Светодиодный индикатор на 220 вольт: Индикатор 220в на светодиоде

Содержание

Индикатор сети 220 вольт

В любой технике в качестве отображения режимов работы используют светодиоды. Причины очевидны – низкая стоимость, сверхмалое энергопотребление, высокая надёжность. Поскольку схемы индикаторов очень просты, нет необходимости в покупке фабричных изделий.

Из обилия схем, для изготовления указателя напряжения на светодиодах своими руками, можно подобрать наиболее оптимальный вариант. Индикатор можно собрать за пару минут из самых распространённых радиоэлементов.

Все подобные схемы по назначению делят на индикаторы напряжения и индикаторы тока.

Индикатор переменного напряжения 220 В

Рассмотрим первый, наиболее простой вариант индикатора сети на светодиоде. Его применяют в отвертках для нахождения фазы 220 В. Для реализации нам понадобится:

  • светодиод;
  • резистор;
  • диод.

Светодиод (HL) вы можете выбрать абсолютно любой. Характеристики диода (VD) должны быть ориентировочно такими: прямое напряжение, при прямом токе 10-100 мА – 1-1,1 В. Обратное напряжение 30-75 В. Резистор (R) должен иметь сопротивление не меньше 100 кОм, но и не больше 150 кОм, иначе просядет яркость свечения индикатора. Такое устройство можно самостоятельно выполнить в навесной форме, даже без использования печатной платы.

Схема примитивного индикатора тока будет выглядеть аналогичным образом, только необходимо использовать емкостное сопротивление.

Проверка постоянного напряжения

Нередко возникает необходимость прозвонить низковольтную цепь бытовых приборов, либо проверить целостность соединения, например, провод от наушников.

В качестве ограничителя тока можно использовать маломощную лампу накаливания либо резистор на 50-100 Ом. В зависимости от полярности подключения загорается соответствующий диод. Этот вариант подходит для цепей до 12В. Для более высокого напряжения потребуется увеличить сопротивления ограничивающего резистора.

Индикатор переменного и постоянного напряжения до 600 В

Следующий вариант представляет собой немного более сложную систему, из-за наличия в схеме кроме уже известных нам элементов, двух транзисторов и емкости. Но универсальность этого индикатора вас приятно удивит. Ему доступна безопасная проверка наличия напряжения от 5 до 600 В, как постоянного, так и переменного.

Основным элементом схемы индикатора напряжения выступает полевой транзистор (VT2). Пороговое значение напряжения, которое позволит сработать индикатору фиксируется разностью потенциалов затвор-исток, а максимально возможное напряжение определяет падение на сток-истоке. Он выполняет функции стабилизатора тока. Через биполярный транзистор (VT1) осуществляется обратная связь для поддержания заданного значения.

Принцип работы светодиодного индикатора заключается в следующем. При подаче на вход разности потенциалов, в контуре возникнет ток, значение которого определяется сопротивлением (R2) и напряжением перехода база-эмиттер биполярного транзистора (VT1). Для того чтобы слабенький светодиод загорелся, достаточно тока стабилизации 100 мкА. Для этого сопротивление (R2) должно быть 500-600 Ом, если напряжение база-эмиттер примерно 0,5 В. Конденсатор (С) необходим неполярный, емкостью 0,1 мкФ, служит он защитой светодиода от скачков тока. Резистор (R1) выбираем величиной 1 МОм, он исполняет роль нагрузки для биполярного транзистора (VT1). Функции диода (VD) в случае индикации постоянного напряжения – это проверка полюсов и защита. А для проверки переменного напряжения он играет роль выпрямителя, срезая отрицательную полуволну. Его обратное напряжение должно быть не меньше 600 В. Что касается светодиода (HL), то выбирайте сверхъяркий, для того, чтобы его свечение при минимальных токах было заметно.

Пробник электрика: принцип работы и изготовление

Простой определитель на двух светодиодах и с неоновой лампочкой, получивший среди электриков название «аркашка», несмотря на несложное устройство, позволяет эффективно определять наличие фазы, сопротивления в электроцепи, а также обнаруживать в схеме КЗ (короткое замыкание). Универсальный пробник для электрика в основном используется для:

  • Диагностики на обрыв катушек и реле.
  • Прозвонки моторов и дросселей.
  • Проверки выпрямительных диодов.
  • Определения выводов на трансформаторах с несколькими обмотками.

Это далеко не полный перечень задач, которые решают с помощью пробника. Но и перечисленного достаточно, чтобы понять, насколько полезно это устройство в работе электромонтера.

В качестве источника питания для этого устройства используется обычная батарейка с показателем напряжения 9 В. Когда щупы тестера замкнуты, величина потребляемого тока не превышает 110 мА. Если же щупы разомкнуты, то устройство не потребляет электроэнергию, поэтому ему не нужен ни переключатель режима диагностики, ни выключатель энергопитания.

Пробник способен выполнять свои функции в полной мере, пока напряжение на источнике питания не падает ниже 4 В. После этого его можно использовать в качестве указателя напряжения в цепях.

Во время прозвонки электрических цепей, показатель сопротивления которых составляет 0 – 150 Ом, загорается два светоизлучающих диода – желтого и красного цвета. Если показатель сопротивления составляет 151 Ом – 50 кОм, то светится только желтый диод. Когда на щупы прибора подается напряжение сети величиной от 220 В до 380 В, начинает светиться неоновая лампа, одновременно с этим наблюдается легкое мерцание LED-элементов.

Схема этого индикатора напряжения имеется в интернете, а также в специализированной литературе. Изготавливая такой пробник своими руками, его элементы устанавливают внутри корпуса, который изготовлен из изоляционного материала.

Зачастую для этих целей используется корпус от ЗУ любого мобильного телефона или планшетного компьютера. С передней части корпуса следует вывести штырь-щуп, с торцевой – качественно изолированный кабель, конец которого снабжен щупом или зажимом-«крокодильчиком».

Сборка простейшего пробника напряжения со светодиодным индикатором – на следующем видео:

Автомобильный индикатор напряжения

Среди областей, где применение индикатора напряжения на светодиодах имеет неоспоримую пользу, можно выделить эксплуатацию автомобильного аккумулятора. Для того чтобы аккумулятор служил долго, необходимо контролировать напряжение на его клеммах и поддерживать в заданных пределах.

Предлагаем вам обратить внимание на схему автомобильного индикатора напряжения на RGB-светодиоде, с помощью которой вы поймете, как изготовить устройство самостоятельно. RGB-светодиод отличается от обычного, наличием 3-х разноцветных кристаллов внутри своего корпуса. Данное свойство мы будем использовать для того, чтобы каждый цвет сигнализировал нам об уровне напряжения.

Схема состоит из девяти резисторов, трех стабилитронов, трех биполярных транзисторов и одного 3-цветного светодиода. Обратите внимание, какие элементы рекомендуется выбирать для реализации схемы.

  1. R1=1, R2=10, R3=10, R4=2.2, R5=10, R6=47, R7=2.2, R8=100, R9=100 (кОм).
  2. VD1=10, VD2=8.2, VD3=5.6 (В).
  3. VT – BC847C.
  4. HL – LED RGB.

Результат такой системы следующий. Светодиод загорается:

  • зеленым – напряжение 12-14 В;
  • синим – напряжение ниже 11,5 В;
  • красным – напряжение свыше 14,4 В.

Это происходит за счет правильно собранной схемы. С помощью потенциометра (R4) и стабилитрона (VD2) выставляется низший предел напряжения. Как только разность потенциалов между клеммами батареи становится меньше указанного значения – транзистор (VT2) закрывается, VT3 открывается, синий кристалл индуцирует. Если напряжение на клеммах находится в указанном диапазоне, то ток проходит через резисторы (R5,R9), стабилитрон (VD3), светодиод (HL), естественно, светит зеленым, транзистор (VT3) находится в закрытом состоянии, а второй (VT2) – в открытом. С помощью настройки переменного резистора (R2), превышение напряжения больше 14,4 В будет отображаться свечением светодиода красного цвета.

Устройства индикации со светодиодами

Индикатор напряжения на двухцветном светодиоде

Еще одна популярная схема индикации, это схема с использованием двухцветного светодиода для отображения степени заряда батареи или же сигнализации о включении или выключении лампы в другом помещении. Это может быть очень удобно, например, если выключатель света в подвале расположен до лестницы ведущей вниз (кстати, не забудьте прочитать интересную статью о том как сделать подсветку лестницы светодиодной лентой). До того как спуститься туда, вы зажигаете свет, и индикатор загорается красным, в выключенном состоянии вы видите зеленое свечение на клавише. В этом случае вам не придется заходить в темную комнату и уже там нащупывать выключатель. Когда вы покинули подвал, вы по цвету светодиода знаете, горит свет в подвале или нет. Одновременно с этим, вы контролируете исправность лампочки, потому что в случае ее перегорания, красным светодиод светиться не будет. Вот схема индикатора напряжения на двухцветном светодиоде.

В заключении можно сказать, что это лишь основные возможные схемы использования светодиодов для индикации напряжения. Все они несложные, и в своей реализации под силу даже дилетанту. В них не использовалось никаких дорогостоящих интегральных микросхем и тому подобное. Рекомендуем обзавестись таким устройством всем любителям и профессионалам электрикам, чтобы никогда не подвергать свое здоровье опасности, приступая к ремонтным работам, не проверив наличие напряжения.

Индикатор сети 220 вольт

Это самый простой и самый надежный индикатор сети который мне приходилось делать.

Раньше, чтобы вставить индикатор сети 220 в какой-либо прибор надо было мотать отдельную катушку на трансформатор или сооружать целую схему из диодов и конденсаторов, пока мне не попалась эта супер простая схема. На фото видно, что светодиод включён в розетку через резистор — краткость сестра таланта

Индикаторы сети часто используют для подсветки комнатных выключателей освещения в темное время суток. В качестве индикатора использовали неоновую лампу и резистор, эти лампы громоздки и к тому же мигают и иногда перегорают. Теперь вместо неоновых ламп можно использовать светодиод один или несколько. Я дома сделал подсветку выключателей с помощью четырёх светодиодов и одного резистора, все детали легко уместились по периметру крышки выключателя.

Схема устройства очень проста, полярность светодиода можно не учитывать. Постоянный резистор сопротивлением 100 кОм и мощностью не менее 0.5 Вт.

В своей схеме на фото я использовал резистор мощностью 2 Вт. потому, как он просто оказался под рукой. А вообще у меня есть целая гирлянда из 20 светодиодов и одного резистора 0.5 Вт. всё это работает от сети 220 в. и при этом резистор ни чуть не греется.


Как быть с пульсациями?

В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. То есть он будет мерцать с частой 50 Гц или 50 раз в секунду, причём размах пульсаций будет равен 100% (10 мс горит, 10 мс не горит и так далее). Это будет заметно глазу.

К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т.п., неизбежно будет возникать стробоскопический эффект. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы.

Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя (диодного моста):

Обратите внимание, что по сравнению со схемой #2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов.

К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода. Обратное напряжение на каждом из диодов будет совсем ничтожным.

Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй — во время отрицательной.

Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода (несколько вольт максимум), поэтому каждый из светодиодов будет надежно защищен от пробоя.

Светодиоды следует разместить как можно ближе друг к другу. В идеале — попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы (хотя я таких ни разу не видел).

Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. Для них самое главное — это максимально заметная разница между включенным и выключенным состоянием (индикация вкл/выкл, воспроизведение/запись, заряд/разряд, норма/авария и т.п.)

А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм.

Какие пульсации считаются допустимыми?

Все зависит от частоты: чем она ниже, тем заметнее пульсации. На частотах выше 300 Гц пульсации становятся совершенно невидимыми и вообще никак не нормируются, то есть даже 100%-ные считаются нормой.

Не смотря на то, что пульсации освещенности на частотах 60-80 Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли.

Для предотвращения вышеперечисленных последствий, международный стандарт IEEE 1789-2015 рекомендует максимальный уровень пульсаций яркости для частоты 100 Гц — 8% (гарантированно безопасный уровень — 3%). Для частоты 50 Гц — это будут 1.25% и 0.5% соответственно. Но это для перфекционистов.

На самом деле, для того, чтобы пульсации яркости светодиода перестали хоть как-то досаждать, достаточно, чтобы они не превышали 15-20%. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался. Да и наш российский СНиП 23-05-95 допускает мерцание света в 20% (и только для особо кропотливых и ответственных работ требование повышено до 10%).

В соответствии с ГОСТ 33393-2015 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности» для оценки величины пульсаций вводится специальный показатель — коэффициент пульсаций (Кп).

Коэфф. пульсаций в общем рассчитывается по сложной формуле с применением интегральной функции, но для гармонических колебаний формула упрощается до следующей:

Кп = (Еmax — Emin) / (Emax + Emin) ⋅ 100%,

где Емах — максимальное значение освещенности (амплитудное), а Емин — минимальное.

Мы будем использовать эту формулу для расчета емкости сглаживающего конденсатора.

Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа:

Как уменьшить пульсации?

Посмотрим, как включить светодиод в сеть 220 вольт, чтобы снизить пульсации. Для этого проще всего подпаять параллельно светодиоду накопительный (сглаживающий) конденсатор:

Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей.

Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора:

А во-вторых, сделать вид, что яркость светодиода (а, следовательно, и освещенность) имеет линейную зависимость от тока.

Давайте попробуем приблизительно рассчитать емкость конденсатора на конкретном примере.

Расчет емкости сглаживающего конденсатора

Допустим, мы хотим получить коэфф. пульсаций 2.5% при токе через светодиод 20 мА. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В. Частота сети, как обычно, 50 Гц.

Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе:

Кп = (Umax — Umin) / (Umax + Umin) ⋅ 100%

Подставляем исходные данные и вычисляем Umin:

2.5% = (2В — Umin) / (2В + Umin) 100% => Umin = 1.9В

Период колебаний напряжения в сети равен 0.02 с (1/50).

Таким образом, осциллограмма напряжения на конденсаторе (а значит и на нашем упрощенном светодиоде) будет выглядеть примерно вот так:

Вспоминаем тригонометрию и считаем время заряда конденсатора (для простоты не будем учитывать сопротивление балластного резистора):

tзар = arccos(Umin/Umax) / 2πf = arccos(1.9/2) / (23.141550) = 0.0010108 с

Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, т.к. у нас используется двухполупериодный выпрямитель:

tразр = Т — tзар = 0.02/2 — 0.0010108 = 0.008989 с

Осталось вычислить емкость:

C = ILED dt/dU = 0.02 0.008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ)

На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Хотя, если стоит задача получить пульсации в 10%, то нужно всего 440 мкФ.

Вариант №3 » альтернативная схема подключения светодиода к 220 с защитой от обратного напряжения.

Эта схема похожа не предидущую. Она также имеет защиту от чрезмерного напряжения обратной полуволны переменного напряжения. Если в первой схеме защитный диод стоял последовательно со светодиодом, то в данной схеме диод подключен параллельно, и имеет уже обратное включение относительно светодиоду. При одной полуволне переменного напряжения будет гореть индикаторный светодиод (на котором будет падение напряжения до рабочей величины светодиода), а при обратной полуволне диод будет находится в открытом состоянии и на нем также будет падение напряжения до величины (порядка 1 вольта) недостаточной для пробоя светодиода. Как и в предыдущей схеме недостатками будет значительный нагрев резистора и видимое мерцание светодиода, вдобавок эта схема будет больше потреблять электроэнергии из-за прямого включения диода.

Хотя вместо обычного диода можно поставить еще один светодиод.

Тогда в одну полуволну будет гореть один светодиод, ну а в обратную второй. Хотя в этом случае и будут светодиоды обезопасены от высокого обратного напряжения, но гореть каждый из них будет все равно с частотой 25 герц (будут оба мерцать).

Благодаря таким своим свойствам как: низкое энергопотребление, малые габариты и простота необходимых для работы вспомогательных цепей, светодиоды (имеются ввиду светодиоды видимого диапазона длин волн) получили очень широкое распространение в радиоэлектронной аппаратуре самого разного назначения. Используются они в первую очередь как универсальные устройства индикации режимов работы или устройства аварийной индикации. Реже (обычно только в радиолюбительской практике) встречаются светодиодные автоматы световых эффектов и светодиодные информационные панели (табло).

Для нормального функционирования любого светодиода достаточно обеспечить протекание через него в прямом направлении тока не превышающего максимально допустимый для применяемого прибора. Если величина этого тока не будет слишком низкой, светодиод будет светиться. Для управления состоянием светодиода необходимо обеспечить регулировку (коммутацию) в цепи протекания тока. Это можно сделать с помощью типовых последовательных или параллельных схем коммутации (на транзисторах, диодах и т.п.). Примеры таких схем приведены на рис. 3.7-1, 3.7-2.

Рис. 3.7-1. Способы управления состоянием светодиода с помощью транзисторных ключей

Рис. 3.7-2. Способы управления состоянием светодиода от цифровых микросхем ТТЛ

Примером применения светодиодов в цепях сигнализации могут служить следующие две простые схемы индикаторов сетевого напряжения (рис. 3.7-3, 3.7-4).

Схема на рис. 3.7-3 предназначена для индикации наличия в бытовой сети переменного напряжения. Ранее в подобных устройствах обычно использовались малогабаритные неоновые лампочки. Но светодиоды в этом отношении гораздо более практичны и технологичны. В данной схеме ток через светодиод проходит только во время одной полуволны входного переменного напряжения (во время второй полуволны светодиод шунтируется работающим в прямом направлении стабилитроном). Этого оказывается достаточно для нормального восприятия человеческим глазом света от светодиода как непрерывного излучения. Напряжение стабилизации стабилитрона выбирается несколько большим, чем прямое падение напряжения на используемом светодиоде. Емкость конденсатора \(C1\) зависит от требуемого прямого тока через светодиод.

Рис. 3.7-3. Индикатор наличия сетевого напряжения

На трех светодиодах выполнено устройство, информирующее об отклонениях сетевого напряжения от номинального значения (рис. 3.7-4). Здесь также свечение светодиодов происходит только во время одного полупериода входного напряжения. Коммутация светодиодов осуществляется через включенные последовательно с ними динисторы. Светодиод \(HL1\) горит всегда, когда сетевое напряжение присутствует, два пороговых устройства на динисторах и делителях напряжения на резисторах обеспечивают включение двух других светодиодов только при достижении входным напряжением установленного порога срабатывания. Если их отрегулировать так, чтобы при нормальном напряжении в сети горели светодиоды \(HL1\), \(HL2\), то при повышенном напряжении будет загораться и светодиод \(HL3\), а при понижении напряжения в сети будет гаснуть светодиод \(HL2\). Входной ограничитель напряжения на \(VD1\), \(VD2\) предотвращает выход устройства из строя при значительном превышении нормального значения напряжения в сети.

Рис. 3.7-4. Индикатор уровня сетевого напряжения

Схема на рис. 3.7-5 предназначена для сигнализации о перегорании предохранителя. Если предохранитель \(FU1\) цел, падение напряжения на нем очень мало, и светодиод не светится. При перегорании предохранителя напряжение питания через незначительное сопротивление нагрузки прикладывается к цепи индикатора, и светодиод загорается. Резистор \(R1\) выбирается из условия, что через светодиод будет протекать требуемый ток. Не все виды нагрузок могут подойти для данной схемы.

Рис. 3.7-5. Светодиодный индикатор перегорания предохранителя

Устройство индикации перегрузки стабилизатора напряжения представлено на рис. 3.7‑6. В нормальном режиме работы стабилизатора напряжение на базе транзистора \(VT1\) стабилизировано стабилитроном \(VD1\) и примерно на 1 В больше, чем на эмиттере, поэтому транзистор закрыт и горит сигнальный светодиод \(HL1\). При перегрузке стабилизатора выходное напряжение уменьшается, стабилитрон выходит из режима стабилизации и напряжение на базе \(VT1\) уменьшается. Поэтому транзистор открывается. Поскольку прямое напряжение на включенном светодиоде \(HL1\) больше, чем на \(HL2\) и транзисторе, в момент открывания транзистора светодиод \(HL1\) гаснет, а \( HL2\) — включается. Прямое напряжение на зеленом светодиоде \(HL1\) приблизительно на 0,5 В больше, чем на красном светодиоде \(HL2\), поэтому максимальное напряжение насыщения коллектор-эмиттер транзистора \(VT1\) должно быть меньше 0,5 В. Резистор R1 ограничивает ток через светодиоды, а резистор \(R2\) определяет ток через стабилитрон \(VD1\).

Рис. 3.7-6. Индикатор состояния стабилизатора

Схема простого пробника, позволяющего определять характер (постоянное или переменное) и полярность напряжения в диапазоне 3…30 В для постоянного и 2,1…21 В для действующего значения переменного напряжения приведена на рис. 3.7-7. Основу пробника составляет стабилизатор тока на двух полевых транзисторах, нагруженный на встречно-параллельно включенные светодиоды. Если на клемму \(XS1\) подается положительный потенциал, а на \(XS2\) — отрицательный, то загорается светодиод HL2, если наоборот — светодиод \(HL1\). Когда на входе переменное напряжение, зажигаются оба светодиода. Если ни один из светодиодов не горит, это означает, что входное напряжение менее 2 В. Потребляемый устройством ток не превышает 6 мА.

Рис. 3.7-7. Простой пробник-индикатор характера и полярности напряжения

На рис. 3.7-8 дана схема еще одного простого пробника со светодиодной индикацией. Он используется для проверки логического уровня в цифровых цепях, построенных на микросхемах ТТЛ. В исходном состоянии, когда к клемме \(XS1\) ничего не подключено, светодиод \(HL1\) светится слабо. Его режим задается установкой соответствующего напряжения смещения на базе транзистора \(VT1\). Если на вход будет подано напряжение низкого уровня, транзистор закроется, и светодиод погаснет. При наличии на входе напряжения высокого уровня транзистор открывается, яркость свечения светодиода становится максимальной (ток ограничен резистором \(R3\)). При проверке импульсных сигналов яркость HL1 возрастает, если в последовательности сигналов преобладает напряжение высокого уровня, и убывает, если преобладает напряжение низкого уровня. Питание пробника можно осуществлять как от источника питания проверяемого устройства, так и от отдельного источника питания.

Рис. 3.7-8. Пробник-индикатор логического уровня ТТЛ

Более совершенный пробник (рис. 3.7-9) содержит два светодиода и позволяет не только оценивать логические уровни, но и проверять наличие импульсов, оценивать их скважность и определять промежуточное состояние между напряжениями высокого и низкого уровней. Пробник состоит из усилителя на транзисторе \(VT1\), повышающего его входное сопротивление, и двух ключей на транзисторах \(VT2\), \(VT3\). Первый ключ управляет светодиодом \(HL1\), имеющим зеленый цвет свечения, второй — светодиодом \(HL2\), имеющим красный цвет свечения. При входном напряжении 0,4…2,4 В (промежуточное состояние) транзистор \(VT2\) открыт, светодиод \(HL1\) выключен. В то же время закрыт и транзистор \(VT3\), поскольку падение напряжения на резисторе \(R3\) недостаточно для полного открывания диода \(VD1\) и создания требуемого смещения на базе транзистора. Поэтому \(HL2\) тоже не светится. Когда входное напряжение становится меньше 0,4 В, транзистор \(VT2\) закрывается, загорается светодиод \(HL1\), индицируя наличие логического нуля. При напряжении на входе более 2,4 В открывается транзистор \(VT3\), включается светодиод \(HL2\), индицируя наличие логической единицы. Если на вход пробника подано импульсное напряжение, скважность импульсов можно оценить по яркости свечения того или иного светодиода.

Рис. 3.7-9. Улучшенный вариант пробника-индикатора логического уровня ТТЛ

Еще один вариант пробника представлен на рис. 3.7-10. Если клемма \(XS1\) никуда не подсоединена, все транзисторы закрыты, светодиоды \(HL1\) и \(HL2\) не работают. На эмиттер транзистора \(VT2\) с делителя \(R2-R4\) поступает напряжение около 1,8 В, на базу \(VT1\) — около 1,2 В. Если на вход пробника подать напряжение выше 2,5 В, напряжение смещения база-эмиттер транзистора \(VT2\) превысит 0,7 В, он откроется и своим коллекторным током откроет транзистор \(VT3\). Светодиод \(HL1\) включится, индицируя состояние логической единицы. Ток коллектора \(VT2\), примерно равный току его эмиттера, ограничивается резисторами \(R3\) и \(R4\). При превышении напряжением на входе уровня 4,6 В (что возможно при проверке выходов схем с открытым коллектором) транзистор \(VT2\) входит в режим насыщения, и если не ограничить ток базы \(VT2\) резистором \(R1\), транзистор \(VT3\) закроется и светодиод \(HL1\) выключится. При уменьшении напряжения на входе ниже 0,5 В открывается транзистор \(VT1\), его коллекторный ток открывает транзистор \(VT4\), включается \(HL2\), индицируя состояние логического нуля. С помощью резистора \(R6\) регулируется яркость свечения светодиодов. Подбором резисторов \(R2\) и \(R4\) можно установить необходимые пороги включения светодиодов.

Рис. 3.7-10. Пробник-индикатор логического уровня на четырех транзисторах

Для индикации точной настройки в радиоприемниках часто применяются простые устройства, содержащие один, а иногда и несколько, светодиодов разного цвета свечения.

Схема экономичного светодиодного индикатор настройки для приемника с питанием от батареек приведена на рис. 3.7-11. Ток потребления устройства не превышает 0,6 мА в отсутствие сигнала, а при точной настройке составляет 1 мА. Высокая экономичность достигается за счет питания светодиода импульсным напряжением (т.е. светодиод не светится непрерывно, а часто мигает, однако из-за инерционности зрения такое мерцание не заметно на глаз). Генератор импульсов выполнен на однопереходном транзисторе \(VT3\). Генератор вырабатывает импульсы длительностью около 20 мс, следующие с частотой 15 Гц. Эти импульсы управляют работой ключа на транзисторе \(DA1.2\) (один из транзисторов микросборки \(DA1\)). Однако в отсутствие сигнала светодиод не включается, так как при этом сопротивление участка эмиттер-коллектор транзистора \(VT2\) велико. При точной настройке транзистор \(VT1\), а за ним и \(DA1.1\) и \(VT2\) откроются настолько, что в моменты, когда открыт транзистор \(DA1.2\), будет загораться светодиод \(HL1\). Чтобы уменьшить потребляемый ток, эмиттерная цепь транзистора \(DA1.1\) подключена к коллектору транзистора \(DA1.2\), благодаря чему последние два каскада (\(DA1.2\), \(VT2\)) также работают в ключевом режиме. При необходимости подбором резистора \(R4\) можно добиться слабого начального свечения светодиода \(HL1\). В этом случае он выполняет и функцию индикатора включения приемника.

Рис. 3.7-11. Экономичный светодиодный индикатор настройки

Экономичные светодиодные индикаторы могут понадобиться не только в радиоприемниках с батарейным питанием, но и во множестве других носимых устройств. На рис. 3.7‑12, 3.7‑13, 3.7‑14 приведено несколько схем таких индикаторов. Все они работают по уже описанному импульсному принципу и по сути представляют собой экономичные генераторы импульсов, нагруженные на светодиод. Частота генерации в таких схемах выбирается достаточно низкой, фактически на границе зрительного восприятия, когда мигания светодиода начинают отчетливо восприниматься человеческим глазом.

Рис. 3.7-12. Экономичный светодиодный индикатор на однопереходном транзисторе

Рис. 3.7-13. Экономичный светодиодный индикатор на однопереходном и биполярном транзисторах

Рис. 3.7-14. Экономичный светодиодный индикатор на двух биполярных транзисторах

В УКВ ЧМ приемниках для индикации настройки можно применять три светодиода. Для управления таким индикатором используется сигнал с выхода ЧМ детектора, в котором постоянная составляющая положительна при незначительной расстройке в одну сторону от частоты станции и отрицательна при незначительной расстройке в другую сторону. На рис. 3.7-15 приведена схема простого индикатора настройки, работающего по описанному принципу. Если напряжение на входе индикатора близко к нулю, то все транзисторы закрыты и светодиоды \(HL1\) и \(HL2\) не излучают, а через \(HL3\) при этом протекает ток, определяемый напряжением питания и сопротивлением резисторов \(R4\) и \(R5\). При указанных на схеме номиналах он примерно равен 20 мА. Как только на входе индикатора появляется напряжение, превышающее 0,5 В, транзистор \(VT1\) открывается и включается светодиод \(HL1\). Одновременно открывается транзистор \(VT3\), он шунтирует светодиод \(HL3\), и тот гаснет. Если напряжение на входе отрицательное, но по абсолютному значению больше 0,5 В, то включается светодиод \(HL2\), а \(HL3\) выключается.

Рис. 3.7-15. Индикатор настройки для УКВ-ЧМ приемника на трех светодиодах

Схема еще одного варианта простого индикатора точной настройки для УКВ ЧМ приемника представлена на рис. 3.7-16.

Рис. 3.7-16. Индикатор настройки для УКВ ЧМ приемника (вариант 2)

В магнитофонах, низкочастотных усилителях, эквалайзерах и т.п. находят применение светодиодные индикаторы уровня сигнала. Число индицируемых такими индикаторами уровней может варьироваться от одного-двух (т.е. контроль типа “сигнал есть – сигнала нет”) до нескольких десятков.

Схема двухуровнего двухканального индикатора уровня сигнала приведена на рис. 3.7‑17. Каждая из ячеек \(A1\), \(A2\) выполнена на двух транзисторах разной структуры. При отсутствии сигнала на входе оба транзистора ячеек закрыты, поэтому светодиоды \(HL1\), \(HL2\) не горят. В таком состоянии устройство находится до тех пор, пока амплитуда положительной полуволны контролируемого сигнала не превысит примерно на 0,6 В постоянное напряжение на эмиттере транзистора \(VT1\) в ячейке \(A1\), заданное делителем \(R2\), \(R3\). Как только это произойдет, транзистор \(VT1\) начнет открываться, в цепи коллектора появится ток, а поскольку он в то же время является и током эмиттерного перехода транзистора \(VT2\), транзистор \(VT2\) тоже начнет открываться. Возрастающее падение напряжения на резисторе \(R6\) и светодиоде \(HL1\) приведет к увеличению тока базы транзистора \(VT1\), и он откроется еще больше. В результате очень скоро оба транзистора окажутся полностью открыты и светодиод \(HL1\) включится. При дальнейшем росте амплитуды входного сигнала аналогичный процесс протекает в ячейке \(A2\), после чего загорается светодиод \(HL2\). С уменьшением уровня сигнала ниже установленных порогов срабатывания ячейки возвращаются в исходное состояние, светодиоды гаснут (сначала \(HL2\), затем \(HL1\)). Гистерезис не превышает 0,1 В. При указанных в схеме значениях сопротивлений, ячейка \(A1\) срабатывает при амплитуде входного сигнала примерно 1,4 В, ячейка \(A2\) — 2 В.

Рис. 3.7-17. Двухканальный индикатор уровня сигнала

Многоканальный индикатор уровня на логических элементах представлен на рис. 3.7‑18. Такой индикатор можно применять, например, в усилителе НЧ (организовав из ряда светодиодов индикатора световую шкалу). Диапазон входного напряжения этого устройства может колебаться от 0,3 до 20 В. Для управления каждым светодиодом используется \(RS\)-триггер, собранный на элементах 2И‑НЕ. Пороги срабатывания этих триггеров задаются резисторами \(R2\), \(R4-R16\). На линию “сброс” периодически должен подаваться импульс гашения светодиодов (разумным будет подавать такой импульс с периодичностью 0,2…0,5 с).

Рис. 3.7-18. Многоканальный индикатор уровня НЧ сигнала на \(RS\)-триггерах

Приведенные выше схемы индикаторов уровня обеспечивали резкое срабатывание каждого канала индикации (т.е. светодиод в них либо светится с заданным режимом яркости, либо погашен). В шкальных индикаторах (линия последовательно срабатывающих светодиодов) такой режим работы совсем не обязателен. Поэтому для этих устройств могут использоваться более простые схемы, в которых управление светодиодами осуществляется не отдельно по каждому каналу, а совместно. Последовательное включение ряда светодиодов при увеличении уровня входного сигнала достигается за счет последовательного включения делителей напряжения (на резисторах или других элементах). В таких схемах происходит постепенное увеличение яркости свечения светодиодов при нарастании уровня входного сигнала. При этом для каждого светодиода устанавливается свой токовый режим, такой, что свечение указанного светодиода визуально наблюдается только при достижении входным сигналом соответствующего уровня (при дальнейшем увеличении уровня входного сигнала светодиод горит все более ярко, но до определенного предела). Простейший вариант индикатора, работающего по описанному принципу приведен на рис. 3.7-19.

Рис. 3.7-19. Простой индикатор уровня сигнала НЧ

При необходимости увеличения количества уровней индикации и повышения линейности индикатора схема включения светодиодов должна быть несколько изменена. Подойдет, например, индикатор по схеме рис. 3.7-20. В нем, кроме прочего, имеется и достаточно чувствительный входной усилитель, обеспечивающий работу как от источника постоянного напряжения, так и от сигнала звуковой частоты (при этом индикатор управляется только положительными полуволнами входного переменного напряжения).

Рис. 3.7-20. Линейный индикатор уровня со светодиодной шкалой

Как определить напряжение питания светодиодов? Ответ

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии. Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?

Теоретический метод

Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр. Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора. Существуют и другие способы тестирования излучающих диодов, о которых подробно написано в данной статье.

Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе. В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.

С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но ,с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов. Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта.

В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт. Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.

Узнать все технические характеристики светодиода можно из интернета. Для этого нужно скачать datasheet на схожую по внешним признакам модель, обязательно такого же цвета свечения, сверить паспортные размеры с действительными и выписать номинальные значения тока и падения напряжения. Следует учитывать, что данная методика весьма приблизительна, так как в одинаковом корпусе могут быть изготовлены светодиоды на 20 мА и на 150 мА с разбросом напряжения до 0,5 вольт.

Практический метод

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.

Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет. В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору.

Текущие показания на экране и будут номинальным прямым напряжением светодиода. Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно воспользоваться «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Индикатор светодиодный скл-12, 220 вольт | Festima.Ru

Дaнныe модули пpименяются сoвместно с мини кoмпьютеpами (микроконтроллeрами) Arduino, Raspberry, miniРС, SТМ, SТС, PIC и дp. в прoектах электpонщиков и радиoлюбителей, a также сaмocтоятeльно. Чтoбы быстpo нaйти нужный мoдуль нaжмите oдноврeменнo кнoпки СTRL+F на клавиaтуре. Аccоpтимент мoдулeй: Мoдуль пaмяти SD 60,00р Модуль часов DS3231 I2С 120,00р Модуль часов реального времени DS3231 2.3-5.5V для Rаsрbеrry Рi, Оrаngе Рi и др. 100,00р Модуль семисегментного индикатора ТМ1637 4 Digits Disрlаy 0,36′ красный 80,00р Модуль камеры оv7670 420,00р Модуль весов ХD-19 НХ711 70,00р Модуль активного зуммера 40,00р Модуль памяти miсrоSD 60,00р Модуль весов ХFW-НХ711 80,00р Модуль светодиодной матрицы LЕD 8х8 на МАХ7219 5V 150,00р Модуль светодиодной матрицы 4Х LЕD 8х8 на МАХ7219 5V 450,00р Модуль усилителя звука ТDА2030А 1*18W 90,00р Модуль усилителя звука РАМ8403 v1 2*3W 30,00р Модуль усилителя звука РАМ8403 v2 2*3W 40,00р Модуль усилителя звука РАМ8610 2х15W 100,00р Модуль усилителя звука ТDА7297 2х15W 270,00р Модуль усилителя звука ТDА7293 1х100W АС12-32V 430,00р Модуль усилителя звука ТРА3116D2 2х50W DС5-24V 460,00р Модуль энкодера Кеyеs 360 5V с кнопкой 50,00р Модуль клавиатуры сенсорной 16-клавишной ХD-62В на ТТР229 130,00р Модуль клавиатуры мембранной 16-клавишной 60,00р Модуль клавиатуры кнопочной 16-клавишной 60,00р Модуль выключателя сенсорного на ТТР223 20,00р Модуль джойстика Аrduinо РS2 70,00р МР3 и FМ Модуль МР3 плеера с ИК пультом SFТ-8030 USВ DС6-12V 280,00р Модуль МР3 плеера (декодера) 140,00р Модуль МР3 плеера GРD2856С 3,3 -5V 2W 80,00р Модуль МР3 плеера DFРlаyеr Мini 170,00р Модуль МР3 плеера с ИК пультом SFТ-8040 miсrоSD 12V 270,00р Модуль FМ радио RDА5807М RRD102V2.0 RDS I2С 50,00р Модуль МР3 плеера ZТV-М01ВТ Вluеtооth АUХ FМ 7-12V с ИК пультом 410,00р Модуль конвертера USВ-ТТL РL2303 60,00р Модуль конвертера USВ-ТТL СР2102 190,00р Модуль LСD I2С 60,00р Модуль конвертера МАХ485 RS485 на ТТL 40,00р Модуль конвертера RS232 tо ТТL МАХ232 МСU mini 25,00р Модуль конвертера USВ-ТТL СР2102 RЕD 130,00р Модуль USВАSР ISР программатор для АVR 150,00р Модуль конвертера USВ-ТТL СР2102 miсrоUSВ DТR 130,00р Модуль конвертера USВ tо RS485 90,00р Программатор SТ-Link stlink V2 для SТМ8 SТМ32 230,00р Модуль Еthеrnеt на ЕNС28J60 240,00р Модуль лазера 5V точка 25,00р Модуль лазера 3V точка 20,00р Модуль лазера 9mm 5mW 3V линия 100,00р Модуль лазера 9mm 5mW 3V крест 100,00р Ассортимент, наличие и цены могут немного отличатся, уточняйте по телефону (перезвоню по России). Отправка в регионы СДЭК, Боксберри Забирать самовывозом: г. Уфа ул. Ст. Кувыкина 7

Комьютерные аксессуары и комплектующие

Как подключить диоды к 220в

Без светодиодов трудно обойтись при проектировании электронной аппаратуры, а также при изготовлении экономичных осветительных приборов. Их надежность, простота монтажа и относительная дешевизна привлекают внимание разработчиков бытовых и промышленных светильников. Поэтому многих пользователей интересуют схемные решения по включению светодиода, предполагающие прямую подачу на него фазного напряжения. Неспециалистам в области электроники и электрики полезно будет узнать, как подключить светодиод к 220В.

Технические особенности диода

По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт. Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал. В противном случае приходится применять особые меры защиты от опасных обратных напряжений.

Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы. Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера. В этом случае важно уметь включать светодиоды в 220 В.

Полюса светодиода

Чтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).

Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:

  • визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
  • с помощью мультиметра в режиме «Проверка диодов»;
  • посредством блока питания с постоянным выходным напряжением.

Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.

При проверке от источника питания на 12 Вольт его плюс следует соединить с одним концом светодиода через ограничивающий резистор 1 кОм. Если диод загорается, его анод находится со стороны плюса блока питания, а если нет – с другого конца.

Способы подключения

Простейший подход к решению проблемы недопустимого для диода обратного напряжения – установка последовательно с ним дополнительного резистора, который способен ограничить 220 Вольт. Этот элемент получил название гасящего, так как он «рассеивает» на себе излишки мощности, оставляя светодиоду необходимые для его работы 12-24 Вольта.

Последовательная установка ограничивающего резистора также решает проблему обратного напряжения на переходе диода, которое снижается до тех же величин. В качестве модификации последовательного включения с ограничением напряжения рассматривается смешанная или комбинированная схема подключения светодиодов в 220 В. В ней на один резистор последовательный резистор приходится несколько параллельно соединенных диодов.

Подключение светодиода можно организовать по схеме, в которой вместо резистора используется обычный диод, имеющий высокое напряжение обратного пробоя (желательно – до 400 Вольт и более). Для этих целей удобнее всего взять типовое изделие марки 1N4007 с заявленным в характеристиках показателем до 1000 Вольт. При его установке в последовательную цепочку (при изготовлении гирлянды, например), обратная часть волны выпрямляется полупроводниковым диодом. Он в этом случае выполняет функцию шунта, защищающего чип светового элемента от пробоя.

Шунтирование светодиода обычным диодом (встречно-параллельное подключение)

Другой распространенный вариант «нейтрализации» обратной полуволны состоит в использовании совместно с гасящим резистором еще одного светодиода, включаемого параллельно и навстречу первому элементу. В этой схеме обратное напряжение «замыкается» через параллельно подключенный диод и ограничивается дополнительным сопротивлением, включенным последовательно.

Такое соединение двух светодиодов напоминает предыдущий вариант, но с одним отличием. Каждый из них работает со «своей» частью синусоиды, обеспечивая другому элементу защиту от пробоя.

Существенный недостаток схемы подключения через гасящий резистор – значительная величина непроизводительно расходуемой мощности, выделяемой на нем вхолостую.

Подтверждением этому является следующий пример. Пусть используется гасящий резистор номиналом 24 кОм и светодиод с рабочим током 9 мА. Рассеиваемая на сопротивлении мощность будет равна 9х9х24=1944 мВт (после округления – порядка 2-х Ватт). Чтобы резистор работал в оптимальном режиме, он выбирается со значением P не менее 3 Вт. На самом светодиоде расходуется совсем ничтожная часть энергии.

С другой стороны, при использовании нескольких последовательно подключенных LED элементов ставить гасящий резистор из соображений оптимального режима их свечения нецелесообразно. Если выбрать очень маленькое по номиналу сопротивление, оно быстро сгорит из-за большого тока и значительной рассеиваемой мощности. Поэтому функцию токоограничивающего элемента в цепи переменного тока естественнее выполнять конденсатору, на котором энергия не теряется.

Ограничение с помощью конденсатора

Простейшая схема подключения светодиодов через ограничительный конденсатор C характеризуется следующими особенностями:

  • предусматриваются цепочки заряда и разряда, обеспечивающие режимы работы реактивного элемента;
  • потребуется еще один светодиод, необходимый для защиты основного от обратного напряжения;
  • для расчета емкости конденсатора используется полученная опытным путем формула, в которую подставляются конкретные цифры.

Для вычисления значения номинала C нужно умножить силу тока в цепи на выведенный эмпирически путем коэффициент 4,45. После этого следует разделить полученное произведение на разницу между предельным напряжением (310 Вольт) и его падением на светодиоде.

В качестве примера рассмотрим подключение конденсатора к RGB или обычному LED-диоду с падением напряжения на его переходе, равным 3 Вольта и током через него в 9 мА. Согласно рассмотренной формуле его емкость составит 0,13 мкФ. Для введения поправки на ее точное значение следует учитывать, что на величину этого параметра в большей мере влияет токовая составляющая.

Выеденная опытным путем эмпирическая формула действительна лишь для расчета емкостей и параметров светодиодов на 220 В., установленных в сетях частотой 50 Гц. В других частотных диапазонах питающих напряжений (в преобразователях, например), коэффициент 4,45 нуждается в перерасчете.

Нюансы подключения к сети 220 Вольт

При использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.

Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние.

Значение сопротивления подбирается по методикам, описанным ранее.

Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.

Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.

Схема лед драйвера на 220 вольт

Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня. Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту). В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.

Вариант драйвера без стабилизатора тока

При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:

  • при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
  • в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
  • при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.

При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.

Безопасность при подключении

При работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:

  • предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
  • если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
  • не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.

Подключить светодиодные элементы на 220 Вольт удается лишь с помощью специальных элементов, вводимых в схему дополнительно. В этом случае можно обойтись без понижающего трансформатора и блока питания, традиционно используемых для подключения низковольтных осветителей. Основная задача добавочных элементов в схеме подключения светодиода в 220В – ограничить и выпрямить ток через него, а также защитить полупроводниковый переход от обратной полуволны.

Источник: strojdvor.ru

Подключение светодиода к сети 220в

Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.

Основы подключения к 220 В

В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:

То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.

В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.

Способы подключения светодиода к сети 220 В

Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.

Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.

Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).

Рассмотрим схему подключения более подробно.

В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.

Такой вариант подключения наглядно показан в этом ролике:

Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.

Шунтирование светодиода обычным диодом.

Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.

Встречно-параллельное подключение двух светодиодов:

Схема подключения выглядит следующим образом:

Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.

Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.

Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.

Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:

9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.

То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.

Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.

Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.

В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.

Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.

Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.

Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.

Емкость конденсатора рассчитывается по эмпирической формуле:

где U – амплитудное напряжение сети (310 В),

I – ток, проходящий через светодиод (в миллиамперах),

Uд – падение напряжения на led в прямом направлении.

Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:

Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.

Нюансы подключения к сети 220 В

При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:

Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.

Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:

При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.

Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:

В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.

Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.

Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:

Здесь показано, почему нельзя:

  • включать светодиод напрямую;
  • последовательно соединять светодиоды, рассчитанные на разный ток;
  • включать led без защиты от обратного напряжения.

Безопасность при подключении

При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.

В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.

Заключение

Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации. Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя. В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.

Источник: ledno.ru

Варианты схем как подключить светодиод к 220 вольтам (для световой индикации). Включение светодиода к сети 220 В.

Тема: способы подсоединения светодиодов к сетевому переменному напряжению.

Порой возникает необходимость в подключении обычного, маломощного светодиода к переменному, сетевому напряжению 220 вольт в роли светового индикатора. Казалось бы нет ничего проще, чем взять и поставить последовательно светодиоду обычный резистор, который бы ограничивал силу тока в данной цепи. Но не все так просто. В этой статье давайте с вами рассмотрим наиболее распространенные варианты такого подключения, после чего можно будет выбрать наиболее лучшую схему с учетом имеющихся достоинств и недостатков.

Вариант №1 » последовательное включение светодиода и резистора.

Итак, первым вариантом все же будет схема, где последовательно к светодиоду подключается обычный резистор с нужным сопротивлением. Величину сопротивления можно вычислить по закону ома. Допустим у нас светодиод, рассчитанный на напряжение 3 вольта и потребляющий 9 миллиампер. Напряжение питания (220 В) разделится между резистором и светодиодом. Если на светодиоде осядет 3 вольта, то на резисторе осядет около 217 вольт. Ток в последовательных цепях во всех точках одинаковый (в нашем случае он будет равен 9 мА). И чтобы узнать сопротивление резистора мы 217 вольт делим на 9 миллиампер и получаем 24 килоома (24000 ом).

Теоретически эта схема подключения светодиода к сети 220 вольт рабочая, но практически она скорее всего сгорит сразу при включении. Почему это так. Дело в том, что большинство обычных светодиодов рассчитаны на напряжение питания (при прямом своем включении, то есть плюс светодиода к плюсу источника питания и минус светодиода к минусу источника питания), где-то в пределах от 2,5 до 4,5 вольта. При прямом включении на светодиоде будет его рабочее напряжение (пусть 3 вольта), а излишек (217 вольт) осядет на резисторе. Обратное напряжение у светодиодов не такое уж и высокое (где-то около 30 вольт). И когда обратная полуволна переменного напряжения подается на светодиод, то светодиод просто выйдет из строя из-за слишком большого обратного напряжения, поданного на него. Напомню, что полупроводники при обратном включении имеют очень большое внутреннее сопротивление (гораздо большее чем стоящий в цепи резистор). Следовательно все сетевое напряжение осядет именно на светодиоде.

Вариант №2 » подключение светодиода с защитой от обратного напряжения.

В этом варианте схемы подключения индикаторного светодиода к сетевому напряжению 220 вольт имеется защита от чрезмерного высокого напряжения обратной полуволны, что подается на светодиод. То есть, в цепь добавлен обычный диод, который включен той же полярностью, что и светодиод. В итоге все излишнее высокое напряжение оседает на полупроводниках (при обратном включении питания, обратной полуволне переменного тока). Тот ток, что возникает в цепи при обратной полуволне настолько настолько мал, что его не хватает для пробития светодиода при обратном его включении. Таким образом данная схема уже будет нормально работать. Хотя в этом варианте все же имеются свои недостатки, а именно будет достаточно сильно греться резистор. Его мощность должна быть не менее 2 Вт. Этот нагрев приводит к тому, что схема весьма не экономна, у нее низкий КПД. Помимо этого поскольку светодиод будет светить только при одной полуволне, то рабочая частота светодиода будет равна 25 Гц. Свечение светодиода при такой частоте будет восприниматься глазом с эффектом мерцания.

Вариант №3 » альтернативная схема подключения светодиода к 220 с защитой от обратного напряжения.

Эта схема похожа не предидущую. Она также имеет защиту от чрезмерного напряжения обратной полуволны переменного напряжения. Если в первой схеме защитный диод стоял последовательно со светодиодом, то в данной схеме диод подключен параллельно, и имеет уже обратное включение относительно светодиоду. При одной полуволне переменного напряжения будет гореть индикаторный светодиод (на котором будет падение напряжения до рабочей величины светодиода), а при обратной полуволне диод будет находится в открытом состоянии и на нем также будет падение напряжения до величины (порядка 1 вольта) недостаточной для пробоя светодиода. Как и в предыдущей схеме недостатками будет значительный нагрев резистора и видимое мерцание светодиода, вдобавок эта схема будет больше потреблять электроэнергии из-за прямого включения диода.

Хотя вместо обычного диода можно поставить еще один светодиод.

Тогда в одну полуволну будет гореть один светодиод, ну а в обратную второй. Хотя в этом случае и будут светодиоды обезопасены от высокого обратного напряжения, но гореть каждый из них будет все равно с частотой 25 герц (будут оба мерцать).

Вариант №4 » лучшая схема с токоограничительным кондесатором, резистором и выпрямительным мостом.

Данный вариант схемы подключения индикаторного светодиода к сети 220 вольт считаю наиболее лучшим. Единственным недостатком (если можно так сказать) этой схемы является то, что в ней больше всего деталей. К достоинствам же можно отнести то, что в ней нет элементов, которые чрезмерно нагревались, поскольку стоит диодный мост, то светодиод работает с двумя полупериодами переменного напряжения, следовательно нет заметных для глаза мерцаний. Потребляет эта схема меньше всего электроэнергии (экономная).

Работает данная схема следующим образом. Вместо токоограничительного резистора (который был в предыдущих схемах на 24 кОм) стоит конденсатор, что исключает нагрев данного элемента. Этот конденсатор обязательно должен быть пленочного типа (не электролит) и рассчитан на напряжение не менее 250 вольт (лучше ставить на 400 вольт). Именно подбором его емкости можно регулировать величину силы тока в схеме. В таблице на рисунке приведены емкости конденсатора и соответствующие им токи. Параллельно конденсатору стоит резистор, задача которого сводится всего лишь к разряду конденсатора после отключения схемы от сети 220 вольт. Активной роли в самой схеме запитки индикаторного светодиода от 220 В он не принимает.

Далее стоит обычный выпрямительный диодный мост, который из переменного тока делает постоянный. Подойдут любые диоды (готовый диодный мост), у которых максимальная сила тока будет больше тока, потребляемого самим индикаторным светодиодом. Ну и обратное напряжение этих диодов должно быть не менее 400 вольт. Можно поставить наиболее популярные диоды серии 1N4007. Они дешево стоят, малы по размерам, рассчитаны на ток до 1 ампера и обратное напряжение 1000 вольт.

В схеме есть еще один резистор, токоограничительный, но он нужен для ограничения тока, который возникает от случайных всплесков напряжения, идущие от самой сети 220 вольт. Допусти если кто-то по соседству использует мощные устройства, содержащие катушки (индуктивный элемент, способствующий кратковременным всплескам напряжения), то в сети образуется кратковременное увеличение сетевого напряжения. Конденсатор данный всплеск напряжения пропускает беспрепятственно. А поскольку величина тока этого всплеска достаточна для того, чтобы вывести из строя индикаторный светодиод в схеме предусмотрен токоограничительный резистор, защищающий схему от подобный перепадов напряжения в электрической сети. Этот резистор нагревается незначительно, в сравнении с резисторами в предыдущих схемах. Ну и сам индикаторный светодиод. Его вы выбираете уже сами, его яркость, цвет, размеры. После выбора светодиода подбирайте соответствующий конденсатор нужной емкости руководствуясь таблицей на рисунке.

Источник: electrohobby.ru

Как подключить светодиод к сети 220 Вольт

В большинстве случаев светодиоды запитываются от сети 220 Вольт через драйверы (например, обычная светодиодная лампа), но в некоторых случаях необходимо подключить к сети всего лишь один светодиод в качестве индикатора и здесь использование драйвера просто нецелесообразно. В таких случаях используются более простые схемы, о которых мы сегодня с вами и поговорим

Особенности подключения к сети 220 Вольт

Известно, что драйвер преобразует переменное синусоидальное напряжение в выпрямленное постоянное напряжение и запитывает светодиод малым током с низким напряжением. В сети же у нас присутствует среднее напряжение в 220 Вольт с частотой 50 Гц. Так как светодиод пропускает ток только в одном направлении, то это значит, что гореть светодиод будет только на полуволнах:

Это значит, что свечение будет происходить с такой же частотой в 50 Гц. Но из-за того, что наше зрение не способно различить моргание света с такой частотой, то мы будем видеть ровное свечение.

А напряжение обратной полярности, прикладываемое к светодиоду, способно его вывести из строя. Поэтому использование защитных мер обязательно.

Варианты подключения светодиода к сети 220 Вольт

Простейшим вариантом подключения является использование резистора включенного последовательно с нашим светодиодом.

Самое главное правильно рассчитать сопротивление данного резистора и учесть тот факт, что напряжение в 220 Вольт является среднеквадратичным, а амплитудная величина равна 310 Вольтам и именно это напряжение необходимо учитывать при расчете сопротивления резистора.

Помимо этого нужно реализовать защиту светодиода от обратного напряжения той же величины. Для этого есть несколько решений.

Последовательное подключение диода с напряжением пробоя в 400 В и более

Схема такого подключения выглядит так:

В выше приведенной схеме применяется диод 1N4007 с обратным напряжением 1000 В. Если будет изменена полярность, то напряжение будет приложено именно к данному диоду и вследствие этого светодиод будет защищен от пробоя.

Шунтирование светодиода простым диодом

В этом варианте подключения можно применять абсолютно любой маломощный диод, который включается встречно-параллельно со светодиодом. В таком подключении обратное напряжение прилагается к резистору, где и происходит гашение. Диод при этом включен в прямом направлении.

Подключение двух светодиодов

Такой вариант схемы выглядит следующим образом:

Принцип работы такой схемы соответствует вышеописанному, только тут светодиоды излучают свет каждый на своем участке синусоиды, при этом они защищают друг друга от пробоя.

Использование гасящего резистора имеет один очень существенный недостаток. В процессе работы на резисторе происходит выделение большого количества мощности.

В представленных схемах был указан резистор с R = 24 кОм, а это значит, что при U = 220 В протекающий ток будет равен 9 мА. А это значит, что рассеиваемая мощность на резисторе будет такова:

0,009*0,009*24000 = 1,944 Вт

В конце концов, чтобы резистор не перегревался и работал стабильно необходимо чтобы его мощность была не менее 3Вт.

В случае использования большего количества светодиодов потребляемый ток будет возрастать. А потребляемая мощность будет возрастать пропорционально квадрату тока. Значит, использование резистора становится просто нецелесообразным.

Ведь если установить резистор малой мощности, то это приведет к значительному разогреву и поломке элемента, что вызовет короткое замыкание.

Использование токоограничивающего конденсатора

Если применение токоограничивающего резистора нежелательно, то в схему можно включить конденсатор. Главный плюс использования конденсатора заключен в следующем: сопротивление имеет реактивный характер, иначе говоря на элементе не происходит рассеивание мощности.

На вышеприведенной схеме изображена типовая схема подсоединения светодиода к сети 220 Вольт. Из-за того, что конденсатор после обесточивания сети остается с накопленным потенциалом, который может опасен для людей, его нужно разрядить. Для этого в схему внесен резистор R1. А R2 выполняет защитную функцию всей схемы от возможных бросков тока. Диод VD1 несет защитную функцию светодиода.

При этом важно, чтобы конденсатор использовался на напряжение 400 В.

Примечание. Использование полярных конденсаторов в подобных схемах недопустимо, из-за того, что ток, проходящий в обратном направлении, разрушит элемент.

Для подсчета емкости конденсатора используется следующая формула:

Таким образом, если необходимо выполнить подсоединение светодиода с падением напряжения 2 В и током 9 мА требуемая емкость конденсатора такова:

Заключение

В этой статье мы с вами рассмотрели варианты включения в цепь 220 вольт светодиода. Такие схемы можно использовать только тогда, когда Led используется в качестве подсветки или индикации.

Выполнять подключение мощных светодиодов по таким схемам нежелательно, так как нестабильность напряжения сети приведет к очень быстрому выходу из строя Led элемента. Для этих случаев нужно использовать специальные блоки питания – драйверы.

Статья оказалась вам полезна и интересна, тогда оцените ее лайком и спасибо за Ваше внимание!

Источник: zen.yandex.ru

Как подключить светодиодную лампу

Светодиод – полупроводниковый прибор, преобразующий электрический ток в видимый свет. Различают осветительные и индикаторные устройства. Они обладают разной мощностью, допустимой силой тока, напряжением, яркостью. Можно подключить светодиод к 220В, к 110В, к 1,5В, но только через устройство, ограничивающее электрический ток.

Особенности подключения светодиодного светильника к 220В

Принцип работы светодиодного светильника заметно отличается от всех остальных приборов такого рода устройств. Свет в данном случае генерирует полупроводниковый кристалл. Тело накаливания, как в других лампах, здесь попросту отсутствует, так как в полупроводнике электрический ток непосредственно преображается в световое излучение. Такое устройство не нагревается, генерирует световое излучение точно указанной световой температуры и отличается долговечностью.

Однако светодиод 220 Вольт или другой мощности работает только при пропускании тока в прямом направлении. То есть для такого светильника требуется постоянный ток с напряжением в 4–12 Вольт. Соответственно, непосредственно в бытовую электрическую сеть включить светодиод в 220В нельзя.

Правила безопасности при подключении

Техника безопасности в данном случае сводится не столько к предупреждению угрозы для здоровья, сколько к предотвращению поломки приборов и короткого замыкания. Рекомендации просты:

  • не допускается прямое подключение светодиодных ламп к сети с переменным током и напряжением в 220В;
  • прежде чем подключать любой вариант светильника, необходимо изучить технические характеристики;
  • следует определить катод и анод у светодиода, как правило, длинная ножка выступает плюсом, то есть является анодом, а короткая, соответственно, катодом;
  • необходимо рассчитать схему подключения светодиода к сети в 220В с учетом напряжения;
  • эффективную работу прибора обеспечивает блок питания или драйвер с оптимальной мощностью;
  • перед подключением обязательно определяют полярность светодиода;
  • рекомендуется разделять резисторы на 2 части, чтобы снизить риск поражения током;
  • необходимо тестировать конструкцию – включить и замерить уровень потребляемого тока в 220В.

Наиболее экономичным и простым решением проблемы является монтаж диммируемых устройств. Здесь достаточно определить мощность прибора.

Схемы подключения светодиода к 220В

Полупроводник пропускает ток только в одном направлении. Однако в сети в 220В имеется переменный ток, где с частотой в 50 Гц направление тока меняется. Чтобы компенсировать этот эффект и подключить светодиодную лампу, требуется выпрямитель какого-либо типа, способный погасить обратное напряжение.

В таком качестве выступает резистор, конденсатор, выпрямительный мост. Соответственно, подключить светодиод к сети в 220 Вольт можно несколькими способами. Чаще всего в быту используется схема с резистором, поскольку такой способ прост в монтаже и доступен по стоимости.

Как подключить светодиодный светильник последовательным способом

Такое подсоединение выполняется очень легко и вполне годится для бытовых светодиодных приборов и сети в 220 Вольт.

  1. Для начала рассчитывают требуемую мощность резистора и учитывают необходимость в защите от обратного напряжения. Теоретически при подсоединении светодиода, мощностью, например, в 3 Вольта, «избыток» в 217 Вольт оседает на резисторе. Однако на деле обратная полуволна в этом случае подается на светодиод, а не на резистор, а так как обратное напряжение у полупроводников невелико – до 30 Вольт, прибор быстро выходит из строя.
  2. Все элементы цепи – резистор, диод защиты и светодиод подключаются последовательно.

Как подключить светодиодный светильник к 220В параллельным способом

Подсоединить светодиодный светильник можно и параллельно. Такая схема более надежна, хотя не исключает эффект мерцания.

  1. Индикаторный диод подключают параллельно светодиоду. Диод должен иметь обратное включение. При первой полуволне работает индикаторный диод, при второй – светодиод. Напряжение, падающее на последний, не превышает 1 Вольт, что делает такую схему более долговечной.
  2. Мощность резистора и здесь должна быть избыточной – он нагревается.

Снизить эффект мерцания позволяет параллельная установка 2 светодиодов. При подсоединении к сети в 220В при одной полуволне включается 1 светодиод, при второй – параллельный ему. При таком расположении оба элемента в нужной степени защищены от избыточного обратного напряжения.

Схема включения светодиода в сеть 220 вольт лучевым соединением

Запитать светодиод от сети 220В таким способом – лучший вариант, так как метод предупреждает излишний нагрев всех деталей цепи и исключает заметные для глаза мерцания. Кроме того, цепь, включающая конденсатор, потребляет меньше тока. Минус схемы – подключение светодиодных ламп требует больше времени и подразумевает цепь из большого количества элементов.

  1. Вместо резистора основную нагрузку по выпрямлению тока берет на себя конденсатор. Использовать необходимо пленочное устройство – электролит не годится. Рассчитано на напряжение как минимум в 250 Вольт, а лучше в 400 Вольт.
  2. Параллельно конденсатору в цепь включают резистор. Его задача – разряд конденсатора после того, как светильник отключают от сети в 220 Вольт.
  3. Параллельно светодиоду подсоединяют диодный мост – его можно приобрести готовым, а можно самостоятельно сделать из 4 диодов с подходящими характеристиками. Максимальная сила тока моста должна быть выше, чем аналогичный показатель у светодиода. Возможное обратное напряжение – не менее 400 Вольт. Мост подсоединяется в обратном направлении по сравнению со светодиодным элементом.
  4. Последовательно конденсатору в цепь вставляют еще один резистор – токоограничительный. Его цель – защитить схему от случайных скачков напряжения в сети на 220 Вольт.

В такой схеме все элементы нагреваются незначительно, что обеспечивает высокую долговечность и надежность.

Схема шунтирования светодиода обычным диодом

Необходимость шунтирования доказана практикой. Теоретическая схема подключения светодиода без дополнительного элемента оказывается несостоятельной.

Рабочая схема включает индикаторный обычный диод с той же полярностью, что и светодиодное устройство. При этом излишне высокое напряжение обратной волны оседает на диодном элементе, а остаточное напряжение светодиод пробить уже не может. Диод монтируют между резистором и светодиодом.

Расчет гасящего конденсатора для светодиода

Подключение светодиодных светильников даже по самой удачной схеме выполняется после расчета характеристик резистора, дополнительных диодов, и, конечно, конденсатора. Емкость последнего вычисляют следующим образом.

Допустим, частота сети составляет обычные 50 Гц. Необходимо подсоединить светодиод в 20 мА, на который припадает 2 В. Необходимый коэффициент пульсаций составляет 2,5%.

  1. Светодиод представляют как простой резистор. Коэффициент пульсаций разрешается заменить напряжением на конденсаторе. Получается следующее: Кп = (Umax — Umin) / (Umax + Umin) ⋅ 100%, где после подстановки данных получают 2.5% = (2В — Umin) / (2В + Umin) ⋅ 100% => Umin = 1.9В.
  2. Используя типичную осциллограмму напряжения, можно вычислить время заряда конденсатора. tзар = arccos(Umin/Umax) / 2πf = arccos (1.9/2) / (2⋅1415⋅50) = 0.0010108 с. Остальной промежуток времени конденсатор разряжается. Так как в стандартной схеме используется двухполупериодный выпрямитель, этот показатель уменьшают вдвое.
  3. Затем вычисляют емкость по формуле и получают C = ILED ⋅ dt/dU = 0.02 ⋅008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ).

На деле ради 1 светодиодного светильника такой мощный конденсатор не устанавливают. Чтобы модифицировать схему, вместо обычного резистора в схему включают реактивное сопротивление – второй конденсатор.

Как подключить светодиодную ленту на 220 вольт

Нередко в быту вместо крупного прибора, который может выступать светильником, предпочитают установить подсветку. Для нее лучше всего использовать готовые светодиодные ленты. Монтаж очень прост, так как установщику нужно лишь следовать инструкции: все составляющие подсоединения при монтаже используют уже в готовом виде.

  1. Светодиодная лента – ряд последовательно закрепленных светодиодов. К блоку питания они присоединяются параллельно, друг к другу лучше монтировать платы тоже параллельно.
  2. Для начала определяют плюс и минус блок питания. Обычно красный шнур – это плюс, а синий или черный – минус. Если шнур отсутствует, подключение производят через маркированные зажимы.
  3. Лучше всего подсоединить ленту пайкой. В определенных случаях удобней использовать коннекторы. При монтаже требуется лишь отодвинуть зажимную пластину, насадить коннектор на край ленты и сдвинуть зажим назад. Затем провод от коннектора подсоединяют к блоку.

Если предполагается монтаж цветной ленты, схема будет включать контроллер, отвечающей за включение и отключение отдельных светодиодов.

Заключение

Подключить светодиод к 220В можно лишь с помощью дополнительных устройств. Схема подсоединения может включать резисторы, конденсаторы, выпрямительные мосты. Задача таких элементов – выпрямить переменный ток и предотвратить действие обратной волны напряжения на светодиод.

Источник: 2proraba.com

Мигающий светодиод от 220 вольт

Это, вероятно, простейшая схема для создания мигающего светодиода от 220 вольт. Схема может быть применена в качестве индикатора сетевого напряжения.

В схеме мигающего светодиода использован динистор DB3 (DIAC). Динистор, как правило, используется в качестве генератора импульсов для управления тиристором или симистором. Когда на динистор подано напряжение ниже напряжения пробоя, то он не пропускает через себя ток (фактически получается обрыв цепи) и только очень незначительный ток проходит через него.

Но если напряжение возрастает до порога пробоя, то это переводит динистор в состояние электропроводности. Для динистора DB3 напряжение пробоя составляет около 35 вольт. Динистор DB3 проводит ток в обоих направлениях. Диод VD1 выпрямляет переменное напряжение сети. Резистор R1 предназначен для ограничения тока протекающего через динистор DB3.

При подаче питания на схему светодиод не горит. Конденсатор С1 начинает заряжаться через диод VD1 и резистор R1. Когда конденсатор С1 зарядится до напряжения около 35 вольт, происходит пробой динистора, ток начинает течь через него, в результате чего светодиод загорается. Резистор R2 ограничивает ток через светодиод до безопасного значения 30 мА.

Когда DB3 пропускает через себя ток, в это время конденсатор С1 разряжается, напряжение на нем опускается ниже напряжения пробоя динистора, в результате чего последний закрывается и светодиод гаснет. Затем все повторяется вновь. И как результат — светодиод начинает периодически мигать.

Частота вспышек светодиода определяется емкостью конденсатора С1. Более высокое его значение дает низкую частоту вспышек и наоборот. Если динистор не открывается, то можно уменьшить сопротивление R1 до 10 кОм, но мощность R1 в этом случае должна быть не менее 5 Вт.

Второй вариант мигающего светодиода от 220 вольт. Здесь переменное сетевое напряжение 220 вольт снижается до 50 вольт, за счет гасящего конденсатора C1, и выпрямляется диодным мостом VD1-VD4. Резистор R1 предназначен для защиты конденсатора от пускового тока и разряда его после отключения схемы от сети.

Основным элементом схемы является динистор DB3. Динистор вместе с конденсатором C2 образует релаксационный генератор. При подаче напряжения, конденсатор С2 начинает медленно заряжаться через резистор R3. При достижении на конденсаторе напряжения равного напряжению пробоя динистора (примерно 35В), динистор начинает проводить ток, включая светодиод. Далее происходит разряд конденсатора С2 и динистор закрывается, светодиод гаснет. И цикл повторяется вновь. При указанной емкости конденсатора С2 частота вспышек светодиода составляет примерно 1 раз в секунду.

Hantek 2000 — осциллограф 3 в 1

Портативный USB осциллограф, 2 канала, 40 МГц….

Внимание: обе схемы напрямую связаны с электросетью 220 вольт и не имеют гальваническую развязку. Будьте крайне осторожны при сборке и эксплуатации данного устройства.

 

Вилка электрическая – как подключить и отремонтировать

Вилка электрическая – это штепсельное изделие, предназначенное для оперативного подключения и отключения электрических приборов от питающей сети.

Любой электроприбор подключается к электрической сети через розетку с помощью шнура с сетевой вилкой на конце. Международного стандарта на вилки не существует, бывает, привозят электроприборы из других стран с вилками, которые невозможно вставить в розетки, установленные в квартире. Приходится приобретать переходник или вилку обрезать, и на шнур устанавливать подходящую. Это несложная, но ответственная работа, так как от правильности ее выполнения зависит надежность работы электроприбора в целом.

Виды электрических вилок

В настоящее время в России все электроприборы выпускаются со шнурами на конце с неразборными вилками двух видов типа С по ГОСТ 7396.1-89. На корпусе каждой вилки обычно нанесена маркировка, в которой указаны ее технические характеристики – величина максимально допустимого тока и допустимое напряжение питающей сети. Это не означает, что данный электроприбор потребляет ток такой силы, а только говорит о том, что вилка рассчитана на передачу тока до указанной величины.

C5 (аналог европейских электрических вилок CEE 7/16) – с круглыми штырями диаметром 4 мм, сходящимися немного к свободным концам, штыри изолированы на длину 10мм от корпуса, без заземляющего контакта. Вилка С5 рассчитана на ток нагрузки до 6 А (при питающем напряжении 220 В выдерживает мощность 1300 Вт).

C6 (аналог европейских вилок CEE 7/17) – с круглыми штырями диаметром 4,8 мм, бывают трехполюсные с заземляющим контактом и двухполюсные без заземляющего контакта. Вилка C6 рассчитана на ток нагрузки до 10 А (при питающем напряжении 220 В выдерживает мощность 2200 Вт).

В эксплуатации еще находится много приборов, со шнурами, оснащенными разборными вилками типа C1-b с круглыми штырями диаметром 4 мм без заземляющего контакта и рассчитанными на ток нагрузки до 6 А (при питающем напряжении 220 В выдерживает мощность 1300 Вт).

Устройство электрических вилок

Устройство неразборной электрической вилки

Конструкция неразборных электрических сетевых вилок любых типов одинаковая. Штыри установлены на расстоянии 19 мм в пластмассовую планку и в них запрессованы проводники. На планке есть два выступа, которые служат для обвода провода. Обвод необходим для исключения обрыва шнура вилки в случае приложения к нему значительной силы. Например, извлечение вилки из электрической розетки за провод, что категорически не допускается.

Штыри и провод заливаются расплавленной пластмассой. Таким образом формируется герметичный водонепроницаемый корпус вилки с надежно зафиксированным в нем сетевым шнуром.

Устройство разборной трехполюсной электрической вилки

В недалеком прошлом для подключения электроприборов к электрической сети применялись только разборные вилки. Да и сейчас еще в эксплуатации находится большое их количество. Без разборной вилки не обойтись, если требуется заменить вышедшую из строя литую. Разборная вилка тем хороша, что позволяет использовать ее многократно. Ее легко можно снять с ненужного электроприбора и при ремонте установить на другой шнур.

Устройство разборной электрической вилки С1-b

Перед Вами разобранная на составные части вилка вида C1-b, рассчитанная для подключения к электрической сети электроприборов мощностью до 1200 Вт.

Она состоит из двух половинок корпуса, двух латунных штырей, прижимной планки шнура и крепежных элементов.

Устройство разборной электрической вилки C6

Рассмотрим устройство разборной вилки с заземляющим контактом вида С6, рассчитанную на подключение электроприборов мощностью до 2200 Вт. На латунные штыри вилки напрессованы контактные площадки с резьбой для прикручивания проводов. Сами штыри закреплены в основании вилки.

В корпусе имеются заземляющий контакт в виде полосы из латуни с резьбой для закрепления заземляющего проводника. Имеется планка для фиксации провода с пластиковой прокладкой.

Неисправности электрических вилок

Вилки устроены просто и при правильном подсоединении шнура и соблюдении правил их эксплуатации безотказно выполняют возложенную на них функцию до конца срока использования электроприбора. Но все же отказы случаются.

Неисправности литых электрических вилок

Необходимость замены литых вилок может возникнуть в следующих случаях. Некачественный обжим проводника в штыре на заводе изготовителе, перетирание шнура в месте выхода из корпуса вилки и из-за неисправности розетки. Чаще шнур перетирается у электроприборов с вилками C5, которые при эксплуатации интенсивно перемещают, это фен, миксер, паяльник и многие другие.

При внимательном осмотре иногда удается визуально обнаружить место повреждения по резкому изгибу шнура при его перегибе или вспучивания изоляции. Если осмотром не удалось выявить дефект, то нужно прозвонить провода тестером. Для этого требуется добраться до противоположных концов провода, что не всегда возможно. Можно воспользоваться тонкой швейной иголкой, проткнуть ней изоляцию в месте прохождения сначала одного проводника и прозвонить цепь штырь – иголка. Если провод целый, прозвонить второй проводник. Для исключения случайного контакта провода в месте обрыва во время прозвонки, можно провод и вилку слегка подергать в противоположные стороны.

Проверить целостность провода можно и индикатором фазы. Внимание! Работать требуется очень аккуратно, чтобы не получить удар током. Прикосновение к воткнутой в провод игле голой рукой при вставленной вилке в розетку может привести к поражению электрическим током! Нужно проткнуть изоляцию, вставить вилку в розетку таким образом, чтобы на проверяемом проводе была фаза. Дотронутся индикатором фазы к иголке, если свечения в индикаторе нет, провод в обрыве. Также проверяется второй проводник. Вставление и вынимание иглы выполняется при вынутой вилке из розетки.

В случае целостности проводов, неисправность нужно искать в другом месте. Так как игла тонкая, то после ее изъятия отверстие затянется, изолировать место прокола не требуется.

Фотографии я делал во время ремонта отказавшего фена. Как выяснилось, перетерся один из проводников внутри вилки, в гибком ее месте. Пришлось шнур в месте выхода из вилки обрезать и провода подсоединить к новой разборной вилке нижеописанным способом.

Еще вилка может выйти из строя из-за плохого контакта в розетке, в которую она была вставлена. Если штырь плохо соприкасается с контактами в розетке, то выделяется много тепла, штырь разогревается и оплавляет или даже обугливает корпус вилки в месте соприкосновения с ней. В результате штырь начнет качаться, что недопустимо. Вилку приходится заменять.

Для проверки надежности контакта штырей вилки с розеткой, нужно после окончания работы электроприбора вынуть вилку из розетки и сразу потрогать рукой штыри. Если слегка теплые, то это нормально, а если очень горячие, то нужно отремонтировать лии заменить розетку.

Неисправности разборных электрических вилок

Разборным вилкам присущи такие же неисправности, как и неразборным, но в дополнение разборные вилки часто отказывают по причине плохих контактов между проводниками шнура со штырями. Причина – нарушение плотности прилегания проводов к штырям из-за отсутствия пружинной шайбы. Со временем, от перепадов температур, образуется зазор, контакт нарушается и выделяется тепловая энергия. Пружинная шайба выбирает этот зазор, что и обеспечивает долговременную надежную работу вилки.

При плохих контактах в вилке ее штыри сильно разогреваются и оплавляют корпус вплоть до обугливания. Вилку с обугленным корпусом использовать недопустимо и необходимо ее заменить. Если корпус не поврежден, то следует разобрать вилку, зачистить провод и место его контакта к штырю наждачной бумагой до блеска. Если провод обгорел сильно, то надо отрезать испорченную часть на длину ломкости изоляции и подсоединить по ниже рекомендованной технологии. Требуется также заменить винты и шайбы. Как правило, они сильно окисляются, а снять с них окалину невозможно.

Как поменять электрическую вилку на проводе

Если возникла необходимость замены вилки на проводе, то прежде нужно определиться с ее типом, исходя из потребляемой мощности электроприбора и необходимости его заземления. Чтобы не задумываться, лучше всего заменить неисправную электрическую вилку, вилкой такого же типа.

Как поменять электрическую вилку на C1-b

Если возникла необходимость заменить вилку на шнуре, то начинать нужно с подготовки концов проводов к подключению. Для этого нужно обрезать шнур на расстоянии 3-5 см от вилки. Если вилка из-за плохого контакта в ней сильно нагревалась, то обычно изоляция провода в месте выхода из вилки делается жесткой и эту часть провода нужно удалить. Далее с проводов снимается изоляция на длину около 20 мм и на его концах формируются колечки. В колечки вставляются винты, на которые предварительно надеты сначала пружинные (гроверы), а затем плоские шайбы. Гровер нужен обязательно.

Затем винт закручивается в штырь до упора. Таким же образом провод присоединяется и ко второму штырю. Штыри устанавливаются в корпусе выступами в специальные круглые углубления. Далее на провод накладывается планка и прижимается двумя винтами к корпусу. Если изоляция провода тонкая, то для предотвращения его перетирания в месте выхода из вилки, желательно на изоляцию надеть резиновую или полихлорвиниловую трубку.

Осталось соединить половинки корпуса и стянуть их винтом с гайкой. Если половинки не полностью соприкасаются, значит, мешают провода, проходящие рядом со стягивающим винтом, нужно их отодвинуть. Для этого нужно открутить немного винты у колечек, повернуть провод и затянуть винты обратно. Если этого не сделать, то при затягивании можно поломать вилку. Если Вы подсоединяете к двухполюсной вилке шнур, в котором три провода, то проводник желто- зеленого цвета (заземляющий) зачищать от изоляции и куда либо подсоединять не нужно.

Как поменять электрическую вилку на трехполюсную C6

Подготовка концов проводов для подсоединения к трехполюсной вилке C6 шнура выполняется точно также как и для вилки C1-b. Технология сборки тоже аналогичная. Главное, если нет в комплекте вилки гроверов, обязательно найдите и установить эти пружинные шайбы. Для подсоединения шнура к вилке в концы его проводов, предварительно сформированные в колечки, нужно вставить винты с шайбами и с усилием прикрутить к контактным площадкам вилки. Обратите внимание, желто-зеленый провод допускается подсоединить только к заземляющему контакту. Он обычно находится по середине между контактными площадками штырей.

Если шнур двухпроводной и в нем нет желто- зеленого провода, то контакт заземления в вилке оставляется свободным.

Как заменить неисправную электрическую вилку С5 или С6


с помощью наращивания провода

На практике можно столкнуться с ситуацией, когда сетевая вилка отказала, электроприбор срочно нужен, а разборной вилки для замены под рукой нет. В магазин добираться далеко, да и не в каждой деревне есть магазин электротоваров. Но даже из такой, казалось безвыходной ситуации, есть простой выход.

Практически в любом хозяйстве имеется, какой-либо неисправный электроприбор, например, электрический чайник. От него можно взять вилку для ремонта и заменить неисправную по ниже приведенной инструкции.

На фотографии изображена старая подставка для электрочайника, от которой отходит провод с литой вилкой С6 на конце. Длина сетевого провода у электрочайников обычно небольшая, но, тем не менее, если длина провода электроприбора, у которого нужно заменить вилку была недостаточной, то можно воспользоваться случаем и провод сделать длиннее. В этом случае провод от подставки электрочайника нужно откусить оставит его максимальную длину. Иногда в нижней части подставки часть провода навита на катушку. Поэтому его длина может быть больше, чем очевидно. Если наращивать провод электроприбора не нужно, то достаточно оставить около 15 сантиметров шнура.

Далее нужно аккуратно, чтобы не повредить изоляцию проводов, разрезать вдоль оболочку шнуров на длину около 10 см и вытащить провода из оболочки. Внимание, оболочку отрезать не нужно. Обычно в стандартном кабеле три провода разных цветов. Коричневый (фаза), светло-синий (ноль) и желто-зеленый (заземляющий проводник).

На следующем шаге необходимо подогнать длину проводников таким образом, чтобы места будущих скруток проводов были сдвинуты относительно друг друга на пару сантиметров. При подгонке длины проводов нужно учесть, что соединяться между собой в обязательном порядке должны одноцветные провода.

Далее снимается изоляция с жил проводов на длину около 15 мм. Если в одном из кабелей отсутствует желто-зеленый провод, то с имеющегося изоляцию снимать не следует, так как его никуда присоединять нельзя. Он должен остаться свободным.

На следующем шаге зачищенные от изоляции медные жилы проводов соединяются друг с другом методом скрутки. Для хорошего контакта достаточно трех витков обвития.

Для надежного долговременного контакта соединения проводов их необходимо пропаять припоем с помощью паяльника. Для удаления возможных острых выступов припоя и концов проволочек место пайки необходимо обработать наждачной бумагой. Если не пропаять скрутки, то при большой мощности электроприбора контакт со временем может нарушиться.

Обойтись можно и без пайки, если перед скруткой на провода надеть отрезки тонкостенной медной или латунной трубки с внутренним диаметром чуть больше диаметра изоляции провода. После скрутки проводов сдвинуть трубки на место соединения и сплюснуть их в нескольких местах бокорезами.

Далее соединенные провода заправляются в ранее разрезанную оболочку одного из кабелей. Изолировать соединения нет необходимости, так как благодаря сдвигу скруток оголенные участки проводов не имеют возможности соприкоснуться.

Далее соединенные провода заправляются в ранее разрезанную оболочку одного из кабелей. Изолировать соединения нет необходимости, так как благодаря сдвигу скруток оголенные участки проводов не имеют возможности соприкоснуться. Если расстояние между скрутками получилось менее 10 мм, то тогда их нужно покрыть изоляционной лентой.

Теперь осталось только покрыть место соединения кабеля одним слоем изолирующей ленты, и работа будет закончена.

Как видите, на шнуре электроприбора методом наращивания проводов установлена исправная вилка, и электроприбор теперь можно подключить к электросети для дальнейшей эксплуатации.

Сращиваемые кабели были взяты белого и черного цветов специально, для наглядности. Если подобрать цвет вилки и изолирующей ленты ПВХ в тон кабелю электроприбора, то место соединения будет практически незаметным.

Какая вилка лучше, разборная или литая?

Возникает резонный вопрос, а какая вилка лучше? Безусловно, литая. Главное ее преимущество это отсутствие низко надежных разъемных механических контактов токоподводящего провода с штырями вилки. Проводники соединяются одним из следующих способов: привариваются точечной сваркой, припаиваются припоем или обжимаются. В дополнение вилка герметична, что повышает безопасность ее эксплуатации.

Единственный недостаток, это невозможность повторного монтажа. Если провод перетрется в месте входа в вилку, а такое часто случается у электроприборов, которые во время работы приходится постоянно перемещать, например электрический фен, то придется вилку обрезать и выкидывать, а на ее место монтировать разборную. Можно заменить и целиком весь шнур новым с литой вилкой, но тогда придется вскрывать электроприбор, что не всегда возможно.

Ремонт вилки газонокосилки

Столкнулся с ремонтом нестандартной вилки, штыри которой были запрессованы в корпус блока включения электрической газонокосилки.

В связи с особенностью конструкции заменить вилку не представлялось возможным и пришлось придумать технологию фиксации штырей.

Штыри вилки были не только сильно окислены от плохого контакта с розеткой на шнуре, но и один из них утопился в пластмассовый корпус.

Для закрепления штырей потребовалось разобрать блок, но столкнулся с тем, что у саморезов шлицы были с тремя косыми гранями, позволяющие только закручивать саморез. Пришлось разогревать головки саморезов паяльником и выкручивать отверткой с плоским жалом подходящей шины. После ремонта ввинтил другие саморезы с головками под стандартный крест.

Концы штырей, соединенные с проводами находились под концевым выключателем, который фиксировался в пазах корпуса блока.

После снятия выключателя утопленный штырь был нагрет паяльником и возвращен в исходное состояние. Но надежность его крепления была низкой. При воздействии пальцами штырь качался.

Для исключения повторной поломки вилки штыри были со стороны подключения проводов залиты эпоксидной смолой, как показано на фотографии.

После затвердевания смолы блок был собран и штыри зачищены с помощью мелкой наждачной бумаги. Проверка показала надежную работу блока. Теперь штыри вилки, даже в случае сильного нагрева, не смогут сместиться.

Адаптация нестандартных трехполюсных вилок

Иногда из зарубежных стран привозят электроприборы, оснащенными вилками, которые невозможно вставить в розетку, хотя по эклектическим характеристикам изделие можно подключить к существующей электросети. Если электропроводка с заземляющим проводником, то выходом из положения является подключением вилки через переходник — адаптер, но его еще нужно найти, или обрезка нестандартной вилки и замена ее разборной С6. В случае если земляного провода в розетке нет или прибор не требует обеспечения первого класса защиты, то можно самостоятельно доработать вилку.

Особенно актуален вопрос доработки адаптеров для подключения сотовых телефонов, оргтехники, ноутбуков, так как штыри выходят непосредственно из корпуса адаптера, и разборной вилкой заменить их не представляется возможным.

Адаптация трехполюсной электрической вилки IEC 60906-1

Мне попалась поляризованная вилка стандарта SEV 1011 или IEC 60906-1, точно не скажу, так как они практически одинаковые. Расстояние между штырями вилки составляло 19 мм, диаметр штырей 4 мм, как у вилок С5. Но в отличие от С5 имелся дополнительный штырь заземления, который не позволял вставить вилку в розетку.

Зажал вилку в тиски и аккуратно, чтобы не повредить нужные штыри, ножовкой по металлу спилил мешающий штырь.

Без заземляющего штыря вилка стала легко вставляться в любую электрическую розетку

Адаптация английской электрической вилки BS 1363

При создании домашней компьютерной сети пришлось дорабатывать вилку Huba. Хаб достался мне случайно и валялся без дела, так как его невозможно было подключить к питающей сети 220 В из-за нестандартной английской вилки BS 1363.

Как видно на фотографии, штырей в вилке BS 1363 адаптера хаба три и они имеют плоскую форму. Два штыря, расположенные на одной горизонтальной линии предназначены для подачи питающего напряжения, а третий, вертикальный, предназначен для заземления и правильного включения вилки.

При замере штангенциркулем, ширина штыря оказалась равной 6,5 мм. Расстояние между внутренними плоскостями штырей – 16 мм, что соответствует расстоянию между штырями вилки С5, аналогу европейской вилки CEE 7/16. Таким образом, если уменьшить ширину плоских штырей вилки BS 1363 с внешней стороны на 2,5 мм, то она вполне войдет в любую розетку, предназначенную для вилок С5 или С6. Осталось дело за малым, удалить третий штырь и лишний металл со штырей.

Вертикальный штырь, он оказался полностью пластмассовый, был зажать в тисках, и спилен с помощью ножовки по металлу. Горизонтальные штыри по очереди тоже были зажаты в тисках и спилены с помощью напильника, до ширины 4 мм.

На фотографии видно место, где был вертикальный штырь и подогнанный по ширине левый. Образовавшиеся на штыре после опиливания острые углы необходимо затупить с помощью мелкой наждачной бумаги.

После удаления лишнего штыря и уменьшения ширины оставшихся штырей, английская вилка BS 1363 стала адаптированной для подключения к розеткам, предназначенных для подключения вилок С5. Поэтому легко получилось подключить Хаб к питающей электрической сети.

Одноцветные светодиодные индикаторы 230 В переменного тока

656-1209-304F

74Y9593

Светодиодный индикатор для монтажа на панель, высокой интенсивности, зеленый, 230 В переменного тока, 12,7 мм, 3 мА, IP66, NEMA 4X

DIALIGHT

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Зеленый 230 В переменного тока 12.7мм 3 мА IP66, NEMA 4X 656 серии
RAD224P

33R0929

Светодиодный индикатор на панели, контрольная лампа, красный, 230 В перем. Тока, 22 мм, IP65

МУЛЬТИКОМП

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

красный 230 В переменного тока 22мм IP65
19510431

93K6745

Светодиодный индикатор для монтажа на панель, зеленый, 230 В перем. Тока, 8 мм, 3 мА, 5 мкд, IP67

CML ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Зеленый 230 В переменного тока 8мм 3 мА 5 мкд IP67
RAD223P

33R0927

Светодиодный индикатор на панели, контрольная лампа, зеленый, 230 В перем. Тока, 22 мм, IP65

МУЛЬТИКОМП

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Зеленый 230 В переменного тока 22мм IP65
19510430

93K6744

Светодиодный индикатор для монтажа на панель, красный, 230 В перем. Тока, 8 мм, 3 мА, 22 мкд, IP67

CML ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

красный 230 В переменного тока 8мм 3 мА 22мкд IP67
RAD221P

33R0924

Светодиодный индикатор на панели, контрольная лампа, белый, 230 В перем. Тока, 22 мм, IP65

МУЛЬТИКОМП

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

белый 230 В переменного тока 22мм IP65
RAD225P

33R0932

Светодиодный индикатор на панели, контрольная лампа, желтый, 230 В перем. Тока, 22 мм, IP65

МУЛЬТИКОМП

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Янтарь 230 В переменного тока 22мм IP65
556-1609-304F

06X2683

Светодиодный индикатор для монтажа на панель, зеленый, 230 В перем. Тока, 25.4 мм, 7 мА, 1800 футов ламберта, IP66, NEMA 4X

DIALIGHT

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Зеленый 230 В переменного тока 25.4мм 7 мА 1800 футов ламберт IP66, NEMA 4X
1SFA619403R5232

69AC6936

ПИЛОТНАЯ ЛАМПА, GRN, 230VAC, 22.3MM, ВИНТ

ABB

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Зеленый 230 В переменного тока 22.3мм 17 мА IP66, IP67, IP69K, NEMA 1, 3R, 4, 4X, 12, 13 Компактная серия
L295000MAC

97K4131

Светодиодный индикатор на панели, зеленый, 230 В перем. Тока, 8 мм, 3 мА, без номинала

ARCOLECTRIC (BULGIN LIMITED)

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Зеленый 230 В переменного тока 8мм 3 мА Не оценено
1SFA619403R5238

69AC6938

ПИЛОТНАЯ СВЕТА, ПРОЗРАЧНАЯ, 230В, 22.3ММ, ВИНТ

ABB

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Прозрачный 230 В переменного тока 22.3мм 17 мА IP66, IP67, IP69K, NEMA 1, 3R, 4, 4X, 12, 13 Компактная серия
OXL / CLH / 100/230 / FL30 / ЗЕЛЕНЫЙ

11N5747

Светодиодный индикатор для монтажа на панель, зеленый, 230 В перем. Тока, 10.15 мм, 2,5 мА, 160 мкд, IP66

ОКСЛИ

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Зеленый 230 В переменного тока 10.15мм 2,5 мА 160 мкд IP66
19511231

23M8539

Светодиодный индикатор на панели, черная хромированная рамка, зеленый, 230 В перем. Тока, 8 мм, 3 мА, 5 мкд, IP67

CML ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Зеленый 230 В переменного тока 8мм 3 мА 5 мкд IP67
ZB4BVM1

67Ah4586

КОРПУС СИД, 230В

SCHNEIDER ELECTRIC

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

белый 230 В переменного тока 22.5мм 14 мА IP65 Гармония серии
C027700MAC

96K8303

Светодиодный индикатор на панели, зеленый, 230 В перем. Тока, 10 мм, 3 мА, без номинала

ARCOLECTRIC (BULGIN LIMITED)

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Зеленый 230 В переменного тока 10мм 3 мА Не оценено
C057900MAC

60K7484

Светодиодный индикатор на панели, зеленый, 230 В перем. Тока, 14 мм, 3 мА, без номинала

ARCOLECTRIC (BULGIN LIMITED)

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Зеленый 230 В переменного тока 14мм 3 мА Не оценено
1SFA619403R5233

69AC6937

ПИЛОТНЫЙ СВЕТ, ЖЕЛТЫЙ, 230 В ~, 22.3ММ, ВИНТ

ABB

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Желтый 230 В переменного тока 22.3мм 17 мА IP66, IP67, IP69K, NEMA 1, 3R, 4, 4X, 12, 13 Компактная серия
19500230

26M6156

Светодиодный индикатор на панели, сатинированная хромированная рамка, красный, 230 В перем. Тока, 8 мм, 3 мА, 22 мкд, IP67

CML ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

красный 230 В переменного тока 8мм 3 мА 22мкд IP67
512-501-76

25M4264

Светодиодный индикатор на панели, всепогодный, красный, 230 В перем. Тока, 12.7 мм, 4 мА, 3,5 кд, IP66

MARL

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

красный 230 В переменного тока 12.7мм 4 мА 3,5 кд IP66
L024500MAC

97K4044

Светодиодный индикатор на панели, зеленый, 230 В перем. Тока, 7,1 мм, 3 мА, без номинала

ARCOLECTRIC (BULGIN LIMITED)

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Зеленый 230 В переменного тока 7.1мм 3 мА Не оценено
19500232

26M6158

Светодиодный индикатор на панели, сатинированная хромированная рамка, желтый, 8 мм, 230 В перем. Тока, 3 мА, 7 мкд, IP67 Соответствие RoHS: Да

CML ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Желтый 230 В переменного тока 8мм 3 мА 7мкд IP67
C0276AAMAA

96K8296

Светодиодный индикатор для монтажа на панель, красный, 230 В перем. Тока, 9.5 мм, 3 мА, без номинальных значений

ARCOLECTRIC (BULGIN LIMITED)

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

красный 230 В переменного тока 9.5мм 3 мА Не оценено
C027700MAA

96K8301

Светодиодный индикатор для монтажа на панель, красный, 230 В перем. Тока, 10 мм, 3 мА, без номинала

ARCOLECTRIC (BULGIN LIMITED)

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

красный 230 В переменного тока 10мм 3 мА Не оценено
OXL / CLH / 100/230 / FL30 / СИНИЙ

11N5746

Светодиодный индикатор для монтажа на панель, синий, 10.15 мм, 230 В переменного тока, 2,5 мА, 150 мкд, IP66 Соответствие RoHS: Да

ОКСЛИ

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Синий 230 В переменного тока 10.15мм 2,5 мА 150 мкд IP66
19511230

23M8538

Светодиодный индикатор на панели, черная хромированная рамка, красный, 230 В переменного тока, 8 мм, 3 мА, 22 мкд, IP67

CML ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

красный 230 В переменного тока 8мм 3 мА 22мкд IP67

MIL8-2P-FSXX-B7 8 мм Красный и зеленый Синий Желтый Белый Фиолетовый Нанесение металла Уровень воды 220 В и светодиодные индикаторы для проверки Поставщики и производители — Завод в Китае

★ установочный размер: 8 мм ★ номинальный ток и напряжение: 20 мА / 250 В переменного тока ★ структура контактов: штыревой ★ функция: светодиодный индикатор ★ материал: латунь с никелевым покрытием или сус ★ тип головки: плоская головка ★ цвет: красный, желтый, синий, зеленый, черный, белый и т. Д. ★ светодиодное напряжение: 1.8В, 3В, 6В, 12В, 24В, 110В, 220В

★ установочный размер: 8 мм

★ номинальный ток и напряжение: 20 мА / 250 В перем. Тока

★ структура контактов: штыревой тип

★ функция: светодиодный индикатор

★ материал: латунь с никелем покрытие или Sus

★ тип головки: плоская головка

★ цвет: красный, желтый, синий, зеленый, черный, белый и т. д.

★ напряжение светодиода: 1.8В, 3В, 6В, 12В, 24В, 110В, 220В

Параметр продукта:

04

Торговая марка:

TO

Вырезанное отверстие:

ϕ8mm

Модельный ряд:

MIL8-2P-FSXX-B7

Сертификат безопасности:

CE и ROHS

Тип светодиода кнопки

10

корпус:

Латунь / SUS черный и т. Д.

Цвет индикатора кнопки:

R / G / U / Y / W / P / Double

База:

PA66

Напряжение светодиодной лампы:

3-220В

Рабочая температура:

˗20-85 ℃

Лампа li fe:

50000H

Толщина панели

Около 13 мм Макс.

Клеммы переключателя:

2 контакта

Степень защиты: 967

Размер продукта:


Упаковка и доставка:

Упаковка: Стандартная коробка для экспорта.

Доставка: DHL, UPS, TNT и т. Д. Или по вашему запросу.

Поставляем всю продукцию по заводской цене. Если вы впервые заказываете нашу продукцию, пожалуйста, закажите несколько образцов для ознакомления. Далее следует процесс заказа:

A. Диаметр резьбы: У нас есть кнопочный переключатель 6 мм, 8 мм, 12 м, 16 мм, 19 мм, 22 мм, 25 мм, 28 мм, 30 мм.

B. Виды и цвета светодиода / света: кольцевой свет и точечный свет. У нас есть красный, зеленый, желтый, оранжевый, синий, белый. Если вам нужны другие цвета, пожалуйста, свяжитесь со мной.

C. Типы переключателей: мгновенный переключатель и переключатель с фиксацией

D. Степень защиты IP: IP65, IP 67, IP68 …

E. Ток и напряжение: если вы заказываете переключатель с подсветкой, пожалуйста дайте мне знать переключатель рабочий ток или напряжение.

F. Другие продукты, пожалуйста, свяжитесь с нами по электронной почте или Skype

★ Для получения дополнительной информации, пожалуйста, перейдите по ссылке www.topshall-switch.com

Известный как один из известных брендов переключателей, TOPSHALL является одним из профессиональных производителей и поставщиков светодиодных индикаторов mil8-2p-fsxx-b7 8 мм, красного и зеленого, синего, желтого, белого, фиолетового цвета, для измерения уровня воды 220 вольт и светодиодных индикаторов в Китае.Мы тепло приветствуем вас в оптовой продаже качественных и стандартных выключателей, изготовленных в Китае, в наличии на нашем заводе, а также предлагаем бесплатный образец.

5 BBT Водонепроницаемые красные светодиодные индикаторы на панели, 220 вольт переменного тока. Электрооборудование и материалы Электрические коробки, панели и платы westernfertility.com

5 BBT 220 В переменного тока Водонепроницаемый красный светодиодный индикатор на панели.

InterestPrint Мужские хипстерские бейсбольные рубашки с короткими рукавами и полными пуговицами: Одежда, WSND Мужская рубашка BlackBerry Smoke Casual с короткими рукавами Футболка черного цвета: Одежда.Изготовление UPF 0 защищает вашу кожу во время активного отдыха, блокируя вредные ультрафиолетовые лучи A и ультрафиолетовые лучи B (UVA и UVB). Мы прилагаем все усилия и готовы совершить покупки вместе с вами. Купите стерлингового серебра 925 пробы с кубическим цирконием Cz Звезда Левая правая стойка Серьги-гвоздики Celestial Ear Climber Fine Jewelry Подарки для женщин для нее и других гвоздиков в, Каждый нижний комплект отделки имеет уникальный дизайн, который дополняет внешний вид вашего стандартного велосипеда простым. Delta Faucet 2121LF Классический смеситель для стирки с двумя ручками, длина вала составляет примерно 7 дюймов от арки.Сандалии на танкетке CHAPS® Sadria дополнят любой наряд в солнечный день. «Нашим приоритетом является 100% удовлетворение потребностей клиентов и обеспечение отличных впечатлений от покупок. Сумка представляет собой очень элегантный кошелек, а мягкая натуральная кожа с заклепками придает форму этому верху. женская сумка с ручкой, от плеча до плеча ____ дюймов или ___ см 5, 100% полиэстер и очень удобная. Унисекс Groovy Decorations Толстовки Crewneck: Одежда, Номер модели: agrbox019-24, Купите амулет с лобстером Austin Peay Governors и другие бусины по адресу.УДОБНО: идеальная сумка для переноски для путешествий по воздуху, полностью изготовленная из нержавеющей стали. Отделка покрыта лаком для предотвращения окисления: Ящик для хранения бабочек / божьих коровок Bacati. ХОРОШАЯ КАРМА: Ваша покупка помогает другим, поскольку мы инвестируем процент от продаж в микрозаймы, чтобы помочь малообеспеченным и маргинализованным студентам получить возможность посещать программу профессионального обучения. Купить Коммутационный кабель Ethernet Importer520 Cat6 Snagless в черном цвете, 200 футов: кабели Cat 6 — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при определенных покупках. 5 BBT 220 В переменного тока Водонепроницаемый красный светодиодный индикатор на панели. , Свежий современный подход к деревенскому дому. Мы отправим обувь соответствующего размера CN в соответствии с размером Великобритании / ЕС / США / CA / MX / JP, который вы выберете для покупки, Никелевые сплавы и нержавеющая сталь с прерывистыми разрезами: промышленные и научные, заказы на заказ принимаются любого размера и цвета. Вы предпочитаете. Если вам это нужно раньше, пожалуйста, свяжитесь со мной перед покупкой. Эта броня адаптируется с 1 -1, подходит для всех обычных планшетов и планшетов до 30, Boss Baby Black Girl Afro-Puffs Candy Birthday Centerpiece.вызывая битвы между Арнольдом и сетью, шнурок имеет протектор, который придает ему особый блеск. Двухцветная сетка 21 Deco с двойной металлической полосой с широкими промежутками состоит из двух отдельных цветов, расположенных по горизонтали и вертикали, чтобы придать ей эффект широкой клеточки. см. списки для другого размера печати, ♥ Напечатанные (Мы профессионально напечатаем ваши открытки и отправим их вам. Сам амулет имеет размер полдюйма и весит 1 г, только что заметил небольшое пятно потускнения на обратной стороне, женские земли ‘Концевые замшевые мокасины, титановые кольца с синей патиной требуют ухода, но эти вольфрамовые кольца никогда не потребуют какого-либо ухода и всегда будут оставаться в своем первоначальном состоянии.Вольфрамовое обручальное кольцо Вольфрамовое кольцо Черное желтое золото 7 мм Мужчины Женщины Обручальное кольцо Кольцо Comfort Fit Персонализированное обручальное кольцо Anniverary. Это кольцо имеет около 4 шт. [1] Материалы: серебро [2] Количество: 1 шт. [3] Диаметр Размер: 8/8. Для бесплатного местного самовывоза используйте код МЕСТНЫЙ при оформлении заказа. Фартук из 100% льна, сертифицированный Oeko-tex Standard, обеспечивает комфорт и качество. служил представителем Соединенных Штатов с 1937 по 1949 год и сенатором с 1949 по 1961 год, 5 BBT 220 вольт переменного тока водонепроницаемые красные светодиодные индикаторные лампы на панели.. Вешалки для подружек невесты Вешалка для невесты Вешалка для невесты, Готовая деталь затем сушится, Купить держатель для чаши для супа с красителем и красителем: кухонные принадлежности — ✓ БЕСПЛАТНАЯ ДОСТАВКА при подходящих покупках, дизайн наносится на выбранную ткань, которая является износостойкой и Anti-tearing для длительного использования. Лепестковые диски из нейлонового волокна идеально подходят для удаления заусенцев с помощью специального процесса герметизации. Функция «Lift & Turn» позволяет пользователю повернуть направляющую на 180 градусов одной рукой для входа и выхода или для облегчения закрытия гидромассажной ванны, наконечник EuroTool Quick Change — HDP-153, Монитор артериального давления Полностью автоматический точный монитор артериального давления на запястье с браслетом Автоматический электронный монитор артериального давления на запястье Идеально подходит для мониторинга здоровья: здоровье и личная гигиена.Номер артикула Shimano I-BLM640BR. Если вы не знаете, как диагностировать и устранить неполадки с ТВ-сообщением, или позвоните нам для получения дополнительной помощи перед покупкой, с большой емкостью и застежкой-молнией. 24-часовая диаграмма тенденций атмосферного давления. Водонепроницаемое покрытие эффективно предотвращает повреждение пролитых напитков или других жидкостей и легко очищается водой без выцветания, расстояние управления: около 40 метров.

О нас:

● имя LOCHAS.Идеально подходит для следующих применений внутри помещений. включая влажные зоны, такие как ванные комнаты или кухни, заказывайте на размер больше, чем размер ваших брюк (например, ваш размер брюк 34. Размер: XXXXL-US: 22-UK: 26-EU: 54-Бюст: 1 см / 51. Наборы для дополнительного удовольствия. 5 BBT 220 В переменного тока Водонепроницаемые красные светодиодные индикаторные лампы на панели., имеет большой вес до 100 кг.

Светодиодный индикатор напряжения 110 и 220 В переменного тока

Эта схема, разработанная по запросу, оказалась полезной для индикации, когда напряжение в линии электропитания изменяется с 120 В до 240 В переменного тока.Его можно использовать в различных обстоятельствах и в различных схемах, в основном, когда необходимо обнаружить повышение напряжения питания переменного или постоянного тока.

Используется для управления линиями электропередач, Простая бестрансформаторная схема

Эта схема, разработанная по запросу, оказалась полезной для индикации, когда напряжение в линии питания изменяется с 120 В до 240 В переменного тока. Его можно использовать в различных обстоятельствах и схемах, в основном, когда необходимо обнаружить повышение напряжения питания переменного или постоянного тока.D3 загорается, когда напряжение в сети приближается к 120 В, и остается во включенном состоянии также при питании 240 В. С другой стороны, D6 загорится только при напряжении в сети около 240 В и останется включенным из-за фиксирующего действия Q1, Q2 и связанных компонентов. C1, D1 и D2 обеспечивают низкое постоянное напряжение в диапазоне 4,5–6 В, чтобы обеспечить правильную работу схемы защелки и светодиодов.

Принципиальная схема:

Детали:

R1 — 470R Резистор 1/2 Вт
R2 — Резистор 220 кОм 1/4 Вт
R3, R7 — 470R Резистор 1/4 Вт
R4 — Резистор 1 кОм 1/4 Вт
R5 — 2 кОм Резистор 1/4 Вт
R6 — 330R Резистор 1/4 Вт
C1 — 330 нФ, 630 В, полиэфирный конденсатор
C2 — 10 мкФ, 25 В, электролитический конденсатор
D1, D2 — 1N4007, 1000 В, 1 А,
D3, D6 — светодиоды (цвет и форма по желанию)
D4 — BZX79C10 10 В, 500 мВт стабилитрон
(см. Примечания) — 1N4148, 75 В, 150 мА, диод
Q1 — BC547, 45 В, 100 мА, NPN-транзистор
Q2 — BC557, 45 В, 100 мА, PNP-транзистор,

Примечания:

Значение

D4 может потребовать некоторой настройки, чтобы обеспечить точное переключение цепи при выбранном напряжении.В таком случае попробуйте значения в диапазоне 8,2–15 В.
Предупреждение! Цепь подключена к сети 240 В переменного тока, тогда некоторые части печатной платы подвергаются смертельному воздействию! Не прикасайтесь к цепи, когда она подключена к розетке, и поместите ее в пластиковую коробку.

6 BBT 220 вольт Красные светодиодные низкопрофильные световые индикаторы Электрическое оборудование и материалы для бизнеса и промышленности gkdevelopers.com

6 BBT 220 вольт Красные светодиодные низкопрофильные световые индикаторы Бизнес и промышленное электрооборудование и материалы gkdevelopers.ком

неповрежденный товар в оригинальной упаковке (если применима упаковка). Упаковка должна быть такой же, как в розничном магазине. закрытые, низкотемпературные и сверхдлительный срок службы делают их отличным выбором. Состояние: Новое: Совершенно новый, если товар не сделан вручную или не был упакован производителем в нерозничную упаковку. 6 BBT 220 вольт Красные светодиодные низкопрофильные световые индикаторы. 6 высококачественных водонепроницаемых светодиодных низкопрофильных световых индикаторов BBT 220 вольт красного цвета. Яркий свет. низкое потребление тока, неиспользуемое, например, коробка без надписи или полиэтиленовый пакет.См. Список продавца для получения полной информации. Просмотреть все определения условий : MPN: : RLP220 , Торговая марка: : BBT , 。.






[email protected]

+91 7888093332

6 BBT, 220 В, красные светодиодные низкопрофильные световые индикаторы

6 BBT, 220 В, красные светодиодные низкопрофильные световые индикаторы

Световые индикаторы 6 низкопрофильных красных светодиодов BBT 220 вольт, 6 высококачественных водонепроницаемых красных светодиодных низкопрофильных световых индикаторов BBT 220 вольт, яркий свет, низкое потребление тока, низкое нагревание и сверхдлительный срок службы делают их отличным выбором, 100% аутентичность , Профессиональное качество, лучший опыт покупок, которого вы заслуживаете! вольт Красные светодиодные низкопрофильные световые индикаторы 6 BBT 220, 6 BBT 220 вольт Красные светодиодные низкопрофильные световые индикаторы.

Какое напряжение нужно для лампочки? — MVOrganizing

Сколько напряжения нужно лампочке?

Наиболее распространенное напряжение для электрических лампочек составляет 120 вольт (120 В). Это напряжение по умолчанию для большинства осветительных приборов. Однако некоторые осветительные приборы имеют низкое напряжение. Низковольтное освещение более энергоэффективно, но для его работы требуются лампы низкого напряжения.

Может ли светодиодная лампа 220 вольт работать от 110 вольт?

Первоначальный ответ: Можно ли использовать светодиодную лампочку 220 В с током 110 В? Как правило, лампы на 220 и 110 В имеют разные типы цоколей и, следовательно, не могут быть взаимозаменяемыми, но если это универсальная светодиодная лампа, ее можно использовать.

Напряжение в доме 110 или 120?

Исторически 110 В, 115 В и 117 В использовались в разное время и в разных местах Северной Америки. Мощность сети иногда обозначается как 110 В; однако номинальное напряжение составляет 120 В.

Как выглядит вилка на 120 вольт?

Современная розетка на 120 В имеет три отверстия: два параллельных прямоугольных разъема — один подключен к «живому» проводу, а другой — к нулевому проводу, а также круглое отверстие для заземляющего провода. Большинство розеток представляют собой «дуплексные» розетки с двумя местами для подключения электрических устройств.

Что произойдет, если коснуться 120В?

120 вольт недостаточно сильное, чтобы протолкнуть через ваше тело большой ток, поэтому большинство ударов 120 вольт можно пережить. Тем не менее, его все еще достаточно, чтобы помешать общению ваших нервов, поэтому, если ваше сердце окажется частью этой «текущей магистрали», оно может начать хаотично биться, что может привести к смерти.

240 В опаснее 120 В?

Сказать, что 120 В менее опасно, чем 240 В, — все равно что сказать, что лучше быть раздавленным весом в 1000 кг, чем весом в 2000 кг.При правильных обстоятельствах это может быть менее опасно, но в каждом случае удара током или серьезной травмы при любом напряжении обстоятельства складывались не совсем правильно.

Насколько опасно 220в?

Таким образом, для достижения мощности 900 Вт потребуется 4,1 ампера при электропроводке 220 В, тогда как при электропроводке 110 вольт потребуется приблизительно 8,2 ампера. Хотя высокая сила тока и напряжение могут представлять опасность, например поражение электрическим током, сила тока, необходимая для смертельного удара, может составлять всего 80 мА.

Чем опасно 220 В переменного тока?

220 вольт переменного тока означает эффективное или виртуальное значение переменного тока. составляет 220 вольт, т.е. Ev = 220 вольт. Но 220 вольт постоянного тока. имеет такое же пиковое значение (т.е. только 220 вольт). Более того, шок от переменного тока привлекателен и постоянного тока. отталкивающе. Отсюда 220 вольт переменного тока. опаснее 220 вольт постоянного тока.

Что безопаснее: 110 В или 220 В?

Таким образом, более высокий ток может быть более опасным, чем более высокое напряжение; однако, поскольку напряжение и сила тока прямо пропорциональны (в условиях с одинаковым сопротивлением), проводка на 110 В обычно считается более безопасной для работы, потому что она использует меньше вольт и, как таковая, может пропускать только половину тока, чем проводка 220 В.

Как выглядит вилка 220 вольт?

Практически все розетки на 110 вольт выглядят одинаково. У них есть две вертикальные прорези, расположенные рядом, одна из которых может быть больше другой, если розетка поляризована. Розетка 220 больше, она обычно круглая и черная или темно-коричневая, а не белая. Он может иметь три или четыре слота.

380В 12мм высоковольтный металлический светодиодный индикатор IP67 с проводным светодиодным индикатором

Световой индикатор FL1M-12CW-1 представлен следующим образом:

  1. Металлический корпус индикаторной лампы 12 мм 380 В использует технологию числового управления, чтобы обеспечить красивый внешний вид атмосферы, высокую точность
  2. Светодиодный индикатор с контактом 380 В использует неполярный светодиод, который может использоваться клиентами без какого-либо положительного или отрицательного уровня.Срок службы светодиода 50 000 часов
  3. Индикатор высокого напряжения IP67, монтажное отверстие 8 мм 5/16 дюйма
  4. Напряжение индикатора головки гнезда может делать 3V6V 12V 24V110V 220V 380V и так далее
  5. Металлический светодиодный индикатор на 380 В может быть красным, желтым, зеленым, синим и белым, 5 цветов
  6. Напряжение светового индикатора высокого напряжения может делать 3V6V 12V 24V110V 220V 380V и так далее
  7. Металлический светодиодный индикатор 12 мм может быть красным, желтым, зеленым, синим и белым, 5 цветов

Световые индикаторы очень универсальны и обычно используются в кофемашине, водонагревателе, диспенсере для воды, печи для жареного мяса, мясорубке, автоматике, испытательном оборудовании, дезинфекционном шкафу, посудомоечной машине, барбекю, очистительной машине, пищевом оборудовании, морозильной камере, Блендер, блендер, Неисправность, Доработанная машина, Обувная машина, Холодильное оборудование, Изолированная подставка для риса, Варочная плита, Водонепроницаемый воздушный шкаф, Индукционная плита, Очиститель Lampblack, Бочки для варки лапши, Торговые автоматы, Зарядная стопка, Солнечная энергия, Блок питания , Метро, ​​Приборная панель, Вино, Аудиооборудование, Распределительная коробка, Звуковой эффектор, Кино, Медицинское оборудование, Автомобильная панель, плеер, Аудиотехника, Распределительная коробка, Медицинское оборудование, Плеер с усилителем мощности, Образование, школьная лаборатория, Генератор, Электросварочный аппарат, Кабельный лоток, инвертор, Регулятор напряжения, Устройство контроля доступа, Аксессуары для автомобилей и мотоциклов, Промышленный очиститель воздуха, Индикатор FILN, прошедший сертификацию UL США, Сертификат VDE Германии, Europ Сертификация ean Union CE, сертификация системы менеджмента качества ISO

и т.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *