Тиристорный регулятор мощности для сварочного аппарата схема: Тиристорная схема регулятора тока для сварочного аппарата

Содержание

Тиристорная схема регулятора тока для сварочного аппарата

В этом материале рассмотрим способы регулировки сварочного тока. Схемы регуляторов тока для сварочного аппарата разнообразны. Они имеют свои достоинства и недостатки. Постараемся помочь читателю выбрать регулятор тока для сварочного аппарата.

Схема сварочного аппарата.

Общие понятия

Общеизвестен принцип дуговой сварки. Освежим в памяти основные понятия. Чтобы получить сварочное соединение, необходимо создать дугу. Электрическая дуга возникает при подаче напряжения между сварочным электродом и поверхностью свариваемого материала. Ток дуги расплавляет металл, образуется расплавленная ванна между двумя торцами. После остывания шва получаем крепкое соединение двух металлов.

Схема дуговой сварки.

В России переменный ток регламентирован частотой 50 Гц. Питание для сварочного аппарата подается от сети фазным напряжением 220 В. Сварочные трансформаторы имеют две обмотки: первичную и вторичную.

Вторичное напряжение трансформатора составляет 70 В.

Разделяют ручной и автоматический режим сварки. В условиях домашней мастерской сварку проводят в ручном режиме. Перечислим параметры, которые изменяют в ручном режиме:

  • сила тока сварки;
  • напряжение дуги;
  • скорость сварочного электрода;
  • количество проходов на шов;
  • диаметр и марка электрода.

Правильный выбор и поддержание на протяжении сварочного процесса необходимых параметров являются залогом качественного сварного соединения.

При проведении ручной дуговой сварки необходимо грамотно распределять ток. Это позволит выполнить качественный шов. Стабильность дуги напрямую зависит от величины сварочного тока. Специалисты подбирают ее исходя из диаметра электродов и толщины свариваемых материалов.

Вернуться к оглавлению

Типы регуляторов тока

Принципиальная электрическая схема регулятора постоянного тока.

Существует больше количество способов изменения силы тока во время проведения сварочных операций. Еще больше разработано принципиальных электрических схем регуляторов. Способы управления сварочным током могут быть следующие:

  • установка пассивных элементов во вторичной цепи;
  • переключение числа витков обмоток трансформатора;
  • изменение магнитного потока трансформатора;
  • регулировка на полупроводниках.

Следует знать преимущества и недостатки разных методов регулировки. Назовем характерные особенности указанных типов.

Вернуться к оглавлению

Резистор и дроссель

Первый тип регулировки считается самым простым. В сварочную цепь включают последовательно резистор или дроссель. В этом случае изменение силы тока и напряжения дуги происходит за счет сопротивления и, соответственно, падения напряжения. Умельцы оценили простой и эффективный способ регулировки тока – включение сопротивления во вторичную цепь. Устройство несложное и надежное.

Изменение величины тока с помощью резистора.

Добавочные резисторы используются для смягчения вольт-амперной характеристики источника питания. Изготавливают сопротивление из толстой (диаметром 5-10 мм) проволоки из нихрома. В качестве пассивного элемента применяются мощные проволочные сопротивления.

Для регулировки тока вместо сопротивления ставят и дроссель. Благодаря введению индуктивности в цепь дуги переменного тока наблюдается сдвиг фаз тока и напряжения. Переход тока через нуль происходит при высоком напряжении трансформатора, что повышает надежность повторного зажигания и устойчивость горения дуги. Режим сварки становится мягкий, в результате чего получаем равномерный и качественный шов.

Этот способ нашел широкое распространение благодаря надежности, доступности в изготовлении и низкой стоимости. К недостаткам отнесем малый диапазон регулирования и сложность в перестройке параметров. Сделать такую конструкцию по силам каждому. Часто применяют трансформаторы типа ТС-180 или ТС-250 от старых ламповых телевизоров, с которых убирают первичные и вторичные обмотки и наматывают дроссельную обмотку с требуемым сечением. Сечение алюминиевого провода составит порядка 35-40 мм, медного – до 25 мм. Количество витков будет находиться в диапазоне 25-40 штук.

Вернуться к оглавлению

Переключение числа обмоток

Регулировка напряжения осуществляется изменением числа витков обмотки. Так изменяется коэффициент трансформации. Регулятор сварочного тока прост в эксплуатации. Для такого способа регулировки необходимо сделать отводы при намотке. Коммутация проводится переключателем, выдерживающим большой ток и сетевое напряжение. Недостатки переключения витков: трудно найти коммутатор, выдерживающий нагрузку в пару сотен ампер, небольшой диапазон регулировки тока.

Вернуться к оглавлению

Магнитный поток сердечника

Влиять на параметры тока можно магнитным потоком силового трансформатора. Регулирование силы сварочного тока производят за счет подвижности обмоток, изменения зазора или введения магнитного шунта. При сокращении или увеличении расстояния магнитные потоки двух обмоток меняются, в результате чего сила тока тоже будет изменяться. Способ магнитного потока практически не используется из-за сложности изготовления трансформаторного сердечника.

Вернуться к оглавлению

Полупроводники в схеме регулировки тока

Рисунок 1. Схема регулятора сварочного тока.

Полупроводниковые приборы совершили настоящий прорыв в сварочном деле. Современная схемотехника позволяет использовать мощные полупроводниковые ключи. Особенно распространены тиристорные схемы регулировки сварочного тока. Применение полупроводниковых приборов вытесняет неэффективные схемы управления. Данные решения повышают пределы регулировки тока. Габаритные и тяжелые сварочные трансформаторы, содержащие огромное количество дорогой меди, заменены на легкие и компактные.

Электронный тиристорный регулятор – это электронная схема, необходимая для контроля и настройки напряжения и силы тока, которые подводятся к электроду в месте сварки.

Для примера рассмотрим регулятор на тиристорах. Схема регулятора сварочного тока представлена на рис. 1.

В основу схемы положен принцип фазового регулятора тока.

Регулировка осуществляется подачей управляющего напряжения на твердотельные реле – тиристоры. Тиристоры VS1 и VS2 открываются поочередно при поступлении сигналов на управляющие электроды. Напряжение питания схемы формирования управляющих импульсов снимается с отдельной обмотки. Далее преобразуется в постоянное напряжение диодным мостом на VD5-VD8.

Положительная полуволна заряжает емкость С1. Время заряда электролитического конденсатора формируется резисторами R1, R2. Когда напряжение достигнет необходимой величины (более 5,6 В), происходит открытие динистора, образованного стабилитроном VD6 и тиристором VS3. Далее сигнал проходит через диод VD3 или VD4. При положительной полуволне открывается тиристор VS1, при отрицательной – VS2. Конденсатор С1 разрядится. После начала следующего полупериода тиристор VS1 закрывается, происходит зарядка емкости. В этот момент открывается ключ VS2, который продолжает подачу напряжения на электрическую дугу.

Наладка сводится к установке диапазона сварочного тока подстроечным сопротивлением R1. Как видим, схема регулировки сварочного тока довольно-таки проста. Доступность элементной базы, простота наладки и управления регулятора допускают изготовление такого сварочного аппарата самостоятельно.

Вернуться к оглавлению

Инверторные сварочные аппараты

Устройство инверторного сварочного аппарата.

Особое место среди сварочного оборудования занимают инверторы. Инверторный сварочный аппарат – это устройство, которое способно обеспечить устойчивое питание сварочной дуги. Малые габариты и небольшой вес придают аппарату мобильность. Сильной стороной инвертора является возможность применять электроды переменного и постоянного тока. Сварка позволяет стыковать цветные металлы и чугун.

Главные преимущества использования инвертора:

  • защита от нагрева деталей;
  • устойчивость к возмущениям сети;
  • независимость от колебаний и перегрузок по току;
  • независимость от перепадов промышленной сети;
  • способность скреплять цветной металл;
  • стабильность сварочного тока;
  • качественный шов;
  • ровное горение дуги;
  • малый вес и габариты.

К недостаткам сварочных инверторов относят высокую стоимость. Электронные детали следует оберегать от воздействия влаги, пыли, жары и сильных морозов (ниже 15оС).

Инверторное сварочное оборудование сегодня присутствует практически во всех слесарных и авторемонтных мастерских.

Регулятор тока для сварочного аппарата


Приветствую, Самоделкины!
Не так давно у автора YouTube канала «AKA KASYAN» оказался вот такой трехфазный силовой трансформатор от глубинного вибратора для укладки бетона.

Минусом данного трансформатора является то, что его обмотки намотаны алюминиевым проводом. А плюс заключается в том, что напряжение вторичных обмоток составляет порядка 36В.

В общем автор решил сделать из этого трансформатора самодельный сварочный аппарат. Выходное напряжение достаточно для нормального розжига дуги.

Трансформаторные сварочные аппараты были вытеснены более компактными и имеющими меньший вес инверторными сварочными аппаратами. Но неоспоримым плюсом трансформаторных сварочных аппаратов является предельно высокая надежность и долговременная постоянная нагрузка.

Сам же сварочный аппарат состоит из 2-ух основных частей: силового трансформатора и системы регулировки тока сварки.



Если аппарат постоянного тока, то в его состав входит еще и выпрямитель.

Ниже представлена достаточно известная схема регулировки сварочного тока на основе тиристоров:

Регулировка сварочного тока может осуществляться несколькими способами, например, нагрузочным балластом или сопротивлением, переключая отводы на первичные обмотки трансформатора, ну и наконец электронный способ регулировки, выполняемый, как правило, с помощью тиристоров.

Регуляторы тока на основе тиристоров являются предельно надежными и к тому же обладают высоким КПД из-за импульсного принципа регулировки. Что еще немаловажно, при регулировке мощности выходное напряжение сварочного аппарата без нагрузки остается неизменным, а это значит, что будет уверенный розжиг дуги в любом диапазоне выходного тока.

Регуляторы мощности можно устанавливать, как на входе по первичной цепи:

Так и на выходе, после вторичной обмотки:

Проблема состоит в том, что принцип регулировки мощности с помощью регулятора данного типа основывается на обрезании начального синусоидального сигнала, то есть, на нагрузку поступают части синусоиды, и если регулятор установлен по первичной цепи, то на трансформатор пойдут импульсы неправильной формы, что приводит к образованию своеобразного звука, дополнительной вибрации и перегреву обмоток.

Но несмотря ни на что данные системы вполне успешно справляются с индуктивной нагрузкой, а если к тому же под рукой имеется хороший и достаточно надежный трансформатор, то попробовать повторить, думаю, стоит.
В данном примере система регулировки тока установлена по вторичной цепи.

Это позволяет нам управлять сварочным током непосредственно. Плюс к тому такая система помимо регулировки сварочного тока будет служить еще и выпрямителем, то есть, дополняя сварочный трансформатор таким регулятором, вы получаете сварку постоянным током с возможностью регулировки.
Теперь подробней разберем схему будущего устройства. Она состоит из регулируемого выпрямителя:

В его состав входят пара диодов и пара тиристоров:


Далее идет система управления тиристорами:

Система управления в данном примере запитана от отдельного маломощного трансформатора с напряжением вторичной обмотки от 24 до 30В с током не менее 1А.

Конечно можно было на основном силовом трансформаторе намотать обмотку с необходимыми характеристиками и использовать его для запитки системы управления.

Сама схема выполнена на небольшой печатной плате. Ее вы можете скачать ЗДЕСЬ, вместе с общим архивом проекта.


Тиристор можно использовать любой с током не менее 1А.


В данном примере автор использовал 10-амперный, но в этом нет никакого смысла, просто такой был под рукой. То же самое и с диодами, хватит и 1-амперных, но запас по току никогда не будет лишним.


Верхний регулятор позволят настраивать пределы выходного тока.

Второй регулятор служит для регулировки основного тока сварки, тут уже необходимо использовать проволочные переменные резисторы желательно на 10 и более ватт.


Изначально автор установил вот такого монстра:

Но потом он был заменен на вот такой, менее мощный:

А сейчас давайте рассмотрим силовой выпрямитель:

Диоды и тиристоры, использованные здесь, несмотря на монструозный вид и прекрасные характеристики были куплены на барахолке буквально за копейки.

Данные диоды типа В200 с током в 200А, обратное напряжение зависит и от индекса. В данном случае 1400В. А вот тиристоры более мощныеТ171-320.

Такие тиристоры рассчитаны на ток аж в 320А. Ток в ударном режиме может доходить до 10000А. Конечно данные диоды и тиристоры способны на большее, и они не сгорят даже при токах в 300-400А. А еще эти компоненты произведены еще в СССР, то есть, их характеристики никак не завышены заводом изготовителем.

К недостаткам такого регулятора можно отнести разве что большой вес и приличные размеры.
Для всех силовых соединений автор применил луженые медные клеммы. Такие без труда можно приобрести практически в любом строительном магазине, стоят они не дорого.



Провода 2 по 6 квадратов параллельно, мало конечно, но зато они медные.


Держатель для электродов автор нашел в ближайшем строительном магазине, не совсем удобный конечно, да и качество изготовления оставляет желать лучшего, но какой был.

Теперь вернемся к трансформатору. Так как силовой трансформатор у нас трехфазный, а работать ему предстоит в однофазной сети, то нам придется пере коммутировать обмотки. На каждой катушке имеется своя первичная и вторичная обмотка.

Центральную катушку автор исключил.

Две крайние катушки подключены параллельно, как по первичной, так и по вторичной обмотке для работы от однофазной сети.

Но в ходе экспериментов выяснилось, что с учетом потерь на выпрямителе, напряжения недостаточно для нормального розжига дуги, поэтому вторичные обмотки пришлось подключить последовательно для увеличения общего напряжения, ток при этом будет соответственно в 2 раза меньше, но что поделать.

При токах 75-80А данный трансформатор начинает перегреваться и вонять, а так система управления именно в таком исполнении спокойно может быть использована для токов в 200 и даже больше ампер.

Спалив 3 электрода, автор понял, что трансформатор сильно перегрелся, все-таки он не предназначен для таких задач, но мы в данном случае проверяли систему регулировки тока, а она работает неплохо.
На этом все. Благодарю за внимание. До новых встреч!

Видеоролик автора:


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Простой и надежный регулятор постоянного тока для сварки и зарядки

Предлагается конструкция удобного и надёжного регулятора постоянного тока. Диапазон изменения им напряжения — от 0 до 0,86 U2, что позволяет использовать этот ценный прибор для различных целей. Например, для зарядки аккумуляторных батарей большой ёмкости, питания электронагревательных элементов, а главное — для проведения сварочных работ как обычным электродом, так и из нержавеющей стали, при плавной регулировке тока.

Принципиальная электрическая схема регулятора постоянного тока.

График, поясняющий работу силового блока, выполненного по однофазной мостовой несимметричной схеме (U2 — напряжение, поступающее со вторичной обмотки сварочного трансформатора, alpha — фаза открывания тиристора, t — время).

Регулятор может подключаться к любому сварочному трансформатору с напряжением вторичной обмотки U2=50…90В. Предлагаемая конструкция очень компактна. Общие габариты не превышают размеры обычного нерегулируемого выпрямителя типа «мостик» для сварки постоянным током.

Схема регулятора состоит из двух блоков: управления А и силового В. Причём первый представляет собой не что иное, как фазоимпульсный генератор. Выполнен он на базе аналога однопереходного транзистора, собранного из двух полупроводниковых приборов n-p-n и p-n-p типов. С помощью переменного резистора R2 регулируется постоянный ток конструкции.

В зависимости от положения движка R2 конденсатор С1 заряжается здесь до 6,9 В с различной скоростью. При превышении же этого напряжения транзисторы резко открываются. И С1 начинает разряжаться через них и обмотку импульсного трансформатора Т1.

Тиристор, к аноду которого подходит положительная полуволна (импульс передаётся через вторичные обмотки), при этом открывается.

В качестве импульсного можно использовать промышленные трёхобмоточные ТИ-3, ТИ-4, ТИ-5 с коэффициентом трансформации 1:1:1. И не только эти типы. Хорошие, например, результаты дает использование двух двухобмоточных трансформаторов ТИ-1 при последовательном соединении первичных обмоток.

Причём все названные типы ТИ позволяют изолировать генератор импульсов от управляющих электродов тиристоров.

Только есть одно «но». Мощность импульсов во вторичных обмотках ТИ недостаточна для включения соответствующих тиристоров во втором (см. схему), силовом блоке В. Выход из этой «конфликтной» ситуации был найден элементарный. Для включения мощных использованы маломощные тиристоры с высокой чувствительностью по управляющему электроду.

Силовой блок В выполнен по однофазной мостовой несимметричной схеме. То есть тиристоры трудятся здесь в одной фазе. А плечи на VD6 и VD7 при сварке работают как буферный диод.

Монтаж? Его можно выполнить и навесным, базируясь непосредственно на импульсном трансформаторе и других относительно «крупногабаритных» элементах схемы. Тем более что соединяемых в данную конструкцию радиодеталей, как говорится, минимум-миниморум.

Прибор начинает работать сразу, без каких-либо наладок. Соберите себе такой — не пожалеете.

А.ЧЕРНОВ, г. Саратов. Моделист-конструктор 1994 №9.

Как регулировать ток трансформатора в сварочном полуавтомате: схемы управления тиристорами для сварки

Тиристорный регулятор сварочного тока

Регулятор тока для сварочного аппарата


Приветствую, Самоделкины!
Не так давно у автора YouTube канала «AKA KASYAN» оказался вот такой трехфазный силовой трансформатор от глубинного вибратора для укладки бетона.

Минусом данного трансформатора является то, что его обмотки намотаны алюминиевым проводом. А плюс заключается в том, что напряжение вторичных обмоток составляет порядка 36В.

В общем автор решил сделать из этого трансформатора самодельный сварочный аппарат. Выходное напряжение достаточно для нормального розжига дуги.
Трансформаторные сварочные аппараты были вытеснены более компактными и имеющими меньший вес инверторными сварочными аппаратами. Но неоспоримым плюсом трансформаторных сварочных аппаратов является предельно высокая надежность и долговременная постоянная нагрузка.
Сам же сварочный аппарат состоит из 2-ух основных частей: силового трансформатора и системы регулировки тока сварки.


Если аппарат постоянного тока, то в его состав входит еще и выпрямитель.

Ниже представлена достаточно известная схема регулировки сварочного тока на основе тиристоров:

Регулировка сварочного тока может осуществляться несколькими способами, например, нагрузочным балластом или сопротивлением, переключая отводы на первичные обмотки трансформатора, ну и наконец электронный способ регулировки, выполняемый, как правило, с помощью тиристоров.

Регуляторы тока на основе тиристоров являются предельно надежными и к тому же обладают высоким КПД из-за импульсного принципа регулировки. Что еще немаловажно, при регулировке мощности выходное напряжение сварочного аппарата без нагрузки остается неизменным, а это значит, что будет уверенный розжиг дуги в любом диапазоне выходного тока.
Регуляторы мощности можно устанавливать, как на входе по первичной цепи:
Так и на выходе, после вторичной обмотки:
Проблема состоит в том, что принцип регулировки мощности с помощью регулятора данного типа основывается на обрезании начального синусоидального сигнала, то есть, на нагрузку поступают части синусоиды, и если регулятор установлен по первичной цепи, то на трансформатор пойдут импульсы неправильной формы, что приводит к образованию своеобразного звука, дополнительной вибрации и перегреву обмоток.
Но несмотря ни на что данные системы вполне успешно справляются с индуктивной нагрузкой, а если к тому же под рукой имеется хороший и достаточно надежный трансформатор, то попробовать повторить, думаю, стоит.
В данном примере система регулировки тока установлена по вторичной цепи.
Это позволяет нам управлять сварочным током непосредственно. Плюс к тому такая система помимо регулировки сварочного тока будет служить еще и выпрямителем, то есть, дополняя сварочный трансформатор таким регулятором, вы получаете сварку постоянным током с возможностью регулировки.
Теперь подробней разберем схему будущего устройства. Она состоит из регулируемого выпрямителя:
В его состав входят пара диодов и пара тиристоров:
Далее идет система управления тиристорами:
Система управления в данном примере запитана от отдельного маломощного трансформатора с напряжением вторичной обмотки от 24 до 30В с током не менее 1А.

Конечно можно было на основном силовом трансформаторе намотать обмотку с необходимыми характеристиками и использовать его для запитки системы управления.
Сама схема выполнена на небольшой печатной плате. Ее вы можете скачать , вместе с общим архивом проекта.
Тиристор можно использовать любой с током не менее 1А.
В данном примере автор использовал 10-амперный, но в этом нет никакого смысла, просто такой был под рукой. То же самое и с диодами, хватит и 1-амперных, но запас по току никогда не будет лишним.
Верхний регулятор позволят настраивать пределы выходного тока.
Второй регулятор служит для регулировки основного тока сварки, тут уже необходимо использовать проволочные переменные резисторы желательно на 10 и более ватт.
Изначально автор установил вот такого монстра:
Но потом он был заменен на вот такой, менее мощный:
А сейчас давайте рассмотрим силовой выпрямитель:
Диоды и тиристоры, использованные здесь, несмотря на монструозный вид и прекрасные характеристики были куплены на барахолке буквально за копейки.
Данные диоды типа В200 с током в 200А, обратное напряжение зависит и от индекса. В данном случае 1400В. А вот тиристоры более мощныеТ171-320.
Такие тиристоры рассчитаны на ток аж в 320А. Ток в ударном режиме может доходить до 10000А. Конечно данные диоды и тиристоры способны на большее, и они не сгорят даже при токах в 300-400А. А еще эти компоненты произведены еще в СССР, то есть, их характеристики никак не завышены заводом изготовителем.
К недостаткам такого регулятора можно отнести разве что большой вес и приличные размеры.
Для всех силовых соединений автор применил луженые медные клеммы. Такие без труда можно приобрести практически в любом строительном магазине, стоят они не дорого.
Провода 2 по 6 квадратов параллельно, мало конечно, но зато они медные.
Держатель для электродов автор нашел в ближайшем строительном магазине, не совсем удобный конечно, да и качество изготовления оставляет желать лучшего, но какой был.
Теперь вернемся к трансформатору. Так как силовой трансформатор у нас трехфазный, а работать ему предстоит в однофазной сети, то нам придется пере коммутировать обмотки. На каждой катушке имеется своя первичная и вторичная обмотка.
Центральную катушку автор исключил.
Две крайние катушки подключены параллельно, как по первичной, так и по вторичной обмотке для работы от однофазной сети.
Но в ходе экспериментов выяснилось, что с учетом потерь на выпрямителе, напряжения недостаточно для нормального розжига дуги, поэтому вторичные обмотки пришлось подключить последовательно для увеличения общего напряжения, ток при этом будет соответственно в 2 раза меньше, но что поделать.
При токах 75-80А данный трансформатор начинает перегреваться и вонять, а так система управления именно в таком исполнении спокойно может быть использована для токов в 200 и даже больше ампер.
Спалив 3 электрода, автор понял, что трансформатор сильно перегрелся, все-таки он не предназначен для таких задач, но мы в данном случае проверяли систему регулировки тока, а она работает неплохо.

На этом все. Благодарю за внимание. До новых встреч!
Видеоролик автора:

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

Источник: https://USamodelkina.ru/14882-reguljator-toka-dlja-svarochnogo-apparata.html

Общие понятия

Общеизвестен принцип дуговой сварки. Освежим в памяти основные понятия. Чтобы получить сварочное соединение, необходимо создать дугу. Электрическая дуга возникает при подаче напряжения между сварочным электродом и поверхностью свариваемого материала. Ток дуги расплавляет металл, образуется расплавленная ванна между двумя торцами. После остывания шва получаем крепкое соединение двух металлов.

Схема дуговой сварки.

В России переменный ток регламентирован частотой 50 Гц. Питание для сварочного аппарата подается от сети фазным напряжением 220 В. Сварочные трансформаторы имеют две обмотки: первичную и вторичную. Вторичное напряжение трансформатора составляет 70 В.

Разделяют ручной и автоматический режим сварки. В условиях домашней мастерской сварку проводят в ручном режиме. Перечислим параметры, которые изменяют в ручном режиме:

  • сила тока сварки;
  • напряжение дуги;
  • скорость сварочного электрода;
  • количество проходов на шов;
  • диаметр и марка электрода.

Правильный выбор и поддержание на протяжении сварочного процесса необходимых параметров являются залогом качественного сварного соединения.

При проведении ручной дуговой сварки необходимо грамотно распределять ток. Это позволит выполнить качественный шов. Стабильность дуги напрямую зависит от величины сварочного тока. Специалисты подбирают ее исходя из диаметра электродов и толщины свариваемых материалов.

Типы регуляторов тока

Принципиальная электрическая схема регулятора постоянного тока.

Существует больше количество способов изменения силы тока во время проведения сварочных операций. Еще больше разработано принципиальных электрических схем регуляторов. Способы управления сварочным током могут быть следующие:

  • установка пассивных элементов во вторичной цепи;
  • переключение числа витков обмоток трансформатора;
  • изменение магнитного потока трансформатора;
  • регулировка на полупроводниках.

Следует знать преимущества и недостатки разных методов регулировки. Назовем характерные особенности указанных типов.

Резистор и дроссель

Первый тип регулировки считается самым простым. В сварочную цепь включают последовательно резистор или дроссель. В этом случае изменение силы тока и напряжения дуги происходит за счет сопротивления и, соответственно, падения напряжения. Умельцы оценили простой и эффективный способ регулировки тока – включение сопротивления во вторичную цепь. Устройство несложное и надежное.

Изменение величины тока с помощью резистора.

Добавочные резисторы используются для смягчения вольт-амперной характеристики источника питания. Изготавливают сопротивление из толстой (диаметром 5-10 мм) проволоки из нихрома. В качестве пассивного элемента применяются мощные проволочные сопротивления.

Для регулировки тока вместо сопротивления ставят и дроссель. Благодаря введению индуктивности в цепь дуги переменного тока наблюдается сдвиг фаз тока и напряжения. Переход тока через нуль происходит при высоком напряжении трансформатора, что повышает надежность повторного зажигания и устойчивость горения дуги. Режим сварки становится мягкий, в результате чего получаем равномерный и качественный шов.

Этот способ нашел широкое распространение благодаря надежности, доступности в изготовлении и низкой стоимости. К недостаткам отнесем малый диапазон регулирования и сложность в перестройке параметров. Сделать такую конструкцию по силам каждому. Часто применяют трансформаторы типа ТС-180 или ТС-250 от старых ламповых телевизоров, с которых убирают первичные и вторичные обмотки и наматывают дроссельную обмотку с требуемым сечением. Сечение алюминиевого провода составит порядка 35-40 мм, медного – до 25 мм. Количество витков будет находиться в диапазоне 25-40 штук.

Переключение числа обмоток

Регулировка напряжения осуществляется изменением числа витков обмотки. Так изменяется коэффициент трансформации. Регулятор сварочного тока прост в эксплуатации. Для такого способа регулировки необходимо сделать отводы при намотке. Коммутация проводится переключателем, выдерживающим большой ток и сетевое напряжение. Недостатки переключения витков: трудно найти коммутатор, выдерживающий нагрузку в пару сотен ампер, небольшой диапазон регулировки тока.

Магнитный поток сердечника

Влиять на параметры тока можно магнитным потоком силового трансформатора. Регулирование силы сварочного тока производят за счет подвижности обмоток, изменения зазора или введения магнитного шунта. При сокращении или увеличении расстояния магнитные потоки двух обмоток меняются, в результате чего сила тока тоже будет изменяться. Способ магнитного потока практически не используется из-за сложности изготовления трансформаторного сердечника.

Полупроводники в схеме регулировки тока

Рисунок 1. Схема регулятора сварочного тока.

Полупроводниковые приборы совершили настоящий прорыв в сварочном деле. Современная схемотехника позволяет использовать мощные полупроводниковые ключи. Особенно распространены тиристорные схемы регулировки сварочного тока. Применение полупроводниковых приборов вытесняет неэффективные схемы управления. Данные решения повышают пределы регулировки тока. Габаритные и тяжелые сварочные трансформаторы, содержащие огромное количество дорогой меди, заменены на легкие и компактные.

Электронный тиристорный регулятор – это электронная схема, необходимая для контроля и настройки напряжения и силы тока, которые подводятся к электроду в месте сварки.

Для примера рассмотрим регулятор на тиристорах. Схема регулятора сварочного тока представлена на рис. 1.

В основу схемы положен принцип фазового регулятора тока.

Регулировка осуществляется подачей управляющего напряжения на твердотельные реле – тиристоры. Тиристоры VS1 и VS2 открываются поочередно при поступлении сигналов на управляющие электроды. Напряжение питания схемы формирования управляющих импульсов снимается с отдельной обмотки. Далее преобразуется в постоянное напряжение диодным мостом на VD5-VD8.

Положительная полуволна заряжает емкость С1. Время заряда электролитического конденсатора формируется резисторами R1, R2. Когда напряжение достигнет необходимой величины (более 5,6 В), происходит открытие динистора, образованного стабилитроном VD6 и тиристором VS3. Далее сигнал проходит через диод VD3 или VD4. При положительной полуволне открывается тиристор VS1, при отрицательной – VS2. Конденсатор С1 разрядится. После начала следующего полупериода тиристор VS1 закрывается, происходит зарядка емкости. В этот момент открывается ключ VS2, который продолжает подачу напряжения на электрическую дугу.

Наладка сводится к установке диапазона сварочного тока подстроечным сопротивлением R1. Как видим, схема регулировки сварочного тока довольно-таки проста. Доступность элементной базы, простота наладки и управления регулятора допускают изготовление такого сварочного аппарата самостоятельно.

Инверторные сварочные аппараты

Устройство инверторного сварочного аппарата.

Особое место среди сварочного оборудования занимают инверторы. Инверторный сварочный аппарат – это устройство, которое способно обеспечить устойчивое питание сварочной дуги. Малые габариты и небольшой вес придают аппарату мобильность. Сильной стороной инвертора является возможность применять электроды переменного и постоянного тока. Сварка позволяет стыковать цветные металлы и чугун.

Главные преимущества использования инвертора:

  • защита от нагрева деталей;
  • устойчивость к возмущениям сети;
  • независимость от колебаний и перегрузок по току;
  • независимость от перепадов промышленной сети;
  • способность скреплять цветной металл;
  • стабильность сварочного тока;
  • качественный шов;
  • ровное горение дуги;
  • малый вес и габариты.

К недостаткам сварочных инверторов относят высокую стоимость. Электронные детали следует оберегать от воздействия влаги, пыли, жары и сильных морозов (ниже 15оС).

Инверторное сварочное оборудование сегодня присутствует практически во всех слесарных и авторемонтных мастерских.

Источник: https://expertsvarki.ru/oborudovanie/sxema-regulyatora-toka-dlya-svarochnogo-apparata.html

Тиристорный регулятор тока для сварочного аппарата схема

Качество сварного шва в значительной мере зависит от характеристик электрической дуги. Для каждой толщины металла, в зависимости от его вида требуется определенной силы сварочный ток.

Кроме этого, важна вольтамперная характеристика аппарата для сварки, от этого зависит качество электрической дуги. Для резки металла тоже требуются свои значения электротока. То есть любой сварочный аппарат должен обладать регулятором, управляющим мощностью сварки.

Способы регулирования

Управлять током можно по-разному. Основные способы регулирования такие:

  • введение резистивной или индуктивной нагрузки во вторичную обмотку сварочного аппарата;
  • изменение количества витков во вторичной обмотке;
  • изменение магнитного потока аппарата для сварки;
  • использование полупроводниковых приборов.

Схематических реализаций этих способов множество. При изготовлении аппарата для сварки своими руками каждый может выбрать себе регулятор по вкусу и возможностям.

Резистор или индуктивность

Регулировка сварочного тока с использованием сопротивления или катушки индуктивности является самой простой и надежной. К держателю сварочных электродов последовательно подключают мощный резистор или дроссель. За счет этого меняется активное или индуктивное сопротивление нагрузки, что приводит к падению напряжения и изменению сварочного тока.

Регуляторы в виде резисторов применяют для улучшения вольтамперной характеристики сварочного аппарата. Используется набор мощных проволочных сопротивлений или один резистор, выполненный из толстой нихромовой проволоки в виде спирали.

Для изменения сопротивления специальным зажимом их подключают к определенному витку провода. Резистор выполняется в виде спирали для уменьшения габаритов и удобства использования. Номинал резистора не должен превышать 1 Ом.

Переменный ток в определенные моменты времени имеет нулевые или близкие к нему значения. В это время получается кратковременное гашение дуги. При изменении промежутка между электродом и деталью может произойти прилипание или полное ее гашение.

Для смягчения режима сваривания и соответственно получения качественного шва применяют регулятор в виде дросселя, который включается последовательно с держаком в выходной цепи аппарата.

Дополнительная индуктивность вызывает сдвиг фаз между выходным током и напряжением. При нулевых или близких к нему значениях переменного тока напряжение имеет максимальную амплитуду и наоборот. Это позволяет поддерживать стабильную дугу и обеспечивает надежное ее зажигание.

Дроссель можно изготовить из старого трансформатор. Используется только его магнитопровод, все обмотки удаляются. Вместо них наматывают 25-40 витков толстого медного провода.

Данный регулятор был широко распространен при использовании трансформаторных аппаратов переменного тока благодаря своей простоте и наличию комплектующих. Недостатками дроссельного регулятора сварочного тока являются небольшой диапазон управления.

Изменение количества витков

При этом методе регулировка характеристик дуги осуществляется благодаря изменению коэффициента трансформации. Коэффициент трансформации позволяют изменить дополнительные отводы из вторичной катушки. Переключаясь с одного отвода на другой можно менять напряжение в выходной цепи аппарата, что приводит к изменению мощности дуги.

Регулятор должен выдерживать большой сварочный ток. Недостатком является трудность нахождения коммутатора с такими характеристиками, небольшой диапазон регулировок и дискретность коэффициента трансформации.

Изменение магнитного потока

Данный способ управления используется в трансформаторных аппаратах сварки. Изменяя магнитный поток, меняют коэффициент полезного действия трансформатора, это в свою очередь меняет величину сварочного тока.

Регулятор работает за счет изменения зазора магнитопровода, введения магнитного шунта или подвижности обмоток. Изменяя расстояние между обмотками, меняют магнитный поток, что соответственно сказывается на параметрах электрической дуги.

На старых сварочных аппаратах на крышке находилась рукоятка. При ее вращении вторичная обмотка поднималась или опускалась за счет червячной передачи. Этот способ практически изжил себя, он использовался до распространения полупроводников.

Полупроводниковые приборы

Создание мощных полупроводниковых приборов, способных работать с большими токами и напряжениями, позволило разработать сварочные аппараты нового типа.

Они стали способны менять не только сопротивление вторичной цепи и фазы, но и изменять частоту тока, его форму, что также влияет на характеристики сварочной дуги. В традиционном трансформаторном сварочном аппарате используется регулятор сварочного тока на базе тиристорной схемы.

Регулировка в инверторах

Сварочные инверторы – это самые современные аппараты для электродуговой сварки. Использование мощных полупроводниковых выпрямителей на входе устройства и последующей трансформации переменного тока в постоянный, а затем в переменный высокой частоты позволил создать устройства компактные и мощные одновременно.

В инверторных аппаратах основным регулятором является изменение частоты задающего генератора. При одном и том же размере трансформатора мощность преобразования напрямую зависит от частоты входного напряжения.

Чем меньше частота, тем меньшая мощность передается на вторичную обмотку. Ручка регулировочного резистора выводится на лицевую панель инвертора. При ее вращении изменяются характеристики задающего генератора, что приводит к изменению режима переключения силовых транзисторов. В итоге получается требуемый сварочный ток.

При использовании инверторных сварочных полуавтоматов настройка происходит так же, как и при использовании ручной сварки.

Кроме внешних регуляторов в блоке управления инвертором предусмотрены еще много различных управляющих элементов и защит, обеспечивающих стабильную дугу и безопасную работу. Для начинающего сварщика лучшим выбором будет инверторный аппарат для сварки.

Применение тиристорной и симисторной схемы

После создания мощных тиристоров и симисторов их стали использовать в регуляторах силы выходного тока в сварочных аппаратах. Они могут устанавливаться в первичной обмотке трансформатора или во вторичной. Суть их работы заключается в следующем.

На управляющий контакт тиристора со схемы регулятора поступает сигнал, открывающий полупроводник. Длительность сигнала может изменяться в больших пределах, от 0 до длительности полупериода тока протекающего через тиристор.

Управляющий сигнал синхронизирован с регулируемым током. Изменение длительности сигнала вызывает обрезание начала каждого полупериода синусоиды сварочного тока. Увеличивается скважность, в результате средний ток уменьшается. Трансформаторы очень чувствительны к такому управлению.

Такой регулятор имеет существенный недостаток. Время нулевых значений увеличивается, что приводит к неравномерности дуги и ее несанкционированному гашению.

Для уменьшения негативного эффекта дополнительно приходится вводить дроссели, которые вызывают фазовый сдвиг между током и напряжением. В современных аппаратах данный метод практически не используются.

Рекомендованные сообщения

Создайте аккаунт или войдите в него для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Войти

Уже зарегистрированы? Войдите здесь.

Сейчас на странице 0 пользователей

Нет пользователей, просматривающих эту страницу.

Одна из главных составляющих по-настоящему качественного шва — это правильная и точная настройка сварочного тока в соответствии с поставленной задачей. Опытным сварщикам часто приходится работать с металлом разной толщины, и порой стандартной регулировки min/max недостаточно для полноценной работы. В таких случаях возникает необходимость многоступенчатой регулировки тока, с точностью до ампера. Эту проблему можно легко решить путем включения в цепь дополнительного прибора — регулятора тока.

Ток можно регулировать по вторичке (вторичной обмотке) и по первичке (первичной обмотке). При этом каждый из способов настройки трансформатора для сварки имеет свои особенности, которые важно учитывать. В этой статье мы расскажем, как осуществляется регулировка тока в сварочных аппаратах, приведем схемы регуляторов для сварочного полуавтомата, поможем грамотно выбрать регулятор сварочного тока по первичной обмотке для сварочного трансформатора.

Способы регулировки тока

Существуют множество способов регулировки тока, и выше мы писали о вторичной и первичной обмотке. На самом деле, это очень грубая классификация, поскольку регулировка еще делится на несколько составляющих. Мы не сможем разобрать все составляющие в рамках этой статьи, поэтому остановимся на наиболее популярных.

Один из самых часто применяемых методов регулировки тока — это добавление баластника на выходе вторичной обмотки. Это надежный и долговечный способ, баластник можно легко сделать своими руками и использовать в работе без дополнительных приборов. Зачастую баластники используют исключительно для уменьшения силы тока.

В этой статье мы подробно описывали принцип работы и особенности использования баластника для сварочного полуавтомата. Там вы найдете подробную инструкцию, как изготовить прибор в домашних условиях и как использовать его в своей работе.

Несмотря на множество достоинств, метод регулировки тока по вторичной обмотке при использовании в связке с трансформатором для сварки может быть не очень удобен, особенно для начинающих сварщиков. Прежде всего, баластник довольно громоздкий и его размер может достигать метра в длину. Еще прибор часто находится под ногами и при этом сильно нагревается, а это грубое нарушение техники безопасности.

Если вы не готовы мириться с этими недостатками, то рекомендуем обратить внимание на метод, когда производится регулировка сварочного тока по первичной обмотке. Для этих целей зачастую используются электронные приборы, которые можно легко сделать своими руками. Такой прибор будет беспроблемно регулировать ток по первичке и не доставит сварщику неудобств при эксплуатации.

Электронный регулятор станет незаменимым помощником дачника, который вынужден проводить сварку в условиях нестабильного напряжения. Часто домам просто не положено использование электроприборов более 3-5 кВт, а это очень ограничивает в работе. С помощью регулятора можно настроить свой аппарат таким образом, чтобы он мог бесперебойно работать даже с учетом низкого напряжения. Также такой прибор пригодится мастерам, которым необходимо постоянно перемещаться с места на место во время работы. Ведь регулятор не нужно таскать за собой, как баластник, и он никогда не станет причиной травм.

Теперь мы расскажем о том, как самому изготовить электронный регулятор из тиристоров.

Схема тиристорного регулятора

Выше вы можете видеть схему простейшего регулятор на 2 тиристорах с минимумов недефицитных деталей. Вы также можете сделать регулятор на симисторе, но наша практика показала, что тиристорный регулятор мощности долговечнее и работает более стабильно. Схема для сборки очень простая и по ней вы сможете довольно быстро собрать регулятор, имея минимальные навыки пайки.

Принцип действия данного регулятора тоже прост. У нас есть цепь первичной обмотки, в которую подключается регулятор. Регулятор состоит из транзисторов VS1 и VS2 (для каждой полуволны). RC-цепочка определяет момент, когда откроются тиристоры, вместе с тем меняется сопротивление R7. В результате мы получаем возможность изменять ток по первичке трансформатора, после чего ток меняется и во вторичке.

Обратите внимание! Настройка регулятора осуществляется под напряжением, об этом не стоит забывать. Чтобы избежать фатальных ошибок и не получить травму нужно обязательно изолировать все радиоэлементы.

В принципе, вы можете использовать транзисторы старого образца. Это отличный способ сэкономить, поскольку такие транзисторы можно без проблем найти в старом радиоприемнике или на барахолке. Но учтите, что такие транзисторы должны использоваться на рабочем напряжении не менее 400 В. Если вы посчитаете нужным, можете поставить динисторы вместо транзисторов и резисторов, показанных на схеме. Мы динисторы не использовали, поскольку в данном варианте они работают не очень стабильно. В целом, эта схема регулятора сварочного тока на тиристорах неплохо зарекомендовала себя и на ее основе было изготовлено множество регуляторов, которые стабильно работают и хорошо выполняют свою функцию.

Также вы могли видеть в магазинах регулятор контактной сварки РКС-801 и регулятор контактной сварки РКС-15-1. Мы не рекомендуем изготавливать их самостоятельно, поскольку это займет много времени и несильно сэкономит вам деньги, но если есть такое желание, то можете изготовить РКС-801. Ниже вы видите схему регулятора и схему его подключения к сварочнику. Откройте картинки в новом окне, чтобы лучше видеть текст.

Измерение сварочного тока

После того как вы изготовили и настроили регулятор, его можно использовать в работе. Для этого вам нужен еще один прибор, который будет измерять сварочный ток. К сожалению, не получится использовать бытовые амперметры, поскольку они не способны работать с полуавтоматами мощностью более 200 ампер. Поэтому рекомендуем использовать токоизмерительные клещи. Это относительно недорогой и точный способ узнать значение тока, управление клещами понятное и простое.

Так называемые «клещи» в верхней части прибора охватывают провод и измеряют ток. На корпусе прибора находится переключатель пределов измерения тока. В зависимости от модели и цены разные производители изготавливают токоизмерительные клещи, способные работать в диапазоне от 100 до 500 ампер. Выберите прибор, характеристики которого совпадают с вашим сварочным аппаратом.

Токоизмерительные клещи — это отличный выбор, если нужно оперативно измерить значение тока, при этом не влияя на цепь и не подключая в нее дополнительные элементы. Но есть один недостаток: клещи абсолютно бесполезны при измерении значения постоянного тока. Дело в том, что постоянный ток не создает переменное электромагнитное поле, поэтому прибор просто не видит его. Но в работе с переменным током такой прибор оправдывает все ожидания.

Есть другой способ измерения тока, он более радикальный. Можно добавить в цепь вашего сварочного полуавтомата промышленный амперметр, способный измерять большие значения тока. Еще можно просто временно добавлять амперметр в разрыв цепи сварочных проводов. Слева вы можете видеть схему такого амперметра, по которой можете его собрать.

Это дешевый и эффективный способ измерения тока, но использование амперметра в сварочных аппаратах тоже имеет свои особенности. В цепь добавляется не сам амперметр, а его резистор или шунт, при этом стрелочный индикатор должен параллельно подключаться к резистору или шунту. Если не соблюдать эту последовательность, прибор в лучшем случае просто не будет работать.

Вместо заключения

Регулирование сварочного тока на полуавтомате — это не так сложно, как может показаться на первый взгляд. Если вы обладаете минимальными знаниями в области электротехники, то сможете без проблем собрать своими силами регулятор тока для сварочного аппарата на тримисторах, сэкономив на покупке этого прибора в магазине. Самодельные регуляторы особенно важны для домашних мастеров, которые не готовы к дополнительным тратам на оборудование. Расскажите о своем опыте изготовления и использования регулятора тока в комментариях и делитесь этой статьей в своих социальных сетях. Желаем удачи в работе!

Регулятор тока для сварочного аппарата

Регулятор тока сварочного аппарата

Дата публикации: 09 июля 2011 .

Предлагаемое устройство предназначено для управления сварочным аппаратом при помощи мощного симистора ТС132-40, включенного в первичную обмотку трансформатора. При разработке данного устройства основной акцент делался на высокую надежность и стабильность работы в широком диапазоне как питающих напряжений, так и климатических условий.

Рисунок 1

Схема устройства представлена на рис. 1, его основой является микросхема КР1114ЕУ4А (импортный аналог TL494 и др.), применяемая в импульсных источниках питания с широтно-импульсной модуляцией (ШИМ) и двухтактным выходным каскадом. Диапазон питающего напряжения микросхемы — 7. 40В. На элементах R2—R4 VT1 VT2 собран детектор перехода сетевого напряжения через нуль, используемый для синхронизации модулятора микросхемы. Работает он следующим образом. Переменное напряжение с понижающего трансформатора после выпрямления диодным мостом VD1 через резистор R2 поступает на базу транзистора VT1, вследствие чего этот транзистор закрывается только в моменты перехода сетевого напряжения через нуль. В моменты, когда транзистор VT1 закрывается, импульсы высокого уровня с резистора R4 поступают на базу транзистора VT2, открывая его. Синхронизирующие импульсы отрицательной полярности с коллектора VT2 поступают на конденсатор СЗ внутреннего генератора пилообразного напряжения микросхемы, разряжая его в конце каждого полупериода сетевого напряжения. Микросхема работает в режиме двухтактного выхода, когда поочередно открываются внутренние выходные транзисторы микросхемы, включенные параллельно. С эмиттеров транзисторов ШИМ сигнал поступает на RC-цепочку R7C5R8R9 для формирования коротких (около 100 мкс) импульсов, открывающих транзистор VT3. Импульсы с его коллектора через трансформатор Т1 используются для непосредственного управления симистором. Напряжение регулировки с резистора R1 через помехоподавляющую цепочку R5C2 поступает на один из входов управления микросхемы.

Рисунок 2

Если в устройстве использовать импульсный трансформатор, имеющий в своем составе три одинаковые обмотки, то при небольшом изменении схемы (рис. 2) возможно его применение для управления сварочным аппаратом с выходным тринисторным мостом.

Резистор R10 на рис. 1 и резисторы R10, R12 на рис. 2 используются в качестве предохранителей, защищающих импульсный трансформатор при неверном включении тиристоров.

Конденсаторы С1, С2, С4, С5 применимы любого типа, СЗ — импортный пленочный. Диоды можно использовать любые рассчитанные на импульсный ток не менее 300 мА. При самостоятельном изготовлении трансформатора Т1 потребуется кольцо типоразмера К16x10x4 из феррита 2000НМ, обмоточный провод диаметром 0,12 мм и фторопластовая лента толщиной 50 мкм. Фторопластовая лента нарезается на ленты шириной 6 мм и длиной около 200 мм, на конец ленты приклеивается небольшой кусочек липкой ленты для начального закрепления на ферритовом кольце и наматывается два слоя, конец ленты также необходимо закреплять кусочком скотча. Далее наматываются обмотки, состоящие из 100 витков указанного провода каждая, все обмотки необходимо изолировать друг от друга двумя слоями фторопластовой ленты. После намотки всех обмоток необходимо изолировать трансформатор, для этого используется коробочка от рыболовных крючков внутренним диаметром 25 мм и высотой 12 мм, куда помещается трансформатор и заливается эпоксидной смолой.

Сайт для радиолюбителей

Простой регулятор тока сварочного аппарата

В промышленных аппаратах используют разные способы регулировки тока: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. К недостаткам такой регулировки надо отнести сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении.
Наиболее оптимальный вариант — еще при намотке вторичной обмотки сделать ее с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно для подстройки тока, но не для его регулировки в широких пределах.
Кроме того, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами.
Так, через регулирующее устройство проходят значительные токи, что приводит к его громоздкости, а для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200 А. Другое дело — цепь первичной обмотки, где токи в пять раз меньше. После долгих поисков путем проб и ошибок был найден оптимальный вариант решения проблемы — широко известный тиристорный регулятор, схема которого изображена на рис.1.

При предельной простоте и доступности элементной базы он прост в управлении, не требует настроек и хорошо зарекомендовал себя в работе работает не иначе, как «часики». Регулирование мощности происходит при периодическом отключении на фиксиро-
ванный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока (рис.2).

Среднее значение тока при этом уменьшается. Основные элементы регулятора (тиристоры) включены встречно и параллельно друг другу. Они поочередно открываются импульсами тока, формируемыми транзисторами VT1, VT2.
При включении регулятора в сеть оба тиристора закрыты, конденсаторы С1 и С2 начинают заряжаться через переменный резистор R7. Как только напряжение на одном из конденсаторов достигает напряжения лавинного пробоя транзистора, последний открывается, и через него течет ток разряда соединенного с ним конденсатора. Вслед за транзистором открывается и соответствующий тиристор, который подключает нагрузку к сети. После начала следующего, противоположного по знаку полупериода переменного тока тиристор закрывается, и начинается новый цикл зарядки конденсаторов, но уже в обратной полярности. Теперь открывается второй транзистор, и второй тиристор снова подключает нагрузку к сети. Изменением сопротивления переменного резистора R7 можно регулировать момент включения тиристоров от начала до конца полупериода, что в свою очередь приводит к изменению общего тока в первичной обмотке сварочного трансформатора Т1. Для увеличения или уменьшения диапазона регулировки можно изменить сопротивление переменного резистора R7 в большую или меньшую сторону соответственно.
Транзисторы VT1, VT2, работающие в лавинном режиме, и резисторы R5, R6, включенные в их базовые цепи, можно заменить динисторами дует соединить с крайними выводами резистора R7, а катоды подключить к резисторам R3 и R4. Если регулятор собрать на динисторах, то лучше использовать приборы типа КН102А.
В качестве VT1, VT2 хорошо зарекомендовали себя транзисторы старого образца типа П416, ГТ308. Вполне реальна замена их более современными маломощными высокочастотными, имеющими близкие параметры.
Переменный резистор типа СП-2, остальные типа МЛТ. Конденсаторы типа МБМ или МБТ на рабочее напряжение не менее 400 В.
Правильно собранный регулятор не требует налаживания. Необходимо лишь убедиться в стабильной работе транзисторов в лавинном режиме (или в стабильном включении динисторов).

Внимание! Устройство имеет гальваническую связь с сетью. Все элементы, включая теплоотводы тиристоров, должны быть изолированы от корпуса.

Литература
1. Медведев А. ЮТ. От регулятора до антенны.
2. Зубаль И. Сварочный трансформатор своими руками//Радiоаматор.-2000.-№5.


простой регулятор тока для сварочного трансформатора

Важной особенностью конструкции любого сварочного аппарата является возможность регулировки рабочего тока. В промышленных аппаратах используют разные способы регулировки тока: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. К недостаткам такой регулировки надо отнести сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении.

Наиболее оптимальный вариант – еще при намотке вторичной обмотки сделать ее с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно для подстройки тока, но не для его регулировки в широких пределах. Кроме того, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами.

Так, через регулирующее устройство проходят значительные токи, что приводит к его громоздкости, а для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200 А. Другое дело – цепь первичной обмотки, где токи в пять раз меньше.

После долгих поисков путем проб и ошибок был найден оптимальный вариант решения проблемы – широко известный тиристорный регулятор, схема которого изображена на рис.1.

При предельной простоте и доступности элементной базы он прост в управлении, не требует настроек и хорошо зарекомендовал себя в работе – работает не иначе, как “часы”.

Регулирование мощности происходит при периодическом отключении на фиксированный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока. Среднее значение тока при этом уменьшается.

Основные элементы регулятора (тиристоры) включены встречно и параллельно друг другу. Они поочередно открываются импульсами тока, формируемыми транзисторами VT1, VT2. При включении регулятора в сеть оба тиристора закрыты, конденсаторы С1 и С2 начинают заряжаться через переменный резистор R7. Как только напряжение на одном из конденсаторов достигает напряжения лавинного пробоя транзистора, последний открывается, и через него течет ток разряда соединенного с ним конденсатора.

Вслед за транзистором открывается и соответствующий тиристор, который подключает нагрузку к сети. После начала следующего, противоположного по знаку полупериода переменного тока тиристор закрывается, и начинается новый цикл зарядки конденсаторов, но уже в обратной полярности. Теперь открывается второй транзистор, и второй тиристор снова подключает нагрузку к сети.

Изменением сопротивления переменного резистора R7 можно регулировать момент включения тиристоров от начала до конца полупериода, что в свою очередь приводит к изменению общего тока в первичной обмотке сварочного трансформатора Т1. Для увеличения или уменьшения диапазона регулировки можно изменить сопротивление переменного резистора R7 в большую или меньшую сторону соответственно.

Транзисторы VT1, VT2, работающие в лавинном режиме, и резисторы R5, R6, включенные в их базовые цепи, можно заменить динисторами. Аноды динисторов следует соединить с крайними выводами резистора R7, а катоды подключить к резисторам R3 и R4. Если регулятор собрать на динисторах, то лучше использовать приборы типа КН102А.

В качестве VT1, VT2 хорошо зарекомендовали себя транзисторы старого образца типа П416, ГТ308. Вполне реальна замена их более современными маломощными высокочастотными, имеющими близкие параметры.

Переменный резистор типа СП-2, остальные типа МЛТ. Конденсаторы типа МБМ или МБТ на рабочее напряжение не менее 400 В.

Правильно собранный регулятор не требует налаживания. Необходимо лишь убедиться в стабильной работе транзисторов в лавинном режиме (или в стабильном включении динисторов).

Внимание! Устройство имеет гальваническую связь с сетью. Все элементы, включая теплоотводы тиристоров, должны быть изолированы от корпуса.

Своими руками

Электронный регулятор тока для сварочного трансформатора.

Важной особенностью конструкции любого сварочного аппарата является возможность регулировки рабочего тока. известны такие способы регулировки тока в сварочных трансформаторах: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. Все эти способы имеют как свои преимущества, так и недостатки. Например, недостатком последнего способа, является сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении.

Наиболее оптимальным является способ ступенчатой регулировки тока, с помощью изменения количества витков, например, подключаясь к отводам, сделанным при намотке вторичной обмотки трансформатора. Однако, этот способ не позволяет производить регулировку тока в широких пределах, поэтому им обычно пользуются для подстройки тока. Помимо прочего, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами. В этом случае, через регулирующее устройство проходят значительные токи, что является причиной увеличения ее габаритов. Для вторичной цепи практически не удается подобрать мощные стандартные переключатели, которые бы выдерживали ток величиной до 260 А.

Если сравнить токи в первичной и вторичной обмотках, то оказывается, что в цепи первичной обмотки сила тока в пять раз меньше, чем во вторичной обмотке. Это наталкивает на мысль поместить регулятор сварочного тока в первичную обмотку трансформатора, применив для этой цели тиристоры. На рис. 1 приведена схема регулятора сварочного тока на тиристорах. При предельной простоте и доступности элементной базы этот регулятор прост в управлении и не требует настройки.

Рис. 1 Принципиальная схема регулятора тока сварочного трансформатора:

VS1, VS2 – Е122-25-3

С1, С2 – 0,1 мкФ 400 В

Регулирование мощности происходит при периодическом отключении на фиксированный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока. Среднее значение тока при этом уменьшается. Основные элементы регулятора (тиристоры) включены встречно и параллельно друг другу. Они поочередно открываются импульсами тока, формируемыми транзисторами VT1, VT2.

При включении регулятора в сеть оба тиристора закрыты, конденсаторы С1 и С2 начинают заряжаться через переменный резистор R7. Как только напряжение на одном из конденсаторов достигает напряжения лавинного пробоя транзистора, последний открывается, и через него течет ток разряда соединенного с ним конденсатора. Вслед за транзистором открывается и соответствующий тиристор, который подключает нагрузку к сети.

Изменением сопротивления резистора R7 можно регулировать момент включения тиристоров от начала до конца полупериода, что в свою очередь приводит к изменению общего тока в первичной обмотке сварочного трансформатора Т1. Для увеличения или уменьшения диапазона регулировки можно изменить сопротивление переменного резистора R7 в большую или меньшую сторону соответственно.

Транзисторы VT1, VT2, работающие в лавинном режиме, и резисторы R5, R6, включенные в их базовые цепи, можно заменить динисторами (рис. 2)

Рис. 2 Принципиальная схема замены транзистора с резистором на динистор, в схеме регулятора тока сварочного трансформатора.

Аноды динисторов следует соединить с крайними выводами резистора R7, а катоды подключить к резисторам R3 и R4. Если регулятор собрать на динисторах, то лучше использовать приборы типа КН102А.

В качестве VT1, VT2 хорошо зарекомендовали себя транзисторы старого образца типа П416, ГТ308, однако эти транзисторы, при желании, можно заменить современными маломощными высокочастотными транзисторами, имеющими близкие параметры. Переменный резистор типа СП-2, а постоянные резисторы типа МЛТ. Конденсаторы типа МБМ или К73-17 на рабочее напряжение не менее 400 В.

Все детали устройства с помощью навесного монтажа собираются на текстолитовой пластине толщиной 1. 1,5 мм. Устройство имеет гальваническую связь с сетью, поэтому все элементы, включая теплоотводы тиристоров, должны быть изолированы от корпуса.

Правильно собранный регулятор сварочного тока особой наладки не требует, необходимо только убедиться в стабильной работе транзисторов в лавинном режиме или, при использовании динисторов, в стабильном их включении. Вернутся


Как сделать простой регулятор тока для сварочного трансформатора

Важной особенностью конструкции любого сварочного аппарата является возможность регулировки рабочего тока. В промышленных аппаратах используют разные способы регулировки тока: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. К недостаткам такой регулировки надо отнести сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении.

Наиболее оптимальный вариант – еще при намотке вторичной обмотки сделать ее с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно для подстройки тока, но не для его регулировки в широких пределах. Кроме того, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами.

Так, через регулирующее устройство проходят значительные токи, что приводит к его громоздкости, а для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200 А. Другое дело – цепь первичной обмотки, где токи в пять раз меньше.

После долгих поисков путем проб и ошибок был найден оптимальный вариант решения проблемы – широко известный тиристорный регулятор, схема которого изображена на рис.1.

При предельной простоте и доступности элементной базы он прост в управлении, не требует настроек и хорошо зарекомендовал себя в работе – работает не иначе, как “часы”.

Регулирование мощности происходит при периодическом отключении на фиксированный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока. Среднее значение тока при этом уменьшается.

Основные элементы регулятора (тиристоры) включены встречно и параллельно друг другу. Они поочередно открываются импульсами тока, формируемыми транзисторами VT1, VT2. При включении регулятора в сеть оба тиристора закрыты, конденсаторы С1 и С2 начинают заряжаться через переменный резистор R7. Как только напряжение на одном из конденсаторов достигает напряжения лавинного пробоя транзистора, последний открывается, и через него течет ток разряда соединенного с ним конденсатора.

Вслед за транзистором открывается и соответствующий тиристор, который подключает нагрузку к сети. После начала следующего, противоположного по знаку полупериода переменного тока тиристор закрывается, и начинается новый цикл зарядки конденсаторов, но уже в обратной полярности. Теперь открывается второй транзистор, и второй тиристор снова подключает нагрузку к сети.

Изменением сопротивления переменного резистора R7 можно регулировать момент включения тиристоров от начала до конца полупериода, что в свою очередь приводит к изменению общего тока в первичной обмотке сварочного трансформатора Т1. Для увеличения или уменьшения диапазона регулировки можно изменить сопротивление переменного резистора R7 в большую или меньшую сторону соответственно.

Транзисторы VT1, VT2, работающие в лавинном режиме, и резисторы R5, R6, включенные в их базовые цепи, можно заменить динисторами. Аноды динисторов следует соединить с крайними выводами резистора R7, а катоды подключить к резисторам R3 и R4. Если регулятор собрать на динисторах, то лучше использовать приборы типа КН102А.

В качестве VT1, VT2 хорошо зарекомендовали себя транзисторы старого образца типа П416, ГТ308. Вполне реальна замена их более современными маломощными высокочастотными, имеющими близкие параметры.

Переменный резистор типа СП-2, остальные типа МЛТ. Конденсаторы типа МБМ или МБТ на рабочее напряжение не менее 400 В.

Правильно собранный регулятор не требует налаживания. Необходимо лишь убедиться в стабильной работе транзисторов в лавинном режиме (или в стабильном включении динисторов).

Внимание! Устройство имеет гальваническую связь с сетью. Все элементы, включая теплоотводы тиристоров, должны быть изолированы от корпуса.


Делаем регулятор тока для сварочного аппарата своими руками

Одна из главных составляющих по-настоящему качественного шва — это правильная и точная настройка сварочного тока в соответствии с поставленной задачей. Опытным сварщикам часто приходится работать с металлом разной толщины, и порой стандартной регулировки min/max недостаточно для полноценной работы. В таких случаях возникает необходимость многоступенчатой регулировки тока, с точностью до ампера. Эту проблему можно легко решить путем включения в цепь дополнительного прибора — регулятора тока.

Ток можно регулировать по вторичке (вторичной обмотке) и по первичке (первичной обмотке). При этом каждый из способов настройки трансформатора для сварки имеет свои особенности, которые важно учитывать. В этой статье мы расскажем, как осуществляется регулировка тока в сварочных аппаратах, приведем схемы регуляторов для сварочного полуавтомата, поможем грамотно выбрать регулятор сварочного тока по первичной обмотке для сварочного трансформатора.

Содержание статьи

Способы регулировки тока

Существуют множество способов регулировки тока, и выше мы писали о вторичной и первичной обмотке. На самом деле, это очень грубая классификация, поскольку регулировка еще делится на несколько составляющих. Мы не сможем разобрать все составляющие в рамках этой статьи, поэтому остановимся на наиболее популярных.

Один из самых часто применяемых методов регулировки тока — это добавление баластника на выходе вторичной обмотки. Это надежный и долговечный способ, баластник можно легко сделать своими руками и использовать в работе без дополнительных приборов. Зачастую баластники используют исключительно для уменьшения силы тока.

В этой статье мы подробно описывали принцип работы и особенности использования баластника для сварочного полуавтомата. Там вы найдете подробную инструкцию, как изготовить прибор в домашних условиях и как использовать его в своей работе.

Несмотря на множество достоинств, метод регулировки тока по вторичной обмотке при использовании в связке с трансформатором для сварки может быть не очень удобен, особенно для начинающих сварщиков. Прежде всего, баластник довольно громоздкий и его размер может достигать метра в длину. Еще прибор часто находится под ногами и при этом сильно нагревается, а это грубое нарушение техники безопасности.

Если вы не готовы мириться с этими недостатками, то рекомендуем обратить внимание на метод, когда производится регулировка сварочного тока по первичной обмотке. Для этих целей зачастую используются электронные приборы, которые можно легко сделать своими руками. Такой прибор будет беспроблемно регулировать ток по первичке и не доставит сварщику неудобств при эксплуатации.

Электронный регулятор станет незаменимым помощником дачника, который вынужден проводить сварку в условиях нестабильного напряжения. Часто домам просто не положено использование электроприборов более 3-5 кВт, а это очень ограничивает в работе. С помощью регулятора можно настроить свой аппарат таким образом, чтобы он мог бесперебойно работать даже с учетом низкого напряжения. Также такой прибор пригодится мастерам, которым необходимо постоянно перемещаться с места на место во время работы. Ведь регулятор не нужно таскать за собой, как баластник, и он никогда не станет причиной травм.

Теперь мы расскажем о том, как самому изготовить электронный регулятор из тиристоров.

Схема тиристорного регулятора

Выше вы можете видеть схему простейшего регулятор на 2 тиристорах с минимумов недефицитных деталей. Вы также можете сделать регулятор на симисторе, но наша практика показала, что тиристорный регулятор мощности долговечнее и работает более стабильно. Схема для сборки очень простая и по ней вы сможете довольно быстро собрать регулятор, имея минимальные навыки пайки.

Принцип действия данного регулятора тоже прост. У нас есть цепь первичной обмотки, в которую подключается регулятор. Регулятор состоит из транзисторов VS1 и VS2 (для каждой полуволны). RC-цепочка определяет момент, когда откроются тиристоры, вместе с тем меняется сопротивление R7. В результате мы получаем возможность изменять ток по первичке трансформатора, после чего ток меняется и во вторичке.

Обратите внимание! Настройка регулятора осуществляется под напряжением, об этом не стоит забывать. Чтобы избежать фатальных ошибок и не получить травму нужно обязательно изолировать все радиоэлементы.

В принципе, вы можете использовать транзисторы старого образца. Это отличный способ сэкономить, поскольку такие транзисторы можно без проблем найти в старом радиоприемнике или на барахолке. Но учтите, что такие транзисторы должны использоваться на рабочем напряжении не менее 400 В. Если вы посчитаете нужным, можете поставить динисторы вместо транзисторов и резисторов, показанных на схеме. Мы динисторы не использовали, поскольку в данном варианте они работают не очень стабильно. В целом, эта схема регулятора сварочного тока на тиристорах неплохо зарекомендовала себя и на ее основе было изготовлено множество регуляторов, которые стабильно работают и хорошо выполняют свою функцию.

Также вы могли видеть в магазинах регулятор контактной сварки РКС-801 и регулятор контактной сварки РКС-15-1. Мы не рекомендуем изготавливать их самостоятельно, поскольку это займет много времени и несильно сэкономит вам деньги, но если есть такое желание, то можете изготовить РКС-801. Ниже вы видите схему регулятора и схему его подключения к сварочнику. Откройте картинки в новом окне, чтобы лучше видеть текст.

Измерение сварочного тока

После того как вы изготовили и настроили регулятор, его можно использовать в работе. Для этого вам нужен еще один прибор, который будет измерять сварочный ток. К сожалению, не получится использовать бытовые амперметры, поскольку они не способны работать с полуавтоматами мощностью более 200 ампер. Поэтому рекомендуем использовать токоизмерительные клещи. Это относительно недорогой и точный способ узнать значение тока, управление клещами понятное и простое.

Так называемые «клещи» в верхней части прибора охватывают провод и измеряют ток. На корпусе прибора находится переключатель пределов измерения тока. В зависимости от модели и цены разные производители изготавливают токоизмерительные клещи, способные работать в диапазоне от 100 до 500 ампер. Выберите прибор, характеристики которого совпадают с вашим сварочным аппаратом.

Токоизмерительные клещи — это отличный выбор, если нужно оперативно измерить значение тока, при этом не влияя на цепь и не подключая в нее дополнительные элементы. Но есть один недостаток: клещи абсолютно бесполезны при измерении значения постоянного тока. Дело в том, что постоянный ток не создает переменное электромагнитное поле, поэтому прибор просто не видит его. Но в работе с переменным током такой прибор оправдывает все ожидания.

Есть другой способ измерения тока, он более радикальный. Можно добавить в цепь вашего сварочного полуавтомата промышленный амперметр, способный измерять большие значения тока. Еще можно просто временно добавлять амперметр в разрыв цепи сварочных проводов. Слева вы можете видеть схему такого амперметра, по которой можете его собрать.

Это дешевый и эффективный способ измерения тока, но использование амперметра в сварочных аппаратах тоже имеет свои особенности. В цепь добавляется не сам амперметр, а его резистор или шунт, при этом стрелочный индикатор должен параллельно подключаться к резистору или шунту. Если не соблюдать эту последовательность, прибор в лучшем случае просто не будет работать.

Вместо заключения

Регулирование сварочного тока на полуавтомате — это не так сложно, как может показаться на первый взгляд. Если вы обладаете минимальными знаниями в области электротехники, то сможете без проблем собрать своими силами регулятор тока для сварочного аппарата на тримисторах, сэкономив на покупке этого прибора в магазине. Самодельные регуляторы особенно важны для домашних мастеров, которые не готовы к дополнительным тратам на оборудование. Расскажите о своем опыте изготовления и использования регулятора тока в комментариях и делитесь этой статьей в своих социальных сетях. Желаем удачи в работе!

тиристор% 20control% 20arc% 20welding% 20machines% 20circuit datasheet & application notes

2002 — Симистор к 220

Аннотация: Тиристорный симистор 400 В 16 А TRIAC 25 А 600 В симистор 600 В 25 А симистор 400 В 25 А Симистор 3 А 600 В симистор 10 А Тиристор 400 В 3 А 600 В Тиристор to 220
Текст: нет текста в файле


Оригинал
PDF ET013 ET015 ET020 SLA0201 STA203A STA221A TF321M TF321M-A TF321S TF341M Симистор to220 Тиристор симистор 400в 16а TRIAC 25a 600v симистор 600в 25а симистор 400в 25а Симистор 3а 600в симистор 10а 400в тиристор 3а 600в Тиристор к220
2008 — тиристор анодный затвор

Реферат: 3-фазная схема запуска тиристора схемы управления затвором быстрого тиристора 200A 3-фазный тиристорный привод постоянного тока pgh25016am 600A тиристорный scr демпфер ДЛЯ 3-фазного МОСТОВОГО выпрямителя схема запуска тиристора 200A схема управления тиристорным затвором 6 схема драйвера тиристора
Текст: нет текста в файле


Оригинал
PDF 108мм ПГх408 тиристор с анодным затвором Трехфазная схема включения тиристора быстрые тиристорные схемы управления затвором 200А 3-х фазный тиристорный привод постоянного тока pgh25016am 600А тиристорный scr демпфер ДЛЯ 3-ФАЗНОГО МОСТОВОГО ВЫПРЯМИТЕЛЯ схема включения тиристора Схема управления тиристорным затвором на 200 А 6 тиристорная схема драйвера
2011 — тиристор анодный затвор

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 5×1014 1×107 DEAR0000112) тиристор с анодным затвором
1999 — Тиристор 470 А

Аннотация: тиристорный эквивалент 1 кОм 4-контактный резисторный массив Тиристор Т 25 тиристорный направляющий тиристорный конденсатор 23 мкФ MITSUBISHI GATE ARRAY PULSE тиристор SA04
Текст: нет текста в файле


Оригинал
PDF ASA100) Тиристор 470 А тиристорный эквивалент 1 кОм 4-контактный резистор Тиристор Т 25 направляющая тиристора тиристор конденсатор 23 мкФ MITSUBISHI GATE ARRAY ИМПУЛЬСНЫЙ тиристор SA04
Тиристор ГТО

Реферат: Тиристор GTO 40A Схема схемы тиристорного инвертора тиристорного драйвера GTO ТИРИСТОР GTO Тиристор GTO Указания по применению Схема привода затвора gto vvvf управление скоростью 3-фазного асинхронного двигателя Блок привода затвора GTO Теория, конструкция и применение демпфирующих цепей
Текст: нет текста в файле


Оригинал
PDF
1998 — тиристор лтт

Реферат: SIEMENS THYRISTOR Тиристоры Siemens EUPEC Тиристор LTT от постоянного тока в переменный инвертор через тиристор BREAK OVER DIODE плата управления тиристорная защита тиристора абстрактный срок службы тиристора от преобразователя переменного тока в постоянный через тиристор
Текст: нет текста в файле


Оригинал
PDF D-91362 тиристор лтт SIEMENS THYRISTOR Тиристоры Сименс EUPEC Тиристор LTT преобразователь постоянного тока в переменный с помощью тиристора ПЕРЕРЫВ НАД ДИОДОМ плата управления тиристором Аннотация тиристорной защиты срок службы тиристора преобразователь переменного тока в постоянный с помощью тиристора
fgt313

Реферат: транзистор fgt313 SLA4052 RG-2A Diode SLA5222 fgt412 RBV-3006 FMN-1106S SLA5096, диод ry2a
Текст: нет текста в файле


Оригинал
PDF 2SA1186 2SC4024 2SA1215 2SC4131 2SA1216 2SC4138 100 В переменного тока 2SA1294 2SC4140 fgt313 транзистор fgt313 SLA4052 Диод РГ-2А SLA5222 fgt412 РБВ-3006 FMN-1106S SLA5096 диод ry2a
2015 — Тиристор с МОП-управлением

Реферат: срок службы тиристора
Текст: нет текста в файле


Оригинал
PDF
2001 — ТР250-180У

Реферат: TS600-170 «Power over LAN» TR250-145 REBD TS250-130-RA TSL250-080
Текст: нет текста в файле


Оригинал
PDF
2002 — микросхема драйвера scr выпрямителя 3 фазы

Реферат: OPTOCOUPLER микросхема драйвера тиристорного затвора SCR TRIGGER PULSE Схема OPTOCOUPLER для тиристорного затвора однофазный полумост, управляемый выпрямитель scr Оптопара с тиристором SCR Phase Control IC SCR TRIGGER PULSE scr драйвер ic для выпрямителя 3 фазы 6 выхода
Текст: нет текста в файле


Оригинал
PDF
тиристор тт 500 н 16

Реферат: тиристорный выпрямитель с фазовым регулированием тиристор t 500 n 1800 однофазный тиристорный выпрямитель тиристор tt 121 трехфазный мост полностью управляемый выпрямитель тиристор t 500 n 18 диод ECONOPACK w3 диод b6
Текст: нет текста в файле


Оригинал
PDF
2004 — драйвер затвора scr ic

Аннотация: микросхема драйвера scr для выпрямителя микросхема трехфазного драйвера для тиристора OPTOCOUPLER для тиристорного затвора микросхема управления трехфазным мостом SCR SCR TRIGGER PULSE схема OPTOCOUPLER триггер тиристор scr OPTOCOUPLER тиристор схема управления тиристором схема контактов тиристора
Текст: нет текста в файле


Оригинал
PDF
1998 — Трехфазный мостовой полностью управляемый выпрямитель

Реферат: tt 60 n 16 kof press-pack igbt однофазный полностью управляемый выпрямитель с тиристорным управлением с датчиком тока от постоянного к постоянному току с помощью тиристора.
Текст: нет текста в файле


Оригинал
PDF
2003 — EUPEC tt 162 n 16

Реферат: тиристорный тиристорный модуль tt 162 n bsm 25 gp 120 igbt модуль bsm 100 gb 60 dl ДИСКОВЫЙ ТИРИСТОРНЫЙ диод EUPEC tt 105 N 16 мощный тиристорный модуль scr IGBT FZ
Текст: нет текста в файле


Оригинал
PDF кука-2003-инхальт EUPEC tt 162 n 16 тиристор тт 162 н тиристор большой мощности модуль bsm 25 gp 120 igbt модуль bsm 100 гб 60 дл ДИСК ТИРИСТОР диод EUPEC tt 105 N 16 тиристор большой мощности scr Модуль IGBT FZ
2001 — ТИРИСТОР

Реферат: применение тиристора Тиристор 10А Указания по применению тиристора Указания по применению тиристор ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ Тиристор с фазовым управлением тиристор высокой мощности eupec тиристор с фазовым управлением
Текст: нет текста в файле


Оригинал
PDF 119мм 05ITSM ТИРИСТОР применение тиристора тиристор 10А указания по применению тиристоров заметки по применению ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ тиристоров фазовый контроль тиристор большой мощности тиристор с фазовым регулированием eupec
тиристор тт 162 н

Реферат: быстрый тиристор 1000 В тиристор tt 162 n 16 IGBT модуль FZ 400 тиристор td 162 n тиристор TT 162 тиристор КОНФИГУРАЦИЯ КОНФИГУРАЦИИ тиристора tt 500 n 16 THYRISTOR H 1500 тиристор 162
Текст: нет текста в файле


Оригинал
PDF
метод испытания тиристоров eupec

Реферат: SIEMENS hvdc THYRISTOR SIEMENS THYRISTOR тиристор для HVDC для ИМПУЛЬСНОГО тиристора 500 кВ автомобильный тиристор hvdc тиристор LTT тиристорный преобразователь проектирование схемы зажигания Схемы применения тиристоров
Текст: нет текста в файле


Оригинал
PDF D-81541 D-59581 D-
метод испытания тиристоров eupec SIEMENS hvdc THYRISTOR SIEMENS THYRISTOR тиристор для HVDC на 500 кВ ИМПУЛЬСНЫЙ тиристор автомобильный тиристор hvdc тиристор лтт схема зажигания тиристорного преобразователя Схемы применения тиристоров
2001 — ТР250-180У

Реферат: Тиристор SiBar TSL250-080 TSV250-130 «Power over LAN» TR600-150-RA TR600-150 TR250-145 TR250-120 GR-974
Текст: нет текста в файле


Оригинал
PDF
Тиристор с обратной проводимостью

Реферат: CRD5CM Тиристор to220 тиристорный регулятор CRD5C обратнопроводящий тиристор Gate Turn-off Thyristor to220
Текст: нет текста в файле


Оригинал
PDF 2010 — Ренесас О-220 Тиристор с обратной проводимостью CRD5CM Тиристор к220 тиристорный регулятор CRD5C обратнопроводящий тиристор Тиристор выключения затвора to220
2002 — тиристор EUPEC

Реферат: EUPEC Тиристор LTT тиристор ltt все типы тиристоров и схема Infineon процесс диффузии мощности Тиристор LTT срок службы тиристора с использованием системы питания 6-дюймовый тиристор для HVDC ВЫСОКОВОЛЬТНЫЙ ТИРИСТОР
Текст: нет текста в файле


Оригинал
PDF D-59581 D-81541 EUPEC Тиристор EUPEC Тиристор LTT тиристор лтт все типы тиристоров и схемы Процесс распространения энергии Infineon LTT тиристор срок службы тиристора тиристорное использование энергосистемы 6 «тиристор для HVDC ВЫСОКОВОЛЬТНЫЙ ТИРИСТОР
тиристор тт 162 н 12

Реферат: тиристор tt 162 n тиристор TT 46 N тиристор TT 162 асимметричный тиристор тиристор tt 25 тиристор TD 25 N dd 55 n 14 тиристор powerblock tt 105 n 16 powerblock tt 162
Текст: нет текста в файле


Оригинал
PDF кука-2006-де-инхальт тиристор тт 162 н 12 тиристор тт 162 н тиристор ТТ 46 Н тиристор ТТ 162 асимметричный тиристор тиристор тт 25 тиристор ТД 25 Н dd 55 n 14 powerblock тиристор тт 105 н 16 powerblock tt 162
Тиристор Westcode

Аннотация: WESTCODE TB 1KHZ тиристор R216Ch22FJO тиристор T 95 F 700 SM12CXC190 тиристор 910 тиристор h 250 tb 16 диодов westcode S антипараллельный тиристор
Текст: нет текста в файле


OCR сканирование
PDF 151JL Тиристор Westcode WESTCODE TB Тиристор 1 кГц R216Ch22FJO тиристор Т 95 Ф 700 SM12CXC190 тиристор 910 тиристор h 250 тб 16 диоды westcode S Антипараллельный тиристор
OPTOCOUPLER тиристор

Реферат: тиристорный контактор, тиристор, использующий схему перехода через нуль, автомобильный тиристор, все типы тиристоров и приложения Оптопара с тиристором, модуль тиристоров перехода через нуль код тиристора BR6000T br6000
Текст: нет текста в файле


Оригинал
PDF IEC60439-1 / 2/3: D-81617 105 / V3 OPTOCOUPLER тиристор тиристорный контактор тиристор с использованием схемы перехода через нуль автомобильный тиристор все типы тиристоров и приложений Оптопара с тиристором Модуль тиристоров переключения с нулевым переходом код тиристора BR6000T br6000
однофазный мостовой полностью управляемый выпрямитель

Аннотация: EUPEC DD 105 N 16 L однофазный полностью управляемый выпрямитель 3-фазный тиристорный выпрямительный контур EUPEC DD 151 N 14 k EUPEC tt 105 N 16 тиристор TT 18 N eupec FZ 800 R 16 EUPEC Тиристор B / B0615 DIODE
Текст: нет текста в файле


Оригинал
PDF
1999 — тиристор Т10

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 120 мА 180 мА тиристор Т10

Как подключить диодный выпрямитель / модуль выпрямления MGR? | HUIMULTD

ВВЕДЕНИЕ:

Функция выпрямителя или твердотельного реле / ​​модуля выпрямителя заключается в преобразовании мощности переменного тока в мощность постоянного тока.Выпрямленное твердотельное реле / ​​модуль со встроенным управляемым транзистором может также использоваться в качестве электронного переключателя в дополнение к функции выпрямления.
Из этой статьи вы узнаете, как подключить выпрямитель с диодом MGR / Mager или выпрямительный модуль.

Вы можете быстро переходить к интересующим вас главам с помощью Справочника ниже и быстрого навигатора в правой части браузера.

СОДЕРЖАНИЕ


§1.Как подключить твердотельное реле выпрямления переменного тока

1.1 Однофазное твердотельное реле выпрямления переменного тока

MGR-ZK80-200
, MGR-ZK120-100 серия

Однофазное твердотельное реле выпрямления переменного тока имеет шесть клемм, которые можно использовать в промышленных и коммерческих целях. Вход Схема подключена к сигнальному устройству управления постоянным током, а выходная цепь подключена к источнику переменного тока и нагрузке постоянного тока.

Примечание. Перед установкой и использованием убедитесь, что характеристики (например, входной ток, входное напряжение, выходное напряжение) ток, выходное напряжение и др.) выпрямительного твердотельного реле соответствуют требованиям приложения.

1.2 Трехфазное твердотельное реле выпрямления переменного тока

MGR-3-ZK120-100
серия

Трехфазное твердотельное реле выпрямления переменного тока имеет семь клемм, которые могут использоваться в промышленных и коммерческих целях. Входная цепь подключена к сигнальному устройству постоянного тока, а выходная цепь — подключен к источнику переменного тока и нагрузке постоянного тока.

Примечание: до установка и использование, пожалуйста, подтвердите, соответствуют ли спецификации (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и и т.п.) выпрямительного твердотельного реле соответствуют требованиям приложения.

§2. Как подключить выпрямитель или модуль выпрямления

2.1 Однофазный полностью управляемый мостовой выпрямительный модуль с полной изоляцией

MGR-DQZ380D60E
Серия

Однофазный полностью управляемый мостовой выпрямительный модуль с полной изоляцией имеет девять клемм, которые можно использовать для промышленное и коммерческое применение. 1 и 2 порта подключены к однофазному источнику переменного тока; 3 и 4 порты подключены к нагрузке постоянного тока; 5 и 6 портов подключены к внешнему трансформатору 18 В переменного тока, который может обеспечить стабильную синхронную источник напряжения; 7 порт — это + 5VDC, генерируемый самим модулем; 8 порт — порт CON, который подключен к устройству управляющей сигнализации; 9 порт — это COM-порт, который подключен к общему терминалу.Управляющий сигнал можно разделить на автоматический управляющий сигнал (тип E: 0 ~ 5 В постоянного тока, тип F: 0 ~ 10 В постоянного тока, H тип: 1 ~ 5 В постоянного тока, тип G: 4 ~ 20 мА) и сигнал ручного управления (потенциометр).

Примечание. Перед установкой и использованием проверьте, соответствуют ли спецификации (например, входной ток, входное напряжение, выходной ток, выходное напряжение) и т. д.) выпрямительного модуля соответствуют требованиям приложения.

Рисунок 2.1A: Сигнал автоматического управления

Рисунок 2.1B: Сигнал ручного управления, типы E, F, H могут управляться вручную, а тип G не могут

2.2 Мостовой выпрямитель

Мостовой выпрямитель
серия

В модуле однофазного / трехфазного мостового выпрямителя используется технология сварки «вакуум + защита от гидрогенизации». Входная цепь подключена к переменному току / напряжению или сигналу переменного тока, а выходная цепь подключен к постоянному току / напряжению или сигналу постоянного тока. Этот модуль выпрямления подходит для таких приложений, как источник питания выпрямителя, система управления промышленной автоматикой, станок с ЧПУ, система дистанционного управления и т. Д.

Примечание. Перед установкой и использованием убедитесь, что характеристики (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.) Силового диодного мостового выпрямителя соответствуют требованиям приложения.


2.3 Модуль однофазного / трехфазного мостового выпрямителя
Однофазный / трехфазный мостовой выпрямительный модуль

В модуле однофазного / трехфазного мостового выпрямления используется технология сварки «вакуум + защита от гидрирования».Входная цепь подключена к переменному току / напряжению или сигналу переменного тока, а выходная цепь подключен к постоянному току / напряжению или сигналу постоянного тока. Этот модуль выпрямления подходит для таких приложений, как источник питания постоянного тока для приборов и оборудования, источник питания для выпрямления входного напряжения инвертора PWM, Источник питания возбуждения двигателя постоянного тока, Входная система выпрямления импульсного источника питания, Система зарядки конденсатора плавного пуска, Электропривод и вспомогательный ток, Инверторный сварочный аппарат, Система зарядки постоянного тока и т. Д.

Примечание. Перед установкой и использованием убедитесь, что технические характеристики (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.) Выпрямительного модуля соответствуют требованиям приложения.

2.4 Выпрямительный модуль сварочного аппарата

Выпрямительный модуль сварочного аппарата

Выпрямительный модуль сварочного аппарата использует сварочную технологию «вакуум + защита от гидрогенизации». Входная цепь подключена к переменному току / напряжению или сигналу переменного тока, а выходная цепь подключена к постоянному току. ток / напряжение или сигнал постоянного тока.Этот модуль выпрямления подходит для таких применений, как источник питания сварочного аппарата, различные источники питания постоянного тока, преобразователь частоты и т. Д.

Примечание: перед установкой и использования, пожалуйста, подтвердите, соответствуют ли характеристики (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и т. д.) выпрямительного модуля требованиям приложения.

2.5 Модуль тиристорного выпрямителя

2.5.1) Модуль тиристорного выпрямителя

Стандартный модуль тиристора
В стандартном тиристорном модуле используется сварочная технология «вакуум + защита от гидрирования», которая подходит для применения, например, в системе управления переменным током. и двигатель постоянного тока, различные источники питания выпрямителя, промышленные система управления нагревом, система освещения, бесконтактный переключатель, плавный пуск двигателя, статический компенсатор реактивной мощности, сварочный аппарат, преобразователь частоты, источник питания ИБП, зарядка и разрядка аккумулятора и т. д.

Примечание: до При установке и использовании, пожалуйста, подтвердите, соответствуют ли характеристики (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и т. д.) тиристорного модуля требованиям приложения.

2.5.2) Стандартный выпрямительный модуль

Стандартный выпрямительный модуль
Стандартный выпрямительный модуль использует сварочную технологию «вакуум + защита от гидрирования», которая подходит для применения, например, системы управления двигателями переменного и постоянного тока, различных выпрямителей. блоки питания промышленные система управления нагревом, система освещения, бесконтактный переключатель, плавный пуск двигателя, статический компенсатор реактивной мощности, сварочный аппарат, преобразователь частоты, источник питания ИБП, зарядка и разрядка аккумулятора и т. д.

Примечание: до При установке и использовании убедитесь, что характеристики (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и т. д.) выпрямительного модуля соответствуют требованиям приложения.

2.5.3) Стандартный гибридный модуль тиристор-выпрямитель

Стандартный гибридный модуль тиристор-выпрямитель
Стандартный гибридный модуль тиристор-выпрямитель использует сварочную технологию «вакуум + защита от гидрирования», которая подходит для применения, например, для управления система двигателя переменного и постоянного тока, различной мощности выпрямления расходные материалы, промышленная система управления отоплением, система освещения, бесконтактный переключатель, плавный пуск двигателя, статический компенсатор реактивной мощности, сварочный аппарат, преобразователь частоты, источник питания ИБП, зарядка и разрядка аккумуляторов и т. д.

Примечание. Перед установкой и использованием убедитесь, что характеристики (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.) Модуля соответствуют требованиям приложения.

Рисунок 2.5.3A, серия MFx (TD)

Рисунок 2.5.3B, серия MFx (DT)

2.6 Полностью управляемый / полууправляемый мостовой выпрямительный модуль

2.6.1) Однофазный полностью управляемый / половинный -управляемый мостовой выпрямительный модуль

Однофазный полностью управляемый / полууправляемый мостовой выпрямительный модуль
Однофазный полностью управляемый / полууправляемый мостовой выпрямительный модуль использует технологию сварки «вакуум + защита от гидрирования», которая подходит для приложение, такое как источник постоянного тока инструментов и оборудование, входной выпрямительный источник питания ШИМ-инвертора, источник питания возбуждения двигателя постоянного тока, входная выпрямительная система импульсного источника питания, система зарядки конденсаторов плавного пуска, электропривод и вспомогательные ток, инверторный сварочный аппарат, система зарядки постоянного тока и т. д.

Примечание. Перед установкой и использованием убедитесь, что технические характеристики (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.) модуль соответствует требованиям приложения.

Рисунок 2.6.1A, серия MFQ

Рисунок 2.6.1B, серия MHF

2.6.2) Трехфазный полностью управляемый / полууправляемый мостовой выпрямительный модуль

Трехфазный полностью управляемый / полууправляемый мостовой выпрямительный модуль
Трехфазный полностью управляемый / полууправляемый мостовой выпрямительный модуль использует сварочную технологию «вакуум + защита от гидрогенизации», которая подходит для таких применений, как источник постоянного тока для приборов и оборудование, входное выпрямительное питание инвертора ШИМ, питание возбуждения двигателя постоянного тока, входная выпрямительная система импульсного источника питания, система зарядки конденсаторов плавного пуска, электропривод и вспомогательные ток, инверторный сварочный аппарат, система зарядки постоянного тока и т. д.

Примечание. Перед установкой и использованием убедитесь, что технические характеристики (такие как входной ток, входное напряжение, выходной ток, выходное напряжение и т. Д.) модуль соответствует требованиям приложения.

Тиристорный регулятор напряжения SJTY SCR, Китай Trihero Group — китайский производитель и поставщик

Общее описание:

Трехфазный интеллектуальный модуль регулирования напряжения переменного тока разработан и изготовлен с использованием импортного однокристального микрокомпьютера и печатной платы военного уровня.Он содержит операционный усилитель, плавный пуск, температурную защиту, определение фазы, импульсный трансформатор и тиристорный чип. Его выходная линеаризация высокая, начальная точка управления выходом низкая, а напряжение нагрузки можно регулировать плавно. Он может регулировать напряжение первичной обмотки трансформатора, сварочного аппарата, контроля температуры, затемнения, зарядки, возбуждения, гальваники, точечного решения, обработки воды, а также может использоваться для управления скоростью трехфазного двигателя и других устройств.

Параметры продукта :

1. Рабочее напряжение главной цепи: трехфазное 380 В переменного тока (± 5%)

2. Электропитание: однофазное 220В (± 5%)

3. Диапазон регулирования: 0–180 °

4. Управление потенциометром: потенциометр (10K 2W)

5. Управление аналоговым сигналом: DC1-5V, DC2-10V, DC4-20mA, DC2-10mA

6. Новый и уникальный дизайн, трехфазный, без ограничения последовательности фаз,

Электропроводка

проста, а обслуживание удобно.

7. Главная цепь и цепь управления полностью изолированы, безопасны и надежны.

8. Встроенная функция плавного пуска (время установки по умолчанию 2 с, 0-15 с можно настроить)

9. Встроенная функция защиты от перегрева (85 ℃)

10. Номинальный ток: 150A ~ 450A

Габаритные размеры и установочные размеры :

Трехфазная четырехпроводная схема подключения :

Трехфазная трехпроводная схема подключения :

Схема подключения входных клемм :

Форма выходного сигнала :

Каковы основные конструкции источников питания для оборудования для дуговой сварки?

Часто задаваемые вопросы

Основными функциями источника питания являются выработка тепла, достаточного для расплавления соединения и создания стабильной дуги и переноса металла.Поскольку сварочные процессы требуют высокого тока (50-300 А) при относительно низком напряжении (10-50 В), напряжение сети высокого напряжения (230 или 400 В) должно быть уменьшено с помощью трансформатора. Чтобы получить постоянный ток, выход трансформатора должен быть дополнительно выпрямлен (рис. 1).

Существует пять типов источников питания: трансформатор переменного тока; Выпрямитель постоянного тока; Преобразователь переменного / постоянного тока, выпрямитель, генератор постоянного тока и инвертор.

Тип управления, например Первичный реактор с отводом с насыщением, тиристор и инвертор — важный фактор при выборе источника питания.Простой станок для нарезания резьбы первичной резьбой может быть идеальным и надежным выбором для многих сварочных работ MIG (GMA), но у него есть свои ограничения. Если шагов недостаточно, настройка оптимальных условий может оказаться невозможной, и колебания подачи повлияют на выход. Тиристорное управление позволяет бесступенчато регулировать выход, не зависит от колебаний напряжения питания и может управляться дистанционно. Тиристорные источники питания могут использоваться для большинства сварочных процессов, т.е. могут иметь либо плоскую (MIG [GMA]), либо падающую (MMA [SMA] и TIG [GTA]) выходную характеристику.

Инверторные источники питания

обладают всеми преимуществами тиристорного управления, но с дополнительной производительностью, экономией веса и эффективностью. Транзисторы используются для преобразования сетевого переменного тока (50 Гц) в переменный ток высокой частоты (> 500 Гц) перед преобразованием в напряжение, подходящее для сварки, а затем выпрямление в постоянный ток. Таким образом, инвертор, по сути, представляет собой силовой блок, которым можно управлять, часто с помощью программного обеспечения, для получения статических и динамических характеристик, необходимых для выбранного процесса сварки. Следовательно, большинство инверторов предлагают возможность работы с несколькими процессами.Кроме того, отклик современных инверторов открывает возможности высокочастотного импульса, необходимого для импульсной сварки MIG (GMA), и динамической обратной связи для управления переносом металла, как в случае MIG с переносом погружением.

регулятор напряжения переменного тока диммер 10000 Вт сверхмощный электронный тиристорный регулятор напряжения — покупайте по низким ценам на платформе электронной коммерции Joom

Характеристика:

1. Цепь триггера уникальна, а управляющее напряжение регулируется точно без гистерезиса. После того, как резистивная нагрузка отключена до 0, она регулируется с 10 В после включения и настраивается на максимальное напряжение питания, близкое к входному.2. Тиристор добавляет схему защиты от абсорбции RC. 3. Модернизированный вентилятор с интеллектуальным управлением переключателем, хорошим тепловыделением и длительным сроком службы. 4. Стандартный высококачественный изысканный алюминиевый корпус более безопасен и практичен. 5. Модернизируйте полностью медные клеммы сверхвысокого тока 75A. 6. Сверхмощный электронный регулятор напряжения, подходящий для управления цветными огнями осветительной техники, нагревательной проволокой, контролем нагрева котла, электродвигателем инструмента и т. Д. Конструкция схемы этого продукта чрезвычайно продвинута, обеспечивает точное управление и хорошие материалы. .

Спецификация:

Тип изделия: Регулятор напряжения переменного тока Используйте напряжение: 110-230 В переменного тока Максимальная мощность: 10000 Вт (резистивная нагрузка) Регулировка напряжения: 0 В переменного тока — регулировка между входными напряжениями приближения

Инструкции: Подключите тиристорный регулятор напряжения перед электрической цепью потребителя и подключите соответственно входной и выходной провода (без провода нулевого пламени). Поверните ручку потенциометра, чтобы играть роль затемнения света и темноты, скорости, напряжения и температуры; очень проста в использовании.Приложение: Используя новый двунаправленный тиристор сверхвысокой мощности, стандартный тиристор 100A, резистивная нагрузка может быть произвольно отрегулирована между нулевым входным напряжением для электроприборов. Такие как: электрические печи, водонагреватели, лампы и фонари, большие моторы и моторы. Чтобы добиться эффектов затемнения, температуры и давления. Его можно использовать для больших приборов с электрической мощностью менее 10 000 Вт (чисто резистивная нагрузка). Из-за большой мощности достаточно обычной бытовой техники или небольших фабрик.(Индуктивная или емкостная нагрузка имеет большой пусковой ток, который в 2-4 раза превышает обычный рабочий ток. Мощность должна быть уменьшена во время использования, и лучше оставить менее половины запаса.)

Список пакетов:

1 X SCR Voltage Regulator

Примечание:

Обратите внимание, что нагрузка не может превышать указанную максимальную мощность. Обратите внимание на повышение температуры при первом использовании. Если температура очень высокая (более 80 градусов), необходимо усилить отвод тепла, иначе модуль и электроприборы сгорят.Для большого сокращения следует оставить не менее половины поля.

Тип продукта: Источники питания

Страница не найдена — Промышленные устройства и решения

Продукты, описанные на этом веб-сайте, были разработаны и изготовлены для стандартных приложений, таких как общие электронные устройства, офисное оборудование, оборудование для передачи данных и связи, измерительные приборы, бытовая техника и аудио-видео оборудование.

Для специальных применений, в которых требуется качество и надежность, или если отказ или неисправность продуктов могут напрямую угрожать жизни или вызвать угрозу травм (например, для самолетов и аэрокосмического оборудования, дорожного и транспортного оборудования, оборудования для сжигания, медицинского оборудования , устройства для предотвращения несчастных случаев и защиты от кражи, а также защитное оборудование), пожалуйста, используйте только после того, как ваша компания в достаточной степени проверит пригодность наших продуктов для этого применения.

Независимо от области применения, при использовании наших продуктов в оборудовании, для которого ожидается высокий уровень безопасности и надежности, убедитесь, что схемы защиты, схемы резервирования и другие устройства установлены для обеспечения безопасности оборудования при оценке области применения путем независимой проверки безопасности. тесты.

Обратите внимание, что продукты и технические характеристики, размещенные на этом веб-сайте, могут быть изменены без предварительного уведомления в целях улучшения.Независимо от области применения, пожалуйста, подтвердите последнюю информацию и спецификации до окончательного этапа проектирования, покупки или использования.

Техническая информация на этом веб-сайте содержит примеры типичных операций и схем применения продуктов. Он не предназначен для гарантии ненарушения или предоставления лицензии на права интеллектуальной собственности этой компании или любой третьей стороны.

Если какие-либо продукты, спецификации продуктов и техническая информация на этом веб-сайте подлежат экспорту или предоставлению нерезидентам, необходимо соблюдать законы и правила страны-экспортера, особенно те, которые касаются безопасного экспортного контроля.

Информация, содержащаяся на этом веб-сайте, не может быть перепечатана или воспроизведена полностью или частично без предварительного письменного разрешения Panasonic Corporation.

Инструменты и программы, представленные на этом веб-сайте, должны использоваться по вашему усмотрению. Panasonic не гарантирует каких-либо результатов от использования этих инструментов и программ и не несет ответственности за любые убытки, возникшие в результате использования вами.

<о письме для получения сертификата соответствия директиве ЕС RoHS>
Дата перехода на продукт, соответствующий требованиям RoHS, зависит от номера детали или серии.
При использовании инвентаря, в котором неясно соответствие требованиям RoHS, выберите «Запрос на продажу».
в форме веб-запроса.

Извещение о передаче полупроводникового бизнеса


Полупроводниковый бизнес Panasonic Corporation (далее именуемой «Компания») будет передан 1 сентября 2020 года Nuvoton Technology Corporation (далее именуемой «Nuvoton»). Соответственно, Panasonic Semiconductor Solutions Co., Ltd., которая управляла полупроводниковым бизнесом Panasonic, войдет в состав Nuvoton Group с новым названием Nuvoton Technology Corporation Japan (далее именуемой «NTCJ»).
В соответствии с этой передачей полупроводниковая продукция, размещенная на этом веб-сайте, будет считаться продукцией, произведенной NTCJ, после 1 сентября 2020 года. Однако такая продукция будет постоянно продаваться через Компанию.
Обратите внимание, что при запросе о полупроводниковых продуктах, размещенных на этом веб-сайте, клиенты должны перейти на веб-сайт, управляемый NTCJ (далее «веб-сайт NTCJ»), и подтвердить, что NTCJ является компанией, ответственной за управление личной информацией, предоставляемой клиентами на ее веб-сайте.Мы ценим ваше понимание по этому поводу.

D. C. источник питания для дуговой сварки с трехфазным тиристором, регулирующим мощность

Настоящее изобретение относится к источнику питания для системы дуговой сварки постоянным током и, в частности, к управляемому и программируемому источнику питания, использующему трехфазный выпрямительный мост с кремниевыми выпрямителями для управления. Еще более конкретно, это изобретение относится к такой системе для обеспечения контроля времени для точечной сварки и горячего запуска и такой системе для одновременной сварки несколькими горелками.

В источниках питания для сварки обычно используются насыщаемые реакторы и трансформаторы, управляемые в их первичных цепях или с помощью подвижных отводов во вторичных цепях. При включении и выключении сварочной дуги было принято включать и выключать питание первичных обмоток трансформатора. Постоянное включение и выключение напряжения на первичных обмотках приводит к чрезмерному нагреву, сокращению срока службы трансформаторов или необходимости очень больших трансформаторов. Кроме того, подвижные контакты создают возможность возникновения дуги, которая может повредить трансформаторы или блок управления.Кроме того, обычные источники питания часто приводят к чрезмерному разбрызгиванию сварочного материала, особенно при сварке MIG (металлический электрод в инертном газе). Это разбрызгивание обычно регулируется с помощью регулятора переменного наклона.

В соответствии с настоящим изобретением предоставляется трехфазный блок питания, в котором первичные обмотки трансформатора всегда находятся под напряжением, когда сварочная система готова к использованию, а выпрямительный мост, включающий выпрямители с кремниевым управлением, обеспечивает контроль тока, который ограничивает разбрызгивание.Предусмотрена возможность горячего пуска, то есть дуга с большей интенсивностью в начале сварки, позволяющая прожигать сварочный стержень до необходимой длины. Предусмотрена также точечная сварка на определенные промежутки времени. Синхронизирующая схема однопереходного транзистора вырабатывает синхронизирующие импульсы, используемые для генерации сигналов зажигания для управления включением кремниевых выпрямителей в мостовой схеме для получения надлежащего сварочного тока. Дугу можно погасить, уменьшив этот ток до нуля без отключения первичных обмоток трансформатора.Для каждой сварочной горелки предусмотрено отдельное управление.

Следовательно, основная цель этого изобретения состоит в том, чтобы предоставить улучшенный трехфазный источник питания для системы сварки постоянным током и, в частности, такой источник питания, в котором мощность на силовой трансформатор подается непрерывно. Другой целью изобретения является создание новой системы управления функциями для обеспечения горячего пуска и точечной сварки. Тем не менее, другой задачей является создание такой системы для раздельного управления соответствующими горелками в системе с несколькими горелками одновременно.Другие цели и преимущества изобретения станут очевидными из нижеследующего подробного описания, в частности, в сочетании с прилагаемым схематическим изображением предпочтительной формы управляемого трехфазного источника питания для сварки согласно настоящему изобретению.

Как показано на чертеже, питание подается на первичные обмотки 10 трехфазного трансформатора 12 по линиям электропередачи 14. Питание может подаваться через автоматический выключатель; однако питание подается на первичные обмотки все время, пока сварочная система находится в рабочем состоянии, чтобы не было необходимости повторно включать первичные обмотки каждый раз, когда возникает сварочная дуга.Кроме того, различное вспомогательное оборудование непрерывно питается от одного и того же трансформатора через третичные обмотки 16, 18 и 20 на трансформаторе 12. Управляемая мощность для самой сварочной операции вырабатывается во вторичных обмотках 22 трансформатора 12. Как показано, первичные обмотки могут быть соединены треугольником, в то время как вторичные обмотки могут быть соединены звездой, трехфазная мощность вырабатывается на соответствующих силовых проводниках 24, подключенных к соответствующим вторичным обмоткам 22.

Поскольку первичные обмотки 10 трансформаторов 12 находятся под напряжением непрерывно, напряжение появляется постоянно на проводниках 24.Это напряжение подается на трехфазный выпрямительный мост 26 через соответствующие предохранители 28. Выпрямительный мост 26 создает на выходных проводниках 30 и 32 выход постоянного тока, причем провод 30 является положительным по отношению к проводнику 32. Трехфазный выпрямительный мост 26 содержит соответствующий кремниевый управляемый выпрямитель (SCR) 34, 36, 38, каждый из которых имеет свою силовую цепь, подключенную от соответствующего проводника 24 к положительному выходному проводнику 30. Эти SCR имеют полярность, чтобы проводить электричество к положительному проводнику 30.То есть их аноды подключены к соответствующим проводникам 24, а их катоды все подключены к проводнику 30. Соответствующие диоды 40, 42 и 44 подключены между отрицательным выходным проводником 32 и соответствующими проводниками 24 и разнесены, чтобы обеспечить обратные пути для завершая мостовую схему.

Управление мощностью, подаваемой трехфазным мостом 26, достигается путем управления углом включения соответствующих тиристоров. Для SCR характерно становиться проводящим всякий раз, когда на его электрод затвора подается соответствующий сигнал зажигания, при условии, что между его анодом и катодом приложено напряжение с правильной полярностью.Как только начинается проводимость, затвор теряет управление, и проводимость продолжается до тех пор, пока ток не снизится до нуля под действием внешних сил, например, путем изменения полярности управляющего напряжения. В настоящем выпрямительном мосту 26, тиристоры 34, 36 и 38 имеют соответствующие электроды затвора 46, 48 и 50. Когда напряжение на соответствующем проводе 24 является положительным по отношению к положительному выходному проводнику 30, на него подается соответствующий сигнал зажигания. соответствующий электрод затвора 46, 48 или 50, соответствующий SCR становится проводящим, повышая напряжение на выходном проводе 30 и оставаясь проводящим до той части цикла, где напряжение на соответствующем проводе 24 начинает падать ниже напряжения на выходе проводник 30, после чего SCR становится непроводящим, и соответствующий электрод затвора восстанавливает управление.

Сигналы запуска формируются схемой запуска 52, которая вырабатывает сигнал запуска при соответствующем правильном угле запуска для каждого из SCR 34, 36 и 38. Предпочтительная схема запуска является модификацией схемы, показанной на фиг. 9.57 Руководства по SCR, General Electric, Пятое изд. 1972, стр. 278. Рабочее напряжение и опорная фаза поступают от входных проводников 24 на входную клемму 54 через соответствующие пары последовательно соединенных диодов 56, 58, 60, 62, 64 и 66. Провод 24, соединенный с анодом тринистора 34, является соединен с анодом диода 58, катод которого соединен с анодом диода 56, катод которого соединен с выводом 54.Провод 24, соединенный с анодом тринистора 36, соединен с анодом диода 62, катод которого соединен с анодом диода 60, катод которого соединен с выводом 54. Провод 24 соединен с к аноду SCR 38 подключен анод диода 66, катод которого подключен к аноду диода 64, катод которого подключен к выводу 54. Напряжение на выводе 54 используется для подачи питания на запальную схему 52, а фаза напряжения на выводе 54 обеспечивает опорную фазу для вырабатываемых пусковых сигналов.

Напряжение на клемме 54 подается на делитель напряжения, состоящий из постоянного резистора 68, переменного резистора 70 и стабилитрона 72, включенных последовательно между входной клеммой 54 и опорной клеммой 73. Опорная клемма 73 подключена к положительный выходной провод 30 моста 26 для обеспечения опорного напряжения. Стабилитрон обеспечивает постоянное контролируемое напряжение постоянного тока всякий раз, когда напряжение между клеммами 54 и 73 превышает это напряжение.Остальное напряжение между выводами 54 и 73 распределяется между резисторами 68 и 70 в зависимости от настройки переменного резистора 70.

Функция синхронизации пусковой цепи 52 обеспечивается генератором синхронизирующих импульсов, содержащим однопереходный транзистор. релаксационный осциллятор. Эта схема генератора содержит однопереходный транзистор 74, верхняя база которого подключена через резистор 76 к переходу между резисторами 68 и 70, а нижняя база подключена через резистор 78 к опорному выводу 73.Последовательная RC-цепь, содержащая переменный резистор 80, постоянный резистор 82 и конденсатор 84, подключена к стабилитрону 72, причем конденсатор 84 подключен между опорным выводом 73 и электродом затвора однопереходного транзистора 74. Однопереходный транзистор 74 становится проводящим всякий раз, когда напряжение на его затворе достигает заданного уровня. Это определяется постоянной времени RC-цепи. Этой постоянной времени можно управлять с помощью переменного резистора 80.

Когда на стабилитроне 72 создается полное стандартное напряжение, конденсатор 84 заряжается этим напряжением через резисторы 80 и 82 до тех пор, пока напряжение на конденсаторе 84 не достигнет напряжения срабатывания однопереходного транзистора 74, после чего конденсатор 84 разряжается. через однопереходный транзистор 74 и резистор 78, формируя тактовый импульс на резисторе 78, к которому подключен выходной вывод 86. Фазовый угол синхронизирующего импульса синхронизируется с момента подачи напряжения на входной вывод 54 и задерживается с этого момента на время, необходимое для зарядки конденсатора 84 до напряжения запуска однопереходного транзистора 74.По причинам, которые станут очевидными ниже, схема релаксационного генератора не продолжает колебаться, а, скорее, отключается перед повторной генерацией.

Синхронизирующий импульс на выходной клемме 86 подается на генератор 88 пускового сигнала, который реагирует на синхронизирующий импульс, создавая пусковые сигналы с желаемым углом зажигания для каждого из электродов затвора 46, 48 и 50 соответствующих тринисторов. Генератор пускового сигнала может содержать соответствующие усиливающие NPN-транзисторы 90, 92 и 94 для каждой фазы, при этом синхронизирующий сигнал на выходном выводе 86 подается на базу каждого из этих транзисторов.Коллекторы соответствующих транзисторов получают напряжение от проводников 24, подключенных к соответствующим переходам между соответствующими парами последовательно соединенных диодов 56-58, 60-62 и 64-66. Эмиттеры соответствующих транзисторов 90, 92, 94 подключены через соответствующие резисторы 96, 98, 100 к соответствующим затворам SCR 46, 48 и 50. Диоды 97, 99 и 101 подключены к соответствующим транзисторам 90, 92 и 94 для защиты последнее против обратного смещения.

При появлении синхронизирующего импульса на выходном выводе 86 транзистор 90, 92 или 94, подключенный к наиболее положительной фазе, становится проводящим, подавая пусковой импульс через соответствующий резистор 96, 98, 100 на соответствующий затвор 46. , 48, 50 соответствующих SCR 34, 36, 38.Таким образом, соответствующий тиристор становится проводящим, прикладывая напряжение к соответствующему проводнику 24 к положительному выходному проводнику 30 постоянного тока. Это повышает напряжение на опорной клемме 73 до напряжения на входной клемме 54, в результате чего напряжение на верхнем и нижнем базах транзистора 74 то же самое, что делает транзистор 74 проводящим и обеспечивает разряд конденсатора 84. Это предотвращает любые колебания релаксационного генератора. Конкретный SCR остается проводящим до тех пор, пока потенциал на его соответствующем проводе 24 не начнет падать ниже напряжения на проводе 30.Затем соответствующий SCR прекращает проводимость, и соответствующий затвор восстанавливает контроль.

После того, как соответствующий тиристор является непроводящим и его затвор находится в управлении, напряжение на соответствующем силовом проводе 24 может снова подняться выше напряжения на положительном выходном проводе 30 постоянного тока, и относительно положительное напряжение подается через соответствующие диоды 56. , 58, 60, 62, 64, 66 к входной клемме 54, создавая стандартное напряжение на стабилитроне 72. Из-за взаимодействия между тиристорами и цепью 52 зажигания опорная фаза подается в цепь зажигания со входа проводники 24.Три фазы соединенных звездой вторичных обмоток 22 разнесены на 120 ° друг от друга, и напряжения на соответствующих проводниках 24 становятся положительными с соответствующими интервалами в 120 °. Только самая положительная из трех фаз в любой момент времени подается через диоды на входной вывод 54, поскольку диоды имеют полярность, чтобы развязать менее положительные проводники. В любой момент времени только один из SCR может быть проводящим. Таким образом, когда напряжение на непроводящем SCR повышается выше напряжения на положительном проводе 30 и, следовательно, выше напряжения на опорной клемме 73, на входной клемме 54 создается относительный потенциал, создающий стандартное напряжение на стабилитроне 72. и запуск периода релаксационного осциллятора.Это обеспечивает опорную фазу для пусковой цепи 52 относительно фаз напряжений, прикладываемых проводниками 24 к соответствующим тиристорам.

После периода, определенного постоянной времени RC-цепи, тактовые импульсы, генерируемые на выходной клемме 86, запускают генератор 88 сигнала зажигания с интервалами 120 °. Эти синхронизирующие импульсы производят запускающие сигналы на затворах соответствующих тиристоров. При срабатывании тринистора с наиболее положительным анодом становится проводником, и напряжение на положительном выходном проводе становится напряжением на самом положительном проводе 24.Это увеличивает напряжение на опорной клемме 73 до напряжения на входной клемме 54 и останавливает релаксационный генератор до тех пор, пока последующая фаза не создаст напряжение на входной клемме 54, которое будет выше, чем на опорной клемме 73.

В случае, если постоянная времени RC релаксационного генератора должна была превысить задержку более чем на 120 °, синхронизирующий импульс возник бы в начале цикла следующей фазы, производя увеличение, а не уменьшение тока, поскольку фаза задерживается.Чтобы предотвратить это, предусмотрен второй генератор релаксации однопереходного транзистора. Этот второй релаксационный генератор включает однопереходный транзистор 102, верхняя база которого подключена через резистор 104 к переходу между резисторами 68 и 70, а нижняя база подключена к опорному выводу 73. RC-цепь содержит переменный резистор 106, подключенный между затвором транзистор 102 и переход между резисторами 68 и 70 с конденсатором 108, подключенным с одной стороны к затвору, а с другой стороны через резистор 110 к опорному выводу 73.Постоянная времени этого генератора регулируется для создания вторичного синхронизирующего импульса чуть менее 120 °, так что однопереходный транзистор 102 всегда срабатывает в пределах 120 °, если однопереходный транзистор 74 не срабатывает. Срабатывание однопереходного транзистора 102 вызывает разряд конденсатора 108 через транзистор 102 и резистор 110. Напряжение, возникающее при этом на резисторе 110, прикладывается между базой и эмиттером NPN-транзистора 112, коллектор которого подключен к электрод затвора однопереходного транзистора 74.Таким образом, когда на резисторе 110 возникает импульс, транзистор 112 становится проводящим, разряжая конденсатор 84 и подготавливая его к запуску другого цикла. Поскольку в этом режиме конденсатор 84 разряжается через транзистор 112, а не через транзистор 74 и резистор 78, на выходном выводе 86 не генерируются первичные тактирующие импульсы, и все тиристоры остаются непроводящими.

С другой стороны, если однопереходный транзистор 74 сработает первым, выводы 54 и 73 приводятся в действие с одинаковым потенциалом за счет проводимости соответствующего тринистора, таким образом, обе базы транзистора 102 имеют одинаковый потенциал, вызывая тем самым конденсатор 108. разряд подготовительный к началу другого цикла.

В схеме, как было описано до сих пор, управляемая мощность постоянного тока обеспечивается между выходными проводниками 30 и 32. Величина напряжения зависит от угла возбуждения запускающих сигналов, подаваемых на тиристоры, что определяется периодом релаксационного осциллятора. . Этот период регулируется регулировкой переменного резистора 80. Это напряжение обычно подается на сварочный электрод через провод 114 и от заготовки через проводник 116, проводник 116 подключается непосредственно к D.C. Выходной провод 32 и провод 114 соединены с положительным выходным проводом 30 через дроссель 118, который служит для сглаживания сварочного тока. Резистор 120 подключен между проводниками 30 и 32, чтобы гарантировать, что некоторый значительный ток проходит через соответствующий тиристор, обеспечивая фиксацию мостовых тиристоров при нагрузках низкого уровня. Для контроля и управления амперметр 122 может быть подключен последовательно к сварочному току, а вольтметр 124 может быть подключен к нагрузке.

Для управления различными функциями сварочной системы предусмотрена схема 126 управления функцией сварки, которая содержит ряд реле и переключателей. Сварочная дуга включается и выключается переключателем 128 горелки, который может быть установлен в качестве спускового крючка на сварочной горелке. Он может быть подпружинен, чтобы открываться при отпускании спускового крючка. Питание цепи управления функцией сварки поступает от третичной обмотки 16 трансформатора. Низкое напряжение возникает между проводниками 130 и 132, а более высокое напряжение возникает между проводниками 130 и 134.Переключатель 128 горелки соединен между проводниками 130 и 132 последовательно с реле 136. Нормально замкнутые релейные контакты 136-1 реле 136 соединены последовательно с резистором 138, параллельным резистору 106, для обеспечения поворота резака. включить и выключить. Когда контакты 136-1 замкнуты, резистор 138, включенный параллельно резистору 106, обеспечивает такую ​​короткую постоянную времени для соответствующей RC-цепи, что транзистор 102 проводит с такой высокой частотой, что транзистор 74 никогда не проводит, что исключает возможность любого сигнала синхронизации на выходную клемму 86 и оставляя соответствующие тиристоры всегда непроводящими.При замыкании переключателя 128 горелки срабатывает реле 136, размыкая, таким образом, нормально замкнутые контакты реле 136-1 и переводя соответствующий релаксационный генератор в его состояние для предотвращения импульсов зажигания после 120 °.

Как уже упоминалось, при первом зажигании сварочной дуги желательно, чтобы она инициировалась при относительно высоком напряжении, чтобы сжечь сварочный стержень до соответствующей длины, с последующей подачей системой нормального сварочного напряжения. Эту процедуру часто называют горячим стартом.Чтобы обеспечить дополнительное напряжение для горячего пуска, в соответствии с настоящим изобретением предусмотрено средство для опережения синхронизирующего сигнала путем уменьшения периода релаксационного генератора, связанного с транзистором 74. Переключатель 140 горячего пуска расположен последовательно с нормально замкнутым релейные контакты 142-1 реле 142, а также последовательно с переменным резистором 144. Переключатель 140, релейные контакты 142-1 и резистор 144 последовательно соединены параллельно с резистором 80, так что, когда переключатель 140 горячего старта закрывается период релаксации осциллятора уменьшается.

Поскольку желательно, чтобы это дополнительное напряжение создавалось только в течение ограниченного периода, в схеме 126 управления функцией сварки предусмотрена схема 146 синхронизации горячего старта. Схема 146 синхронизации горячего старта вводится в систему путем замыкания горячего старта. переключатель 148 синхронизации, соединенный с переключателем 140 горячего пуска. При замкнутом переключателе 148 синхронизации горячего пуска RC-цепь подключается между проводниками 130 и 134. Переменный резистор 150 и постоянный резистор 152 включены последовательно через диод 154 и нормально разомкнутые контакты реле 136-2 реле 136 к конденсатору 156.Когда переключатель 140 горячего пуска и переключатель 148 времени горячего пуска замкнуты, нажатие пускового переключателя 128 приводит в действие реле 136, замыкающее контакты реле 136-2 и тем самым вызывая заряд конденсатора 156. Диод 154 имеет полярность, так что сторона конденсатора, противоположная переключателю горячего пуска, заряжается положительно. Напряжение, возникающее на этой стороне конденсатора, подается через диод 158, подключенный параллельно резистору 159 к затвору SCR 160. Катод SCR 160 подключен к другой стороне конденсатора 156.Анод SCR 160 соединен последовательно через катушку реле 142 с низким напряжением на проводнике 132. Когда напряжение на конденсаторе 156 достигает напряжения затвора SCR 160, SCR 160 проводит ток, заставляя реле 142 для работы, тем самым размыкая контакты 142-1 реле и возвращая релаксационный генератор к его нормальному периоду. Диод 162 подключен к катушке реле 142 для подавления дребезга реле, когда SCR 160 срабатывает и включается.

Чтобы установить опорную схему для схемы синхронизации горячего старта, резистор 164, соединенный последовательно с диодом 165 и нормально замкнутыми контактами 136-3 реле 136, подключен между конденсатором 156 и проводником 134.Таким образом, когда переключатель 128 горелки разомкнут, а релейный переключатель 136 обесточен, контакты 136-3 замкнуты, и ток течет через резистор 164, пока конденсатор 156 не будет полностью заряжен. В этом случае диод 165 установлен противоположно диоду 154, так что сторона конденсатора, соединенная с затвором тринистора 160 через резистор, становится отрицательно заряженной. Затем, когда переключатель 128 горелки замыкается, конденсатор 156 заряжается отрицательно до максимальной степени, и зарядка этого конденсатора через резисторы 150 и 152 должна сначала преодолеть отрицательный заряд, прежде чем заряжаться положительно до управляющего потенциала тринистора 160.

Для точечной сварки MIG желательно, чтобы сварочная дуга обеспечивалась в течение определенного ограниченного периода времени. С этой целью схема 126 управления функцией сварки включает в себя схему 166 точечной синхронизации MIG, сравнимую со схемой 146 синхронизации горячего старта. На схему 166 точечной синхронизации MIG подается питание от переключателя 168 точечной синхронизации MIG, который соединяет схему точечной синхронизации MIG с провод 130 в качестве переключателя 148 синхронизации горячего старта подключал схему 146 синхронизации горячего старта. Когда переключатель 168 точечной синхронизации MIG замкнут, RC-цепь подключается между проводниками 130 и 134.Переменный резистор 170 и постоянный резистор 172 подключены последовательно через диод 174 и нормально разомкнутые релейные контакты 136-4 реле 136 к конденсатору 176. При замкнутом переключателе 168 точечной синхронизации MIG происходит нажатие триггерного переключателя 128. реле 136 замыкает контакты реле 136-4 и тем самым заставляет конденсатор 176 заряжаться. Диод 174 имеет полярность, так что сторона конденсатора, противоположная переключателю 168 точки MIG, заряжается положительно. Напряжение, возникающее на этой стороне конденсатора, подается через диод 178, подключенный параллельно резистору 179 к затвору тиристора 180.Катод SCR 180 подключен к другой стороне конденсатора 176. Анод SCR 180 подключен последовательно через катушку реле 182 к низкому напряжению на проводе 132. Когда напряжение на конденсаторе 176 достигает напряжения затвора SCR 180, SCR 180 проводит ток, заставляя реле 182 срабатывать, тем самым замыкая нормально разомкнутые контакты 182-1 реле параллельно с теперь разомкнутыми контактами 136-1 реле, останавливая тактовые импульсы так же, как и при замыкание контактов 136-1.Диод 183 подключен к катушке реле 182, чтобы подавить дребезжание реле, когда тиристор 180 срабатывает и включается.

Чтобы установить опорную схему для схемы синхронизации точечной сварки MIG, резистор 184, соединенный последовательно с диодом 186 и нормально замкнутыми контактами 136-5 реле 136, подключен между конденсатором 176 и проводником 134. Таким образом, когда выключатель горелки 128 разомкнут, а релейный переключатель 136 обесточен, контакты 136-5 замкнуты, и ток течет через резистор 184, пока конденсатор 176 не будет полностью заряжен.В этом случае диод 186 установлен противоположно диоду 174, так что сторона конденсатора, соединенная с затвором SCR 180, становится отрицательно заряженной. Затем, когда переключатель 128 горелки замыкается, конденсатор 176 заряжается отрицательно до максимальной степени, и зарядка этого конденсатора через резисторы 170 и 172 должна сначала преодолеть отрицательный заряд, прежде чем заряжаться положительно до управляющего потенциала тринистора 180.

Как было описано выше, пусковой переключатель 128 должен удерживаться нажатым, по крайней мере, в течение периода точечной сварки MIG.Может использоваться альтернативный режим работы, в котором триггерный переключатель 128 замыкается только на мгновение. Для этого режима переключатель 188 точечной фиксации MIG соединен последовательно с нормально разомкнутыми контактами 136-6 реле 136 и нормально замкнутыми контактами 182-2 реле 182 через триггерный переключатель 128. Как показано, переключатель 188 точечной фиксации MIG могут быть объединены с переключателем 168 точечной синхронизации MIG. При замкнутом переключателе 188 мгновенное замыкание триггерного переключателя 128 приводит в действие реле 136, замыкающее нормально разомкнутые контакты 136-6, обеспечивая ток для удержания реле 136 в его рабочем состоянии, когда переключатель 128 открыт.Только после того, как реле 182 приводится в действие схемой точечной синхронизации MIG, размыкая, таким образом, нормально замкнутые контакты 182-2, реле 136 размыкается. Если желательно работать только в этом режиме, цепь контактов 182-1 реле может быть исключена.

Как было указано выше, вспомогательное оборудование непрерывно получает питание от третичных обмоток 16, 18 и 20. Например, двигатели вентиляторов для охлаждения трансформатора 12 могут быть подключены к обмотке 18; приводы 190 сварочных стержней и регуляторы 192 подачи газа могут быть соединены с обмоткой 16; и к обмотке 20 могут быть подсоединены осветительные приборы, установка положения горелки или заготовки или приводные двигатели и другое вспомогательное оборудование.Удобное управление приводом 190 сварочного прутка и регулятором 192 подачи газа можно осуществить, разместив нормально разомкнутые релейные контакты 136-7 реле 136 последовательно с линией питания к этим устройствам, чтобы сварочный пруток продвигался вперед и подавался инертный газ. всякий раз, когда включается сварочная дуга и сварочный стержень останавливается, а газ отключается всякий раз, когда отключается сварочная дуга. Когда схема синхронизации точки MIG используется в режиме, в котором переключатель 128 горелки остается замкнутым, нормально замкнутые релейные контакты 182-3 реле 182, соединенные последовательно с релейными контактами 136-7, отключают привод сварочного стержня и подачу газа во время сварки. дуга гаснет при срабатывании реле 182.

Цепи управления по настоящему изобретению особенно полезны в системах с несколькими горелками. Второй и дополнительные сварочные агрегаты могут получать питание от одного и того же трансформатора 12 путем подключения дополнительного выпрямительного моста 26 ‘и дополнительной схемы зажигания 52’, включающей генератор синхронизирующих импульсов и генератор сигнала зажигания, ко вторичной обмотке 22 и подключения дополнительной функции сварки. схема управления 126 ‘, включающая переключатель горелки в третичную обмотку 16 для каждой дополнительной горелки.Если необходимо изолировать горелки друг от друга, например, если они должны работать с противоположной полярностью, отдельные вторичные обмотки 22 ‘на трансформаторе 12 могут использоваться для станций с противоположной полярностью.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *