Схема усилителя на транзисторе: Схемы усилителей мощности на транзисторах, самодельные УНЧ и УМЗЧ

Содержание

Простой усилитель в классе А

   Все началось с того, что буквально недавно был приобретен нерабочий компьютер, точнее только системный блок. Блок был очень старым, ничего толкового в нем не нашел и решил разломать все и достать позолоченные выводы и компоненты. Уже ненужную материнскую плату решил выбросить, но тут на глаза попали два транзистора, на которые раньше не обратил внимания. Оказалось , что стояли там два довольно редких транзистора серии TIP168. Это транзистор по схеме Дарлингтона.

   Транзистор такой редкий, что кроме даташита никакой информации не оказалось, но и этого оказалось вполне достаточно. Это 100 ваттный составной транзистор прямой проводимости, который может обеспечивать очень большой коэффициент усиления входного сигнала. А где использовать такой транзистор, если не в звуковом усилителе! 

   Я даже представить не мог, что может в итоге получиться усилитель, который сможет сравниться с любой схематикой из линейки высококачественных УНЧ. Сама схема состоит из 4-х компонентов — два резистора, входной конденсатор и сам транзистор, пятый компонент (резистор на входе питания) использован только для ограничения входного напряжения.

Схема усилителя на одном транзисторе

   В итоге получился однотактный усилитель БЕЗ ДЕТАЛЕЙ, работает в чистом классе А, а КНИ тут меньше, чем в любом усилителе. Благодаря минимальному количеству используемых компонентов выходной сигнал почти не искажается даже при максимальной выходной мощности. К стати — такой малыш отдает полноценный 1 Ватт на головку 8 Ом. В качестве головки желательно использовать динамики от старых отечественных колонок, сопротивление которых 8-32 Ом , в моем случае головка 1ГДШ на 16 Ом. 

   Входной конденсатор напрямую связан и с качеством звука и с выходной мощностью, при использовании электролитов 1-4.7 мкФ у меня резко повысились искажения, поэтому остановился на пленке. При емкости 0,1 мкФ на выходе только СЧ и ВЧ, при этом выходная мощность в районе 0,3 ватт (сигнал подавал с планшетного ПК). 

   Чувствительность тоже на высоком уровне, никакой предварительный усилитель не нужен и может работать от сигнала звуковой карты ПК. Номинал входных напряжений 3-24 Вольт, оптимальное питание 9-12 Вольт. Ток покоя 150 мА, максимальный ток потребления 570 мА при напряжении 16 Вольт и величине входного сигнала 1.7 Вольт, получается, чтобы отдавать 1 ватт выходной мощности, усилитель потребляет целых 9 ватт! КПД примерно составляет 9-10%, мда…


   Это один из немногих усилителей, который не искажая может на максимуме громкости передавать любую мелодию (классика) — Бах, Моцарт, Бетховен, Чайковский, Хачатурян. 

   Усилители с такой выходной мощностью обычно работают совместно с наушниками, но этот усилитель отлично может работать и в качестве полноценного домашнего усилителя — скажем для ПК, мощность самое оно! 

   К большому сожалению, нет аппаратуры для расценки реального качества схемы, все, что имеется — осциллограф, который показывает полную схожесть входного и выходного сигналах сигнала на частотах 1-20 кГц, ниже 1 кГц не проверял. В дальнейшем схематика будет доработана, поскольку для такого мощного ключа, 1 ватт выходной мощности явно не предел. Если вы новичок и хотите собрать усилитель, который был бы одновременно и простым и качественным, то вы читаете правильный материал, проще не бывает, а качество на самом высоком уровне!

   Можно использовать и составные ключи обратной проводимости, но не забываем сменить полярность питания. Схему нужно питать от стабилизированного блока питания или аккумулятора. 

   Совсем недавно мною был собран усилитель Марка Хьюстона, хочу заметить, что выходная мощность в случае усилителя Хьюстона составляет 5 ватт, но если сравнить качество, то данная схематика на порядок качественней. С уважением — АКА КАСЬЯН.

ВИДЕО РАБОТЫ УНЧ



Понравилась схема — лайкни!

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ

Смотреть ещё схемы усилителей

       УСИЛИТЕЛИ НА ЛАМПАХ          УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ  

   

УСИЛИТЕЛИ НА МИКРОСХЕМАХ          СТАТЬИ ОБ УСИЛИТЕЛЯХ   

    

Усилитель звука на транзисторах #1 ⋆ diodov.net

Усилитель звука относится к одному из наиболее интересных электронных устройств для начинающих электронщиков или радиолюбителей. И это не удивительно, ведь если устройство собрано правильно, то достаточно подключить динамик и сразу же раздастся звук, оповещающий о том, что усилитель мощности работает. Наличие звука приносить радость успешного завершения сборки усилителя звука своими руками, а его отсутствие – разочарование. Поэтому цель данной статьи – принести радость начинающему электронщику. Но сначала все по порядку…

Усилитель мощности на транзисторах. Базовые положения

Усилитель мощности на транзисторах присутствует в том или ином виде во многих электронных устройствах. Особенно ярко выделено его применение в звуковой технике.

Современный мир электроники полностью опутан различными запоминающими устройствами: флешки, жесткие диски и т.п. Для воспроизведения информации, хранящейся в памяти накопителей, нужно, прежде всего, преобразовать и усилить ее сигналы.

Главное назначение любого усилителя состоит в преобразовании маломощного сигнала в более мощный. При этом форма его должна сохраняться и не искажаться в процессе преобразования. Иначе произойдет частичная или полная утеря информации.

Начинающим электронщикам следует помнить очень важный момент. Усиление происходит не за счет каких-либо магических свойств транзистора, а за счет энергии блока питания. Транзистор лишь управляет потоком мощности от источника питания к нагрузке. Причем он выполняет свою работу в нужные моменты времени. Отсюда становится понятно, что мощность на нагрузке ограничена лишь мощностью блока питания. Если нагрузка, например динамик, имеет мощность 10 Вт, а источник тока способен выдать только 5 Вт, то нагрузка будет способна развить только 5 Вт.

Структура усилителя состоит из источника и узла, согласующего входной сигнал с источником тока. Такое согласование позволяет получить выходной сигнал.

Устройство транзистора

Поскольку главным элементом усилителя является транзистор, то рассмотрим вкратце устройство и принцип работы это полупроводникового прибора.

Среди довольно обширного выбора полупроводниковых приборов, как по характеристикам, так и по принципу действия, в данной статье мы рассмотрим, и будем применять исключительно биполярные транзисторы (БТ).

Такой электронный прибор состоит из полупроводникового кристалла и трех, подсоединенных к нему электродов. Вся конструкция помещается в корпус, который защищает прибор от разных внешних воздействий (пыль, влага и т.п.). От корпуса отходят три вывода: база (Б), коллектор (К) и эмиттер (Э).

Существуют принципиально два типа БТ n-p-n и p-n-p структуры. Принцип работы их аналогичен, а отличие состоит лишь в полярности подключения к их выводам источника питания и радиоэлектронных элементов, имеющих полярность, например электролитических конденсаторов.

Биполярный транзистор имеет два pn-перехода, поэтому конструктивно его можно рассматривать, как два последовательно встречно соединенных диода. Точка соединения диодов аналогична базе. Но если взять два любых диода и соединить их соответствующим образом, то в такой конструкции не будут проявляться усилительные свойства. Причина в том, что у «настоящего» транзистора слишком малое расстояние между различными полупроводниковыми структурами (база-эмиттер, база-коллектор). Расстояние равно единицам микрометра, то есть несколько тысячных миллиметра (1мкм = 0,001 мм = 0,000001 м). Именно за счет малого расстояния получается транзисторный эффект.

Как работает биполярный транзистор (БТ)

Принцип работы БТ упрощенно рассмотрим на примере ниже приведенной схемы.

Базу оставим не подключенной либо соединим ее с минусом источника питания. Последний вариант более предпочтительный, поскольку исключает появление наводок на выводе.

Чтобы исключить короткое замыкание в цепь коллектора следует установить резистор Rн, он же будет служить нагрузкой. Однако при подключении источника питания Uип, ток в цепи VT и Rн протекать не будет (обратный ток мы не берем в счет, поскольку его значение слишком мало и не превышает единиц микроампер). Отсутствие тока в цепи поясняется тем, что транзистор закрыт. И если вернуться к аналогии с диодом, то мы заметим, что один из них находится под обратным напряжением, поэтому он заперт.

Открыть БТ не составит большого труда. Следует на базу относительно эмиттера (для n-p-n структуры) приложить положительный потенциал, то есть подать напряжение, например от другого источника питания – батарейки. Величина напряжения должна быть порядка 0,6 В, чтобы скомпенсировать падение напряжения на эмиттерном переходе. Резистор Rб служит для ограничения тока, протекающего в цепи базы.

Таким образом, если подать небольшое напряжение на базу, то в цепи нагрузки Rн будет протекать ток коллектора Iк. При смене полярности блока питания VT закроется. Чтобы не запутаться и правильно подключать источник питания следует обратить внимание на направление стрелки эмиттера. Она указывает на направление протекания токов Iк и Iб. Для БТ n-p-n типа Iк и Iб входят в эмиттер, а для p-n-p – выходят.

Коэффициент усиления транзистора

Токи базы Iб и коллектора Iк находятся в тесной взаимосвязи. Более того, величина тока, протекающего в цепи коллектора помимо параметров Uип и Rн определяются величиной Iб в прямопропорциональной зависимости. Отношение Iк к Iб называется коэффициентом усиления транзистора по току и обозначается буквой β («бета»):

Коэффициент усиления является одним из важнейших параметров БТ и всегда приводится в справочниках. Для большинства маломощных БТ он находится в диапазоне 50…550 единиц. В общем, β показывает во сколько раз ток коллектора больше тока базы.

Усилитель звука на транзисторах

Усилитель звука на транзисторах предназначен для повышения мощности сигнала звуковой частоты, поэтому его еще называют усилитель мощности звуковой частоты или сокращенно УМЗЧ. Источником звука, подлежащего усилению, чаще всего служит микрофон или выход звуковой карты компьютера, ноутбука, смартфона и т.п. Мощность таких источников довольно низкая и составляет микроватты, а для нормальной работы динамика (громкоговорителя) необходимо обеспечить мощность единицы и десятки ватт, а то и сотни ватт. Поэтому главной задачей УМЗЧ является повышение мощности слабого входного сигнала в тысячи и десятки тысяч раз.

Звуки раздающейся мелодии или речи имеют сложный характер. Однако любой из них, даже самой сложной формы можно разложить в ряд сигналов синусоидальной формы, отличающихся как по частоте, так и по амплитуде.

Поэтому с целью упростить пояснение принципа работы схемы УМЗЧ будем применять входной сигнал синусоидальной формы uc. Нагрузкой на первых порах вместо динамика буде служить резистор Rн.

Однако приведенная выше схема применяется лишь для работы БТ в ключевом режиме, то есть когда полупроводниковый прибор VT находится в двух фиксированных состояниях – открытом и закрытом. Для усиления переменного сигнала данная схема непригодна, поскольку будет усиливаться только положительная полуволна входного сигнала. Для отрицательной полуволны транзистор будет закрыт. Кроме того, амплитуда входного сигнала должна быть не меньше 0,6 В, иначе просто останется незамеченным, поскольку не откроется эмиттерный переход.

Базовая схема входного каскада УМЗЧ

Чтобы схема УМЗЧ работала правильно, а это означает, усиливала без искажений положительные и отрицательные полуволны, изначально следует приоткрыть VT наполовину. Тогда положительная полуволна будет еще больше открывать БТ, а отрицательная – призакрывать его.

Приоткрыть БТ можно небольшим напряжением, поданным на базу, оно же называется напряжением смещения. Сам процесс называют установкой рабочей точки транзистора по постоянному току. Напряжение смещения зачастую подается от общего источника питания через токоограничивающий резистор Rб, согласно схемы, приведенной ниже.

Чтобы постоянное напряжение не воздействовало на источник переменного сигнала, а также не нарушался режим работы схемы по постоянному току, переменная составляющая отделяется конденсатором С1, а нагрузка подключается к коллектору через разделительный конденсатор C2 к клеммам uвых.

Правильная установка или настройка рабочей точки транзисторного усилителя звука имеет ключевое значение, поскольку если ее установить неверно, то выходной сигнал будет иметь искажения либо вовсе отсутствовать. Чтобы установить рабочую точку пользуются выходной статической характеристикой биполярного транзистора. Она характеризует зависимость тока в цепи коллектора от приложенного напряжения между выводами коллектор-эмиттер при разных значениях тока базы. На данной характеристике располагается нагрузочная прямая, на которой выделяют три участка: 1-2, 2-3 и 3-4. Участок 1-2 называется областью отсечки – здесь БТ полностью закрыт; 3-4 – область насыщения – БТ полностью открыт; 2-3 – активная область – здесь БТ находится в приоткрытом состоянии. Участки 1-2 и 3-4 используются для работы транзистора в ключевом режиме. Активный участок 2-3 соответствует работе БТ в режиме усиления. Именного на него ориентируются при настройке рабочей точки.

Расчет параметров элементов усилителя мощности

Расчет основных параметров усилителя мощности начинается с определения сопротивления резистора, который находится в цепи коллектора Rк. Чтобы его посчитать, согласно закону Ома понадобится прежде определить падение напряжения на нем URк и ток Iк:

Напряжение URк принимают из таких соображений, чтобы на полуоткрытом транзисторе оно было, равное половине напряжения источника питания Uип. Это соответствует половине нагрузочной прямой на выходной статической характеристике – точке А.

Если рабочая точка будет находится значительно выше или ниже точки А, например А1 или А2, то выходной сигнал с усилителя будет искажаться. Произойдет срез его нижних или верхних полуволн, что отразится на ухудшении качества звука. Поэтому стоит придерживаться средней точки – т. А. Однако это не всегда оправдано, особенно для сигналов очень низкой мощности. В таком случае рабочую точку принимают насколько ниже т. А, что позволяет снизить потребление электроэнергии без искажения формы выходного сигнала.

В нашем случае будем опираться на точку А. Примем напряжение источника питания Uип = 9 В (батарейка «крона»). Тогда напряжение на резисторе Rк равно:

Коллекторный ток, называемый током покоя коллектора, принимают для расчетов 0,8…1,2 мА. Возьмем среднее значение 1 мА = 0,001 А.

Сопротивление Rк равно:

Примем ближайший стандартный номинал резистора 4,7 кОм.

Теперь определит сопротивление в цепи базы Rб:

Коэффициент усиления БТ легко и с достаточной точность можно определить мультиметром. Для pn2222 я определил значение 170 единиц.

Более точную установку тока покоя коллектора устанавливают переменным резистором, включенным в цепь базы и изменяют его до тех пока, пока значение Iк станет равным 1мА. При этом ориентируются на показания миллиамперметра, установленного в цепь коллектора.

Ниже приведены схемы входных каскадов усилителей с полупроводниковыми приборами разной структуры.

Расчет емкости конденсаторов усилителя мощности звуковой частоты (УМЗЧ)

При расчете УМЗЧ следует обратить внимание на емкость развязывающих конденсаторов С1 и С2. Если их принять слишком малыми, то плохо будут проходить токи низкой частоты. Поэтому емкость можно определить по следующему выражению:

где fн – нижняя граница частоты сигнала, Гц. Для УНЧ как правило принимают 20 Гц – нижний порог слышимости человеческого уха;

Rвх – входное сопротивление следующего каскада или нагрузки. Для усилителей, в которых применяется БТ, включенный по схеме с общим эмиттером это сопротивление равняется нескольким килоом. Примем Rвх = 4,7 кОм = 4700 Ом.

Таким образом емкости конденсаторов С1 и С2 следует принимать не менее 10 мкФ.

Однако рассмотренная выше схема усилителя звука имеет недостаток, который исключает применение ее в таком виде в электронных устройствах. В схеме отсутствует температурная стабилизация, поэтому любые изменение температуры могут привести к искажению формы выходного сигнала. Устранение данного недостатка и причины его возникновения подробно рассмотрено в следующей статье.

Еще статьи по данной теме

Усилители на полевых транзисторах — stoom

Усилитель на полевом транзисторе

Усилители низких частот собирают и на полевых транзисторах (далее ПТ). Схемы таких устройств ненамного отличаются от тех, что собираются на биполярных транзисторах.

В качестве примера будет рассмотрен усилитель на полевом транзисторе с изолированным затвором с n-каналом (МДП типа).

К подложке данного транзистора последовательно подключается конденсатор, параллельно – делитель напряжения. К истоку ПТ подключается резистор (можно также использовать параллельное соединение конденсатора и резистора, как описано выше). К стоку подключается ограничительный резистор и питание, а между резистором и стоком создается вывод на нагрузку.

Входной сигнал к усилителям низкой частоты на полевых транзисторах подается на затвор. Осуществляется это также через конденсатор.

Как видно из пояснения, схема простейшего усилителя на полевом транзисторе ничем не отличается от схемы усилителя низкой частоты на биполярном транзисторе.

Правда, при работе с ПТ стоит учитывать следующие особенности данных элементов:

  1. У ПТ высокое Rвходное = I / Uзатвор-исток. Полевые транзисторы управляются электрическим полем, которое образуется за счет напряжения. Следовательно, ПТ управляются напряжением, а не током.
  2. ПТ почти не потребляют ток, что влечет за собой слабое искажение исходного сигнала.
  3. В полевых транзисторах нет инжекции зарядов, поэтому уровень шумов данных элементов очень низкий.
  4. Они устойчивы к изменению температуры.

Главный недостаток полевых транзисторов – высокая чувствительность к статическому электричеству.

Многим знакома ситуация, когда, казалось бы, нетокопроводящие вещи бьют человека током. Это и есть проявление статического электричества. Если такой импульс подать на один из контактов полевого транзистора, можно вывести элемент из строя.

Таким образом, при работе с ПТ лучше не браться руками за контакты, чтобы случайно не повредить элемент.

ООС в электронике

Первым использовать идею отрицательной обратной связи в электронике предложил Гарольд Блэк (Harold Black) для улучшения линейности усиления для межконтинентальных телекоммуникаций. Суть идеи состоит в том, чтобы пожертвовать частью коэффициента усиления ради улучшения линейности выходного сигнала. Классический электронный усилитель сигнала (электронная лампа, полевой транзистор и др.) вносит нелинейные искажения в форму сигнала. Следовательно, вычитая из входного сигнала долю выходного сигнала, делённую на коэффициент усиления, можно получить форму самих нелинейных искажений. Затем, наложив обратные искажения на входной сигнал можно добиться скомпенсированного сигнала, который, пройдя через усилитель, будет иметь сниженную нелинейность.

Показательный пример использования отрицательной обратной связи — построение усилителя со стабильным коэффициентом усиления на основе операционного усилителя (ОУ).

Пусть дан некоторый ОУ с коэффициентом усиления порядка 106. На основе этого ОУ нужно построить усилитель со входным сопротивлением не менее 5 кОм и коэффициентом усиления 3 (для неинвертирующего усилителя K=1+R2/R1).
Для этого на инвертирующий вход ОУ ставится резистор с сопротивлением чуть больше требуемого входного (допустим, 7 кОм), а в цепь обратной связи — резистор с номиналом в 2 раза больше.
Аналитическая формула показывает, что такой способ построения усилителей является приближённым, однако, в силу большой величины коэффициента усиления, погрешность от применённых допущений оказывается меньше, чем от неточности изготовления элементов.

Обычно ООС позволяет добиться хороших параметров усилителя, однако это справедливо в общем случае только для усиления постоянного тока или низких частот. Поскольку с повышением частоты задержка, вносимая усилителем, начинает давать существенный фазовый сдвиг усиливаемого сигнала, то и ООС работает уже не в соответствии с расчётом. Если и далее повышать частоту, то, когда продолжительность задержки станет порядка полупериода сигнала (то есть порядка 180 градусов по фазе), то ООС превратится в ПОС, а усилитель — в генератор. Для предотвращения этого цепь ООС должна делаться частотно-зависимой.

В СВЧ-усилителях обратная связь неприменима, поэтому стабилизировать усиление СВЧ-каскадов весьма непросто. Однако, если нужно стабилизировать не усиление, а амплитуду (мощность) выходного сигнала, это легко реализовать в виде АРУ.

ООС применяется в стабилизаторах напряжения (не во всех случаях).

5.5. Схема с коллекторной стабилизацией

В схеме с коллекторной стабилизацией в цепи эмиттера отсутствует сопротивление: RЭ = 0, рис. 5.6, а вход схемы и выход соединяются сопротивлением RБ.

Рис. 5.6. Схема с коллекторной стабилизацией

Ток смещения в этой схеме равен:

;

и уменьшается при увеличении (изменение – в общем случае). В этом проявляется ООС; по способу снятия и введения это параллельная ООС. Глубина этой обратной связи равна:

; (5.4)

Данная схема отличается простотой, обеспечивает стабилизацию режима до 30°С, но имеет существенный недостаток – вследствие ООС по переменному току через сопротивление RБ, малый коэффициент усиления. Для этого в цепи базы включают RC – фильтр, устраняющий ООС по переменному току.

Особый случай — высокое входное сопротивление

Теперь об особом случае. Если нам нужно высокое входное сопротивление, то полевой транзистор может оказаться лучшим решением.

Приведенная схема входного усилительного каскада обладает высоким входным сопротивлением и линейна. Эффект зависимости тока стока от напряжения исток — сток устранен за счет применения каскодной схемы включения. Биполярный транзистор стабилизирует напряжение на полевом. Источником опорного напряжения для стабилизатора напряжения на биполярном транзисторе является делитель напряжения на резисторах R2, R3. Выходной сигнал снимается с резистора R4.

Резистор R5 обеспечивает напряжение на затворе равным 0. Его нужно брать возможно большего сопротивления, так как именно сопротивление этого резистора определяет входное сопротивление каскада. Можно взять 10 МОм.

Определим рабочую точку (режим работы полевого транзистора). Выберем ее на линейном участке: напряжение затвор — исток возьмем таким, чтобы ток линейно зависел от этого напряжения. Так как затвор по постоянному току у нас заземлен, то это смещение будет формироваться за счет падения напряжения на резисторе в цепи истока. Рабочая точка выбирается таким образом, чтобы во всем диапазоне входных напряжений полевой транзистор оставался на линейном участке. Выбор рабочей точки осуществляется обычно с использованием графиков зависимости тока стока от напряжения затвор- исток и напряжения сток — исток, которые приводятся в справочнике. В результате получаются [Сила тока стока в рабочей точке], [Напряжение затвор-исток в рабочей точке], [Напряжение сток-исток в рабочей точке] В любом случае потом параметры резисторов приходится немного подбирать.

[Сопротивление резистора R1, кОм] = — [Напряжение затвор-исток в рабочей точке, В] / [Сила тока стока в рабочей точке, мА]

Знак ‘минус’ нужен потому, что напряжение затвор — исток меньше нуля.

[Сопротивление резистора R3, кОм] = [Напряжение питания, В] / [Сила тока стока в рабочей точке, мА] * [Коэффициент передачи тока биполярного транзистора] / 20

[Сопротивление резистора R2, кОм] = [Сопротивление резистора R3, кОм] / ([Напряжение питания, В] / ([Напряжение сток-исток в рабочей точке, В] + [Напряжение насыщения база-эмиттер биполярного транзистора, кОм] — [Напряжение затвор-исток в рабочей точке, В]) — 1)

[Сопротивление резистора R4, кОм] = [Напряжение питания, В] / 2 / [Сила тока стока в рабочей точке, мА]

Приведенный усилитель работает с малыми сигналами. Он не может применяться для усиления больших сигналов, так как сила тока стока должна располагаться в районе 1 мА, чтобы избежать насыщения.

(читать дальше…) :: (в начало статьи)

:: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи.

Еще статьи

Транзисторный УМЗЧ высокого качества. Усилитель мощности низкой, звуко…
Высококачественный УМЗЧ на биполярных транзисторах. Схема для сборки своими рука…

Применение полевых транзисторов, МОП, FET, MOSFET. Использование. Схем…
Типичные схемы с полевыми транзисторами. Применение МОП….

Усилитель звука класса D (Д) большой мощности. Звуковой. УМЗЧ. УНЧ. Сх…
УМЗЧ большой мощности класса D. Ключевой режим….

Качественный усилитель мощности звуковой, низкой частоты, звука, нч. В…
Качество усилителей звуковой частоты. Обзор, схемы….

Акустическая система, акустика. Качество звукоусиливающей, звукоусилит…
Акустическая система и качество усилителей звука. Элементная база усилительной а…

Импульсный источник питания. Своими руками. Самодельный. Сделать. Лабо…
Схема импульсного блока питания. Расчет на разные напряжения и токи….

Транзисторный усилительный каскад. Расчет. Схема. Проектирование. Бипо…
Усилительный каскад на биполярном транзисторе. Схема. Расчет….

Расчет теплоотвода (радиатора охлаждения) силового элемента (транзисто…
Как рассчитать систему отвода тепла от силового элемента электронной схемы…

Схемы УНЧ для работы с низкоОмной нагрузкой

Типовые УНЧ, предназначенные для работы на низкоомную нагрузку и имеющие выходную мощность десятки мВт и выше, изображены на рис. 16, 17.

Рис. 16. Простой УНЧ для работы с включением нагрузки с низким сопротивлением.

Электродинамическая головка ВА1 может быть подключена к выходу усилителя, как показано на рис. 16, либо в диагональ моста (рис. 17). Если источник питания выполнен из двух последовательно соединенных батарей (аккумуляторов), правый по схеме вывод головки ВА1 может быть подключен к их средней точки напрямую, без конденсаторов C3, С4.

Рис. 17. Схема усилителя низкой частоты с включением низкоомной нагрузки в диагональ моста.

Если вам нужна схема простого лампового УНЧ то такой усилитель можно собрать даже на одной лампе, смотрите у нас на сайте по электронике в соответствующем разделе.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Исправления в публикации: на рис. 16 и 17 вместо диода Д9 установлена цепочка из диодов.

90 Вт (приведенное сопротивление первичной обмотки транформатора Ra-a = 80 Ом)

Схема (pdf)

Лут печать (pdf)

Монтаж верхней стороны (pdf)

Монтаж нижней стороны (pdf)

Вид собранной платы

Параметры трансформатора на железе ТПК-190 (для варианта 90 Вт):

На каждой катушке 232 (0,7мм) — 217 (1,0мм) — 90 (0,9мм) — 127 (0,7мм) — 232 (0,7мм). 232 — первички, все последовательно. Вторички параллельно. 217 — 4 Ом, 217+90 — 8 Ом, 217+90+127 — 16 Ом

Вид в сборе (2U рэк)

Несколько комментариев к схеме:

Потенциометром «Symmetry» выставляется равенство амплитуд полуволн.

Резисторы R4, R7 (для 40 Вт) и R5,R8 (для 90 Вт) определяют чувствительность усилителя по входу. При их уменьшении чувствительность увеличивается и наоборот.

На резисторы R25 (для 40 Вт) и R1 (для 90 Вт) можно подключить ООС с выходной обмотки трансформатора с использованием регулировки Presence. Необходимо только учесть, что сопротивление этих резисторов 1,6 кОм то есть в 3 раза меньше чем обычно в ламповых схемах (4,7 кОм). Чтобы получить ту же ачх конденсатор, включенный последовательно с регулировкой, нужно увеличить в 3 раза.

Вот схема презенса, которую я использовал:

Усилители с общим истоком

  Усилители на полевых транзисторах (ПТ) обладают большим входным сопротивлением. Обычно такие усилители используются как первые каскады предварительных усилителей, усилителей постоянного тока измерительной и другой радиоэлектронной аппаратуры.
  Применение в первых каскадах усилителей с большим входным сопротивлением позволяет согласовывать источники сигнала с большим внутренним сопротивлением с последующими более мощными усилительными каскадами, имеющими небольшое входное сопротивление. Усилительные каскады на полевых транзисторах чаще всего выполняются по схеме с общим истоком.

  Так как напряжение смещения между затвором и истоком равно нулю, то режим покоя транзистора VT характеризуется положением точки А на сток-затворной характеристике при UЗИ=0 (рис. 15,б).
 В этом случае при поступлении на вход усилителя переменного гармонического (то есть синусоидального) напряжения UЗИ с амплитудой UmЗИ положительный и отрицательный полупериоды этого напряжения будут усиливаться неодинаково: при отрицательном полупериоде входного напряжения UЗИ амплитуда переменной составляющей тока стока I’mc будет больше, чем при положительном полупериоде (I»mc), так как крутизна сток-затворной характеристики на участке АВ больше по сравнению с крутизной на участке АС: Вследствие этого форма переменной составляющей тока стока и создаваемого им переменного напряжения на нагрузке UВЫХ будет отличаться от формы входного напряжения, то есть возникнут искажения усиливаемого сигнала.
Для уменьшения искажений сигнала при его усилении необходимо обеспечить работу полевого транзистора при постоянной крутизне его сток-затворной характеристики, то есть на линейном участке этой характеристики.
 С этой целью в цепь истока включают резистор Rи (рис.16,а).

Протекающий через резистор ток стока IС0 создает на нем напряжение
U=IС0Rи, которое прикладывается между истоком и затвором, включая ЭДП, образованный между областями затвора и истока, в обратном направлении. Это приводит к уменьшению тока стока и режим работы будет характеризоваться в этом случае точкой А’ (рис.16,б).

Чтобы не происходило уменьшения коэффициента усиления, параллельно резистору Rи подключают конденсатор Си большой емкости, который устраняет отрицательную обратную связь по переменному току, образуемую переменным напряжением на резисторе Rи. В режиме, характеризуемом точкой А’, крутизна сток-затворной характеристики при усилении переменного напряжения остается примерно одинаковой при усилении положительных и отрицательных полупериодов входного напряжения, вследствие чего искажения усиливаемых сигналов будут незначительны
(участки A’В’ и А’С’ примерно равны).
  Если в режиме покоя напряжение между затвором и истоком обозначить UЗИО, а протекающий через ПТ ток стока IС0, то сопротивление резистора Rи (в омах) можно рассчитать по формуле:
Rи =1000 UЗИО/IС0,   
в которую ток стока IС0 подставляется в миллиамперах.
  В схеме усилителя, приведенной на рис.15, используется ПТ с управляющим p-n-переходом и каналом р-типа. Если в качестве ПТ применяется аналогичный транзистор, но с каналом n-типа, схема остается прежней, а изменяется лишь полярность подключения источника питания.
    Еще большее входное сопротивление имеют усилители, выполненные на полевых МДП-транзисторах с индуцированным, или встроенным каналом. При постоянном токе входное сопротивление таких усилителей может превышать 100 МОм. Так как напряжения их затвора и стока имеют одинаковую полярность, для обеспечения необходимого напряжения смещения в цепи затвора можно использовать напряжение источника питания GC подключив его к делителю напряжения, включенному на входе транзистора таким образом, как показано на рис.17.

Оконечный усилитель на полевых транзисторах с трансформаторным выходом

В предлагаемых вариантах усилителей используются JFET-ы или латеральные мосфеты так как они имеют передаточные и выходные характеристики практически идентичные пентодным, что позволяет максимально приблизиться к ламповому звучанию. Также они имеют отрицательную зависимость тока стока от температуры, что исключает необходимость термостабилизации. Усилитель построен по классической «ламповой» схеме – фазоинвертор на дифференциальном каскаде и далее двухтактный выходной каскад, нагруженный на выходной трансформатор. Трансформатор позволяет решить две задачи – защита динамиков при выходе из строя выходных транзисторов и согласование с разным сопротивлением динамиков (используя отводы вторичной обмотки)

Также есть еще два немаловажных момента применительно именно к гитарному использованию оконечника.

Первый момент — достаточно высокое выходное сопротивление, соизмеримое с импедансом динамика, что дает возможность гитарному кабинету «дышать» на резонансах. На картинке приведены графики зависимости напряжения на выходе оконечника от частоты сигнала при нагрузке на балластное сопротивление и гитарный кабинет.

Добиться аналогичного эффекта можно на «классическом каменном» оконечнике путем введения токовой ООС. При этом оконечник должен иметь запас по выходному напряжению (мощности), чтобы не влетать в ограничение на пиковых значениях выходного напряжения на резонансах динамика.

Второй момент — подгруз оконечника

Это не очень важно для современного хайгейнового «модернового» звука, так как в нем почти не используется подгруз оконечника. Для винтажных стилей подгруз оконечника составляет чуть ли не половину звука

Например звук маршалловского суперлида невозможно получить без подгруза оконечника.

Предлагаемые варианты полевых оконечников учитывают оба этих момента и высокое выходное сопротивление и «мягкий ламповый» подгруз.

Особенности электровакуумных усилителей

Если сравнить качество одного и того же сигнала, усиленного ламповым устройством и УНЧ на транзисторах, то разница будет видна невооруженным глазом не в пользу последнего.

Любой профессиональный музыкант скажет, что ламповые усилители куда лучше своих продвинутых аналогов.

Электровакуумные приборы давно вышли из массового потребления, им на смену пришли транзисторы и микросхемы, но это неактуально для области воспроизведения звука. За счет температурной стабильности и вакуума внутри ламповые приборы лучше усиливают сигнал.

Единственный недостаток лампового УНЧ – высокая цена, что логично: дорого выпускать элементы, которые не пользуются массовым спросом.

Насыщение выхода инвертирующего усилителя

Давайте представим себе такую ситуацию. У нас входное переменное напряжение амплитудой 1 В. Коэффициент усиления 50. По нашим расчетам на выходе мы должны получить сигнал амплитудой 50 В. Но как мы получим 50 В, если питание нашего усилителя, допустим, +-15 В? Усиленный сигнал, амплитудой больше чем 15 В, мы получить не сможем. Хотя типичное падение напряжения во внутренних цепях реальных ОУ составляет около 0,5-1,5 В. То есть максимальный размах сигнала, который мы можем получить в данном случае на выходе будет 27-29 Вольт.

Хотя в настоящее время есть ОУ, которые все-так позволяют получать на выходе +-Uпит. Такое свойство некоторых ОУ называется Rail-to-Rail. В дословном переводе “от рельса до рельса” или “от шины до шины”. Есть такие параметры, как Rail-to-Rail по входу (Rail-to-Rail input). Здесь на вход мы можем подавать сигналы вплоть до Uпит ОУ. Иногда в даташите оговаривается, с отрицательной или положительной шины питания можно подходить к этому параметру. Есть также есть Rail-to-Rail output. Здесь на выходе мы можем получить напряжение +-Uпит.  Если усиленный сигнал на выходе не вписывается в такой диапазон, то он будет срезаться. Такое свойство ОУ называется насыщением выхода. То есть надо всегда помнить, что  если амплитуда сигнала будет превышать +-Uпит усилителя, то такой сигнал на выходе будет срезан по этому уровню.

Продемонстрируем это в симуляторе Proteus. Итак, давайте на вход подадим синусоидальный сигнал амплитудой в 1 В, а коэффициент усиления сделаем 20, подобрав нужные резисторы. То есть по нашим расчетам мы должны получить синус с амплитудой в 20 Вольт. Смотрим осциллограмму

Подавали на вход синусоиду, а получили на выходе синусоиду с обрезанными верхушками и амплитудой в 14 В. Одна клеточка в данном случае – это 2 В. Как вы видите,сигнал, амплитудой более чем +-Uпит мы получить не сможем. Всегда помните об этом, особенно при конструировании радиоэлектронных устройств.

Схема УНЧ с очень малыми искажениями

Предлагаемый для самостоятельной сборки усилитель ЗЧ построен по классической схеме: входной дифференциальный каскад, питаемый источником тока и нагруженный токовым зеркалом, промежуточный усилитель напряжения и, наконец, выходной усилитель тока, состоящий из двух дополнительных транзисторных сборок. Каждый из каскадов имеет свои особенности для достижения высоких характеристик всего УМЗЧ. Подробнее о его работе читайте в PDF документе

Схема усилителя, смоделированная в Multisim, изображена на рисунке. Показания виртуальных приборов определяют основные параметры процесса моделирования: выходное среднеквадратичное напряжение 14,1 В, соответствующее мощности 50 Вт при нагрузке 4 Ом, частоте сигнала 20 кГц, постоянному току 1,57 А через выходные транзисторы и, наконец, менее 100 дБ полное гармоническое искажение выходного напряжения. Другие детали режимов работы усилителя предоставляются измерительными датчиками, размещенными в разных точках схемы.

Низкое искажение на самых высоких звуковых частотах является показателем превосходной переходной характеристики усилителя, и анализ переходных процессов на выходе усилителя подтверждает это.

Во время теста на вход усилителя подается прямоугольный сигнал 20 кГц с амплитудой 0,5 В и временем нарастания / спада 1 нс. Полученная переходная характеристика изображена на рисунке, где хорошо видно скорость нарастания выходного сигнала усилителя более 20 В / мкс.

Усилитель выдерживает не только перегрузку чрезмерно громкой музыкой, он также ведет себя адекватно даже если на его вход поступают внезапные скачки напряжения. Они могут быть вызваны неправильно выполненными коммутациями и соединениями в предыдущем аудиотракте, во время работы усилителя или, например, если земля входного сигнала будет случайно отключена. Что касается выходных транзисторов, то согласование их параметров вообще не требуется, они могут быть следующих типов: MJ15024-MJ15025, 2SC5200-2SA1943, KT818GM-KT819GM и другие подобные по параметрам.

Конструктивно усилитель собран на одной печатной плате размером 190 х 80 мм, которая также содержит индикацию срабатывания защиты и перегрузки.

На фото готовый двухканальный аудиоусилитель с отдельным источником питания для каждого канала. Так что у него два трансформатора и два блока питания. Трансформаторы по 200VA, 2x 25 В. Под нагрузкой после выпрямительного моста примерно 36 В.

Силовые транзисторы по четыре на канал MJ21194 и MJ21193. Все собрано вместе на большом радиаторе, который также выступает в качестве боковой стенки самого усилителя. Соединение силовых транзисторов с платой идёт жесткими кабелями.

Также оснащён усилитель системой плавного пуска и схемой защиты динамиков.

Усилитель даже без особых настроек показывает изумительное качество сигнала. Здесь нет рокота, шумов и гула. При полном отключении звука на потенциометре достигается идеальная тишина в АС. Просто настраивается — одним потенциометром. Подключаете измеритель к выходу усилителя, а входной сигнал на землю. И вращаете переменник так, чтобы значение на выходе было как можно ближе к нулю. Здесь получилось 0,1 В. Так что практически идеальная тишина.

Затем установил ток покоя примерно 150 мА. И всё что остаётся, это разместить платы в приличном корпусе, чтоб наслаждаться не только звуком, но и приятным видом.

Схемы усилителей

ГИБРИДНЫЙ УНЧ К НАУШНИКАМ
БЕСПРОВОДНОЙ ТЕРМОМЕТР С РАДИОКАНАЛОМ
УСИЛИТЕЛЬ 500 ВТ / 8 ОМ
Оцените статью:

Простой усилитель на транзисторах сделать самому своими руками. Усилитель на одном транзисторе: схема

Усилитель на транзисторах, несмотря на свою уже долгую историю, остается излюбленным предметом исследования как начинающих, так и маститых радиолюбителей. И это понятно. Он является непременной составной частью самых массовых радиолюбительских устройств: радиоприемников и усилителей низкой (звуковой) частоты. Мы рассмотрим, как строятся простейшие усилители низкой частоты на транзисторах.

В любом теле- или радиоприемнике, в каждом музыкальном центре или усилителе звука можно найти транзисторные усилители звука (низкой частоты – НЧ). Разница между звуковыми транзисторными усилителями и другими видами заключается в их частотных характеристиках.

Звуковой усилитель на транзисторах имеет равномерную частотную характеристику в полосе частот от 15 Гц до 20 кГц. Это означает, что все входные сигналы с частотой внутри этого диапазона усилитель преобразует (усиливает) примерно одинаково. На рисунке ниже в координатах «коэффициент усиления усилителя Ку – частота входного сигнала» показана идеальная кривая частотной характеристики для звукового усилителя.

Вид частотной характеристики усилителя определяется электрорадиоэлементами (ЭРЭ) его схемы, и прежде всего самими транзисторами. Звуковой усилитель на транзисторах обычно собран на так называемых низко- и среднечастотных транзисторах с суммарной полосой пропускания входных сигналов от десятков и сотен Гц до 30 кГц.

Класс работы усилителя

Как известно, в зависимости от степени непрерывности протекания тока на протяжении его периода через транзисторный усилительный каскад (усилитель) различают следующие классы его работы: «А», «B», «AB», «C», «D».

В классе работы ток «А» через каскад протекает на протяжении 100 % периода входного сигнала. Работу каскада в этом классе иллюстрирует следующий рисунок.

В классе работы усилительного каскада «AB» ток через него протекает более чем 50 %, но менее чем 100 % периода входного сигнала (см. рисунок ниже).

В классе работы каскада «В» ток через него протекает ровно 50 % периода входного сигнала, как это иллюстрирует рисунок.

И наконец в классе работы каскада «C» ток через него протекает менее чем 50 % периода входного сигнала.

НЧ-усилитель на транзисторах: искажения в основных классах работы

В рабочей области транзисторный усилитель класса «А» обладает малым уровнем нелинейных искажений. Но если сигнал имеет импульсные выбросы по напряжению, приводящие к насыщению транзисторов, то вокруг каждой «штатной» гармоники выходного сигнала появляются высшие гармоники (вплоть до 11-й). Это вызывает феномен так называемого транзисторного, или металлического, звука.

Если НЧ-усилители мощности на транзисторах имеют нестабилизированное питание, то их выходные сигналы модулируются по амплитуде вблизи частоты сети. Это ведет к жёсткости звука на левом краю частотной характеристики. Различные же способы стабилизации напряжения делают конструкцию усилителя более сложной.

Типовой КПД однотактного усилителя класса А не превышает 20 % из-за постоянно открытого транзистора и непрерывного протекания постоянной составляющей тока. Можно выполнить усилитель класса А двухтактным, КПД несколько повысится, но полуволны сигнала станут более несимметричными. Перевод же каскада из класса работы «А» в класс работы «АВ» повышает вчетверо нелинейные искажения, хотя КПД его схемы при этом повышается.

В усилителях же классов «АВ» и «В» искажения нарастают по мере снижения уровня сигнала. Невольно хочется врубить такой усилитель погромче для полноты ощущений мощи и динамики музыки, но зачастую это мало помогает.

Промежуточные классы работы

У класса работы «А» имеется разновидность – класс «А+». При этом низковольтные входные транзисторы усилителя этого класса работают в классе «А», а высоковольтные выходные транзисторы усилителя при превышении их входными сигналами определенного уровня переходят в классы «В» или «АВ». Экономичность таких каскадов лучше, чем в чистом классе «А», а нелинейные искажения меньше (до 0,003 %). Однако звук у них также «металлический» из-за наличия высших гармоник в выходном сигнале.

У усилителей еще одного класса — «АА» степень нелинейных искажений еще ниже – около 0,0005 %, но высшие гармоники также присутствуют.

Возврат к транзисторному усилителю класса «А»?

Сегодня многие специалисты в области качественного звуковоспроизведения ратуют за возврат к ламповым усилителям, поскольку уровень нелинейных искажений и высших гармоник, вносимых ими в выходной сигнал, заведомо ниже, чем у транзисторов. Однако эти достоинства в немалой степени нивелируются необходимостью согласующего трансформатора между высокоомным ламповым выходным каскадом и низкоомными звуковыми колонками. Впрочем, с трансформаторным выходом может быть сделан и простой усилитель на транзисторах, что будет показано ниже.

Существует и точка зрения, что предельное качество звучания может обеспечить только гибридный лампово-транзисторный усилитель, все каскады которого являются однотактными, не охвачены отрицательными обратными связями и работают в классе «А». То есть такой повторитель мощности представляет собой усилитель на одном транзисторе. Схема его может иметь предельно достижимый КПД (в классе «А») не более 50 %. Но ни мощность, ни КПД усилителя не являются показателями качества звуковоспроизведения. При этом особое значение приобретают качество и линейность характеристик всех ЭРЭ в схеме.

Поскольку однотактные схемы получают такую перспективу, мы рассмотрим ниже их возможные варианты.

Однотактный усилитель на одном транзисторе

Схема его, выполненная с общим эмиттером и R-C-связями по входному и выходному сигналам для работы в классе «А», приведена на рисунке ниже.

На ней показан транзистор Q1 структуры n-p-n. Его коллектор через токоограничивающий резистор R3 присоединен к положительному выводу +Vcc, а эмиттер — к -Vcc. Усилитель на транзисторе структуры p-n-p будет иметь такую же схему, но выводы источника питания поменяются местами.

C1 – разделительный конденсатор, посредством которого источник переменного входного сигнала отделяется от источника постоянного напряжения Vcc. При этом С1 не препятствует прохождению переменного входного тока через переход «база — эмиттер транзистора Q1». Резисторы R1 и R2 совместно с сопротивлением перехода «Э — Б» образуют делитель напряжения Vcc для выбора рабочей точки транзистора Q1 в статическом режиме. Типичной для этой схемы является величина R2 = 1 кОм, а положение рабочей точки — Vcc/2. R3 является нагрузочным резистором коллекторной цепи и служит для создания на коллекторе переменного напряжения выходного сигнала.

Предположим, что Vcc = 20 В, R2 = 1 кОм, а коэффициент усиления по току h = 150. Напряжение на эмиттере выбираем Ve = 9 В, а падение напряжения на переходе «Э — Б» принимаем равным Vbe = 0,7 В. Эта величина соответствует так называемому кремниевому транзистору. Если бы мы рассматривали усилитель на германиевых транзисторах, то падение напряжения на открытом переходе «Э — Б» было бы равно Vbe = 0,3 В.

Ток эмиттера, примерно равный току коллектора

Ie = 9 B/1 кОм = 9 мА ≈ Ic.

Ток базы Ib = Ic/h = 9 мА/150 = 60 мкА.

Падение напряжения на резисторе R1

V(R1) = Vcc — Vb = Vcc – (Vbe + Ve) = 20 В – 9,7 В = 10,3 В,

R1 = V(R1)/Ib = 10,3 В/60 мкА = 172 кОм.

С2 нужен для создания цепи прохождения переменной составляющей тока эмиттера (фактически тока коллектора). Если бы его не было, то резистор R2 сильно ограничивал бы переменную составляющую, так что рассматриваемый усилитель на биполярном транзисторе имел бы низкий коэффициент усиления по току.

В наших расчетах мы принимали, что Ic = Ib h, где Ib – ток базы, втекающий в нее из эмиттера и возникающий при подаче на базу напряжения смещения. Однако через базу всегда (как при наличии смещения, так и без него) протекает еще и ток утечки из коллектора Icb0. Поэтому реальный ток коллектора равен Ic = Ib h + Icb0 h, т.е. ток утечки в схеме с ОЭ усиливается в 150 раз. Если бы мы рассматривали усилитель на германиевых транзисторах, то это обстоятельство нужно было бы учитывать при расчетах. Дело в том, что германиевые транзисторы имеют существенный Icb0 порядка нескольких мкА. У кремниевых же он на три порядка меньше (около нескольких нА), так что в расчетах им обычно пренебрегают.

Однотактный усилитель с МДП-транзистором

Как и любой усилитель на полевых транзисторах, рассматриваемая схема имеет свой аналог среди усилителей на биполярных транзисторах. Поэтому рассмотрим аналог предыдущей схемы с общим эмиттером. Она выполнена с общим истоком и R-C-связями по входному и выходному сигналам для работы в классе «А» и приведена на рисунке ниже.

Здесь C1 – такой же разделительный конденсатор, посредством которого источник переменного входного сигнала отделяется от источника постоянного напряжения Vdd. Как известно, любой усилитель на полевых транзисторах должен иметь потенциал затвора своих МДП-транзисторов ниже потенциалов их истоков. В данной схеме затвор заземлен резистором R1, имеющим, как правило, большое сопротивление (от 100 кОм до 1 Мом), чтобы он не шунтировал входной сигнал. Ток через R1 практически не проходит, поэтому потенциал затвора при отсутствии входного сигнала равен потенциалу земли. Потенциал же истока выше потенциала земли за счет падения напряжения на резисторе R2. Таким образом, потенциал затвора оказывается ниже потенциала истока, что и нужно для нормальной работы Q1. Конденсатор C2 и резистор R3 имеют такое же назначение, как и в предыдущей схеме. Поскольку эта схема с общим истоком, то входной и выходной сигналы сдвинуты по фазе на 180°.

Усилитель с трансформаторным выходом

Третий одноступенчатый простой усилитель на транзисторах, показанный на рисунке ниже, также выполнен по схеме с общим эмиттером для работы в классе «А», но с низкоомным динамиком он связан через согласующий трансформатор.

Первичная обмотка трансформатора T1 является нагрузкой коллекторной цепи транзистора Q1 и развивает выходной сигнал. T1 передает выходной сигнал на динамик и обеспечивает согласование выходного полного сопротивления транзистора с низким (порядка нескольких Ом) сопротивлением динамика.

Делитель напряжения коллекторного источника питания Vcc, собранный на резисторах R1 и R3, обеспечивает выбор рабочей точки транзистора Q1 (подачу напряжения смещения на его базу). Назначение остальных элементов усилителя такое же, как и в предыдущих схемах.

Двухтактный звуковой усилитель

Двухтактный НЧ-усилитель на двух транзисторах расщепляет входной сигнал звуковой частоты на две противофазные полуволны, каждая из которых усиливается своим собственным транзисторным каскадом. После выполнения такого усиления полуволны объединяются в целостный гармонический сигнал, который и передается на акустическую систему. Подобное преобразование НЧ-сигнала (расщепление и повторное слияние), естественно, вызывает в нем необратимые искажения, обусловленные различием частотных и динамических свойств двух транзисторов схемы. Эти искажения снижают качество звука на выходе усилителя.

Двухтактные усилители, работающие в классе «А», недостаточно хорошо воспроизводят сложные звуковые сигналы, так как в их плечах непрерывно протекает постоянный ток повышенной величины. Это приводит к несимметрии полуволн сигнала, фазовым искажениям и в конечном итоге к потере разборчивости звука. Нагреваясь, два мощных транзистора увеличивают вдвое искажения сигнала в области низких и инфранизких частот. Но все же основным достоинством двухтактной схемы является ее приемлемый КПД и повышенная выходная мощность.

Двухтактная схема усилителя мощности на транзисторах показана на рисунке.

Это усилитель для работы в классе «А», но может быть использован и класс «АВ», и даже «В».

Бестрансформаторный транзисторный усилитель мощности

Трансформаторы, несмотря на успехи в их миниатюризации, остаются все же самыми громоздкими, тяжелыми и дорогими ЭРЭ. Поэтому был найден путь устранения трансформатора из двухтактной схемы путем выполнения ее на двух мощных комплементарных транзисторах разных типов (n-p-n и p-n-p). Большинство современных усилителей мощности используют именно этот принцип и предназначены для работы в классе «В». Схема такого усилителя мощности показана на рисунке ниже.

Оба ее транзистора включены по схеме с общим коллектором (эмиттерного повторителя). Поэтому схема передает входное напряжение на выход без усиления. Если входного сигнала нет, то оба транзистора находятся на границе включенного состояния, но при этом они выключены.

Когда гармонический сигнал подан на вход, его положительная полуволна открывает TR1, но переводит p-n-p транзистор TR2 полностью в режим отсечки. Таким образом, только положительная полуволна усиленного тока протекает через нагрузку. Отрицательная полуволна входного сигнала открывает только TR2 и запирает TR1, так что в нагрузку подается отрицательная полуволна усиленного тока. В результате на нагрузке выделяется полный усиленный по мощности (за счет усиления по току) синусоидальный сигнал.

Усилитель на одном транзисторе

Для усвоения вышеизложенного соберем простой усилитель на транзисторах своими руками и разберемся, как он работает.

В качестве нагрузки маломощного транзистора Т типа BC107 включим наушники с сопротивлением 2-3 кОм, напряжение смещения на базу подадим с высокоомного резистора R* величиной 1 МОм, развязывающий электролитический конденсатор C емкостью от 10 мкФ до 100 мкФ включим в базовую цепь Т. Питать схему будем от батареи 4,5 В/0,3 А.

Если резистор R* не подключен, то нет ни тока базы Ib, ни тока коллектора Ic. Если резистор подключен, то напряжение на базе поднимается до 0,7 В и через нее протекает ток Ib = 4 мкА. Коэффициент усиления транзистора по току равен 250, что дает Ic = 250Ib = 1 мА.

Собрав простой усилитель на транзисторах своими руками, можем теперь его испытать. Подключите наушники и поставьте палец на точку 1 схемы. Вы услышите шум. Ваше тело воспринимает излучение питающей сети на частоте 50 Гц. Шум, услышанный вами из наушников, и является этим излучением, только усиленным транзистором. Поясним этот процесс подробнее. Напряжение переменного тока с частотой 50 Гц подключено к базе транзистора через конденсатор С. Напряжение на базе теперь равно сумме постоянного напряжения смещения (приблизительно 0,7 В), приходящего с резистора R*, и напряжения переменного тока «от пальца». В результате ток коллектора получает переменную составляющую с частотой 50 Гц. Этот переменный ток используется для сдвига мембраны динамиков вперед-назад с той же частотой, а это означает, что мы сможем услышать тон 50 Гц на выходе.

Слушать уровень шума 50 Гц не очень интересно, поэтому можно подключить к точкам 1 и 2 низкочастотные источника сигнала (CD-плеер или микрофон) и слышать усиленную речь или музыку.

Усилитель звука на транзисторах


Транзисторные усилители, несмотря на появление более современных микросхемных, не потеряли свой актуальности. Достать микросхему бывает, порой, не так легко, а вот транзисторы можно выпаять практически из любого электронного устройства, именно поэтому у заядлых радиолюбителей иногда накапливаются горы этих деталей. Для того, чтобы найти им применение предлагаю к сборке незатейливый транзисторный усилитель мощности, сборку которого осилит даже начинающий.

Схема



Схема состоит из 6-ти транзисторов и может развивать мощность до 3-х ватт при питании напряжением 12 вольт. Этой мощности хватит для озвучивания небольшой комнаты или рабочего места. Транзисторы Т5 и Т6 на схеме образуют выходной каскад, на их место можно поставить широко распространённые отечественные аналоги КТ814 и КТ815. Конденсатор С4, который подключается к коллекторам выходных транзисторов, отделяет постоянную составляющую сигнала на выходе, именно поэтому данный усилитель можно использовать без платы защиты акустических систем. Даже если усилитель в процессе работы выйдет из строя и на выходе появится постоянное напряжение, оно не пройдёт дальше этого конденсатора и динамики акустической системы останутся целы. Разделительный конденсатор С1 на входе лучше применить плёночный, но если такого нет под рукой, подойдёт и керамический. Аналогом диодов D1 и D2 в данной схеме являются 1N4007 или отечественные КД522. Динамик можно использовать сопротивлением 4-16 Ом, чем ниже его сопротивление, тем большую мощность будет развивать схема.


Сборка усилителя


Собирается схема на печатной плате размерами 50х40 мм, рисунок в формате Sprint-Layout к статье прилагается. Приведённую печатную плату при печати необходимо отзеркалить. После травления и удаления тонера с платы сверлятся отверстия, лучше всего использовать сверло 0,8 — 1 мм, а для отверстий под выходные транзисторы и клеммник 1,2 мм.

После сверления отверстий желательно залудить все дорожки, тем самым уменьшить их сопротивление и защитить медь от окисления. Затем впаиваются мелкие детали – резисторы, диоды, после чего выходные транзисторы, клеммник, конденсаторы. Согласно схеме, коллекторы выходных транзисторов должны соединяться, на данной плате это соединение происходит путём замыкания «спинок» транзисторов проволокой или радиатором, если он используется. Радиатор требуется ставить в том случае, если схема нагружена на динамик сопротивлением 4 Ома, или если на вход подаётся сигнал большой громкости. В остальных же случаях выходные транзисторы почти не нагреваются и не требуют дополнительного охлаждения.


После сборки обязательно нужно смыть остатки флюса с дорожек, проверить плату на наличие ошибок сборки или замыканий между соседними дорожками.

Настройка и испытания усилителя


После завершения сборки можно подавать питание на плату усилителя. В разрыв одного из питающих проводов нужно включить амперметр, для контроля потребляемого тока. Подаём питание и смотрим на показания амперметра, без подачи на вход сигнала усилитель должен потреблять примерно 15-20 мА. Ток покоя задаётся резистором R6, для его увеличения нужно уменьшить сопротивление этого резистора. Слишком сильно поднимать ток покоя не следует, т.к. увеличится выделение тепла на выходных транзисторах. Если ток покоя в норме, можно подавать на вход сигнал, например, музыку с компьютера, телефона или плеера, подключать на выход динамик и приступать к прослушиванию. Хоть усилитель и прост в исполнении, он обеспечивает весьма приемлемое качество звука. Для воспроизведения одновременно двух каналов, левого и правого, схему нужно собрать дважды. Обратите внимание, что если источник сигнала находится далеко от платы, подключать его нужно экранированным проводом, иначе не избежать помех и наводок. Таким образом, данный усилитель получился полностью универсальным благодаря небольшому потреблению тока и компактным размерам платы. Его можно использовать как в составе компьютерных колонок, так и при создании небольшого стационарного музыкального центра. Удачной сборки.

Выходные транзисторы усилителя звука. Простая схема усилителя на транзисторе своими руками

Всем, кто затрудняется в выборе первой схемы для сборки, я хочу порекомендовать этот усилитель на 1 транзисторе. Схема очень простая, и может быть выполнена, как навесным так и печатным монтажем.

Сразу скажу, сборка этого усилителя оправдана только в качестве эксперимента, так как качество звука будет, в лучшем случае на уровне дешевых, китайских приемников – сканеров. Если кто-то захочет собрать себе маломощный усилитель с более качественным звучанием, с применением микросхемы TDA 2822 m , может перейти по следующей ссылке:


Портативная колонка для плейера или телефона на микросхеме tda2822m
Фото проверки усилителя:


На следующем рисунке приведен список необходимых деталей:

В схеме можно использовать почти любой из биполярных транзисторов средней и большой мощности n — p — n структуры, например КТ 817. Конденсатор на входе желательно поставить пленочный, емкостью 0.22 – 1 МкФ. Пример пленочных конденсаторов на следующем фото:

Привожу рисунок печатной платы из программы Sprint-Layout :


Сигнал берется с выхода mp3 плейера или телефона, используются земля и один из каналов. На следующем рисунке можно увидеть схему распайки штекера Джек 3.5, для подключения к источнику сигнала:


При желании этот усилитель, как и любой другой, можно снабдить регулятором громкости, подключив потенциометр на 50 КОм по стандартной схеме, используется 1 канал:


Параллельно питанию, если в блоке питания после диодного моста не стоит электролитический конденсатор большой ёмкости, нужно поставить электролит на 1000 – 2200 МкФ, с рабочим напряжением большим, чем напряжение питания схемы.
Пример такого конденсатора:

Скачать печатную плату усилителя на одном транзисторе для программы sprint – layout можно в разделе сайта Мои файлы.

Оценить качество звучания этого усилителя, можно посмотрев видео его работы на нашем канале.

Недавно обратился некий человек с просьбой собрать ему усилитель достаточной мощности и раздельными каналами усиления по низким, средним и высоким частотам. до этого не раз уже собирал для себя в качестве эксперимента и, надо сказать, эксперименты были весьма удачными. Качество звучания даже недорогих колонок не очень высокого уровня заметно при этом улучшается по сравнению, например, с вариантом применения пассивных фильтров в самих колонках. К тому же появляется возможность довольно легко менять частоты раздела полос и коэффициент усиления каждой отдельно взятой полосы и, таким образом, проще добиться равномерной АЧХ всего звукоусилительного тракта. В усилителе были применены готовые схемы, которые до этого не раз были опробованы в более простых конструкциях.

Структурная схема

На рисунке ниже показана схема 1 канала:

Как видно из схемы, усилитель имеет три входа, один из которых предусматривает простую возможность добавления предусилителя-корректора для проигрывателя винила (при такой необходимости), переключатель входов, предварительный усилитель-тембролок (также трёхполосный, с регулировкой уровней ВЧ/СЧ/НЧ), регулятор громкости, блок фильтров на три полосы с регулировкой уровня усиления каждой полосы с возможностью отключения фильтрации и блок питания для оконечных усилителей большой мощности (нестабилизированный) и стабилизатор для «слаботочной» части (предварительные каскады усиления).

Предварительный усилитель-темброблок

В качестве него была применена схема, не раз проверенная до этого, которая при своей простоте и доступности деталей показывает довольно хорошие характеристики. Схема (как и все последующие) в своё время была опубликована в журнале «Радио» и затем не раз публиковалась на различных сайтах в интернете:

Входной каскад на DA1 содержит переключатель уровня усиления (-10; 0; +10 дБ), что упрощает согласование всего усилителя с различными по уровню источниками сигнала, а на DA2 собран непосредственно регулятор тембров. Схема не капризна к некоторому разбросу номиналов элементов и не требует никакого налаживания. В качестве ОУ можно применить любые микросхемы, применяемые в звуковых трактах усилителей, например здесь (и в последующих схемах) пробовал импортные ВА4558, TL072 и LM2904. Подойдёт любая, но лучше, конечно, выбирать варианты ОУ с возможно меньшим уровнем собственного шума и высоким быстродействием (коэффициентом нарастания входного напряжения). Эти параметры можно посмотреть в справочниках (даташитах). Конечно, здесь вовсе не обязательно применять именно эту схему, вполне можно, например, сделать не трёхполосный, а обычный (стандартный) двухполосный темброблок. Но не «пассивную» схему, а с каскадами усиления-согласования по входу и выходу на транзисторах или ОУ.

Блок фильтров

Схем фильтров, также, при желании можно найти множество, так как публикаций на тему многополосных усилителей сейчас достаточно. Для облегчения этой задачи и просто для примера, я приведу здесь несколько возможных схем, найденных в различных источниках:

— схема, которая была применена мной в этом усилителе, так как частоты раздела полос оказались как раз такие, которые и нужны были «заказчику» — 500 Гц и 5 кГц и ничего пересчитывать не пришлось.

— вторая схема, попроще на ОУ.

И ещё одна возможная схема, на транзисторах:

Как уже писал ваше, выбрал первую схему из-за довольно качественной фильтрации полос и соответствии частот разделения полос заданным. Только на выходах каждого канала (полосы) были добавлены простые регуляторы уровня усиления (как это сделано, например, в третьей схеме, на транзисторах). Регуляторы можно поставить от 30 до 100 кОм. Операционные усилители и транзисторы во всех схемах можно заменить на современные импортные (с учётом цоколёвки!) для получения лучших параметров схем. Никакой настройки все эти схемы не требуют, если не требуется изменить частоты раздела полос. К сожалению, дать информацию по пересчёту этих частот раздела я не имею возможности, так как схемы искались для примера «готовые» и подробных описаний к ним не прилагалось.

В схему блока фильтров (первая схема из трёх) была добавлена возможность отключения фильтрации по каналам СЧ и ВЧ. Для этого были установлены два кнопочных переключателя типа П2К, с помощью которых просто можно замкнуть точки соединения входов фильтров — R10C9 с их соответствующими выходами — «выход ВЧ» и «выход СЧ». В этом случае по этим каналам идёт полный звуковой сигнал.

Усилители мощности

С выхода каждого канала фильтра сигналы ВЧ-СЧ-НЧ подаются на входы усилителй мощности, которые, также, можно собрать по любой из известных схем в зависимости от необходимой мощности всего усилителя. Я делал УМЗЧ по известной давно схеме из журнала «Радио», №3, 1991 г., стр.51. Здесь даю ссылку на «первоисточник», так как по поводу этой схемы существует много мнений и споров по повод её «качественности». Дело в том, что на первый взгляд это схема усилителя класса «B» с неизбежным присутствием искажений типа «ступенька», но это не так. В схеме применено токовое управление транзисторами выходного каскада, что позволяет избавиться от этих недостатков при обычном, стандартном включении. При этом схема очень простая, не критична к применяемым деталям и даже транзисторы не требует особого предварительного подбора по параметрам К тому же схема удобна тем, что мощные выходные транзисторы можно ставить на один теплоотвод попарно без изолирующих прокладок, так как выводы коллекторов соединены в точке «выхода», что очень упрощает монтаж усилителя:

При настройке лишь ВАЖНО подобрать правильные режимы работы транзисторов предоконечного каскада (подбором резисторов R7R8) — на базах этих транзисторов в режиме «покоя» и без нагрузки на выходе (динамика) должно быть напряжение в пределах 0,4-0,6 вольт. Напряжение питания для таких усилителей (их, соответственно, должно быть 6 штук) поднял до 32 вольт с заменой выходных транзисторов на 2SA1943 и 2SC5200, сопротивление резисторов R10R12 при этом следует также увеличить до 1,5 кОм (для «облегчения жизни» стабилитронам в цепи питания входных ОУ). ОУ также были заменены на ВА4558, при этом становится не нужна цепь «установки нуля» (выходы 2 и 6 на схеме) и, соответственно меняется цоколёвка при пайке микросхемы. В результате при проверке каждый усилитель по этой схеме выдавал мощность до 150 ватт (кратковременно) при вполне адекватной степени нагрева радиатора.

Блок питания УНЧ

В качестве блока питания были использованы два трансформатора с блоками выпрямителей и фильтров по обычной, стандартной схеме. Для питания НЧ полосных каналов (левый и правый каналы) — трансформатор мощностью 250 ватт, выпрямитель на диодных сборках типа MBR2560 или аналогичных и конденсаторы 40000 мкф х 50 вольт в каждом плече питания. Для СЧ и ВЧ каналов — трансформатор мощностью 350 ватт (взят из сгоревшего ресивера «Ямаха»), выпрямитель — диодная сборка TS6P06G и фильтр — два конденсатора по 25000 мкф х 63 вольт на каждое плечо питания. Все электролитические конденсаторы фильтров зашунтированы плёночными конденсаторами ёмкостью 1 мкф х 63 вольта.

В общем, блок питания может быть и с одним трансформаторм, конечно, но при его соответствующей мощности. Мощность усилителя в целом в данном случае определяется исключительно возможностями источника питания. Все предварительные усилители (темброблок, фильтры) — запитаны также от одного из этих трансформаторов (можно от любого из них), но через дополнительный блок двуполярного стабилизатора, собранный на МС типа КРЕН (или импортных) или по любой из типовых схем на транзисторах.

Конструкция самодельного усилителя

Это, пожалуй, был самый сложный момент в изготовлении, так как подходящего готового корпуса не нашлось и пришлось выдумывать возможные варианты:-)) Чтобы не лепить кучу отдельных радиаторов, решил использовать корпус-радиатор от автомобильного 4-канального усилителя, довольно больших размеров, примерно такой:

Все «внутренности» были, естественно, извлечены и компоновка получилась примерно такой (к сожалению фотографию соответствующую не сделал):

— как видно, в эту крышку-радиатор установились шесть плат оконечных УМЗЧ и плата предварительного усилителя-темброблока. Плата блока фильтров уже не влезла, поэтому была закреплена на добавленной затем конструкции из алюминиевого уголка (её видно на рисунках). Также, в этом «каркасе» были установлены трансформаторы, выпрямители и фильтры блоков питания.

Вид (спереди) со всеми переключателями и регуляторами получился такой:

Вид сзади, с колодками выходов на динамики и блоком предохранителей (поскольку никакие схемы электронной защиты не делались из-за недостатка места в конструкции и чтобы не усложнять схему):

В последующем каркас из уголка предполагается, конечно, закрыть декоративными панелями для придания изделию более «товарного» вида, но делать это будет уже сам «заказчик», по своему личному вкусу. А в целом, по качеству и мощности звучания, конструкция получилась вполне себе приличная. Автор материала: Андрей Барышев (специально для сайта сайт ).

  • 20.09.2014

    Номинал пассивных компонентов для поверхностного монтажа маркируется по определенным стандартам и не соответствует напрямую цифрам, нанесенным на корпус. Статья знакомит с этими стандартами и поможет Вам избежать ошибок при замене чип-компонентов. Основой производства современных средств радиоэлектронной и вычислительной техники является технология поверхностного монтажа или SMT-технология (SMT — Surface Mount Technology). …

  • 21.09.2014

    На рисунке показана схема простого сенсорного переключателя на ИМС 555. Таймер 555 работает в режиме компаратора. При прикосновении пластин происходит переключение компаратора, который в свою очередь управляет транзистором VT1 с открытым коллектором. К «открытому» коллектору можно подключать внешнюю нагрузку с питанием её от внешнего или внутреннего источника питания, внешнее питание …

  • 12.12.2015

    В предварительном усилителе для динамического микрофона используется двухканальный операционный усилитель uA739. Оба канала предварительного усилителя одинаковые, поэтому на схеме показан только один. На неинвертирующий вход ОУ подано 50 % напряжение питания, которое задается резисторами R1 и R4 (делитель напряжения), при этом это напряжение используется одновременно двумя каналами усилителя. Цепь R3C3 является …

  • 23.09.2014

    Часы со статической индикацией обладают более ярким свечением индикаторов по сравнению с динамической индикацией, схема таких часов показана на рисунке 1. В качестве уст-ва управления индикатором является дешифратор К176ИД2, эта микросхема обеспечит достаточно высокую яркость свечения светодиодного индикатора. В качестве счетчиков используются микросхемы К561ИЕ10, каждая содержит по 20а четырех разрядных …

Схема простого усилителя звука на транзисторах , которая реализована на двух мощных составных транзисторах TIP142-TIP147 установленных в выходном каскаде, двух маломощных BC556B в дифференциальном тракте и один BD241C в цепи предварительного усиления сигнала — всего пять транзисторов на всю схему! Такая конструкция УМЗЧ свободно может быть использована например в составе домашнего музыкального центра или для раскачки сабвуфера установленного в автомобиле, на дискотеке.

Главная привлекательность данного усилителя мощности звука заключается в легкости его сборки даже начинающими радиолюбителями, нет необходимости в какой либо специальной его настройке, не возникает проблем в приобретении комплектующих по доступной цене. Представленная здесь схема УМ обладает электрическими характеристиками с высокой линейностью работы в частотном диапазоне от 20Гц до 20000Гц. p>

При выборе или самостоятельном изготовлении трансформатора для блока питания нужно учитывать такой фактор: — трансформатор должен иметь достаточный запас по мощности, например: 300 Вт из расчета на один канал, в случае двухканального варианта, то естественно и мощность удваивается. Можно применить для каждого свой отдельный трансформатор, а если использовать стерео вариант усилителя, то тогда вообще получится аппарат типа «двойное моно», что естественно повысит эффективность усиления звука.

Действующее напряжение во вторичных обмотках трансформатора должно составлять ~34v переменки, тогда постоянное напряжение после выпрямителя получится в районе 48v — 50v. В каждом плече по питанию необходимо установить плавкий предохранитель рассчитанный на рабочий ток 6А, соответственно для стерео при работе на одном блоке питания — 12А.

Усилители низкой частоты (УНЧ) используют для преобразования слабых сигналов преимущественно звукового диапазона в более мощные сигналы, приемлемые для непосредственного восприятия через электродинамические или иные излучатели звука.

Заметим, что высокочастотные усилители до частот 10… 100 МГц строят по аналогичным схемам, все отличие чаще всего сводится к тому, что значения емкостей конденсаторов таких усилителей уменьшаются во столько раз, во сколько частота высокочастотного сигнала превосходит частоту низкочастотного.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3…12 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20…30 кОм и переменный сопротивлением 100… 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 — 4).

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Двухкаскадный усилитель на транзисторах

Соединив последовательно два простейших каскада усиления (рис. 1), можно получить двухкаскадный УНЧ (рис. 5). Усиление такого усилителя равно произведению коэффициентов усиления отдельно взятых каскадов. Однако получить большое устойчивое усиление при последующем наращивании числа каскадов нелегко: усилитель скорее всего самовозбудится.

Рис. 5. Схема простого двухкаскадного усилителя НЧ.

Новые разработки усилителей НЧ, схемы которых часто приводят на страницах журналов последних лет, преследуют цель достижения минимального коэффициента нелинейных искажений, повышения выходной мощности, расширения полосы усиливаемых частот и т.д.

В то же время, при наладке различных устройств и проведении экспериментов зачастую необходим несложный УНЧ, собрать который можно за несколько минут. Такой усилитель должен содержать минимальное число дефицитных элементов и работать в широком интервале изменения напряжения питания и сопротивления нагрузки.

Схема УНЧ на полевом и кремниевом транзисторах

Схема простого усилителя мощности НЧ с непосредственной связью между каскадами приведена на рис. 6 [Рл 3/00-14]. Входное сопротивление усилителя определяется номиналом потенциометра R1 и может изменяться от сотен Ом до десятков МОм. На выход усилителя можно подключать нагрузку сопротивлением от 2…4 до 64 Ом и выше.

При высокоомной нагрузке в качестве VT2 можно использовать транзистор КТ315. Усилитель работоспособен в диапазоне питающих напряжений от 3 до 15 В, хотя приемлемая работоспособность его сохраняется и при снижении напряжения питания вплоть до 0,6 В.

Емкость конденсатора С1 может быть выбрана в пределах от 1 до 100 мкФ. В последнем случае (С1 =100 мкФ) УНЧ может работать в полосе частот от 50 Гц до 200 кГц и выше.

Рис. 6. Схема простого усилителя низкой частоты на двух транзисторах.

Амплитуда входного сигнала УНЧ не должна превышать 0,5…0,7 В. Выходная мощность усилителя может изменяться от десятков мВт до единиц Вт в зависимости от сопротивления нагрузки и величины питающего напряжения.

Настройка усилителя заключается в подборе резисторов R2 и R3. С их помощью устанавливают напряжение на стоке транзистора VT1, равное 50…60% от напряжения источника питания. Транзистор VT2 должен быть установлен на теплоотводя-щей пластине (радиаторе).

Трекаскадный УНЧ с непосредственной связью

На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.

Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.

В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30…50) к 1. Резистор R1 должен быть 0,1…2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].

Схемы каскадных УНЧ на биполярных транзисторах

На рис. 8 и 9 показаны схемы каскодных УНЧ на биполярных транзисторах. Такие усилители имеют довольно высокий коэффициент усиления Ку. Усилитель на рис. 8 имеет Ку=5 в полосе частот от 30 Гц до 120 кГц [МК 2/86-15]. УНЧ по схеме на рис. 9 при коэффициенте гармоник менее 1% имеет коэффициент усиления 100 [РЛ 3/99-10].

Рис. 8. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 5.

Рис. 9. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 100.

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.

Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2… 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит — напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Двухкаскадные УНЧ с непосредственной связью между каскадами

Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 — 14. Они имеют высокий коэффициент усиления и хорошую стабильность.

Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).

Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.

Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 — вариант 2.

Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.

В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 — 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.

Рис. 14. Двухкаскадный УНЧ с полевым транзистором.

Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).

Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.

Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.

Схемы УНЧ для работы с низкоОмной нагрузкой

Типовые УНЧ, предназначенные для работы на низкоомную нагрузку и имеющие выходную мощность десятки мВт и выше, изображены на рис. 16, 17.

Рис. 16. Простой УНЧ для работы с включением нагрузки с низким сопротивлением.

Электродинамическая головка ВА1 может быть подключена к выходу усилителя, как показано на рис. 16, либо в диагональ моста (рис. 17). Если источник питания выполнен из двух последовательно соединенных батарей (аккумуляторов), правый по схеме вывод головки ВА1 может быть подключен к их средней точки напрямую, без конденсаторов СЗ, С4.

Рис. 17. Схема усилителя низкой частоты с включением низкоомной нагрузки в диагональ моста.

Если вам нужна схема простого лампового УНЧ то такой усилитель можно собрать даже на одной лампе, смотрите у нас на сайте по электронике в соответствующем разделе.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Исправления в публикации: на рис. 16 и 17 вместо диода Д9 установлена цепочка из диодов.

Усилитель мощности на трех транзисторах. Простая схема для начинающих.

Самая простая схема усилителя мощности.
Представляет собой двухтактный эмиттерный повторитель, использующий комплементарную пару транзисторов — VT2(n-p-n) и VT3(p-n-p). На транзисторе VT1 выполнен предварительный усилитель.Режим транзистора VT1 задается резистором R1, через который осуществляется стабилизирующая параллельная отрицательная связь по напряжению. Резисторы R3 и R4 вместе с диодами D1, D2 определяют ток покоя выходных транзисторов.

Параметры компонентов схемы:
С1=10мкФ*15В; С2=470мкФ*15В; R1=330кОм; R2=1кОм; R3=2,2Ом.
Транзисторы: VT1 — BC108(лучше — BC548), VT2 — BFY50, VT3 — BC461, диоды D1,D2 — 1N4148.

Российские аналоги: BC108 — КТ342В, выходные транзисторы — любые комплиментарные, средней мощности. Германиевые тоже подойдут(пара ГТ402 — ГТ404, например) при условии изменения значения R2 в большую сторону(его придется подбирать).
При напряжении питания 9 В такая схема обеспечивает выходную мощность 1 Ватт на нагрузке сопротивлением 8 Ом.

Если изменить параметры компонентов схемы следующим образом:
С1=22мкФ*25В; С2=1000мкФ*25В; R1=100кОм; R2=680Ом; R3=0,2Ом. Транзисторы: VT1 — BC337, VT2 — BD131, VT3 — BD132, диоды D1,D2 остаются 1N4148, то при напряжении питания 18 В можно получить мощность 5 Ватт на нагрузке сопротивлением 8 Ом. При увеличении напряжения питания до 25 В мощность увеличится почти до 10 Ватт.
Российские аналоги транзистров: BC337 — КТ660А( при отсутствии подойдут и КТ815, и КТ817),BD131 — КТ943(КТ817 тоже пойдет), BD132 — КТ932(КТ816 в пару к КТ817).

Для балансировки выходного каскада целесообразно вместо резистора R1=100 кОм установить последовательно подключенные постоянное сопротивление 47 кОм и переменное сопротивление 100 кОм. Переменное сопротивление необходимо регулировать таким образом, чтобы напряжение в точке соединения резисторов R3,R4 равнялось половине напряжения питания схемы. Выходные транзисторы следует установить на радиаторе с тепловым сопротивлением не более 10С/Вт.

Максимальное значение мощности, которую можно получить в нагрузке для такой схемы можно рассчитать по формуле:

RL здесь — сопротивление нагрузки, подключаемой через конденсатор С2.

Использованы материалы книги М.Тули — «Карманный справочник радиолюбителя».

На главную страницу

Поваренная книга по биполярным транзисторам

— Часть 3


В прошлом месяце этой книги рецептов транзисторов серии описаны практические способы использования биполярных транзисторов в полезных схемах с общим коллектором (повторителем напряжения), включая драйверы реле, генераторы постоянного тока, линейные усилители и повторители дополнительного эмиттера. В этом месяце статья продолжается и показывает различные способы использования биполярных транзисторов в простых, но полезных конфигурациях с общим эмиттером и общей базой.

ЦЕПИ УСИЛИТЕЛЯ ОБЩЕГО ЭМИТТЕРА

Усилитель с общим эмиттером (также известный как схема с общей землей или заземленным эмиттером) имеет среднее значение входного импеданса и обеспечивает существенное усиление напряжения между входом и выходом. Вход схемы подключается к базе транзистора, а выход снимается с его коллектора — основные принципы работы схемы были кратко описаны во вводной части этой серии из восьми частей. Усилитель с общим эмиттером может использоваться в широком спектре цифровых и аналоговых усилителей напряжения.Этот раздел поваренной книги серии начинается с рассмотрения «цифровых» прикладных схем.

ЦИФРОВЫЕ ЦЕПИ

На рисунке 1 показан простой цифровой усилитель, инвертор или переключатель npn с общим эмиттером, в котором входной сигнал имеет либо нулевое напряжение, либо существенно положительное значение, и подается на базу транзистора через последовательный резистор R b . , а выходной сигнал снимается с коллектора транзистора. Когда на входе ноль, транзистор отключен, а на выходе полное положительное значение шины питания.Когда на входе высокий уровень, транзистор смещен, и ток коллектора течет через R L , тем самым подтягивая выход к низкому уровню. Если входное напряжение достаточно велико, Q1 полностью включается, а выходная мощность падает до значения «насыщения» в несколько сотен мВ. Таким образом, выходной сигнал представляет собой усиленную и инвертированную версию входного сигнала.

РИСУНОК 1. Цифровой инвертор / переключатель (npn)


В , рис. 1 , резистор R b ограничивает входной ток возбуждения базы до безопасного значения.Входное сопротивление схемы немного больше, чем значение R b , что также влияет на время нарастания и спада выходного сигнала — чем больше значение R b , тем хуже они становятся. Эту загвоздку можно преодолеть путем шунтирования R b конденсатором «ускорения» (обычно около 1n0), как показано пунктиром на диаграмме. На практике R b должно быть как можно меньше, соответствовать требованиям безопасности и входному сопротивлению, и не должно превышать R L x h fe .

На рисунке 2 показана схема цифрового инвертора / переключателя в версии pnp. Q1 полностью включается, его выход на несколько сотен мВ ниже положительного значения напряжения питания, когда на входе нулевое напряжение, и выключается (с его выходом при нулевом напряжении), когда входной сигнал поднимается до уровня менее 600 мВ от положительного напряжения питания. железнодорожная стоимость.

РИСУНОК 2. Цифровой инвертор / переключатель (pnp)


Чувствительность схем Figure 1 и 2 можно увеличить, заменив Q1 парой транзисторов Дарлингтона или Супер-Альфа.В качестве альтернативы можно создать неинвертирующий цифровой усилитель / переключатель с очень высоким коэффициентом усиления, используя пару транзисторов, подключенных любым из способов, показанных на рис. 3 или рис. 4 .

В схеме , рис. 3, используются два npn-транзистора. Когда на входе нулевое напряжение, Q1 отключается, поэтому Q2 полностью включается через R2, а на выходе низкий уровень (насыщение). Когда входной сигнал «высокий», Q1 приводится в состояние насыщения и подтягивает базу Q2 до значения менее 600 мВ, поэтому Q2 отключен, а выход высокий (при V +).

РИСУНОК 3. Неинвертирующий цифровой усилитель / переключатель с очень высоким коэффициентом усиления на npn-транзисторах


Схема Рис. 4 использует один npn и один pnp транзистор. Когда на входе нулевое напряжение, Q1 отключается, поэтому Q2 также отключается (через R2-R3), а на выходе находится нулевое напряжение. Когда на входе высокий уровень, Q1 включается и переводит Q2 в насыщение через R3. В этом случае выходной сигнал принимает значение на несколько сотен мВ ниже положительного значения питающей шины.

РИСУНОК 4. Альтернативный неинвертирующий цифровой усилитель / переключатель с использованием пары транзисторов npn-pnp


Рисунок 5 показывает (в базовой форме), как дополнительную пару цепей Рисунок 4 можно использовать для создания сети управления направлением двигателя постоянного тока с использованием двойного источника питания. Схема работает следующим образом.

РИСУНОК 5. Цепь управления направлением двигателя постоянного тока


Когда SW1 установлен в положение «Вперед», Q1 включается через R1 и подтягивает Q2 через R3, но Q3 и Q4 отключены.Таким образом, «токоведущая» сторона двигателя подключается (через Q2) к положительной шине питания в этом состоянии, и двигатель вращается в прямом направлении.

Когда SW1 установлен в положение «Off», все четыре транзистора отключены, и двигатель не работает.

Когда SW1 установлен в положение «Reverse», Q3 смещается через R4 и включает Q4 через R6, но Q1 и Q2 отключены. Таким образом, «токоведущая» сторона двигателя подключается (через Q4) к отрицательной питающей шине в этом состоянии, и двигатель вращается в обратном направлении.

ДРАЙВЕРЫ РЕЛЕ

Базовые цифровые схемы , рисунки с 1 по 4 могут использоваться в качестве эффективных драйверов реле, если они оснащены подходящими схемами диодной защиты. На рисунках с 6 по 8 показаны примеры таких схем.

Схема , рис. 6, повышает чувствительность реле по току примерно в 200 раз (= коэффициент усиления по току транзистора Q1) и значительно увеличивает его чувствительность по напряжению. R1 обеспечивает базовую защиту привода и при желании может быть больше 1k0.Реле включается положительным входным напряжением.

РИСУНОК 6. Простая схема управления реле


Чувствительность реле по току можно повысить примерно в 20 000 раз, заменив Q1 парой транзисторов, соединенных Дарлингтоном. На рис. 7 показан этот метод, используемый для создания цепи, которую можно активировать, приложив сопротивление менее 2M0 к паре зондов из нержавеющей стали. Контакты воды, пара и кожи имеют сопротивление ниже этого значения, поэтому эту простую небольшую схему можно использовать в качестве реле, активируемого водой, паром или прикосновением.

РИСУНОК 7. Сенсорный, водяной или паровой релейный переключатель


Рисунок 8 показывает еще один сверхчувствительный драйвер реле, основанный на схеме Рисунок 4 , которому для активации реле требуется вход только 700 мВ при 40 мкА. R2 обеспечивает полное отключение Q1 и Q2 при разомкнутой цепи входных клемм.

РИСУНОК 8. Сверхчувствительный драйвер реле (требуется вход 700 мВ при 40 мкА)


ЛИНЕЙНЫЕ КОНТУРА СМЕЩЕНИЯ

Схема с общим эмиттером может использоваться в качестве линейного усилителя переменного тока, подавая постоянный ток смещения на ее базу, чтобы ее коллектор принимал постоянное значение наполовину напряжения питания (чтобы обеспечить максимальные неискаженные колебания выходного сигнала), а затем подавать входной сигнал переменного тока к его базе и получение выходного переменного тока от его коллектора (как показано на рис. 9 ).

РИСУНОК 9. Простой npn-усилитель с общим эмиттером


Первым шагом в разработке схемы базового типа Figure 9 является выбор номинала нагрузочного резистора R2. Чем ниже это значение, тем выше будет верхняя граничная частота усилителя (из-за меньшего шунтирующего влияния паразитной емкости на эффективное сопротивление нагрузки), но тем выше будет рабочий ток покоя Q1. На диаграмме R2 имеет компромиссное значение 5k6, что дает верхнюю частоту «3 дБ вниз» около 120 кГц и потребление тока покоя 1 мА от источника питания 12 В.

Для смещения выхода схемы (рис. 9) на половину напряжения питания, R1 необходимо значение R2 x 2h fe , и (при номинальном h fe 200) это работает примерно на 2M2 в показанном примере. . Формула для входного импеданса схемы (если смотреть на базу Q1) и коэффициента усиления по напряжению приведены на диаграмме. В показанном примере входное сопротивление составляет примерно 5 кОм и шунтируется R1 — коэффициент усиления по напряжению составляет примерно x200, или 46 дБ.

Точка смещения покоя схемы Рис. 9 зависит от значения h fe Q1.Эту слабость можно преодолеть, изменив схему, как показано на рис. 10, , где резистор смещения R1 подключен в режиме обратной связи постоянного тока между коллектором Q1 и базой и имеет значение R2 x h fe . Действие обратной связи таково, что любой сдвиг выходного уровня (из-за изменений h fe , температуры или значений компонентов) вызывает встречное изменение уровня смещения основного тока, таким образом, стремясь отменить исходный сдвиг.

РИСУНОК 10. Усилитель с общим эмиттером и смещением обратной связи


Схема , рис. 10, имеет те же значения полосы пропускания и усиления по напряжению, что и схема , рис. 9, , но имеет меньшее общее значение входного импеданса. Это связано с тем, что действие обратной связи по переменному току уменьшает кажущийся импеданс R1 (который шунтирует базовый импеданс Q1 5 кОм) в 200 раз (= A В ), что дает общее входное сопротивление 2 к7. При желании шунтирующие эффекты цепи смещения могут быть устранены путем использования двух резисторов обратной связи и их развязки по переменному току, как показано на , рис. 11, .

РИСУНОК 11. Усилитель с развязкой по переменному току смещения обратной связи


Наконец, предельная стабильность смещения обеспечивается схемой «смещения делителя потенциала» Рис. 12 . Здесь делитель потенциала R1-R2 устанавливает напряжение покоя, немного большее, чем V + / 3, на базе Q1, а действие повторителя напряжения приводит к появлению на эмиттере Q1 напряжения на 600 мВ меньше этого значения. Таким образом, напряжение V + / 3 создается на эмиттерном резисторе R3 5k6, и (поскольку токи эмиттера и коллектора Q1 почти идентичны) аналогичное напряжение падает на R4, который также имеет значение 5k6, таким образом устанавливая на коллекторе значение покоя 2V + / 3.R3 развязан по переменному току через C2, и схема дает усиление по переменному напряжению 46 дБ.

РИСУНОК 12. Усилитель со смещением делителя напряжения


ИЗМЕНЕНИЯ ЦЕПИ

На рисунках 13–16 показаны некоторые полезные варианты усилителя с общим эмиттером. Рисунок 13 показывает базовую конструкцию на Рисунке 12, измененную так, чтобы получить коэффициент усиления переменного напряжения x10 — коэффициент усиления фактически равен значению нагрузки коллектора R4, деленному на эффективное значение импеданса «эмиттера», которое в данном случае (поскольку R3 развязан последовательно -connected C2-R5) равняется значению импеданса перехода база-эмиттер последовательно с параллельными значениями R3 и R5 и составляет примерно 560R, что дает усиление по напряжению в 10 раз.Альтернативные значения усиления можно получить, изменив значение R5.

РИСУНОК 13. Усилитель с общим эмиттером с фиксированным усилением (x10)


На рисунке 14 показан полезный вариант вышеупомянутой конструкции. В этом случае R3 равен R4 и не развязан, поэтому схема дает единичный коэффициент усиления по напряжению. Однако обратите внимание, что эта схема выдает два выходных сигнала с единичным усилением: выход эмиттера синфазен с входом, а сигнал коллектора — в противофазе.Таким образом, эта схема действует как фазоделитель с единичным усилением.

РИСУНОК 14. Фазоделитель с единичным усилением


На рисунке 15 показан другой способ изменения коэффициента усиления схемы. Такая конструкция обеспечивает высокий коэффициент усиления по напряжению между коллектором Q1 и базой, но R2 дает обратную связь по переменному току с базой, а R1 подключен последовательно между входным сигналом и базой Q1 — общий эффект заключается в том, что коэффициент усиления по напряжению схемы (между входом и выходом) равняется R2 / R1 и работает при x10 в данном конкретном случае.

РИСУНОК 15. Альтернативный усилитель с фиксированным усилением (x10)


Наконец, Рисунок 16 показывает, как можно изменить конструкцию Рисунок 10 для обеспечения широкополосных характеристик путем подключения связанного по постоянному току буфера эмиттерного повторителя Q2 между коллектором Q1 и выходной клеммой, чтобы минимизировать шунтирующие эффекты паразитных помех. емкость на R2 и, таким образом, расширяет верхнюю полосу пропускания до нескольких сотен кГц.

РИСУНОК 16. Широкополосный усилитель


ЦЕПИ С ВЫСОКИМ УСИЛЕНИЕМ

Одноступенчатая схема усилителя с общим эмиттером не может дать усиление по напряжению намного больше 46 дБ при использовании резистивной нагрузки коллектора — если требуется более высокое усиление, необходимо использовать многокаскадную схему. На рисунках 17–19 показаны три полезные конструкции двухтранзисторных усилителей напряжения с высоким коэффициентом усиления.

Схема , рис. 17, действует как пара усилителей с общим эмиттером с прямой связью, причем выход Q1 подается непосредственно на базу Q2, и дает общий коэффициент усиления по напряжению 76 дБ (примерно x6150) и верхнюю частоту -3 дБ 35 кГц.Обратите внимание, что резистор смещения обратной связи R4 питается от эмиттера Q2 с развязкой по переменному току (который «следует» за напряжением покоя коллектора Q1), а не напрямую от коллектора Q1, и что цепь смещения, таким образом, эффективно развязана по переменному току.

РИСУНОК 17. Двухкаскадный усилитель с высоким коэффициентом усиления


Рисунок 18 показывает альтернативный вариант вышеуказанной конструкции, использующий выходной каскад pnp — его характеристики такие же, как у Рисунок 17 .

РИСУНОК 18. Альтернативный двухкаскадный усилитель с высоким коэффициентом усиления


Схема Рис. 19 дает усиление по напряжению около 66 дБ. Q1 — это усилитель с общим эмиттером и разделенной нагрузкой коллектора (R2-R3), а Q2 — это эмиттерный повторитель, который подает свой выходной сигнал переменного тока обратно на переход R2-R3 через C3, таким образом «загружая» значение R3 (как описано в рассрочке за последний месяц), чтобы он действовал как высокое сопротивление переменного тока. Таким образом, Q1 дает очень высокий коэффициент усиления по напряжению.Полоса пропускания этой схемы достигает примерно 32 кГц, но ее входное сопротивление составляет всего 330R.

РИСУНОК 19. Начальный усилитель с высоким коэффициентом усиления


ЦЕПИ УСИЛИТЕЛЯ ОБЩЕЙ БАЗЫ

В транзисторном усилителе с так называемой «общей базой» входной сигнал подается на эмиттер транзистора, а выходной сигнал снимается с коллектора транзистора. Усилитель с общей базой имеет очень низкий входной импеданс, дает почти единичный коэффициент усиления по току и высокий коэффициент усиления по напряжению и используется в основном в широкополосных или высокочастотных усилителях напряжения. На рисунке 20 показан пример усилителя с общей базой, который дает хороший широкополосный отклик.

РИСУНОК 20. Усилитель с общей базой


Схема , рисунок 20, смещена так же, как , рисунок 12, . Обратите внимание, однако, что база развязана по переменному току через C1, а входной сигнал подается на эмиттер через C3. Схема имеет очень низкий входной импеданс (равный импедансу прямого смещения перехода база-эмиттер Q1), дает такое же усиление напряжения, как и усилитель с общим эмиттером (около 46 дБ), дает нулевой сдвиг фазы между входом и выходом и имеет полоса пропускания -3 дБ до нескольких МГц.

На рисунке 21 показан превосходный широкополосный усилитель — «каскодная» схема — которая дает преимущество в широкой полосе пропускания усилителя с общей базой вместе со средним входным сопротивлением усилителя с общим эмиттером. Это достигается последовательным соединением Q1 и Q2, причем Q1 подключен в режиме с общей базой, а Q2 — в режиме с общим эмиттером.

РИСУНОК 21. Широкополосный каскодный усилитель


Входной сигнал подается на базу Q2, которая использует эмиттер Q1 в качестве нагрузки коллектора и, таким образом, дает единичный коэффициент усиления по напряжению и очень широкую полосу пропускания, а Q1 дает коэффициент усиления по напряжению около 46 дБ.Таким образом, полная схема имеет входное сопротивление около 1 кОм, коэффициент усиления по напряжению 46 дБ и полосу пропускания -3 дБ, которая простирается до нескольких МГц.

На рисунке 22 показан близкий родственник усилителя с общей базой — фазоделитель «длинно-хвостовая пара», который дает пару противофазных выходов при возбуждении от несимметричного входного сигнала. Q1 и Q2 имеют общий эмиттерный резистор («хвост»), а точка смещения схемы устанавливается через RV1, так что два транзистора пропускают почти одинаковые токи коллектора (что дает нулевую разницу между двумя напряжениями коллектора) в условиях покоя.

РИСУНОК 22. Фазоделитель «Длиннохвостая пара»


База Q1 заземлена по переменному току через C1, а входные сигналы переменного тока подаются на базу Q2 через C2. Схема действует следующим образом.

Предположим, что на базу Q2 подается синусоидальный входной сигнал. Q2 действует как инвертирующий усилитель с общим эмиттером, и когда сигнал поднимает его базу вверх, его коллектор неизбежно опускается, и наоборот. Одновременно с этим эмиттер Q2 «следует» за входным сигналом, и по мере увеличения его эмиттерного напряжения он неизбежно уменьшает смещение база-эмиттер Q1, тем самым вызывая повышение напряжения коллектора Q1 и т. Д.

Q1, таким образом, работает в режиме с общей базой и дает тот же коэффициент усиления по напряжению, что и Q2, но дает неинвертирующее действие усилителя. Эта схема «фазоделителя», таким образом, генерирует пару сбалансированных противофазных выходных сигналов от несимметричного входа.

Наконец, Рисунок 23 показывает, как можно сделать приведенную выше схему в качестве дифференциального усилителя, который дает пару противофазных выходов, которые пропорциональны разнице между двумя входными сигналами — если на оба входа подаются одинаковые сигналы. , схема будет (в идеале) давать нулевой выходной сигнал.

РИСУНОК 23. Простой дифференциальный усилитель или длинно-хвостовая пара


Второй входной сигнал подается на базу Q1 через C1, а «хвост» R7 обеспечивает связь между двумя транзисторами. NV


Конструкция усилителя с общим эмиттером на транзисторе

»Lectronics Notes

Простые в использовании пошаговые инструкции по проектированию электронной схемы каскада усилителя на транзисторах с общим эмиттером, показывающие расчеты значений электронных компонентов.


Учебное пособие по проектированию схем транзисторов Включает:
Проектирование схем транзисторов Конфигурации схемы Общий эмиттер Конструкция схемы с общим эмиттером Эмиттер-повторитель Общая база

См. Также: Типы транзисторных схем


Усилитель с общим эмиттером широко используется, и его электронная схема относительно проста.

Есть несколько простых расчетов, которые можно комбинировать с простой схемой проектирования, чтобы получить надежный результат.Довольно легко принять предпочтительные значения компонентов в конструкции усилителя с общим эмиттером.

Существует несколько вариантов усилителя с общим эмиттером, и они могут быть легко включены в конструкцию. Самая основная форма конструкции усилителя с общим эмиттером — это простой логический буфер / выход, состоящий из транзистора и пары резисторов. В него можно добавить несколько дополнительных компонентов, которые позволят превратить его в усилитель со связью по переменному току со смещением по постоянному току и резистором обхода эмиттера.

Простая логическая конструкция усилителя с общим эмиттером

Эта очень простая конструкция логического буфера или усилителя с общим эмиттером настолько проста, насколько это возможно.

На схеме показан транзистор с входным резистором и коллекторным резистором. Входной резистор используется для ограничения тока, протекающего в базу, а резистор коллектора используется для создания этого напряжения на выходе.

Когда на входе виден высокий логический уровень, это заставляет ток течь через R1 в базу.Это вызывает включение транзистора. В свою очередь, напряжение на коллекторе падает почти до нуля, и все напряжение вырабатывается на резисторе R1.

Видно, что есть инверсия фазы. При высоком входном напряжении выходной сигнал низкий, т.е. Схема базового транзисторного усилителя с общим эмиттером — этот вариант часто используется с логическими схемами в качестве простого переключателя.

Усилитель с общим эмиттером, действующий как буфер для логической ИС, очень легко спроектировать.

Хотя это не единственный способ спроектировать сцену, можно использовать следующее пошаговое руководство.

  1. Выберите транзистор: Выбор транзистора, обозначенного на схеме TR1, будет зависеть от ряда факторов:
    • Ожидаемое рассеивание мощности.
    • Требуемая скорость переключения — для приложений переключения выбирайте переключающий транзистор, а не другую форму транзистора с широкой полосой пропускания, фут.
    • Требуется текущий коэффициент усиления.
    • Требуемый ток.
    • Коллектор-эмиттер напряжение.
    Все это можно предвидеть с достаточной точностью до начала проектирования. После завершения проектирования следует проверить все цифры, чтобы убедиться, что транзистор соответствует выбранным значениям.
  2. Рассчитать резистор коллектора: Выбрав тип транзистора, необходимо определить значения других электронных компонентов.Определение резистора коллектора R2 достигается путем определения тока, необходимого для протекания через резистор. Это будет зависеть от таких элементов, как ток, который должна обеспечивать цепь. Также может потребоваться светодиодный индикатор, включенный последовательно с резистором коллектора. Сила тока должна быть определена так, чтобы обеспечить требуемый световой поток. Номинал резистора можно определить с помощью закона Ома, зная ток, протекающий через резистор, и напряжение на нем.
  3. Определите номинал резистора базы: Ток базы — это ток коллектора, деленный на значение β или hfe, которое практически одинаково. Убедитесь, что имеется достаточный ток привода, чтобы включить транзистор для самых низких значений β даже при низких температурах, когда значения β будут ниже. Следует проявлять осторожность, чтобы не пропускать чрезмерный ток в базу, поскольку в результате переключение может занять больше времени, поскольку необходимо удалить избыточный накопленный заряд.
  4. Переоценить первоначальные предположения: После того, как проект был завершен, необходимо повторно оценить некоторые из начальных решений и оценок на случай, если окончательный проект что-то изменил.

Простая конструкция усилителя с общим эмиттером со связью по переменному току

Конструкция электронной схемы для базовой схемы усилителя с общим эмиттером со связью по переменному току приведена ниже.

Схема базового транзисторного усилителя с общим эмиттером и одиночным базовым резистором смещения

Эта схема не получила широкого распространения, поскольку трудно определить точную рабочую точку схемы из-за встречающихся вариаций значений β.

Можно использовать пошаговый процесс, показанный ниже:

  1. Выберите транзистор: Выбор транзистора будет зависеть от факторов, включая ожидаемую рассеиваемую мощность, напряжение коллектор-эмиттер, полосу пропускания и т. Д.
  2. Выберите резистор коллектора: Значение должно быть выбрано таким образом, чтобы коллектор находился примерно на половине питающей шины для требуемого тока. Величину сопротивления можно определить просто по закону Ома. Текущее значение следует выбирать так, чтобы сопротивление / выходное сопротивление было приемлемым для следующего этапа.
  3. Выберите базовый резистор: Используя показатель β для транзистора, определите базовый ток.Затем, используя закон Ома, зная напряжение питания и тот факт, что база будет на 0,5 В (для кремния) над землей, рассчитайте резистор.
  4. вычислить разделительные конденсаторы: Используя знание входного и выходного сопротивлений, определите значение конденсатора, равное импедансу на самой низкой частоте использования. (Xc = 2π f C, где C — в фарадах, а частота — в Гц).
  5. Пересмотрите расчеты: Пересмотрите все расчеты и предположения, чтобы убедиться, что все они по-прежнему действительны в свете того, как развивалась схема.

Комплексная конструкция усилителя с общим эмиттером со связью по переменному току

Включив несколько дополнительных компонентов в общую схему эмиттера, можно обеспечить лучший уровень усиления, а также улучшенную температурную стабильность на постоянном токе.

Схема базового транзисторного усилителя с общим эмиттером

Конструкция усилителя с общим эмиттером относительно проста. В качестве основы можно использовать следующую схему проектирования.

  1. Выберите транзистор: Как и прежде, тип транзистора следует выбирать в соответствии с ожидаемыми требованиями к рабочим характеристикам.
  2. Расчет резистора коллектора: Необходимо определить ток, необходимый для адекватного управления следующей ступенью. Зная ток, необходимый в резисторе, выберите напряжение коллектора, равное примерно половине напряжения питания, чтобы обеспечить равные колебания сигнала вверх и вниз. Это определит номинал резистора по закону Ома.
  3. Рассчитайте резистор эмиттера: обычно для напряжения эмиттера выбирается напряжение около 1 вольт или 10% от значения шины.Это обеспечивает хороший уровень устойчивости схемы по постоянному току. Вычислите сопротивление, зная ток коллектора (фактически такой же, как ток эмиттера) и напряжение эмиттера.
  4. Определить базовый ток: Можно определить базовый ток, разделив ток коллектора на β (или hfe, что по сути то же самое). Если указан диапазон для β, работайте с осторожностью.
  5. Определите базовое напряжение: Это легко вычислить, потому что базовое напряжение — это просто напряжение эмиттера плюс напряжение перехода база-эмиттер.Это принято равным 0,6 В для кремниевых и 0,2 В для германиевых транзисторов.
  6. Определите номиналы резистора базы: Предположим, что ток, протекающий через цепь R1 + R2, примерно в десять раз больше необходимого тока базы. Затем выберите правильное соотношение резисторов, чтобы обеспечить необходимое напряжение на базе.
  7. Шунтирующий конденсатор эмиттера: Коэффициент усиления схемы без конденсатора на резисторе эмиттера составляет приблизительно R3 / R4.Чтобы увеличить коэффициент усиления для сигналов переменного тока, добавлен конденсатор C3 обхода эмиттерного резистора. Это должно быть рассчитано таким образом, чтобы реактивное сопротивление равнялось R4 при самой низкой рабочей частоте.
  8. Определите значение входного конденсатора: Значение входного конденсатора должно равняться сопротивлению входной цепи на самой низкой частоте, чтобы обеспечить падение -3 дБ на этой частоте. Общий импеданс цепи будет β умноженным на R3 плюс любое сопротивление, внешнее по отношению к цепи, т.е.е. сопротивление источника. Внешнее сопротивление часто игнорируется, так как оно, скорее всего, не окажет чрезмерного влияния на схему.
  9. Определите значение выходного конденсатора: Опять же, выходной конденсатор обычно выбирается равным сопротивлению цепи на самой низкой рабочей частоте. Сопротивление цепи — это выходное сопротивление эмиттерного повторителя плюс сопротивление нагрузки, то есть следующей цепи.
  10. Переоценить предположения: В свете того, как развивалась схема, переоценить любые предположения схемы, чтобы убедиться, что они остаются в силе.Такие аспекты, как выбор транзистора, значения потребления тока и т. Д.

Можно получить более определенное усиление для каскада для сигналов более высокой частоты, поместив резистор (R5) последовательно с C3. Для низких значений усиления по напряжению это можно определить из простого соотношения A v = R3 / R5.

Схема базового транзисторного усилителя с общим эмиттером и дополнительным эмиттерным резистором в цепи обхода конденсатора

После небольшой практики различные каскады в конструкции транзисторного усилителя с общим эмиттером становятся второй натурой, и их можно очень легко выполнить.Выбор транзистора также может быть упрощен. Как упоминалось выше, очень важно использовать переключающий транзистор для коммутационных приложений — даже транзисторы с большим ft или отсечкой не будут работать так же хорошо, как правильный переключающий транзистор.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Рабочий лист многокаскадных транзисторных усилителей — Дискретные полупроводниковые приборы и схемы

Пусть сами электроны дадут вам ответы на ваши собственные «практические проблемы»!

Ноты:

По моему опыту, студентам требуется много практики с анализом цепей, чтобы стать профессионалом. С этой целью инструкторы обычно предоставляют своим ученикам множество практических задач, над которыми нужно работать, и дают ученикам ответы, с которыми они могут проверить свою работу.Хотя такой подход позволяет студентам овладеть теорией схем, он не дает им полноценного образования.

Студентам нужна не только математическая практика. Им также нужны настоящие практические схемы построения схем и использование испытательного оборудования. Итак, я предлагаю следующий альтернативный подход: ученики должны построить свои собственные «практические задачи» с реальными компонентами и попытаться математически предсказать различные значения напряжения и тока. Таким образом, математическая теория «оживает», и учащиеся получают практические навыки, которых они не приобрели бы, просто решая уравнения.

Еще одна причина для использования этого метода практики — научить студентов научному методу : процессу проверки гипотезы (в данном случае математических предсказаний) путем проведения реального эксперимента. Студенты также разовьют реальные навыки поиска и устранения неисправностей, поскольку они время от времени допускают ошибки при построении схем.

Выделите несколько минут времени со своим классом, чтобы ознакомиться с некоторыми «правилами» построения схем, прежде чем они начнутся. Обсудите эти проблемы со своими учениками в той же сократической манере, в которой вы обычно обсуждаете вопросы рабочего листа, вместо того, чтобы просто говорить им, что они должны и не должны делать.Я никогда не перестаю удивляться тому, насколько плохо студенты понимают инструкции, представленные в типичном формате лекции (монолог инструктора)!

Примечание для тех инструкторов, которые могут жаловаться на «потраченное впустую» время, необходимое ученикам для построения реальных схем вместо того, чтобы просто математически анализировать теоретические схемы:

Какова цель студентов, посещающих ваш курс?

Если ваши ученики будут работать с реальными схемами, им следует по возможности учиться на реальных схемах.Если ваша цель — обучить физиков-теоретиков, то во что бы то ни стало придерживайтесь абстрактного анализа! Но большинство из нас планируют, чтобы наши ученики что-то делали в реальном мире с образованием, которое мы им даем. «Потраченное впустую» время, потраченное на создание реальных схем, принесет огромные дивиденды, когда им придет время применить свои знания для решения практических задач.

Кроме того, если студенты создают свои собственные практические задачи, они учатся выполнять первичных исследований , тем самым давая им возможность продолжить свое образование в области электрики / электроники в автономном режиме.

В большинстве наук реалистичные эксперименты намного сложнее и дороже, чем электрические схемы. Профессора ядерной физики, биологии, геологии и химии хотели бы, чтобы их ученики применяли высшую математику в реальных экспериментах, не представляющих опасности для безопасности и стоивших меньше, чем учебник. Они не могут, но вы можете. Воспользуйтесь удобством, присущим вашей науке, и заставьте своих учеников практиковать математику на множестве реальных схем!

Транзистор

как усилитель: работа и его применение

Усилитель — это базовая схема, полученная из транзисторов.Эти устройства сконструированы таким образом, что транзисторы с низким значением входного сигнала преобразуются в сигналы, обладающие высокой силой. Они наиболее широко используются в концепции междугородной связи, а также там, где беспроводная передача данных используется в качестве носителя.

Это основные устройства, устанавливаемые в передатчики и приемники. Поскольку транзисторы бывают разных типов, это может быть биполярный переходный транзистор (BJT), полевой транзистор (FET) и полевой транзистор на основе оксида металла и полупроводника (MOSFET).

Усилители являются производными от транзисторов, поскольку они способны работать в трех областях: активная, отсечка и насыщение. С целью усиления фокус будет на активной области. Основное назначение этих усилителей — без изменений усилить подаваемый входной сигнал.

Транзистор как усилитель

Усилители — это схемы, которые предназначены для улучшения интенсивности сигналов. Применяемый вход может быть сигналами напряжения или тока в соответствии с требованиями.Этот процесс усиления используется в радиосигналах, междугородной связи и т. Д.

Транзистор должен быть эффективным с точки зрения усиления, линейности. Он должен обладать высокой пропускной способностью. Если эти параметры существуют в транзисторе, его можно использовать в различных приложениях, в частности, в усилителях звука.

Схема транзистора для усиления спроектирована таким образом, что вход всегда подается на переход, который смещен в прямом направлении. Точно так же выходной сигнал может быть собран через смещенный в обратном направлении переход транзистора.Причина рассмотрения этого условия заключается в том, что оно точно обеспечивает результаты амплификации. На входной стороне транзистор имеет низкое значение сопротивления, по этой причине он может обеспечивать изменения выходного значения, если есть какое-либо существенное изменение входного сигнала.

Транзистор как схема усилителя

К схеме может быть приложено даже постоянное напряжение. Таким образом, на вход подается низкое значение сигнала, поскольку из-за конструкции внутренней схемы генерируемый выходной сигнал обладает такой же силой выходного сигнала.В целом схема, разработанная здесь, действует как усилитель. Чтобы удовлетворить параметры и конструктивные соображения в целом, в приложениях усилителя используется конфигурация с общим эмиттером.

Рабочий

Рассмотрим схему усилителя, выполненного с базовой схемой общего эмиттера. В этой конфигурации напряжение прикладывается к клеммам базы и эмиттера. Поскольку соединение между ними считается находящимся в режиме смещения пересылки.Рассматриваемый выход берется через резистор, который действует как нагрузка, подключенная между коллектором и базой.

Поскольку низкое сопротивление присутствует на входе в спроектированной цепи, сигналы малой силы были приложены на входе, и сгенерированный выход будет очевиден по силе полученного сигнала. Таким образом, транзистор работает как усилитель. Существуют различные типы усилителей.

Во-первых, это транзисторы с биполярным переходом, которые классифицируются как общая база, общий эмиттер и общий коллектор.Во-вторых, классы усилителей классифицируются на основе применяемого входа и собираемого выхода. Это класс A, класс B, класс AB, класс C, класс D и т. Д., Наконец, усилители, разработанные на основе их главного фактора, называемого эффективностью. Для достижения эффективности он может быть выполнен в виде ступеней: одноступенчатые, многоступенчатые и т. Д.

Проект

В электронных схемах обычно используется БЮТ типа N-P-N. Он также считается наиболее часто используемым.В частности, конфигурация с общим эмиттером выбрана из-за ее способности усиления. Сторона входа может состоять из резистора, подключенного таким образом, что он образует цепь делителя потенциала. Этот вид смещения чаще всего используется в усилителях, созданных с помощью BJT.

Усиление звука

Транзистор на входе, имеющий резистор, делает его однокаскадным усилителем. Если выход однокаскадного усилителя используется как вход для подключенного к нему транзистора, то он становится многокаскадным усилителем.

Конструкция транзистора за счет такого смещения делает схему транзистора более стабильной. Следовательно, вся функциональность транзистора полностью зависит от смещения, приложенного к транзистору.

Применение транзистора в качестве усилителя

Транзистор, работающий в качестве усилителя, имеет различные преимущества и применения в области электроники и связи. Это
1. Его можно использовать в междугородной связи, потому что интенсивность сигнала, получаемого на выходе, будет высокой.
2. Эти транзисторные усилители используются в усилении радиосигналов.
3. Усилители играют важную роль в беспроводной связи.
4. Усиление сигналов с использованием транзисторов в качестве усилителей может быть использовано в радиовещании ЧМ-сигналов.
5. В волоконно-оптической связи также используются усилители этих типов.
6. Основное применение этого транзисторного усилителя — усилитель звука, который используется в повседневной деятельности, с которой мы сталкиваемся.

Таким образом, усилитель на транзисторах имеет множество применений. Дизайн очень прост. Просто схема, разработанная с резистором и снабженная источниками напряжения на выводах транзистора.

Конструкция может быть различных типов, конструкция которой зависит от требований. Таким образом, после анализа транзистора, который может работать как усилитель, можете ли вы описать, кроме усиления, где вы можете использовать транзисторы?

Биполярные транзисторы как усилители

  • Изучив этот раздел, вы сможете:
  • Распознать основные режимы подключения транзисторного усилителя.
  • • Эмиттер обыкновенный.
  • • Общий коллектор.
  • • Общая база.
  • Опишите основные параметры каждого режима усилителя.
  • • Коэффициент усиления по напряжению.
  • • Текущее усиление.
  • • Входное и выходное сопротивление.

Как подключается транзистор для создания усилителя.

Рис.3.6.1 Подключения усилителя.

Поскольку усилитель должен иметь два входа и два выхода, транзистор, используемый в качестве усилителя, должен иметь один из трех контактов, общих для входа и выхода, как показано на рис. 3.6.1. Выбор клеммы, используемой в качестве общего подключения, оказывает заметное влияние на характеристики усилителя.

Транзистор, включенный в трех режимах, показанных на рис. 3.6.2–3.6.4 будут показывать совершенно разные характеристические кривые для каждого режима.Эти различия могут быть использованы разработчиком схем для создания усилителя с характеристиками, наиболее подходящими для конкретной цели. Обратите внимание, что схемы показаны здесь в упрощенном виде и не предназначены для использования в качестве практических схем.

В схеме транзисторного усилителя, показанной на рис. 3.6.2–3.6.4, линия питания + V и линия 0V могут рассматриваться как одна и та же точка, если речь идет о любом сигнале переменного тока. Это связано с тем, что, хотя очевидно, что между этими двумя точками существует напряжение (напряжение питания), источник постоянного тока всегда отключается большим конденсатором (например.г. накопительный конденсатор в источнике питания), поэтому не может быть разницы в напряжении переменного тока между шинами + V и 0V.

Рис. 3.6.2 Режим общего эмиттера.

Режим общего эмиттера

Наиболее распространенная функция транзистора — использование в режиме ОБЩЕГО ЭМИТТЕРА. В этом способе подключения небольшие изменения тока базы / эмиттера вызывают большие изменения тока коллектора / эмиттера. Следовательно, это схема усилителя ТОКА. Для усиления НАПРЯЖЕНИЯ в цепь коллектора должен быть подключен нагрузочный резистор (или импеданс, например, настроенная цепь), чтобы изменение тока коллектора приводило к изменению напряжения, возникающего на нагрузочном резисторе.Значение резистора нагрузки влияет на УСИЛЕНИЕ НАПРЯЖЕНИЯ усилителя. Это связано с тем, что чем больше резистор нагрузки, тем большее изменение напряжения будет вызвано данным изменением тока коллектора. Обратите внимание, что из-за этого метода подключения форма выходного сигнала будет противофазна входному сигналу. Это связано с тем, что увеличение напряжения базы / эмиттера вызовет увеличение тока базы. Это, в свою очередь, приведет к увеличению тока коллектора, но по мере увеличения тока коллектора падение напряжения на нагрузочном резисторе увеличивается, и, поскольку напряжение на верхнем конце нагрузочного резистора (напряжение питания) не изменится, напряжение на резисторе нагрузки не изменится. нижний конец должен уменьшиться.Следовательно, увеличение напряжения база / эмиттер вызывает снижение напряжения коллектор / эмиттер.

Общие параметры эмиттера

Коэффициент усиления напряжения: высокий (около 100).

Текущее усиление: высокое (от 50 до 800).

Входное сопротивление: среднее (от 3 кОм до 5 кОм).

Выходное сопротивление: среднее (приблизительное значение резистора нагрузки).

Рис. 3.6.3 Режим общего коллектора.

Режим общего коллектора

Фиг.3.6.3 иллюстрирует режим ОБЩИЙ КОЛЛЕКТОР; также называется режимом эмиттерного повторителя, поскольку в этой схеме форма выходного сигнала на эмиттере не инвертируется и поэтому «следует» за формой входного сигнала на базе. Этот метод подключения часто используется в качестве БУФЕРНОГО УСИЛИТЕЛЯ для таких задач, как согласование импедансов между двумя другими цепями. Это связано с тем, что этот режим дает усилителю высокий входной импеданс и низкий выходной импеданс. Коэффициент усиления по напряжению в этом режиме немного меньше единицы (x 1), но доступен высокий коэффициент усиления по току (называемый h fc в режиме общего коллектора).Другой способ использования этого режима подключения — УСИЛИТЕЛЬ ТОКА, часто используемый для выходных цепей, которые должны управлять сильноточными устройствами переменного тока, такими как громкоговорители или устройствами постоянного тока, такими как двигатели и т. Д.

Параметры общего коллектора

Коэффициент усиления по напряжению: немного меньше единицы (1).

Коэффициент усиления по току: высокий (от 50 до 800)

Входное сопротивление: высокое (несколько кОм)

Выходное сопротивление: низкое (несколько Ом)

Рис.3.6.4 Режим общей базы.

Режим общей базы

COMMON BASE MODE обычно используется для усилителей VHF и UHF, где, хотя коэффициент усиления по напряжению невелик, существует небольшая вероятность того, что выходной сигнал будет возвращен во входную цепь (что может быть проблемой на этих частотах). Поскольку в этом режиме база транзистора соединена с землей, он образует эффективный заземленный экран между выходом и входом. Поскольку ток коллектора в этом режиме будет равен току эмиттера минус ток базы, коэффициент усиления по току (h fb в режиме общей базы) меньше единицы (<1).

Параметры общей базы

Коэффициент усиления по напряжению: средний (от 10 до 50).

Коэффициент усиления по току: меньше единицы (<1)

Входное сопротивление: низкое (около 50 Ом)

Выходное сопротивление: высокое (около 1 МОм)

Начало страницы

Простая схема усилителя звука на одном транзисторе

Схема простого усилителя звука на одном транзисторе

Если вы хотите построить простой аудиоусилитель без запутанных компонентов, вы можете построить простую однотранзисторную схему аудиоусилителя, используя BC547 и резистор, конденсатор.Эта схема может управлять громкоговорителем 8 Ом и производить значительный звук. Для лучшего результата используйте источник постоянного тока напряжением 9 Вольт.

Два типа однотранзисторных схем аудиоусилителя, разработанные на транзисторе BC 547, здесь первый предназначен для усиления прямого аудиосигнала, а другой — для усиления аудиосигнала от конденсаторного микрофона в качестве предусилителя.

Принципиальная схема

Предварительный усилитель

Необходимые компоненты

  1. Транзистор BC 547 (NPN) = 2
  2. Резистор 2 кОм = 2
  3. Резистор 10 кОм, 2.2 кОм каждый
  4. Электролитический конденсатор 47 мкФ / 16 В
  5. Электролитический конденсатор 1 мкФ / 16 В = 2
  6. Громкоговоритель
  7. Батарея 9 В

Строительство и работа

Чтобы построить схему усилителя, начните с транзистора BC 547 и подключите соответствующее смещение к клеммам коллектора, базы и эмиттера. Для первой схемы громкоговоритель напрямую подключен к клемме коллектора транзистора, а динамик схемы предварительного усилителя подключен через конденсатор связи C2.

Входной аудиосигнал для первой схемы подается на базу BC 547 через конденсатор C1 (47 мкФ) и резистор R1, связанный с коллектором, следовательно, достаточный аудиосигнал и напряжение смещения выше напряжения отсечки постоянно присутствует на клемме базы BC 547 и усиливает входной сигнал. рядом с пиком Vcc.

Входной аудиосигнал для второй схемы подается от конденсаторного микрофона, и он может обрабатывать электрический аудиосигнал с искажениями и шумами для улучшения аудиосигнала, необходимого для фильтрации и усиления входного сигнала.Для усиления микрофонного сигнала резистор R1 подключен на входе к Vcc, а конденсатор C1 отвечает за устранение искажений и передачу аудиосигнала на транзистор BC 547 Base. R2 действует как коллекторный резистор связи, тогда выходной аудиосигнал принимается с клеммы коллектора и подается на громкоговоритель через конденсатор C2. Применяя смещение выше точки отсечки к транзистору, мы не можем получить звуковой сигнал с фазовым сдвигом.

Создайте этот 8-ми транзисторный стереоусилитель

Во время исследования перехода на твердотельные устройства я наткнулся на действительно интересную статью о первой в мире транзисторной системе Hi-Fi.Эта статья дает хорошее закулисное представление о том, как выполняется электронный дизайн. Часто успех зависит от убеждения начальника в том, что определенная идея или процесс стоит того. Транзисторы в 50-е годы были трудными в изготовлении, шумными и ненадежными, а когда они работали, то только на низкой частоте и очень малой мощности. Многие инженеры изо всех сил пытались выяснить, для чего нужен транзистор, кроме миниатюрных слуховых аппаратов или преобразования сигнала в диодных логических схемах. Конечно, вакуумная трубка была большой и неэффективной, но она могла делать практически все, что требовалось в то время.За исключением случаев, когда вам нужны были тысячи их для компьютера, тогда они были не так хороши.

Логический модуль IBM 700 Series

К 1960-м годам транзистор, наконец, нашел свою нишу в портативных и мобильных AM-радиоприемниках, стереосистемах Hi-Fi, компьютерах и телефонных ретрансляторах, в то время как электронные лампы продолжали оставаться в высокочастотных радиоприемниках, усилителях мощности RF и высоковольтных устройствах. переключатели. Транзистору пришлось вести борьбу с электронной лампой, пока разрабатывались новые материалы и производственные процессы.Переход на транзисторы и устаревание электронных ламп потребовали десятилетий, а не взрыва. ЭЛТ-дисплей, гигантская стеклянная вакуумная бутылка, заполненная оловом, медью, цинком, цезием, серебром и свинцом, не исчезла со сцены до первого десятилетия 21-го века, замененного плоским стеклянным экраном, полным транзисторов. Но в наших микроволновых печах все еще есть электронные лампы. Думаю, последний бой.

В 1968 году Radio Shack представила свои первые наборы P-Box, предназначенные для экспериментаторов в области электроники.Это были отличные комплекты, содержащие все электронные компоненты, провода и монтажную плату, необходимые для создания полезного электронного устройства. Первые комплекты P-Box, выпущенные в 1968 году, подозрительно напоминали те, что продавались Eico под брендом Eicocraft, но быстро расширились (Radio Shack продавала экспериментальные комплекты Eico, Knight и Allied Radio до 1973 года). В 1969 году был выпущен комплект 8-транзисторного стереоусилителя, который был снят с производства в 1972 году. Причины неясны, но я подозреваю, что германиевые транзисторы с «согласованной парой» были дорогими и труднодоступными.Кроме того, комплект усилителя был одним из самых сложных в каталоге и, вероятно, работал не очень хорошо, что было бы разочарованием, учитывая его стоимость.

Прочитав упомянутую ранее статью о транзисторных Hi-Fi и изучив доступную документацию по набору 8-ми транзисторного стереоусилителя, я захотел его создать. В самых дешевых усилителях 1969 года использовалось как минимум два трансформатора связи. Эти трансформаторы упростили схему усилителя, но они добавили веса и ограничили низкочастотный и высокочастотный отклик.В комплекте Radio Shack использовалась двухтактная конструкция с прямым соединением, которую в то время можно было найти только в «серьезном» Hi-Fi оборудовании, где не было трансформаторов. Все, что мне нужно было сделать, это переработать комплект для кремниевых транзисторов, улучшить схему двухтактного смещения и ограничить высокочастотную характеристику чем-то разумным. Результату этой работы и посвящена данная статья. Я был очень рад, что в итоге я получил симпатичный маленький «винтажный» усилитель, который воспроизводит звук, заполняющий всю комнату, при подключении к эффективной акустической системе.Как вы можете видеть из демонстрации видео в начале этой статьи, вам не нужно 1000 Вт при 0,0000001% THD, чтобы заполнить комнату хорошими мелодиями.

Технические характеристики созданного мною усилителя были следующими:

.

THD: <1% при 500 мВт на канал

Входное сопротивление: 700 кОм минимум

Чувствительность: -10 дБВ (0,316 В среднекв.) См. Примечание ниже

Частотная характеристика: от 35 Гц до 20 кГц (+/- 1 дБ)

Частоты среза: 27 Гц и 65 кГц

Входная мощность: 9 В при 500 мА макс. Или 12 В при 700 мА макс.Рекомендуется 1000 мА.

Выходная мощность при 9 В Входная мощность: 1 Вт на 8 Ом (0,5 Вт на канал) или 2 Вт на 4 Ом (1 Вт на канал)

Выходная мощность при 12 В Входная мощность: 2 Вт на 8 Ом (1 Вт на канал) или 4 Вт на 4 Ом (2 Вт на канал)

Примечание. Входная чувствительность усилителя масштабируется до входных напряжений линейного уровня потребителя около 0,8 В (пиковое значение) (0,316 В среднеквадратичного значения) для максимальной выходной мощности. Хотя это идеально подходит для ноутбука, MP3-плеера, микшера, CD-плеера, AM / FM-тюнера или старинной магнитофонной деки, этого может быть недостаточно для многих звукоснимателей акустических / электрических инструментов или динамических микрофонов без предварительного усилителя или «топтания». коробка».

ТАКЖЕ …

Обязательно ознакомьтесь с руководством по сборке ниже по странице, потому что оно включает несколько предложений по улучшению усилителя:

  • Добавление светодиодного индикатора питания
  • Удвоение выходной мощности до 2 Вт
  • Добавление источника питания переменного тока для домашнего и портативного использования
  • И многое другое …

Схема стереоусилителя

Усилители правого и левого каналов идентичны, поэтому в этом разделе я опишу только левый канал.

В усилителе три каскада: дифференциальный усилитель (Q1), драйвер с общим эмиттером (Q2) и двухтактный выход (Q3 и Q4).

Ступени усилителя

Дифференциальный каскад усилителя

Каскад дифференциального усилителя обеспечивает три основные функции для остальных каскадов:

1. Схема смещения начальной загрузки, состоящая из C2 и R2-R5, которая увеличивает входное сопротивление усилителя примерно до 2 МОм.

2. Контур обратной связи постоянного тока, состоящий из R7 и R8, для управления общим усилением усилителя, уменьшения искажений и поддержания двухтактного выходного напряжения на уровне 1/2 напряжения источника питания.

3. Фильтр нижних частот первого порядка, состоящий из C3 в сочетании с R7 / R8, который ограничивает высокочастотную характеристику до 65 кГц.

Резисторы R2 и R3 образуют цепь смещения делителя напряжения для Q1, которая устанавливает напряжение коллектора около 8,2 В и ток коллектора на уровне 500 мкА. Коэффициент усиления по напряжению для дифференциального усилителя составляет -21 дБ (потери), а фазовый сдвиг сигнала составляет 180 градусов, поэтому требуется еще один каскад усилителя, чтобы исправить это перед отправкой сигнала на выходной каскад.

Не беспокойтесь о том, что первая ступень будет выглядеть немного необычно. Это не канонический дифференциальный усилитель из класса схем, в котором используются два транзистора. В проекте 8-ми транзисторного стереоусилителя требовалось использовать только 4 транзистора на канал, поэтому в конструкции был отказан от одного из транзисторов дифференциального усилителя и использовалась схема эмиттера в качестве входа. У него есть некоторые ограничения, но он работает.

Стандартный дифференциальный усилитель


Для тех, кто хотел бы самостоятельно поэкспериментировать с этой частью схемы, чтобы увидеть, как она действительно работает, я предоставил быстрый дизайн, аналогичный тому, который использовался в проекте усилителя, и включил схему ниже.Это всего лишь несколько компонентов, и их можно смонтировать на макетной плате без пайки.

Однотранзисторный дифференциальный усилитель


Подключите генератор сигналов к клемме IN +, заземлите клемму IN-, а затем подключите канал 1 двойного осциллографа к клемме OUT, а канал 2 — к клемме IN +. Установите генератор сигналов на 1 кГц с выходом 1Vpp. Кривая осциллографа должна выглядеть как первая кривая ниже. Обратите внимание, что вход и выход дифференциального усилителя синфазны, а коэффициент усиления (Vpp OUT / Vpp IN) приблизительно равен единице.

Неинвертирующий вход (желтый) и выход дифференциального усилителя (синий) — в фазе


Снимите генератор сигналов и осциллограф. Подключите генератор сигналов к клемме IN-, заземлите клемму IN +, а затем подключите канал 1 осциллографа с двумя трассами к клемме OUT, а канал 2 — к клемме IN-. Кривая осциллографа должна выглядеть как вторая кривая ниже. Обратите внимание, что вход и выход дифференциального усилителя сдвинуты по фазе на 180 градусов, а коэффициент усиления усилителя (Vpp OUT / Vpp IN) приблизительно равен единице.

Инвертирующий вход (желтый) и выход дифференциального усилителя (синий) — фазовый сдвиг на 180 градусов


Это поведение, ожидаемое от дифференциального усилителя с коэффициентом усиления 1. Вы могли бы увидеть подобное поведение от ИС операционного усилителя или канонического двухтранзисторного дифференциального усилителя.

Одним из важнейших показателей характеристик дифференциального усилителя является коэффициент подавления синфазного сигнала (CMMR). Если вы подаете сигнал точно такой же амплитуды и фазы на клеммы IN + и IN- дифференциального усилителя, выходной сигнал должен быть нулевым.Если это не так, значит, усилитель привел к ошибке на выходе. Практичные диффузоры не идеальны, поэтому CMMR часто используется как мера качества. ИС коммерческих операционных усилителей обычно достигают CMMR от 70 до 100 дБ в зависимости от частоты сигнала. Простой однотранзисторный дифференциальный усилитель не так хорош, но в конце концов, это всего лишь один транзистор.

Чтобы определить CMMR для схемы диффузора, показанной выше, замените R6 подстроечным резистором 2 кОм (контакт 1 — эмиттер Q1, контакт 2 — C2 +).Подсоедините клеммы IN + и IN- к генератору сигналов. Выключите канал 2 осциллографа и регулируйте канал 1, пока не появится сигнал. Отрегулируйте резистор подстроечного резистора, пока выходное напряжение диффузора не станет настолько низким, насколько возможно. Выходной сигнал должен быть около 10 мВ от пика до пика, как показано на графике ниже.

Неинвертирующие и инвертирующие входы, связанные вместе, с синфазным выходом


Следующий расчет дает значение CMMR этого дифференциального усилителя:

Дифференциальный режим усиления = OUT / (IN + — IN-) = 1Vpp / (1Vpp — 0Vpp) = 1

Синфазное усиление = OUT / IN = 0.01Vpp / 1Vpp = 0,01

CMMR = усиление в дифференциальном режиме / усиление в синфазном режиме = 1 / 0,01 = 100

CMMRdb = 20 * log (CMMR) = 40 дБ

Таким образом, эта схема дифференциального усилителя очень проста, использует только один транзистор и может масштабироваться для различных коэффициентов усиления в дифференциальном режиме.

Но …

Это CMMR не так хорош, как канонический диффузор или операционный усилитель, а входное сопротивление на неинвертирующем входе довольно низкое (около 1500 Ом).

Но если вы примете это во внимание, легко сконструировать небольшой усилитель, который действительно хорошо работает всего с несколькими транзисторами.

Ступень драйвера общего эмиттера

Это каскад усиления по напряжению усилителя. Q2 усиливает выходной сигнал Q1 и обеспечивает усиление по напряжению +45 дБ, которое используется для управления двухтактным выходным каскадом. Чтобы максимизировать усиление и размах выходного напряжения, Q2 не использует дегенерацию эмиттера, поэтому его выход коллектора будет довольно нелинейным и зависит от температуры.Это исправляется с помощью контура обратной связи по постоянному току R7 и R8.

Ток коллектора для Q2 установлен на 5 мА и течет через динамик, R11, D1 и D2. Этого небольшого тока через динамик недостаточно для генерирования измеримой мощности или слышимого шума, но он обеспечивает небольшой сигнал обратной связи в цепи коллектора Q2, который корректирует искажение кроссовера в Q3 / Q4.

Кроссовер искажений без двухтактного смещения

В исходной схеме усилителя использовался резистор для установки тока покоя для Q3 / Q4.Падение напряжения на этом резисторе было пропорционально току коллектора в Q2 и немного включало Q3 / Q4, поэтому усилитель работал в режиме класса A для слабых сигналов. К сожалению, при изменении температуры в Q3 / Q4 их базовый ток будет увеличиваться, увеличивая падение напряжения на резисторе. По мере увеличения падения напряжения на резисторе ток покоя Q3 / Q4 будет увеличиваться, повышая их температуру. Этот цикл будет повторяться до тех пор, пока температуры Q3 / Q4 не станут настолько высокими, что они самоуничтожатся.

Чтобы избежать этого, я заменил оригинальный резистор смещения на D1 и D2. Комбинация этих двух диодов обеспечивает смещение 1,4 В для Q3 / Q4, которое почти не зависит от тока базы Q3 / Q4. Не совсем независимый, но гораздо ближе, чем резистор. D1 и D2 также имеют отрицательный температурный коэффициент по отношению к напряжению перехода. Таким образом, когда температура окружающей среды увеличивается, что приводит к увеличению тока в Q3 / Q4, напряжение перехода D1 / D2 уменьшается, что снижает ток в Q3 / Q4.В идеале D1 и D2 должны быть физически близки к Q3 / Q4 (по возможности установлены на радиаторе), но используемая здесь схема стабилизации диода отлично зарекомендовала себя в моих тестах на температуру и выходную мощность. Конденсатор C4 предотвращает звон во время перехода Q3 / Q4.

Отсутствие кроссоверных искажений при двухтактном смещении диода

Двухтактный выходной каскад

Двухтактный выходной каскад обеспечивает необходимое усиление по току в сочетании с усилением по напряжению драйвера CE для создания выходной мощности, которая управляет динамиком.Q3 и Q4 работают независимо для больших сигналов (работа класса B), но в тандеме для малых сигналов (работа класса A). Для больших сигналов Q3 будет проводить одну половину цикла, а Q4 — вторую половину. Для небольших сигналов Q3 и Q4 будут вносить вклад в обе половины цикла.

Выходное напряжение постоянного тока на Q3 / Q4 составляет 1/2 напряжения источника питания, чтобы обеспечить максимальное колебание напряжения переменного тока без искажения ограничения.Для батареи 9 В выходное напряжение постоянного тока двухтактной составляет 4,5 В. Мы не хотим, чтобы это постоянное напряжение появлялось на динамике, так как это приведет к потере большого количества энергии на нагрев катушки динамика и отсутствие звука в процессе. Мы хотим, чтобы на динамик поступало только напряжение переменного тока от каскада CE Driver. C5 отделяет выходное напряжение постоянного тока на двухтактном каскаде от динамика и позволяет подавать только напряжение переменного тока. Компромисс с разделительным конденсатором C5 заключается в том, что на низких частотах импеданс C5 снижает выходное напряжение на динамик, что ограничивает самую низкую частоту от источника музыки, которая может быть усилена, которая в данном случае составляет около 27 Гц.

Коэффициент усиления по напряжению выходного каскада Push-Pull составляет -6 дБ (потери), но коэффициент усиления по току для каскада Push-Pull составляет + 35 дБ, что позволяет небольшому току в Q2 производить большой ток в Q3 / Q4. Общий коэффициент усиления по напряжению усилителя складывается из всех коэффициентов усиления каскада:

Diff Amp Gain + CE Driver Gain + Push-Pull Gain = (-21 дБ) + 45 дБ + (-6 дБ) = + 18 дБ

Рабочие параметры

После сборки усилителя были измерены следующие рабочие параметры при напряжении питания 9 В:

Ток покоя постоянного тока = 11 мА на канал (всего 22 мА)

Максимальное колебание напряжения = 6Vpp

Отклонение источника питания = -20 дБ

Усиление напряжения = + 18 дБ

Выходная мощность при КНИ 1% = 0.525 Вт на канал

Входное сопротивление = 700 кОм

Частотная характеристика +/- 1 дБ = от 35 Гц до 20 кГц

Низкая отсечка = 27 Гц

Высокочастотная отсечка = 65 кГц

Описанный здесь проект 8-ми транзисторного стереоусилителя основан на одноименном комплекте Radio Shack pbox, но в него добавлены кремниевые транзисторы и пассивные компоненты, которые можно легко приобрести у поставщиков электроники, таких как Mouser и Digikey.Я построил модернизированный комплект усилителя, описанный здесь, и считаю, что он работает лучше, чем исходный комплект в 1969 году. Чтобы упростить воспроизведение моей работы, я предоставил иллюстрации и пошаговую документацию по сборке на основе публикации стиль, используемый для оригинального продукта. Но каждая страница была создана с оригинальным контентом специально для обновленного усилителя.

Скачать инструкцию по сборке >>> ЗДЕСЬ <<<.

Я собрал комплект за два вечера, не торопясь и дважды проверяя свой прогресс, следуя инструкции.Если вы знакомы с техникой изготовления макетов, вы, вероятно, сможете завершить проект за один вечер.

Важное примечание:

Обязательно прочтите раздел «Усовершенствования и хитрости», прежде чем заказывать детали и начинать сборку. Возможно, вы захотите включить некоторые из предлагаемых модификаций во время строительства или придумать свои собственные перед тем, как начать.

Просмотрите список деталей и получите указанные компоненты.Все компоненты доступны от Mouser или Digikey или могут быть приобретены у других поставщиков, которые могут быть более удобными для вашей географии. Общая стоимость всех новых запчастей в небольших количествах составляет около 40 долларов, не включая налоги и доставку. Чтобы представить эту стоимость в перспективе, в 1969 году был представлен 8-ми транзисторный стереоусилитель по розничной цене 8,95 долларов. Экономическая стоимость 9 долларов в 1969 году эквивалентна примерно 61 доллару сегодня. Если вычесть стоимость указанных мною регуляторов громкости (регуляторы не были включены в исходный комплект), проект усилителя может быть построен примерно за половину скорректированной стоимости проектного комплекта, предложенного Radio Shack в 1969 году.Но имейте в виду, что Radio Shack нужно было получать прибыль от продажи и поддержки своего набора, что объясняет каталожную цену.

Ниже приведены несколько примечаний относительно деталей, используемых для проекта 8-транзисторного стереоусилителя:

1. Резисторы для этого проекта можно приобрести в Mouser, Digikey, Newark или у других розничных продавцов электронных компонентов. Но я очень рекомендую отличный комплект резисторов Joe Knows Electronics. Он включает в себя большинство (но не все) резисторов, которые вам нужны для этого проекта, и более 860 различных значений, которые можно использовать для других проектов, и все они указаны в отдельных пластиковых упаковках за 20 долларов.В этом проекте я использовал все резисторы на 1/4 Вт, чтобы сэкономить место. Вы также можете найти хорошие предложения на комплекты резисторов на Amazon, выполнив поиск по запросу «комплект резисторов» и ища комплект с допуском 1%, который включает в себя наибольшее количество значений и количество деталей по лучшей цене. Некоторые действительно хорошие комплекты резисторов можно найти менее чем за 20 долларов. Я делал это несколько раз и всегда был доволен деталями, которые я получал, независимо от поставщика.

2. Конденсаторы для проекта можно приобрести у Mouser, Digikey, Newark или у других розничных продавцов электронных компонентов.Я использовал конденсаторы из набора конденсаторов Джо Ноуса и набор электролитов, который я нашел на Amazon за 10 долларов.

3. Транзисторы для проекта — это обычные транзисторы 2N3904 / 2N3906, которые можно найти практически в любом месте, выполнив поиск по номеру транзистора. Все полупроводники, которые я использовал, взяты из полупроводникового комплекта Джо Ноуса. Это отличный набор компонентов, который включает в себя три буклета, объясняющих, как компоненты работают, и предлагает несколько примеров схем, чтобы помочь проиллюстрировать, как их подключить в схему.

4. Корпус для проекта стереоусилителя, который я построил, — это Hammond 1591GSBK ABS Project Box от Mouser. Я использовал кусок векторного макета, вырезанный так, чтобы он поместился наверху, и покрасил распылением высокотемпературным автомобильным красным цветом и закончил прозрачным слоем. Мне нравится внешний вид красного на черном, а красный цвет макета соответствует красному цвету оригинального комплекта pbox. Это полностью зависит от вас, как вы хотите разместить и раскрасить комплект, который вы построите.

5. В оригинальном комплекте pbox использовались луженые пружинные зажимы для крепления батареи, динамиков и входных соединений к корпусу монтажной платы.Эти зажимы было проблемой припаивать, когда они были новыми, и они потускнели, как сумасшедшие после установки, что привело к прерывистым соединениям. К счастью для всех, они больше не доступны. Для этого проекта я обнаружил, что лучше всего подходят двухпозиционные клеммные колодки и стереоразъем 1/8 дюйма (3,5 мм).

Обратите внимание: у меня нет деловых отношений ни с одним из вышеперечисленных поставщиков. Ничего ценного не было обменено на мою рекомендацию. Ни один из вышеперечисленных поставщиков не предоставил какой-либо компенсации во время создания этого проекта.Я не получу никакой компенсации, если вы решите создать этот проект или приобрести компоненты у любого поставщика, которого я рекомендую. У меня просто был хороший опыт работы с поставщиками, которых я рекомендую, и я верю, что вы тоже.

В оригинальной схеме стереоусилителя от Radio Shack использовалось 8 германиевых транзисторов, расположенных в три этапа: дифференциальный усилитель, драйвер CE и двухтактный выход. Эти каскады были обычным явлением в конструкции высококачественных коммерческих усилителей, поэтому проект 8-ми транзисторного стереоусилителя должен был тогда заслужить много поклонников.Однако всего через 3 года набор был отозван, что говорит о том, что после первоначального маркетингового интервала по каталогу продукт был всего около года. Когда в 1969 году был выпущен комплект, кремниевые транзисторы заменили германий в новых коммерческих усилителях. Однако GE и ETCO продолжали продавать германиевые транзисторы любителям примерно до 1979 года через Radio Shack, Lafayette, Poly Paks и другие. Итак, почему комплект не прошел успешно?

Что ж, на то есть веские причины:

Германий был относительно простым элементом в работе на заре создания транзисторов, но его недостатки сделали кремний более привлекательным элементом после того, как проблемы производства были преодолены.Германий имеет более низкий энергетический зазор между валентной зоной и зоной проводимости, что приводит к более высокому току утечки, пропорциональному температуре. Германий имеет более низкую теплопроводность, чем кремний, что затрудняет избавление транзистора от внутреннего тепла. При повышении внутренней температуры возникает больший ток утечки, который выделяет больше тепла … и так далее. Комбинация этих двух свойств может привести к тепловому разгоне, закончившемуся саморазрушением устройства. Первоначальная конструкция усилителя не предусматривала метода предотвращения теплового разгона в двухтактной конфигурации, что делало усилитель ненадежным.

К 1959 году ни один производитель не открыл способ создания оксида на германии. Это позволило планарным транзисторам из оксида кремния достичь доминирующего положения в производстве с точки зрения производительности, стоимости и надежности. Поскольку стоимость кремниевых транзисторов упала, германий не успевал за ними, и в конечном итоге транзисторы, используемые в наборе, стали слишком дорогими. Чтобы свести к минимуму возможность теплового разгона, Radio Shack продавала согласованные пары полупроводников, которые сортировались вручную, что еще больше увеличивало стоимость транзисторов.

При цене 9 долларов (61 доллар в 2017 году) 8-ми транзисторный стереоусилитель был самым дорогим комплектом в линейке Pbox и содержал 56 деталей. Для сравнения, в комплекте с 3-х транзисторным коротковолновым радиоприемником по цене 8 долларов было всего 39 деталей, а в комплекте с беспроводным FM-микрофоном по цене 7 долларов было всего 23. Я подозреваю, что было очень мало молодых клиентов, которые могли позволить себе такой сложный продукт, и было больше заводских переделок и возврат возвращается, чем ожидалось.

Итак …

Чтобы преодолеть ограничения оригинального комплекта, я включил несколько модификаций для повышения производительности и надежности, в том числе:

1.Измените конструкцию усилителя, чтобы использовать доступные кремниевые транзисторы.

2. Улучшенный контроль смещения для двухтактной ступени.

3. Увеличьте выходную емкость связи для улучшения низкочастотной характеристики.

4. Добавьте компенсационный конденсатор для увеличения спада высоких частот выше звуковых частот.

5. Замените луженые пружинные клеммы клеммными колодками и стереоразъемом для повышения надежности подключения.

6. Измените масштаб усиления усилителя для достижения максимальной мощности при современных линейных напряжениях.

Я не пытался упростить проект. Мой редизайн требует 69 деталей, а документ по сборке занимает 9 страниц. Так что новичку не рекомендую. Но если вам нравится работать с дискретными аналоговыми компонентами на монтажной плате и у вас есть хорошие навыки пайки, этот проект — как раз то, что вам нужно.

Я думаю, что этот редизайн комплекта — одно из самых увлекательных, которые я получил, работая над этими редизайнами Pbox. Проект 8-ми транзисторного стереоусилителя, который я построил, может легко заполнить комнату отличным звуком, если подключить к нему набор хороших динамиков.Впечатляет то, чего можно достичь с помощью нескольких транзисторов и стандартной батареи на 9 В (даже если эта батарея не продержится долго при полной мощности).

Схема печатной платы (вверху)

Руководство по сборке содержит пошаговый контрольный список для установки и пайки каждого компонента на плиту. Как вы можете видеть на иллюстрации с противоположной стороны, я использовал двухточечную проводку со сплошным соединительным проводом 24 AWG.Большинство подключений можно выполнить только с помощью выводов компонентов. Но провода питания, заземления и сигнальной шины лучше всего выполнять с помощью длинных соединительных проводов.

Схема печатной платы (снизу)

Когда дело доходит до проводки, старайтесь быть аккуратнее, как я указал в руководстве по сборке. Вам не обязательно быть лучшим мастером пайки в мире, но нет веских причин делать работу на полпути. Сделайте все возможное, чтобы ваш проект выглядел как можно лучше.

Перфорированная плата, указанная в списке деталей, слишком велика для размещения на корпусе Hammond, поэтому требуется некоторая обрезка, как показано на изображениях ниже. Выполните следующие действия, чтобы подготовить монтажную плату перед установкой компонентов:

Предупреждение: когда я пишу «острый край», я имею в виду нож Xacto или аналогичный. Эти продукты очень острые (подумайте о хирургическом скальпеле) и могут сильно повредить, если вы не будете очень осторожны.Будьте предельно осторожны при работе с любым режущим инструментом.

1. Используя острый край, аккуратно сделайте надрез на перфорированной плате вдоль ряда отверстий ВЕРХНИЙ РЯД и НИЖНИЙ РЯД до конца платы. Проведите острым краем над линией надреза несколько раз, пока он не войдет в перфорированную плату на 1/4 — 1/2 пути.

2. Острым краем аккуратно сделайте надрез на перфорированной плате вдоль ПРАВОЙ и ЛЕВОЙ КОЛОННЫ отверстий до конца доски. Проведите острым краем над линией надреза несколько раз, пока он не войдет в перфорированную плату на 1/4 — 1/2 пути.

Надрезать края перфорации по пунктирным линиям

3. Используя маленькие плоскогубцы, осторожно отогните ВЕРХНИЙ РЯД от линии надреза. Работайте с одним концом ВЕРХНЕГО РЯДА, двигаясь к центру, а затем другим концом. Секция TOP ROW со временем отколется от перфорированной платы.

4. Используя маленькие плоскогубцы, осторожно отогните НИЖНИЙ РЯД от линии надреза. Работайте с одним концом НИЖНЕГО РЯДА, двигаясь к центру, а затем другим концом.Секция НИЖНЕГО РЯДА в конечном итоге отколется от перфорированной платы.

5. Используя маленькие плоскогубцы, осторожно отогните ПРАВУЮ КОЛОНКУ от линии надреза. Работайте с одним концом ПРАВОЙ КОЛОННЫ, двигаясь к центру, а затем другим концом. Секция ПРАВАЯ КОЛОНКА со временем отколется от перфорированной платы.

6. Используя маленькие плоскогубцы, осторожно отогните ЛЕВУЮ КОЛОНКУ от линии надреза. Работайте с одним концом ЛЕВОЙ КОЛОННЫ, двигаясь к центру, а затем другим концом.Раздел COLUMN со временем отколется от перфорированной платы.

Осторожно разломайте края перфорированной плиты по линиям разреза

7. Используя нож Exacto, совместите обрезанную перфорированную плату с корпусом Hammond и увеличьте отверстия в углу, чтобы они совпадали с монтажными отверстиями в углу корпуса. Работайте медленно и осторожно с минимальным давлением, чтобы не сломать угловой элемент.

8. Поместите монтажные скобы потенциометра на перфорированную плату и увеличьте отверстия в перфорированной плате, чтобы они совпадали с отверстиями в скобах.Работайте медленно и осторожно с минимальным давлением, чтобы не повредить перфорированный картон.

Вырезать отверстия для винтов корпуса и кронштейна

9. Распылите краску на перфорированный картон любым цветом по вашему выбору или оставьте его естественным. Это твой выбор.

Краска желаемого цвета

Я обычно использую плоский красный, а затем 2-3 слоя глянцевого лака.

Скобы для регулировки громкости, которые я сделал, были из старого номерного знака, который я вырезал ножницами.Но вы можете использовать любой тонкий металл, который у вас есть. Я также использовал заглушки для слотов PCI от старого настольного компьютера. Я покрасил кронштейны темно-серой автомобильной краской, но вы можете использовать любой цвет, который вам нравится. Нет попытки. Делай или не делай.

Выполните первые несколько шагов из руководства по сборке, чтобы установить монтажные кронштейны регулятора громкости. По завершении проект должен выглядеть примерно так, как на изображениях ниже.

Потенциометры, указанные в списке деталей, поставляются с шестигранными гайками и плоскими шайбами.В руководстве по сборке указан порядок установки этого оборудования. Чтобы вал потенциометра не выходил слишком далеко от кронштейна, я установил внутреннюю шестигранную гайку и плоскую шайбу так, чтобы внешняя шестигранная гайка и шайба находились внутри первой пары витков резьбы на валу.

Важное примечание: Если вы используете потенциометры другого производителя, чем я указал, убедитесь, что они поставляются с монтажным оборудованием, иначе вам придется покупать собственные.

Потенциометры и оборудование для их крепления

Положение крепежа на кронштейне

Потенциометры и оборудование установлено

1/8 дюйма (3.5 мм) стерео-разъем, указанный в списке деталей, имеет предварительно сформированные контакты для автоматической вставки в печатную плату. Я выпрямил штифты плоскогубцами, выровнял штифты на монтажной плате и сильно надавил на разъем, чтобы он встал заподлицо. Возможно, вам придется немного увеличить отверстия в перфорированной плате, если разъем не будет вставлен с умеренным усилием. Не применяйте чрезмерное давление.

Три 2-позиционные клеммные колодки будут установлены заподлицо с монтажной платой с очень небольшим усилием. Слегка согните штифты наружу, чтобы они оставались на месте.

Руководство по сборке описывает эти шаги, но я хотел, чтобы вы могли видеть, как должна выглядеть плата после установки всех разъемов.

Стереоразъем установлен

Установлены разъемы для динамиков и питания

После завершения усилитель левого канала должен выглядеть примерно так, как на изображениях ниже.Я использовал цветной соединительный провод для соединений потенциометра, чтобы было легче идентифицировать каждый выступ потенциометра (A, B или C).

После завершения усилитель правого канала должен выглядеть примерно так, как показано на рисунке ниже. Я использовал цветной соединительный провод для соединений потенциометра, чтобы было легче идентифицировать каждый выступ потенциометра (A, B или C).

После завершения 8-ми транзисторный стереоусилитель должен выглядеть примерно так, как на изображениях ниже.Теперь вы готовы подключить аккумулятор и динамики, подключить источник звука и прослушать некоторые мелодии на усилителе, который вы построили сами.

Руководство по сборке описывает настройку и работу усилителя, а также некоторые модификации, которые при желании можно сделать, чтобы удвоить выходную мощность. Хотя для меня 1Вт был достаточно впечатляющим.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *