Импульсный блок питания на IR2153
Схема блока питания |
Блок питания построен на популярной микросхеме IR2153, в которой уже содержится встроенный генератор и схема управления мощными полевыми транзисторами. Особенно хочется отметить схему питания микросхемы IR2153, тут не используется дополнительная обмотка для её питания (так называемый самозапит), и не подаётся через резистор с выпрямленного напряжения 300 вольт, а берётся и выпрямляется сетевое напряжение через резистор R2 и диод VD1. Таким образом на резисторе R2 рассеивается небольшая мощность, соответственно снижается его нагрев, а на КПД блока питания такое питание IR2153 негативно никак не отразится. Резистор R2 должен быть мощностью 2 ватт и более, некоторые зарубежные производители блоков питаний вместо одного резистора ставят 2 с меньшим сопротивлением включенных последовательно.


Блок питания на ир2153 печатная плата
Импульсный блок питания на IR2153
В данной статье опубликована схема блока питания на IR2153, который можно использовать в качестве блока питания для УНЧ. Также эту схему можно использовать в качестве источника питания для шуруповерта изменив выходной каскад и пересчитав силовой трансформатор на нужно напряжение.
Схема импульсного блока питания на IR2153
Собственно схема блока питания на IR2153 с защитой от кз, приведена на следующем скрине.
Разъем XT1 на схеме — это подключение обмотки самопитания микросхемы, которая намотана на силовой трансформатор и рассчитана на 15 вольт. Запуск схемы производится через резистор R44 и диод VD17. После запуска схемы, микросхема начинает записываться от этой обмотки через диоды VD2 и VD4.
Сопротивление резистора R44 выбрано таким образом, чтобы схема надежно запускалась и в процессе работы сам резистор не сильно грелся.
Разъем XT2 на схеме — подключение вторичных обмоток трансформатора тока.
Пару слов о защите от кз. В схему введен трансформатор тока, первичная обмотка которого состоит из одного витка проводом диаметр 1 мм. На плату ставится трансформатор (кольцо) и через окно припаивается к плате перемычкой, эта перемычка и является витком первичной обметки.
Ниже, на фото печатной платы, стрелкой указано, как припаивается перемычка.
Вторичная обмотка токового трансформатора содержит две обмотки по 50 витков проводом 0,2 мм.
Резистором R50 подбираем нужный порог срабатывания защиты по току. Светодиод D2 сигнализирует нам, что схема находится в режиме защиты.
Также хотел отметить, схема защиты работает по «икающему» типу, то есть если выход закорочен, то защита отключает микросхему и на выходе блока питания нет напряжения, если выход не закорочен, то схема блока питания с защитой на ir2153 работает в штатном режиме.
Печатная плата блока питания на IR2153
На скрине представлен внешний вид печатной платы с обоих сторон. Также там указано место впайки перемычки (белая полоса), которая используется как первичная обмотка трансформатора тока (писал об этом выше).
Фото готовых печатных плат блока питания с защитой на IR2153 сделанных своими руками.
Данная статья опубликована на сайте whoby.ru. Постоянная ссылка на эту статью находится по этому адресу http://whoby.ru/page/blok-pitanija-na-ir2153
Читайте статьи на сайте первоисточнике, не поддерживайте воров.
Внешний вид импульсного блока питания на IR2153
После изготовления печатных плат, пора приступить к сборке этого мощного блока питания. Результат этой работы работы вы ведите на следующих фото.
Файлы для изготовления
Чтобы собрать данную схему источника питания на ir2153 с защитой, скачайте файл печатной платы по этой ссылке.
Если возникнут трудности с намоткой силового трансформатора, то как его правильно намотать, можно посмотреть в этой статье .
Заключение
Расчет силового трансформатора здесь не рассматривается, предполагается, что радиолюбитель рассчитает его сам, на нужные ему напряжения.
Собранная без ошибок и исправных элементов, плата источника питания запускается сразу. Остается только отрегулировать нужный ток срабатывания защиты и пользоваться устройством.
На этом я заканчиваю, всем стабильного напряжения.
Статью написал: Admin Whoby.Ru
Если вам понравилась статья, нажмите на кнопку нужной социальной сети расположенной ниже. Этим действием вы добавите анонс статьи к себе на страницу. Это очень поможет в развитии сайта.
ПЕЧАТНЫЕ ПЛАТЫ ДЛЯ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ
НА IR2151, IR2153, IR2155
Сразу оговорочка — печатные платы есть не на все преобразователи.
Хит парад печатных плат на IR2153 откроет плата схемы с надписью «СХЕМА №1«. Для скачивания платы в формате LAY 5 нажмите на эскиз платы:
Предохранитель впаивается в плату на специанлных стояках, изготовленных из медного провода диаметром 1,5 мм. Можно просто запаять провод диаметром соответствующим таблице токов. Двуполярное питания можно организовать из двух вторичных напряжений, формируемых диодами Шотки и выпрямителей со средней точкой. Имеет дополнительный двуполярный источник для питания предварительных каскадов. Плата расчитана под использование ферритового кольца и усеяна вентиляционными отверстиями — на частотах выше 50 кГц кольца из 2000-го феррита уже саморазогреваются.
Следующая плата под импульсный блок питания на IR2153 для «СХЕМЫ №2». Содержит пару специфичных радиаторов, используемых в телевизорах на кадровой развертке.
В принципе подобрать что то аналогичное или подправить плату под себя большого труда не составит
Данный блок питания так же имеет защиту от перегрузки на трансформаторе тока. В блок встроена ситема мягкого старта вторичного напряжения, предусмотрены выпрямители под питание предварительных каскадов и вентилятор принудительного охлаждения. В качестве выпрямительных диодов вторичного питания используются ультрабыстрые диоды в корпусе ТО-220. В качестве сердечников индуктивностей используются ферриты от фильтров питания телевизоров на которых намотан провод до заполнения окна. Диаметр провода, лучше конечно суммарный диаметр жгута из проводов рсачитывается исходя из соотношения 3-4 А на 1 кв мм сечения:
Эта плата к преобразователю напряжения, приведенному на «СХЕМЕ №4». Ну почти как на схеме. Данный вариант имеет дополнительные транзисторы для ускорения закрытия полевых транзисторов полумоста преобразователя и содержит 4 однополярных выходных напоряжения из которых можно собрать либо два двуполярных напряжения, либо одно для питания усилителя с двухуровневым питанием класса «H» или «G».
Выпрямительные диоды Шотки, а поскольку они больше 150 В бывают крайне редко, то выходное напряжение не может быть выше 75 В и то при условии, что Вы согласны работать на технологическом запасе и готовы к ремонту блока питания в любую минуту. Для повышения надежности следует рачет вести исходя из того, что блок питания будет отдавать в нагрузку не более 50-55 В.
Компоновка платы данного инвертора почти такая же, но уже имеет свою специфику — используются телевизионные радиаторы и ферриты. Для фильтра первичного питания, трансформатора тока и фильтров вторичного питания посадочные места расчитаны на установку феррита приведенного выше на фото. Однако ни кто не запрещает впаять в имеющиеся отверстия провода идущие от ферритовых колец. Для фильтров намотка до заполнения сечением из расчета 3-4 А на кв мм. В качестве сердечника силового трансформатора используется 4 сложенных сердечника от телевизионных ТДКС , на рисунке показанно как средечники складываются, а более подробно об этих сердечниках на следующей странице.
Диодный мост вторичного питания этого варианта источника питания выполнен на ультрабыстрых диодах в корпусе TO-247.
Схема №5 — автомобильный преобразователь напряжения на IR2155. На приведенной ниже плате подразумевается силовой трансформатор на Ш-образном феррите от импульсного блока питания телевизора с 72-м кинескопом. Однако на это место и кольцо диаметром 45 мм тоже хорошо становится. Диодный мост вторичного питания на ультафастах в корпусе ТО-220, установлен на листовой радиатор. Фильтр вторичного питания выполнен на одном сердечнике
Следующий импульсный блок питания взят с сайта «ПАЯЛЬНИК», эcкиз чертежа печатной платы приведен ниже:
Предлагаемые автором диоды FR602 слишком медленные и будут греться даже без нагрузки, поэтому их лучше заменить диодами серии HER.
В интернете нашлось два варианта печатной платы для импульсного блока питания по схеме №7. На одной правда есть ошибочка — потерялся резистор по питанию микросхемы ( R4), но добавить его не трудно.
На верхнем варианте фильтр первичного питания двухобмоточный, на втором обмотка одна. Оба варианта имеют однополярное вторичное питание.
Плата преобразователя для «Схемы №8» имеет SMD компоненты в обвязке IR2155. Выходное напряжение — двуполярное, защиты от перегрузки нет:
Далее несколько схем без плат и следующий варинт на который плата имеется — «Схема №12»:
Плата спланирована под ферритовое кольцо, диоды вторичного питания без теплоотводов.
Еще один вариант платы — «Схема №13», принципиальной схемы которой нет. По сути это сборка типового преобразователя с защитой на трансформаторе тока который управляет собранным на транзситорах аналогом тиристора. Данный блок питания имеет двуполярное выходное напряжение.
Однако перед тем как начинать готовить плату будет весьма полезным ознакомиться с заключительной частью данной статьи, в которой будет рассмотренно множество ньюнасов и технологических особенностей, позволящих сделать выбор варианта который подходит Вам максимально
Следующий вариант источника питания предназначен для усилителя системы типа 7.1. Основной проблемой самодельный усилителей мощности подобного класса являтеся правильная разводка общего провода — в подавляющем большинстве случаев появлется фон в колонках из за возникновения «земляной» петли. Данный вариант блока питани лишен этого недостатка, поскольку содержит 4 выходных напряжения, что позволяет сгруппировать усилители мощности парами, что дает возможность зазвязать «землю» и избавится от фона.
Разумеется, что диоды выпрямителей вторичного питания не стоят друг на друге, а разенесены по высоте и верхние соединяются с платой при помощи проводников. Так же на плате имеется дополнительный двуполярный выход для предварительных каскадов.
Сборка и наладка импульсного блока питания на базе IR2153 — IR2155 подробно описана тут.
ВИДЕОИНСТРУКЦИЯ ПО САМОСТОЯТЕЛЬНОЙ СБОРКЕ
ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ НА БАЗЕ IR2153 ИЛИ IR2155
Несколько слов об изготовлении импульсных трансформаторов:
Как определить количество витков не зная марку феррита:
Термоскотч я покупал на Алиэкспресс, если конкретно, то продавец указан тут.
Хочу предоставить вашему вниманию четыре разные схемы импульсных блоков питания на всеми любимой народной IR2153. Все эти схемы были мною собраны и проверены в 2013-2015 годах. Сейчас, в 2017 году, я раскопал все эти схемы в своих архивах и спешу с вами поделиться. Пусть вас не смущает что не ко всем схемам есть фото собранных устройств, что на фото будут и не полностью собранные блоки питания, но это все что мне удалось найти в своих архивах.
Итак первый блок питания, условно назовем его «высоковольтным»:
Схема классическая для моих импульсных блоков питания. Драйвер запитывается непосредственно от сети через резистор, что позволяет снизить рассеиваемую на этом резисторе мощность, по сравнению с запиткой от шины +310В. Этот блок питания имеет схему мягкого старта (ограничения пускового тока) на реле. Софт-старт питается через гасящий конденсатор С2 от сети 230В. Этот блок питания оснащен защитой от короткого замыкания и перегрузки во вторичных цепях. Датчиком тока в ней служит резистор R11, а ток при котором срабатывает защита регулируется подстроечным резистором R10. При срабатывании защиты загорается светодиод HL1. Этот блок питания может обеспечить выходное двухполярное напряжение до +/-70В (с данными диодами во вторичной цепи блока питания). Импульсный трансформатор блока питания имеет одну первичную обмотку из 50 витков и четыре одинаковые вторичные обмотки по 23 витка. Сечение провода и сердечник трансформатора выбираются исходя из требуемой мощности, которую необходимо получить от конкретного блока питания.
Второй блок питания, условно его будем называть «ИБП с самопитанием»:
Этот блок имеет похожую с предыдущим блоком питания схему, но принципиальное отличие от предыдущего блока питания заключается в том, что в этой схеме, драйвер запитывает сам себя от отдельной обмотки трансформатора через гасящий резистор. Остальные узлы схемы идентичны предыдущей представленной схеме. Выходная мощность и выходное напряжение данного блока ограничено не только параметрами трансформатора, и возможностями драйвера IR2153, но и возможностями диодов примененных во вторичной цепи блока питания. В моем случае — это КД213А. С данными диодами, выходное напряжение не может быть более 90В, а выходной ток не более 2-3А. Выходной ток может быть больше только в случае применении радиаторов для охлаждения диодов КД213А. Стоит дополнительно остановиться на дросселе Т2. Этот дроссель мотается на общем кольцевом сердечнике (допускается использовать и другие типы сердечников), проводом соответствующего выходному току сечения. Трансформатор, как и в предыдущем случае, рассчитывается на соответствующую мощность с помощью специализированных компьютерных программ.
Блок питания номер три, условно назовем «мощный на 460х транзисторах» или просто «мощный 460»:
Эта схема уже более значительно отличается от предыдущих схем представленных выше. Основных больших отличий два: защита от короткого замыкания и перегрузки здесь выполнена на токовом трансформаторе, второе отличие заключается в наличии дополнительных двух транзисторов перед ключами, которые позволяют изолировать высокую входную емкость мощных ключей (IRFP460), от выхода драйвера. Еще одно небольшое и не существенное отличие заключается в том, что ограничительный резистор схемы мягкого старта, расположен не в шине +310В, как это было в предыдущих схемах, а в первичной цепи 230В. В схеме так же присутствует снаббер, включенный параллельно первичной обмотке импульсного трансформатора для улучшения качества работы блока питания. Как и в предыдущих схемах чувствительность защиты регулируется подстроечным резистором (в данном случае R12), а о срабатывание защиты сигнализирует светодиод HL1. Токовые трансформатор мотается на любом небольшом сердечнике который у вас окажется под рукой, вторичные обмотки мотаются проводом небольшого диаметра 0,2-0,3 мм, две обмотки по 50 витков, а первична обмотка представляет собой один виток провода достаточного для вашей выходной мощности сечения.
И последний на сегодня импульсник — это «импульсный блок питания для лампочек», будем его условно так называть.
Да да, не удивляйтесь. Однажды появилась необходимость собрать гитарный предусилитель, но под рукой не оказалось необходимого трансформатора и тогда меня очень выручил данный импульсник, который был построен именно по тому случаю. Схема отличается от трех предыдущих своей максимальной простотой. Схема не имеет как таковой защиты от короткого замыкания в нагрузке, но необходимости в такой защите в данном случае нет, так как выходной ток по вторичной шине +260В ограничен резистором R6, а выходной ток по вторичной шине +5В — внутренней схемой защиты от перегрузки стабилизатора 7805. R1 ограничивает максимальный пусковой ток и помогает отсекать сетевые помехи.
Общие рекомендации:
- Импульсный трансформатор для каждой из схем необходимо рассчитывать в соответствии с вашими личными требованиями к блоку питания и вашими возможностями, поэтому конкретные намоточные данные я не привожу.
- Для расчета импульсного трансформатора очень удобно пользоваться программами «Старичка» — Lite-CalcIT и RingFerriteExtraSoft.
- Перед включением в сеть импульсного блока питания необходимо тщательно проверить монтаж на отсутствие ошибок, «соплей» на плате и так далее
- Обязательно необходимо промывать плату со стороны монтажа бензином, ацетоном, керосином, любым растворителем или спиртом для полного удаления остатков флюса. Импульсный блок питания работает на высокой частоте и даже незначительная паразитная проводимость или емкость может привести к тому, что собранный из исправных деталей блок питания не заработает или взорвется при первом же включении.
- Первое включение необходимо производить только с ограничением тока, его можно ограничить либо мощным резистором, либо мощной лампой накаливания, могут быть и другие варианты.
- Необходимо помнить и никогда не забывать о правилах электробезопасности. В каждой из схем блока питания присутствует опасное для жизни напряжение.
Импульсный блок питания на ir2153 с защитой
Внимание! Данная схема не рекомендуется к сборке! Есть более совершенная и надежная схема: Импульсный источник питания для УМЗЧ на IR2161 [2017]
Представляю вашему вниманию просто импульсный блок питания на микросхеме IR2153.
Схема импульсного блока питания представляет собой стандартную схему из даташита. Отличие схемы от даташитной лишь в оригинальном способе запитки драйвера и простой, высокоэффективной защите от короткого замыкания и перегрузок.
Драйвер запитывается непосредственно от сети, через диод и гасящий резистор, а не после основного выпрямителя от шины +310В как это делают обычно. Такой способ запитки дает нам сразу несколько преимуществ:
1. Снижает мощность рассеиваемую на гасящем резисторе. Что снижает выделение тепла на плате и повышает общий КПД схемы.
2. В отличает от запитки по шине +310В обеспечивает более низкий уровень пульсаций напряжения питания драйвера.
Защита от перегрузок и КЗ выполнена на паре транзисторов 2N5551/5401. В качестве датчика тока в данной схеме используются резисторы включенные в исток нижнего плеча преобразователя. Это позволяет отказаться от трудоемкого процесса намотки токового трансформатора. С помощью R6 настраивается порог срабатывания защиты.
При КЗ или перегрузке, когда падение напряжения на R10 R11 достигает заданной величины, такой величины при котором на базе VT1 напряжение станет больше 0,6 – 0,7В, сработает защита и питание микросхемы будет шунтировано на землю. Что в свою очередь отключает драйвер и весь БП в целом. Как только перегрузка или КЗ устранено, питание драйвера возобновляется и блок питания продолжает работу в штатном режиме. Светодиод HL1 сигнализирует о срабатывании защиты.
Защита настраивается так. К выходу каждого плеча блока питания подключаются мощные 10 Ом’ные резисторы. Включается блок питания в сеть. Вращением движка R6 добиваемся того чтобы HL1 погас, а затем выставляем движок в такое положение, чтобы HL1 еще не горел, но при минимальном повороте движка в сторону уменьшения тока срабатывания защиты, светодиод загорался. При такой настройке защиты, она будет срабатывать при выходной мощности приблизительно 300Вт. Такой режим работы безопасен для данных ключей (IRF740) и драйвера.
Трансформатор намотан на сердечнике ER35/21/11. Первичная обмотка намотана в два провода 0,63мм2 и содержит 33 витка. Вторичная обмотка состоит из двух половинок, намотанных в три провода 0,63мм2 и каждая половинка содержит по 9 витков.
Печатная плата выполнена в формате Sprint-Layout. Распечатке на лазерном принтере зеркалить ее не нужно.
Внимание! Данная схема не рекомендуется к сборке! Есть более совершенная и надежная схема: Импульсный источник питания для УМЗЧ на IR2161 [2017]
Представляю вашему вниманию просто импульсный блок питания на микросхеме IR2153.
Схема импульсного блока питания представляет собой стандартную схему из даташита. Отличие схемы от даташитной лишь в оригинальном способе запитки драйвера и простой, высокоэффективной защите от короткого замыкания и перегрузок.
Драйвер запитывается непосредственно от сети, через диод и гасящий резистор, а не после основного выпрямителя от шины +310В как это делают обычно. Такой способ запитки дает нам сразу несколько преимуществ:
1. Снижает мощность рассеиваемую на гасящем резисторе. Что снижает выделение тепла на плате и повышает общий КПД схемы.
2. В отличает от запитки по шине +310В обеспечивает более низкий уровень пульсаций напряжения питания драйвера.
Защита от перегрузок и КЗ выполнена на паре транзисторов 2N5551/5401. В качестве датчика тока в данной схеме используются резисторы включенные в исток нижнего плеча преобразователя. Это позволяет отказаться от трудоемкого процесса намотки токового трансформатора. С помощью R6 настраивается порог срабатывания защиты.
При КЗ или перегрузке, когда падение напряжения на R10 R11 достигает заданной величины, такой величины при котором на базе VT1 напряжение станет больше 0,6 – 0,7В, сработает защита и питание микросхемы будет шунтировано на землю. Что в свою очередь отключает драйвер и весь БП в целом. Как только перегрузка или КЗ устранено, питание драйвера возобновляется и блок питания продолжает работу в штатном режиме. Светодиод HL1 сигнализирует о срабатывании защиты.
Защита настраивается так. К выходу каждого плеча блока питания подключаются мощные 10 Ом’ные резисторы. Включается блок питания в сеть. Вращением движка R6 добиваемся того чтобы HL1 погас, а затем выставляем движок в такое положение, чтобы HL1 еще не горел, но при минимальном повороте движка в сторону уменьшения тока срабатывания защиты, светодиод загорался. При такой настройке защиты, она будет срабатывать при выходной мощности приблизительно 300Вт. Такой режим работы безопасен для данных ключей (IRF740) и драйвера.
Трансформатор намотан на сердечнике ER35/21/11. Первичная обмотка намотана в два провода 0,63мм2 и содержит 33 витка. Вторичная обмотка состоит из двух половинок, намотанных в три провода 0,63мм2 и каждая половинка содержит по 9 витков.
Печатная плата выполнена в формате Sprint-Layout. Распечатке на лазерном принтере зеркалить ее не нужно.
Главным компонентом рассматриваемого источника питания является микросхема (драйвер) IR2153. Данный драйвер выпускается в двух исполнениях – IR2153 и IR2153D. Буква D обозначает, что микросхема оснащена диодом, предназначенным для питания каскада управления верхнего ключа. Таким образом, если в схеме применить драйвер IR2153D, то диод D2 устанавливать не требуется. Частота генерации данного источника питания задается резистором R4 и конденсатором C6 подключенным к выводам микросхемы RT (ножка 2) и CT (ножка 3). Оптимальной частотой генерации микросхемы является частота в 40 – 70 кГц, именно под данный диапазон подобран сердечник трансформатора Tr1. Особенностью микросхемы является способность остановки генерации путем закорачивания вывода CT на минус. Этот принцип применен для организации защиты микросхемы от короткого замыкания на выходе данного источника питания.
Схема электрическая принципиальная импульсного блока питания на IR2153
Принцип работы источника питания
Входной фильтр представлен элементами С1, Др1, С2, R2 – он предназначен для защиты блока питания от высокочастотных помех и пульсаций присущих в сети. Резистор R2 выполняет функцию разряда конденсаторов С1, С2 после выключения источника питания. Конденсаторы С1, С2 должны выдерживать действующее напряжение сети (311 В), то есть необходимо применить конденсаторы выдерживающие напряжение 400 В типа Х2.
При включении источника питания в сеть ток проходит через фильтр, диодный мост и начинает заряжать конденсатор С3. При этом ток заряда конденсатора достаточно велик и грозит пробою диодного моста Br1. Для ограничения тока заряда при старте БП применен резистор R1. Вместо резистора R1 можно применить термистор номиналом от 3,3 – 4,7 Ом. Диодный мост Br1 должен быть рассчитан на приложенное к нему обратное напряжение не менее 400 В, в данном случае подойдут диодные мосты типа RS406, RS407. Конденсатор С3 должен быть рассчитан также на напряжение в 400 В, при этом его емкость подбирается из расчета 1 мкФ на 1 Вт выходной мощности.
Для организации питания микросхемы IR2153 применяется цепочка R3, D1. Сопротивлением R3 в диапазоне от 5,1 кОм до 20 кОм добиваются потребления тока микросхемой от 5 мА – 20 мА. Оптимальный номинал резистора R3 подбирается исходя из замера напряжения на выводах 1, 4 микросхемы IR2153 – данное напряжение должно составлять не менее 14,5 В. Резистор R3 должен быть рассчитан на рассеиваемую мощность в 2 Вт.
Питание каскадов управления выходных транзисторов микросхемы осуществляется цепочкой D2, С7. Если в схеме применена микросхема IR2153D, то диод D2 не устанавливается. Емкость С7 – 0,22мкФ напряжением не менее 25 В.
Мощность данного блока питания задается выходными полевыми транзисторами Т2, Т3, которые представлены транзисторами типа IRF830. Данные транзисторы способны отдать мощность в 100 Вт. Однако если применить в качестве Т2, Т3 транзисторы типа IRF840 то можно добиться выходной мощности до 250 Вт.
Конденсатор С11 предназначен для гашения помех, передаваемых трансформатором Tr1. Конденсаторы С8, С9 – служат для подавления ВЧ помех, а R8, R9 – для их разрядки. R7, C10 – подавляет паразитные колебания присутствующие во время работы Tr1.
Выходные выпрямительные диоды должны выдерживать обратное напряжение более 100 В (при условии выходного напряжения в 18 В) т.е не менее чем в 5 раз. Время обратного восстановления диодов – не менее 100 наносекунд.
Защита от короткого замыкания на выходе ИП представлена транзистором Т1, светодиодом LED1, диодом D7, резисторами R10-R13 и конденсатором С16. Принцип работы заключается в следующем: при увеличении тока потребления проходящего через резистор R10 на нем увеличивается падение напряжения, которого хватает для открытия транзистора Т1. Когда Т1 открывается, то через диод D7 вывод микросхемы IR2153 оказывается на земле, что приводит к отключению генерации микросхемы. Далее падение напряжения на R10 исчезает и ИП вновь возобновляет работу. Таким образом, мы имеем «икающую» защиту.
Трансформатор Tr1 представляет собой ферритовое кольцо проницаемостью в 2000НМ, типоразмером 32х20х6. Первичная обмотка I содержит 161 виток намотанного скруткой в три провода ПЭЛ диаметром 0,25 мм. Вторичная обмотка имеет по 21 витку намотанного скруткой в три провода ПЭЛ диаметром 0,4 мм.
Для однополярного питания вторичная обмотка наматывается без отвода.
Для того, чтобы получить на выходе блока питания напряжение выше или ниже 18 В, необходимо пропорционально увеличить или уменьшить количество витков вторичной обмотки трансформатора Tr1.
Схема блока питания на ir2153 с защитой
Главная › Новости
Опубликовано: 28.08.2018
Импульсный блок питания на IR2153. ч.1
Собрал Импульсный блок питания(ИБП) на IR2153(схема и печатка прилагается)без защиты. Частота 55 кГц. Трансформатор на двух кольцах 2000НМ размером 40х25х11, в итоге 40х25х22. Самой простой схемой импульсного блока питания на IR2153 является электронный трансформатор с минимумом функцийИмпульсный блок питания с защитой от перегрезки и софтстартом по вторичному питанию представлен на следующей схеме Нужен ли зазор в трансформаторе и как его рассчитать? И ещё вопрос по схеме — нужно ли пересчитывать схему защиты?подскажите где можно заказать или купить готовый ir2153 блок питания 600-1000w однополярный. Хочу предоставить вашему вниманию четыре разные схемы импульсных блоков питания на всеми любимой народной IR2153, с защитой от КЗ. Просмотрев множество схем ИИП на IR2153, решил слепить свой.Ознакомившись с данным материалом большинство смогут сами сделать блок питания под требуемую им мощность и необходимые выходные напряжения. Схема электрическая принципиальная импульсного источника питания, собранного на микросхеме IR2153.Главная > Схемы > Блоки питания > Импульсный блок питания на IR2153 с защитой. Фото блока питания. Блок питания нашел свое практическое применение, начинаю делать УМЗЧ и вот такой блок питания получился, емкостей пока что 47000мкФ х25В, на плате есть местоСхема холодная вообще, за исключением гасящего резистора 56 кОм на питании IR-ки. Подумал я об этом всем и решил перейти на импульсные блоки питания и на это масса причин.Не буду далее мучать вас, вот схема ИИП на IR2151, IR2152, IR2153 разделенная на 3 части Простой ИБП на IR2153 с защитой от перегрузки и КЗ (300Вт). Мне нужен был однополярный блок питания. Я повторил эту схему, немного переделав ее выход. Блок питания на ir2153. Импульсные бп своими руками.Схемы простых импульсных блоков питания своими руками — Rc-garaj.ru. Импульсный блок питания для усилителя мощности своими руками ir2153 ir2155 — Visit-petersburg.com. Блок питания на ir2153 с защитой советы о которых вы не знали.Вы только задаёте нужные параметры и получаете всю информацию по схеме блока питания и конструкции импульсного трансформатора. Полумост на IR2153.
Блок питания на ir2153 с защитой + советы о которых вы не знали
Преобразователь построен на базе контроллера электронного балласта по типовой схеме.Питание микросхемы может быть внешним (от источника 15В) или от шины 310В через резистор 56 кОм 2Вт (стабилитрон есть в самой микрухе). Форум радиолюбителей » СХЕМЫ » БЛОКИ ПИТАНИЯ » Импульсный блок питания двухполярный на IR2151-IR2153 (ИБП на IR2151-53).Хотя при правильной сборке и исправных деталях все схемы работают.
Теперь защита: Выдернул с розетки, разрядил сетевой Хочу предоставить вашему вниманию четыре разные схемы импульсных блоков питания на всеми любимой народной IR2153.Софт-старт питается через гасящий конденсатор С2 от сети 230В. Этот блок питания оснащен защитой от короткого замыкания и перегрузки во вторичных redred Надо сделать ещё одну вторичку с выпрямителем и фильтром для питания микросхемы.На IR2153 — резистор заметно меньше греется. Так-же приходилось повторять эту схему, она у меня уже как почти год питает 4 галогенки по 12в 35ватт Данная схема содержит триггерную защиту от перегрузки. Она выполнена на элементах T1 (токовый трансформатор), диодах D7, D8, резисторах R2, R4, R5 и R6, тиристоре D2.Свежие записи. Импульсный блок питания на IR2153. В данной схеме питание IR2153 осуществлено от переменного напряжения через цепь из сопротивления R3 и диода D1.По этой причине наблюдается кратковременное срабатывание защиты при включении блока питания. Схема импульсного блока питания. Сначала идут резисторы для плавной зарядки конденсаторов делителя, потом сетевой фильтр.Полевые транзисторы IRFI840GLC это лучшее что может быть для этой схемы от IR. Вот схема моего блока питания. Сначала идут резисторы для плавной зарядки конденсаторов делителя, потом сетевой фильтр.Полевые транзисторы IRFI840GLC это лучшее что может быть для этой схемы от IR. Схема включения 2153 стандартная из даташита.Первый раз можно последовательно блоку питания включить лампу 220в 25-40вт, но сильно нагружать в этом случае его нельзя только ватт на 3-5 макс. Схема блока импульсного блока питаниядрайвер ir2153 — микросхема, используется в импульсных преобразователях для питания люминесцентных ламп, её более современный аналог — ir2153D и ir2155. Что лучше ? питать от транса или от сети, я думаю от транса а блок питания от сети убрать вапще Скиньте аналогичные схемы на IR2153, может найдется что-нибудь интересное)Ilya, есть схема на этом драйвере с защитой от КЗ , но она на два порядка сложнее. Импульсный блок питания IR2151-IR2153. Характерной чертой этого блока питания является его простота и повторяемость. Схема содержит малое количество компонентов и хорошо себя зарекомендовала на протяжении более двух лет. Блок питания IR2153 схема.Поэтому для реализации защиты диодного моста его необходимо ограничить. С этой целью в схему добавляется, либо небольшое сопротивление, а еще лучше термистор. Вот схема моего блока питания. Сначала идут резисторы для плавной зарядки конденсаторов делителя, потом сетевой фильтр.Полевые транзисторы IRFI840GLC это лучшее что может быть для этой схемы от IR. Универсальные БП с защитой от перегрузок и К.З.Представляю вашему вниманию просто импульсный блок питания на микросхеме IR2153. Схема импульсного блока питания представляет собой стандартную схему из даташита. Схема блока импульсного блока питания: В качестве компонентов были использованы следующие: драйвер ir2153 — микросхема, используется в импульсных преобразователях для питания люминесцентных ламп, её более современный аналог — ir2153D и ir2155. Видео-урок про изготовление и схему, по которой собран самодельный импульсный источник питания на IR2153.Блок питания вошел в свой рабочий режим.Оконечники холодные, хотя Ток Идет. Защиту по КЗ тоже отрегулируем. IR2153 импульсный блок питания на плате.Наконец, особое внимание было уделено максимально всесторонней защите от электростатических разрядов на всех выводах. Единственное спасение — значительный запас по току для источника питания IR2153.Для этой схемы например, ситуация с питанием выглядит так : Частота преобразования 50Кгц, IRF840 , гасящий резистор в питании 2х 65К 2вт (32К 4вт). РадиоКот >Схемы >Питание >Блоки питания >.На самом деле IR2153 плохо подходит для создания ИИП, из-за отсутствия штатной системы защиты от КЗ и перегрузок, невозможность при необходимости «димированния» и создания обратной связи по напряжению и току. Установите напряжение в коридоре монитора питания.Разве IR2153 может менять скважность? Я просто не смотрел схему из этой темы. Стабилизированный регулируемый блок питания с защитой.Схема блока импульсного блока питанияНужна эта обмотка для питания драйвера ir2153 после того, как запустится импульсный преобразователь. И основа,это то что блок питания на микросхеме IR2151. Характерной чертой этого блока питания является его простота и повторяемость. Схема содержит малое количество компонентов и хорошо себя зарекомендовала на протяжении более двух лет. Я знаю, что это разные схемы. Но судя по печатке в видео АКА, там защитой и не пахнет, кроме предохранителя.Всем добрый день. Собрал блок питания на ir2153 c 2мя вторичными обмотками. Импульсный блок питания на IR2151-IR2153. Плюс любого импульсного блока питания состоит в том что не требуется намотки или покупки громоздкого трансформатора.А требуется всего лишь трансформатор с несколькими витками.Данный блок питания сделать самому несложно Тоже делал по схеме с этого сайта и все работает. Если делаете с раздельным питанием, то D1 не нужен — на Vcc и Vcom 12В стабилизированных на Vs-Vb другие 12В(от другого блока питания). Микросхема IR2153 специально разработано под двухтактному каскаду.Где-бы несмотрел схеми на этой микрухе, везде оно работает без цепи стабилизации.Вот ниже один из схем,если здес потребител неменяемий по питанию,и толко сеть от 150 до 240в.Я сам думаю поступит такна Схема — open?id1NYvx76LiCMldcuhCiBrMyWNSxvbp8Mep. Платный архив с печаткой и схемой в электронном виде — uJw9AA Помочь каналу на розвитие 8uYU35.Лабораторный блок питания на IR2153 с нуля своими руками.
Представляю вашему вниманию просто импульсный блок питания на микросхеме IR2153.Отличие схемы от даташитной лишь в оригинальном способе запитки драйвера и простой, высокоэффективной защите от короткого замыкания и перегрузок. Данный импульсный блок питания имеет защиту от перегрузки. Блок питания нестабилизированный. Схема ИИП на ir2153 для усилителя низкой частоты. Характерной чертой этого блока питания является его простота и повторяемость. Схема содержит малое количество компонентов и хорошо себя зарекомендовала на протяжении более двух лет.Возможная замена на IR2152, IR2153. Блок питания на ir2153 с защитой для Lanzar 30V 10A полезные советы для начинающих радио любителей !Простыми словами о том что вы не знали! Ссылка на Блок-схемаIR2153 улучшенная версия драйвера IR2155 и IR2151, которая содержит драйвер високовольтного полумоста с генератором аналогичным промышленному таймеру 555 (К1006ВИ1). Возможная замена на IR2152, IR2153.Трансформатор типовой понижающий из блока питания компьютера. Как правило, цоколевка соответствует приведенной на схеме. Источник питания IR2153 500Вт — предлагаю ознакомится, а при желании и повторить схему импульсного блока питания для усилителя мощности реализованной на.Встроена схема мягкого запуска блока питания. Имеет функцию защиты устройства по входу, которую Просмотрев множество схем ИИП на IR2153, решил слепить свой.Вот нашел у себя в загашнике давнюю мою схему с защитой.Да и противник я использовать блоки питания со стабилизацией для Хотя, применяя раздельное питание, мы, почти, избегаем «щёлканья» IR2153. Резистор R1 и конденсатор С3 задают частоту работы схемы (смБлок питания силовой части (сетевой выпрямитель) выполнен на диодном мосте КВРС2510 (то, что было под рукой.) и батарее Есть схемы ИБП на IR2153 где реализована защита немного по другому, там можно не отключать блок питания для вывода из защиты, как только будет устранен перегруз или КЗ, ИБП выходит из защиты автоматически не отключая его. Смотрите также. Регулятор напряжения постоянного тока схема. Технологические схемы химического производства.
Импульсный блок питания для усилителя мощности
Представляю вашему вниманию импульсный источник питания для УМЗЧ на популярной микросхеме IR2153.
Данный блок питания обладает следующими достоинствами:
- Защита от перегрузок и короткого замыкания как в первичной обмотке импульсного трансформатора, так и во вторичных цепях питания.
- Схема плавного пуска ИБП.
- Варистор на входе ИБП защищает от повышение сетевого напряжения выше опасного значения и от подачи на вход 380В.
- Простая и дешевая схема.
Основные технические характеристики ИБП (характеристики приведены для моего конкретного экземпляра):
Долговременная выходная мощность – 300Вт
Кратковременная выходная мощность – 500Вт
Рабочая частота – 50кГц
Выходное напряжение – 2х35В (можно получить любое необходимое выходное напряжение в зависимости от намотки трансформатора).
КПД – не менее 85% (зависит от трансформатора)
Управляющая часть ИБП является стандартной и взята прямиком из даташита на IR2153.
Схема ИБП включает в себя так же: защиту от перегрузок и КЗ. Защита может быть настроена на любой необходимый ток срабатывания с помощью подстроечного резистора – R10. О срабатывании защиты свидетельствует свечение светодиода HL1. При активной защите, в аварийном состоянии ИБП может находится сколько угодно долго, при этом он потребляет ток такой же как и на холостом ходу без нагрузки. В моей версии защита настроена на срабатывание при потреблении от ИБП мощности 300Вт и более. Это гарантирует то, что ИБП не будет перегружен и не выйдет из строя в результате перегрева. В качестве датчика тока в данной схеме используются резисторы включенные последовательно с первичной обмоткой импульсного трансформатора. Это позволяет отказаться от трудоемкого процесса намотки токового трансформатора. При КЗ или перегрузке, когда падение напряжения на R11 достигает заданной величины, такой величины при котором на базе VT1 напряжение станет больше 0,6 – 0,7В, сработает защита и питание микросхемы будет шунтировано на землю. Что в свою очередь отключает драйвер и весь БП в целом. Как только перегрузка или КЗ устранено, питание драйвера возобновляется и блок питания продолжает работу в штатном режиме.
Схема ИБП предусматривает плавный пуск, для этого в ИБП присутствует специальный узел, который ограничивает пусковой ток. Это необходимо для того, чтобы облегчить работу ключам при запуске ИБП. При подключении ИБП в сеть, пусковой ток ограничивается резистором R6. Через данный резистор течет ВЕСЬ ток. Этим током заряжается основная первичная емкость С10 и вторичные емкости. Все это происходит в считанные доли секунд, и когда зарядка завершена и ток потребления снизился до номинального значения, происходит замыкание контактов реле К1 и контакты реле шунтируют R6, тем самым запуская ИБП на полную мощность. Весь процесс занимает не более 1 секунды. Этого времени достаточно чтобы завершились все переходные процессы.
Драйвер запитывается непосредственно от сети, через диод и гасящий резистор, а не после основного выпрямителя от шины +310В как это делают обычно. Такой способ запитки дает нам сразу несколько преимуществ:
1. Снижает мощность рассеиваемую на гасящем резисторе. Что снижает выделение тепла на плате и повышает общий КПД схемы.
2. В отличает от запитки по шине +310В обеспечивает более низкий уровень пульсаций напряжения питания драйвера.
На входе блока питания, сразу после предохранителя установлен варистор. Он служит для защиты от повышения напряжение в сети выше опасного предела. При аварии сопротивление варистора резко падает и происходит короткое замыкание, в следствии которого перегорает предохранитель F1, тем самым размыкая цепь.
Таким вот образом я тестировал ИБП на полной мощности.
В качестве нагрузки у меня выступают 4 керамических, проволочных резистора мощностью 25Вт, погруженные в емкость с «кристально чистой» водой. После часа прохождения тока через такую воду все примеси всплывают наверх и чистая вода превращается в бурую, ржавую жижу. Вода усиленно испарялась и за час испытаний нагрелась практически до кипения. Вода необходима для отвода тепла от мощных резисторов, если кто не понял.
Трансформатор в моем варианте ИБП, намотан на сердечнике EPCOS ETD29. Первичная обмотка проводом 0,8мм2, 46 витков в два слоя. Все четыре вторичные обмотки намотаны тем же проводом в один слой по 12 витков. Может показаться, что сечение провода не достаточно, но это не так. Для работы этого ИБП на питание УМЗЧ этого достаточно, так как средняя потребляемая мощность значительно ниже максимальной, а кратковременные пики тока ИБП без труда отрабатывает за счет емкостей питания. При долговременной работе на резистор, при выходной мощности 200Вт, температура трансформатора не превысила 45 градусов.
Для увеличения выходного напряжение более 45В необходимо заменить выходные диоды VD5 VD6 на более высоковольтные.
Для увеличение выходной мощности необходимо использовать сердечник с большей габаритной мощностью и обмотками, намотанными проводом большего сечения. Для установки другого трансформатора придется изменить рисунок печатной платы.
Печатная плата в готовом виде выглядит так (выполнено ЛУТом):
Размеры платы 188х88мм. Текстолит я использовал с толстой медью – 50мкм, вместо стандартных 35мкм. Можно использовать медь стандартной толщины. В любом случае не забывайте хорошенько пролудить дорожки.
Представляю вашему вниманию импульсный источник питания для УМЗЧ на популярной микросхеме IR2153.
Данный блок питания обладает следующими достоинствами:
- Защита от перегрузок и короткого замыкания как в первичной обмотке импульсного трансформатора, так и во вторичных цепях питания.
- Схема плавного пуска ИБП.
- Варистор на входе ИБП защищает от повышение сетевого напряжения выше опасного значения и от подачи на вход 380В.
- Простая и дешевая схема.
Основные технические характеристики ИБП (характеристики приведены для моего конкретного экземпляра):
Долговременная выходная мощность – 300Вт
Кратковременная выходная мощность – 500Вт
Рабочая частота – 50кГц
Выходное напряжение – 2х35В (можно получить любое необходимое выходное напряжение в зависимости от намотки трансформатора).
КПД – не менее 85% (зависит от трансформатора)
Управляющая часть ИБП является стандартной и взята прямиком из даташита на IR2153.
Схема ИБП включает в себя так же: защиту от перегрузок и КЗ. Защита может быть настроена на любой необходимый ток срабатывания с помощью подстроечного резистора – R10. О срабатывании защиты свидетельствует свечение светодиода HL1. При активной защите, в аварийном состоянии ИБП может находится сколько угодно долго, при этом он потребляет ток такой же как и на холостом ходу без нагрузки. В моей версии защита настроена на срабатывание при потреблении от ИБП мощности 300Вт и более. Это гарантирует то, что ИБП не будет перегружен и не выйдет из строя в результате перегрева. В качестве датчика тока в данной схеме используются резисторы включенные последовательно с первичной обмоткой импульсного трансформатора. Это позволяет отказаться от трудоемкого процесса намотки токового трансформатора. При КЗ или перегрузке, когда падение напряжения на R11 достигает заданной величины, такой величины при котором на базе VT1 напряжение станет больше 0,6 – 0,7В, сработает защита и питание микросхемы будет шунтировано на землю. Что в свою очередь отключает драйвер и весь БП в целом. Как только перегрузка или КЗ устранено, питание драйвера возобновляется и блок питания продолжает работу в штатном режиме.
Схема ИБП предусматривает плавный пуск, для этого в ИБП присутствует специальный узел, который ограничивает пусковой ток. Это необходимо для того, чтобы облегчить работу ключам при запуске ИБП. При подключении ИБП в сеть, пусковой ток ограничивается резистором R6. Через данный резистор течет ВЕСЬ ток. Этим током заряжается основная первичная емкость С10 и вторичные емкости. Все это происходит в считанные доли секунд, и когда зарядка завершена и ток потребления снизился до номинального значения, происходит замыкание контактов реле К1 и контакты реле шунтируют R6, тем самым запуская ИБП на полную мощность. Весь процесс занимает не более 1 секунды. Этого времени достаточно чтобы завершились все переходные процессы.
Драйвер запитывается непосредственно от сети, через диод и гасящий резистор, а не после основного выпрямителя от шины +310В как это делают обычно. Такой способ запитки дает нам сразу несколько преимуществ:
1. Снижает мощность рассеиваемую на гасящем резисторе. Что снижает выделение тепла на плате и повышает общий КПД схемы.
2. В отличает от запитки по шине +310В обеспечивает более низкий уровень пульсаций напряжения питания драйвера.
На входе блока питания, сразу после предохранителя установлен варистор. Он служит для защиты от повышения напряжение в сети выше опасного предела. При аварии сопротивление варистора резко падает и происходит короткое замыкание, в следствии которого перегорает предохранитель F1, тем самым размыкая цепь.
Таким вот образом я тестировал ИБП на полной мощности.
В качестве нагрузки у меня выступают 4 керамических, проволочных резистора мощностью 25Вт, погруженные в емкость с «кристально чистой» водой. После часа прохождения тока через такую воду все примеси всплывают наверх и чистая вода превращается в бурую, ржавую жижу. Вода усиленно испарялась и за час испытаний нагрелась практически до кипения. Вода необходима для отвода тепла от мощных резисторов, если кто не понял.
Трансформатор в моем варианте ИБП, намотан на сердечнике EPCOS ETD29. Первичная обмотка проводом 0,8мм2, 46 витков в два слоя. Все четыре вторичные обмотки намотаны тем же проводом в один слой по 12 витков. Может показаться, что сечение провода не достаточно, но это не так. Для работы этого ИБП на питание УМЗЧ этого достаточно, так как средняя потребляемая мощность значительно ниже максимальной, а кратковременные пики тока ИБП без труда отрабатывает за счет емкостей питания. При долговременной работе на резистор, при выходной мощности 200Вт, температура трансформатора не превысила 45 градусов.
Для увеличения выходного напряжение более 45В необходимо заменить выходные диоды VD5 VD6 на более высоковольтные.
Для увеличение выходной мощности необходимо использовать сердечник с большей габаритной мощностью и обмотками, намотанными проводом большего сечения. Для установки другого трансформатора придется изменить рисунок печатной платы.
Печатная плата в готовом виде выглядит так (выполнено ЛУТом):
Размеры платы 188х88мм. Текстолит я использовал с толстой медью – 50мкм, вместо стандартных 35мкм. Можно использовать медь стандартной толщины. В любом случае не забывайте хорошенько пролудить дорожки.
Импульсный блок питания для УНЧ — 600 Вт
Импульсный блок питания для УНЧ сконструирован для обеспечения напряжением питания двух канальный УМЗЧ. БП рассчитан на работу усилителя с выходной мощностью 200 Вт на каждый канал. Данное устройство состоит из двух печатных плат. На одной плате реализован фильтр сетевого напряжения, электромагнитное реле, трансформатор, диодный мост с фильтрующим конденсатором 1000 мкФ х 25v в его цепи. На другой плате собран модуль управления, трансформатор выпрямителя, а также в цепи фильтра конденсаторы и дроссели.
Биполярные транзисторы КТ626, а также мощные 2SK1120 MOSFET либо КП707В2 должны быть установлены на радиаторах с достаточной площадью рассеивания тепла. Наиболее эффективными радиаторами охлаждения являются теплоотводы из толстого алюминия, прошедшие фрезерную обработку. Их эффективность заключается в том, что помимо охлаждения электронных компонентов, они еще являются боковыми элементами корпуса усилителя. Модуль управления мощными выходными ключами смонтирован на небольшой самостоятельной плате, которая в свою очередь вмонтирована в модуль выпрямителя.
Модернизация ИБП
Чтобы обеспечить более корректную и надежную работу конструкции, импульсный блок питания для УНЧ был несколько модернизирован. В частности во вторичных обмотках трансформатора были установлены шунты в виде подавляющей помехи RC-цепи. Также была увеличена емкость фильтрующих конденсаторов до 10000 мкФ х 50v и зашунтированны конденсаторами 3,3 мкф 63v. Которые имеют очень малые потери и высокое сопротивление изоляции. Защита на входе не была задействована, но в случае необходимости ее можно применить в качестве защиты от пикового тока. Для этого нужно подать сигнал на вход из цепи шунта либо от трансформатора по току.
Предупреждение
Особое внимание! Все силовые тракты данного блока питания, за исключением вторичных цепей, находятся по высоким потенциалом сетевого напряжения, представляющего опасность для жизни! В процессе налаживания конструкции необходимо соблюдать максимально возможную осторожность. Желательно при настроечных работах, устройство подключить к сети через разделительный трансформатор.
Перед тем как впервые запустить импульсный блок питания, предохранитель на 2А в цепи напряжения 320v устанавливать пока не нужно. Вначале нужно произвести отладку схемы управления, а уже потом на место предохранителя 2А устанавливается лампа накаливания 220v мощностью 60 Вт. Но наиболее эффективный способ, при котором гарантируется целостность транзисторов — это включить устройство через понижающий напряжение трансформатор. Только когда полностью будет выполнены наладочные работы, тогда предохранитель ставится на место. Теперь импульсный блок питания можно испытать с нагрузкой.
На снимке: модуль инвертора, выпрямителя и цепи фильтров
На снимке: модуль фильтра сетевого напряжения и выпрямителя
На снимке: компоновка силовых ключей и диодов
Трансформатор
Трансформатор Т1 намотан на трех кольцах диаметром 45 мм из феррита 2000НМ1. Первичная обмотка содержит 2×46 витков изолированного провода 0,75 мм2 (мотается сразу двумя проводами). Вторичная обмотка намотана косой из 16 проводов диаметром 0,8 мм. Она содержит шесть витков, после намотки она делится на две группы, начала одной группы соединяются с конном другой. Дроссели DB3 и DR2 намотаны на ферритовом стержне 8 мм и выполнены проводом D=1,2 мм.
Схема импульсного блока питания для усилителя » Паятель.Ру
Импульсный источник питания, который может использоваться не только с усилителями на базе TDA7293 (TDA7294), но и с любым другим усилителем мощности ЗЧ. Основой данного блока питания (БП) служит полумостовой драйвер с внутренним генератором IR2153 (IR2155), предназначенный для управления транзисторами технологий MOSFET и IGBT в импульсных источниках питания.
Функциональная схема микросхем приведена на рисунке 1, зависимость выходной частоты от номиналов RC-задающей цепочки на рисунке 2. Микросхема обеспечивает паузу между импульсами верхнего и нижнего ключей в течении 10% от длительности импульса, что позволяет не опасаться сквозных токов в силовой части преобразователя.
Рис.2
Практическая реализация БП приведена на рисунке 3. Используя данную схему можно изготовить БП мощностью от 100 до 500Вт, необходимо лишь пропорционально увеличивать емкость конденсатора фильтра первичного питания С2 и использовать соответствующий силовой трансформатор TV2.
Рис.3
Емкость конденсатора С2 выбирается из расчета 1…1,5 мкФ на 1 Вт выходной мощности, например при изготовлении БП на 150 Вт следует использовать конденсатор на 150…220 мкФ. Диодный мост первичного питания VD можно использовать в соответствии с установленным конденсатором фильтра первичного питания, при емкостях до 330 мкФ можно использовать диодные мосты на 4…6А, например RS407 или RS607. При емкости конденсаторов 470…680 мкФ нужны уже более мощные диодные мосты, например RS807, RS1007.
Об изготовлении трансформатора можно разговаривать долго, однако вникать в глубокую теорию расчетов слишком долго и далеко не каждому нужно. Поэтому расчеты типоразмеров ферритовых колец М2000НМ1 просто сведены в таблицу 1.
Таблица 1
Как видно из таблицы габаритная мощность трансформатора зависит не только от габаритов сердечника, но и от частоты преобразования. Изготавливать трансформатор для частот ниже 40 кГц не очень логично — гармониками можно создать не преодолимые помехи в звуковом диапазоне. Изготовление трансформаторов на частоты выше 100 кГц уже непозволительно по причине саморазогрева феррита М2000НМ1 вихревыми токами.
В таблице приведены данные по первичным обмоткам, из которых легко вычисляются отношения витков/вольт и дальше уже вычислить, сколько витков необходимо для того или иного выходного напряжения труда не составит. Следует обратить внимание на то, что подводимое к первичной обмотке напряжение составляет 155 В — сетевое напряжение 220 В после выпрямителя и сглаживающего фильтра будет составлять 310 В постоянного напряжения, схема полу мостовая, следовательно к первичной обмотке будет прилагаться половина этого значения.
Так же следует помнить, что форма выходного напряжения будет прямоугольной, поэтому после выпрямителя и сглаживающего фильтра величина напряжения от расчетной отличаться будет не значительно.
Таблица приведена до мощностей 2400 Вт — более мощные БП будут описаны в следующих номерах журнала, поэтому табличку стоит сохранить.
Таблица 2 и 3
Диаметры необходимых проводов рассчитываются из отношения 5 А на 1 кв мм сечения провода. Причем лучше использовать несколько проводов меньшего диаметра, чем один, более толстый провод. Это требование относится ко всем преобразователям напряжения, с частотой преобразования выше 10 кГц, так как начинает уже сказываться скин-эффект — потери внутри проводника, поскольку на высоких частотах ток течет уже не по всему сечению, а по поверхности проводника и чем выше частота, тем сильнее сказываются потери в толстых проводниках.
Поэтому не рекомендуется использовать в преобразователях с частотой преобразования выше 30 кГц проводники толще 1 мм. Следует так же обратить внимание на фазировку обмоток — неправильно сфазированные обмотки могут либо вывести силовые ключи из строя, либо снизить КПД преобразователя.
Но вернемся к БП, приведенному на рисунке 3. Минимальная мощность данного БП практически ни чем не ограничена, поэтому можно изготовить БП и на 50 Вт и меньше. Верхний же предел мощности ограничен некоторыми особенностями элементной базы.
Для получения больших мощностей требуются транзисторы MOSFET более мощные, а чем мощнее транзистор, тем больше емкость его затвора. Если емкость затвора силового транзистора довольно высокая, то для её заряда-разряда требуется значительный ток. Ток транзисторов управления IR2153 довольно не велик (200 мА), следовательно, эта микросхема не может управлять слишком мощными силовыми транзисторами на больших частотах преобразования.
Исходя из вышесказанного становится ясно, что максимальная выходная мощность преобразователя на базе IR2153 не может быть более 500…600 Вт при частоте преобразования 50…70 кГц, поскольку использование более мощных силовых транзисторов на этих частотах довольно серьезно снижает надежность устройства. Список рекомендуемых транзисторов для силовых ключей VT1, VT2 с краткими характеристиками сведен в таблицу 2.
Выпрямительные диоды вторичных цепей питания должны иметь наименьшее время восстановления и как минимум двукратный запас по напряжению и трехкратный току. Последние требования обоснованы тем, что выбросы напряжения самоиндукции силового трансформатора составляют 20…50 % от амплитуды выходного напряжения.
Например при вторичном питании в 100 В амплитуда импульсов самоиндукции может составлять 120…150 В и не смотря на то, что длительность импульсов крайне мала ее достаточно чтобы вызвать пробой в диодах, при использовании диодов с обратным напряжением в 150 В. Трехкратный запас по току необходим для того, чтобы в момент включения диоды не вышли из строя, поскольку емкость конденсаторов фильтров вторичного питания довольно высокая, и для их заряда потребуется не малый ток. Наиболее приемлемые диоды VD4-VD11 сведены в таблицу 3.
Емкость фильтров вторичного питания (С11, С12) не следует увеличивать слишком сильно, поскольку преобразование производится на довольно больших частотах. Для уменьшения пульсаций гораздо актуальней использование большой емкости в первичных цепях питания и правильный расчет мощности силового трансформатора. Во вторичных же цепях конденсаторов на 1000 мкФ в плечо вполне достаточно для усилителей до 100 Вт (конденсаторы по питанию, установленные на самих платах УМЗЧ должны быть не менее 470 мкФ) и 4700 мкФ для усилителя на 500 Вт.
Плата
На принципиальной схеме изображен вариант выпрямителей вторичного силового питания, выполненный на диодах Шоттки, под них и разведена печатная плата (рисунок 4). На диодах VD12, VD13 выполнен выпрямитель для вентилятора принудительного охлаждения теплоотводов, на диодах VD14-VD17 выполнен выпрямитель для низковольтного питания (предварительные усилители, активные регуляторы тембра и т.д.). На том же рисунке приведен чертеж расположения деталей и схема подключения.
В преобразователе имеется защита от перегрузки, выполненная на трансформаторе тока TV1, состоящая из кольца К20х12х6 феррита М2000 и содержащего 3 витка первичной обмотки (сечение такое же как и первичная обмотка силового трансформатора и 3 витка вторичной обмотки, намотанной двойным проводом диаметром 0,2…0,3 мм.
При перегрузке напряжение на вторичной обмотке трансформатора TV1 станет достаточным для открытия тиристора VS1 и он откроется, замкнув питание микросхемы IR2153, тем самым прекратив ее работу. Порог срабатывания защиты регулируется резистором R8. Регулировку производят без нагрузки начиная с максимальной чувствительности и добиваясь устойчивого запуска преобразователя.
Принцип регулировки основан на том, что в момент запуска преобразователя он нагружен максимально, поскольку требуется зарядить емкости фильтров вторичного питания и нагрузка на силовую часть преобразователя максимальная.
Об остальных деталях: конденсатор С5 — пленочный на 0,33… 1 мкФ 400В; конденсаторы С9, С10 — пленочные на 0,47…2,2 мкФ минимум на 250В; индуктивности L1…L3 выполнены на ферритовых кольцах К20х12х6 М2000 и наматываются проводом 0,8… 1,0 мм до заполнения виток к витку в один слой; С14, С15 — пленочные на 0,33…2,2 мкФ на напряжение не менее 100 В при выходном напряжении до 80 В; конденсаторы С1, С4, С6, С8 можно керамические, типа К10-73 или К10-17; С7 можно и керамический, но лучше пленочный, типа К73-17.
Как настроить импульсный блок питания
В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.
Конструктивные особенности и принцип работы
Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:
- Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
- Импульсный принцип.
Рассмотрим, чем отличаются эти два варианта.
БП на основе силового трансформатора
Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.
Упрощенная структурная схема аналогового БП
Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.
Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.
Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.
Понижающий трансформатор ОСО-0,25 220/12
Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.
Импульсные устройства
Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.
Рисунок 3. Структурная схема импульсного блока питания
Рассмотрим алгоритм работы такого источника:
- Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
- Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
- На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
- Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.
В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.
Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.
Как работает инвертор?
ВЧ модуляцию, можно сделать тремя способами:
- частотно-импульсным;
- фазо-импульсным;
- широтно-импульсным.
На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.
Структурная схема ШИМ-контролера и осциллограммы основных сигналов
Алгоритм работы устройства следующий:
Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).
Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.
Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.
В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.
Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.
Сильные и слабые стороны импульсных источников
Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:
- Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
- Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
- Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
- Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
- Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.
К недостаткам импульсной технологии следует отнести:
Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.
Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.
Сфера применения
Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:
- различные виды зарядных устройств; Зарядки и внешние БП
- внешние блоки питания;
- электронный балласт для осветительных приборов;
- БП мониторов, телевизоров и другого электронного оборудования.
Импульсный модуль питания монитора
Собираем импульсный БП своими руками
Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.
Принципиальная схема импульсного БП
Обозначения:
- Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
- Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
- Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
- Транзистор VT1 – KT872A.
- Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
- Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
- Предохранитель FU1 – 0.25А.
Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.
СБОРКА И НАЛАДКА ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ НА IR2153 IR2155
Практическую часть статьи рассмотрим на примере схемы №2 первой части сатьи и чтобы не перепрыгивать туда-сюда расположим здесь принципиальную схему данного блока питания:
Принципиальная схема импульсного блока питания на микросхеме IR2153 (IR2155)
Начинать сборку все равно с чего – либо с монтажа элементов на плату, либо с изготовления моточных деталей. Мы начнем с монтажа, поэтому лучше изучить чертеж расположения деталей повнимательней, к тому же некоторые элементы отличаются от предложенных на принципиальной схеме.
Например номиналы резисторов R16 и R18 отличаются чуть ли не в полтора раза. В данном случае номиналя этих резисторов не принципиальны и могут располоагаться в пределах от 33 кОм до 100 кОм, поскольку служать прежде всего для разрядки конденсатора С4 при снятии напряжения питания. Второстепенную роль, которую они выполняют, это формировании виртуального нуля, т.е. создания половины первичного напряжения, что немного предпочтительней простого соеднинения С13 и С14 с шинами питания.
Резисторы R14 и R17 – формируют небольшую задержку немного увеличивая время реакции системы защиты. Номиналы этих резисторов могут располагаться от 33 Ом до 180 Ом.
С13 и С14 – предназначены для развязки по постоянному напряжению обмотки трансформатора, на схеме 1 мкФ, на плате 2,2 мкФ. При частоте преобразования 60 кГц реактивное сопротивление конденсатора на 1 мкФ будет составлять Хс = 1 / 2пFC = 5,3 Ома, учитывая то, что по «схемному» вариант по переменному напряжению получается паралельное соединение, т.е. получается 2 мкФ, то реактивное сопротивление составит 2,7 Ома. При протекании через это сопротивление тока в 2 А на конднесаторе будет условное «падение» напряжения всего в 2,7 Ома х 2 А = 5,4 В, что составляет 1,8 %. Другими словами выходное напряжение блока питания будет изменяться менее чем на 2 % под нагрузкой и без нее за счет реактивного сопротивление конденсаторов. При использовании конденсаторов на 2,2 мкФ в качестве С13 и С14 реактивное сопротивление составляет 1,2 Ома и под нагрузкой оно изменится на 0,8 %. Учитывая то, что напряжениесети может колебаться до 7% и это считается нормой изменения в 0,8 – 2 % врядли кто заметит, поэтому можно использовать конденсаторы от 1 мкФ до 4,7 мкФ, правда в эту плату габариты емкостей на 4,7 мкФ уже не будут слишком велики.
Сопротивление R20 может колебаться в гораздо бОльших пределах, поскольку его номинал зависит от потребляемого вентилятором принудительного охлажедения и полученным в конечном итоге выходного напряжения.
Сомнения в итоговом напряжении не напрасны, поскольку силовой трансформатор высокочастотный и имеет небольшое количество витков, а мотать дробные части витка довольно проблематично. Для примера рассмотрим случай, когда первичная обмотка составляет 17 витков. Прилагаемое к ней напряжение равно 155 В (после выпрямителя на VD1 получается 310 В, следовательно половина напряжение питания и есть 155 В). Воспользуемся пропорцией U перв / Q перв = U втор / Q втор , где U перв – напряжение на первичной обмотке, Q перв – количество витков первичной обмотки, U втор – напряжение вторичной обмотки, Q втор – количество витков вторичной обмотки и выясним, какие вторичные напряжения мы можем получить:
155 / 17 = ? / 5, где » ? » – выходное напряжение. Если во вторичной обмотке у нас будет 5 витков, то выходное напряжение будет составлять 45 В, если вторичка будет 4 витка, то выходное напряжение трансформатора составит 36 В.
Как видите получить напряжение ровно 40 вольт уже проблематично – нужно мотать 4,4 витка, а реальность показывает, что использовать обмотки не кратные половине витка довольно рискованно – можно намагнитить трансформатор и потерять силовые транзисторы.
В конечном итоге после монтажа компонентов печатная плата блока питания приобретет следующий вид:
На плате пока нет диодных мостов, силовых транзисторов, радиатров и моточных деталей, о которых сейчас и поговорим. При изготовлении импульсных блоков питания не стоит забывать о скин эффекте, который проявляется при протекании через проводник высокочастотного сигнала. Смысл этого эффекта заключается в том, что чем выше частота переменного напряжениея, тем меньше протекает ток через середину проводника, т.е. ток как будто стремится выйти на поверхность. Отсюда и название SKIN -кожа, шкура. По этому для высокочастотных трансформаторов необходимое от протекающего тока сечение получают методом сложения в жгут нескольких проводников меньшего диаметра, тем самым существенно снижая скин эффект и увеличивая КПД преобразователя.
Самым популярным способом сложения проводников является витой жгут. Определившись с длиной провода, необходимого для обмотки (одинарным проводм мотают необходимое количество витков и добавляют к полученной длине еще 15-20%) необходмое количество проводов растягиваю на эту длину а затем при помощи дрели и воротка свивают в один жгут:
Изготовление ленточного жгута более трудоемко – провода растягивают в непосредственной близости другу к другу и склеивают полиуритановым клеем, типа «МОМЕНТ КРИСТАЛЛ». В результате получается гибкая лента, намоитка которой позоволяет добится наибольшей плотности намотки:
Перед намоткой ферритовое кольцо следует подготовить. Прежде всего необходимо закруглить углы, поскольку они с легкостью повреждают лак на обмоточном проводе:
Затем необходимо кольцо изолировать, поскольку феррит имеет достаточно низкое сопротивление и в случае повреждения лака на обмоточном проводе может произойти межвиитковое замыкание. В середине, на азднем плане кольцо обмотано обычной бумагой для принтера, справа – бумага пропитана эпоксидным клеем, в середине спереди – наиболее предпочтительный материал – фторопластовая пленка:
Так же кольца можно обматывать матерчатой изолентой, но она довольно толстая и существенно сокращает размер окна, а это не очень хорошо.
Используя в качестве сердечника ферритовое кольцо обмотку необходимо равномерно распределить по всему сердечнику, что довольно существенно увеличивает магнитную связь обмоток и уменьшает создаваемые импульсным трансформатором электро-магнитные помехи:
Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.
Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.
Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.
Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.
Они подразделяются на трансформаторные и импульсные изделия.
Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.
Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.
Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение
За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.
Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).
Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.
Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.
Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.
Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.
После силового трансформатора наступает очередь работы выходного выпрямителя.
Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.
Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.
Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.
Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.
Накопительная емкость сглаживает пульсации.
Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.
Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.
Разберем все эти части подробнее.
Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций
Важно понимать, что импульсы высокой частоты играют двоякую роль:
- в/ч помехи могут приходить из бытовой сети в блок питания;
- импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.
Причины появления помех в бытовой сети:
- апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
- работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
- последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.
Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.
Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.
Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.
Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)
Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.
Работу дросселя эффективно дополняют емкостные сопротивления.
Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.
Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.
Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.
Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.
Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.
У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.
Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.
Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.
У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.
Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.
Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.
Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.
Сетевой выпрямитель напряжения: самая популярная конструкция
В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.
Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.
Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками
Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.
На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.
Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).
Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.
ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.
Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.
За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.
Импульсный трансформатор: принцип работы одного импульса в 2 такта
Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.
Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.
Его энергия расходуется:
- вначале на намагничивание сердечника магнитопровода;
- затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.
По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.
Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.
Однотактная схема импульсного блока питания: состав и принцип работы
На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.
Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.
В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.
При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.
Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.
Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.
Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.
Двухтактная схема импульсного блока питания: 3 варианта исполнения
Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.
Простейший вариант исполнения двухполупериодной методики показан на картинке.
Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.
Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.
Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.
Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.
Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.
Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.
В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:
- уменьшенного падения напряжения на прямом включении;
- и повышенного быстродействия во время обработки высокочастотных импульсов.
3 схемы силовых каскадов двухтактных ИБП
По порядку сложности их исполнения генераторы выполняют по:
- полумостовому;
- мостовому;
- или пушпульному принципу построения выходного каскада.
Полумостовая схема импульсного блока питания: обзор
Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.
К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.
Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.
Мостовая схема импульсного блока питания: краткое пояснение
Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).
Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.
Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.
Пушпульная схема: важные особенности
Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.
Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.
Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.
К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.
Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.
Выходной выпрямитель: самое популярное устройство
Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.
Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.
Схема стабилизации напряжения: как работает
Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.
С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.
Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.
В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.
Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.
Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.
Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.
Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.
Импульсный блок питания на все случаи жизни. IR2153 — Поделиться проектом
ВВЕДЕНИЕ С шести лет я подумал, что было бы круто сделать своего собственного веб-кастера. Не зная тогда многого, я подумал, что могу использовать леску с присоской на конце, и это может помочь. 3D-принтеры только становились доступными, а у нас их в то время не было.Итак, идея проекта была отложена. С тех пор мы с папой стали Творцами. Это натолкнуло меня на мысль, что, если бы в «Стихах-пауках» был другой персонаж — скажем, 14 лет, единственный ребенок, выросший со старыми моторами и механическими частями в подвале и электронными приборами. У него накопилось два 3D-принтера и сварщик. В 9 лет он открыл канал Maker (Raising Awesome). Его отец импульсивно купил швейную машинку в Prime Day, и ТОГДА, в 14 лет, его укусил радиоактивный жук Maker … ну, паукообразный.Сначала он был Создателем, а затем получил свои паучьи способности. На что был бы похож этот персонаж? Итак, мы придумали перчатку Веблингера и схему Spidey-Sense Visual AI. ДИЗАЙН ПРОЕКТА Вебслингер В перчатке веблингера находится 16-граммовый баллончик с СО2, с помощью которого можно выстрелить в крючок, привязанный к кевлару. Для этого не требуется никакого микроконтроллера, только клапан, который вы найдете для накачивания велосипедных шин. У него будет двигатель в перчатке, чтобы отследить кевлар. Spider-SenseКамера и amp; датчик приближения был вшит в спину рубашки.Raspberry Pi A + служил мозгом для всего костюма, управляя всеми датчиками и камерами внутри костюма. Наряду с этим мы использовали Pi SenseHat со встроенным дисплеем RGB для изменения логотипов, например, при срабатывании «Spidey Sense». За время этого конкурса я смог выиграть последний костюм на Хеллоуин. Вы можете найти модель на нашем сайте GitHub: https://github.com/RaisingAwesome/Spider-man-Into-the-Maker-Verse/tree. /master. Это код для запуска RGB и вибрации: from sense_hat import SenseHat время импорта импорт RPi.GPIO как GPIO # Режим GPIO (ПЛАТА / BCM) GPIO.setmode (GPIO.BCM) # установить контакты GPIO GPIO_ECHO = 9 GPIO_TRIGGER = 10 GPIO_VIBRATE = 11 # установить направление GPIO (IN / OUT) GPIO.setup (GPIO_TRIGGER, GPIO.OUT) GPIO.setup (GPIO_ECHO, GPIO.IN) GPIO.setup (GPIO_VIBRATE, GPIO.OUT) смысл = SenseHat () г = (0, 255, 0) б = (0, 0, 255) у = (255, 255, 0) ш = (255,255,255) г = (204, 0, 0) a1 = [ б, г, б, б, б, б, г, б, б, г, б, б, б, б, г, б, б, б, г, г, г, г, б, б, б, б, б, г, г, б, б, б, г, г, г, г, г, р, г, г, б, б, б, г, г, б, б, б, б, б, г, б, б, г, б, б, б, г, б, б, б, б, г, б ] a2 = [ б, б, г, б, б, г, б, б, б, г, б, б, б, б, г, б, б, б, г, г, г, г, б, б, г, б, б, г, г, б, б, г, б, г, г, г, г, г, г, б, г, б, б, г, г, б, б, г, б, б, г, б, б, г, б, б, б, б, г, б, б, г, б, б ] a3 = [ г, б, б, б, б, б, б, г, б, г, б, б, б, б, г, б, б, б, г, г, г, г, б, б, г, б, б, г, г, б, б, г, б, г, г, г, г, г, г, б, г, б, б, г, г, б, б, г, б, б, г, б, б, г, б, б, б, г, б, б, б, б, г, б ] def animate (): # dist дано в футах.# скорость рассчитывается по линейному уравнению y = mx + b, где b = 0 и m = 0,1 sense.set_pixels (a1) time.sleep (0,05 * расстояние ()) sense.set_pixels (a2) time.sleep (0,05 * расстояние ()) sense.set_pixels (a1) time.sleep (0,05 * расстояние ()) sense.set_pixels (a3) time.sleep (0,05 * расстояние ()) def distance (): # Возвращает расстояние в футах StartTime = time.time () timeout = time.time () timedout = Ложь # установите для Trigger значение HIGH, чтобы подготовить систему GPIO.вывод (GPIO_TRIGGER, True) # установите Триггер через 0,00001 секунды (10 мкс) на НИЗКИЙ, чтобы отправить эхо-запрос от датчика time.sleep (0,00010) GPIO.output (GPIO_TRIGGER, ложь) # чтобы не ждать вечно, установим тайм-аут, если что-то пойдет не так. а GPIO.input (GPIO_ECHO) == 0: # если мы не получили ответ, чтобы сообщить нам, что он собирается пинговать, двигайтесь дальше. # датчик должен сработать, сделать свое дело и начать отчитываться через миллисекунды.StartTime = time.time () если (time.time () & gt; тайм-аут + .025): timedout = True перерыв #print («Истекло время ожидания эхо от низкого до высокого:», время ожидания) timeout = Время начала StopTime = Время начала а GPIO.input (GPIO_ECHO) == 1: # если мы не получим отскока на датчике с верхней границей его диапазона обнаружения, двигайтесь дальше. # Ультразвук движется со скоростью звука, поэтому он должен возвращаться, по крайней мере, # быстро для вещей, находящихся в пределах допустимого диапазона обнаружения.timedout = Ложь StopTime = time.time () если (time.time () & gt; тайм-аут + .025): timedout = True перерыв #print («Тайм-аут эха от высокого до низкого:», время ожидания) # записываем время, когда оно вернулось к датчику # разница во времени между стартом и прибытием TimeElapsed = StopTime — Время начала # умножаем на звуковую скорость (34300 см / с) # и разделим на 2, потому что он должен пройти через расстояние и обратно # затем преобразовать в футы, разделив все на 30.48 см на фут расстояние = (Истекшее время * 17150) / 30,46 #print («Расстояние:», расстояние) если (расстояние & lt; .1): расстояние = 5 distance = round (расстояние) если расстояние & lt; 5: вибрировать () расстояние возврата def vibrate (): # если что-то очень близко, вибрируйте spidey-sense #code pending GPIO.output (GPIO_VIBRATE, Истина) time.sleep (.1) GPIO.output (GPIO_VIBRATE, ложь) # Следующая строка позволит этому скрипту работать автономно, или вы можете # импортировать сценарий в другой сценарий, чтобы использовать все его функции.если __name__ == ‘__main__’: пытаться: GPIO.output (GPIO_TRIGGER, ложь) GPIO.output (GPIO_VIBRATE, ложь) время сна (1) в то время как True: анимировать () # Следующая строка — это пример из импортированной библиотеки SenseHat: # sense.show_message («Шон любит Бренду и Коннора !!», text_colour = желтый, back_colour = синий, scroll_speed = .05) # Обработка нажатия CTRL + C для выхода кроме KeyboardInterrupt: print («\ n \ nВыполнение Spiderbrain остановлено.\ n «) GPIO.cleanup () Визуальный AII Если вы видели Человека-паука: Возвращение домой, вы бы знали о совершенно новом ИИ под брендом Старка, Карен, которую Питер использует в своей маске, чтобы помочь ему в миссиях. Карен была разработана, чтобы иметь возможность выделять угрозы и предупреждать Питера о его окружении, а также управлять многими функциями его костюма. Хотя создание чат-бота с ИИ, который отвечает голосом и чувством эмоций, может быть не самой простой задачей для этого соревнования, мы все же задумались, чтобы включить способ создания этого искусственного «паучьего чутья».«Мы решили, что сейчас самое подходящее время, чтобы воспользоваться всплеском популярности Microsoft Azure и API машинного зрения, предоставляемого Microsoft. Мы создали решение« видеть в темноте »с помощью Raspberry Pi Model A и камера NoIR: облачный сервис Microsoft Computer Vision может анализировать изображения, снятые камерой Raspberry Pi (также известной как моя камера Pi-der), прикрепленной к ремню. Чтобы активировать это сверхшестое чувство, у меня есть как только акселерометр Sense Hat стабилизируется, снимок будет сделан автоматически.Используя личную точку доступа моего мобильного телефона, API Azure анализирует изображение, а пакет eSpeak Raspberry Pi сообщает мне об этом через наушник. Это позволяет костюму определять, приближается ли за мной машина или злой злодей. Python Visual AI для Microsoft Azure Machine Vision: import os запросы на импорт из Picamera импорт PiCamera время импорта # Если вы используете блокнот Jupyter, раскомментируйте следующую строку. #% matplotlib встроенный import matplotlib.pyplot как plt из PIL импорта изображения из io импорт BytesIO камера = PiCamera () # Добавьте ключ подписки Computer Vision и конечную точку в переменные среды. subscription_key = «ЗДЕСЬ ВАШ КЛЮЧ !!!» endpoint = «https://westcentralus.api.cognitive.microsoft.com/» Analyse_url = конечная точка + «видение / версия 2.0 / анализ» # Установите image_path как локальный путь к изображению, которое вы хотите проанализировать. image_path = «image.jpg» def spidersense (): камера.start_preview () время сна (3) camera.capture (‘/ home / spiderman / SpiderBrain / image.jpg’) camera.stop_preview () # Считываем изображение в байтовый массив image_data = open (image_path, «rb»). read () headers = {‘Ocp-Apim-Subscription-Key’: subscription_key, ‘Content-Type’: ‘application / octet-stream’}. params = {‘visualFeatures’: ‘Категории, Описание, Цвет’} ответ = запросы.post ( analysis_url, headers = headers, params = params, data = image_data). отклик.Raise_for_status () # Объект «анализ» содержит различные поля, описывающие изображение. Большинство # соответствующий заголовок для изображения получается из свойства ‘description’. анализ = response.json () image_caption = analysis [«описание»] [«captions»] [0] [«текст»]. capitalize () the_statement = «espeak -s165 -p85 -ven + f3 \» Коннор. Я вижу «+ \» «+ image_caption +» \ «—stdout | aplay 2 & gt; / dev / null» os.system (the_statement) #print (image_caption) паучье чувство () СОЗДАЙТЕ ВИДЕО Чтобы увидеть все это вместе, вот наше видео о сборке:
IR2153 Трансформатор ATX с симметричным выходом SMPS Circuit
Они говорят 🙂 Это должен быть простой SMPS IR2153 и основные материалы, а также пассивные компоненты, симметричные с козлиным SMPS. Схема управления IR2153 основана на очень немногих элементах, используемых на Печатная плата управления… Electronics Projects, IR2153 ATX Transformer с симметричным выходом Схема SMPS «проекты силовой электроники, схемы smps, проекты smps, схемы smps», Дата 2016/05/02
Они говорят 🙂 Это должен быть простой SMPS IR2153 и основные материалы, а также пассивные компоненты, симметричные с козлиным SMPS Circuit
Схема управления IR2153 основана на очень небольшом количестве элементов, которые используются на плате управления, установленной через другие отделы 🙂 Источник питания P4, используемый в схеме, стал немного отрезал комбайн: D
с первой попытки выход 2x25v дал работу, я не был уверен, застал врасплох 🙂 тест при полной нагрузке не смог + 0- там между двумя резисторами 50Ω 2 Вт и + — между двумя резисторами pralel 220w 50w зацепили до 2 ампер напряжение нагрузки падает. IR2153 и нагревание фета, хотя я не использую полевые транзисторы. Это было очень сильным в моем уме, но выходило 🙂 IRFP460 IRF730 Я использую
ir2153, принципиальная схема
ir2153 circuit-1
ir2153 circuit-2
Симметричный ИИП напряжения с IR2153 и трансформатором АТХ Я думаю, так называется простой ИИП.Симметричная схема SMPS с несколькими компонентами и IR2153. Основа схемы управления — IR2153. Я пробовал на макетной плате. Другие компоненты из модуля питания компьютера Pentium 4. Я был вырезан и вставлен в схему, и последний результат, что
Схема давала выход 2 × 25 вольт с первой попытки, я не был готов, lol. Я не делаю тест с полной нагрузкой. IR2153 не нагревается в цепи, потому что этот полевой транзистор очень мощный. В настоящее время я планирую использовать полевой транзистор IRF730, но в данный момент я его не использовал. Я использовал IRF460.
Схема очень простая Я добавлю схему защиты в будущем.У меня есть 2 разные схемы с IR2153. Это дает мне хорошие идеи, особенно схема 1 (Devre1) со схемой защиты тиристора, эту схему можно использовать для различных схем SMPS. Схема 2 более развита, Специально секция питания IC более стабильна. резистор как стандартные приложения. резистор был 2 ватт, но он был теплым, вы должны использовать резистор 5 ватт.
Последние новости: в будущем я добавлю новые спецификации
(Burada da yorum yazan / soru soran arkadaşların sorularını çevirdim.
Перевод комментариев
Commets:
Пользователь: Mesut
Номер комментария: 1
Какие значения напряжения для C5 и C6? также Diod FR107 легко найти компенент?
Пользователь: Admin
Com.Number: 2
50 вольт — это значения напряжения конденсаторов C5 и C6, и вы можете использовать uf4007 или ba159 для периода fr107.
Commet: 4
Пользователь: Mesut
Какой у типа конденсатор c4capacitor?
Комментарий: 5
Пользователь: Admin
C4 — керамический конденсатор без полярности, и я думаю, на второй фотографии задней стороны трансформатора конденсатор красного цвета.
Комментарий: 7
Пользователь: whyliving
Спасибо за схемы. У меня есть вопросы
-Каков метод изменения нагрузки этой схемы?
— Как защитить от короткого замыкания?
— Как увеличить мощность этой схемы? для чего подходит трансформатор и транзистор.
У меня ETD59. Это дает 1кВт? У меня есть драйверы N-FET для блока питания E13007 serie atx. Могу ли я использовать их?
Комментарий: 9
Пользователь: X-Fi *
* В этом блоге у этого пользователя есть несколько схем проектирования SMPS.
Вы можете работать по этой схеме с ETD59 и разными MOSFET s. Но вы не можете дать 1 кВт. Поскольку в этой системе переключение осуществляется полумостовым, а максимальная мощность составляет примерно 600 Вт. Если вы хотите более 1 кВт с ETD59, вы должны сделать полную мостовая коммутация.
E13007 не является MOSFET. Если вы хотите сделать MOSFET SMPS. Мой совет — IRFP460
Примечание: Извините за мой английский. Надеюсь, вы поняли все предложения lol.
И снова извините за поздний перевод
Reagards
Flatron
2002 — перекрестная ссылка IGBT semikron eupec
Аннотация: Перекрестная ссылка IGBT semikron 2MBI 200NB-120 IGBT Eupec 150Ne120 MG200J2YS50 mitsubishi MG100Q2YS51 MG400Q1US41 igbt mitsubishi FZ800R16KF4 MG200Q2YS40
|
Оригинал |
DS5468 DS5468-2 FZ1200R33KF2 140×190 DIM1200ESM33 FZ1600R12KF4 140×130 DIM1600FSM12 FF400R12KF4 Перекрестная ссылка на IGBT semikron eupec Перекрестная ссылка IGBT semikron 2MBI 200NB-120 IGBT Eupec 150Ne120 Мицубиси MG200J2YS50 MG100Q2YS51 MG400Q1US41 igbt mitsubishi FZ800R16KF4 MG200Q2YS40 | |
2003 — перекрестная ссылка IGBT semikron eupec
Аннотация: 150Ne120 IGBT cross reference semikron FZ800R16KF4 Eupec Power Semiconductors MG200J2YS50 mitsubishi IGBT mitsubishi mg300j2ys50 MG200Q2YS40 FZ1600R12KF4 MBM200GS12
|
Оригинал |
DS5468 DS5468-2 FZ1200R33KF2 140×190 DIM1200ESM33 FZ1600R12KF4 140×130 DIM1600FSM12 FF400R12KF4 Перекрестная ссылка на IGBT semikron eupec 150Ne120 Перекрестная ссылка IGBT semikron FZ800R16KF4 Eupec Power Semiconductors Мицубиси MG200J2YS50 БТИЗ mitsubishi mg300j2ys50 MG200Q2YS40 FZ1600R12KF4 МБМ200ГС12 | |
тонкий разъем sata
Аннотация: sata ssd controller TDK GBDriver RS2 AES128bit ata controller ssd slim SHG2A 1 398 os SSD коннектор PUB197
|
Оригинал |
1 ГБ 32 ГБ 8HDD32 ГБ Slim95MByte / sec15bit / сектор AES128BitATATDK 8 бит / сектор 15 бит / сектор 16 ГБ PUB197 AES128BitCBC 95 МБ / с 28 МБ / с тонкий разъем sata sata ssd контроллер TDK GB Драйвер RS2 AES128bit ata контроллер ssd стройное SHG2A 1 398 ос Разъем SSD PUB197 | |
2003 — Множитель сохранения с переносом
Аннотация: абстрактный текст недоступен
|
Оригинал |
32-битный 64-битный НЕСКОЛЬКО 32 REJ05B0372-0100Z / Rev Перенести множитель сохранения | |
1996 — серийный счетчик
Резюме: скан-код CA81
|
Оригинал |
||
55072-112
Реферат: прокладка 55072-159 CPR-187F PDR40 CPR-187 550722 половинная CPR-284G
|
OCR сканирование |
252DCT, 252DCM CPR90Gt CPR112Gt CPR137G CPR159G + CPR187Gte 252DEM 55072-112 прокладка 55072-159 CPR-187F PDR40 CPR-187 550722 половина CPR-284G | |
2008 — HIN238
Аннотация: Приемопередатчики 485-RS-232 RS-232 в i2c ISL3281E ICL3223E ICL3222E ICL3221E ICL3217E ICL3207E TO-5
|
Оригинал |
RS-232 RS-485 / RS-422 RS-232 RS-485 250 кбит / с, 40 Мбит / с 100 Мбит / с 15 Мбит / с пс-485 RS-485, HIN238 Приемопередатчики 485-RS-232 RS-232 в i2c ISL3281E ICL3223E ICL3222E ICL3221E ICL3217E ICL3207E ТО-5 | |
skm 195 gb 125 dn
Аннотация: сверхбыстрый IGBT SKM200GB12E4 303GB12E4s SKM300GB123D Мостовой выпрямитель Igbt 107 skm200gb123d 151GB12E4s skm 50 gb 100 d
|
Оригинал |
400GAL125D 101GD066HDS 151GD066HDS 201GD066HDS 202GB066HDs 302GB066HDs 402GB066HDs СЕМИКС171Х26С SEMIX191KD16S SEMIX241Dh26S skm 195 gb 125 dn IGBT сверхбыстрый SKM200GB12E4 303GB12E4s SKM300GB123D Igbt мостовой выпрямитель 107 skm200gb123d 151GB12E4s skm 50 gb 100 d | |
2003 — Множитель сохранения с переносом
Аннотация: абстрактный текст недоступен
|
Оригинал |
M16C / 60 M16C / 20 32-битный 64-битный НЕСКОЛЬКО 32 REJ05B0161-0100Z / Rev Перенести множитель сохранения | |
2001 — Автотехника
Резюме: Примечание по применению Micro Linear 33 ML6651 AN8101 MLT 22 816 «Импульс быстрой связи»
|
Оригинал |
ML6651 АН81-01 Авто технологии Примечание по применению Micro Linear 33 AN8101 MLT 22 816 «Импульс быстрого соединения» | |
2009 — HIN238
Аннотация: ICL3221 ICL3221E ICL3226 ICL3226E ICL3227E ISL3295E
|
Оригинал |
RS-232 RS-485 / RS-422 RS-232 RS-485 250 кбит / с, ISL88694 ОТ-23 1-888-ИНТЕРСИЛЬ RS-232, РС-422, HIN238 ICL3221 ICL3221E ICL3226 ICL3226E ICL3227E ISL3295E | |
IP113
Аннотация: IP113A IP113-DS-P07 93C46 QFP-128L 30-контактный дуплексный светодиодный дисплей
|
Оригинал |
IP113 25 МГц) IEEE802 IP113 IP113-DS-P07 IP113A IP113-DS-P07 93C46 QFP-128L 30-контактный дуплексный светодиодный дисплей | |
55072-112
Аннотация: CPR-229F CPR-430G CPR-430F 550729 550722 Прокладки волновода CPR-284G WR187
|
OCR сканирование |
CPR187F CPR229F CPR284F PDR180t PDR140t PDR120t PDR100t PDR84t PDR70t PDR48t 55072-112 CPR-229F CPR-430G CPR-430F 550729 550722 CPR-284G Волноводные прокладки WR187 | |
двойной порт vram
Аннотация: абстрактный текст недоступен
|
OCR сканирование |
||
2003 — IP113
Аннотация: 93C46 IC Plus
|
Оригинал |
IP113 IEEE802 modu00 IP113-DS-R07 IP113 93C46 IC Plus | |
2002 — Нет в наличии
Аннотация: абстрактный текст недоступен
|
Оригинал |
||
2001 — МЛ6651
Реферат: nrzi mlt 22 804
|
Оригинал |
ML6651 АН81-01 нрзи млн т 22 804 | |
2001 — Нет в наличии
Аннотация: абстрактный текст недоступен
|
Оригинал |
R438B / 29367 | |
2004 — L9935
Реферат: примечания по применению трехэлементного шагового двигателя MICROSTEP TMC428 TRINAMIC Motion Control Microstep Constant Current Driver
|
Оригинал |
TMC428 L9935 L9935 TMC428 тринамический Замечания по применению шагового двигателя МИКРОСТЕП TRINAMIC Motion Control Драйвер постоянного тока Microstep | |
2006 — ADM483
Аннотация: ADM2483 ADM3076 ADM2490 Полнодуплексный кабель RS485 ADM3072 Изолированный rs-485 Высокотемпературный 125 ADM2490E ADM2486
|
Оригинал |
RS-485 ADM2485: 16-выводный 16-выводный RS-485 / RS-422 ADM3483 adm483 ADM2483 ADM3076 ADM2490 Полный дуплекс Кабель RS485 ADM3072 Изолированный rs-485 высокотемпературный 125 ADM2490E ADM2486 | |
1996 — двухпортовый V-RAM
Аннотация: двойной порт vram
|
Оригинал |
||
2005 — HIN238
Реферат: приемопередатчик RS-485 с дробной нагрузкой RS-485
|
Оригинал |
RS-232 RS-485 / RS-422 15 Мбит / с 10 Мбит / с 1-888-ИНТЕРСИЛЬ ISL8487E ISL88694 HIN238 приемопередатчик rs485 с дробной нагрузкой RS-485 | |
2006 — HIN238
Аннотация: ISL41334 ISL41387 ISL81387 ISL88694
|
Оригинал |
RS-485 / RS-422 RS-232 15 Мбит / с 10 Мбит / с 1-888-ИНТЕРСИЛЬ ISL4486 ISL81486 HIN238 ISL41334 ISL41387 ISL81387 ISL88694 | |
2012 — Нет в наличии
Аннотация: абстрактный текст недоступен
|
Оригинал |
60TWFW 60TWFWG 60TWHW 60TWHWG 72WFW 72WFWG 72WHW 72WHWG 90YWFW 90YWFWG | |
2000 — 2a1100
Аннотация: Lara Networks
|
Оригинал |
LARA92 LNI7010 32-битный 2A1100 272-битный 2a1100 Lara Networks |