Не очень удачное USB зарядное устройство (блок питания). . Обзоры электроники.
Написать про это зарядное устройство хотел давно, но все не доходили руки, хотя даже у него есть на что посмотреть.Получил я его от одного довольно известного магазина, который после моего отчета изъял его из продажи и на мой взгляд сделал правильно. Собственно потому я и не даю ссылку на товар. Возможно он вам попадется в других магазинах, потому считаю, что данный обзор все равно будет полезен.
Получил я данное зарядное устройство (хотя конечно корректнее — блок питания) в обычном пакете с защелкой, никаких блистеров и коробок.
Размер не назвал бы совсем маленьким, мне попадались куда более габаритные варианты при не слишком меньшем заявленном токе.
Заявлен выходной ток в 3000мА, что довольно неплохо для большинства применений, например можно заряжать планшет + смартфон.
Зарядное имеет два выходных порта, промаркированных как iPad и Galaxy, ну или как устройства от Эппл и Самсунг.
Сверху расположен светодиод индикации работы, светит всегда независимо от режима работы.
Но так как снаружи для меня обычно нет ничего интересного, то я конечно же решил его вскрыть. Делается это относительно просто, выковыриваем небольшую щелку между половинками корпуса, а затем при помощи отвертки разделяем половинки. БП заклеен, но открылся довольно легко.
На первый взгляд довольно аккуратно, по крайней мере не вызвало нехороших чувств.
Плата изготовлена аккуратно, правда светодиод лежит прямо на разъемах USB, но в качестве защиты на них наклеили изолирующую пленку.
Плата спаяна также вполне нормально, есть небольшие грехи, но в целом на твердую четверку. Минус один балл снял за местами грубоватую пайку и отсутствие защитных разрезов в текстолите.
Вот что меня немного удивило и даже заставило сделать отдельный снимок, так это то, что провода к плате имеют силиконовую изоляцию и без проблем держат температуру жала паяльника. А кроме того они весьма гибкие, купить бы такого провода себе отдельно от блока питания.
Рассмотрим плату более детально.
1. Входных конденсаторов два, соединены параллельно, суммарная емкость около 10мкФ, для 15 Ватт мало. Входной фильтр отсутствует, зато есть предохранитель 🙂
2. Микросхема в DIP корпусе. Даташит на нее я не искал, но помню что где то уже попадалась и даже соответствовала мощности блока питания. Зато увидел весьма диодный мост в весьма оригинальном исполнении, до этого такие как-то не попадались.
4. Но при всем этом межобмоточный конденсатор стоит правильного типа, кроме того есть обратная связь через оптрон, иногда даже на этом экономят.
5. Выходных диодов два, включены параллельно, емкость выходного конденсатора всего 1000мкФ, для тока в 3 Ампера этого маловато. Кроме того отсутствует выходной фильтр.
6. А вот обратная связь реализована не очень хорошо, явно видна экономия. Вместо нормальной схемы с TL431 применили просто стабилитрон.
Кстати, входной конденсатор разделен на два более мелких не зря, между ними спрятался небольшой дроссель для уменьшения помех.
Микросхема имеет внешний шунт для измерения тока, что говорит о как минимум наличии защиты от короткого замыкания выхода, и защита действительно работает.
Около выходных разъемов установлены делители напряжения. Они используются для того, чтобы заряжаемое устройство знало, какой ток оно может взять от зарядного устройства.
На всякий случай, да и просто для общей информации, начертил принципиальную схему данного блока питания. Ничего нового, что отличало бы данный блок питания от других я не увидел, ну разве что уже давно не попадались блоки питания со стабилитроном вместо специальной микросхемы для стабилизации выходного напряжения.
Проверка по большому счету более чем стандартна для моих обзоров. В ходе теста были использованы:
Электронная нагрузка
Осциллограф
Мультиметр
Термометр
Бумажка и ручка.
1. Первый тест без нагрузки, выходное напряжение немного завышено, норма до 5.25 Вольта. Хотя такое встречается довольно часто.
2. Второй тест — ток нагрузки 1 Ампер, уровень пульсаций заметно вырос, выходное напряжение вполне в норме.
1. Ток нагрузки 2 Ампера. уровень пульсаций около 0.7 Вольта, это очень много. Осциллограф даже пришлось переключить на режим 0.2В на клетку, а не 0.1, как это было в предыдущем тесте.
Дальше было в планах выставить 3 Ампера, но температура выходных диодов перевалила за 100 градусов и я остановил тест.
На основании теста была составлена табличка. Интервал между тестовыми измерениями составлял 20 минут, весь тест занял 1 час.
Как можно видеть из таблицы, температура выходных диодов и конденсатора достигла довольно высоких значений, эксплуатировать долго в таком режиме не рекомендуется, потому тест был остановлен.
Иногда спрашивают, а от чего вообще выходят из строя блоки питания. Ниже фото двух блоков питания 5 Вольт 2 Ампера. Они вышли из строя с интервалом примерно в пол часа. Средний от планшета Текласт, до этого нормально работал несколько месяцев, а потом внезапно выгорел с небольшими спецэффектами, планшет в это время заряжался и был включен. Но так как планшет был нужен, достал с полки еще одно зарядное устройство, которое также без проблем прошло тесты и работало нормально (справа), через пол часа ситуация повторилась, пришлось заряжать планшет от лабораторного блока питания.
Очень часто блоки питания выходят из строя из-за:
1. Перегрев силового трансформатора, падает магнитная проницаемость сердечника выше критической температуры.
2. Некорректная работа самого ШИМ контроллера, особенно в режиме перегрузки или КЗ.
Данный блок питания трудится уже более полугода, но пришлось его немного доработать. К ШИМ контроллеру припаял металлическую пластинку, выполняющую роль радиатора, а внизу и вверху корпуса насверлил вентиляционных отверстий. В таком варианте проблем нет, хотя я думаю, что если использовать при токах до 2 Ампер, то работать будет и без доработки.
В общем что можно сказать про данное устройство. ТАкое чувство, что разогнались сделать хорошо, но потому вдруг закончились деньги и решили сделать дешево. Т.е. местами сделано нормально, но видны явные следы экономии. Да и заявленный ток в 3 Ампера несколько оптимистичен, я бы не стал рисковать и нагружал максимум на 2 Ампера.
На этом все, вот такой вышел небольшой, но грустный обзор.
СХЕМА ЗАРЯДНОГО УСТРОЙСТВА ОТ USB
Представляю неплохое зарядное устройство от USB порта компьютера. Устройство предназначено для зарядки литиевых аккумуляторов от мобильных телефонов. Достаточно простая конструкция обеспечивает правильную зарядку аккумулятора. Имеет светодиодный индикатор заряда. Красный цвет означает, что светодиод заряжается, зеленый — что аккумулятор заряжен. Использовался контролер заряда на микросхеме BQ2057CSN.
Она была выбрана как самая подходящая для данной цели. В принципе диапазон входных напряжений достаточно большой — от 5 до 15 вольт.
Схему можно использовать как с терморезистором для защиты, так и без него. Температура считается нормальной, пока на входе TS микросхемы напряжение 30-60% от напряжения напряжения зарядки аккумулятора. Если терморезистор не нужен — вместо него надо поставить ещё один один резистор на землю того же номинала.
В данной схеме был использован транзистор BCP53, но желательно использовать более мощные аналоги, например FDD4243, также возможно заменить отечественным, очень советую кт814, 816. Диод можно ставить практически любой, который есть под рукой, желательно использовать диоды на 1 ампер и более, поскольку вся нагрузка на него, а от порта ток до 1 ампера! Термодатчик тоже можно не ставить.
Светодиод нужен с двумя положения (двухцветный), на крайний случай можно использовать два светодиода. Контролер напичкан разными функциями, он отключает зарядный ток при коротком замыкании, перегреве аккумулятора. Имеет защиту от переплюсовки и перенапряжения.
Также он обеспечивает правильный заряд аккумулятора, зарядный ток в пике достигает до 600 миллиампер, но если заряжаемый аккумулятор севший, то контролер заряжает его сначала маленьким током, затем постепенно прибавляет ток заряда, этим не дает аккумулятору вздуваться, а нам известно, что литиевые аккумуляторы имеют <<характер>> вздуваться от зарядного тока. Подобные контролеры заряда присутствуют на плате литиевых аккумуляторов от мобильного телефона, в дальнейшем мы рассмотрим вариант переделки такой платы под универсальный контролер заряда.
Поделитесь полезными схемами
ЭКВИВАЛЕНТ НАГРУЗКИ Предлагаемый эквивалент нагрузки можно использовать для проверки источников питания переменного тока частотой 50 Гц, например, понижающих трансформаторов. |
СХЕМА ПОВЫШАЮЩЕГО ПРЕОБРАЗОВАТЕЛЯ Схема повышающего преобразователя низковольтного напряжения, собранного на основе транзисторного блокинг-генератора и ферритового трансформатора. |
УСТРОЙСТВО РЕЗЕРВНОГО ПИТАНИЯ Простое самодельное устройство для резервного электропитания маломощной батареечной аппаратуры, требующей бесперебойного обеспечения напряжением. |
Зарядка от USB. Не всё так просто… / Блог им. mvb / Сообщество EasyElectronics.ru
В связи с обновлением мобильного парка столкнулся с забавной проблемой: «Не всеСо стародавних времён использую резервную батарею «Вампирчик-Литий». Очень эту батарею любил мой старичок HTC Hero. С огромным удовольствием он кушал от неё 800 mA. Всё было хорошо, но пришло время обновления мобильной электроники. Свеженький Samsung Galaxy Nexus испробовав эту батарею заявил: «USB charger. Больше 450 mA жрать не буду!». То есть, при ёмкости батареи почти 1800 mA/h за ночь может и зарядит. Тут и начались мои поиски «полезных йогуртов»…
Всё дело оказалось в волшебных пузырьках схеме выхода USB зарядника. Не думаю что это сильно новая и актуальная тема для общественности. Посему, оставлю этот пост в личном блоге. Ежели кто забредёт сюда со скуки — комментарии, ссылки, мнения сильно приветствуются.
У «Вампирчик-Литий» оказалась следующая схема выхода USB:
(Внимание! D+ и D- мог и перепутать. Не перепроверял.)
Где то в памяти всплыло что для обьяснения устройству что его заряжают от AC charger нужно на лнии D+ и D- подать определённые потенциалы… Это и должна обеспечивать такая схема…
Хрен вам… Клал Samsung на эту схему!
В результате победила следующая схема выхода:
Да. Просто, тупо, «закоротить» выводы D+ и D-. Galaxy Nexus сказал: «AC charger. 950 mA».
Решение обкатал на автомобильном заряднике. До модификации он считался USB chrger, после как AC charger.
Вот картинки процесса доработки зарядника:
Сам зарядник. Уже доработанный. Как не странно, от оригинального по внешнему виду не отличается 🙂
Вид со стороны монтажа. Между выводами D+ и D- мною прямо на пады приляпан резистор 220 Ом.
Вид со стороны деталей.
Очень хочу увидеть плодотворную «священную войну» в коментариях 🙂
P.S. Уже в разобранном виде лежит следующий, более компактный, автозарядник. У него подобие первой схемы уже собрано на заводе. Я в раздумьях… снести эти делители нафиг и «закоротить» D+ и D- или есть более «академически» правильное решение…
Аварийная usb-зарядка своими руками — Сделай сам
Большинство современных мобильных телефонов, смартфонов, планшетов и других носимых гаджетов, поддерживает зарядку через гнездо USB mini-USB или micro-USB. Правда до единого стандарта пока далеко и каждая фирма старается сделать распиновку по-своему. Наверное чтоб покупали зарядное именно у неё. Хорошо хоть сам ЮСБ штекер и гнездо сделали стандартным, а также напряжение питания 5 вольт. Так что имея любое зарядное-адаптер, можно теоретически зарядить любой смартфон. Как? Изучайте варианты распиновки USB и читайте далее.
Распиновка USB разъемов для Nokia, Philips, LG, Samsung, HTC
Бренды Nokia, Philips, LG, Samsung, HTC и многие другие телефоны распознают зарядное устройство только если контакты Data+ и Data- (2-й и 3-й) будут закорочены. Закоротить их можно в гнезде USB_AF зарядного устройства и спокойно заряжать свой телефон через стандартный дата-кабель.
Распиновка USB разъемов на штекере
Если зарядное устройство уже обладает выходным шнуром (вместо выходного гнезда), и вам нужно припаять к нему штекер mini-USB или micro-USB, то не нужно соединить 2 и 3 контакты в самом mini/micro USB. При этом плюс паяете на 1 контакт, а минус — на 5-й (последний).
Распиновка USB разъемов для Iphone
У Айфонов контакты Data+ (2) и Data- (3) должны соединяться с контактом GND (4) через резисторы 50 кОм, а с контактом +5V через резисторы 75 кОм.
Распиновка зарядного разъема Samsung Galaxy
Для заряда Самсунг Галакси в штекере USB micro-BM должен быть установлен резистор 200 кОм между 4 и 5 контактами и перемычка между 2 и 3 контактами.
Распиновка USB разъемов для навигатора Garmin
Для питания или заряда навигатора Garmin требуется особый дата-кабель. Просто для питания навигатора через кабель нужно в штекере mini-USB закоротить 4 и 5 контакты. Для подзаряда нужно соединить 4 и 5 контакты через резистор 18 кОм.
Схемы цоколёвки для зарядки планшетов
Практически любому планшетному компьютеру для заряда требуется большой ток — раза в 2 больше чем смартфону, и заряд через гнездо mini/micro-USB во многих планшетах просто не предусмотрен производителем. Ведь даже USB 3.0 не даст более 0,9 ампер. Поэтому ставится отдельное гнездо (часто круглого типа). Но и его можно адаптировать под мощный ЮСБ источник питания, если спаять вот такой переходник.
Полезное: Схема подключения и распиновка кнопки стеклоподъемников ВАЗ
Распиновка зарядного гнезда планшета Samsung Galaxy Tab
Для правильного заряда планшета Samsung Galaxy Tab рекомендуют другую схему: два резистора: 33 кОм между +5 и перемычкой D-D+; 10 кОм между GND и перемычкой D-D+.
Распиновка разъёмов зарядных портов
Вот несколько схем напряжений на контактах USB с указанием номинала резисторов, позволяющих эти напряжения получить. Там, где указано сопротивление 200 Ом нужно ставить перемычку, сопротивление которой не должно превышать это значение.
Классификация портов Charger
- SDP (Standard Downstream Ports) – обмен данными и зарядка, допускает ток до 0,5 A.
- CDP (Charging Downstream Ports) – обмен данными и зарядка, допускает ток до 1,5 A; аппаратное опознавание типа порта (enumeration) производится до подключения гаджетом линий данных (D- и D+) к своему USB-приемопередатчику.
- DCP (Dedicated Charging Ports) – только зарядка, допускает ток до 1,5 A.
- ACA (Accessory Charger Adapter) – декларируется работа PD-OTG в режиме Host (с подключением к PD периферии – USB-Hub, мышка, клавиатура, HDD и с возможностью дополнительного питания), для некоторых устройств – с возможностью зарядки PD во время OTG-сессии.
Как переделать штекер своими руками
Теперь у вас есть схема распиновки всех популярных смартфонов и планшетов, так что если имеете навык работы с паяльником — не будет никаких проблем с переделкой любого стандартного USB-разъема на нужный вашему девайсу тип. Любая стандартная зарядка, которая основывается на использовании USB, предусматривает использование всего лишь двух проводов – это +5В и общий (минусовой) контакт.
Просто берёте любую зарядку-адаптер 220В/5В, от неё отрезаете ЮСБ коннектор. Отрезанный конец полностью освобождается от экрана, в то время как остальные четыре провода зачищаются и залуживаются.
Теперь берем кабель с разъемом USB нужного типа, после чего также отрезаем от него лишнее и проводим ту же самую процедуру. Теперь остается просто спаять между собой провода согласно схемы, после чего соединение изолировать каждое отдельно.
Полученное в итоге дело сверху заматывается изолентой или скотчем. Можно залить термоклеем — тоже нормальный вариант.
Бонус: все остальные разъёмы (гнёзда) для мобильных телефонов и их распиновка доступны в единой большой таблице — смотреть.
28— 4,68
НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ
Источник: https://2shemi.ru/raspinovka-usb-razemov-dlya-zaryadki-telefonov/
USB зарядное устройство для автомобиля
USB зарядное устройства есть во многих иномарках, но если в вашем машине такого нет, это не беда. Создать самому такое устройства может каждый. Автомобильное зарядное устройство c USB выходом служит для зарядки сматрфонов, планшетов, мобильников, и даже для зарядки GPS навигаторов. При создания такого устройства нужно учитывать силу тока и вольтаж.
Для своего зарядника я использовал инвертор на микросхеме LM2596 DC-DC step down, выходной ток составляет 3 Ампер, это вполне xвaтит для одновременной зарядки смартфона(стандартно один ампер) и например планшета (где-то два ампера). Конечно более мощный инвертор подошел бы лучше, но в наличии не было такого.
- Инвертор очень прост, есть всего пару деталей: сама микросхема, быстрый диод, выходной и входной конденсатор, и мощный транзистор.
- Ниже схема преобразователя:
- Также схема внутреннего строения LM2596:
- И еще вся схема инвертора и микросхемы вместе.
- Характеристики данного устройства
Входное напряжение: 4-35 Вольт. Выходное напряжение: 1.23-30 Вольт. (можно регулировать потенциометром). Выходной ток на выходе: 3 Ампер(максимум). КПД преобразователя доходит до 92%.
Тип: Step Down Buck converter.
- Далее нам понадобится USВ розетка, желательно двойная, чтобы можно было зарядить одновременно 2 прибора.
В качестве платы взял макетную и делал отверстия для выводов USB. На одном из сокетов припаяем вывод DATA+ с DATA- , а остальные 2 контакта DATA+ и DAТА- распаиваем по схему что ниже.
Для полярности можете смотреть распиновку USB:
К макетной плате вставляем наш USB, и припаяем между собой выводи на 5 вольт, т.е. из первой розетки берем -1 и из второй-5. Делаем так же с выводами 4 и 8.
- Преобразователь фиксируем на плату и подключаем выводи к соответствующим ножкам usb, не забывая про полярность.
Настройте напряжение на выходе, задав от 5 до 5.1 в. с помощью вильтметра и отвертки. И еще добавил индикатор в виде светодиода к цепи питания USВ и ограниченный резистор с номиналом 70 ом, для ограничения тока. В качестве корпуса использовал футляр от Маg LiТе фонарика , думаю смотрится неплохо.
Не забываем делать отверстия и для вентиляции, это нужно делать напротив микросхемы. Плату прикрепил к коpпуcу с помощью шурупов , также вырезал место для выхода usb розетки. И все наш девайс полностью готов.
В автомобиле смотрится как на картинке. Думаю статья была полезной, Удачи!
Источник: https://xn—-7sbbil6bsrpx.xn--p1ai/usb-zaryadnoe-ustrojstvo-dlya-avtomobilya.html
Зарядка гаджетов через USB
Проблемы с зарядкой по USB обычно появляются при использовании постороннего (не родного) зарядного устройства. Гаджет может заряжаться медленно, не полностью, а может и вовсе отказаться заряжаться. Собственно, этой проблеме и посвящена сия статья. Но сперва я должен высказать несколько важных замечаний касаемо зарядки по USB вообще.
- Как это ни странно, некоторые мобильные устройства вообще не поддерживают зарядку через гнездо USB mini/micro, хоть и оборудованы им. К примеру, некоторые планшеты снабжены отдельным (круглым) гнездом для подключения зарядного устройства (ЗУ).
- При зарядке устройства от USB компьютера следует понимать, что порт USB способен выдать ток не более 0,5 ампера (USB 2.0) или не более 0,9 ампера (USB 3.0). И если для заряда устройства требуется больший ток (1÷2 ампера), то время заряда может оказаться мучительно долгим, вплоть до бесконечности. Придётся искать ЗУ подходящей мощности.
- Чтобы понимать, какие вообще контакты за что отвечают в разъёмах USB и как они нумеруются, прочтите статью «Распиновка USB 2.0». Вкратце: первый контакт в USB это +5 вольт, а последний — «земля».
Итак, вы подключили гаджет к левому/самодельному зарядному устройству, а он не заряжается, да ещё и пишет, что зарядное устройство не поддерживается.
Это связано с тем, что перед тем как позволить себе заряжаться, некоторые мобильные устройства замеряют напряжения на 2 и 3 контактах USB и по этим напряжениям определяет тип зарядного порта. А некоторые — просто проверяют наличие перемычки между контактами 2 и 3 или ещё и контролируют потенциал этой связки.
Если гаджет не рассчитан на подключение к данному типу зарядного порта или тип порта не определён, то зарядное устройство будет отвергнуто. Подробно вся эта кухня описана в статье «Типы зарядных портов».
Практическая сторона вопроса заключается в том, чтобы гаджет увидел нужные ему напряжения на контактах 2 и 3, а это обеспечивается подключением различных сопротивлений между контактами USB зарядного устройства.
В конце статьи приводится чертёж различных типов зарядного порта (без привязки к моделям гаджетов) с указанием напряжений на контактах 2 и 3. Там же указано, какими сопротивлениями этого можно добиться.
А прямо сейчас мы посмотрим, чего ждут определённые модели гаджетов от порта зарядного устройства.
Nokia, Fly, Philips, LG, Explay, Dell Venue и многие другие устройства признают зарядное устройство только если контакты Data+ и Data- (2-й и 3-й) будут закорочены или замкнуты резистором не более 200 Ом ▼
Закоротить контакты 2 и 3 можно в гнезде USB_AF зарядного устройства и спокойно заряжать свой телефон через стандартный дата-кабель. Эту же схему поддерживает планшет Freelander PD10 Typhoon, но кроме этого ему требуется повышенное напряжение заряда, а именно — 5,3 вольта.
Если же зарядное устройство уже обладает выходным шнуром (вместо выходного гнезда), и вам нужно припаять к нему штекер mini/micro USB, то не забудьте соединить 2 и 3 контакты в самом mini/micro USB. При этом плюс паяете на 1 контакт, а минус — на 5-й (последний). ▼
- Samsung, HTC и другие «Корейцы»: один резистор 30 кОм между +5 и перемычкой D-D+; другой резистор 10 кОм между GND и перемычкой D-D+ ▼
iPhone и прочей продукции «Apple». От этого же порта охотно заряжается планшет Freelander PX1. ▼
Претендующее на универсальность автомобильное зарядное устройство «Ginzzu GR-4415U» и его аналоги оборудованы двумя выходными гнёздами: «HTC/Samsung» и «Apple» или «iPhone». Распиновка этих гнёзд приведена ниже. ▼
Старая Motorola «требует» резистор 200 кОм между 4 и 5 контактами штекера USB micro-BM. Без резистора аппарат заряжается не до полной победы. ▼
Аппарат E-ten («Енот») не интересуется состоянием этих контактов, и поддержит даже простое зарядное устройство. Но у него есть интересное требование к зарядному кабелю — «Енот» заряжается только если в штекере mini-USB закорочены контакты 4 и 5. ▼
Для питания или заряда навигатора Garmin требуется особый дата-кабель. Просто для питания навигатора через дата-кабель нужно в штекере mini-USB закоротить 4 и 5 контакты. Для подзаряда нужно соединить 4 и 5 контакты через резистор 18 кОм. ▼
Отдельная тема — зарядка планшетов. Как правило, планшету для заряда требуется приличный ток (1÷1,5 ампер), и заряд через гнездо mini/micro-USB во многих планшетах просто не предусмотрен производителем. Ведь даже USB 3.0 не даст более 0,9 ампер.
Правда, некоторые модели планшетов можно медленно и печально заряжать в выключенном состоянии.
На Ютубе один парень предлагает установить в планшете 3Q перемычку между первым контактом гнезда mini/micro-USB (это +5 В) и плюсовым (центральным) контактом круглого (коаксиального) зарядного гнезда.
Дескать, тока от USB этому планшету хватает, просто + гнезда USB не подключен к контроллеру заряда аккумулятора. После установки перемычки планшет якобы заряжается. В принципе, это выход, если само круглое зарядное гнездо уже раздолбано.
- Напротив, если круглое гнездо в порядке, но по какой-то причине вам хочется брать питание для заряда именно от USB компьютера или зарядного устройства с таким разъёмом, то можно сделать такой переходник. ▼
- Правда, к теме этой статьи он отношения не имеет.
Типы зарядных портов
Повторюсь, подробную информацию можно почерпнуть в статье Типы зарядных портов. Здесь же приведу сводную схему напряжений на контактах USB с указанием номинала резисторов, позволяющих те или иные напряжения получить. Там, где указано сопротивление 200 Ом нужно ставить перемычку, сопротивление которой не должно превышать те самые 200 Ом.
Схема кликабельна ▼
Итак, если вы хотите переделать обычное ЗУ в USB-зарядку для телефона:
- удостоверьтесь, что устройство выдаёт около 5 вольт постоянного напряжения
- узнайте, способно ли это ЗУ дать ток не менее 500 мА
- внесите необходимые изменения в коммутацию гнезда USB-AF или штекера USB-mini/micro
Смежные материалы:
Все материалы по теме «Компьютер»
Все материалы по теме «Мобильное»
Все материалы по теме «Зарядное устройство»
Источник: http://rones. su/techno/zaryadka-mobilynika-po-usb.html
Вампирчик своими руками, или альтернативная зарядка для сотового
Давно пользуюсь коммуникаторами, очень удобная штука все в одном — записная книжка, калькулятор, фонарик, видео и фото камера, интернет, видео и MP3 плеер, навигатор, сейф (для информации), радиоприемник, игровая консоль, и еще куча всего.
Супер гаджет — о чем еще можно мечтать? А я скажу о чем, о маленьком ядерном реакторе вместо батарейки! Но на данный момент обламываемся, и радуемся li-ion аккумулятору которого при хорошей нагрузке аппарата хватает на 3 часа.
Есть выход: убираем яркость телефона на минимум вырубаем интернет удаляем живые обои, переключаемся в режим «в самолете» включаем только чтобы позвонить, и тогда телефона (как заявлено производителем) хватает на двое суток.
В общем это не вариант, и заинтересовался я всерьез альтернативными источниками питания, речь пойдет о дополнительной батарее для вашего гаджета или «Вампирчике»
Начнем наверно с самого основного это аккумуляторы, я поставил две банки li-ion купленные в радио товарах в г. Владивосток когда был там в отпуске, можно купить в принципе любые и в любых количествах (в разумных пределах) подходящие по размеру самое главное побольше жадности, ой, емкости.
Увеличиваем емкость запаралеливая банки. Паралелить можно только одинаковые аккумуляторы, ОБЯЗАТЕЛЬНО сбалансирорав их между собой — соединяем минусы (как правило, они являются корпусом банки, а плюсы соединяем резистором сопротивлением ом 30.
Вольтметром меряем напряжение на выводах резистора.
Ждем, бывает сутки, бывает сразу одинаковые значения. Как только оно станет меньше сотни милливольт — их можно соединять напрямую, без резистора.
Спаиваем их между собой и припаиваем концы к контроллеру (можно добыть из любого старого аккумулятора сотового телефона) Вот у нас и получился аккумулятор повышенной емкости.
РАБОТАЯ С ГОЛЫМИ БАНКАМИ БЕЗ КОНТРОЛЛЕРА СОБЛЮДАЕМ ОСТОРОЖНОСТЬ НЕ ПУТАЕМ ПОЛЯРНОСТЬ И НИ В КОЕМ СЛУЧАЕ НЕ УСТРАИВАЕМ КОРОТКОЕ ЗАМЫКАНИЕ! сылка на статью по запаралеливанию аккумуляторов
Откладываем его в сторонку и чешем репу чем его заряжать то теперь, понятно дело зарядкой от сотового. Они есть везде и всегда и выход у большей части USB розетка.
Можно напрямую припаять провода к аккумлятору и папе usb и воткнуть в зарядное они обычно идут 5V 1A. Но так скучно и неинтересно я решил сделать индикатор заряда. Включили в зарядку светиться красный светодиод, зарядился аккумулятор загорелся зеленый, отключили от зарядки оба потухли.
Транзисторы с маркировкой t06 — p-n-p PMBS3906, 100мА 40В, комплементарен PMBS3904. Выпаял из старой материнской платы.
Резисторы R1 и R2 с маркировкой 471 — 470Ом Добыл из старых контроллеров для сотового аккумулятора
Резистор R3 можно поставить значением 1.5 Ом но я такого не нашел поставил два паралельно по 1 Ому и того получилось 0.5 Ома. Два поставил так как боялся, что сильно греться будут при токе заряда примерно 0.5А Маркировка 1R00 нашел на схеме жесткого диска от ноута.
- Диод с маркировкой SS14 Описание: Диод, Шоттки, 1 А, 40 В Валялся у меня выпаял не знаю откуда, но если есть железо с СМД детальками то найдете на нем без проблем что нибудь похожее.
- Светодиоды купил самые обычные СМД 3V красный и зеленый, но вполне и в избытке можно повыпаивать с плат от сотовых телефонов.
- Собирал схему из того что было более-менее похоже на резисторы R1 и R2 можно поставить значением 330 Ом
Огромное спасибо хотелось бы передать форуму по Электронике cxem.net. Тема разработки индикатора, общими усилиями и особенно участником Kival тут Может кому пригодится для общего развития.
Монтаж деталей производил на кусочке текстолита обмеднного, вырезанного с платы.
Без нагрузки светиться оба светодиода, под нагрузкой зеленый гаснет.
Вкратце, принцип очень простой — когда аккумулятор заряжается ток идет по цепи и не дает светиться зеленому светодиоду, как только контроллер отрабатывает, что аккумулятор заряжен и больше в него не лезет, цепь размыкается ток перестает течь и загорается зеленый, как только вытаскиваете из зарядки диод Д3 не дает току от аккумулятора идти к индикатору и оба гаснут.
Ну вроде с индикатором и зарядкой определились, теперь надо бы прикинуть как будем кормить телефон с аккумулятора ведь у нас на выходе от 3,7v до 4.2v, а для зарядки сотового нежно не меньше 5V а для нокии и того больше.
Тут нам понадобится повышающий преобразователь DC-DC Тут я пас, схемы рисовать не буду и распинаться по этому поводу ибо интернет кишмя кишит этим материалом, а у меня в городе нет магазина радио деталей и поэтому я не стал заморачиваться с пайкой этого элемента, а тупо (или умно) заказал с интернета.
Так же можно купить китайский зарядник от одной батарейки и выковырять оттуда, но в надежности оного я лично сомневаюсь, а заряжать то будем, не халям балям, а дорогие коммуникаторы.
После всех манипуляций получаем вольтметр на 4 деления С такими характеристиками 4 столбика 4,14V/ 3 столбика 4,04v/ 2 столбика 3,94V/ 1столбик 3,84V/ дальше остается пустая батарея вплоть до того как контроллер аккумулятора не отрубит питание это примерно 3,4 — 3,6V
Поскольку вольтметр тоже потребляет определенное количество дорогого нам электричества подключаем его через кнопку. Нажали посмотрели отпустили!
Дальше ищем подходящую коробочку куда можно поместить все наше нажитое непосильным трудом спаянное потом и кровью. Я в неравном бою отбил у жены коробочку с тенями (тени и зеркальце были возвращены) и уложил все туда.
Спаиваем по схеме
Usb разъемы я разместил на полоске из жести, дабы увеличить площадь при приклеивании.
Аккумулятор приклеиваем на двусторонний скотч, кнопку на супер клей, USB разъемы припаиваются (как было сказано выше) припаиваются к жестянке она в свою очередь приклеивается на супер клей, под жк экран выпиливаем прямоугольное отверстие, монтаж и примерку производим аккуратно — стекло очень хрупкое. Садим на термоклей.
Ну собственно и все! Облагораживаем на свой вкус и юзаем устройство!
Your browser doesn’t support canvas.
Источник: http://mozgochiny. ru/electronics-2/vampirchik-svoimi-rukami-ili-alternativnaya-zaryadka-dlya-sotovogo/
Распиновка микро usb разъема для зарядки своими руками
Проблемы при зарядке различных устройств через USB часто возникают, когда используются нештатные зарядники. При этом зарядка происходит довольно медленно и не полностью либо вовсе отсутствует.
Следует сказать и о том, что зарядка через USB возможна не со всеми мобильными устройствами. Этот порт у них имеется только для передачи данных, а для зарядки применяется отдельный круглое гнездо.
Выходной ток в компьютерных USB составляет не больше пол-ампера для USB 2.0, а для USB 3.0 – 0,9 А. Ряду девайсов этого может быть недостаточно для нормального заряда.
Бывает, что в вашем распоряжении имеется зарядник, но он не заряжает ваш гаджет (об этом может сообщить надпись на дисплее или будет отсутствовать индикация заряда).
Такое ЗУ не поддерживается вашим девайсом, и возможно это из-за того, что ряд гаджетов до начала процесса зарядки сканирует присутствие определенного напряжения на пинах 2 и 3.
Для других девайсов может быть важным присутствие перемычки между этими пинами, а также их потенциал.
Таким образом, если устройство не поддерживает предлагаемый тип зарядника, то процесс зарядки не начнется никогда.
Чтобы девайс начал заряжаться от предоставленного ему зарядника, необходимо обеспечить на 2 и 3 пине USB, необходимые напряжения. Для разных устройств эти напряжения тоже могут отличаться.
Для многих устройств требуется, чтобы пины 2 и 3 имели перемычку или элемент сопротивления, номинал которого не больше 200 Ом. Такие изменения можно сделать в гнезде USB_AF, которое находится в вашем ЗУ. Тогда зарядку станет возможно производить стандартным Data-кабелем.
- Гаджет Freelander Typhoon PD10 требует той же схемы подключения, но напряжение заряда должно быть на уровне 5,3 В.
- В случае если у зарядника отсутствует гнездо USB_AF, а шнур выходит прямо из корпуса ЗУ, то можно припаять к кабелю штекеры mini-USB или micro-USB. Соединения необходимо произвести, как показано на следующей картинке:
- Различная продукция фирмы Apple имеет такой вариант соединения:
- При отсутствии элемента сопротивления номиналом 200 кОм на пинах 4 и 5 устройства фирмы Motorola не могут осуществить полный заряд.
- Для зарядки Samsung Galaxy необходимо наличие перемычки на пинах 2 и 3, а также элемента сопротивления на 200 кОм на контактах 4 и 5.
- Полный заряд Samsung Galaxy Tab в щадящем режиме рекомендуется производить при использовании двух резисторов номиналом 33 кОм и 10 кОм, как изображено на картинке ниже:
- Такое устройство, как E-ten может заряжаться любым ЗУ, но лишь при условии, что пины 4 и 5 будут соединены перемычкой.
Такая схема реализована в кабеле USB-OTG. Но в этом случае необходимо использовать дополнительный переходник USB папа-папа.
- Универсальное ЗУ Ginzzu GR-4415U и другие аналогичные устройства имеют гнезда с различным соединением резисторов для зарядки девайсов iPhone/Apple и Samsung/HTC. Распиновка этих портов выглядит так:
Чтобы зарядить навигатор Garmin, необходим тот же кабель с перемычкой на контактах 4 и 5. Но в этом случае устройство не может заряжаться во время работы. Для того чтобы навигатор мог подзаряжаться, необходимо заменить перемычку на резистор номиналом 18 кОм.
Для зарядки планшетов обычно необходимо 1-1,5 А, но как было упомянуто ранее, USB-порты не смогут нормально заряжать их, поскольку USB 3.0 выдаст максимум 900 мА.
В некоторых моделях планшетов для зарядки имеется круглое коаксиальное гнездо. Плюсовой пин гнезда mini-USB/micro-USB в таком случае не имеет соединения с контроллером заряда аккумулятора. По утверждениям некоторых пользователей таких планшетов, если соединить плюс от гнезда USB с плюсом коаксиального гнезда перемычкой, то зарядка может осуществляться через USB.
- А можно и изготовить переходник для подключения в коаксиальное гнездо, как показано на рисунке ниже:
- Вот схемы перемычек с указанием напряжения и номиналов резисторов:
- В итоге, чтобы осуществлять зарядку различных гаджетов от неродных ЗУ необходимо убедиться в том, что зарядка выдает напряжение 5 В и ток не меньше 500 мА, и внести изменения в гнезде или штекере USB согласно требованиям вашего устройства.
- АВТОР: Алексей Алексеевич.
Источник: https://volt-index.ru/electronika-dlya-nachinayushih/zaryadka-cherez-usb-peredelki-i-dorabotki-kabeley-usb.html
Заряжаем аккумулятор через usb
Очень простая схема USB зарядки для пальчиковых (AA) и мизинчиковых (AAA) никель-металл-гидридных аккумуляторов. Схема состоит всего из нескольких деталей, которые очень просто найти каком-нибудь ненужном электроприборе или купить в радиомагазине.
Схема принципиальная для заряда AA от USB
Список деталей устройства
- Импульсный диод 1N4007 — 2x
- Резистор 0.5W 9,7 Ом — 2x
- Резистор 0.25W 10 Ом — 2x
- Светодиод (любой цвет) — 2x
- Вилка USB — 1x
Время зарядки конечно же зависит от тока, который мы будем подавать на аккумуляторы, а также ёмкости самих перезаряжаемых батареек.
К примеру китайские аккумуляторы UltraFire с реальной ёмкостью примерно 0,4-0,5 Ампер*часов заряжаются у меня полностью за 2-3 часа.
Естественно, данное «зарядное устройство» в отличии от более сложных не оповещает вас об окончании заряда, поэтому не забывайте следить за процессом, ведь перезаряд может негативно повлиять на Ni-MH аккумуляторы. А два миниатюрных светодиода любого цвета служат как индикатор, они показывают заряжается аккумулятор или нет. Можно для уменьшения размера платы использовать светодиоды для поверхностного монтажа (SMD).
Удобнее всего припаять USB вход прямо на плату зарядки, которая получится весьма компактных размеров. Лично у меня размеры платы получились крайне малы, а именно: 2,8 х 1,5 см.
Напряжение зарядки ~4.85V, ток зависит от сопротивления применяемых резисторов, при указанных номиналах примерно до 160 mA.
У меня вышел ток зарядки 141.2 mA.
Хочу заметить, что при длительной зарядки наблюдается небольшое нагревание резисторов на 9,7 Ом, и чтобы такого не было, возьмите резисторы мощностью не 0,5 Вт как указано в схеме, а 1 Вт и больше.
В заключение хочу сказать, что качество зарядки таким вот прибором остается желать лучшего. Но если нужно по быстрому собрать схему и зарядить аккумулятор, то это самое то.
Я лично заряжал несколько месяцев подряд Ni-MH аккумуляторы родом из поднебесной и ничего — с ними всё хорошо. Также добавлю, что более чем до 1,4 вольт не следует заряжать аккумуляторы во избежание перегрева и износа.
Скачать плату можно здесь: usb-charger-aa.lay в архиве. Автор — EGOR.
Форум по устройствам заряда
Обсудить статью Заряжаем аккумулятор через usb
Источник: https://radioskot.ru/publ/zu/zarjazhaem_akkumuljator_cherez_usb/8-1-0-798
Мощная USB зарядка в авто своими руками — Сообщество «Кулибин Club» на DRIVE2
Собрались мы как то с товарищем DRIVER-6307 пивка попить. А заодно, хотели разобраться почему у него Экшн-камера www.drive2.ru/l/9743390/ (используется в качестве регистратора) находясь на зарядке — разряжается… Питание брали с вот такой «пимпочки» в прикуриватель (типа 2.1А + 1.1А), покупали вместе, у меня тоже таких 2-е штуки.
Проверяли как работает путем подключения амперметра перед самим прикуривателем, что меня удивило показания амперметра выше 0.5 ампера не поднимались! Также мы выяснили что два литра пива нам мало что при подключении того же самого устройства другим кабелем питания ток выростает на 30%!. .
Короче сказал я Боде, кабель у тебя «ГОВНО», а он мне отвечает: «Мы же вместе покупали)))…» И тут я понял, что теперь я угощаю!))))…Но все равно не давал мне покоя вопрос — почему только до 0.
5А и выше не растет? Мы ведь подключал свой телефон, десяти дюймовый планшет на максимальной яркости и все такое…В общем появилась у меня возможность поехать радио-рынок — попить кофе с моими знакомыми…И рассказали они мне о том, что в большинстве этих «пимпочках» стоят слабые микрухи, которые можно менять на более мощные… В результате чего мощность оных выростает с 0.5А до 0.7А.Но я хотел иметь больший запас…И купил вот эти стабилизаторы напряжения до 3А каждый… + USB мамы и по совету одного «профессора» конденсаторы повышенной емкости для подавления помех. Помогло относительно — помехи на радио остались, но стали меньше чем от «пимпочки»…Собрал на монтажной платеПо совету драйвовчан на правой паре выходов USB замкнул междусобой D+ и D- (для самсунгов и китайцев), а на левой паре в каждом выходе USB D+ подключил через сопротивление 3.3 кОм к ACC и D- подключил через сопротивление 3.3 кОм на GND (для Iphone) — скорость зарядки выросла.
Полный размер
сейчас впаяны перемычки и сопротивления 3.3 кОм
Подключал по одному сдвоенному USB на каждый стабилизатор в отдельности. Вольтаж выставил на 5.3 и 5 вольт.
Втулил светодиод через сопротивление в 1 кОм (в наличии оказался только переменный)Подключил от АКБ, через предохранитель и реле, управление рэллюшкой взял с прикуривателя (включается при повороте ключа в положение «ACC».Фото конечного результата:
Полный размер
размер моей приблуды по сравнению с колодой карт
Полный размер
не удачное место — ногой цепляю провода (потом перемещу)
Полный размер
не встраивал USB в торпеду или бороду из личных соображений + не хотел повреждать родной пластик
распиновка релюхи
распиновка USB
ИТОГ: май фай в машине заряжается за полтора часа, причем одновременно с телефоном, а раньше от 4-х до 6-ти, существенного нагревания не заметил.
- Я ИСПОЛЬЗОВАЛ ШИМ СТАБЫ, ГОВОРЯТ, ЧТО ОНИ САМИ ПО СЕБЕ ДАЮТ ПОМЕХУ, А ЛИНЕЙНИКИ — НЕТ, МОЖЕТ СТОИЛО ПОИСКАТЬ?
- Всем ровных дорог!
П.с.: С паяльником дружу, но фазу на автомобильном аккумуляторе иногда путаю))) Так что не судите строго.
Источник: https://www.drive2.ru/c/451226378973498395/
Зарядка аккумуляторных батарей через USB порт
Категория: Поддержка по зарядным устройствам Опубликовано 11.05.2016 11:32
Abramova Olesya
USB (Universal Serial Bus — с англ. «универсальная последовательная шина») — последовательный интерфейс передачи данных, который был введен в 1996 году и стал одним из самых удобных и распространенных интерфейсов для электронных устройств.
В его развитие внесли свой вклад такие компании как Compaq, DEC, IBM, Intel, NEC и Nortel. Разработка USB позволила упростить взаимосвязь периферийных устройств и ПК, а также обеспечить большую скорость передачи данных, чем это было возможно с более ранними интерфейсами.
Порт USB также может быть использован для зарядки устройств, но с ограничением силы тока в 500 мА в начальных спецификациях, позже сила тока возросла до 5 А.
Стандартная схема подключения через USB состоит из хоста, чаще всего это компьютер, и периферийного устройства, такого как принтер, смартфон или камера. Поток данных происходит в обоих направлениях, а электропитание всегда однонаправленное, и протекает от хоста к устройству. Хост не может получать электропитание от внешнего источника.
USB 1.0 и 2.0 имеют напряжение 5 В и силу тока 500 мА (USB 3.0 имеет 900 мА), что позволяет производить зарядку небольшого одноэлементного литий-ионного аккумулятора.
Существует, однако, опасность перегрузки USB концентратора при подключении к нему слишком большого количества устройств. Зарядка устройства, которое потребляет 500 мА вкупе с другими нагрузками, приведет к падению напряжения и возможному отказу системы.
Для предотвращения перегрузок некоторые хосты могут включать в себя специальные токоограничивающие механизмы, которые предотвращают коллапс системы.
С помощью стандартного USB порта можно зарядить только небольшой одноэлементный литий-ионный аккумулятор. Зарядка 3,6 В аккумулятора стартует применением постоянного тока с пиковым значением напряжения 4,2 В; далее следует постепенное снижение зарядного тока и напряжения.
(Смотрите BU-409: Зарядка литий-ионных аккумуляторов). Из-за падения напряжения в кабеле и разъемах, составляющее примерно 350 мВ, и потерь в цепи зарядки, 5 В USB порта может оказаться недостаточно для полной зарядки аккумулятора.
Но это не особо значительная проблема, так как аккумулятор в любом случае зарядится примерно до 70 процентов, хотя по времени автономной работы и будет уступать заряженному с режимом насыщения.
Но хоть время автономной работы и будет меньше, такой недозаряд увеличивает общую долговечность литий-ионного аккумулятора.
Два типа USB разъемов — тип А и тип В, показанные на рисунке 1, имеют по четыре контакта (pin). Pin 1 и pin 4 отвечают за обеспечение электропитания напряжением 5 В, а pin 2 и pin 3, также обозначаемые как D+ и D-, отвечают за перенос данных.
Рисунок 1: Конфигурация контактов (pin) на USB разъеме типа А и В. Pin 1 — напряжение 5 В (красный провод), pin 4 — “земля” (черный провод). Корпус соединяется с “землей” и обеспечивает защиту. Pin 2 (D-, белый провод) и pin 3 (D+, зеленый провод) отвечают за перенос данных.
Помимо стандартных разъемов типа А и В с четырьмя контактами существуют форматы Mini-A, Mini-B, Micro-A и Micro-B, которые имеют специальный согласующий контакт, помогающий обнаружить, с какого конца провода находится хост, а с какого – периферийное устройство.
Pin 1 и pin 4 по умолчанию во всех форматах являются отвечающими за электропитание. Как правило, все USB кабели имеют тип А на одном конце и тип В на другом (или Mini-A и Mini-B и т. д.).
Развитие USB не стоит на месте — уже существует новый разъем типа С, имеющий целых 24 контакта и отвечающий спецификациям USB 3.1.
Мощностные характеристикиЗарядка производительного смартфона или планшета посредством USB 2.0 имеет некоторые ограничения.
Может возникнуть ситуация, когда при одновременной эксплуатации и зарядке устройства, эффект от зарядки будет отсутствовать ввиду превышения разрядных мощностей над зарядными.
Существуют также такие устройства, например, внешние подключаемые жесткие диски, для электропитания которых мощности USB в 500 мА мало, и будет требоваться дополнительное подключение источника питания.
В 2009 году была введена спецификация USB 3.0, в которых мощность порта была повышена до 900 мА. Может показаться, что и этот показатель мощности не особо велик, но разработчикам пришлось ограничивать его, так как при больших значениях возникали бы искажения при высокоскоростной передаче данных.
Необходимость обеспечения большей мощности привела к созданию в 2007 году отдельной спецификации — Battery Charging, позволяющей более быструю зарядку от USB-хоста.
Суть заключалась в создании зарядного устройства, известного сейчас как “USB зарядка”, которое было бы способно обеспечить силу тока в 1500 мА и быть совместимым со стационарными электросетями и системой электрообеспечения автомобиля. В таких зарядных устройствах, по сути имеющих свой USB порт, контакты D- и D+ соединены друг с другом через сопротивление 200 Ом или меньше.
Этот нюанс отличает их USB порт от оригинального, предназначенного для переноса данных. В некоторых гаджетах компании Apple зарядный ток может ограничиваться изменением сопротивления между контактами D- и D+.
USB зарядное устройство может комплектоваться Y-образным кабелем, с помощью которого можно и заряжать устройство, и выполнять обмен данными.
Это решение выглядит довольно логичным, но в спецификации соответствия USB говорится о запрете использования Y-образного кабеля периферийными устройствами — “если периферийное USB устройство требует больше энергии, чем допускает спецификация USB, к которому оно подсоединено, то у такого устройства должно быть автономное питание”. Но на практике Y-образные кабели и так называемые вспомогательные зарядные адаптеры используются без видимых трудностей.
Может возникнуть вопрос — не приведет ли к повреждению устройства использование USB зарядного устройства с силой тока, большей номинальных 500 и 900 мА? Ответ будет отрицательным, так как устройство возьмет ровно столько энергии, сколько ему будет необходимо.
Аналогией может служить пример подключения к розетке переменного тока лампочки и тостера. Будучи подключенными к одинаковому источнику электроэнергии, эти приборы, тем не менее, имеют разную мощность — лампочка – довольно небольшую, тогда как тостер довольно значительную.
Большая мощность зарядного устройства USB в нашем случае даже позволит сократить время зарядки.
Зарядка в спящем режимеВ большинстве случаев выключение компьютера приводит и к отключению USB портов. Но в некоторых компьютерах реализована функция зарядки в спящем режиме, которая подразумевает сохранение напряжения на USB порту и при выключенном состоянии.
Такие USB порты могут быть красного или желтого цвета, единого стандарта не существует. Разные компании могут называть эту функциональность по- своему, например Dell назвал свою технологию “PowerShare”, и такие USB порты отмечены значком молнии.
Toshiba использует термин “USB Sleep-and-Charge” и маркирует такие порты аббревиатурой USB над рисунком батарейки.
USB 3.1 — разъем типа СКак и большинство других успешных технологий, USB за время своего существования породил несколько версий разъемов и кабелей. USB зарядные устройства не всегда показывают ожидаемые результаты производительности и время зарядки может быть долгим. Существует и проблема несовместимости между конкурирующими системами, возникающая как случайно, так и осознанно.
Компании, столкнувшиеся с проблематикой технологии USB, разработали свой собственный разъем и кабель, основанный на стандарте USB 3.1. Вместо использования четырех контактов, как в классических разъемах типа А и В, тип С имеет 24 контакта и является двусторонним, то есть у него нет разной геометрии разъемов для хоста и периферии.
Разъем типа С поддерживает как и стандартные 900 мА, так и может обеспечить 1,5 А и даже 3,0 А через шину питания 5 В при потоковой передаче данных. Это приводит к возможности поддержания мощности 7,5 и 15 ватт соответственно, что несколько интереснее стандартных 2,5 ватт.
Существуют дальнейшие усовершенствования типа С, экспериментально способные обеспечить силу тока 5 А при напряжении 12 В или 20 В (60 Вт и 100 Вт соответственно).
Несмотря на присутствие на рынке устройств с USB-C и USB 3.1, потребители пока более ориентированны на USB 3.0. В то время как USB 3.1 обратно совместим с более старыми форматами, для USB-C необходимы специальные переходники и адаптеры, которые ограничивают скорость передачи данных.
Последнее обновление 2016-02-25
Источник: https://best-energy.com.ua/support/chargers/bu-411
Схема автомобильного зарядного устройства 5В » Вот схема!
Схема зарядного устройства показана на рисунке 2, это DC-DC преобразователь, дающий стабильное напряжение +5V при токе до 0,5А, и входном напряжении в пределах 7…18V. Посмотрев на схему, может возникнуть вопрос, — зачем такие сложности, когда, казалось бы, можно обойтись одной кренкой. Вопрос справедливый. Действительно, аналогичное зарядное устройство можно сделать, например, по схеме на рисунке 1. И такая схема будет работать.
Но обратите внимание на то, что КР142ЕН5А это обычный линейный стабилизатор, и при входном напряжении 12V и токе нагрузки 0,5А мощность, которая будет рассеиваться на регулировочном транзисторе микросхемы КР142ЕН5А может быть более 6W. Микросхема будет нагреваться, потребуется достаточно объемный и тяжелый радиатор. Не говоря уже о низком КПД такой схемы.
Схема, показанная на рисунке 2 работает как импульсный источник, и при нормальном режиме работы рассеивает очень незначительную мощность. Здесь совершенно нет ничего, чему требуется отвод тепла. Кроме того, что она имеет очень высокий КПД, такая схема позволяет собрать адаптер в виде очень легкой и компактной конструкции.
Конечно, есть и минус, — схема значительно сложнее, содержит много деталей, суммарная стоимость которых существенно больше цены КР142ЕН5А и пары конденсаторов.
Подключается зарядное устройство к прикуривателю автомобиля. Диод VD1 на всякий случай защищает схему от неправильной полярности входного напряжения. Стабилитрон VD2 — защита от коротких импульсов высокого напряжения, которые могут быть в сети не очень нового автомобиля.
На микросхеме А1 собраны основные узлы преобразователя, — генератор импульсов, регулятор их ширины и измерительный компаратор, сравнивающий выходное напряжение с опорным, вырабатываемым внутренним стабилизатором микросхемы. Вход компаратора, — вывод 5.
На него подается напряжение с выхода схемы через делитель на резисторах R4-R6. Коэффициент деления зависит от положения движка подстроенного резистора R5. Этим резистором при настройке преобразователя устанавливают требуемое выходное напряжение (в данном случае это 5V).
Детали. Диод VD1 — любой выпрямительный кремниевый диод с допустимым прямым током не ниже 0,7А. VD2 — стабилитрон средней мощности, с напряжением стабилизации 20-30V. VD3 — диод с барьером Шоттки с допустимым прямым током не ниже 2A. VD4 -стабилитрон средней мощности с напряжением стабилизации 5,0-5,6V. HL1 — любой индикаторный светодиод.
Обратите внимание, — у всех диодов и стабилитронов, типы которых указаны на схеме, пояском на корпусе отмечен КАТОД. Конденсаторы С1 и С4 любые электролитические малогабаритные, например, К50-35 или JAMICON, с допустимым напряжением С1 — не ниже 20V, С4 — не ниже 6,3V.
Резисторы — обычные. Резисторы R1, R2, R3 можно заменить одним резистором мощностью 1W и сопротивлением 0,3 Оm. Резистор должен быть непроволочным.
Катушка L1 намотана на ферритовом кольце диаметром 16 мм, для намотки используется провод ПЭВ — 0.47. Число витков — 80. Намотка равномерно распределена по всей окружности кольца.
Все детали помещены на печатную плату, монтаж и разводка которой показаны на рисунке 3. Плата помещена в пластмассовый корпус размерами примерно 120x30x20 мм. Со сторон торцов выходят два кабеля, один из которых оконечен стандартным разъемом для подключения переносной лампы к автомобильному прикуривателю, а второй — таким штекером, как у зарядного устройства вашего мобильного телефона.
Если все детали исправны и нет ошибок в монтаже, налаживание — это только регулировка выходного напряжения резистором R5.
Такую же схему можно использовать и для зарядки батареи МР-3 плеера, например, сделав выходной кабель с USB-разъемом можно заряжать аккумулятор МР-3 плеера iPOD или другого аналогичного. В принципе, на корпусе зарядного устройства можно установить какой-то разъем в качестве Х2, например, USB (+5V на контакт 1, -5V на контакт 4), и сделать несколько сменных кабелей (для телефона, радиостанции, МР3 плеера и др.). Если нужно другое напряжение, соответственно, перенастройте делитель R4-R5-R6 и замените стабилитрон VD4.
Распиновка разъема для зарядки на мобильник samsung. Как своими руками сделать солнечное зарядное устройство для телефона. Лучшие кабеля Micro USB для зарядки — Подборка.
Проблемы при зарядке различных устройств через USB часто возникают, когда используются нештатные зарядники. При этом зарядка происходит довольно медленно и не полностью либо вовсе отсутствует.
Следует сказать и о том, что зарядка через USB возможна не со всеми мобильными устройствами. Этот порт у них имеется только для передачи данных, а для зарядки применяется отдельный круглое гнездо.
Обломки, создаваемые загрузчиками с различным напряжением, чем требуется, относительно распространены. В этом поле входное напряжение часто путается с выходным напряжением. Например, зарядное устройство для ноутбука использует доступное входное напряжение на выходе, где оно подключено. Поскольку существуют различные напряжения напряжения, для адаптеров питания или зарядных устройств нормально выдерживать широкий диапазон входных напряжений. Однако самое главное — выходное напряжение. Даже потому, что с самого начала входное напряжение приборов подходит для рынка, где они продаются.
Выходной ток в компьютерных USB составляет не больше пол-ампера для USB 2.0, а для USB 3.0 – 0,9 А. Ряду девайсов этого может быть недостаточно для нормального заряда.
Бывает, что в вашем распоряжении имеется зарядник, но он не заряжает ваш гаджет (об этом может сообщить надпись на дисплее или будет отсутствовать индикация заряда). Такое ЗУ не поддерживается вашим девайсом, и возможно это из-за того, что ряд гаджетов до начала процесса зарядки сканирует присутствие определенного напряжения на пинах 2 и 3. Для других девайсов может быть важным присутствие перемычки между этими пинами, а также их потенциал.
Например, если мы ищем зарядное устройство для ноутбука, важно, чтобы выходное напряжение этого аксессуара было таким же, как и входное напряжение ноутбука. Очень разные значения между выходом адаптера и входом ноутбука могут привести к серьезным неполадкам. Кстати, использование слабых или неисправных силовых адаптеров является одной из основных причин сбоев в работе мобильных устройств — они, например, ответственны за многие материнские платы, сжигаемые в ноутбуках.
С практической точки зрения, если, например, вы ищете запасной источник питания из оригинала, вы должны убедиться, что указанное «выходное напряжение» совпадает с указанным «оригинальным». И, что еще более важно, полюса находятся в правильном месте. Ампер указывает силу тока. Однако значение, представленное в спецификации продукта, не относится к непрерывной интенсивности, а к максимальной интенсивности, которую продукт может предложить или запросить. Таким образом, можно, например, купить адаптер питания с большим усилителем, чем оригинал.
Таким образом, если устройство не поддерживает предлагаемый тип зарядника, то процесс зарядки не начнется никогда.
Чтобы девайс начал заряжаться от предоставленного ему зарядника, необходимо обеспечить на 2 и 3 пине USB, необходимые напряжения. Для разных устройств эти напряжения тоже могут отличаться.
Для многих устройств требуется, чтобы пины 2 и 3 имели перемычку или элемент сопротивления, номинал которого не больше 200 Ом. Такие изменения можно сделать в гнезде USB_AF, которое находится в вашем ЗУ. Тогда зарядку станет возможно производить стандартным Data-кабелем.
Но необходимо обеспечить минимум. Это связано с тем, что устройству потребуется только интенсивность, в которой она нуждается — даже хорошо, что есть некоторый запас безопасности. Это связано с тем, что устройства с батарейным питанием обычно включают контроллер заряда, который определяет максимальный ток, который может быть подан на батареи, не повреждая их. Это правило больше не действует при прямом соединении между зарядным устройством и батареями. Примеры: автономные зарядные устройства для перезаряжаемых «батарей» или батарей для камер и видео.
Гаджет Freelander Typhoon PD10 требует той же схемы подключения, но напряжение заряда должно быть на уровне 5,3 В.
В случае если у зарядника отсутствует гнездо USB_AF, а шнур выходит прямо из корпуса ЗУ, то можно припаять к кабелю штекеры mini-USB или micro-USB. Соединения необходимо произвести, как показано на следующей картинке:
В этих случаях зарядное устройство определяет интенсивность, применяемую к батареям, что делает еще более важным правильный выбор. В этом случае рекомендуется выбрать прибор с интенсивностью оригинала или рекомендованным изготовителем. Позже мы объясняем последствия изменения силы нагрузки.
Низкозатратный адаптер обычно имеет важные выходные характеристики, как напряжения, так и ток. Плохое качество компонентов также может привести к перегрузкам и даже пожарам, вызванным короткими замыканиями или перегревом. Это становится более очевидным при работе с большими полномочиями.
Различная продукция фирмы Apple имеет такой вариант соединения:
При отсутствии элемента сопротивления номиналом 200 кОм на пинах 4 и 5 устройства фирмы Motorola не могут осуществить полный заряд.
Лучше всего купить адаптер, официально поддерживаемый производителем. Даже во избежание других проблем: использование неофициального адаптера может быть достаточным для того, чтобы гарантия потеряла свою силу, а некоторые ноутбуки не приняли нагрузку адаптеров других брендов.
Идея о том, что мы должны полностью разряжать батареи, чтобы увеличить долговечность ячеек, неверна. По крайней мере, когда применяются к текущим батареям, которые в основном основаны на литиевых элементах. Фактически, метод, который будет использоваться для максимального увеличения долговечности наиболее используемых батарей, является обратным: избегайте полных зарядов и разрядов. Все чаще системы управления нагрузкой, встроенные в телефонные аппараты, автоматически делают это. Есть производители, которые предпочитают создавать более консервативные схемы, которые позволяют продлить срок службы батареи.
Для зарядки Samsung Galaxy необходимо наличие перемычки на пинах 2 и 3, а также элемента сопротивления на 200 кОм на контактах 4 и 5.
Полный заряд Samsung Galaxy Tab в щадящем режиме рекомендуется производить при использовании двух резисторов номиналом 33 кОм и 10 кОм, как изображено на картинке ниже:
Другие предпочитают делать ставку на использование более высокого процента емкости аккумулятора за счет долговечности, что экономит на стоимости продукции. В этих случаях емкость батареи может быстро уменьшаться через несколько месяцев использования. В ноутбуках обычно бренды выбирают первую стратегию на самой дешевой машине и второй вариант на дорогих машинах.
Таким образом, производители могут продлить срок службы батарей. Если вы используете качественное мобильное устройство, вам не нужно беспокоиться о том, заряжать ли батарею или нет, поскольку интегрированного управления должно быть достаточно, чтобы поддерживать батарею в течение нескольких лет.
Такое устройство, как E-ten может заряжаться любым ЗУ, но лишь при условии, что пины 4 и 5 будут соединены перемычкой.
Такая схема реализована в кабеле USB-OTG. Но в этом случае необходимо использовать дополнительный переходник USB папа-папа.
Многие приборы включают в себя возможность ограничения максимальной мощности нагрузки, чтобы «наказывать» меньше батареи. Обычная техника в электрических автомобилях, а также используется в некоторых ноутбуках. Найдите эту опцию и включите ее, когда вы ожидаете, что вам не понадобится полная емкость аккумулятора.
Как обычно, чем дольше используется батарея, тем меньше она будет длиться. Кстати, это означает количество циклов зарядки, обычно объявленных производителями. Тем не менее, батарея, которая не используется в течение длительного времени, также заканчивается потерей мощности, особенно если она плохо кондиционирована. На устройствах со съемной батареей, которые прилагаются к электрическому току в течение длительного времени, лучше всего извлечь аккумулятор и хранить его в сухом месте вдали от сильного солнечного света.
Универсальное ЗУ Ginzzu GR-4415U и другие аналогичные устройства имеют гнезда с различным соединением резисторов для зарядки девайсов iPhone/Apple и Samsung/HTC. Распиновка этих портов выглядит так:
Тем не менее, батарея никогда не должна храниться в течение длительных периодов времени при очень высокой или полной зарядке. Если вы планируете не использовать батарею в течение нескольких дней, лучше хранить ее примерно на 40%. Но мы по-прежнему рекомендуем вам не оставлять батарею неиспользованной в течение многих дней. Лучше использовать батарею по крайней мере один раз в неделю, позволяя ей разряжаться до 20% и перезаряжать до 80%. Затем пусть он потратит до 40%, чтобы вернуть его обратно.
Конечно, во многих ситуациях нам нужно использовать весь аккумулятор от 100 до 0 процентов. Который также является хорошим случаем, по крайней мере, изредка, так что система управления питанием откалибрована — только тогда проценты даются достоверно. Есть адаптеры питания, которые обещают быстрее заряжать устройства. Для этой цели они используют более высокую электроэнергию. Однако использование адаптеров этого типа имеет некоторые ограничения и может повлиять на долговечность батареи. Первое ограничение относится к тому, что уже упоминалось ранее: диспетчеры нагрузки, интегрированные в устройства, ограничивают текущую интенсивность, которую можно использовать.
Чтобы зарядить навигатор Garmin, необходим тот же кабель с перемычкой на контактах 4 и 5. Но в этом случае устройство не может заряжаться во время работы. Для того чтобы навигатор мог подзаряжаться, необходимо заменить перемычку на резистор номиналом 18 кОм.
Например, многие смартфоны имеют входную мощность, ограниченную 1 ампер, что означает, что использование зарядного устройства большой емкости не будет иметь никакого значения. Затем рассмотрим отрицательный эффект, который может быть вызвана быстрой зарядкой на батарейных элементах. Опять же, это сильно зависит от системы управления нагрузкой. Например, хорошая система управления является динамичной, способной изменять интенсивность заряда в зависимости от различных условий ячейки, особенно температуры и уровня нагрузки.
Как правило, эти системы позволяют использовать более высокую мощность в начале, когда уровень заряда батареи ниже, уменьшается в конце, когда уровень заряда батареи приближается к максимальной емкости. Техника, которая позволяет увеличить скорость заряда, не влияя на срок службы батареи — по крайней мере, не очевидным образом.
Для зарядки планшетов обычно необходимо 1-1,5 А, но как было упомянуто ранее, USB-порты не смогут нормально заряжать их, поскольку USB 3.0 выдаст максимум 900 мА.
В некоторых моделях планшетов для зарядки имеется круглое коаксиальное гнездо. Плюсовой пин гнезда mini-USB/micro-USB в таком случае не имеет соединения с контроллером заряда аккумулятора. По утверждениям некоторых пользователей таких планшетов, если соединить плюс от гнезда USB с плюсом коаксиального гнезда перемычкой, то зарядка может осуществляться через USB.
Короче: мы можем использовать более мощные адаптеры, но только на устройствах, которые готовы принимать дополнительные электроны. В ситуациях прямого заряда батарей важно уважать ценности производителей, чтобы не уменьшать срок службы батареи — в крайних случаях слишком большая мощность заряда может полностью повредить ячейки.
Методы увеличения времени автономной работы. Действительно для литий-ионных батарей, наиболее часто используемых сегодня. — Избегайте использования батареи с низким зарядом. Если возможно, ограничьте максимальный заряд до 80% или даже меньше. — Не подвергайте аккумулятор воздействию источников тепла, особенно при зарядке. — Предпочитайте медленные нагрузки — Не храните батареи в течение длительного времени с низкой зарядкой или полностью заряженными.
А можно и изготовить переходник для подключения в коаксиальное гнездо, как показано на рисунке ниже:
Вот схемы перемычек с указанием напряжения и номиналов резисторов:
В итоге, чтобы осуществлять зарядку различных гаджетов от неродных ЗУ необходимо убедиться в том, что зарядка выдает напряжение 5 В и ток не меньше 500 мА, и внести изменения в гнезде или штекере USB согласно требованиям вашего устройства.
Многие мобильные устройства позволяют вам заменить батарею, которая является рекомендуемой операцией, когда диапазон «не тот, который когда-то был». Иногда на рынке есть очень экономические альтернативы, но уделяйте пристальное внимание выбору. Батарея может даже иметь правильные вольт и усилители, но эти значения не соответствуют емкости. Емкость аккумулятора указывается часовыми ваттами и их кратными. Однако, когда мы сравниваем батареи с одним и тем же устройством, мы можем использовать часовые усилители, так как электрическое напряжение одинаковое, а часовые валы возникают из-за умножения почасовых ампер на электрическое напряжение.
Большинство современных гаджетов (мобильных телефонов, смартфонов, плееров, электрокниг и пр.) поддерживает зарядку через гнездо USB mini/micro. Тут может быть несколько вариантов подключения:
- Устройство можно зарядить от ПК через стандартный дата-кабель. Обычно это шнур USB_AM—USB_BM_mini/micro. Если для заряда устройства требуется ток более 0,5 А (это максимум, на который способен USB 2.0), то время заряда может оказаться мучительно долгим, вплоть до бесконечности. Порт USB 3.0 (голубенький такой) выдаёт уже 0,9 А, но и этого кому-то может показаться мало.
- Через тот же дата-кабель ваше устройство можно зарядить от родного зарядного устройства (сетевого или автомобильного), оборудованного 4-контактным гнездом USB-AF , как на компе. Конечно же, это уже не настоящий USB-порт. Гнездо зарядного устройства лишь выдаёт примерно 5 В между 1 и 4 контактами 4-контактного гнезда (плюс на контакте №1, минус на контакте №4). Ну, ещё между разными контактами гнезда могут быть установлены всяческие перемычки и резисторы. Зачем? Об этом колдовстве будет рассказано ниже.
- Гаджет можно подключить к постороннему или самодельному зарядному устройству, дающему 5 вольт. И вот тут начинается самое интересное…
При попытке заряда от чужого зарядного устройства с выходом USB ваш гаджет может отказаться заряжаться под тем предлогом, что зарядное устройство ему якобы не подходит. Разгадка в том, что многие телефоны/смартфоны «смотрят» каким образом расключены провода Data+ и Data- , и если гаджету что-то не понравится, это ЗУ будет отвергнуто.
По крайней мере теоретически, поскольку мы обнаружили, что недорогие батареи «странных» брендов часто имеют более низкую мощность, чем рекламируются. Во-первых, необходимо понимать основные понятия электрической энергии. Быстрое указание электрического напряжения и типа тока. В постоянном токе электрический заряд всегда течет в одном направлении. Это ток, обычно используемый в электронных устройствах, а также ток, используемый в батареях наших гаджетов. В переменном токе происходит постоянное чередование в направлении тока.
Это ток, производимый на электростанциях и ток, используемый в распределении электрической энергии, в том числе в электрической сети наших домов. Частота сетки указывает количество раз, когда текущее направление изменяется в секунду. В Португалии электрическая сеть составляет 230 вольт и 50 Гц. Трансформаторы, силовые адаптеры, зарядные устройства. Поскольку электронные устройства обычно работают с постоянным током низкого напряжения, необходимо преобразовать среднее напряжение электрические выходы с постоянным током низкого напряжения, требуемые электронными устройствами.
Nokia, Philips, LG, Samsung, HTC и многие другие телефоны признают зарядное устройство только если контакты Data+ и Data- (2-й и 3-й) будут закорочены. Закоротить их можно в гнезде USB_AF зарядного устройства и спокойно заряжать свой телефон через стандартный дата-кабель.
Если же зарядное устройство уже обладает выходным шнуром (вместо выходного гнезда), и вам нужно припаять к нему штекер mini/micro USB, то не забудьте соединить 2 и 3 контакты в самом mini/micro USB. При этом плюс паяете на 1 контакт, а минус — на 5-й (последний).
Это, например, зарядные устройства для портативных и смартфонов. Некоторые из этих адаптеров имеют разные выходные линии с различными электрическими напряжениями — например, в случае некоторых высокопроизводительных портативных зарядных устройств. Но большинство этих гаджетов имеют только простую розетку. Сама по себе она не представляет собой мощность или энергетическую емкость батареи. Вольт указывает на возможность изменения электрической нагрузки. Это эквивалент уровня воды в плотине: чем выше уровень воды, тем больше потенциала для перемещения воды.
У Айфонов вообще какие-то оккультные требования к коммутации гнезда зарядного устройства: контакты Data+(2) и Data- (3) должны соединяться с контактом GND (4) через резисторы 49,9 kΩ, а с контактом +5V через резисторы 75 kΩ.
Motorola «требует» резистор 200 кОм межну 4 и 5 контактами штекера USB micro-BM. Без резистора аппарат заряжается не до полной победы.
Для заряда Samsung Galaxy в штекере USB micro-BM должен быть установлен резистор 200 кОм между 4 и 5 контактами и перемычка между 2 и 3 контактами.
Как правило, планшету для заряда требуется приличный ток (1÷1,5 ампер), и заряд через гнездо mini/micro-USB во многих планшетах просто не предусмотрен производителем. Ведь даже USB 3.0 не даст более 0,9 ампер.
Правда, некоторые модели планшетов можно медленно и печально заряжать в выключенном состоянии.
На Ютубе один парень предлагает установить в планшете 3Q перемычку между первым контактом гнезда mini/micro-USB (это +5 В) и плюсовым (центральным) контактом круглого (коаксиального) зарядного гнезда. Дескать, тока от USB этому планшету хватает, просто + гнезда USB не подключен к контроллеру заряда аккумулятора. После установки перемычки планшет якобы заряжается. В принципе, это выход, если само круглое зарядное гнездо уже раздолбано.
Напротив, если круглое гнездо в порядке, но по какой-то причине вам хочется брать питание для заряда именно от USB компьютера или зарядного устройства с таким разъёмом, то можно сделать такой переходник:
Распиновка USB. Виды разъемов и распиновка юсб по цветам
Автор Даниил Леонидович На чтение 6 мин. Просмотров 18.7k. Опубликовано Обновлено
Кабель с интерфейсом USB применяют для подключения различных устройств между собой с целью обмена данными и зарядки гаджета. Провода с разъемами версии 2.0 и 3.0 представлены большим многообразием коннекторов, отличающихся формой, расположением питающих и изолирующих контактов. Названия маркируются буквенными индексами, позволяющими распознать их тип, разновидность и «пол». Распределение по маркировке называют распиновкой USB штекера.
Распиновка USB штекера
Для передачи пакетов данных используется последовательная шина. Она представляет собой 4 провода, два из которых необходимы для обмена данными, а вторые два для питания. Для идентификации применяется распиновка по цветам.
Условно различают гнезда по типу шин:
- тип А – питающие, к ним подключают хосты и компьютеры;
- тип В – пассивные, применяют для подсоединения периферических устройств;
- тип С – универсальные, оснащаются одинаковыми коннекторами для скоростного обмена данными.
Для подключения к периферийным устройствам используют коннекторы усб и mini-USB. При подсоединении гнезда к проводу учитывают цветовую схему распайки, тип штекера и соединения, назначение и классификацию кабелей. Длительность работы кабельной линии зависит от правильности и качества соединения.
Виды разъемов USB
Шина с универсальным последовательным интерфейсом представлена тремя видами usb разъемов:
- USB 1.0 – устаревшая шина, используемая сейчас только для передачи данных в мышах и джойстиках предыдущих версий. Низкая скорость связана с особенностями режима работы. Здесь используются Low-speed и Full-speed. Режим Low-speed обеспечивает обмен данными на скорости не более 10-1500 Кбит/с. Режим Full-speed применяется для подсоединения аудио оборудования и видео устройств.
- USB 2.0 – широко распространен в устройствах, применяемых для хранения данных, а также подключения оборудования, воспроизводящего видео. В них задействуется еще один режим High-speed, позволивший увеличить скорость работы до 480 Мбит/с. На практике из-за конструктивных особенностей разъема этот параметр не превышает 30-35 Мбайт/с. Структура гнезда идентична штекеру предыдущей версии.
- USB 3.0 – отличается от предыдущих версий скоростной передачей информации. Он промаркирован синим цветом на контактах штекера. Максимальная скорость обмена данными составляет 5 Гбит/с. Для питания используется повышенное количество тока до 900 мА.
Все три типа разъемов частично совмещаются между собой. При использовании шины последней версии с предыдущими аналогами снижается скорость передачи данных. USB 3.0 пригоден для зарядки большинства периферийных устройств без задействования специальных блоков.
Подключение скоростного разъема 3.0 типа В к младшему аналогу невозможно. Такие штекеры отличаются расположением контактов. Подсоединение USB 3.0 к порту версии 2.0 допускается только по типу А.
Распиновка USB кабеля по цветам
В описании к кабелям указывается его ориентация штекера по умолчание. Цоколевку определяют по внешней стороне. Если необходимо описать структуру с монтажной стороны, данный факт обязательно отмечают в технической документации. Изолирующие места помечают темно-серым цветом на разъеме и светло-серым на металлической части корпуса.
Фиолетовая маркировка применяется на проводах для зарядки и ДАТА-кабелях.
Pinout необходима для идентификации неисправной магистрали при ремонте. Она указывает на назначение того или иного компонента.
Распиновка USB 2.0
В стандартном USB 2.0 задействуют 4 провода. Их идентифицируют по такой схеме:
- +5V – имеет провод VBUS красного цвета, применяют для питания, поддерживает напряжение 5V, сила тока не превышает 0,5 А;
- D – Data-, оснащен белой изоляцией;
- D+ – Data+, промаркирован зеленым цветом;
- GND – необходим для заземления, напряжение на нем 0 В, цвет черный.
Важно! В кабеле подается напряжение до 5V, поэтому номинал тока не превышает 0,5 А. Нельзя с помощью шины с интерфейсом 2.0 подключать технику мощностью выше 2,5 Ватт, включая крупногабаритное оборудование.
Расположение цветовой маркировки на коннекторах типа А и В одинаковое. Отличие состоит в способе соединения контактов. В первом случае применяется линейное расположение, во втором – сверху-вниз. Соединители типа А имеют буквенную маркировку M (male), тип В – F (female).
Во многих проводах внедряют дополнительный кабель без изоляции для экрана. Его не помещают цветом, цифровыми или буквенными идентификаторами.
USB micro
Кабель USB micro имеет 5 pin (контактных площадок), к которому подводят соответствующий провод из монтажного кабеля. На нем имеются защелки для жесткой фиксации с портом. Контакты идентифицируют по числовым обозначениям, которые считывают справа-налево.
Различают такие виды usb разъемов:
- первый – VCC, изоляция, номинал 5V, для питания
- второй – D-, белый провод;
- третий – D+, зеленая маркировка;
- четвертый – ID, без цветовой идентификации, в коннекторах А соединяется с заземлением;
- пятый – черного цвета, заземление.
В экранирующей части штекера обустроена фаска, обеспечивающая плотное прилегание деталей. Экранирующий провод не припаивается к контактным площадками. Кабели со штекерами микро и мини имеют идентичное распределение, отличаются только размерами штекера.
Преимущества
Кабель USB со штекером micro выделяется повышенной прочностью и надежностью корпуса. При неумелом обращении и ремонте возможна поломка контактов. К неисправностям приводят резкие движения во время подсоединения к порту, падение гаджета, особенно, при ударах разъемом о твердую поверхность. Иногда неисправности появляются из-за заводского брака или неправильного применения.
Кабель USB MicroПри неправильном припаивании во время подключения кабеля возникают сбои, которые характеризуются такими признаками:
- на экране гаджета появляются оповещения об аппаратных ошибках, устройство не находит или не распознает подключение;
- отсутствует синхронизация между подключенными устройствами, но зарядка осуществляется;
- на значке батареи идентифицируется процесс зарядки, но фактически электропитание не поступает;
- устройство не реагирует на подключение либо выдает оповещение о поломке;
- возникает короткое замыкание в блоке питания либо порту.
Причиной плохого контакта могут быть нарушения, возникающие между звеньями цепи. Пайка осуществляется с помощью распайки контактов. Данную процедуру называют распиновкой. Каждый провод подключают повторно после зачистки, опираясь на идентификацию по цвету.
Не следует спешить, иначе можно повредить соседние участки. Такая распиновка позволяет избежать ошибок, приводящих к выходу из строя техники.
Функции «ножек» разъема micro-USB
Разъем micro-USB применяют для зарядки небольших и портативных энергозависимых устройств и синхронизации данных между ПК и гаджетами. Он состоит из пяти «ножек». Две «ноги» разведены по разные стороны корпуса: одна является плюсовой номиналом 5V, вторая – минусовой. Такое расположение снижает вероятность поломки.
Близко к минусовой «ножке» размещен еще один контакт, который при неосторожном подключении к порту легко ломается. При повреждении этой «ноги» кабель выходит из строя. На значке батареи может отображаться процесс подключения, но фактическая зарядка невозможна. Чаще всего данное повреждение приводит к тому, что гаджет не реагирует на подсоединение штекера.
Две оставшихся «ножки» применяются для обмена данными и синхронизации между устройствами. С помощью них возможна выгрузка и загрузка файлов с гаджета на ПК и назад, перенос видео и фото, аудио. Работа осуществляется синхронно. При повреждении только одного контакта прекращается работа второго. Знание распиновки по цвету позволяет припаять правильно провода и возобновить работу штекера.
Создание схемы USB-зарядного устройства
В этом проекте мы собираемся сделать схему USB-зарядного устройства из простых деталей, которые у нас есть дома. Схема зарядного устройства USB выдает регулируемое напряжение 5 В, которое можно использовать для питания USB-устройств или даже для зарядки мобильных телефонов и других устройств.
Мы проведем эту сборку в четыре этапа:
- Voltage Step Down — Первое, что нам нужно сделать, это понизить напряжение со 120 вольт переменного тока до чего-то достаточно низкого, с которым мы можем работать.В нашем случае мы собираемся снизить напряжение до 12 вольт переменного тока.
- Выпрямление — После понижения напряжения до 12 вольт переменного тока нам необходимо преобразовать его в постоянный или постоянный ток. Мы сделаем это, построив сверхпростую схему двухполупериодного мостового выпрямителя.
- Фильтрация — Мы хотим убедиться, что эта схема работает стабильно и не создает пульсаций. Мы добавим конденсаторы, чтобы решить эту проблему.
- Регулирование напряжения — Наконец, мы хотим, чтобы наша схема выдавала постоянное напряжение, даже если питание от сети нестабильно.Кроме того, нам нужно понизить напряжение с 12 В до 5 В. Сделаем это с помощью стабилизатора напряжения LM7805 и радиатора.
Если вы новичок в электронике, у нас есть масса ресурсов, которые помогут вам начать работу. По мере прохождения этого руководства мы будем ссылаться на несколько дополнительных ресурсов на случай, если вам понадобится помощь. Вы можете начать с нашего руководства под названием «Что такое напряжение?» Еще один отличный способ понизить напряжение для небольших нагрузок — использовать делитель напряжения.
СВЯЗАННЫЕ С: Калькулятор делителя напряжения
Список деталей для этого проекта
Вот список деталей han dy для этого проекта, чтобы вы начали:
Вас также может заинтересовать наше руководство по покупке вашего первого мультиметра, и подбор осциллографа.
Еще одна вещь, которую вы, возможно, захотите рассмотреть, в зависимости от характера вашего проекта, заключается в том, что существуют более эффективные схемы для схем зарядного устройства USB, в которых используются полупроводники и переключатели. Я решил не использовать их для этого проекта, потому что 1) у меня их не было в корзине с деталями и 2) это было бы намного труднее понять. Это руководство посвящено изучению основ того, как это работает.
Обучающее видео по схеме зарядного устройства USB
Схема и схема
Ниже представлена принципиальная электрическая схема в стиле Фритцинга, которая поможет вам построить эту схему.
Понижение напряжения
Первое, что нам нужно сделать, это преобразовать нашу розетку или сетевое напряжение в нечто безопасное для нас, людей, и на то, с чем могут работать наши компоненты. Для этого потребуется понижающий трансформатор. Тот, который мы собираемся использовать, преобразует 120 В переменного тока в 12 В переменного тока. Если вы живете в других странах, где стандартное напряжение составляет 220 В переменного тока, единственное, что вам нужно будет изменить в этом проекте, — это трансформатор.
Я использовал трансформатор с 120 В на 12 В, который лежал у меня в контейнере с запчастями.Его мощность до 2 ампер.
Следует отметить, что вы также можете использовать трансформатор от 120 до 24 В или трансформатор с 120 до 9 В. Важная часть — убедиться, что входная сторона регуляторов напряжения может работать с любым входным напряжением. В моем случае я использую LM7805, который поддерживает входное напряжение от 8 до 25 В.
Чем ближе вы можете быть к этому меньшему числу, тем эффективнее будет ваша схема.
Выпрямление
После понижения напряжения до 12 В мы находимся в хорошем состоянии, но мы по-прежнему работаем с переменным током.Наша схема зарядного устройства USB должна быть постоянным током! Для этого мы собираемся построить схему двухполупериодного мостового выпрямителя.
Выпрямление удаляет отрицательную часть сигнала переменного тока. Схема двухполупериодного мостового выпрямителя построена с использованием четырех диодов. Как известно, диоды пропускают ток только в одном направлении. В первом полупериоде сигнала переменного тока диоды D2 и D3 смещены в прямом направлении, а диоды D1 и D4 смещены в обратном направлении. Во втором полупериоде сигнала переменного тока диоды D1 и D4 смещены в прямом направлении, а диоды D2 и D3 — в обратном направлении.
Проще говоря, во время этого процесса отрицательная часть сигнала преобразуется в положительную!
СВЯЗАННЫЙ: Как работают диоды
Однако, в конце концов, это все еще не цепь постоянного тока и недостаточно чистая, чтобы питать наши USB-устройства. Нам нужно сделать еще пару вещей.
Еще одно замечание, прежде чем мы продолжим. Вы можете купить готовые мостовые выпрямители. Но я думаю, что для каждого важно хотя бы раз создать свое собственное, чтобы узнать, как они работают.Стандартные выпрямители — это не что иное, как диоды в одном корпусе.
Filtration
Нам нужно получить эту форму волны, сглаженную до истинного постоянного тока, поскольку мы еще не совсем находимся на настоящей территории постоянного тока со всей этой пульсацией в нашей форме волны.
Решим эту проблему, добавив в схему конденсаторы фильтра. Эти колпачки для фильтров устанавливаются с обеих сторон регулятора напряжения. Они будут заряжаться до тех пор, пока колебания не достигнут своего пика, а затем, когда колебания уменьшатся, конденсаторы будут разряжаться в цепи, выравнивая колебания и создавая постоянный ток.
Это очень простое решение.
Регулирование напряжения
Мы почти закончили создание нашей схемы зарядного устройства USB! Последнее, что нам нужно сделать, это добавить стабилизатор напряжения, чтобы поддерживать стабильное напряжение на уровне 5 В для наших USB-устройств.
Без регулирования напряжения наши 5 В могут повышаться или понижаться при изменении входного переменного тока. Это могло произойти, если произошел скачок напряжения или потемнение. Это могло иметь катастрофические последствия для устройства, которое мы собираемся использовать.
СВЯЗАННО: Как работают регуляторы напряжения
Стабилизатор напряжения также решает для нас еще одну проблему. Он понижает 12 вольт, которые мы получаем от трансформатора, до 5 вольт. Стабилизаторы напряжения обычно могут работать с широким диапазоном изменяющихся входных напряжений. LM7805, который я выбрал, может работать от 8 до 25 вольт на входе. Чем ближе выход трансформатора к меньшему значению на регуляторе, тем выше будет КПД и тем меньше тепла будет производить регулятор напряжения.
Как вы теперь можете видеть на осциллографе, у нас есть совершенно стабильные 5 вольт, которые могут потреблять наши устройства (5,96 без какой-либо нагрузки в цепи это нормально).
СВЯЗАННЫЕ С: Учебное пособие по осциллографу
Некоторые последние мысли об этой схеме зарядного устройства USB
Я хотел бы поделиться с вами некоторыми заключительными мыслями об этой схеме зарядного устройства USB и ее конструкции.
Это не самая эффективная конструкция для зарядного устройства USB! Ага. Верно.Существуют гораздо более эффективные конструкции, в которых используются полупроводники и методы переключения. Однако эти схемы почти подобны магии и не очень хорошо служат цели обучения. Вся цель этого учебного пособия состояла в том, чтобы показать шаги, которые необходимо пройти, чтобы преобразовать сетевой переменный ток в регулируемые 5 вольт, которые может потреблять устройство USB. Отображение микросхемы с двумя входами и двумя выходами не многому научит.
Электрическая схема мобильного зарядного устройства, 100-220 В переменного тока — схемы DIY
Рынок наводнен дешевыми схемами мобильных зарядных устройств .Некоторым из вас может понадобиться схема зарядного устройства такого типа и список компонентов.
В этих мобильных зарядных устройствах используется всего несколько деталей, очень простая конструкция. Но есть и недостаток, они легко повредились.
Некоторые из моих друзей постоянно спрашивают, как отремонтировать схему мобильного зарядного устройства, поэтому я решил провести небольшой реверс-инжиниринг этих зарядных устройств.
Схема дешевого мобильного зарядного устройства 220 В переменного тока
Прежде всего, взглянем на принципиальную схему зарядного устройства.Трансформер получился немного странным, поэтому я тоже решила нарисовать его от руки.
К сожалению, все схемы зарядного устройства не одинаковы, некоторые из них содержат несколько дополнительных конденсаторов или резисторов.
Но даже несмотря на это, вы можете получить четкое представление о схеме мобильного зарядного устройства из приведенной выше схемы.
Конструкция довольно проста, построена на бумажной фенольной печатной плате, легко ремонтируется.
Перечень деталей схемы мобильного зарядного устройства
Наконец, список деталей, вы можете заменить большинство из них ближайшими альтернативами.
- Q1 — 13001 транзистор
- Д1 — диод 1Н4007
- D2 — Стабилитрон 6,2 В
- Д3 — 1Н4148 диод
- D4 — диод Шоттки SB260
- R1 — 6,8 Ом — 1/2 Вт
- R2 — 1 МОм — 1/4 Вт
- R3 — 6,8 кОм — 1/8 Вт
- R4 — 330 Ом -1/4 Вт
- C1 — 2,2 мкФ — 450 В
- C2 — 4,77 мкФ — 50 В
- C3- 680pF керамика (681)
- C4 — 470 мкФ — 10 В
Как я уже говорил, этот тип транзисторной схемы зарядного устройства 13001 может отличаться по конструкции и номеру детали.Но основная схема такая же, у некоторых из них есть маленький светодиод в качестве индикатора.
Детали трансформатора:
- Первичный: Около 250 витков от 36 до 40 эмалированных медных проводов SWG.
- Вторичный: 6 витков эмалированного медного провода от 26 до 28 SWG.
- Вспомогательная обратная связь: от 8 до 15 витков медного провода от 36 до 40 SWG.
Если трансформатор сломан, можно использовать трансформатор от другого сломанного зарядного устройства аналогичного типа.
Работа схемы мобильного зарядного устройства
Давайте обсудим, как работает эта схема, сначала взглянем на картинку ниже.
- Первая ступень представляет собой однополупериодный выпрямитель, изготовленный из D1 , R1 и C1 . Он выпрямляет и фильтрует входной переменный ток до постоянного высокого напряжения. Таким образом, напряжение между точкой A и позицией B составляет примерно 170 вольт для входа переменного тока 120 В и 311 вольт для входа переменного тока 220 вольт.
- Вторая ступень — это автогенератор обратного хода (кольцевой дроссель, RCC), состоящий из всех частей, показанных внутри красного поля, и первичной + вспомогательной обмотки трансформатора.
- Так как же колеблется обратный осциллятор? При подключении питания переменного тока база транзистора начинает открываться, поскольку она смещена резистором R2 . Ток через первичную обмотку начинает быстро расти и мгновенно достигает порогового уровня.
- Но в то же время на вспомогательной обмотке трансформатора начинает расти противоположное (но низкое) напряжение. Это противоположное напряжение начинает заряжать конденсатор C3 отрицательно, намного быстрее, чем зарядка через R2 , тем самым в конечном итоге блокируя ток через первичную обмотку.
- Поскольку во вспомогательной обмотке больше нет тока, C3 начинает разряжаться через R3 , а ток через R2 снова начинает открывать базу транзистора Q1 .
- Этот процесс повторяется снова и снова очень быстро. Может быть от 10 000 до 50 000 раз в секунду, в зависимости от различных параметров. Итак, в конечном итоге мы получили колебания в цепи.
- Поскольку схема колеблется, энергия, запасенная в первичной обмотке, также сбрасывается во вторичную обмотку, когда транзистор находится в выключенном состоянии.
- Ступень Rectifier 2 отвечает за выпрямление и фильтрацию наведенных тока и напряжения на вторичной обмотке. Выпрямленное и сглаженное напряжение находится между позицией C и D . Что может достигать 8-9 вольт без нагрузки. Но очень быстро падает при подключении нагрузки.
- Сопротивление R4 обеспечивает небольшой ток, что предотвращает перезарядку конденсатора.
Поскольку нет механизма обратной связи между стороной низкого напряжения и генератором, напряжение падает между точками C и D при подключении нагрузки.
Заключение
Ну, это, конечно, не самое простое объяснение, но я думаю, достаточно простое, чтобы понять, что происходит внутри схемы мобильного зарядного устройства.
Если у вас есть вопросы или предложения, задавайте их в комментариях.
Схема зарядного устройства USBВ настоящее время мобильные телефоны также можно заряжать от USB-розетки ПК. Схема мобильного зарядного устройства, представленная в этом проекте, может дать 4,7 В синхронизированного напряжения для зарядки телефона.Поскольку розетки USB могут выдавать 5 В постоянного тока и 100 мА тока. Этого достаточно для медленной зарядки мобильных телефонов, чтобы их можно было использовать для зарядки мобильных телефонов. USB означает универсальный последовательный порт. Это один из новейших методов обмена информацией с ПК в реальном мире. Порт USB обеспечивает питание внешних устройств. + 5В на выводе 1 и -5В на выводе 4.
[[wysiwyg_imageupload: 7746:]]
Рис. 1. Изображение выводов USB-устройства для мобильного зарядного устройства
Большинство аккумуляторов мобильных телефонов имеют рейтинг 3.6 вольт от 1000 до 1300 мАч. Эти комплекты батарей содержат 3 литиевых элемента с номинальным напряжением 1,2 В.
Обычно для быстрой зарядки аккумуляторному блоку требуется 4,5 В и ток 300-500 мА. Но для повышения эффективности батареи предпочтительна зарядка с низким током. Описанный здесь проект на основе схемы зарядного устройства мобильного телефона обеспечивает 4,7 В регулируемого напряжения и достаточное количество тока для медленной зарядки мобильных телефонов. Регулируемый выход задается транзистором T1, выходное напряжение регулируется стабилитроном ZD, а полярность выходного питания защищается D1.Передний конец схемы должен быть подключен к разъему USB типа A, красный провод к контакту 1 и черный провод к контакту 4 разъема для упрощения распознавания полярности. Выход подходящего штыря зарядного устройства должен быть подключен к мобильному телефону. После того, как схема собрана, вилку USB следует вставить в розетку и измерить выходной сигнал от схемы. Если выход в норме и полярность правильная, подключите его к мобильному телефону. Если полярность неправильная, это приведет к разрушению аккумулятора мобильного телефона, поэтому следует проявлять особую осторожность.
Для создания этой схемы мобильного зарядного устройства используется USB-кабель, по крайней мере, с одним штекером на нем и зачищенным примерно на 5 см внешней изоляции с экраном от оголенного конца USB-кабеля. Обычно кабели USB имеют четыре провода: красный, зеленый, белый и черный. Поскольку зеленый и белый несут данные, их можно обрезать, так как они здесь не нужны. В основном черный провод — ОТРИЦАТЕЛЬНЫЙ, а красный — ПОЛОЖИТЕЛЬНЫЙ. Напряжение на USB составляет около 5 В с максимальным током 500 мА для любого устройства.Теперь линии питания подключены к USB-разъему с соблюдением полярности. Отражатели используются для светодиодов, чтобы получить максимальное освещение.
Принципиальные схемыКомпоненты проекта
Простая схема зарядки USB — Проекты электроники Схемы
MP4, MP3-плеер, мобильные телефоны, различные устройства можно заряжать от адаптера зарядного устройства USB-порта компьютера также в этих устройствах, обычно разработанных в соответствии с стандартный кабель USB и ПК с одним соединительным кабелем USB от зарядки… Проекты электроники, Простая схема зарядки через USB «Схема зарядного устройства, проекты силовой электроники, проекты простых схем», Дата 22.06.2014
MP4, MP3-плеер, мобильные телефоны, различные устройства можно заряжать от компьютера Адаптер зарядного устройства USB-порта также в этих устройствах обычно разрабатывается в соответствии со стандартным USB-кабелем и ПК с одним соединительным кабелем USB от зарядного адаптера может быть сделан. Сделано в Китае. Плеер mp4, который я изучал для использования в очень простом зарядном устройстве, имеет схему зарядки.
Адаптер зарядного устройства представляет собой довольно простой выход на 5 В, который примерно состоит из двух частей: секции SMPS и секции управления зарядкой.
Сделано в Китае. Схема литий-ионного зарядного устройства.
Цепь секции SMPS. секция управления простая однотранзисторная (S9015) схема с 3,7-вольтовой схемой зарядки литий-ионной батареи красный светодиод горит постоянным зеленым светодиодом соединение батареи установлено, когда батарея полностью заряжена после мигания нескольких моделей я изучил Раздел управления одинаковым количеством разницы в токе перезаряжаемой аккумуляторной батареи по мощности SMPS и сопротивлению R1 составляет 180.Литий-ионный аккумулятор 250 мА для 5,6 Ом Аккумулятор 480 0,680 мА для 1,5 Ом Используется пила 2,7 Ом Часть SMPS, которая является неисправной частью управления адаптером зарядного устройства за пределами 5-вольтового источника, и тестируемая мной схема зарядки работает нормально, имеет проигрыватель mp4
Если аккумуляторная батарея плеера или другое устройство в процессе зарядки Если это так, прямое подключение батареи происходит во второй цепи D1 и элементы C1 добавить причину плеера во вход адаптера схемы + секция этих элементов не является зарядным устройством, подключенным напрямую + аккумулятор не доходит до плеера в цепи этих элементов по прошествии зарядки идет процесс.
BC547 NPN транзистор — приложение для зарядного устройства мобильных телефонов, осуществляется с
источник: http://www.pablox.cq.sk/Elektrotechnika/Liion/Liion.htm
Внутри (поддельного) зарядного устройства для iPhone
Мысли о смерти Ма Айлуна
Согласно сообщениям, женщина в Китае трагически погибла от удара электрическим током, когда она заряжалась от своего iPhone. Мне это кажется технически правдоподобным, если бы она использовала дешевое или поддельное зарядное устройство, как я описываю ниже. Внутри зарядного устройства 340 вольт постоянного тока, этого достаточно, чтобы убить.В дешевом зарядном устройстве расстояние между выходным напряжением и выходным напряжением может составлять менее миллиметра, что составляет часть рекомендуемого безопасного расстояния. В этих зарядных устройствах иногда происходит короткое замыкание (рисунок), что может привести к подаче смертельного напряжения через USB-кабель. Если пользователь замыкает цепь, стоя на влажном полу или касаясь заземленной металлической поверхности, возможно поражение электрическим током. Если в зарядном устройстве конденсируется влага (например, во влажной ванной), вероятность короткого замыкания возрастает. Подлинные зарядные устройства Apple (и зарядные устройства других брендов) соответствуют строгим правилам безопасности (разборка), поэтому я был бы удивлен, если бы такое поражение электрическим током произошло с зарядным устройством известной марки.Поскольку подделки выглядят так же, как настоящие зарядные устройства, я буду ждать, пока эксперт определит, использовалось ли подлинное зарядное устройство Apple или нет. Я читал предположения, что, возможно, виновата домашняя проводка, но, поскольку зарядные устройства обычно не заземлены, я не понимаю, какую роль может сыграть неисправная домашняя проводка. Я должен отметить, что, поскольку на данный момент мало деталей, это все предположения; возможно, телефон и зарядное устройство вообще не использовались. Недавно я написал популярную статью по истории компьютерных блоков питания, которая привела к предположениям о том, что находится внутри этих удивительно маленьких кубических USB-зарядных устройств размером один дюйм, продаваемых Apple, Samsung, RIM и другими компаниями.В интересах науки я купил дешевое безымянное зарядное устройство для кубов на eBay за 2,79 доллара и разобрал его. Удивительно, что производители могут создать и продать сложное зарядное устройство всего за несколько долларов. Оно очень похоже на настоящее зарядное устройство Apple и стоит намного дешевле. Но заглянув внутрь, я обнаружил, что важные углы безопасности были вырезаны, что могло привести к неожиданности 340 вольт. Кроме того, помехи от такого дешевого зарядного устройства могут вызвать сбои в работе сенсорного экрана. Таким образом, я рекомендую потратить еще несколько долларов на фирменное зарядное устройство.Безымянное зарядное устройство, которое я купил, имеет длину чуть более дюйма, не считая вилки европейского образца. Зарядное устройство имеет маркировку «ДЛЯ iphone4. Вход 110-240 В, 50/60 Гц, Выход 5,2 В, 1000 мА, Сделано в Китае». Никакой другой маркировки (производитель, серийный номер или сертификаты безопасности) нет. Я вскрыл зарядное устройство с помощью Dremel-ing. Один сюрприз — сколько пустого места внутри для такого маленького зарядного устройства. Очевидно, схема зарядного устройства предназначена для вилки меньшего размера в американском стиле, а дополнительное пространство с европейской вилкой не используется.Поскольку зарядное устройство принимает входное напряжение от 110 до 240 В, ту же схему можно использовать во всем мире. [1]
Сам блок питания немного меньше одного кубического дюйма. На рисунке ниже показаны основные компоненты. Слева — стандартный разъем USB. Обратите внимание, сколько места он занимает — неудивительно, что устройства переходят на разъемы micro-USB. Обратный трансформатор — это черно-желтый компонент; он преобразует вход высокого напряжения в выход 5 В. Перед ним переключающий транзистор.Рядом с транзистором находится компонент, который выглядит как резистор, но представляет собой катушку индуктивности, фильтрующую входной переменный ток. На нижней стороне вы можете увидеть конденсаторы, фильтрующие выход и вход.
Источник питания представляет собой простой импульсный источник питания с обратным ходом. Входной переменный ток преобразуется в высоковольтный постоянный ток диодом, прерывается в импульсы силовым транзистором и подается в трансформатор. Выход трансформатора преобразуется в постоянный ток низкого напряжения с помощью диода, фильтруется и выводится через порт USB.Схема обратной связи регулирует выходное напряжение на уровне 5 вольт, регулируя частоту прерывания.
Подробное объяснение
Более подробно, источник питания представляет собой автоколебательный обратноходовой преобразователь, также известный как преобразователь с вызывным дросселем. [2] В отличие от большинства источников питания с обратным ходом, в которых для управления колебаниями используется ИС, этот источник питания генерирует колебания сам по себе через обмотку обратной связи на трансформаторе. Это уменьшает количество компонентов и минимизирует стоимость. Контроллер IC за 75 центов [3] будет огромными расходами за 2 доллара.79, поэтому они использовали минимальную схему.На рисунке выше показаны компоненты схемы; красные рамки и курсив обозначают компоненты на другой стороне. (Щелкните, чтобы увеличить изображение.) Обратите внимание на то, что большинство компонентов представляют собой крошечные устройства поверхностного монтажа (SMD) и их не так много по сравнению с конденсаторами. Зеленые провода подают входной переменный ток, который фильтруется через катушку индуктивности. Высоковольтный входной диод 1N4007 (M7) и входной конденсатор 4,7 мкФ преобразуют входной переменный ток в 340 вольт постоянного тока.[4] Силовой транзистор MJE13003 переключает питание на трансформатор с переменной частотой (вероятно, около 50 кГц). Трансформатор имеет две первичные обмотки (силовую обмотку и обмотку обратной связи) и вторичную обмотку. (Трансформатор и катушка индуктивности также известны как «магнетики».)
На вторичной (выходной) стороне высокоскоростной диод Шоттки SS14 выпрямляет выходной сигнал трансформатора до постоянного тока, который фильтруется выходным конденсатором 470 мкФ, прежде чем обеспечить желаемое. 5В к USB-порту.Два центральных контакта USB-порта (контакты данных) закорочены вместе с припоем, как будет объяснено ниже.
Простая цепь обратной связи регулирует напряжение. Выходное напряжение делится пополам резистор делителя и сравнивается с 2.5V общим 431 опорного напряжения устройства. Обратная связь передается на первичную обмотку через оптоизолятор 817B. На первичной стороне колебания обратной связи от обмотки трансформатора обратной связи и обратная связь по напряжению от оптоизолятора объединены в управляющем транзисторе 2SC2411.Затем этот транзистор приводит в действие силовой транзистор, замыкая контур. (Очень похожая схема источника питания описана компанией Delta. [5])
Изоляция и безопасность
По соображениям безопасности источники питания переменного тока должны поддерживать строгую изоляцию между входом переменного тока и выходом. Схема разделена на первичную сторону, подключенную к переменному току, и вторичную сторону, подключенную к выходу. Между двумя сторонами не может быть прямого электрического соединения, иначе кто-то, прикоснувшись к выходу, может получить электрический ток.Любое соединение между двумя сторонами должно осуществляться через трансформатор или оптоизолятор. В этом источнике питания трансформатор обеспечивает изоляцию основного питания, а оптоизолятор обеспечивает изоляцию обратной связи по вторичному напряжению.Если вы посмотрите на рисунок, вы можете увидеть границу изоляции, обозначенную белой линией на печатной плате, пересекающей печатную плату примерно по горизонтали, причем первичная сторона находится вверху, а вторичная сторона — внизу. (Эта линия напечатана на доске; я не добавлял ее к картинке.) Кружки на линии, которые выглядят как дыры, на самом деле дыры. Это обеспечивает дополнительную изоляцию между двумя сторонами.
UL имеет комплексные требования безопасности относительно того, какое расстояние (известное как «путь утечки» и «зазор») должно быть между первичной и вторичной сторонами, чтобы предотвратить опасность поражения электрическим током. [6] Правила сложные, и я не эксперт, но я думаю, что требуется как минимум 3 или 4 мм. На этом блоке питания среднее расстояние составляет около 1 миллиметра. Зазор ниже R8 справа несколько меньше одного миллиметра (обратите внимание, что белая линия пересекает дорожку печатной платы слева от R8).
Мне было интересно, как этот блок питания мог соответствовать стандартам UL с зазором менее 1 мм. Присмотревшись к корпусу зарядного устройства повнимательнее, я заметил, что в нем нет ни сертификатов безопасности, ни даже производителя. Я внезапно понял, что покупка самого дешевого зарядного устройства на eBay от неизвестного производителя в Китае может быть угрозой безопасности. Обратите внимание, что этот субмиллиметровый зазор — это все, что защищает вас и ваш телефон от потенциально смертельного напряжения в 340 вольт. Я также разобрал трансформатор и обнаружил только одинарные слои изоляционной ленты между обмотками, а не двойные слои, требуемые UL.После того, как я заглянул внутрь этого зарядного устройства, я рекомендую потратить немного больше на зарядное устройство и получить то, которое имеет одобрение UL и имя известного производителя.
Еще одна проблема, связанная с супердешевыми зарядными устройствами, заключается в том, что они производят некачественную электрическую продукцию с большим количеством шумов, которые могут мешать работе вашего телефона. Известно, что недорогие адаптеры дроссельной заслонки вызывают сбои в работе сенсорного экрана, поскольку экран улавливает электрические помехи. [7] В статье было замечено несколько экономичных дизайнерских решений, которые увеличивают помехи.В зарядном устройстве для выпрямления входа используется один диод, а не четырехдиодный мост, который будет создавать больше помех. Входная и выходная фильтрация минимальны по сравнению с другими проектами. [8] [9] На входе переменного тока также нет предохранителя, что немного беспокоит.
Протоколы зарядки USB
Вы могли подумать, что зарядные устройства USB взаимозаменяемы и подключить USB-устройство к зарядному устройству несложно, но оказывается, что это беспорядок из нескольких стандартов зарядки USB, [10] [11] [12] устройств, которые нарушать правила [13] и проприетарные протоколы, используемые Sony и Apple.[14] [15] [16] Основная проблема заключается в том, что стандартный порт USB может обеспечить до 500 мА, так как же зарядные устройства обеспечивают 1 А или более для более быстрой зарядки? Для упрощения, зарядное устройство указывает, что это зарядное устройство, путем короткого замыкания двух средних контактов USB (D + и D-). Фирменные зарядные устройства вместо этого подключают разные сопротивления к контактам D + и D-, чтобы указать, какой ток они могут обеспечить. Обратите внимание, что есть несколько неиспользуемых точек подключения резистора (R2, R3, R8, R10), подключенных к порту USB на схеме выше; производитель может добавить соответствующие резисторы для имитации зарядных устройств других типов.Достижения в адаптерах питания переменного тока
Ранние адаптеры питания представляли собой просто трансформатор переменного тока, производящий переменный ток низкого напряжения, или добавляемые диоды для производства постоянного тока. В середине 1990-х импульсные источники питания стали более популярными, поскольку они более компактны и более эффективны [17]. Однако растущая популярность адаптеров переменного тока, а также их тенденция к потере нескольких ватт, когда их оставляют подключенными к розетке, ежегодно обходятся Соединенным Штатам в миллиарды долларов потраченной впустую электроэнергии [3]. Стандарты New Energy Star [18] поощряют «зеленые» конструкции, которые в простое используют милливатты, а не ватты.Эти эффективные контроллеры могут останавливать переключение, когда они разгружены, с прерывистыми импульсами, чтобы получить достаточно энергии для продолжения работы. [19] Одна конструкция блока питания фактически обеспечивает нулевое энергопотребление в режиме ожидания за счет использования «суперконденсатора» в режиме ожидания. [20] Полупроводниковая промышленность продолжает совершенствовать импульсные источники питания за счет усовершенствования микросхем контроллеров и переключающих транзисторов. Для простых источников питания некоторые производители объединяют микросхему контроллера и переключающий транзистор в один компонент, имеющий всего 4 или 5 контактов.Другой технологией управления зарядным устройством является CC / CV, которая обеспечивает постоянный ток до тех пор, пока аккумулятор не зарядится, а затем постоянное напряжение для поддержания его заряда. Чтобы свести к минимуму электромагнитные помехи (EMI), некоторые контроллеры непрерывно изменяют частоту переключения для распределения помех по «расширенному спектру» [21]. Контроллеры также могут включать в себя функции безопасности, такие как защита от перегрузки, блокировка при пониженном напряжении и тепловое отключение для защиты от перегрева,
Выводы
Держитесь подальше от сверхдешевых адаптеров переменного тока, созданных загадочными производителями.Потратьте лишние несколько долларов на фирменный адаптер переменного тока. Это будет безопаснее, будет меньше помех, а сенсорный экран вашего устройства будет работать лучше.Примечания и ссылки
[1] Импульсные источники питания часто используют «универсальный» вход от 110 В до 240 В при 50/60 Гц, что позволяет одному и тому же источнику удобно работать с мировыми напряжениями. Поскольку импульсный источник питания разбивает входной сигнал на переменные сегменты, выходное напряжение может не зависеть от входного напряжения в широком диапазоне.(Это также делает импульсные источники питания более устойчивыми к отключениям питания.) Конечно, спроектировать схему для работы в широком диапазоне напряжений сложнее, особенно для источников питания, которые должны быть очень эффективными в широком диапазоне напряжений. Чтобы упростить конструкцию первых блоков питания для ПК, они часто использовали переключатель для выбора входа 120 или 240 В. Благодаря очень умной схеме удвоителя этот переключатель преобразовал входной мост в удвоитель напряжения на входе 120 В, так что остальная часть схемы может быть рассчитана на одно напряжение.Однако современные источники питания обычно рассчитаны на работу во всем диапазоне напряжений, что позволяет избежать затрат на дополнительный переключатель и гарантирует, что пользователи не установят переключатель в неправильное положение и что-то не разрушат.[2] Объяснение в стиле комиксов обратноходовых преобразователей и преобразователей с дроссельной заслонкой можно найти в TDK Power Electronics World.
[3] Стоимость простаивающих адаптеров переменного тока оценивается от 3,5 до 5,4 млрд долларов на 45 ТВт-часов потраченной впустую электроэнергии в США. В статье обсуждаются решения и упоминается, что эффективная ИС контроллера стоит 75 центов.(Обратите внимание, что это огромная стоимость для адаптера, который продается за 2,79 доллара.) Осушите предотвращаемую утечку, EDN , февраль 1999 г., p96-99
[4] Напряжение постоянного тока примерно в sqrt (2) раз больше переменного напряжения, поскольку диод заряжает конденсатор до пика сигнала переменного тока. Таким образом, входное напряжение 240 В переменного тока приведет к примерно 340 В постоянного тока внутри источника питания. Из-за такого использования пика переменного тока используется только небольшая часть входного переменного тока, что приводит к неэффективности, известной как плохой коэффициент мощности. Для более мощных источников питания используется коррекция коэффициента мощности (PFC) для улучшения коэффициента мощности.
[5] Схема преобразователя кольцевого дросселя, подобная тому, что я исследовал, содержится в книге «Анализ и проектирование самоколебательного обратного преобразователя», Delta Products Corporation.
[6] Соображения безопасности при проектировании источников питания, Texas Instruments, предоставляет подробное обсуждение требований безопасности к источникам питания. См. Также «Расчет путей утечки и зазора на раннем этапе, чтобы избежать проблем проектирования в дальнейшем», , Разработка соответствия . Онлайн-калькулятор требований UL 60950-1 для зазоров и путей утечки находится на сайте www.creepage.com.
[7] Cypress Semiconductor сравнил обратноходовые преобразователи и преобразователи со звенящим дросселем; преобразователи с дросселем и вызывным дросселем значительно дешевле, но очень шумны в электрическом отношении. Причиной плохой работы сенсорного экрана являются шумные недорогие зарядные устройства на вторичном рынке. Noise Wars: Projected Capacitance Strikes Back, Cypress Semiconductor , сентябрь 2011 г.
[8] Power Integrations имеет несколько конструкций и схем для зарядных устройств и адаптеров сотовых телефонов.
[9] Power Integrations имеет подробный проект зарядного устройства для куба 5 Вт на базе контроллера LinkSwitch-II.Эта схема позволяет разместить две печатные платы в дюймовом кубе, что весьма впечатляет. Зарядное устройство Cube мощностью 5 Вт с использованием LinkSwitch-II и PR14 Core
[10] Официальная спецификация USB-зарядки — Battery Charging v1.2 Spec.
[11] Обновленные стандарты USB, которые допускают сильноточную зарядку, описаны в конструкции зарядных устройств USB, соответствующих новым отраслевым стандартам, EDN , февраль 2008 г. Таким образом, зарядное устройство замыкает D + и D-, чтобы указать, что оно может обеспечивают 1 А, по сравнению с обычным USB-портом, обеспечивающим до 500 мА.
[12] Актуальное обсуждение USB-зарядки приведено в книге «Основы зарядки USB-аккумуляторов: руководство по выживанию», Maxim Application Note 4803, декабрь 2010 г. Здесь обсуждаются спецификации USB-зарядки аккумулятора и то, как USB определяет различную мощность. Источники: SDP (стандартные компьютерные USB-порты), CDP (сильноточные компьютерные USB-порты до 1,5 А) и DCP (адаптеры питания).
[13] Руководство по USB-питанию, в котором обсуждается разница между тем, что говорится в стандарте USB, и тем, что делается на самом деле, — это «То, что ваша мама не говорила вам о USB» в Зарядке батарей с помощью USB-питания, Примечания по применению Maxim 3241, июнь 2004 г.В частности, порты USB не ограничивают ток до 500 мА и могут обеспечивать до 2 А. Кроме того, порты USB обычно обеспечивают питание даже без какого-либо перечисления.
[14] Ладада перепроектировала зарядные устройства Apple, чтобы определить, как напряжение на выводах USB D + и D- управляет зарядным током. Minty Boost: тайны зарядки устройств Apple. Также следует отметить изображение внутреннего устройства официального зарядного устройства Apple iPhone 3Gs, которое несколько сложнее, чем зарядное устройство, которое я разобрал, с использованием двух печатных плат.
[15] Maxim MAX14578E / MAX14578AE Детекторы зарядного устройства USB. В этом техническом описании содержатся подробные сведения о проприетарных протоколах D + / D-, используемых зарядными устройствами Apple и Sony, а также о стандартных протоколах USB.
[16] Разработка экономичных зарядных устройств на базе USB для автомобильных приложений, EE Times , февраль 2011 г. В этой статье описаны различные типы USB-портов для зарядки и способы их реализации. В нем упоминается, что Blackberry использует спецификацию USB Battery Charging 1.0, Motoroloa использует спецификацию 1.1, телефоны в Китае используют спецификацию YDT-1591, а Apple использует собственный протокол.
[17] Технологии электропитания , Journal of Electronic Engineering, 1995, p41 сообщает, что адаптеры переменного тока и зарядные устройства для портативных компьютеров, фотоаппаратов и видеооборудования переходят от «капельных» трансформаторов к импульсным источникам питания.
[18] В 2010 году Energy Star добавила звездные рейтинги в отношении энергопотребления без нагрузки: от 0 звезд для зарядных устройств, потребляющих мощность более 0,5 Вт в режиме ожидания, до 5 звезд для зарядных устройств, потребляющих менее 30 мВт.В статье также обсуждаются зарядные устройства постоянного тока / постоянного напряжения (CC / CV), которые обеспечивают постоянный ток при зарядке аккумулятора, а затем постоянное напряжение для поддержания заряда аккумулятора. Встреча 30 мВт в режиме ожидания в зарядных устройствах для мобильных телефонов.
[19] Экологичная конструкция адаптера переменного тока, обусловленная требованиями к питанию, EDN Power Technology , август 2004 г., стр. 25-26. В этой статье описывается, как создать высокоэффективный адаптер переменного тока, использующий «пакетный режим» при низкой нагрузке и минимизирующий электромагнитные помехи с помощью методов расширения спектра.
[20] Watt Saver для адаптера переменного тока сотового телефона описывает эталонную конструкцию адаптера переменного тока, в которой используется суперконденсатор емкостью 1 Фарад для питания контроллера без использования переменного тока при отсутствии нагрузки.
[21] ШИМ-контроллер Fairchild FAN103 разработан для зарядных устройств. Он использует скачкообразную перестройку частоты для расширения спектра электромагнитных помех — частота переключения варьируется от 46 кГц до 54 кГц. Когда нет нагрузки, контроллер переключается в режим «Deep Green», понижая частоту переключения до 370 Гц, получая достаточно энергии для продолжения работы.
Оглавление Введение Массив источников питания Определение типа источника Терминология USB-подключения Обнаружение порта и самонаборное зарядное устройство Добавление обнаружения порта Другие стратегии зарядки USB 3.0 «Обман» — несоответствующая зарядка USB Заключение ВведениеUSB стал таким же стандартом для подключения питания к портативным устройствам, как и для последовательной связи.В последнее время аспекты питания USB были расширены, чтобы охватить зарядку аккумуляторов, а также адаптеры переменного тока и другие источники питания. Ощутимым преимуществом такого широкого использования является появление сменных вилок и адаптеров для зарядки и питания портативных устройств. Это, в свою очередь, позволяет заряжать от гораздо более широкого круга источников, чем раньше, когда каждому устройству требовался уникальный адаптер.Пожалуй, наиболее полезным преимуществом возможностей USB-источника питания является возможность зарядки аккумуляторов портативных устройств.Тем не менее, зарядка аккумулятора — это больше, чем выбор источника питания, USB или другого источника. Это особенно верно для аккумуляторов Li +, неправильная зарядка которых может не только сократить срок службы аккумулятора, но и стать угрозой безопасности. Хорошо продуманное зарядное устройство оптимизирует безопасность и удобство использования. Это также снижает затраты за счет сокращения возврата клиентов и гарантийного ремонта. Зарядка аккумуляторов с помощью USB требует баланса между «уходом и питанием» аккумуляторов с ограничениями мощности USB и размером и ценой, которые когда-либо присутствовали в портативных потребительских устройствах.В этой статье рассказывается, как достичь этого баланса. Массив источников питанияСпецификация USB охватывает несколько поколений управления питанием. Первоначальные спецификации USB 1 и 2.0 описывали два типа источников питания (5 В 500 мА и 5 В 100 мА соответственно) для питания подключенных устройств. Эти спецификации были написаны не с учетом зарядки аккумулятора, а предназначены только для питания небольших периферийных устройств, таких как мыши и клавиатуры. Конечно, это не помешало дизайнерам самостоятельно отработать зарядку аккумулятора через USB.Однако без единого руководства совместимость между различными устройствами и зарядными устройствами была затруднена. Это ограничение послужило причиной недавней разработки дополнительной спецификации USB, Спецификации зарядки аккумулятора , Ред. 1.1, 15 апреля 2009 г. (BC1.1) , которая подтверждает зарядку и описывает источники питания, которые могут обеспечивать ток до 1,5 А. Хотя документ озаглавлен «Спецификация зарядки аккумулятора», на самом деле он не содержит ничего о специфике зарядки аккумуляторов. Он касается только того, как должно потребляться питание от USB-порта для зарядки.Фактические методы зарядки остаются на усмотрение отдельных разработчиков.До BC1.1 все порты питания USB, когда они были активны (т.е. «не приостановлены», на языке USB), классифицировались как «маломощные» (100 мА) или «высокие» (500 мА). Любой порт также может быть «приостановлен», что означает, что почти отключены, но все еще могут обеспечивать ток 2,5 мА. По большей части порты на ПК, ноутбуках и концентраторах с питанием (концентратор с питанием — это коммутационная коробка USB с собственной розеткой для питания шины) являются «High Power», а порты на концентраторах, которые не получают никакого питания, кроме как питание от восходящего USB-хоста считается «маломощным».«После подключения устройству сначала разрешается потреблять до 100 мА при перечислении и согласовании своего текущего бюджета с хостом. Впоследствии ему может быть разрешено увеличить потребление до 500 мА или оно может поддерживаться на уровне 100 мА. Это подробно описано в Спецификация последовательной шины USB версии 2.0, раздел 7.2.1.4. BC1.1 выходит за рамки распределения питания, описанного в USB 2.0, определяя дополнительные источники питания для зарядки. Он определяет три различных типа источников:
Определение типа источникаУловка для устройства, которое подключается к любому USB-разъему и использует эту мощность для автономной работы или зарядки аккумулятора, заключается в том, чтобы знать, какой ток необходимо потреблять. Попытка получить 1 А от источника, способного выдавать только 500 мА, не будет хорошей. Перегруженный порт USB, скорее всего, отключится, перегорит предохранитель или сработает переключатель.Даже при наличии сбрасываемой защиты он часто не перезапускается, пока устройство не будет отключено и повторно подключено. В портах с менее строгой защитой перегруженный порт может вызвать перезагрузку всей системы.Портативная конструкция позволяет выбирать способ обнаружения портов. Он может быть совместим с BC1.1, совместим только с USB 2.0 или несовместим. Если он полностью совместим с BC1.1, он должен иметь возможность определять и ограничивать входной ток для всех типов источников USB, включая устаревшие порты USB 1 и 2.0. Если соответствует 2.0, он будет взимать плату с SDP после перечисления, но может не распознавать CDP и DCP. Если он не может распознать CDP, он все равно может заряжаться и оставаться совместимым, но только после перечисления, так же, как это было бы с SDP. Другие частично совместимые и несовместимые схемы зарядки будут обсуждены позже. Устройство может реализовать обнаружение порта с помощью собственного программного обеспечения или может использовать зарядное устройство или интерфейсную ИС, которые обнаруживают, взаимодействуя с линиями данных USB D + и D-, не полагаясь на системные ресурсы.Разделение этих ролей в проекте зависит от архитектуры системы. Например, устройство, которое уже использует микроконтроллер или выделенную ИС для управления питанием, может предпочесть использовать эту ИС для обнаружения портов и выбора тока. Поскольку устройство уже может обмениваться данными с хостом через USB-соединение, оно может выбирать зарядку на основе результатов перечисления и конфигурации. Эти варианты могут находиться под управлением процессора приложений или отдельного микроконтроллера, который может обрабатывать управление питанием и другие системные функции.Система определяет тип порта, перечисляет и отправляет соответствующие команды на зарядное устройство. Зарядное устройство управляет аппаратными и безопасными аспектами зарядки и имеет встроенные ограничения, которые не позволят системе повредить аккумулятор ( Рисунок 1 ). Другое устройство может быть не предназначено для связи с USB или не хочет выделять системное программное обеспечение для управления зарядкой через USB.Он просто хочет использовать доступные USB-порты в качестве источника питания. Этот подход можно использовать, чтобы избежать сложности или в ответ на опасения, что ошибка программного обеспечения может привести к неправильной зарядке. Поскольку система не перечисляет, лучшим вариантом зарядки является самонаборное зарядное устройство. Зарядное устройство заботится об обнаружении порта и выбирает соответствующий предел тока нагрузки USB, не требуя помощи со стороны системы (, рис. 2, ). Терминология USB-подключенияНа этом этапе некоторые термины USB заслуживают пояснения. Это «присоединение», «подключение», «перечисление» и «настройка».
Подключение Когда устройство (которое вы только что подключили) подключает подтягивающее сопротивление 1,5 кОм к линиям данных D + или D-. Перечислить Начальный обмен данными между устройством и хостом для определения типа устройства. Конфигурация Настройка параметров устройства. и функцией автоматического перечисления портовMAX8895 определяет, как лучше всего использовать доступную входную мощность, не полагаясь на систему для оценки источника питания.Зарядное устройство автоматически определяет тип адаптера и может различать:
Помимо автоматической оптимизации тока от источников USB и адаптеров, MAX8895 также ловко выполняет переключение с адаптера и питания USB на питание от батареи; это позволяет системе использовать всю доступную входную мощность при необходимости ( Рисунок 3 ). Это обеспечивает немедленную работу с разряженной или отсутствующей батареей при подаче питания. Все полевые МОП-транзисторы с усилителем рулевого управления интегрированы, и внешние диоды не требуются. Температура кристалла поддерживается на низком уровне с помощью контура терморегулирования, который снижает ток заряда при экстремальных температурах. Добавление обнаружения портаBC1.1 описывает методы обнаружения оборудования для определения типа порта. Ожидается, что для этого будет использоваться интегральная схема, как в случае с MAX8895 на рисунке 2, или что эта схема будет включена в приемопередатчик USB.Тем не менее, иногда может быть предпочтительнее добавить обнаружение порта или, по крайней мере, его часть к существующему зарядному устройству. На рис. 4 показана схема элементарной схемы обнаружения зарядного устройства USB, которая работает под управлением системного микроконтроллера. Этот подход может обнаруживать DCP, но не может различать SDP и CDP. Он рассматривает оба как SDP, что означает, что в некоторых случаях он может упустить возможность потреблять больше зарядного тока от CDP. Этот недостаток может быть приемлемым в малобюджетных конструкциях. Соединение, показанное на Рисунке 4, реализует ограниченное обнаружение порта следующим образом. Когда портативное устройство подключено к одному из трех типов портов, шина V BUS питает коммутатор U1 и микроконтроллер устройства. Низкий логический уровень на входе CB U1 переводит его в режим обнаружения, где линия D + подтягивается до напряжения системной логики через 10 кОм, а D- подтягивается к GND через 100 кОм.Если подключен DCP (у которого D + закорочен на D-), то D- станет высоким. Если подключен SDP или CDP, выход D- и обнаружения будет низким. Если обнаруживается SDP или CDP, система затем переводит CB в низкий уровень, чтобы перевести коммутатор в режим данных, который подключает D + и D- к тракту данных для перечисления и другой передачи данных. Существует ограничение вышеупомянутой схемы: она не распознает и, следовательно, не заряжает сразу же, когда присоединена к CDP, хотя она будет взимать плату с CDP после перечисления. Полное обнаружение порта показано на рис. 5 . MAX14578 содержит все схемы, необходимые для обнаружения подключенного устройства (USB-кабель, USB-CDP или специальное зарядное устройство) и управления внешним зарядным устройством для литий-ионных аккумуляторов. В устройстве реализована логика обнаружения, совместимая с USB Battery Charging Rev 1.1, которая включает обнаружение контакта данных, обнаружение короткого замыкания D + / D- и идентификацию CDP. Кроме того, он включает в себя таймер зарядки и монитор низкого напряжения батареи для поддержки USB BC1.1 Положения о «разряженной батарее». MAX14578 включает переключатель данных, совместимый с USB Hi-Speed и исходными (полная и низкая скорость) сигналами. Он имеет низкое сопротивление в открытом состоянии (R ON ), низкую плоскостность сопротивления в открытом состоянии и очень низкую емкость. Контакты CDN и CDP также защищены от электростатического разряда до 15 кВ в соответствии с моделью человеческого тела. In Рисунок 6 Простая функция зарядки Li + добавлена к USB-устройству. MAX8814 можно настроить для зарядки аккумулятора от USB-портов 100 мА или 500 мА. Схема инициализируется при 100 мА. Затем микропроцессор перечисляет хост, чтобы определить его текущие возможности. Если порт USB поддерживает, зарядный ток увеличивается путем включения N1 и R1 в сети установки тока. Заряд высокого уровня номинально установлен на 425 мА, чтобы избежать превышения предела SDP 500 мА после рассмотрения допусков.Зарядное устройство также включает в себя схему автоматической загрузки, которая выдает выходной сигнал (ABO), который уведомляет систему о подключении внешнего источника питания. Несмотря на совместимость с USB, на рис. 6 отсутствует BC1.1, поэтому для зарядки требуется перечисление. Другие стратегии начисления платыСитуация с зарядкой аккумулятора через USB может быть сложной. Портативные устройства, подключенные через USB, не соответствуют одному формату и имеют ряд ограничений, наиболее очевидными из которых являются размер, стоимость и время зарядки. Ранжирование этих и других более тонких проблем может помочь вам выбрать конструкцию зарядного устройства USB. Среди этих дополнительных соображений по дизайну:
С BC1.1 устройства могут заряжаться только от источников, определенных через USB. Эти устройства становятся все более распространенными, но вы все же можете сохранить возможность зарядки с помощью обычного, возможно, несовместимого с USB адаптера. Это лучше всего достигается с помощью зарядного устройства с двумя входами, которое выполняет переключение, когда один внешний источник питания заменяет другой. В прошлом переключение питания часто выполнялось с помощью диодов ИЛИ с потерями или дискретных схем компаратора на полевых МОП-транзисторах, которые могут стать сложными, если учесть пути «незаметного» тока и время переключения.К счастью, многие микросхемы зарядного устройства (, рис. 7, ) теперь включают управление переключением питания. Интеграция этой функции не просто заменяет внешние компоненты. Это также улучшает переходные характеристики при изменении мощности, поскольку встроенное зарядное устройство знает, что делает схема переключения. Общая проблема зарядных устройств, которые принимают питание от нескольких источников, особенно с использованием обычного цилиндрического разъема, — это возможное подключение к неправильному адаптеру.Чтобы предвидеть это, MAX8844 предотвращает зарядку входов, превышающих 7,5 В. Он также может выдерживать и блокировать входное напряжение до 28 В. Это защищает аккумулятор, зарядное устройство и последующие цепи от случайного подключения практически к любому известному типу адаптера. Кроме того, MAX8844 включает LDO с защитой от перенапряжения, смещенные от входов USB и адаптера (IN), которые могут подавать в систему 30 мА. Эти выходы LDO (SAFEUSB и SAFEOUT) остаются включенными независимо от того, включено зарядное устройство или нет. Другие функции зарядного устройства, выполняемые устройством: обнаружение батареи; тепловое ограничение, которое снижает ток заряда для поддержания низкой температуры кристалла при экстремальных температурах окружающей среды; и логический выход автозагрузки, который сигнализирует системе о подаче внешнего питания. Переключение нагрузки батареи (Smart Power) и прямое подключение Архитектура прямого подключения является наиболее простой и экономичной в реализации. Его главный недостаток проявляется в том, что аккумулятор сильно разряжен, а затем применяется внешнее питание. В этом случае система может не загрузиться, пока заряд батареи не достигнет приемлемого уровня. В некоторых приложениях для пользователя может быть приемлемым подождать, пока батарея частично перезарядится, прежде чем будет восстановлена полная функциональность; однако в других приложениях немедленная работа при подключении внешнего источника питания является обязательной, независимо от состояния батареи.В этих последних случаях технология Smart Power Selector от Maxim позволяет системе использовать внешнее питание, когда батарея находится в глубоко разряженном состоянии. См. Рисунок 9 . На рисунке 9 встроенный МОП-транзистор с низким сопротивлением (40 мОм) между выходом нагрузки системы (SYS) и аккумулятором (BAT) выполняет несколько функций во время операций зарядки и разрядки.Во время зарядки этот переключатель интеллектуального выбора мощности наилучшим образом использует ограниченную мощность USB или адаптера, используя входную мощность, которая не требуется системе для зарядки аккумулятора. Это также позволяет батарее служить буфером хранения, обеспечивая пики нагрузки, которые могут на мгновение превысить предел входного тока. Во время разряда коммутатор обеспечивает путь от батареи к системе с малыми потерями. Системное программное обеспечение снова обрабатывает связь с USB-хостом и отправляет команды зарядному устройству. MAX8394 управляет аппаратными аспектами зарядки и предоставляет простые крючки для настройки параметров зарядки, относящихся к зарядке через USB и адаптер.Пределы входного тока USB предварительно установлены, чтобы гарантировать, что указанные пределы не превышаются; для адаптеров используется ток, установленный пользователем. Зарядное устройство также подает в систему полный набор сигналов о состоянии и неисправностях. MAX8934 включает в себя новейшие функции безопасности при зарядке, в том числе новые протоколы зарядки в зависимости от температуры, разработанные Японской ассоциацией электроники и информационных технологий (JEITA), которые останавливают или сокращают зарядку при повышенных температурах. Кроме того, входы имеют защиту от перенапряжения (OVP) до 16 В, а устройство ограничивает повышение температуры, регулируя ток зарядки в экстремальных условиях. Switch-Mode Быстрая зарядка до 2 А с минимальным нагревом Благодаря частоте переключения MAX8903 4 МГц пассивные компоненты импульсного преобразователя остаются крошечными, поэтому зарядное устройство на 2 А, изготовленное с этим устройством, может быть меньше линейного эквивалента с учетом более низких потерь мощности.Фактически, из-за рассеивания тепла большинство портативных устройств не выдержат линейной конструкции зарядного устройства 2А ни при каких условиях. Встроенная защита от перенапряжения и обратной полярности. цилиндрический разъем для питания (общий для многих устройств с адаптером и с двумя входами).Потребителям слишком легко подключить «найденный» адаптер, у которого может быть неправильное выходное напряжение или даже неправильная полярность. За счет интеграции положительной и отрицательной защиты 22 В на входе питания зарядного устройства MAX8900 добавляет разумности этим конструкциям, не требуя внешних устройств защиты или переключателей MOSFET (, рис. 11, ). MAX8900 — это зарядное устройство с прямым подключением, система которого обычно подключается к батарее.Его конструкция с переключаемым режимом 3,25 МГц сохраняет компактность компонентов при зарядке до 1,2 А с минимальным тепловыделением. Помимо защиты от биполярного входа, безопасность батареи повышается за счет регулировки параметров заряда в зависимости от температуры в соответствии с директивами JEITA. NiMH Зарядка от USB Несмотря на то, что кажется, что Li + -элементы захватили мир портативных устройств, NiMH-элементы не стоят на месте.Удивительно, но энергия NiMH на единицу объема всего примерно на 15% ниже, чем у Li +, хотя энергия на единицу веса все же намного меньше. Самым большим недостатком NiMH является его высокий саморазряд, который в значительной степени решен гибридными NiMH элементами, такими как SANYO® Eneloop®, которые сохраняют до 85% своего заряда через год. Преимущества NiMH-элементов заключаются в стоимости, безопасности и простоте замены пользователем, по крайней мере, при использовании стандартных элементов. На рисунке 12 показано небольшое портативное устройство, которое питается от одного NiMH элемента AA и заряжается от USB.Зарядное устройство DS2710 переключается на частоте примерно 150 кГц и заряжает аккумулятор при токе 1,1 А (около 0,5 ° C для типичного никель-металлгидридного элемента AA). Схема получает больше тока в батарею (1,1 А), чем через порт USB (500 мА), потому что понижающий коэффициент преобразует 5 В при 500 мА в 1,5 В при 1,1 А. Следует отметить, что зарядка может происходить только с портами 500 мА или более, поскольку правильное завершение зарядки не может быть гарантировано при низких скоростях зарядки. Следовательно, зарядку не следует активировать, если перечисление определяет, что доступно только 100 мА.Система деактивирует зарядное устройство, отключив Q2, чтобы стабилизировать резистор таймера на уровне TMR. Еще одна особенно полезная особенность этого зарядного устройства заключается в том, что оно определяет полное сопротивление аккумулятора, чтобы определить, вставлен ли щелочной элемент или неисправный аккумулятор. В этом случае зарядка приостанавливается. Это позволяет конечным пользователям подключить щелочную батарею в экстренной ситуации и не беспокоиться о случайной зарядке. USB 3.0Спецификация USB 3.0 обеспечивает еще более высокую скорость передачи данных через USB. Характеристики питания в спецификации аналогичны USB 2.0, за исключением того, что «единичная нагрузка» повышается со 100 мА до 150 мА, а порт высокой мощности должен обеспечивать шесть, а не пять единичных нагрузок. Это означает, что порт USB 3.0 с низким энергопотреблением может обеспечивать ток 150 мА, а порт USB 3.0 высокой мощности — 900 мА.«Обман» — несоответствующая зарядка через USBКак и в случае любого стандарта, который используется для целей, не предназначенных изначально, производители иногда игнорировали часть требований USB 2.0, чтобы обеспечить хотя бы ограниченную форму зарядки. Одна из таких несоответствующих схем, используемых крупным производителем, заключалась в том, чтобы потреблять не более 100 мА при любых обстоятельствах, так что ни мощные, ни маломощные концентраторы не были перегружены.Обратной стороной ограничения тока до этого уровня было то, что время зарядки аккумулятора было долгим, но если устройство большую часть дня проводило в стыковке с USB-портом, этого могло быть достаточно. Помимо длительного времени зарядки, у этого подхода было еще одно ограничение: если в системе разряжена батарея, полная функциональность будет отложена до тех пор, пока батарея не достигнет достаточного уровня заряда.Другой аспект несоответствующей зарядки связан с обработкой приостановки USB. USB 2.0 требует, чтобы все устройства были приостановлены (менее 2.5 мА) после заданного периода бездействия шины. Поскольку когда это было написано, зарядка никогда не включалась, не предполагалось, что устройство продолжит заряжать аккумулятор в выключенном состоянии, но все еще подключено. Однако, поскольку большинство USB-хостов фактически не отключают питание, это нарушение спецификации редко препятствует зарядке. Более смелая несовместимая схема предполагает, что будет доступно 500 мА, и инструктирует пользователей подключаться только к портам с питанием и концентраторам, способным к 500 мА. Опять же, поскольку большинство портов USB не отключают питание, этот подход может работать в большинстве случаев.Когда такое устройство подключено к порту, который не может поддерживать ток 500 мА, предполагается, что порт отключится. Однако поведение USB-порта при перегрузке не всегда четко определено и может привести к перезагрузке или повреждению системы. К счастью, такого уровня отчаяния больше не требуется, поскольку зарядка аккумулятора теперь является активной частью спецификации USB. ЗаключениеЗарядка от USB может принимать разные формы, в зависимости от уникальных требований каждого USB-устройства. Спецификация зарядки аккумулятора USB .Версия 1.1 , наконец, добавляет столь необходимую единообразие к тому, что раньше было спонтанной зарядкой. Внедрение BC1.1 должно привести к снижению затрат для производителей и потребителей, а также к большей совместимости по мере появления стандартных адаптеров. Тем не менее, рекомендации USB касаются только того, как отводится питание от порта; они по-прежнему оставляют открытыми для интерпретации архитектуры управления питанием и особенности зарядки. Именно здесь становится важным широкий спектр зарядных устройств Maxim, поскольку они могут помочь ускорить разработку безопасных и надежных зарядных устройств практически для любого портативного устройства, подключенного через USB.Обсуждаемые зарядные устройства приведены в таблице . Это лишь малая часть того, что предлагает Максим. Чтобы узнать о других возможностях, посетите Управление батареями. Таблица 1. Типичные USB-зарядные устройства ¹Спецификации последовательной шины USB и зарядки можно найти по адресу: www.usb.org/developers/docs/. |
DIY солнечный сотовый телефон или зарядное устройство USB
Вот схема простого DIY-телефона на солнечных батареях или зарядного устройства USB.Эту схему зарядного устройства USB на солнечной батарее можно использовать для зарядки любого устройства, которое можно заряжать от USB-порта компьютера. Например, MP3-плееры, сотовый телефон, iphone и т. Д.В схеме используется солнечная панель от 7 до 7,2 вольт, один диод и четыре никель-металлгидридные аккумуляторные батареи на 1,25 вольт и 2000 мАч, а также гнездовой порт USB типа «B». Полностью заряженные батареи покажут 5 вольт на цифровом миллиметре, что является идеальным напряжением для зарядного устройства USB.
панель от 7 до 7,2 вольт, один диод и четыре никель-металлгидридные аккумуляторные батареи по 1 штуке.25 вольт и 2000 мАч, а также гнездовой порт USB типа «B». Полностью заряженные батареи покажут 5 вольт на цифровом миллиметре, что является идеальным напряжением для зарядного устройства USB.Как заряжать и использовать:
После завершения цепи проверьте напряжение ваших новых никель-металлгидридных батарей с помощью цифрового мультиметра. Производители часто заряжают новые батареи на 50 или 70 процентов. если ваши батареи не показывают 5 или 5,1 вольт, зарядите их в течение 3-4 часов, поместив солнечную панель под прямые солнечные лучи.Если ваши батареи полностью разряжены, заряжайте их 8 часов, если выходной ток вашей солнечной панели составляет 250 мА при прямом солнечном свете, или 10 часов, если выходной ток вашей солнечной панели составляет 200 мА при прямом солнечном свете.
После зарядки аккумуляторов при солнечном свете снова проверьте напряжение аккумуляторов с помощью мультиметра. Если ваши аккумуляторы показывают 5 или 5,1 вольт, тогда ваш телефон на солнечных батареях или зарядное устройство USB готов к зарядке ваших устройств. В следующий раз, когда вашим солнечным зарядным батареям потребуется зарядка, зарядите их всего за 3-4 часа цикла.
Важные инструкции:
Не заряжайте свои устройства одновременно с зарядкой батарей солнечного зарядного устройства USB. Сначала зарядите аккумуляторы зарядного устройства USB, затем уберите его с солнечного света, а затем подключите устройства для зарядки. Не заряжайте аккумуляторы более 8-10 часов.
Используйте солнечную панель, которая выдает 7 или 7,2 вольт и 200 или 250 мА при прямом солнечном свете.
Авторское право 2013 CircuitDiagram.Орг. Все права защищены .
.