в трубопроводе;
    3. слабо горит горелка газовой колонки и по причине замусоривания сажей форсунок, особенно часто с проблемой сталкиваются хозяева водонагревателей, работающих на сжиженном газе.


    Если пламя горит неравномерно, имеет красно-белый оттенок, выступает за рамки теплообменника, при этом присутствует стабильный напор воды, необходимо почистить наружную часть радиатора. В автоматических газовых колонках отказ в модуляции пламени горелки говорит о неисправности программатора в блоке управления.

  • Не работает основная горелка — при этом срабатывает запальник или работает фитиль. Причина кроется:
    1. В замусоренном дымоходном канале — недостаток циркуляции воздуха приводит к скоплению дымовых газов. Проблемы с тягой отражаются на работе горелочного устройства, пламя отсутствует или горит неравномерно.
    2. Проблемы с водяным регулятором — внутри блока присутствует резиновая мембрана и шток, подключенный к клапану. При поступлении воды оказывается давление на металлический стержень, включающий подачу газа. Если прокладка прорвалась или шток подвергся коррозии, газ в горелку не поступает, пламя не зажигается.
    3. В газовых колонках с модулирующей горелкой отсутствие пламени указывает на выход из строя сервопривода или клапана. В водонагревателях, работающих от батареек поломка зачастую связана с тем, что требуется заменить севшие источники питания.
  • Горелка не отключается — пламя продолжает гореть после того как был закрыт кран ГВС. Период затухания от нескольких секунд и более. Причина в том, что мембрана, установленная в водяном регуляторе, огрубела от жесткой воды.
    Неисправность может быть связана со штоком. В этом случае либо на стержне появилась ржавчина, либо ослабела пружина, приводящая его после отключения воды в первоначальное положение.

Каждая горелка независимо от ее конструкции и внутреннего устройства нуждается в обслуживании. При сжигании газа образуется нагар, засоряющий форсунки. Больше сажи продуцируется во время горения сжиженного газа, но чистить по крайней мере каждый 1-2 года потребуется и колонку, подключенную к центральной магистрали.

Как снять и почистить горелку с колонки

Обслуживание газопотребляющего оборудования должен выполнять специалист, имеющий соответствующий допуск работ.

При наличии инструментов и соответствующих навыков чистка горелки газовой колонки может быть выполнена своими руками. Конструкция проточных газовых бойлеров отличается, поэтому ниже описана базовая схема разбора корпуса и демонтажа горелочного устройства:

  • отключается газ и вода;
  • снимаются рукояти управления;
  • демонтируется кожух, большинство корпусов установлено на специальных застежках, но бывают крепления на винтах;
  • снимается дымосборник (отсоединяются провода датчика тяги, откручиваются шурупы, удерживающие короб), расположенный вверху колонки;
  • отсоединяется водяной узел;
  • горелка отключается от газового клапана, извлекается из корпуса движением на себя и в сторону.

Чистка горелки осуществляется с помощью металлической щетки и специального крючка. Важно обслужить каждую форсунку и полностью удалить скопившуюся сажу. Прочистка горелки кропотливое занятие, занимающее долгое время.

После окончания работ колонку собирают в обратном порядке. Перед первым запуском проверяют герметичность резьбовых соединений. Для этого используют мыльный раствор и помазок. Если утечка газа не обнаружена можно попробовать зажечь горелку.

При демонтаже колонки важно не потерять прокладки и болты. Мастера советуют складывать детали в отдельную пластиковую тару. Такая мера облегчит и ускорит сборку водонагревателя после обслуживания.

Как отрегулировать газовую горелку

В водонагревателях, использующих принцип модуляции пламени настройки выполняются автоматически при помощи программируемого блока управления. Отрегулировать пламя потребуется в колонках с постоянной мощностью. Мастера рекомендуют выполнять обслуживание в следующих случаях:

  • чрезмерная мощность горелки;
  • недостаточная тяга в дымоходном канале, которую нельзя устранить;
  • низкое давление в системе газоснабжения;
  • проведение ремонта колонки, чистки горелочного устройства;
  • смена топлива.


В колонках с постоянной мощностью регулировка горелки осуществляется при помощи механического управления. На корпусе расположена ручка, меняющая интенсивность горения газа. Необходимо выбрать такой режим, чтобы пламя было ровным и синим. Не должно быть проскоков и отрыва языков от форсунок.

Автоматика горелки зависима от механического управления. При правильных настройках вода будет быстро нагреваться до необходимой температуры. Горелочное устройство начнет работать без сбоев.

Как работает газовая колонка для воды


Устройство проточных газовых водонагревателей практически не изменилось со времени их изобретения. Были добавлены различные узлы, регуляторы и модули, влияющие на автоматизацию процесса нагрева. Но основной принцип работы и устройство газовой колонки остались прежними. Понимание процессов, происходящих при включении и выключении бойлера облегчит его эксплуатацию и обслуживание.

Конструкция газового проточного нагревателя

Принцип действия колонки можно описать следующим образом:

  • при открытии крана ГВС включается горелка, нагревающая воду;
  • после отключения горячего водоснабжения, бойлер выключается.


Техническое устройство газовой водогрейной колонки состоит из нескольких систем и внутренних модулей:

  • горелки;
  • теплообменника;
  • блока розжига;
  • системы дымоотведения;
  • датчиков контроля и безопасности.


Хотя присутствуют небольшие изменения и модификации внутреннего устройства у водонагревателей современного образца, основной принцип работы остается неизменным независимо от того какая модель бойлера используется.

Виды горелок

Производители выпускают несколько классов колонок, отличающихся по типу горелочного устройства и камеры сгорания:

  • Атмосферные колонки — присутствует открытая камера сгорания. Воздух на горелку забирается посредством естественной циркуляции, напрямую из помещения. Бойлер энергонезависим. Главное достоинство: низкая стоимость.
  • Турбированные колонки — в конструкции расположена камера сгорания закрытого типа. Воздух поступает принудительным способом, под давлением, нагнетаемый вентилятором (турбиной). В турбоколонках присутствует функция модуляции пламени. Температура пламени поддерживается в автоматическом режиме, что позволяет приспосабливаться к давлению воды в водопроводе.
    Главное достоинство турбированных колонок: низкий расход газа (меньше, чем у атмосферных бойлеров на 15-20%), а также возможность работать при низком давлении воды. Турбоколонки подключаются к коаксиальному или классическому дымоходу.

На устройство горелки влияет тип используемого газа. Большинство проточных колонок предназначены для работы на метане. После смены форсунок на горелке и замены жиклеров на запальнике (для полуавтоматических моделей), появляется возможность использования бойлера под пропан.

Производительность газовых горелок варьируется от 17-26 кВт. В современной колонке КПД достигает 85-90%.

Как нагревается вода

Само название проточный водонагреватель указывает на то как осуществляется подогрев ГВС. Принципиальную схема работы бойлера:

  • Подача воды — в корпусе колонки присутствует два патрубка, для подключения к холодному и горячему водоснабжению. При открытии крана ГВС начинается движение жидкости по внутренней системе бойлера.
  • Водяной узел — установлен сразу после входного патрубка. Вода под напором попадает в редуктор (лягушка). Внутри газо-водяного узла установлена резиновая мембрана, оказывающая воздействие на шток, подключенный к газовому клапану. В автоматических колонках на металлическом стержне присутствуют ушки для подачи сигнала на продуцирование искры блоком розжига. Устройство и принцип работы водяного клапана заключается в следующем:
    1. вода создает давление, что приводит к выпучиванию мембраны;
    2. резиновая диафрагма приводит в движение шток, открывающий подачу газа на основную горелку;
    3. после отключения крана ГВС, металлический стержень возвращается в первоначальное положение благодаря пружине;
    4. подача газа прекращается.

    Читайте также:
    Как заменить мембрану в газовой колонке своими руками

  • Теплообменник — после прохождения «лягушки» вода поступает в радиатор (теплообменник) колонки, расположенный непосредственно над основной горелкой. При сжигании газа выделяется достаточное количество тепла, чтобы прогреть змеевик и передать энергию воде. На разогрев калорифера уходит от 30 сек, до нескольких минут.
  • Выходной патрубок — после прохождения теплообменника нагретая вода направляется вниз к выходному патрубку, подключенному к трубам горячего водоснабжения.

На корпусе водонагревателей с механическим блоком управления присутствуют две крутящиеся ручки для изменения напора нагреваемой жидкости и подачи газа. Если необходимо, чтобы бойлер работал при малом давлении воды, необходимо выкрутить соответствующий регулятор на минимум.

Системы розжига

Устройство и принцип работы проточного газового водонагревателя несколько отличается в зависимости от модели и степени автоматизации работы. Принято выделять 3 основных группы бойлеров:


Принцип розжига влияет на комфорт эксплуатации и отражается на стоимости бойлера. Полностью автоматические бойлеры на 30-40% дороже аналогичных моделей с пьезоэлементом. Колонки с розжигом от спички, старого образца, поэтому уже не выпускаются.

Контроль температуры воды

Интенсивность нагрева регулируется несколькими способами. В зависимости от модели газовой колонки используется следующий блок управления:

  • Механический — ограничение температуры нагрева проточной газовой колонки выставляется с помощью ручек, расположенных на корпусе. Как правило, левый рычаг регулирует давление газа на горелке, второй: скорость циркуляции воды. Изменяя показатели можно выставить комфортную для мытья степень нагрева. На дисплей, подключенный к датчику температуру воды выводятся цифровые показатели. Температура выводится в градусах по Цельсию.
    Недостаток механического управления в том, что оно зависимо от внешних факторов. При одновременном открытии второй точки водоснабжения, изменении напора ХВС, меняется температура нагрева.
  • Модуляция пламени — в этом случае электронный блок управления регулирует не скорость протока и давление газа, а контролирует температуру воды на выходе. Преимущество в том, что интенсивность нагрева меняется автоматически, подстраиваясь под рабочие параметры ГВС. Недостаток колонок с модуляцией пламени: высокая стоимость, зависимость от электричества.


В современных газовых бойлерах проточного типа установлены дополнительные системы, контролирующие расход горячей воды и автоматически отключающие работу, например, после наполнения ванны. Рабочая температура нагрева воды от 35-60° С.

Системы безопасности

Во внутреннем устройстве присутствует несколько модулей и датчиков, предотвращающих возникновение аварийных ситуаций, связанных: с перегревом воды, утечкой и концентрацией СО и СО₂. Используется следующая система безопасности:

  • Термопара — используется в полуавтоматических моделях и колонках старого образца с ручным розжигом. Принцип подачи газа основан на применении электромеханического датчика. Чтобы открыть доступ топлива необходимо нагреть термопару и поддерживать созданную температуру. На практике это означает, что при задувании фитиля отключается подача газа на дополнительную и основную горелку.
  • Ионизация пламени — датчик отслеживает наличие горения. При затухании основной горелки подается сигнал на отключение газа. Устройство установлено в современных водонагревателях с автоматической системой розжига.
  • Регулятор расхода воды — устанавливается в некоторых современных колонках с функцией модуляции пламени. Модуль контролирует сколько жидкости прошло через теплообменник. После достижения предельного количества отключает подачу воды.
  • Микровыключатель или микропереключатель — используется в автоматических колонках. Подключен к штоку водяного редуктора. Суть работы устройства в том, что при открытии крана ГВС в водяной мембране приходит в движение шток, подсоединенный к микровыключателю. На корпусе последнего находится клавиша, которую зажимает металлическая пластина. Шток водяного узла приходит в движение, отводит лапку микропереключателя, запускает продуцирование искры. После отключения ГВС клавиша обратно зажимается металлической пластиной. Принцип работы микропереключателя тесно связан с газовым клапаном и водяным редуктором.
  • Система защиты от перегрева воды — в конструкции присутствует термопредохранитель. При плохой тяге и нарушениях, допущенных во время монтажа, колонка будет выдавать запредельные показатели нагрева жидкости. При достижении пограничных значений термопредохранитель будет отключать бойлер, чтобы защитить теплообменник и предотвратить утечку угарного газа.
  • Датчик тяги — установлен на отводящем патрубке дымовой трубы. Принцип действия схожий с другими регуляторами водонагревателя. При слабой циркуляции воздушных потоков или опрокидывания обратной тяги, моментально блокируется подача газа на горелку.


Система безопасности предназначена защитить потребителя от возникновения аварийных ситуаций. Неисправность датчиков, основная причина сбоев в работе проточных газовых бойлеров. Приблизительно в 70% случаев если колонка отказывается работать, причина кроется в одном из модулей системы безопасности.

Отведение продуктов сгорания

Существует два варианта конструкции проточных бойлеров:

  • Дымоходный — продукты сгорания отводятся принудительным или естественным способом в специальный дымовой канал. В своем доме устанавливают дымоход из одностенной нержавеющей или сэндвич трубы.
  • Бездымоходный — используется для водонагревателей с закрытой камерой сгорания и принудительным забором воздуха и отведения дыма.
    Для подключения используется вертикальная или горизонтальная коаксиальная труба.


{banner_downtext}

Читайте также:
Дымоход для газовой колонки — гофрированные и стальные воздуховоды

Подключение трубы дымоудаления осуществляется в соответствии с рекомендациями производителя, описанными в инструкции по эксплуатации. Монтаж выполняется с строгим соблюдением следующих норм:

Понимание того как работает проточный водонагреватель существенно облегчает и увеличивает комфорт эксплуатации.

Устройство газовой колонки — схемы, причины поломок и Видео руководство по ремонту

Несмотря на широчайший ассортимент на рынке отопительных электроприборов, газовая колонка по-прежнему остается одним из самых популярных средств обогрева дома и обеспечения его горячей водой. Это достаточно экономичный вариант, поскольку позволяет обеспечить одновременно несколько водосборных точек в доме. Еще одним преимуществом газовых колонок можно считать то, что они позволяют использовать горячую воду, практически не лимитировано,  без каких-либо ограничений.

Содержание статьи:

Основные элементы

Устройство газовой колонки выглядит примерно следующим образом.

  • Регулятор водного расхода.
  • Соединение с дымоходом.
  • Контроль мощности.
  • Теплообменник.
  • Водный узел.
  • Колпак для вытяжки.
  • Переключатель.
  • Задняя панель.
  • Газовый клапан, состоящий из мембран.
  • Зажигание.
  • Газовый узел.

Возможно вас так же заинтересует статья про газовые котлы отопления, подробнее о них читайте тут

К газовой колонке подводятся две трубы. Первая из них предназначена для подачи газа, вторая – для подачи холодной воды. Кроме того, снизу размещена пара горелок, одна вспомогательная, одна основная.

Важно! Устройство газовой колонки может быть разным, в зависимости от способа розжига – он (розжиг) может быть электронным, ручным и с помощью пьезоэлемента.

Как работает газовая колонка

Такие приборы предназначаются для обеспечения горячей водой бытовых и промышленных объектов. Суть их работы достаточно проста: холодная вода из трубопровода попадает в теплообменник колонки, где прогревается горелками (они размещены под теплообменником). Как известно, огонь нуждается в кислороде, поэтому чтобы горелки не затухали колонка подключается к вентиляционной системе дома/квартиры. Отработанный же газ устраняется путем специального дымохода, который совмещается исключительно с газовой колонкой.

О том на что следует обращать внимание при выборе водонагревателя читайте тут

Все описанные разновидности колонок несколько по-разному функционируют.

Так, если включения устройства происходит вручную, то есть, газ приходится поджигать спичками, горелка будет зажигаться от того, что вы повернете вентиль подачи топлива. Хотя стоит отметить, что подобные конструкции уже давным-давно устарели. Современные конструкции оборудуются либо электронным розжигом, либо пьезоэлементом.

Новые модели активируются одним нажатием кнопки, располагающейся на фронтальной панели устройства.

Пьезоразжиг создает искру, поджигающую запальник. В дальнейшем же все происходит в автоматическом режиме – открывается кран, зажигается колонка, начинает поступать горячая вода.

Если же газовая колонка разжигается электронным способом, то она, пожалуй, является самым надежным и долговечным устройством. Система включается посредством пары батареек, подающих необходимый для образования искры заряд. Никаких кнопок, никаких спичек, единственное, что нужно сделать для включения – это открыть кран. В большинстве случаев батарейки служат очень долго, так как энергия для заряда минимальна.

Как расчитать расход газа на отопление дома — читайте тут

Причины неполадок и ремонт своими руками

Использование газовых колонок, впрочем, как и любого другого оборудования, сопровождается неполадками, частыми или редкими. При этом есть такие неисправности, устранять которые могут лишь специалисты, имеющие для того необходимые знания и допуск. Но есть и такие, которые вполне можно устранить своими руками, вот их мы и рассмотрим.

Видео — не исправность датчика

Видео — ремонт китайской газовой колонки

  1. Наиболее «популярным» типом поломки считается то, что она попросту не включается. Если розжиг у нее электронного типа, то вы можете легко решить подобную проблему – просто проверить батарейки и, если потребуется, поменять их на новые. Зачастую подобные неприятности настигают владельцев уже через год после приобретения, так как батарейки служат преимущественно столько.
  2. Также при использовании газового водонагревателя может случиться, что вода в ней не прогревается либо же прогревается, но недостаточно хорошо. Зачастую причиной таких проблем является водный узел, а точнее, его дефект. В итоге мембрана перестает реагировать на то, что в водопроводной системе изменяется давление.
    И если данная мембрана прекратит растягивание под напором воды, то, как следствие, газовый клапан не откроется, или же откроется, но не полностью. Для решения этой проблемы вы должны хоть в общих чертах знать устройство газовой колонки, потому что дефект может быть нескольких типов.
    1. Если скопились солевые отложения.
    2. Если система засорилась.
    3. Если образовались трещины и прочее.

    Для устранения такой неполадки вы должны, прежде всего, отсоединить колонку от газоснабжения, затем произвести чистку водонапорного блока и проверку мембраны.

  3. Если же внутренние элементы прибора покрылись сажей или грязью, то это тоже может привести к выходу из строя. Дабы решить такую проблему, вы должны снять наружный корпус устройства, затем прочистить каждый из элементов, используя для этого пылесос.
  4. Следующим признаком того, что газовая колонка перестала работать правильно, может быть затухание горелки сразу же после включения. Это случается из-за того, что засоряется канал вентиляции. Современные модели газовых колонок оборудуются на такой случай специальными датчиками, которые сообщат владельцу, если тяга будет отсутствовать. После этого немедленно следует отключить подачу газа. Далее должен проверяться дымоход. Для этого демонтируется заглушка и удаляется все, что накопилось там.

Важно! Проверить тягу дымохода можно старым «дедовским» способом: поднести к нему зажженную спичку. Если огонь на спичке будет отклоняться в направлении дымохода, значит, с ним все в порядке. Если же этого не произошло, то он нуждается в полной чистке.

Именно по этой причине газовую колонку следует обследовать ежегодно – лишь так она будет работать правильно.

Советуем так же ознакомится с основными требованиями

Особенности эксплуатации

Газовые водонагреватели современности отличаются малогабаритностью и компактностью, благодаря чему их можно размещать практически в любом удобном месте. Их срок эксплуатации зависит во многом от того, насколько правильно их устанавливать и использовать в будущем.

Как известно, устройство газовой колонки таково, что работать ей приходится с достаточно опасным топливом. По этой причине во время монтажа позаботьтесь о том, чтобы, не дай бог, не случилось утечки газа. Если вы не можете по той или иной причине позаботиться об этом, или, того хуже, не можете устранить все места утечки, то дальнейшая эксплуатация превратится в опасное занятие, которое рано или поздно может привести к взрыву.

По этой причине устанавливать газовую колонку своими руками категорически не рекомендуется. Лучше, чтобы этим занялись профессионалы, обладающие всеми необходимыми навыками, опытом, а также соответствующим оборудованием.

Итак, для монтажа необходимо наличие следующих инструментов:

  1. дюбеля;
  2. фильтр на магните и на соли;
  3. дрель;
  4. необходимое количество кранов;
  5. трубопровод;
  6. дымоходная гофра;
  7. труба для газа;
  8. вентиль Маевского;
  9. собственно, сама колонка.

Устанавливается прибор только на кухне и только на стене, которая изготовлена из огнеупорного материала. Расстояние от колонки до поверхности стены должно составлять минимум 2 сантиметра, если получится больше, то это даже лучше. Сюда же следует заложить асбестовый лист, который должен иметь толщину минимум 0,3 сантиметра.

Важно! В квартире/доме обязательно должен наличествовать дымоход, который будет отводить продукты сжигания газа. Он будет состоять не только из вертикальных, но и из горизонтальных участков, и на них он должен идти под уклоном (приблизительно по 0,2 сантиметра на каждый погонный метр).

Дабы трубопровод случайно не прорвало, газовая колонка должна устанавливаться лишь в том случае, когда вода полностью слита из системы.

Но монтаж, как мы уже говорили, не самое главное. Важно также, чтобы прибор правильно эксплуатировался, для чего следует соблюдать определенные правила эксплуатации. Если же не делать этого, то даже самая дорогая и высококачественная модель в скором времени сломается. Итак, мы хотим предотвратить это. Во-первых, мы не должны подогревать воду до температуры, которая превышала бы 60 градусов. Дело в том, что чересчур высокая температура приведет к тому, что на стенках теплообменника будет образовываться соляная накипь. Как результат – более частая чистка или, того хуже, замена теплообменника.

Помимо того, навредить конструкции теплообменника мы можем и использованием чересчур жесткой воды. Во избежание этого следует смягчать воду, используя для того специальные средства, либо же устанавливать в систему специальный фильтр.

Наконец, не рекомендуется демонтировать и прочищать газовую колонку своими руками, потому что, мы уже говорили об этом, такой процедурой должны заниматься профессионалы. Делать же это собственноручно крайне опасно.

Правильный выбор газовых колонок

Если вы решили приобрести себе устройство газовой колонки, то обратите внимание, прежде всего, на мощность выбранной вами модели. Она должна быть достаточно для того, чтобы обеспечить всех членов вашей семьи горячей водой. Мощность практически всех современных моделей вписывается в диапазон от 3 до 60 киловатт.

Важно! Чем мощнее газовая колонка, тем больший объем воды она сумеет подогреть в течение определенного промежутка времени.

Среднестатистическая «ячейка общества», состоящая из четырех человек, нуждается в устройстве, мощность которого составляет в среднем 16-24 киловатт. Ее более чем достаточно для того, чтобы была вымыта посуда и каждый сумел принять душ. Даже если прибор будет иметь малую мощность в 16 киловатт, то он сумеет дать 10 литров горячей воды, чего хватит для того, чтобы можно было одновременно мыться и мыть посуду. Конечно, если можете, то купите колонку с мощностью в 24 киловатта, так как она сможет обеспечить 24 литра прогретой воды.

Помимо того, желательно учесть и температуру воды, которую можете обеспечить конкретная модель. Для ее обозначения используют латинские буквы DT. К примеру, если в теплообменник вода уже будет поступать с температурой в 12 градусов, то в нем она нагреется до 24 . следовательно, ею можно будет пользоваться даже без предварительного разбавления.

Сегодня существуют такие модели, которые способны нагревать воду даже до 50 градусов. Их мощность, равно как и стоимость, на порядок выше обычных моделей. По этой причине если к системе одновременно подключено сразу несколько элементов сантехники, то колонку лучше приобретать более мощную, чтобы она смогла обеспечить их всех горячей водой одновременно.

Также, покупая газовую колонку, посмотрите, оборудована ли она датчиками безопасности. Они бывают следующих типов:

  • перегревания;
  • затухания горелки;
  • горения;
  • пониженного давления;
  • температуры;
  • внезапного прекращения водоснабжения.

И помните: газовые колонки разрешается устанавливать исключительно на кухне! Установка газовой колонки в ванной запрещается! Разве что она (ванная) соответствует всем существующим требованиям.

В качестве заключения

Итак, мы разобрали, что представляет собой газовая колонка, в чем ее особенности, какие неисправности могут возникнуть при эксплуатации и как их потом чинить. Отметим лишь, что подобные устройства – крайне экономичны, особенно в свете все возрастающих коммунальных тарифов. И последнее: не забывайте о том, что ежегодно должна проводиться профилактика работоспособности колонки.

Принцип работы газовой колонки — устройство нагревателя, обслуживание и ремонт

Здесь вы узнаете:

Прежде чем приступить к рассмотрению конструкции колонки, стоит отметить, что современные аппараты для нужд ГВС бывают двух видов:

  • с открытой камерой сгорания;
  • турбированные, с закрытой камерой сгорания.

Данные виды нагревателей имеют конструктивные отличия, какие – мы обозначим в процессе изучения. Итак, традиционный водонагреватель представляет собой подвешиваемый к стене агрегат, к которому присоединяются патрубки для газа и воды. Ниже на рисунке показано устройство колонки:

1 – датчик наличия тяги в дымоходе; 2 – датчик температуры; 3 – горелка; 4 – регулятор температуры; 5 – патрубок подключения газа; 6 – патрубок присоединения дымохода; 7 – диффузор; 8 – теплообменник; 9 – газовый клапан; 10 – регулятор протока; 11 – патрубки подключения воды.

Поскольку на рисунке затруднительно показать все детали и элементы, то перечислим наиболее важные из них, не попавшие в перечень:

  • водяной узел;
  • система розжига;
  • датчик наличия пламени;
  •  запальник;
  • предохранительный сбросной клапан.

Турбированная газовая колонка отличается закрытой конструкцией камеры сгорания, воздух в нее нагнетается вентилятором. Как правило, в подобных агрегатах устанавливается горелка с плавным регулированием пламени (модуляционная). Управление прибором осуществляет электронный блок, получающий сигналы от датчиков. Ниже показана структурная схема газовой колонки с закрытой камерой сгорания:

Виды горелок

Производители выпускают несколько классов колонок, отличающихся по типу горелочного устройства и камеры сгорания:

  • Атмосферные колонки — присутствует открытая камера сгорания. Воздух на горелку забирается посредством естественной циркуляции, напрямую из помещения. Бойлер энергонезависим. Главное достоинство: низкая стоимость.
  • Турбированные колонки — в конструкции расположена камера сгорания закрытого типа. Воздух поступает принудительным способом, под давлением, нагнетаемый вентилятором (турбиной). В турбоколонках присутствует функция модуляции пламени. Температура пламени поддерживается в автоматическом режиме, что позволяет приспосабливаться к давлению воды в водопроводе.
    Главное достоинство турбированных колонок: низкий расход газа (меньше, чем у атмосферных бойлеров на 15-20%), а также возможность работать при низком давлении воды. Турбоколонки подключаются к коаксиальному или классическому дымоходу.

На устройство горелки влияет тип используемого газа. Большинство проточных колонок предназначены для работы на метане. После смены форсунок на горелке и замены жиклеров на запальнике (для полуавтоматических моделей), появляется возможность использования бойлера под пропан.

Производительность газовых горелок варьируется от 17-26 кВт. В современной колонке КПД достигает 85-90%.

Устройство водяного узла колонки

Устройство водяного узла представляет особый интерес. Его структуру можно увидеть на схеме внизу, подписи к деталям — под схемой. Остальные обозначенные элементы служат для креплений.


Конструктивные элементы ремкомплекта водяного узла газовой колонки марки “Нева”: 1) мембрана силиконовая Д 54 мм; 2) сальник штуцера подвода холодной воды 19х14х2,5 мм; 3) сальник сливного клапана 10х6х2 мм; 4) сальник регулятора расхода воды 14,5х9,5х2,5 мм – 2 шт; 5) сальник уплотнения штока резьба М 12 х 1 5,34х1,78х1,78 мм – 2 шт; 6) сальник уплотнения втулки штока М 12 х 1 14х11х1,5 мм; 7) сальник винта регулятора подмембранного давления 6,4х2,6х1,9 мм; 8) сальник винта регулятора протока воды 7хх3,2х1,9 мм; 9.) сальник соединения водяного и газового узлов 27,5х23,5х2 мм; 10) сальник соединения водгазового узла с горелкой 18х13х2,5 мм; 11) сальник датчика температуры воды 10х6х2 мм

Основные рабочие детали это шток и диафрагма, под действием которой он движется когда в нижней части начинается проток воды.  Шток открывает клапан и пропускает газ в горелку, который затем поджигается.

Ещё один рабочий элемент — шарик из ПВХ, служащий предохранителем. Он перекрывает ток газа при резких перепадах давления в водопроводных трубах — гидравлических ударах, о которых мы также ещё поговорим.

Тип камеры сгорания

По устройству камер сгорания бывают газовые колонки двух типов: с открытой и с закрытой.

Колонки с открытой камерой сгорания имеют открытый доступ воздуха к горелке, а продукты сгорания уходят в вытяжку.

Такие модели более простые, чем турбированные, о которых речь пойдёт ниже, их работа практически бесшумная и в большинстве случаев они не требуют электричества. Однако из-за открытой связи между камерой сгорания и помещением возможно загрязнение воздуха в помещении при плохой работе вытяжки.

Колонки с закрытой камерой сгорания являются турбированными. Камера сгорания в них герметичная, помимо каналов для нагнетания и выхода воздуха. Нагнетается он туда вентилятором через коаксиальные трубы и выходит на улицу через дымоход, вместе с продуктами сгорания.

Такие колонки обычно полностью автоматизированы, в них отсутствуют элементы ручного управления, а датчики тяги и температуры в них более чувствительные. Эти колонки “современные” и более безопасные.

На иллюстрациях выше была изображена газовая колонка именно с закрытой камерой сгорания. Для сравнения, на следующей иллюстрации можно увидеть устройство колонок двух типов рядом. Вы найдёте у них много схожих элементов, но принцип удаления продуктов горения заметно отличается.


Сравнение камер сгорания в колонках. Слева изображена камера сгорания колонки открытого типа. Справа – газовая колонка с камерой сгорания закрытого типа, где воздух нагнетается внутрь камеры с помощью вентилятора

Принцип работы

Чтобы понять принцип работы газовой колонки, нужно вначале рассмотреть, какой системой безопасности она оснащена.  Когда агрегат пребывает в выключенном состоянии, электричества управляющий блок (16) не получает, так как цепь разорвана в микровыключателе (15). Пластина выключателя прижимается толкателем, и, пока это происходит, он находится в отключенном состоянии.

Электромагнитный клапан (19) также закрыт и перекрывает подачу газа от входного патрубка, поскольку на него не поступает питание. Но это не единственное место, перекрывающее газ — он еще перекрывается с помощью пружинного клапана, который располагается в газовом модуле (35). Нерабочее состояние клапана характеризуется прижатием прокладки тарелки к седлу, что обеспечивает полное перекрытие подачи горючей смеси к коллектору.

Водяная секция состоит из двухкамерного модуля (36), в просторечии называемого “лягушкой”, с эластичной мембраной из резины. С помощью специального канала камеры “лягушки” могут сообщаться. Когда подача воды отключена, давление в камерах выравнено, и мембрана находится в положении равновесия.

Принцип работы колонки газовой

Вода к теплообменнику подается через нижнюю часть камеры. Наверху установлен шток с тарелкой, изготовленной из пластика, которая прилегает к мембране. Шток выходит наружу через отверстие в середине, по направлению к блоку газа. Напротив данного штока, в газовом модуле, находится такой же, но соединенный с пружинным клапаном, к которому прикреплен толкатель, идущий от выключателя.

Что происходит при пуске воды

Как работает газовая колонка, если отрыть воду? При открывании на точке потребления (водозабора) крана с водой, происходит следующее.

  1. При прохождении потока жидкости через “лягушку”, в ее камере создается разрежение. Резиновая мембрана под действием повышенного давления выгибается и выталкивает тарелку. Последняя передает толкающее движение на шток. Шток водяного модуля толкает расположенный напротив шток газового модуля (37).
  2. Далее толкатель, имеющий связь со штоком, больше не держит пластину выключателя, и она отпускается. При этом выключатель замыкает цепь, и электропитание начинает поступать в электронный управляющий модуль из секции с батарейками.
  3. Движение штока также заставляет отжаться пружину механического клапана, вследствие чего тарелка отходит от седла, и канал подачи газа к коллектору становится открытым.
  4. Электромагнитный клапан, получив питание от батареек, открывается и не препятствует прохождению газа через пружинный клапан по направлению к коллектору.
  5. Тем временем блок управления вырабатывает и направляет в свечу (23) электрический импульс для создания искрового разряда, способного разжечь пламя. При штатном срабатывании всех узлов — горелка загорается.

Процесс розжига контролируется датчиком ионизации (24). В случае, когда горелка не загорается в течение 6-7 секунд, то, чтобы избежать накопления высокой концентрации взрывоопасной смеси, электронный модуль, не получив импульса от датчика, перекроет подачу газа. При наличии горения, датчик сформирует импульс на отключение свечи зажигания. Если после начала работы водонагревателя пламя погаснет, то и импульс от датчика перестанет приходить в модуль управления, после чего он незамедлительно отреагирует на это перекрытием газа с помощью электромагнитного клапана.

Выполнение всех этих функций в газовой колонке Нева возможно только при соблюдении одного условия: цепь между двумя датчиками не должна быть разорвана, а именно — между температурным датчиком контроля воды на выходе (29) и датчиком тяги (32). Эти реле соединены последовательно, и их контакты находятся в замкнутом состоянии, когда датчики находятся в рабочем состоянии. Поэтому, чтобы на управляющий модуль поступало питание, оба датчика должны замыкать цепь.

Если в дымоотводном блоке образуется слабая тяга, то продукты сгорания, благодаря особой конструкции газоотводящего блока, не могут пройти по направлению к центральному каналу, и направляются в боковые полости. Поскольку слева располагается температурный датчик, он «обнаружит» внезапный подъем температуры, разорвав цепь подачи питания на управляющий модуль. Это приведет к остановке подачи горючей смеси и отключению горелок.

По аналогии срабатывает и реле, которое размещено на патрубке для отвода нагретой воды из теплообменника. Когда вода нагреется до 90°С, а это считается критическим уровнем, то цепь питания электронного блока будет разорвана.

Работа при выключении воды

Когда подача воды отключается, происходит следующее.

  1. Происходит уравновешивание давления в камерах «лягушки». Возвращение мембраны из резины на место вызывает движение тарелки, подсоединенной к толкателю в соответствующем направлении до начального положения.
  2. При возвращении штока освобождается тарельчатый клапан, надежно перекрывающий подачу горючего.
  3. В это же время толкатель начинает прижим пластины выключателя, вследствие чего происходит разрыв цепи, питающей модуль управления.
  4. Поскольку электромагнитный клапан после отключения управляющего блока не получает электричества, то он также закрывается.

Таким образом, отключение воды вызывает запуск цепочки процессов, которые в автоматическом режиме выключают водонагревательный аппарат. Для наглядности на фото ниже показаны основные узлы агрегата (вид снизу), влияющие на его работу (нумерация сохранена и добавлена новая позиция, под номером 40 – толкатель микровыключателя).

Основные узлы колонки газовой

Информационный дисплей (38) также подключен к электронной схеме управления водонагревателем и температурным датчиком (39) на выходном патрубке с помощью нескольких проводов. Дисплей играет только информационную роль и не участвует в работе и настройке газового водонагревателя.

Агрегат способен работать и при отключенном ЖК дисплее, например, после снятия внешнего кожуха, на котором он закреплен.

Подводя итог вышесказанному, можно сказать, что газовая колонка является достаточно сложным и надежным при эксплуатации аппаратом. За многие годы существования данных агрегатов, их конструкция изменилась ненамного, разве что для более удобного управления в аппаратах стали использоваться электронные узлы управления и контроля.

Основные характеристики колонок

А теперь поговорим об аспектах практического использования колонки. Одна из основных характеристик — производительность. Она прямо соотносится с мощностью, которая указывается в кВт и показывает объём воды, нагреваемый за минуту на 25 °C.

Характеристики обычно указываются в паспорте устройства. Обычная колонка греет за минуту 10-20 литров воды на 25 °C, хотя эта величина может значительно колебаться.

Ещё одна характеристика современных колонок — модуляция мощности. Она показывает, как может меняться мощность колонки в зависимости от потока воды и измеряется в процентах от начальной мощности.

Для модуляции колонки оборудуются специальной арматурой с мембраной, которая меняет подачу газа на горелку в зависимости от протока. Нормальной считается модуляция в диапазоне 40-100% мощности прибора.


На схеме изображена модулирующая арматура и принцип её работы, который похож на работу водяного узла и его мембраны

Датчики безопасности

Газовая колонка может быть опасной, ведь она связана одновременно с водной и газовой магистралями, каждая из которых и по отдельности может представлять угрозу.

При проблемах с подачей газа или воды, датчики безопасности отключают работу колонки, а специальные клапаны перекроют подачу воды или газа.

Обычно газовые колонки выдерживают напряжение до 10-12 бар, что в 20-50 раз выше, чем обычное давление в трубах. Такие резкие скачки возможны при так называемых гидравлических ударах.

Но если давление ниже, чем 0.1-0.2 бар, то колонка не сможет работать. Нужно внимательно изучить инструкцию и характеристики перед покупкой, чтобы понять, оптимизирована ли колонка под низкое давление воды в трубах стран СНГ и будет ли исправно работать. И наоборот — будет ли она выдерживать резкие перепады давления, что тоже, увы, не редкость в наших условиях.


Схема зажигания горелки, работающей на электрической искре. Места расположения основных датчиков безопасности бытовой газовой колонки

Вообще, современная газовая колонка содержит много датчиков безопасности. Все они, в случае поломки, могут быть заменены.

Подробнее о назначении и месте расположения датчиков — в таблице ниже.

Название датчика Место расположения и назначение датчика
Датчик тяги дымохода Расположен в верхней части устройства, связывающей колонку с дымоходом. Отключает колонку при отсутствии тяги в дымоходе
Газовый клапан  Находится в патрубке для подачи газа. Отключает колонку при падении давления газа
Датчик ионизации Находится в камере устройства. Отключает устройство, если пламя гаснет при включенном газе.
Датчик пламени Находится в камере устройства. Перекрывает газ, если пламя не появляется после поджига
Клапан сброса Находится на патрубке подачи воды. Отключает воду при повышенном давлении в трубопроводе
Датчик потока Отключит колонку, если прекратит литься вода из крана или если отключится водоснабжение
Датчик температуры Расположен на трубах теплообменника. Заблокирует работу горелки при значительном перегреве воды, чтобы избежать повреждений и ожогов (в основном срабатывает при +85ºС и выше)
Датчик пониженного давления Не даст колонке включиться при пониженном давлении воды в трубах.

Включение прибора

Первым этапом является установление элементов питания. Для этого откройте отсек для батареек и установите их, соблюдая полярность. Затем нужно открыть вентиль холодной воды и газовый. Откройте на ближайшем из смесителей кран с горячей жидкостью.

В момент, когда жидкость протекает через водяной узел, происходит искровое возгорание и, благодаря этому, зажигается горелка. Если включение происходит впервые или после длительного простоя, в газовой магистрали  возможно скопление воздуха, для того, чтобы его удалить, понадобится несколько раз открывать смеситель с удержанием на минуту, а затем закрывать.

Если  загорание горелки происходит, нужно повернуть рычаг регулировки водяного напора (расположена справа) вправо, это даст возможность включить устройство Vektor JSD 20, когда понизилось давление жидкости в системе.

Розжиг старой газовой колонки

Устройства с ручным поджигом считаются устаревшими. В аппаратах старого образца предусмотрено постоянное горение фитиля и отключение ручным способом.
Розжиг старой газовой колонки осуществляется при помощи зажжённой спички, либо пьезорозжига.

Хотя конструкционно они мало отличаются от современных колонок, у них имеются определённые особенности, связанные с нагревом:

  • Чтобы пламя горело стабильно, помещение с колонкой должно иметь хорошую вентиляцию и регулярный приток воздуха;
  • Из-за отсутствия автоматизации, нужно самостоятельно проверять наличие тяги;
  • Есть способ проверки на наличие утечки газа у старых колонок: нужно смазать соединения газового вентиля мылом (появление пузырьков означает утечку).

Рекомендации по обслуживанию и ремонту

Все элементы конструкции колонки в силу разных факторов подвержены разрушению. Любое газовое оборудование нуждается в регулярном обслуживании. Если во время профилактических работ были выявлены дефекты, они должны быть максимально быстро устранены. Безусловно, часть ремонтных работ стоит доверить профессионалом, но некоторые могут быть выполнены самостоятельно.

Демонтаж и настройка редуктора

Предварительно требуется отключить подачу топлива и воды. Только после этого можно приступать к проведению профилактических или ремонтных работ. Чтобы снять редуктор, необходимо выполнить несколько действий:

  • с теплообменника сливается вода;
  • с помощью разводного ключа от колонки отсоединяются трубопроводы газа и воды;
  • если на предыдущих этапах не было допущено ошибок, то редуктор легко демонтируется.


В зависимости от модели агрегата в его конструкцию могут быть внесены изменения. Чтобы не возникло проблем во время демонтажа водного редуктора, необходимо предварительно отсоединить все трубы и детали, затрудняющие выполнение работы. Корпус должен сниматься легко, физических усилий для этого прикладывать не нужно.

Для настройки редуктора необходимо использовать специальные болты, располагающиеся с тыльной стороны узла. Чаще всего агрегат уже подготовлен к работе на заводе и в дополнительной настройке не нуждается. Нежелательно проводить регулировку узла без острой необходимости.

Чистка водяного узла

Это мероприятие следует проводить минимум один раз в течение 12 календарных месяцев. Откручивая крепежные болты, расположенные на крышке узла, необходимо проявить осторожность, чтобы не повредить фальцы. Когда крышка будет снята, требуется не только прочистить внутреннее пространство редуктора, но и выполнить следующие процедуры:

  1. Должны быть удалены все твердые остатки со дна детали, а также нужно промыть фильтр грубой очистки воды.
  2. Шток желательно смазать солидолом или касторовым маслом.
  3. Если возникли подозрения, что прокладка утратила прежнюю эластичность, ее также необходимо смазать.

При регулярном проведении технического обслуживания агрегата можно значительно увеличить срок его эксплуатации. Чаще всего из строя выходят уплотнитель штока и мембрана. Первый элемент необходимо менять один раз в 3 года, а второй — после появления разрывов либо микротрещин. Кроме этого, при интенсивной работе может поломаться пружина возврата штока в первоначальное положение.

Внимательно изучив устройство и принцип действия газовой колонки, все профилактические мероприятия можно выполнять самостоятельно. Если же уверенности в собственных силах нет, то стоит обратиться за помощью к профессионалам. Во время работы с агрегатом требуется строго следовать инструкции.


Запчасти для газовых колонок — из чего состоит

Здесь вы узнаете:

Самостоятельный ремонт газового оборудования позволит сэкономить деньги в собственном кошельке. Ту же газовую колонку (проточный водонагреватель) можно отремонтировать своими руками, без помощи мастера. Запчасти для газовых колонок покупаются в интернет-магазинах, заказываются в специализированных сервисах – в этом тоже нет ничего сложного. Осталось разобраться, из чего состоит газовая колонка?

Здесь мы можем выделить несколько основных узлов:

  • Теплообменник;
  • Газовая горелка;
  • Система запала;
  • Система контроля тяги;
  • Система контроля газа;
  • Блок управления;
  • Дымоход.

В современных газовых колонках присутствуют и некоторые другие узлы – закрытые камеры сгорания, вентиляторы отвода продуктов сгорания, модулирующие горелки и электронные узлы. Для начала мы обсудим запчасти для газовых колонок Нева – это самые простые колонки, поэтому на их основе очень удобно изучать устройство данного оборудования. А в конце рассмотрим модули, встречающиеся в колонках с закрытыми камерами сгорания.

Теплообменники

Теплообменник для газовой колонки изготовленный из меди.

Любой магазин запчастей для газовых колонок знает, что теплообменник является самой востребованной запчастью. Данный узел предназначен для нагрева воды за счет передачи тепла от горелки. Теплообменник работает в напряженном режиме, он постоянно нагревается и остывает, а изнутри его портит самая обычная накипь. Неудивительно, что со временем он выходит из строя – появляются микротрещины и небольшие отверстия. Износившийся теплообменник требует замены, так как он перестает греть воду и постоянно угрожает залить полы и соседей.

Теплообменники для газовой колонки изготавливают из стали или меди. Стальные модели отличаются небольшим сроком службы и невысокой стоимостью. Медные теплообменники служат заметно дольше, хорошо поддаются ремонту, но цены на них достаточно высокие. Конструктивно все модели представляют собой небольшую радиаторную решетку с проходящими внутри трубками – по ним протекает подогреваемая вода. Под теплообменниками, в камере сгорания, располагается мощная горелка, обеспечивающая нагрев.

Таким образом, теплообменник является сердцем любой газовой колонки Нева (как и любой другой). И от его исправности зависит очень многое, в том числе и возможность достижения заданной температуры нагрева воды.

Газовая горелка

Газовая горелка одна из самых надежных деталей, встречающихся в газовой колонке.

Рассматривая запчасти для газовых колонок Нева, нельзя пройти мимо такого важного узла, как газовая горелка. Она отвечает за горение газа и нагрев протекающей через колонку воды. Горелки изготавливаются из прочной стали, обладающей свойством выдерживать циклические температурные нагрузки. Они являются часть газовых узлов и входят в состав камер сгорания. Контроль их работоспособности осуществляется с помощью смотровых окошек (в некоторых моделях они отсутствуют).

Газовые горелки выходят из строя достаточно редко. Например, все в тех же колонках Нева чаще всего ломаются теплообменники, подвергающиеся воздействию температурных нагрузок. Что касается горелок, то потеря их работоспособности чаще всего связана с засорением. Ремонт сводится к их тщательной прочистке. Возникновению засоров способствует образование окалины и сажи – все это засоряет отверстия, через которые горелка выпускает газ.

Система запала

Газовые колонки оснащаются одной из трех систем розжига:

  • Электрический розжиг;
  • Пьезоэлектрический розжиг;
  • Гидродинамический розжиг.

Если в колонке используется электрический розжиг, то в ее конструкции мы найдем запальный электрод, находящийся вблизи горелки – он дает искру, которая и поджигает газ. Также в системе присутствует электронный блок розжига, вырабатывающий высокое напряжение для образования искры. Здесь же мы можем видеть блок батареек, от которых питается электронный блок розжига. Постоянно горящий запальник отсутствует – это большой плюс.

Пьезоэлектрический розжиг состоит из кнопки запуска, термоэлемента, пьезоэлемента и газового запальника. Включив подачу газа и нажав на кнопку, мы зажигаем запальник. Кнопка включения удерживается нажатой в течение 10-15 секунд, пока запальник прогреет термоэлемент – далее кнопку можно отпустить. Открытие крана вызовет подачу газа в газовую горелку, которая запустится от горящего запальника. Плюсом данного розжига является полное отсутствие электроники, минусом – дополнительный расход газа на запал.

В некоторых старых моделях газовых колонок присутствуют запальники, но отсутствуют какие-либо системы розжига – сам запальник поджигается обыкновенной спичкой. Сегодня такие колонки не производятся.

Гидродинамический розжиг для работы использует электрический генератор, который подает электрический ток разной силы, в зависимости от напора воды.

Гидродинамический розжиг не требует батареек и не расходует газ. Он состоит из небольшого генератора, вращающегося под давлением воды, и электрической схемы, преобразующей энергию генератора для питания блока электрического розжига и системы контроля наличия газа. То есть, это небольшая бортовая электростанция. Минусом гидродинамического розжига является его сложность – чем больше деталей, тем меньше надежность.

Системы безопасности

Современные газовые колонки состоят из множества систем безопасности. К ним относятся:

  • Системы контроля тяги – состоит из датчика, находящегося вблизи дымохода. Если тяги нет, датчик запретит запуск колонки;
  • Системы контроля газа – здесь используются термоэлемент или ионизационный контроль пламени. Суть этих систем заключается в том, чтобы отключить подачу газа при потухании колонки. Для систем ионизационного контроля необходимо дополнительное питание, а термоэлемент производит механическое отключение колонки;
  • Защита от перегрева – если по каким-то причинам температура нагрева превысит критическое значение, сработает предохранительный клана.

Системами контроля газа оснащаются даже самые дешевые аппараты, а для более дорогих моделей характерно наличие многоступенчатых систем безопасности.

Блоки управления

Блоки управления могут быть электрическими или механическими. Если это простая колонка, то тут будет стоять простая «механика», обеспечивающая регулировку подачи газа и регулировку напора. В современных колонках устанавливаются электронные блоки, управляющие системами безопасности, вентиляторами принудительного удаления продуктов сгорания и модуляцией пламени. Даже в самых простых колонках все чаще встречаются жидкокристаллические дисплеи, на которых отображается температура нагрева.

В зависимости от модели, колонки оснащаются кнопками пьезоэлектрического розжига, индикаторами включения и ручками управления «зима-лето».

Дымоход

Так выглядит дымоход, выполненных из гофры. Кольцо имеет сугубо эстетическое значение.

Правильнее назвать эту запчасть для газовых колонок Нева отводом под дымоход. Он обеспечивает сбор продуктов сгорания, направляя их в дымоходную трубу через воздуховод – далее они отправляются на улицу посредством естественной тяги. В некоторых колонках здесь стоит вентилятор, используемый для принудительной подачи воздуха и удаления продуктов сгорания – так устроены колонки с закрытой камерой сгорания.

Газовый клапан

Данная деталь реагирует на давление воды и открывает подачу газа к газовой горелке. Ее основой является резиновая прокладка, управляющая газовым затвором. Если при открытии крана с горячей водой газовая колонка не зажигается, можно заподозрить в неисправности именно этот газовый клапан.

Модули в колонках с закрытой камерой сгорания

На этой схеме вы увидите основные модули газовой колонки с закрытой камерой сгорания, а также принцип ее работы.

Закрытая камера сгорания забирает воздух не из помещения, а с улицы, посредством специального вентилятора. Этот вентилятор не только нагнетает воздух, но и способствует принудительному удалению продуктов сгорания. Управляет им специальная электронная схема, которая регулирует обороты и модулирует пламя. Что касается модуляции пламени, то она позволяет стабилизировать температуру воды на выходе газовой колонки.

Так как колонки с закрытыми камерами сгорания наделены электронными блоками управления и вентиляторами, то для их работы необходимо подключение к электрической сети. Для этого в их конструкции предусмотрен блок питания, чаще всего располагающийся на системной плате.

Совместимость деталей

Покупая запчасти для газовых колонок Нева, вы можете рассчитывать на их совместимость. Во всяком случае, теплообменники здесь практически идентичные. Что касается других производителей, то они используют свои детали, поэтому на совместимость можно особо не рассчитывать. Лучше всего покупать запчасти, которые на 100% подходят к той или иной газовой колонке.

Зная устройство такой простой газовой колонки, как Нева, вы сможете разобраться и с другими колонками, в том числе и импортными. Все они построены по единому принципу, отличаясь только некоторыми деталями. Справившись с ремонтом самого простого аппарата, вы справитесь с ремонтом более сложной и дорогой газовой колонки.

как устроен и как работает газовый водонагреватель

Если в вашем доме нет ГВС или же вам постоянно отключают горячую воду, то жить становится совсем неуютно. Но это не повод отказываться от теплого душа прохладным осенним вечером, согласны? Решить эту проблему можно с помощью установки газовой колонки, как делают многие пользователи. Но как работает такой миниатюрный водонагреватель и сможет ли он справиться со своей задачей?

Обо всем этом мы детально поговорим в нашей публикации — здесь рассмотрен принцип работы газовой колонки, схемы ее устройства. А также акцентировано внимание на основных неисправностях оборудования и способах справится с ними. Изложенный материал дополнен наглядными иллюстрациями, схемами и видеороликами.

Содержание статьи:

Общее строение бытовой колонки

Газовая колонка — это . Это означает, что вода проходит сквозь неё и нагревается по ходу. Но, прежде чем перейти к разбору того, как устроена бытовая газовая колонка для нагрева воды, напомним, что ее монтаж и замена связаны с централизованной системой подачи газа.

Поэтому нужно обязательно подать документы в газовую службу вашего региона вместе с соответствующим заявлением. О можете прочитать в других наших статьях, а сейчас перейдем к устройству.

Различные модели газовых колонок разнятся между собой, но общее строение бытовой газовой колонки выглядит примерно следующим образом:

  • Газовая горелка.
  • Запальник/система розжига.
  • Вытяжка и соединение с дымоходом.
  • Патрубок дымохода.
  • Камера сгорания.
  • Вентилятор (в некоторых моделях).
  • Теплообменник.
  • Патрубок для подачи газа.
  • Водяной узел.
  • Патрубки для подвода воды.
  • Патрубок для вывода горячей воды.
  • Передняя панель с контроллером.

Центральный элемент колонки — газовая горелка, в которой поддерживается горение газа, что способствует нагреву воды. Горелка установлена в корпусе, в нем собираются раскаленные продукты сгорания, назначение которых — греть воду.

Корпус сделан из металла и полностью покрывает переднюю часть и бока колонки. Важно, чтобы материал корпуса хорошо проводил тепло, ведь качество нагревания зависит от пропускания им тепла.

Конструктивные составляющие газовой колонки, находящиеся внутри корпуса. Здесь изображено газовое оборудование закрытого типа

Сверху аппарата находится вытяжка и дымоход, через которые продукты сгорания покидают колонку и помещение. Их устройство зависит от того, открытого или закрытого типа колонка, что будет показано ниже.

Трубы змеевиком извиваются внутри корпуса, вода проходит по ним под естественным напором и согревается раскаленными газами. Вся эта система труб называется теплообменником. Снизу находятся два патрубка: справа – для приема холодной воды из трубопровода, с левой стороны вытекает горячая вода.

Между водонапорной сетью и газовой колонкой зачастую устанавливается фильтр, который регулирует жесткость воды. Без фильтра колонку может покрывать накипь при высокой температуре воды. При входе в колонку вода проходит через водяной узел, который служит своеобразной «связью» между потоком воды и потоком газа. Об этой связи мы поговорим чуть дальше.

Горящая газовая горелка с электрическим зажиганием и датчиком пламени. Датчики играют важную роль в функционировании оборудования. Об их функциях поговорим далее

С помощью ещё одной трубки, которая также находится снизу, колонка подключается к газовой магистрали.

Там же находится передняя панель с блоком управления. Она оснащена регуляторами для контроля траты газа и воды. В зависимости от модели, это могут быть как простые ручки, которые нужно крутить, так и жидкокристаллические дисплеи, где можно увидеть множество характеристик колонки, или даже характер её неисправности в случае, если колонка не работает.

Как действует газовая колонка?

Ознакомимся с принципом действия газовой колонки в форме простого алгоритма:

  • когда вода течет через водяной узел, напрягается мембрана и двигает вверх шток, соединенный с газовым клапаном;
  • далее клапан открывает подачу газа на основную горелку;
  • газ поджигается от электрода или запальника, сгорает и подогревает воду, которая течет по трубам теплообменника;
  • нагретый водный поток подается к крану через левый патрубок;
  • через дымоход или вытяжку выводятся продукты горения газа — здесь есть принципиальная разница между колонками открытого и закрытого типов, о чем подробно будет указано ниже.

При этом, мощность пламени и мощность потока воды через колонку можно регулировать с помощью регуляторов на передней панели.

А теперь рассмотрим подробнее, как происходит зажигание горелки и как с этим связан уже упомянутый водяной узел.

Конструктивные элементы  и принцип работы водяного узла. В просторечии его называют «лягушкой». На рисунке желтыми стрелочками показано направление движения газа, синими стрелочками – направление движения воды

Способ зажигания газа

Вообще, газовые колонки основываются на трёх способах зажигания газа. Как видно на схеме, во всех трёх случаях сигналом к зажиганию основной горелки служит реакция водяного узла (лягушки).

Вот три способа зажигания:

  • с помощью пьезоэлемента;
  • от батареек;
  • от вращения гидротурбины.

Зажигание с помощью пьезоэлемента – это ручное зажигание, и предполагает наличие кнопки на передней панели. Нажатие кнопки вызывает замыкание пьезоэлемента, который зажигает запальник. Он, в свою очередь, поджигает основную горелку после сигнала штока, который двигается водной мембраной при активном напоре воды.

Запальник продолжает гореть небольшим пламенем пока не будет выключен вручную. Это приводит к увеличенному расходу газа и повышенному образованию накипи в трубах. Одним из газовых проточных водонагревателей с ручным поджигом является Bosch Therm 4000 O W 10-2 P.

Схема газовой колонки с пьезорозжигом. На рисунке обозначены «внутренности» колонки – основные конструкционные узлы, находящиеся внутри корпуса, и кнопки/ручки, расположенные снаружи

Газовые колонки некоторых моделей работают на батарейках. При этом поджиг происходит от электрической искры после сигнала штока. Таким образом, вместо запальника здесь присутствуют электроды, которые напрямую зажигают основную газовую горелку.

Но в среднем раз в 10 месяцев, а при постоянном использовании — раз в 2 месяца, чтобы не было непредвиденных обстоятельств. Одной из таких колонок на батарейках является Zanussi GWH 10 Fonte Glass La Spezia.

Иногда розжиг происходит от вращения гидротурбины (при потоке воды). Зажигание происходит также от электрической искры, но батарейки менять не нужно, ведь турбина сама генерирует электричество в процессе протекания воды.

Но для срабатывания гидротурбины необходимо высокое давление в трубах, минимум в 0,3 бар. Далеко не в каждом доме есть такое . В России и других странах СНГ не советуют покупать такие колонки из-за нестабильного напора воды. Как пример такой модели — газовая колонка Bosch Therm 6000 O WRD 15-2 G, которая заметно дороже двух вышеуказанных моделей.

Устройство водяного узла колонки

Устройство водяного узла представляет особый интерес. Его структуру можно увидеть на схеме внизу, подписи к деталям — под схемой. Остальные обозначенные элементы служат для креплений.

Конструктивные элементы ремкомплекта водяного узла газовой колонки марки “Нева”: 1) мембрана силиконовая Д 54 мм; 2) сальник штуцера подвода холодной воды 19х14х2,5 мм; 3) сальник сливного клапана 10х6х2 мм; 4) сальник регулятора расхода воды 14,5х9,5х2,5 мм – 2 шт; 5) сальник уплотнения штока резьба М 12 х 1 5,34х1,78х1,78 мм – 2 шт; 6) сальник уплотнения втулки штока М 12 х 1 14х11х1,5 мм; 7) сальник винта регулятора подмембранного давления 6,4х2,6х1,9 мм; 8) сальник винта регулятора протока воды 7хх3,2х1,9 мм; 9.) сальник соединения водяного и газового узлов 27,5х23,5х2 мм; 10) сальник соединения водгазового узла с горелкой 18х13х2,5 мм; 11) сальник датчика температуры воды 10х6х2 мм

Основные рабочие детали это шток и диафрагма, под действием которой он движется когда в нижней части начинается проток воды. Шток открывает клапан и пропускает газ в горелку, который затем поджигается.

Ещё один рабочий элемент — шарик из ПВХ, служащий предохранителем. Он перекрывает ток газа при резких перепадах давления в водопроводных трубах — , о которых мы также ещё поговорим.

Тип камеры сгорания

По устройству камер сгорания бывают газовые колонки двух типов: с открытой и с закрытой.

Колонки с открытой камерой сгорания имеют открытый доступ воздуха к горелке, а продукты сгорания уходят в вытяжку.

Такие модели более простые, чем турбированные, о которых речь пойдёт ниже, их работа практически бесшумная и в большинстве случаев они не требуют электричества. Однако из-за открытой связи между камерой сгорания и помещением возможно загрязнение воздуха в помещении при плохой работе вытяжки.

Колонки с закрытой камерой сгорания являются турбированными. Камера сгорания в них герметичная, помимо каналов для нагнетания и выхода воздуха. Нагнетается он туда вентилятором через коаксиальные трубы и выходит на улицу через дымоход, вместе с продуктами сгорания.

Такие колонки обычно полностью автоматизированы, в них отсутствуют элементы ручного управления, а датчики тяги и температуры в них более чувствительные. Эти колонки “современные” и более безопасные.

На иллюстрациях выше была изображена газовая колонка именно с закрытой камерой сгорания. Для сравнения, на следующей иллюстрации можно увидеть устройство колонок двух типов рядом. Вы найдёте у них много схожих элементов, но принцип удаления продуктов горения заметно отличается.

Сравнение камер сгорания в колонках. Слева изображена камера сгорания колонки открытого типа. Справа – газовая колонка с камерой сгорания закрытого типа, где воздух нагнетается внутрь камеры с помощью вентилятора

Основные характеристики колонок

А теперь поговорим об аспектах практического использования колонки. Одна из основных характеристик — производительность. Она прямо соотносится с мощностью, которая указывается в кВт и показывает объём воды, нагреваемый за минуту на 25 °C.

Характеристики обычно указываются в паспорте устройства. Обычная колонка греет за минуту 10-20 литров воды на 25 °C, хотя эта величина может значительно колебаться.

Ещё одна характеристика современных колонок — модуляция мощности. Она показывает, как может меняться мощность колонки в зависимости от потока воды и измеряется в процентах от начальной мощности.

Для модуляции колонки оборудуются специальной арматурой с мембраной, которая меняет подачу газа на горелку в зависимости от протока. Нормальной считается модуляция в диапазоне 40-100% мощности прибора.

На схеме изображена модулирующая арматура и принцип её работы, который похож на работу водяного узла и его мембраны

Датчики безопасности и их значение

Газовая колонка может быть опасной, ведь она связана одновременно с водной и газовой магистралями, каждая из которых и по отдельности может представлять угрозу.

При проблемах с подачей газа или воды, датчики безопасности отключают работу колонки, а специальные клапаны перекроют подачу воды или газа.

Обычно газовые колонки выдерживают напряжение до 10-12 бар, что в 20-50 раз выше, чем обычное давление в трубах. Такие резкие скачки возможны при так называемых гидравлических ударах.

Но если давление ниже, чем 0.1-0.2 бар, то колонка не сможет работать. Нужно внимательно изучить инструкцию и характеристики перед покупкой, чтобы понять, оптимизирована ли колонка под низкое давление воды в трубах стран СНГ и будет ли исправно работать. И наоборот — будет ли она выдерживать резкие перепады давления, что тоже, увы, не редкость в наших условиях.

Схема зажигания горелки, работающей на электрической искре. Места расположения основных датчиков безопасности бытовой газовой колонки

Вообще, современная газовая колонка содержит много датчиков безопасности. Все они, в случае поломки, могут быть заменены.

Подробнее о назначении и месте расположения датчиков — в таблице ниже.

Название датчикаМесто расположения и назначение датчика
Датчик тяги дымоходаРасположен в верхней части устройства, связывающей колонку с дымоходом. Отключает колонку при отсутствии тяги в дымоходе
Газовый клапан Находится в патрубке для подачи газа. Отключает колонку при падении давления газа
Датчик ионизацииНаходится в камере устройства. Отключает устройство, если пламя гаснет при включенном газе.
Датчик пламениНаходится в камере устройства. Перекрывает газ, если пламя не появляется после поджига
Клапан сбросаНаходится на патрубке подачи воды. Отключает воду при повышенном давлении в трубопроводе
Датчик потокаОтключит колонку, если прекратит литься вода из крана или если отключится водоснабжение
Датчик температурыРасположен на трубах теплообменника. Заблокирует работу горелки при значительном перегреве воды, чтобы избежать повреждений и ожогов (в основном срабатывает при +85ºС и выше)
Датчик пониженного давленияНе даст колонке включиться при пониженном давлении воды в трубах.

Основные неполадки и способы их исправить

Говоря о строении и принципах действия бытовой газовой колонки, а также о датчиках, встроенных в неё, стоит вкратце упомянуть о возможных сбоях и неполадках. Здесь мы не будем останавливаться на полном ремонте или замене колонки, а быстро пройдёмся по всем элементам, перечисленным в описании горелки, и опишем их неполадки, а также способы справится с ними своими руками.

Как уже упоминалось, основной элемент колонки — газовая горелка. Зачастую горелка гаснет из-за срабатывания датчиков безопасности, о которых мы уже говорили. Частые проблемы, которые приводят к такому сценарию — это загрязнение теплообменника сажей и накипью.

Причина слабого напора — образование накипи в трубах теплообменника. В таком случае, нужно снять теплообменник, и промыть трубы специальными жидкостями для удаления накипи.

На этом фото изображен загрязненный теплообменник. В данном случае нужно его снять и вычистить сажу. Если колонка размещена недалеко от кухонной плиты, возможно также загрязнение теплообменника пищевыми жирами

Если сгорание газа происходит не полностью, или же колонка долго эксплуатируется, в камере накапливается сажа с внешней стороны, что значительно понижает теплопроводность и качество нагрева воды.

Чтобы больше узнать о причинах слабого напора и тонкостях выполнения чистки, переходите, пожалуйста, по .

Если газовый клапан не открывается из-за слабого напора подаваемой воды, нужно извлечь фильтр, проверить насколько он забит и в случае необходимости – промыть. Если же недостаточный напор воды или газа, придется обращаться в соответствующую государственную службу.

Если протекает вода непосредственно из колонки, это значит, что нарушена герметичность в трубах. Необходимо разобрать их и заменить уплотнительные элементы. В случае необходимости, придется заменить сами трубы.

Отдельно стоит напомнить о . Если колонка находится в эксплуатации долгое время, мембрана водяного узла изнашивается и её чувствительность значительно падает. Она перестаёт реагировать на низкое давление воды, и, соответственно, не даёт сигнала о том, что нужно зажечь горелку. В лучшем случае, ее следует менять раз в 5-6 лет.

Когда мембрана износилась, можно приобрести ремонтный комплект и выполнить замену своими силами. Водяной узел состоит из таких основных элементов, как резиновая мембрана, крышка, корпус и пластиковая тарелка с пружиной

Иногда проблема также в штоке, который двигается мембраной, его тоже можно заменить при необходимости, ведь существуют специальные ремонтные комплекты для этого.

Чтобы лучше разобраться с устройством своей модели газовой колонки, нужно внимательно изучить инструкцию к использованию и паспорт объекта. Это не только сэкономит ваше время и нервы, но и само по себе улучшит понимание того, как работает данный прибор.

Выводы и полезное видео по теме

Для закрепления понимания структуры газовой колонки можете посмотреть видеообзор, где подробно объясняется расположение всех элементов колонки на живом примере:

В этом материале мы изучили устройство бытовой газовой колонки, принцип её действия. Затем рассмотрели работу основных элементов. А зная основные узлы и элементы газового оборудования, датчики его системы безопасности, можно своими силами диагностировать поломку. А если причина неисправности будет заключаться в загрязнении отдельных элементов конструкции, то и выполнить газовой колонки.

Хотите дополнить изложенный выше материал полезными рекомендациями или задать вопросы, которые мы не затронули здесь? Спрашивайте совет у наших экспертов и других посетителей сайте – форма обратной связи расположена ниже.

Многоколоночный газовый хроматограф

— Инструментальные средства

Увеличение времени анализа хроматографа с помощью многоколоночного газового хроматографа

«Ахиллесова пята» хроматографии — это необычайно длительное время, необходимое для выполнения анализа по сравнению со многими другими аналитическими методами. Время цикла, измеряемое в минутах, не является чем-то необычным для хроматографов, даже для непрерывных хроматографов «в режиме реального времени», используемых в контурах управления промышленными процессами! (Примечание 1).Основной принцип хроматографии заключается в разделении химических веществ (различных газовых компонентов в пробе) с использованием времени, поэтому определенное время простоя измерения неизбежно. Однако мертвое время в любом измерительном приборе — нежелательное качество. Время простоя в контуре управления с обратной связью особенно плохо, потому что его большое количество вызовет автоколебание контура.

Примечание 1: лабораторным хроматографам может потребоваться еще больше времени для завершения анализа по сравнению с онлайновыми ГХ.

Один из способов уменьшить мертвое время хроматографа — изменить некоторые из его рабочих параметров во время цикла анализа таким образом, чтобы он ускорял продвижение подвижной фазы в периоды времени, когда медленность элюирования не так важна для тонкое разделение компонентов (разные газовые компоненты в пробе).Скорость потока подвижной фазы может быть изменена, температура колонны может увеличиваться или уменьшаться, и даже различные колонки могут быть переключены на поток подвижной фазы. В хроматографии мы называем это изменение параметров в режиме онлайн программированием.

Программирование температуры — это особенно популярная функция хроматографов технологических газов, поскольку температура напрямую влияет на вязкость текущего газа (Примечание 2). Тщательное изменение рабочей температуры колонки для ГХ во время промывки образца — отличный способ оптимизировать свойства разделения и задержки времени в колонке, эффективно реализуя высокие разделительные свойства длинной колонки с уменьшенным мертвым временем гораздо более короткого столбец:

Примечание 2: В то время как вязкость большинства жидкостей уменьшается при повышении температуры, вязкость газов увеличивается по мере их нагрева.Другими словами, при нагревании газ становится «гуще», что замедляет его прохождение через колонку хроматографа. Поскольку режим потока через колонку хроматографа определенно ламинарный, а не турбулентный, вязкость имеет большое влияние на скорость потока.

Примечание. Здесь для простоты объяснения мы обсуждаем двухколоночный газовый хроматограф. В промышленности у нас есть большее количество колонок в газовом хроматографе.

Также прочтите: Как работает пробоотборный клапан ГХ?

Еще один способ сократить время анализа хроматографа — сконструировать его с несколькими колонками и несколькими переключающими клапанами, синхронизируя клапаны так, чтобы только самые быстрые частицы проходили через все колонки, в то время как более медленные частицы обходили более поздние стадии колонки, чтобы выйти через детектор первый.Альтернативой является принудительное элюирование всех веществ через все колонки (или через одну длинную колонку), что означает, что минимальное время цикла будет определяться наиболее медленными видами, присутствующими в образце.

Если снова использовать аналогию с марафоном, это все равно, что ждать, пока последний бегун пересечет финишную черту, прежде чем мы сможем начать новую гонку, чтобы бросить вызов более быстрым бегунам. Если, однако, мы остановим гонку на полпути, чтобы доставить медленных бегунов к финишу (потому что мы уже знаем, что они медленные и никогда не выиграют гонку), мы все равно можем позволить самым быстрым бегунам соревноваться всю дистанцию, чтобы определить, кто из них они самые быстрые и, таким образом, завершают гонку раньше, чтобы мы могли перейти к следующей гонке:

Последовательность для одного типа двухколоночного газового хроматографа начинается с того, что пробоотборный клапан вводит точное количество пробы в первую колонку.На этой иллюстрации образец состоит из 6 видов, обозначенных от 1 до 6 в порядке их скорости элюирования через колонки:

На следующем этапе шесть видов элюируются через столбец 1, причем виды с 1 по 3 попадают во второй столбец, а виды с 4 по 6 все еще находятся в столбце 1:

В этот момент двухсторонний клапан переключается в режим байпаса, улавливая более быстрые частицы (с 1 по 3) внутри колонки 2, позволяя более медленным частицам (с 4 по 6) время покинуть колонку 1 и пройти через детектор. :

На последнем этапе двухколоночный клапан переключается обратно в свой нормальный режим, позволяя веществам с 1 по 3 элюировать через колонку 2 и проходить через детектор:

Переключение клапана с двумя колонками по времени с нормального режима на байпас и обратно в нормальное состояние снова позволяет самым медленным веществам пропустить вторую колонку, в то время как самые быстрые частицы должны элюироваться через обе колонки для максимального разделения.Такое переключение двух колонок значительно сокращает общее время удерживания образца без ущерба для разделения наиболее быстрых компонентов / компонентов газа (примечание).

Примечание: поскольку степень разделения между видами примерно пропорциональна времени удерживания видов, самые медленные частицы (4, 5 и 6 в данном случае) не нуждаются в прохождении через две колонки для адекватного разделения. Это только самые быстрые виды, которым требуется больше времени удерживания (через дополнительную колонку) для адекватного отделения друг от друга.

Следует отметить несколько важных моментов в отношении многоколоночных хроматографов. Во-первых, пример, показанный на предыдущих диаграммах, не является единственным типом многоколоночного хроматографа. «Улавливание» серии пробных соединений внутри колонки — не единственный способ получить разные соединения с разными путями колонки для более быстрого разделения. В некоторых многоколоночных хроматографах, например, используются клапаны «обратной промывки» для обратного потока через одну или несколько колонок, чтобы избежать элюирования самых медленных частиц по всей длине этих колонок.Этот метод используется в приложениях, где разделение между соединениями в «медленной» группе не важно, поскольку обратная промывка имеет тенденцию обращать вспять любое разделение, которое имело место в колонке ранее.

Следующим моментом, касающимся многоколоночных хроматографов, является то, что синхронизация клапана двух колонок должна быть точно установлена ​​в соответствии с известными временами удерживания различных веществ в разных колонках. В примере ГХ, показанном ранее, это означает, что времена удерживания переходных веществ (в данном случае 3 и 4) через первую колонку должны быть точно известны, поэтому двухколоночный клапан можно переключить в байпасный режим после того, как компонент 3 покинет первый столбец, но до того, как вид 4 выйдет из первого столбца.Время удерживания самых медленных частиц (6) также должно быть точно известно, чтобы двухколонный клапан не переключился обратно в нормальный режим слишком рано и не направил любой из этих веществ во вторую колонку, где потребуется гораздо больше времени для выхода. система.

Последний момент, касающийся многоколоночных хроматографов, заключается в том, что порядок прохождения видов через детектор не будет от самого быстрого к медленному, как в одноколоночных хроматографах. В двухколонном ГХ, показанном ранее, более медленная группа выйдет первой в порядке скорости (4, 5, 6), затем самая быстрая группа выйдет последней в порядке скорости (1, 2, 3).

См. Также: Анимация работы GC

Пределы концентрации взрыва и воспламеняемости

Диапазон воспламеняемости (также называемый взрывоопасным диапазоном) — это диапазон концентраций газа или пара, который загорится (или взорвется) при появлении источника возгорания.

Для взрыва должны быть выполнены три основных требования:

  1. легковоспламеняющееся вещество — топливо
  2. окислитель — кислород или воздух
  3. источник воспламенения — искра или высокая температура

Смесь находится ниже взрывоопасного или легковоспламеняющегося вещества. слишком бедная, чтобы гореть, и выше верхнего предела взрывоопасности или воспламеняемости смесь слишком богатая, чтобы гореть.Пределы обычно называют «нижним пределом взрывоопасности или воспламеняемости» (LEL / LFL) и «верхним пределом взрывоопасности или воспламеняемости» (UEL / UFL).

Нижний и верхний пределы взрывоопасной концентрации для некоторых обычно используемых газов указаны в таблице ниже. Некоторые газы обычно используются в качестве топлива в процессах сгорания.

Примечание! Указанные пределы указаны для газа и воздуха при 20 o C и атмосферном давлении.


0

1,7
10 10 10 9010

9

901 901 901 9010 15,4
01,2

0 10 10 4,4

90 9

9010 9010
Топливный газ «Нижний предел взрывоопасности или воспламеняемости»
(LEL / LFL)
(% по объему воздуха)
«Верхний предел взрывоопасности или воспламеняемости»
(UEL / UFL)
( % к объему воздуха)
Ацетальдегид 4 60
Уксусная кислота 4 19.9
Ацетон 2,6 12,8
Ацетонитрил 3 16
Ацетилхлорид 7,3 9010 9010 9010 9010 9010 9010 9010 Акролеин 2,8 31
Акриловая кислота 2,4 8
Акрилонитрил 3.0 17
Аллилхлорид 2,9 11,1
Аллиловый спирт 2,5 18
Алилламин 2,2 22
Анилин 1,3 11
Арсин 5,1 78
Бензол 1.2 7,8
Бифенил 0,6 5,8
Бромбутан (1-бромбутан) 2,6 6,6
9010 9010 901 9010 9010 9010 9010 9 9010 9010 9 9010 901 15
Бутадиен (1,3-бутадиен) 2,0 12
Бутанал 1,9 12,5
Бутан (н-бутан) 1 86 8,41
Бутановая кислота 2 10
Бутилацетат 1,7 7,6
Бутиловый спирт, бутанол 11 1 8,2
Бутилметилкетон 1 8
Бутиламин 1,7 9,8
Бутилбензол 0.5 5,8
Бутилен 1,98 9,65
Бутилакрилат 1,9 9,9
Дисульфид углерода 9010 9010 9010 монокс 75
Оксисульфид углерода 12 29
Хлорбензол 1,3 9,6
Хлорэтан 3.8 15,4
Цианоген 6,0 42,6
Циклобутан 1,8 11,1
Циклогептан 1,1 1,1 1,1
Циклогексанол 1 9
Циклогексанон 1 9
Циклопропан 2.4 10,4
Дикан 0,8 5,4
Диацетоновый спирт 1,8 6,9
Диборан 0,810 1,1 Диборан 0,810
Дихлорэтан (1,1-дихлорэтан) 6 11
Дизельное топливо 0,6 7,5
Диэтаноламин 2 диэтаноламин 2 9 36
Диэтиламин 2 13
Диэтиловый эфир 1,9 48
Диизобутилкетон
Диметилсульфоксид 3 42
Эпихлоргидрин 4 21
Этан 3 12.4
Этилацетат 2 12
Этилакрилат 1,4 14
Этиловый спирт, этиловый спирт 3,3
Этилнитрит 4 50
Этилпропиловый эфир 1,7 9
Этилвиниловый эфир 1.7 28
Этиламин 3,5 14
Этилбензол 1,0 7,1
Этилциклобутан
Оксид этилена 3 100
Этиленгликоль 3 22
Фторэтен 2.6 21,7
Формальдегид 7 73
Муравьиная кислота 18 57
Мазут — № 1 0,7 2 14
Фурфурол 2 19
Бензин 1,4 7,6
Глицерин 3 .0 6,7
Гептан (н-Гептан) 1,0 6,0
Гексан 1,1 7,5
Гексан (н-гексан 905 9010 905 9010 901 Гидразин 5 100
Водород 4 75
Водород 6 40
Сероводород 4.3 46
Изобутанал 1,6 10,6
Изобутан 1,80 8,44
Изобутен
9010
9010 9 901 9010 901 9010 9 9010 9
Изооктан 0,79 5,94
Изопентан 1,32 9,16
Изофорон 1 4 1 4 1 4 Изопропилбензол 0.9 6,5
Керосиновая струя A-1 0,7 5
Мезитил оксид 1,4 7,2
Кислота метакриловая 1,6 1,6 16,4
Метиламин 4,9 20,7
Метилацетат 3 16
Метиловый спирт, метанол 6.7 36
Метилакрилат 2,8 25
Метилхлорид 10,7 17,4
Метилэтилкетон 1,8109 Метилэтилкетон 1,89 23
Метилгидразин 2,5 92
Метилизоцианат 5,3 26
Уайт-спирит 0.7 6,5
Нафталин 0,9 5,9
Нафталин 0,9 5,9
Неогексан 7,29 909 901 9010 9010 9010 9010 909 901 Неогексан 901
Нитробензол 2 9
Нитроэтан 3,4 17
Нитрометан 7.3 22,2
Нонан 0,8 2,9
Октан (н-октан) 1,0 7
Оксиран 100 73
Пентан (н-пентан) 1,4 7,8
Пентен (н-пентен) 1,65 7,7
110 9010 9 Пентилацетат1 7,5
Пентиламин 2,2 22
Фенол 1,8 8,6
Пиперидин 1 10 9010
Пропановая кислота 2,9 12,1
Пропен 2 11,1
Пропилацетат 2 8
Пропен 4
Пропилбензол 0,8 6
Нитрат пропила 2 100
Пропилен 2,0 11,1 2,0 11,1 Пропин 2,1 12,5
Пиридин 2 12
Силан 1.5 98
Стирол 1,1 6,1
Тетрафторэтилен 10 50
Тетрагидрофуран
9010
901 901
Трихлорэтилен 13 90
Триэтиленгликоль 0,9 9,2
Триптан 1.08 6,69
Триметиламин 2 11,6
Скипидар 0,8
Винилацетат 2,6
Винилхлорид 3,6 33
о-ксилол 0,9 6,7
м-ксилол 1.1 7
п-Ксилол 1,1 7

Важно, чтобы помещения, в которых хранятся горючие газы, хорошо вентилировались. При проектировании систем вентиляции учитывайте удельный вес газа. Газовая смесь от утечки не будет однородной, и более легкие газы будут концентрироваться вдоль потолка. Тяжелые газы скапливаются вдоль пола.

Вентиляция, естественная или механическая, должна быть достаточной для ограничения концентрации горючих газов или паров до максимального уровня 25% от их «нижнего предела взрывоопасности или воспламеняемости» (НПВ / НПВ).

  • Минимальная необходимая вентиляция: 1 куб. Фут / фут 2 (20 м 3 / час 2 )
  • Рекомендуемая вентиляция: 2 куб. Фут / фут 2 (40 м 3 / hm 2 ) или 12 воздухообменов в час — половина подаваемого и выбрасываемого воздуха около потолка и половина подаваемого и выпускаемого воздуха около пола

Системы зажигания турбинного двигателя

Так как в основном используются системы зажигания турбин в течение короткого периода во время цикла запуска двигателя они, как правило, более безотказны, чем типичная система зажигания поршневого двигателя.Системе зажигания газотурбинного двигателя не требуется синхронизировать время срабатывания искры в точной точке рабочего цикла. Он используется для зажигания топлива в камере сгорания, а затем отключается. Другие режимы работы системы зажигания турбины, такие как непрерывное зажигание, которое используется при более низком уровне напряжения и энергии, используются для определенных условий полета.

Непрерывное зажигание используется в случае возгорания двигателя. Это зажигание может повторно зажечь топливо и не дать двигателю остановиться.Примерами критических режимов полета, в которых используется непрерывное зажигание, являются взлет, посадка, а также некоторые нештатные и аварийные ситуации.

Большинство газотурбинных двигателей оснащены высокоэнергетической системой зажигания конденсаторного типа и охлаждаются воздухом с помощью вентилятора. Воздух от вентилятора направляется в коробку возбудителя, а затем обтекает провод воспламенителя и окружает воспламенитель, прежде чем вернуться в область гондолы. Охлаждение важно, когда непрерывное зажигание используется в течение некоторого длительного периода времени. Газотурбинные двигатели могут быть оборудованы системой зажигания электронного типа, которая является разновидностью более простой системы емкостного типа.

Типичный газотурбинный двигатель оборудован системой зажигания конденсаторного типа или конденсаторного разряда, состоящей из двух идентичных независимых блоков зажигания, работающих от общего низковольтного (постоянного) источника электроэнергии: аккумуляторной батареи самолета, 115 переменного тока, или ее постоянного магнитный генератор. Генератор вращается непосредственно двигателем через дополнительную коробку передач и вырабатывает мощность каждый раз, когда двигатель вращается. Топливо в газотурбинных двигателях может легко воспламениться в идеальных атмосферных условиях, но, поскольку они часто работают при низких температурах на больших высотах, крайне важно, чтобы система была способна подавать искру высокой тепловой интенсивности.Таким образом, высокое напряжение подается на дугу через широкий искровой промежуток воспламенителя, обеспечивая высокую степень надежности системы зажигания в различных условиях высоты, атмосферного давления, температуры, испарения топлива и входного напряжения.

Типовая система зажигания включает два блока возбудителя, два трансформатора, два промежуточных провода зажигания и два провода высокого напряжения. Таким образом, в качестве фактора безопасности система зажигания фактически представляет собой двойную систему, предназначенную для зажигания двух свечей зажигания.[Рисунок 4-65] Рисунок 4-65. Компоненты системы зажигания турбины.

На рис. 4-66 представлена ​​функциональная принципиальная схема типичной системы зажигания конденсаторной турбины старого образца. Входное напряжение 24 В постоянного тока подается на входную розетку блока возбуждения. Прежде чем электрическая энергия достигнет блока возбудителя, она проходит через фильтр, который предотвращает попадание шумового напряжения в электрическую систему самолета. Низковольтная входная мощность приводится в действие двигателем постоянного тока, который приводит в действие один многолопастный кулачок и один одинарный кулачок.В то же время входная мощность подается на набор точек прерывания, которые приводятся в действие многолепестковым кулачком.

Рисунок 4-66. Схема системы зажигания конденсаторного типа. [Щелкните изображение, чтобы увеличить] Из точек прерывателя быстро прерываемый ток подается на автотрансформатор. Когда выключатель замыкается, ток через первичную обмотку трансформатора создает магнитное поле. Когда выключатель размыкается, ток прекращается, а исчезновение поля вызывает напряжение во вторичной обмотке трансформатора.Это напряжение заставляет импульс тока течь в накопительный конденсатор через выпрямитель, что ограничивает поток в одном направлении. При повторяющихся импульсах накопительный конденсатор принимает заряд до максимум 4 джоулей. (Примечание: 1 джоуль в секунду равен 1 ватту.) Накопительный конденсатор подключен к искровому воспламенителю через пусковой трансформатор и контактор, нормально разомкнутый.

Когда заряд на конденсаторе накапливается, контактор замыкается за счет механического воздействия однополюсного кулачка.Часть заряда проходит через первичную обмотку пускового трансформатора и подключенный к нему конденсатор. Этот ток индуцирует высокое напряжение во вторичной обмотке, которое ионизирует промежуток в искровом воспламенителе.

Когда искровой воспламенитель становится проводящим, накопительный конденсатор разряжает остаток своей накопленной энергии вместе с зарядом конденсатора последовательно с первичной обмоткой пускового трансформатора. Скорость искры в искровом воспламенителе изменяется пропорционально напряжению источника постоянного тока, которое влияет на частоту вращения двигателя.Однако, поскольку оба кулачка соединены с одним и тем же валом, накопительный конденсатор всегда накапливает запас энергии от одного и того же количества импульсов перед разрядом. Использование высокочастотного пускового трансформатора с вторичной обмоткой с низким сопротивлением позволяет свести к минимуму продолжительность разряда. Эта концентрация максимальной энергии за минимальное время обеспечивает оптимальную искру для воспламенения, способную взорвать отложения углерода и испарить шарики топлива.

Все высокое напряжение в цепях запуска полностью изолировано от первичных цепей.Возбудитель полностью герметичен, что защищает все компоненты от неблагоприятных условий эксплуатации, исключает возможность перекрытия на высоте из-за изменения давления. Это также обеспечивает защиту от утечки высокочастотного напряжения, мешающего радиоприему самолета.

Блок конденсаторного разрядного возбудителя

Эта система емкостного типа обеспечивает зажигание газотурбинных двигателей. Как и другие системы зажигания турбины, требуется только для запуска двигателя; после начала горения пламя остается непрерывным.[Рисунок 4-67] Рисунок 4-67. Возбудитель с воздушным охлаждением вентиляторный. [Щелкните изображение, чтобы увеличить] Энергия хранится в конденсаторах. Каждая разрядная цепь включает два накопительных конденсатора; оба расположены в блоке возбудителя. Напряжение на этих конденсаторах повышается трансформаторными блоками. В момент зажигания свечи зажигания сопротивление зазора уменьшается в достаточной степени, чтобы позволить большему конденсатору разрядиться через зазор. Разряд второго конденсатора происходит при низком напряжении, но очень высокой энергии.В результате образуется искра большой мощности, способная не только воспламенить аномальные топливные смеси, но и сжечь любые посторонние отложения на электродах свечи.

Возбудитель представляет собой сдвоенный блок, который производит искры на каждой из двух свечей воспламенителя. До запуска двигателя образуется непрерывная серия искр. Затем питание отключается, и свечи не загораются, пока двигатель работает, кроме как при постоянном зажигании для определенных условий полета. Вот почему возбудители имеют воздушное охлаждение для предотвращения перегрева при длительном использовании непрерывного зажигания.

Свечи зажигания

Свеча зажигания системы зажигания газотурбинного двигателя значительно отличается от свечи зажигания системы зажигания поршневого двигателя. [Рис. 4-68] Его электрод должен выдерживать ток намного большей энергии, чем электрод обычной свечи зажигания. Этот ток высокой энергии может быстро вызвать эрозию электрода, но короткие периоды работы сводят к минимуму этот аспект технического обслуживания воспламенителя. Зазор между электродами типичной свечи зажигания спроектирован намного больше, чем у свечи зажигания, поскольку рабочее давление намного ниже, а искра может образовывать дугу легче, чем в свече зажигания.Наконец, загрязнение электродов, обычное для свечей зажигания, сводится к минимуму за счет тепла искры высокой интенсивности.

Рисунок 4-68. Свечи зажигания.

На рис. 4-69 в разрезе показана типичная свеча воспламенителя с кольцевым зазором, которую иногда называют воспламенителем с большим вылетом, поскольку она слегка выступает во гильзу камеры сгорания, чтобы произвести более эффективную искру.

Рисунок 4-69. Типовая свеча запальника с кольцевым зазором.

Другой тип свечи зажигания, свеча с ограниченным зазором, используется в некоторых типах газотурбинных двигателей.[Рис. 4-70] Он работает при гораздо более низкой температуре, поскольку не выступает во гильзу камеры сгорания. Это возможно, потому что искра остается не вблизи свечи, а дуги за лицевую поверхность гильзы камеры сгорания.

Рисунок 4-70. Свеча запальника с ограниченным зазором.

Flight Mechanic рекомендует

Блок-схема — Узнайте о блок-схемах, см. Примеры

Что такое блок-схема?

Блок-схема — это специализированная блок-схема высокого уровня, используемая в инженерии.Он используется для разработки новых систем или для описания и улучшения существующих. Его структура обеспечивает общий обзор основных компонентов системы, ключевых участников процесса и важных рабочих отношений.

Типы и использование блок-схем

Блок-схема обеспечивает быстрое общее представление системы для быстрого определения точек интереса или проблемных мест. Из-за своей высокоуровневой перспективы он может не предлагать уровень детализации, необходимый для более всестороннего планирования или реализации.Блок-схема не покажет подробно каждый провод и переключатель, это работа принципиальной схемы.

Блок-схема особенно ориентирована на ввод и вывод системы. Его меньше волнует, что происходит при переходе от ввода к выводу. В инженерии этот принцип называют черным ящиком. Либо части, которые ведут нас от входа к выходу, неизвестны, либо они не важны.

Как создать блок-схему

Блок-схемы выполнены аналогично блок-схемам.Вы захотите создать блоки, часто представленные прямоугольными формами, которые представляют важные точки интереса в системе от ввода до вывода. Линии, соединяющие блоки, покажут взаимосвязь между этими компонентами.

В SmartDraw вы захотите начать с шаблона блок-схемы, в котором уже есть соответствующая библиотека фигур блок-схемы. Добавление, перемещение и удаление фигур выполняется всего несколькими нажатиями клавиш или перетаскиванием. Инструмент блок-диаграммы SmartDraw поможет построить вашу диаграмму автоматически.

Символы, используемые в блок-схемах

В блок-схемах используются очень простые геометрические формы: квадраты и круги. Основные части и функции представлены блоками, соединенными прямыми и сегментированными линиями, иллюстрирующими отношения.

Когда блок-схемы используются в электротехнике, стрелки, соединяющие компоненты, представляют направление потока сигнала через систему.

Все, что представляет какой-либо конкретный блок, должно быть написано внутри этого блока.

Блок-диаграмма также может быть нарисована более детально, если этого требует анализ. Не стесняйтесь добавлять столько деталей, сколько хотите, используя более конкретные символы электрических схем.

Блок-схема: лучшие практики

  • Определите систему. Определите систему, которую нужно проиллюстрировать. Определите компоненты, входы и выходы.
  • Создайте диаграмму и пометьте ее. Добавьте символ для каждого компонента системы, соединив их стрелками для обозначения потока.Кроме того, пометьте каждый блок, чтобы его было легко идентифицировать.
  • Укажите ввод и вывод. Отметьте вход, который активирует блок, и отметьте выход, который завершает блок.
  • Проверить точность. Проконсультируйтесь со всеми заинтересованными сторонами для проверки точности.

Примеры блок-схем

Лучший способ понять блок-схемы — это посмотреть на некоторые примеры блок-схем.

Щелкните любую из этих блок-схем, включенных в SmartDraw, и отредактируйте их:

Просмотрите всю коллекцию примеров и шаблонов блок-схем в SmartDraw

Процесс сгорания в двигателе с искровым зажиганием с системой двойного впрыска

1.Введение

В настоящее время впрыск является основным решением подачи топлива в двигателях с искровым зажиганием (SI). Системы впрыска топлива отличались разным местом подачи топлива в двигатель. Независимо от сложности системы управления, можно выделить следующие типы систем впрыска топлива:

  • впрыск перед дроссельной заслонкой, общий для всех цилиндров — называется впрыск дроссельной заслонки — TBI или одноточечный впрыск — SPI (Рисунок 1 a),

  • впрыск в отдельные впускные каналы каждого цилиндра — называется Port Fuel Injection — PFI или Multipoint Injection — MPI (Рисунок 1 b),

  • впрыск непосредственно в каждый цилиндр, с прямым впрыском, — DI (рис. 1 c).

Рисунок 1.

Системы впрыска топлива [1]: а) одноточечный впрыск, б) многоточечный впрыск, в) прямой впрыск; 1 — Подача топлива, 2 — Воздухозаборник, 3 — Дроссель, 4 — Впускной коллектор, 5 — Топливная форсунка (или форсунки), 6 — Двигатель

1.1. Историческая справка о применении систем впрыска топлива в двигателях SI

История применения впрыска топлива в двигателях с искровым зажиганием в качестве альтернативы ненадежным карбюраторам восходит к рубежу 19 и 20 веков.Первая попытка применения системы впрыска топлива для двигателя с искровым зажиганием была предпринята в 1898 году, когда компания Deutz использовала топливный насос ползункового типа в своем стационарном двигателе, работающем на керосине. Также систему подачи топлива первого самолета братьев Райт 1903 года можно узнать как простую, самотечную, систему впрыска бензина [2]. Внедрение форсунки Вентури в карбюратор в последующие годы и различные технологические и материальные проблемы привели к сокращению разработки систем впрыска топлива в двигателях с искровым зажиганием на два следующих десятилетия.Желание получить лучшее соотношение мощности и рабочего объема, чем значение, полученное с карбюратором, привело к возврату к концепции впрыска топлива. Это привело к тому, что первые двигатели с впрыском бензина использовались в качестве движущей силы транспортных средств перед Второй мировой войной и . В авиационной промышленности разработка систем непосредственного впрыска топлива происходила незадолго до и во время Второй мировой войны, и , в основном благодаря компании Bosch, которая с 1912 года проводила исследования в области топливного насоса.Первым в мире SI-двигателем с непосредственным впрыском считается силовой агрегат Junkers Jumo 210G, разработанный в середине 30-х годов прошлого века и использованный в 1937 году в одной из модификаций истребителя Messerschmitt Bf-109 [3].

После Второй мировой войны были предприняты попытки использовать впрыск топлива в двухтактные двигатели для уменьшения потерь топлива в процессе продувки цилиндров. Двухтактные двигатели с искровым зажиганием с механическим впрыском топлива в цилиндр применялись в немецких малолитражках Borgward Goliath GP700 и Gutbrod Superior 600, выпускавшихся в 50-х годах 20 века, но без особого успеха.Четырехтактный двигатель с непосредственным впрыском бензина был впервые применен в качестве стандартного в спортивном автомобиле Mercedes-Benz 300 SL в 1955 году [4]. Динамичное развитие автомобильной промышленности в последующие годы привело к тому, что проблема загрязнения окружающей среды автотранспортными средствами стала приоритетной. В сочетании с развитием электронных систем и снижением цен на них это привело к отказу от карбюратора как основного устройства в системе подачи топлива двигателя SI в пользу систем впрыска.Первоначально системы впрыска представляли собой упрощенные устройства на базе аналоговой электроники либо с механическим или механико-гидравлическим управлением. В последующие годы вошли в употребление более совершенные цифровые системы впрыска. В настоящее время система впрыска объединена с системой зажигания в одном устройстве, а также управляет вспомогательными системами, такими как изменение фаз газораспределения и рециркуляция выхлопных газов. Электронный блок управления двигателем объединен в сеть с другими модулями управления, такими как ABS, антипробуксовочная система и электронная программа стабилизации.Это необходимо для согласования работы вышеуказанных систем.

Последнее десятилетие 20-го века можно считать окончательным закатом карбюратора, устройства, которое около 100 лет доминировало в топливных системах для двигателей с искровым зажиганием. Также было прекращено производство топливных систем с непрерывным впрыском. Из-за последовательного введения все более строгих стандартов на выбросы выхлопных газов системы центрального впрыска пришлось уступить место многоточечным системам впрыска даже в самых маленьких двигателях транспортных средств.В конце 90-х на рынке снова появились автомобили с искровым зажиганием и непосредственным впрыском топлива. Это наиболее точный способ подачи топлива. Важное преимущество прямого впрыска состоит в том, что испарение топлива происходит только в объеме цилиндра, что приводит к охлаждению заряда и, как следствие, увеличению объемного КПД цилиндра [5]. В 1996 году японская компания Mitsubishi начала производство двигателя 4G93 GDI объемом 1,8 л для модели Carisma.Новый двигатель имел на 10% больше мощности и крутящего момента и на 20% меньший расход топлива по сравнению с ранее использовавшимся двигателем с системой многоточечного впрыска. На рис.2 представлено поперечное сечение цилиндра двигателя GDI с вертикальным впускным каналом и вид поршня с головкой с характерной чашей.

Рисунок 2.

Характерные особенности двигателя Mitsubishi GDI 4G93 [6]: а) поперечное сечение цилиндра с заметным движением всасываемого воздуха; б) Поршень с чашей в короне

В последующие годы и другие автомобильные концерны начали применять различные двигатели SI с непосредственным впрыском бензина.Здесь следует упомянуть двигатели D4 Toyota, FSI Volkswagen, HPi Peugeot — группа Citroën, SCi Ford, IDE Renault, CGi Daimler-Benz или JTS Alfa Romeo. Процесс образования однородной и слоистой смеси в двигателе FSI представлен на рисунке 3.

Рисунок 3.

Формирование слоистой и однородной смеси в двигателе FSI (Audi AG)

В 2005 году система впрыска D-4S был представлен Toyota Corporation. Эта система впрыска объединяет функции систем MPI и DI.Для него характерно наличие двух форсунок на каждый цилиндр двигателя. Внедрение такой сложной системы впрыска дает увеличение производительности двигателя и снижение расхода топлива по сравнению с двигателями с обоими типами подачи топлива: многоточечной системой и системой прямого впрыска.

1.2. Система двойного впрыска Toyota D-4S

В августе 2005 года Toyota внедрила инновационную систему впрыска топлива в атмосферный двигатель 2GR-FSE, используемый в спортивном седане Lexus IS350 [7].Этот двигатель отличается очень хорошими характеристиками, умеренным расходом топлива и очень низким уровнем выбросов выхлопных газов. На рынке США Lexus IS350 квалифицируется как автомобиль со сверхвысоким уровнем выбросов [8]. Особенностью двигателя 2GR-FSE является использование двух форсунок на каждый цилиндр. Один из них подает топливо в цилиндр, а второй подает его в соответствующий впускной канал. Расположение форсунок в двигателе показано на рисунке 4.

Рисунок 4.

Поперечное сечение головки блока цилиндров двигателя 2GR-FSE [9]: 1 — топливная форсунка, 2 — форсунка прямого действия

Доля топлива x DI , подаваемого непосредственно в камеру сгорания, во всей массе топлива зависит от частоты вращения и нагрузки двигателя.При частичной нагрузке масса топлива делится на две топливные системы таким образом, что не менее 30% топлива впрыскивается напрямую, что защищает форсунки прямого действия от перегрева.

На основании анализа процесса сгорания было установлено, что для частичной нагрузки двухточечный (на один цилиндр) впрыск топлива вызывает более благоприятное распределение соотношения воздух-топливо в объеме цилиндр, чем в случае, когда вся масса топлива впрыскивается во впускной трубопровод или непосредственно в цилиндр [10].Смесь более однородная. Только вокруг электродов свечи зажигания он немного обогащается по стехиометрическому составу, что сокращает период индукции и положительно влияет на процесс сгорания. На рисунке 5 показаны результаты измерений распространения фронта пламени в камере сгорания 21 ионизационным датчиком для непрямого впрыска (x DI = 0), прямого впрыска (x DI = 1) и 30% массы топлива. впрыскивается непосредственно в цилиндр (x DI = 0.3).

Рисунок 5.

Распространение фронта пламени для различных долей xDI массы топлива, впрыснутого в цилиндр

На Рисунке 6 график доли x DI массы топлива, впрыснутой непосредственно в цилиндр для была представлена ​​вся карта двигателя 2GR-FSE.

Рисунок 6.

Массовая доля топлива, впрыскиваемого непосредственно в цилиндр для двигателя 2GR-FSE

  • Двигатель работает во всем диапазоне скоростей только с непосредственным впрыском топлива при низкой нагрузке, то есть примерно до 0.28 МПа BMEP (среднее эффективное давление в тормозной системе) и для частоты вращения двигателя выше 2800 об / мин, независимо от нагрузки двигателя. Как было сказано выше, в остальной части карты топливо разделено между двумя системами впрыска: прямым и многоточечным.

Применение такой сложной системы впрыска топлива, помимо улучшения кривой крутящего момента, снижает расход топлива двигателем. Карта расхода топлива двигателя 2GR-FSE с отмеченной точкой на наименьшем удельном расходе топлива представлена ​​на рисунке 7.

Рисунок 7.

Карта расхода топлива 2GR-FSE

  • Анализируя рисунки 6 и 7, можно заметить, что область карты расхода топлива двигателя с наименьшим удельным расходом топлива, т.е. ≤ 230 г / кВтч, была получена с двойной впрыск топлива. Вышеуказанное значение удельного расхода топлива соответствует общему КПД двигателя, равному 0,356. На современном этапе развития двигателей внутреннего сгорания этот результат можно считать очень хорошим, тем более, что он был достигнут со стехиометрической смесью, без расслоения, характерного для двигателей, работающих на бедных смесях.Использование двух форсунок на цилиндр также позволило убрать дополнительную заслонку, закрывающую один из впускных каналов, используемых в системе Д-4 [11] для каждого цилиндра при работе двигателя на малых оборотах. Удаление заслонки также положительно сказывается на улучшении объемного КПД двигателя с системой двойного впрыска, особенно для более высоких оборотов при полностью открытой дроссельной заслонке.

Одним из компонентов системы D-4S, оказавших большое влияние на улучшение образования топливной смеси в цилиндре, был инжектор прямого впрыска топлива, образующий двойной веерообразный поток.Он был разработан специально для двигателя 2GR-FSE. Модификация формы форсунки для используемого двигателя 2GR-FSE имеет эффект повышения степени однородности смеси в цилиндре. Пример визуализации распределения воздушно-топливной смеси в поперечном сечении камеры сгорания, выполненной с помощью Star-CD v.3.150A-tool, был показан на рисунке 8.

Рисунок 8.

Сравнение формирования смесь с использованием обычного инжектора и второго, разработанного для системы D-4S

  • Распределение соотношения воздух-топливо в камере сгорания для смеси, образованной инжектором нового типа, намного более выгодно.В этом случае заряд цилиндра неоднороден только на границе камеры сгорания. Вблизи электродов свечи зажигания нет нежелательных изменений в составе смеси.

Форсунка прямого действия имеет форсунку в виде двух прямоугольных отверстий размером 0,52 х 0,13 мм. Он работает при давлении от 4 до 13 МПа. Расход топлива при давлении 12 МПа составляет 948 см 3 в минуту. С другой стороны, в системе непрямого впрыска использовались форсунки с 12 отверстиями.Форсунки непрямого действия работают при давлении 0,4 МПа. При этом давлении его расход топлива равен 295 см 3 в минуту.

Таким образом, проблема двигателей с искровым зажиганием и системой двойного впрыска топлива очень интересна и, что не менее важно, очень актуальна. Это происходит в первую очередь из-за возможности снижения выбросов CO 2 и токсичных выхлопных газов в атмосферу с использованием топливных систем с двойным впрыском. Как следствие, авторы поставили задачу определить влияние применения топливной системы двойного впрыска на параметры работы двигателя с гораздо меньшим рабочим объемом, чем в случае двигателей массового производства.

Целью исследования было оценить влияние распределения топлива в системе подачи с двойным впрыском на ее производительность и выбросы выхлопных газов в конкретных точках рабочего диапазона двигателя.

2. Объект исследования

  • В качестве объекта моделирования и экспериментальных исследований был выбран четырехтактный двигатель с искровым зажиганием типа 2SZ-FE производства Toyota для автомобиля Yaris. Основная часть проделанной работы — стендовые испытания.Имитационные исследования были также выполнены, чтобы понять явления, которые не могли быть определены в ходе экспериментальных исследований, например визуализация впрыска и сгорания или образования выбранных компонентов выхлопного газа. В таблице 1 приведены основные технические данные испытуемого двигателя.

61 Максимальный крутящий момент [Нм] при частоте вращения двигателя [об / мин]
Кол-во цилиндров четыре, рядные
Камера сгорания пятиклапанный тип, 4 клапана на цилиндр
Рабочий объем V ss [дм] 10 3 1.298
Диаметр цилиндра x ход [мм] 72,0 x 79,7
Степень сжатия 10,0
Максимальная выходная мощность [кВт] при частоте вращения двигателя [об / мин] 64, 6000
122, 4200

Таблица 1.

Основные технические данные двигателя 2SZ-FE

По сравнению с оригинальным двигателем, этот двигатель был значительно переработан.Топливные форсунки высокого давления устанавливались в головку блока цилиндров двигателя, чтобы обеспечить впрыск топлива в камеры сгорания каждого цилиндра. Реализованные форсунки производства Bosch использовались, в частности, в двигателях FSI Volkswagen с непосредственным впрыском бензина. Форсунки устанавливались под углом 68 градусов к вертикальной оси цилиндра, т.е. параллельно оси впускного канала в точке крепления впускного коллектора. Расположение форсунок системы прямой и косвенной подачи топлива представлено на рисунке 9.

Рисунок 9.

Расположение форсунок прямой и косвенной подачи топлива; 1 — Поршень, 2 — Выпускной канал, 3 — Свеча зажигания, 4 — Выпускной клапан, 5 — Впускной клапан, 6 — Непрямая форсунка, 7 — Впускной канал, 8 — Прямая форсунка

Двигатель был установлен на испытательном стенде и соединен с вихретоковым дино. Динамометрический стенд имеет электронную систему измерения и контроля, которую можно подключить к ПК для упрощения сбора данных. Для достижения поставленных целей оригинальный блок управления двигателем был заменен системой управления, которую можно программировать в реальном времени.Такая система имеет возможность управлять системой зажигания, системой впрыска и различными другими системами. Важной особенностью системы является возможность независимого управления временем и синхронизацией впрыска для двух комплектов форсунок и работа в замкнутом контуре с широкополосным датчиком кислорода типа LSU 4.2. Другим устройством, используемым для управления инжектором высокого давления, был пиковый и фиксирующий драйвер, работающий при напряжении около 100 В. Общий вид испытательного стенда представлен на рисунке 10.

Рисунок 10.

Общий вид испытательного стенда [12]; 1 — Двигатель, 2 — ПК, 3 — Программируемая система управления двигателем, 4 — Цифровой осциллограф, 5 — ПК с системой сбора данных, 6 — Привод дроссельной заслонки, 7 — Расход топлива счетчик 8 — газоанализатор, 9 — топливный насос высокого давления, 10 — вихретоковый дино

Схема системы подачи топлива показана на рисунке 11. Система прямого и многоточечного впрыска была разделена на схеме. Система непрямого впрыска была отмечена синим цветом, система прямого впрыска — красным, а элементы, общие для обеих систем, — зеленым.Массовый расход топлива в прямом и косвенном контуре системы впрыска измерялся гравиметрическим расходомером.

Рисунок 11.

Схема топливной системы; 1 — Топливный бак, 2 — Запорный клапан, 3 — Топливный фильтр, 4 — Подкачивающий насос DI, 5 — Электроклапаны для измерения расхода топлива в DI-контуре, 6 — Регулятор низкого давления DI-контура, 7 — Высокое давление насос, 8 — Регулятор высокого давления DI-контура, 9 — Двигатель, 10 — Прямая топливная форсунка, 11 — Распределительная рампа прямых топливных форсунок, 12 — Непрямая топливная форсунка, 13 — Впускная труба, 14 — Распределительная рампа косвенной подачи топлива. топливные форсунки, 15 — манометр DI, 16 — топливный насос MPI, 17 — регулятор давления MPI-контура, 18 — расходомер топлива

3.Экспериментальные исследования

В данной работе представлены результаты испытаний двигателя, в ходе которых было изменено распределение топлива между системой прямого впрыска и системой распределенного впрыска.

Для каждого испытания поддерживались постоянные моменты впрыска и зажигания, а также стехиометрический состав смеси. Время прямого впрыска было определено в предварительных испытаниях при 281 ° CA перед ВМТ, что означает прямой впрыск топлива во время такта впуска. Также при предварительных испытаниях двигателя давление прямого впрыска топлива было установлено на уровне 8 МПа.Время впрыска для обеих систем подачи топлива было отрегулировано таким образом, чтобы поддерживать стехиометрический состав смеси при различных значениях доли топлива, впрыскиваемого непосредственно в цилиндр x DI .

3.1. Влияние применения системы двойного впрыска на производительность и расход топлива

На основе результатов вышеупомянутых испытаний кривые крутящего момента T и удельного расхода топлива на тормоз BSFC в зависимости от доли топлива, впрыскиваемого непосредственно в цилиндр x DI .На рисунке 12 представлены аппроксимированные параболами кривые крутящего момента и удельного расхода топлива, полученные при открытии дроссельной заслонки 13% и частоте вращения двигателя 2000 об / мин.

Рис. 12.

Кривые крутящего момента и удельного расхода топлива в зависимости от доли топлива, впрыскиваемого непосредственно в цилиндр xDI, полученные для открытия дроссельной заслонки 13% и частоты вращения двигателя 2000 об / мин

Для случая, показанного в этом Из рисунка видно, что максимальный крутящий момент и минимальный удельный расход топлива были получены для доли топлива, впрыснутой непосредственно в цилиндр x DI , равной почти 0.4. Результаты, полученные с таким распределением топлива между системой прямого впрыска и системой впрыска в порт, показывают значительные различия, особенно по сравнению с результатами испытаний, полученными, когда все количество топлива впрыскивается непосредственно в цилиндр.

Кривые крутящего момента и удельного расхода топлива в зависимости от доли топлива, впрыскиваемого непосредственно в цилиндр x DI , полученные при 2000 об / мин и открытии дроссельной заслонки 20%, показаны на рисунке 13.

Рисунок 13.

Кривые крутящего момента и удельного расхода топлива в зависимости от доли топлива, впрыскиваемого непосредственно в цилиндр xDI, полученные для открытия дроссельной заслонки 20% и частоты вращения двигателя 2000 об / мин

  • Для открытия дроссельной заслонки, равного 20% и частота вращения двигателя 2000 об / мин. Наилучшие результаты по удельному расходу топлива и крутящему моменту наблюдались при соотношении топлива, впрыскиваемом непосредственно в цилиндр, равном 0,62. В описанном случае указанные рабочие параметры двигателя получили существенное улучшение по сравнению с ситуацией, когда все количество топлива впрыскивается во впускные каналы.

На рисунке 14 показаны графики общего КПД двигателя и относительного увеличения общего КПД двигателя Δη DI + MPI для режима двойного впрыска по отношению к работе с непрямым впрыском топлива, разработанные на основе результатов рисунков 12 и Рис. 13. Кривые, показанные на рис. 14, являются результатом параболической аппроксимации точек, полученных в результате расчетов.

Рисунок 14.

Общий КПД двигателя ηtot и относительное увеличение общего КПД двигателя ΔηDI + MPI для работы с двойным впрыском по сравнению с работой с непрямым впрыском топлива

Общий КПД двигателя определяется по формуле (1).Для расчета была принята теплотворная способность бензина W d = 44 000 кДж / кг [13].

ηtot = 3,6⋅106BSFC⋅WdE1

Максимальное увеличение общего КПД Δη DI + MPI , показанное на Рисунке 14, составило 4,58% для первого случая и 2,18% во второй контрольной точке. В первом случае наилучшая эффективность работы наблюдалась при доле топлива, впрыснутой непосредственно в цилиндр, равной 0,62. Во второй ситуации наибольшее улучшение общего КПД двигателя в отношении КПД, полученного при непрямом впрыске топлива, имело место, когда доля топлива, впрыскиваемого непосредственно в цилиндр, равна 0.39.

Анализ результатов показывает, что с помощью системы двойного впрыска можно улучшить крутящий момент, создаваемый двигателем, и, что еще более важно, снизить удельный расход топлива. Это означает повышение общей эффективности.

3.2. Состав выхлопных газов при работе с двойным впрыском

  • В ходе описанных выше испытаний двигателя с помощью газоанализатора Arcon Oliver K-4500 были измерены объемные концентрации отдельных компонентов выхлопных газов в выхлопном коллекторе. Концентрация оксида углерода CO, диоксида углерода Были исследованы CO 2 , оксид азота NO, несгоревшие углеводороды HC и дополнительно температура выхлопных газов t exh .Общая концентрация углеводородов в выхлопных УВ была преобразована газоанализатором в гексан.

На Рисунке 15, зарегистрированном на скорости 2000 об / мин и при открытии дроссельной заслонки 13%, показаны следы объемных концентраций вышеуказанных химикатов и температуры выхлопных газов в зависимости от доли топлива, впрыскиваемого непосредственно в цилиндр.

Рисунок 15.

Температура и объемные концентрации выбранных компонентов выхлопного газа, полученные при 2000 об / мин с открытием дроссельной заслонки 13%

  • Анализ Рисунка 15 показывает, что с увеличением доли топлива, впрыскиваемого непосредственно в В цилиндре концентрация окиси углерода и углеводородов немного увеличивается, а концентрации окиси азота и двуокиси углерода уменьшаются.Также немного снизилась температура газа, выходящего из цилиндров двигателя. Разница между концентрацией NO для впрыска только во впускной канал и только при непосредственном впрыске в цилиндр невелика и составляет примерно 170 ppm. Концентрация УВ для прямого впрыска при аналогичном сравнении увеличивается несколько больше, но не достигает особо высокого значения — примерно 290 ppm.

  • На следующем рисунке 16 показаны записанные при скорости 2000 об / мин и открытии дроссельной заслонки 20% -ные следы температуры и концентрации ранее упомянутых компонентов выхлопного газа.

Рисунок 16.

Графики температуры и концентрации выбранных компонентов выхлопа, полученные при оборотах двигателя 2000 об / мин и открытии дроссельной заслонки 20%

Характер изменения параметров, представленных на рисунке 16, существенно не отличается от наблюдаемых в предыдущем случае.

3.3. Влияние использования системы двойного впрыска на процесс сгорания

Во второй части экспериментальных исследований для частоты вращения двигателя 2000 об / мин, открытия дроссельной заслонки 20% и стехиометрического состава смеси были зарегистрированы формы волны указанного давления.Как и в ранее проведенных исследованиях в этих условиях, угол опережения зажигания составлял 14 ° CA перед ВМТ. Измеренное абсолютное давление во впускном коллекторе составило 0,079 МПа. Давление прямого впрыска было установлено на 8 МПа, а угол начала впрыска составлял 281 ° CA перед ВМТ. Доля топлива, впрыскиваемого непосредственно в цилиндр в режиме двойного впрыска, равнялась 0,62. Для такого значения был зафиксирован минимум удельного расхода топлива для данных условий.

Испытания проводились для определения различий в процессе сгорания в двигателе для непрямого впрыска топлива и для двойного впрыска с заданной долей топлива, впрыскиваемой непосредственно в цилиндр, что обеспечивает минимальный удельный расход топлива.Для этого использовались оптоэлектронный датчик давления Optrand C82255-SP, прикрепленный к специально подготовленной свече зажигания, и угловой инкрементальный энкодер Omron E6B-CWZ3E. Данные с обоих датчиков записывались с помощью портативного ПК с картой National Instruments DAQCard-6062, работающей с приложением, созданным в среде LabView.

Индикаторные диаграммы, полученные для работы только с непрямым впрыском и с использованием системы двойного впрыска, показаны на Рисунке 17.

Рисунок 17.

Сравнение закрытых индикаторных диаграмм для непрямого впрыска и для двойного впрыска с 62% топлива, впрыскиваемым непосредственно в цилиндр, частота вращения двигателя 2000 об / мин, открытие дроссельной заслонки 20%

Увеличенная площадь поверхности графика, отображающего положительную работу цикла двигателя. Пиковое давление сгорания достигло значения 4,23 МПа при 21 ° CA после ВМТ с непрямым впрыском и 4,60 МПа при 19,5 ° CA после ВМТ в режиме двойного впрыска.Таким образом, пиковое давление сгорания при двойном впрыске выше на 0,37 МПа по сравнению с результатом, полученным для впрыска только во впускные каналы. Для более точного определения различий, возникающих по ходу индикаторных диаграмм, указанное среднее эффективное давление IMEP было рассчитано на основе записанных данных, соответственно, для двух случаев. Применен метод численного интегрирования соответствующих участков графиков рисунка 17. Для обеспечения повышенной точности использовался метод трапеций.

Среднее эффективное давление торможения BMEP было определено по формуле (2) для обеих рассматриваемых топливных систем:

BMEP = π⋅τ⋅T500⋅VssE2

Однако на основе уравнения (3) можно было рассчитать тепловой КПД двигателя в обоих случаях:

ηтр = NiNc = 30⋅IMEP⋅Vss⋅nGe⋅WdE3

Результаты расчетов среднего эффективного давления в тормозах, теплового КПД двигателя и указанного среднего эффективного давления представлены в таблице 2.

xDI = 0 (MPI) xDI = 0.62 (MPI + DI) Увеличение от xDI = 0, [%]
BMEP [МПа] 0,745 0,769 3,22
IMEP1 [МПа] 0,955 2,585
Тепловой КПД η th [-] 0,395 0,410 3,797

Таблица 2.

Сравнение показателей работы двигателя при многоточечном впрыске топлива и с двойным впрыском топлива

Используя систему двойного впрыска около 2.Было достигнуто увеличение указанного среднего эффективного давления на 6% и увеличение теплового КПД примерно на 3,8% по сравнению с впрыском только в каналы впуска. Эти значения аналогичны значениям, полученным при соответствующем сравнении удельного расхода топлива для рассматриваемых условий работы двигателя. Исходя из этого, можно сделать вывод, что увеличение указанного среднего эффективного давления и теплового КПД показывает улучшенную эффективность сгорания смеси, приготовленной с помощью системы двойного впрыска.Этот факт можно объяснить тем, что моделирование усиливает турбулентность заряда, когда часть топлива впрыскивается непосредственно в цилиндр.

Последним показателем в этой части анализа индикаторных диаграмм является скорость подъема давления dp c / dα. Кривая этого параметра в зависимости от угла поворота коленчатого вала показана на рисунке 18 для ключевой части индикаторной диаграммы. Скорость повышения давления была принята в качестве основного индикатора возможности возникновения детонационного горения.

Рисунок 18.

Скорость повышения давления в зависимости от угла поворота коленчатого вала, полученная для обеих рассматриваемых топливных систем

  • Анализ результатов указывает на увеличение скорости повышения давления в случае двойного впрыска. топлива. Пиковая скорость повышения давления составила 0,181 МПа / ° СА для впрыска топлива во впускные каналы и 0,253 МПа / ° СА для двойного впрыска топлива. Увеличение скорости повышения давления не является благоприятным явлением, поскольку оно обеспечивает повышенную нагрузку на коленчатый вал, однако значение, полученное для системы двойного впрыска, не является высоким.Следует отметить, что возникновение детонации в двигателе с искровым зажиганием характеризуется возникновением пиковых скоростей повышения давления, обычно превышающих 0,5 МПа / ° CA [14].

Второй этап анализа диаграмм давления в цилиндрах, полученных для обеих топливных систем, был сфокусирован на выявлении процесса сгорания смеси. Применен метод анализа индикаторной диаграммы, позволяющий определить массовую долю сгоревшего (MFB) в цилиндре в зависимости от угла поворота коленчатого вала.Этот метод широко описан, среди прочего, в [15].

На рис. 19 показаны кривые массовой доли сгоревшего топлива в зависимости от угла поворота коленчатого вала, полученные для обеих топливных систем. На рисунке 26 линии ординат, соответствующие массовой доле сожженного в цилиндре 0,1 и 0,9, выделены жирным шрифтом. Указанные значения важны из-за процесса сгорания.

Рисунок 19.

Зависимость массовой доли сгоревшего заряда цилиндра от угла поворота коленчатого вала для MPI — подачи топлива и для двойного впрыска топлива (описание в тексте)

Значение угла распространения пламени равно определяется моментом, в течение которого массовая доля сгорания равна 10%, по формуле (4):

Угол быстрого горения Δα s определяется по формуле (5) как разница между углом 90% массовая доля сгоревшего — α 90% и угол сгорания 10%, массовая доля сгоревшего — α 10% .

  • Значения углов, характеризующих процесс сгорания, которые были указаны на рисунке 26, были приведены в таблице 3 соответственно для непрямого впрыска топлива и для двойного впрыска с 62% долей топлива, впрыснутой непосредственно в цилиндр.

225 10 9018 массовая доля сожженных
Угол Символ MPI [° CA] 62DI [° CA] Отличие от MPI [° CA]
1 Зажигание α ign 346 346 α 10% 363 362,5 -0,5
3 90% массовая доля сожженных α 90% 381022 922,410 901,4109
4 Распространение пламени Δα r 17 16,5 -0,5
5 Быстрое горение 910α22 с 2,4
6 Полное сгорание Δα o 38,3 35,4 -2,9

Таблица 3.

Значения углов, характеризующих процесс горения в случае

9 при двойном впрыске угол распространения пламени уменьшен с 17 до 16.5 ° CA, и, что более важно, угол быстрого горения уменьшился с 21,3 до 18,9 ° CA. Угол полного сгорания Δα o , который является суммой двух вышеупомянутых, достиг значений, соответственно, 38,3 ° CA при непрямом впрыске топлива и 35,4 ° CA при двойном впрыске топлива. Это дает уменьшение угла, под которым происходит наиболее важная часть процесса сгорания, на 2,9 ° CA, т.е. примерно на 7,6%. Это, несомненно, является причиной увеличения указанного среднего эффективного давления IMEP и теплового КПД η th , которые анализировались выше.Сгорание смеси за более короткое время приводит к меньшим тепловым потерям, возникающим в гильзе цилиндра, поскольку в этом случае часть гильзы цилиндра, контактирующая с горячим зарядом, имеет меньшую площадь поверхности.

На рисунке 20 показаны зависимости скорости сгорания заряда dMFB / dα от угла поворота коленчатого вала для двух топливных систем. Скорость сгорания заряда была получена путем дифференцирования массовой доли сгоревшего MFB, показанной на рисунке 19, в зависимости от угла поворота коленчатого вала.

Рисунок 20.

Скорость горения заряда dMFB / dα в зависимости от угла поворота кривошипа для обеих систем впрыска

Скорость горения заряда в большей части периода быстрого горения достигнута выше значения средних 0,54% массы сгоревшего заряда на 1 ° CA для двойного впрыска топлива. Абсолютная разница в скорости сгорания заряда, полученная при двойном впрыске топлива, достигает максимального значения 1,76% от массы на 1 ° CA при 373.5 ° CA. Во второй части периода быстрого горения с непрямым впрыском топлива процесс протекает более интенсивно, но наибольшее влияние на повышение теплового КПД двигателя оказывает увеличение скорости сгорания заряда на первой стадии процесса, т.е. до достижения 50% массовой доли сгорел [16].

Таким образом, приведенные выше соображения представляют собой подтверждение положительного влияния использования системы двойного впрыска на процесс сгорания для предполагаемых условий работы двигателя.Результатом этого взаимодействия является улучшение показателей работы двигателя, таких как, среди прочего, Указанное среднее эффективное давление IMEP и тепловой КПД η th , значения которых имеют прямое влияние на общий КПД двигателя η до .

4. Моделирование работы тестового двигателя 2SZ-FE

КИВА-3В. Проведенное моделирование было направлено на определение и сравнение различий в процессе сгорания в цилиндрах двигателя, работающего как с левым, так и с двухканальным двигателем. -впрыск топлива в условиях, аналогичных имеющимся при экспериментальных исследованиях.

Для определения явлений, происходящих в цилиндре, было проведено компьютерное моделирование в программе KIVA-3V. Используемая для трехмерного моделирования процессов в двигателях внутреннего сгорания программа КИВА-3В учитывает физико-химические явления, возникающие при формировании смеси и ее сгорании [17,18]. Программа учитывает движение капель топлива и их распыление в воздухе с использованием стохастической модели впрыска.

КИВА-3В имеет возможность моделировать работу двигателя на разных видах топлива.В описываемой работе в качестве топлива использовался углеводород с химической формулой C 8 H 17 . Можно видеть сходство с октаном (C 8 H 18 ), однако это вещество имеет более сопоставимые пропорции углерода и водорода в молекуле с бензином, чем октан. Поэтому его можно рассматривать как особый вид однокомпонентного бензина. Топливо C 8 H 17 окисляется по реакции (7).

4C8h27 + 49 O2 → 32 CO2 + 34 h3OE7

Окисление топлива, описываемое химическим уравнением (1), представляет собой базовую химическую реакцию, которая происходит во время моделирования в программе KIVA-3V.Остальные процессы, важные для моделирования, происходят в соответствии с формулами (8) — (10).

N + OH → H + NOE10

Набор реакций (2) — (4) описывает так называемый тепловой механизм образования оксида азота, который происходит при высоких температурах, например в условиях, происходящих в камере сгорания двигателя. От имени русского ученого Якова Борисовича Зельдовича, описавшего этот механизм, в литературе его часто называют расширенным механизмом Зельдовича.

Подготовка к моделированию включала создание сетки одного из цилиндров двигателя и модификацию исходного кода KIVA-3V, чтобы можно было моделировать работу с двумя топливными форсунками одновременно, что в базовой версии программы невозможно. Расчетная сетка была построена на основе результатов предыдущих положительно проверенных решений в этом вопросе. Сетка состоит из цилиндра 35 горизонтальных слоев. 21 слой равной толщины приходится на 81% хода поршня, начиная с нижней мертвой точки.Остальные 14 слоев вокруг верхней мертвой точки были сконцентрированы для получения более выгодных условий моделирования процесса горения, который там происходит (камера сгорания). Сетка цилиндра имеет размеры в поперечном сечении соответственно 38 x 34. Она дает вместе около 45000 ячеек во всем объеме цилиндра.

Использованная в исследовании модель двигателя была разработана на основе имеющихся технических данных двигателя 2SZ-FE. Размеры, необходимые для создания решетки, особенно головки цилиндров и подъема клапанов, были получены путем прямого измерения элементов модифицированного двигателя.

4.1. Начальные и граничные условия для моделирования

В обоих случаях моделирования, с косвенным впрыском топлива и двойным впрыском топлива в обоих условиях моделирования, таких как происходящие во время исследования, результаты которого представлены на рисунке 14, были сохранены. В случае моделирования двигателя с двойным впрыском топлива все количество топлива было разделено между системами непрямого впрыска и системой прямого впрыска, так что доля прямого впрыска x DI была равна 0.62. При этой доле двигатель получил наилучшее значение общего КПД. Список важнейших допущений и подмоделей, использованных при моделировании, был представлен в таблице 4, соответственно, для непрямого и двойного впрыска топлива.

0
Параметр / Подмодель MPI DI + MPI
Состав смеси 09 Абсолютное давление во впускном коллекторе 05901 .079 МПа
Частота вращения двигателя 2000 об / мин
Открытие / закрытие впускного клапана 4 ° CA до ВМТ / 46 ° CA после НМТ
Масса топлива, впрыснутого во впускной канал 0,01610 г / цикл 0,01061 г / цикл
Масса топлива, впрыснутого в цилиндр 0,00600 г / цикл
Полная масса топлива 0,01610 г / цикл 0.01661 г / цикл
Начало впрыска во впускной канал 360 ° CA перед ВМТ
Начало впрыска в цилиндр 281 ° CA перед ВМТ
Угол зажигания 14 ° CA перед ВМТ
Общее время искрового разряда 1,33 мс / 16 ° CA
Абсолютное давление окружающей среды 0,097 МПа
Противодавление в выпускном канале 0.110 МПа
Температура гильзы цилиндра (постоянная) 450 K
Температура головки блока цилиндров (постоянная) 500 K
Температура днища поршня (постоянная) 530 K
Модель впрыска топлива Reitz
Модель распада капли Аналогия распада Тейлора
Модель капельного испарения Spalding
Модель стенки 901
Модель турбулентности стандарт k-ε
Модель горения Турбулентное горение с перемешиванием
NO образование расширенный механизм Зельдовича (тепловой)
10 Модель теплопередачи Улучшенный закон стены
Количество рассматриваемых химические вещества 12

Таблица 4.

Список важнейших допущений и подмоделей, использованных в симуляциях

4.2. Сравнение выбранных результатов моделирования для обеих топливных систем

На рис. 21 показаны зависимости давления в цилиндре p c от объема цилиндра в случае непрямого впрыска топлива и при работе с системой двойного впрыска.

Рисунок 21.

Зависимость давления в цилиндре от объема цилиндра для обеих топливных систем: MPI и DI + MPI

На рисунке 22 показано изменение массы топлива в зависимости от угла поворота коленчатого вала. для обеих рассмотренных систем впрыска.

Рис. 22.

Изменение массы топлива в зависимости от угла поворота коленчатого вала для работы двигателя с системой двойного впрыска и с впрыском топлива в порт

В случае впрыска топлива только во впускной канал в За рассматриваемый период времени в цилиндре существуют только пары топлива. При использовании системы двойного впрыска топливо, впрыскиваемое непосредственно в цилиндр, полностью испаряется до момента воспламенения. Этот факт представлен на диаграмме достижением нуля кривой зеленого цвета (масса жидкого топлива) и максимумом кривой синего цвета (масса паров топлива), который имеет место примерно на 120 ° CA перед ВМТ, в то время как момент зажигания в моделировании был принят равным 14 ° CA.

Угловой момент заряда K tot является показателем интенсивности завихрения и опрокидывания в цилиндре, которые влияют на интенсивность испарения топлива, его распространение в объеме цилиндра и, следовательно, на скорость пламя распространилось. Следы полного углового момента заряда цилиндра показаны на рисунке 23.

Рисунок 23.

Полный угловой момент заряда Ktot в зависимости от угла поворота коленчатого вала для обеих рассматриваемых топливных систем

. воздействие струи топлива, впрыснутого непосредственно в цилиндр, на заряд.В случае двойного впрыска топлива угловой момент в процессе впуска и сжатия достигает значений больше, чем в случае впрыска топлива только во впускной канал. Усиление турбулентности заряда цилиндра, несомненно, оказывает важное влияние на улучшение процесса сгорания и, таким образом, на увеличение крутящего момента двигателя.

На рисунке 24 массовая доля углеводородов HC, монооксида углерода CO и оксида азота NO в цилиндре показана как функция угла поворота коленчатого вала для непрямого впрыска и для двойного впрыска топлива.

Рисунок 24.

Массовая доля HC, CO i NO в цилиндре в зависимости от угла поворота коленчатого вала для обеих систем подачи топлива

На основании анализа графиков, представленных на рисунке 24, можно сделать вывод, что Существуют некоторые различия в образовании монооксида углерода CO, углеводородов HC и оксида азота NO в зависимости от рассматриваемой системы впрыска. После завершения сгорания в цилиндре двигателя, работающего с непрямым впрыском топлива, CO и NO немного больше, чем в случае, когда количество топлива разделено между двумя системами впрыска.При впрыске топлива двумя форсунками доля несгоревших углеводородов выше, чем при непрямом впрыске. Разница составляет около 80 ppm, так что это не является существенным недостатком.

На рисунке 25 показано распределение массовой доли топлива в продольном сечении цилиндра на такте впуска для каждой рассматриваемой топливной системы.

Рисунок 25.

Распределение массовой доли топлива в продольном сечении цилиндра на такте впуска для непрямого впрыска топлива (а) и для двойного впрыска (б) угол поворота коленвала — 250º CA перед ВМТ

Поток топлива, впрыскиваемого непосредственно в цилиндр двигателя, хорошо виден на рисунке 25b.

Распределение массовой доли гидроксильных радикалов ОН в продольном сечении цилиндра при угле поворота коленчатого вала 5 ° перед ВМТ, полученное в результате моделирования для обеих топливных систем, показано на рисунке 26.

Рисунок 26.

Распределение массовой доли гидроксильных радикалов ОН в продольном сечении цилиндра при угле поворота коленчатого вала 5º перед ВМТ, полученным моделированием с впрыском топлива в порт (а) и с двойным впрыском топлива (б)

  • На основе Анализ рисунка 26 позволяет сделать вывод, что сгорание на начальной стадии происходит значительно быстрее, когда смесь формируется двумя форсунками на цилиндр.

  • Распределение температуры в цилиндре при угле поворота коленвала 24 ° после ВМТ показано на рисунке 27 для обеих рассматриваемых топливных систем.

Рисунок 27.

Распределение температуры в цилиндре при угле поворота коленчатого вала 24 ° после ВМТ для впрыска топлива в порт (a) и двойного впрыска топлива (b)

4.3. Сводка результатов моделирования

Проведенные имитации двигателя, работающего с впрыском топлива только во впускной коллектор и двойным впрыском топлива, дали следующие выводы:

  • Получение при двойном впрыске топлива той же смеси Состав, возникший при непрямом впрыске, требует немного большего количества топлива.Этот факт указывает на улучшение объемного КПД двигателя, работающего с двойным впрыском, в этих условиях моделирования. Такой же эффект был получен при экспериментальных испытаниях,

  • Впрыск топлива в цилиндр во время такта впуска вызывает усиление движения заряда. Мера этого процесса — увеличить общий угловой момент заряда на такте впуска. Это благоприятное явление положительно влияет на образование горючей смеси и горение.

  • Было замечено, что при двойном впрыске вся масса топлива испаряется на 100 ° CA до момента воспламенения. Следовательно, время, необходимое для создания как можно более однородной смеси в этом случае, сравнительно велико. Этим объясняется несколько повышенный выброс УВ при работе с двойным впрыском топлива в экспериментальных испытаниях.

  • Для двойного впрыска топлива пиковое давление сгорания выше примерно на 6% по сравнению со значением давления, полученным для впрыска топлива только во впускной коллектор.Средняя скорость повышения давления dp c / dα от момента зажигания до достижения пикового давления при двойном впрыске топлива, составляющего 0,16 МПа / ° CA, несколько выше, чем при впрыске топлива в порт — 0,15 МПа. / ° CA. Характер этих отличий очень похож на результаты, полученные на испытательном стенде.

  • Цикл двигателя с двойным впрыском топлива характеризуется примерно на 3% более высоким значением указанного среднего эффективного давления, чем для двигателя с многоточечным впрыском топлива.Увеличение ИМЭП также было достигнуто в экспериментах.

В заключение, результаты, полученные в ходе моделирования, стали важным дополнением к результатам экспериментальных испытаний.

5. Выводы

На основании результатов проведенного рассмотрения можно сделать следующие выводы:

  • Результаты вычислительной части работы сходятся с результатами экспериментальных исследований. Это подтверждает правильность конструкции модели и указывает на возможность ее дальнейшего использования.

  • При использовании топливной системы с двойным впрыском в проанализированных условиях эксплуатации двигателя было получено несколько процентов увеличения общего КПД, что в нынешнем состоянии развития двигателей внутреннего сгорания является важной ценностью. Этот факт однозначно указывает на желательность проведения исследований по рассматриваемым вопросам.

  • Анализ индикаторных диаграмм, зарегистрированных для работы с непрямым впрыском топлива и двойным впрыском топлива, выявил увеличение указанного среднего эффективного давления и улучшение теплового КПД двигателя при двойном впрыске топлива.

  • Существенных изменений в составе ОГ вместе с изменением доли топлива, впрыскиваемого непосредственно в цилиндры, не произошло. По сравнению со значениями, полученными для непрямого впрыска топлива, при увеличении доли топлива, впрыскиваемого непосредственно в цилиндр, происходит снижение концентрации оксида азота с небольшим увеличением концентрации монооксида углерода и углеводородов.

  • С точки зрения общей эффективности оптимальное значение доли топлива, впрыскиваемого непосредственно в цилиндр, растет при увеличении нагрузки двигателя при заданной частоте вращения,

6.Будущее системы двойного впрыска

С учетом результатов описанных выше тестов авторы могут представить темы для дальнейших исследований, связанных с данной темой:

  • Анализ применения описанной топливной системы для образования стратифицированных бедных смесей. ,

  • Изучение влияния применения системы двойного впрыска на рабочие параметры двигателя, сжигающего квазиоднородные бедные смеси,

  • Оценка влияния применения формовочной смеси по распылению -управляемая модель по рабочим параметрам двигателя с двойным впрыском топлива

Что касается концепции компании Toyota, то, похоже, у системы впрыска D-4S есть будущее.Помимо упомянутого во введении 2GR-FSE, после 2005 года система D-4S используется в 4,6-литровых двигателях 1UR-FSE, а также в 5,0-литровых двигателях V8 2UR-FSE и 2UR-GSE, устанавливаемых на различные автомобили Lexus [19]. С 2012 года четырехцилиндровый двигатель Subaru с оппозитными поршнями FA20, используемый в автомобилях Toyota GT86 / Scion FS-R и называемый 4U-GSE, также оснащен системой двойного впрыска топлива D-4S.

Сокращения и обозначения

α — угол поворота коленчатого вала, [°]

α th — открытие дроссельной заслонки, [%],

ε — скорость рассеяния кинетической энергии турбулентности

α 10% –угол сожженной 10% массовой доли, [º CA]

α 90% –угол сожженной 90% массовой доли, [º CA]

α ign — угол воспламенения, [º CA]

Δα o — угол полного сгорания, [º CA]

Δα r — угол распространения пламени, [° CA]

Δα с — угол быстрого горения, [° CA]

Δη DI + MPI — повышение общего КПД, [%]

η th — тепловой КПД двигателя, [-]

η tot — общий КПД двигателя, [-]

ABS — Антиблокировочная тормозная система,

BDC — нижняя мертвая точка,

BMEP — среднее эффективное давление тормоза, [МПа]

BSFC — удельное топливо для тормозов Расход, [г / кВт · ч]

BTDC — перед верхней мертвой точкой,

CA — угол поворота коленчатого вала,

CGI — стратифицированный впрыск бензина с наддувом — система прямого впрыска Daimler,

D-4 — 4-тактный бензин с прямым впрыском двигатель — непосредственный впрыск топлива Toyota,

D-4S — 4-тактный бензиновый двигатель с непосредственным впрыском Superior version — система двойного впрыска Toyota,

DI – Direct Injection

dMFB / dα — скорость сгорания заряда, [% масс / ° CA]

dp c / dα — скорость повышения давления, [МПа / °]

FSI — Fuel Stratified Injection — система непосредственного впрыска Volkswagen,

G e — топливо расход, [кг / ч]

GDI — Gasoline Direct Injection — система прямого впрыска Mitsubishi,

HC — доля углеводородов, [ppm]

HPi — Haute Pression d’Injection — система прямого впрыска Peugeot — группа компаний Citroën ,

IDE — Сущность прямого впрыска — d Система прямого впрыска Renault,

IMEP — указанное среднее эффективное давление, [МПа]

JTS — Jet Thrust Stoichiometric — система прямого впрыска Alfa Romeo,

k — кинетическая энергия турбулентности,

K to — угловой момент заряда, [г см 2 / с]

MFB – Сожженная массовая доля, [-]

MPI – Multipoint Injection,

n — частота вращения двигателя, [об / мин]

N c — тепловой поток от сгорания бензина в двигателе, [кВт]

N i — указанная мощность, [кВт]

p c — давление в цилиндре, [МПа]

ПК — персональный компьютер,

PFI — впрыск топлива,

об / мин — оборотов в минуту,

SCi — Smart Charge Injection — система прямого впрыска Ford,

SI — Искровое зажигание,

SPI — Одноточечный впрыск,

т exh –Температура выхлопных газов, [° C]

T — крутящий момент двигателя, [Нм]

TBI — впрыск дроссельной заслонки,

ВМТ — верхняя мертвая точка,

V c — объем цилиндра, [см 3 ]

V ss — объем двигателя , [dm 3 ]

W d — теплотворная способность бензина, [кДж / кг]

x DI — доля топлива, впрыскиваемого непосредственно в цилиндры двигателя в общем количестве топлива, [- ],

Блок-схема системы связи с подробным объяснением

Система связи

Связь — это процесс установления соединения между двумя точками для обмена информацией.

ИЛИ

Коммуникация — это просто основной процесс обмена информацией.

Электронное оборудование, которое используется для целей связи, называется оборудованием связи. Различное коммуникационное оборудование, собранное вместе, образует коммуникационную систему .

Типичными примерами системы связи являются линейная телефония и линейная телеграфия, радиотелефония и радиотелеграфия, радиовещание, двухточечная и мобильная связь, компьютерная связь, радиолокационная связь, телевизионное вещание, радиотелеметрия, средства радионавигации, радио. средства приземления самолета и т. д.

Процесс общения

В самом фундаментальном смысле коммуникация включает в себя передачу информации от одной точки к другой посредством последовательности процессов, перечисленных ниже:

  1. Создание образа мыслей или образа в сознании создателя.
  2. Описание этого изображения с определенной степенью точности с помощью набора устных визуальных символов.
  3. Кодирование этих символов в форме, подходящей для передачи по интересующей физической среде.
  4. Передача закодированных символов в желаемое место назначения.
  5. Декодирование и воспроизведение исходных символов.
  6. Воссоздание первоначального образа мышления или образа с определенным ухудшением качества в сознании получателя.

Блок-схема системы связи

На рис.1 показана блок-схема общей системы связи, в которой различные функциональные элементы представлены блоками.

Рис 1

Пожалуйста, подпишитесь на канал электронной почты, если вам нравятся мои руководства.

Существенными компонентами системы связи являются источник информации, входной преобразователь, передатчик, канал связи, приемник и место назначения.

Теперь поговорим о функционировании этих блоков.

(i) Источник информации

Как мы знаем, система связи служит для передачи сообщения или информации. Эта информация исходит из источника информации.

Как правило, это могут быть различные сообщения в виде слов, группы слов, кода, символов, звукового сигнала и т. Д.Однако из этих сообщений выбирается и передается только желаемое сообщение.

Таким образом, можно сказать, что функция источника информации состоит в том, чтобы произвести необходимое сообщение, которое необходимо передать.

(ii) Входной преобразователь

Преобразователь — это устройство, преобразующее одну форму энергии в другую.

Сообщение от источника информации может быть или не иметь электрического характера. В случае, когда сообщение, создаваемое источником информации, не является электрическим по своей природе, используется входной преобразователь для преобразования его в изменяющийся во времени электрический сигнал.

Например, в случае радиовещания микрофон преобразует информацию или сообщение в форме звуковых волн в соответствующий электрический сигнал.

(iii) Передатчик

Передатчик предназначен для обработки электрического сигнала с различных сторон.

Например, в радиовещании электрический сигнал, полученный из звукового сигнала, обрабатывается для ограничения диапазона звуковых частот (до 5 кГц при радиовещании с амплитудной модуляцией) и часто усиливается.

В проводной телефонной связи никакой реальной обработки не требуется. Однако при дальней радиосвязи перед модуляцией необходимо усиление сигнала.

Модуляция — основная функция передатчика. При модуляции сигнал сообщения накладывается на высокочастотный несущий сигнал.

Короче говоря, можно сказать, что внутри передатчика выполняются такие обработки сигналов, как ограничение диапазона звуковых частот, усиление и модуляция сигнала.

Все эти обработки сигнала сообщения выполняются только для облегчения передачи сигнала по каналу.

(iv) Канал и шум

Термин «канал» означает среду, через которую сообщение проходит от передатчика к приемнику. Другими словами, мы можем сказать, что функция канала заключается в обеспечении физического соединения между передатчиком и приемником.

Существует два типа каналов: двухточечные и широковещательные.

Примером двухточечных каналов являются проводные линии, микроволновые линии связи и оптические волокна. Проводные линии работают с помощью управляемых электромагнитных волн и используются для местной телефонной связи.

В случае микроволновых каналов передаваемый сигнал излучается в виде электромагнитной волны в свободном пространстве. СВЧ-каналы используются при телефонной передаче на большие расстояния.

Оптическое волокно — это хорошо управляемая и управляемая оптическая среда с низкими потерями. Оптические волокна используются в оптической связи.

Хотя эти три канала работают по-разному, все они обеспечивают физическую среду для передачи сигналов из одной точки в другую. Поэтому для этих каналов используется термин «точка-точка».

С другой стороны, широковещательный канал обеспечивает возможность одновременного доступа к нескольким приемным станциям с одного передатчика.

Примером вещательного канала является спутник на геостационарной орбите, который покрывает около одной трети поверхности Земли.

В процессе передачи и приема сигнал искажается из-за шума, вносимого в систему.

Шум — это нежелательный сигнал, который может мешать требуемому сигналу. Шумовой сигнал всегда носит случайный характер. Шум может мешать сигналу в любой точке системы связи. Однако наибольшее влияние на сигнал в канале оказывает шум.

(v) Приемник

Основной функцией приемника является воспроизведение сигнала сообщения в электрической форме из искаженного принятого сигнала.Это воспроизведение исходного сигнала выполняется с помощью процесса, известного как демодуляция или обнаружение. Демодуляция — это процесс, обратный модуляции, выполняемой в передатчике.

(vi) Пункт назначения

Пункт назначения — это заключительный этап, который используется для преобразования электрического сигнала сообщения в его исходную форму.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *