Трансформатор для полуавтомата: Трансформатор для полуавтомата — Самодельное сварочное и вспомогательное оборудование

Содержание

Расчет и намотка трансформатора сварочного полуавтомата

Расчет трансформатора сварочного полуавтомата

В этой статье я расскажу вам как собрать, рассчитать и намотать трансформатор для сварочного полуавтомата.

Расчет тороидального трансформатора

Сначала нужно определиться с количеством с имеющегося у вас железа. Исходя из этого определиться с наружным и внутренним диаметром тора. Внутренний диаметр нужно принимать от 12 см и выше, иначе если нет опыта в намотке, у вас не уместится вторичка.

Также нужно стремится сделать такие размеры, что бы площадь сердечника была от 30 см.кв. и выше.

В итоге расчетные размеры тора получились такие.. D=25см, d=14см, h=6,2 см.

После сборки и замеров итоговая (реальная) площадь сердечника данного тора равна:

Sс =33,4 см.кв.

Посчитаем количество витков на вольт. Так как это тор, то примем коэффициент равным 35.

35/33,4 =1,047 витка на вольт.

Далее определимся с диапазоном напряжений. Принимаем от 18 до 32 вольт.

Далее расчитаем количество витков вторички. Для этого берем максимальное напряжение, то есть 32 вольта.

W2 = 32*1,047 = 33 витка.

Далее рассчитаем ступени первичной обмотки для регулирования сварочного тока. Принимаем количество ступеней равным 8.

Для расчета количества витков используем формулу:

W1_ст = (220*W2)/Uст2

Где:
Uст2 - нужное выходное напряжение на вторичной обмотке.
W2 - количество витков вторички.
W1_ст - количество витков первичной обмотки.

Далее расчет:

Примем шаг ступени на вторичке 2 вольта.

W1_ст1 = (220*33)/32 = 230 витков.
W1_ст2 = (220*33)/30 = 242 витка.
W1_ст3 = (220*33)/28 = 260 витков.
W1_ст4 = (220*33)/26 = 280 витков.
W1_ст5 = (220*33)/24 = 302 витка.
W1_ст6 = (220*33)/22 = 330 витков
W1_ст7 = (220*33)/20 = 363 витка.
W1_ст8 = (220*33)/18 = 403 витка.

Намотка трансформатора сварочного полуавтомата

Мотаем первичку равномерно по всему тору до 230 витка, делаем отвод. Это будет первая ступень первички. Мотаем далее до 242 витка, делаем отвод. Это будет вторая ступень первички. И так далее, завершаем намотку на 403 витке (8 ступень первички).

Вторичку мотаем по верх первички равномерно по всему тору. Вторичка имеет 33 витка.

Намотка тороидального трансформатора

Далее процесс сборки сердечника, намотки первичной и вторичной обмотки, представлен в виде фото галереи.

Наведя мышкой на изображение вы увидите комментарий к нему. Также можно кликнуть мышкой по изображению, чтобы увидеть его в большем разрешении.

Поехали:

Как видите ни чего сложного при расчете и сборке сварочного трансформатора нет. Хотел еще заметить, что при проверке напряжения вторички (когда наматывал пробную обмотку 33 витка), в сети было 245 вольт. Поэтому на минимальной ступени было 20 вольт вместо расчетных 18 вольт, а на максимальной 35 вольт, вместо 33 вольт.

При подключении в нормальную сеть 220 вольт, напряжение на вторичке соответствовала расчетным, то есть от 18 до 32 вольт. Ток холостого хода на 230 витке составлял 1,4 ампера (у вас будет отличаться, так как качество железа, качество стяжки сердечника у всех разное). На 403 витке ток холостого хода 0,15 ампер.

Это чудо весит 24,5 кг. Со своими обязанностями справляется на пятерку.

Ну в общем расписывать больше нечего, все должно быть понятно. Если возникнут вопросы, задавайте их в комментариях.

Автор статьи и фото: Admin Svapka.Ru

Понравилась ли вам статья? Если не трудно, то проголосуйте пожалуйста:
Похожие записи

Расчет трансформатора для сварочного полуавтомата, сварочного аппарата.

В этой статье попытаюсь вам рассказать, как рассчитать трансформатор для сварочного аппарата.

На самом деле ни чего сложного здесь нет. Этот расчет относится как к простым (П и Ш образным) так и к тороидальным трансформаторам.

Для начала определим габаритную мощность будущего сварочного трансформатора:

Где:
Sc - площадь сечения сердечника см. кв.
So - площадь сечения окна см.кв.
f - рабочая частота трансформатора Гц. (50).
J - плотность тока в проводе обмоток A/кв.мм (1.7..5).
ɳ - КПД трансформатора (0,95).
B - магнитная индукция (1..1,7).
Km - коэффициент заполнения окна сердечника медью (0,25..0,4).
Kc - коэффициент заполнения сечения сердечника сталью (0,96).

Подставляя нужные значения упрощаем формулу, она будет иметь вид:

P габаритн = 1.9*Sc*So для торов (ОЛ).

P габаритн = 1.7*Sc*So для ПЛ,ШЛ.

P габаритн = 1.5*Sc*So для П,Ш.

Например у нас ОЛ сердечник (тор).

Площадь сердечника Sс = 45 см.кв.

Площадь окна сердечника So = 80 см.кв.

Формула для тора (ОЛ):

P габаритн = 1.9*Sc*So

Где:
P габаритн - габаритная мощность трансформатора в ваттах.
Sc - площадь сердечника трансформатора в см.кв.
So - площадь окна сердечника в см.кв.

P = 1. 9*45*80 = 6840 ватт.

Далее нужно рассчитать количество витков для первичной и вторичной обмотки. Для этого сначала рассчитаем необходимое количество витков на 1 вольт.

Для этого используем формулу:

K = 50/S

Где:
K - количество витков на вольт.
S - площадь сердечника в см.кв.
Вместо 50 в формулу подставляем нужный коэффициент:
для ОЛ (тор) = 35,
для ПЛ,ШЛ = 40,
для П и Ш = 50.

Так как у нас ОЛ  сердечник (тор), примем коэффициент равный 35.

К = 35/45 = 0.77 витка на 1 вольт.

Далее рассчитываем сколько нужно витков для первичной и вторичной обмоток.

Здесь у нас два пути расчета:

  1. если нам нужен трансформатор с единой первичной обмоткой, то есть мы не собираемся регулировать ток по первичной обмотке ступенями.
  2. если мы собираемся регулировать ток по первичной обмотке и нам нужно рассчитать ступени регулирования.

Регулировка ступенями по вторичной обмотке трансформатора экономически не выгодна, требует дорогостоящих коммутирующих элементов, также требует увеличение длины провода вторичной обмотки, тем самым утяжеляя конструкцию и поэтому здесь не рассматривается

.

1. Рассчитаем количество витков для первичной и вторичной обмотки в варианте без регулирования по первичной обмотке ступенями.

Рассчитаем количество витков первичной обмотки по формуле:

W1 = U1*K

Где:
W1 - количество витков первичной обмотки.
U1 - напряжение первичной обмотки в вольтах.
K - количество витков на вольт.

W1 = 220*0.77 = 170 витков.

Далее..

Примем максимальное напряжение вторичной обмотки равным U2 = 35 вольт

Рассчитаем количество витков вторичной обмотки по формуле:

W2 = U2*K

Где:
W2 - количество витков вторичной обмотки.
U2 - напряжение вторичной обмотки в вольтах.
K - количество витков на вольт.

W2=35*0.77=27 витков

Далее рассчитываем площадь сечения провода первичной и вторичной обмоток. Для этого нам нужно знать, какой максимальный ток течет в данной обмотке.

Для этого мы воспользуемся формулой:

Для первичной обмотки.

I первич_max = P габаритн/U первич

Где:
I первич_max - максимальный ток первичной обмотки.
P габаритн - габаритная мощность трансформатора.
U первич - напряжение сети.

I первич_max = 6840/220 = 31 А

Для вторичной обмотки:

Сразу хочу сказать, что я не теоретик, но попытаюсь объяснить формирование величины сварочного тока в трансформаторе, как понимаю это я.

Напряжение дуги для сварки проволокой в среде углекислого газа равно:

Uд = 14+0.05*Iсв

Где:
Uд - напряжение дуги.
Iсв - ток сварки.

Выводим формулу тока вторички при конкретном напряжении дуги:

Iсв = (Uд — 14)/0.05

Далее рассчитаем для полуавтомата.

1. Принимаем напряжение дуги 25 вольт, получаем требуемую мощность трансформатора:

Iвторич = (25-14)/0.05 = 220 ампер

220*25 =

5500 вт.Но у нас габаритная мощность трансформатора больше.

Считаем дальше..

2. Принимаем напряжение дуги равным 26 вольт, получаем требуемую мощность трансформатора:

Iвторич = (26-14)/0.05 = 240 ампер

240*26 = 6240 вт Почти рядом.

Считаем дальше..

3. Принимаем напряжение дуги равным 27 вольт, получаем требуемую мощность трансформатора:

Iвторич = (27-14)/0.05 = 260 ампер.

260*27 = 7020втТребуемая габаритная мощность выше чем имеющаяся, это говорит о том, что при данном напряжении дуги не будет тока 260 ампер, так как не хватает габаритной мощности трансформатора.

Из выше перечислительных расчетов, можно сделать вывод, что при напряжении дуги в 26 вольт обеспечивается максимальный ток в 240 ампер при данной габаритной мощности трансформатора и именно этот ток вторички мы примем за максимальный:

Iвторич max = 240 ампер.

Для расчета максимального сварочного тока для сварки электродом, рассчитываем так же, только по другой формуле. .

Uд = 20+0.04*Iсв

Где:
Uд - напряжение дуги.
Iсв - ток сварки.

Выводим формулу тока вторички при конкретном напряжении дуги:

Iсв = (Uд — 20)/0.04 (считать не будем, я думаю понятно).

Далее…

Из справочных материалов нам известно, что плотность тока в меди равна 5 ампер на мм.кв, в алюминии 2 ампера на мм.кв.

Исходя из этих данных можно рассчитать площадь сечения обмоток трансформатора.

Сечения проводов для продолжительной работы трансформатора ПН = 80% и выше:

Для меди:

S первич медь = 31/5 = 6.2 мм.кв

S вторичн медь = 250/5 = 50 мм.кв.

Для алюминия:

S первич алюмин = 31/2 = 16 мм.кв.

S вторичн алюмин = 250/2 = 125 мм.кв.

Итак мы имеем трансформатор с габаритной мощностью 6840 ватт. Сетевое напряжение 220 вольт. Напряжение вторичной обмотки 35 вольт.

Первичная обмотка содержит 170 витков провода площадью 6. 2 мм.кв из меди или 16 мм.кв. из алюминия.

Вторичная обмотка содержит 27 витков провода площадью 50 мм.кв. из меди или 125 мм.кв. из алюминия.

Для ПН = 40% сечения первички и вторички можно уменьшить в 2 раза.

Для ПН = 20% сечения первички и вторички можно уменьшить в 3 раза.

Например ПН = 20% — это значит, что если взять за 100% 1 час работы трансформатора под нагрузкой, то 12 минут варим 48 минут отдыхаем, иначе трансформатор перегреется и перегорит (этот режим больше всего годится для не больших домашних дел). Я думаю тут понятно.

ПН — продолжительность нагрузки.

ПВ — продолжительность включения.

ПР — продолжительность работы.

Все эти термины одно и тоже, измеряются в процентах.

2. Рассчитаем количество витков для первичной и вторичной обмотки в варианте с регулированием ступенями по первичной обмотке.

Например, нам нужен трансформатор с регулированием сварочного тока 16 ступенями например используемого в этой схеме сварочного полуавтомата.

Выбираем номинальное напряжение вторичной обмотки.

Uномин = Uмакс — Uмакс*10/100

Где:
Uномин - напряжение номинальной обмотки (на это напряжение будем рассчитывать вторичку).
Uмакс - максимальное напряжение вторички для конкретного типа расчета.

Рассчитываем, Uмакс = 35 вольт

Uномин = 35 — 35*10/100 = 32 вольт.

Рассчитаем количество витков для вторичной обмотки номинальным напряжением 32 вольт, тип сердечника ОЛ (тор).

K = 35/S

К = 35/45 = 0.77 витка на 1 вольт.

W2 =U2*K = 32*0.77 = 25 витков

Теперь рассчитаем ступени первичной обмотки.

W1_ст = (220*W2)/Uст2

<strong>Где:
Uст2 - нужное выходное напряжение на вторичной обмотке.
W2 - количество витков вторички.
W1_ст - количество витков первичной обмотки.</strong>

Как мы рассчитали ранее количество витков обмотки W2 = 25 витков.

Рассчитаем количество витков первички для напряжения на вторичке равное 35 вольт.
W1_ст1 = (220*25)/35 = 157 витков.. Форсированный режим
Далее рассчитываем на 34 вольт (шаг 1 вольт на вторичке)
W1_ст2 = (220*25)/34 = 161 виток.. Форсированный режим
Далее рассчитываем на 33 вольт
W1_ст3 = (220*25)/33 = 166 витков.. Форсированный режим
Далее рассчитываем на 32 вольт
W1_ст4 = (220*25)/32 = 172 витка.. Номинальная обмотка
Далее рассчитываем на 31 вольт
W1_ст5 = (220*25)/31 = 177 витков.. Пассивный режим
Далее рассчитываем на 30 вольт ..
W1_ст6 = (220*25)/30 = 183 витка.. Пассивный режим
Далее рассчитываем на 29 вольт
W1_ст7 = (220*25)/29 = 190 витков.. Пассивный режим
Далее рассчитываем на 28 вольт
W1_ст8 = (220*25)/28 = 196 витков.. Пассивный режим
Далее рассчитываем на 27 вольт
W1_ст9 = (220*25)/27 = 204 витка.. Пассивный режим
Далее рассчитываем на 26 вольт
W1_ст10 = (220*25)/26 = 211 витков.. Пассивный режим
Далее рассчитываем на 25 вольт
W1_ст11 = (220*25)/25 = 220 витков.. Пассивный режим
Далее рассчитываем на 24 вольт
W1_ст12 = (220*25)/24 = 229 витков. . Пассивный режим
Далее рассчитываем на 23 вольт
W1_ст13 = (220*25)/23 = 239 витков.. Пассивный режим
Далее рассчитываем на 22 вольт
W1_ст14 = (220*25)/22 = 250 витков.. Пассивный режим
Далее рассчитываем на 21 вольт
W1_ст15 = (220*25)/21 = 261 виток.. Пассивный режим
И последняя ступень на 20 вольт
W1_ст16 = (220*25)/20 = 275 витков.. Пассивный режим

Мотаем первичную обмотку трансформатора  до 157 витка, делаем отвод, он будет соответствовать 35 вольтам на вторичке.

Далее мотаем 4 витка до 161 витка и делаем отвод, он будет соответствовать напряжению на вторичке 34 вольт.

Далее мотаем 5 витков и делаем отвод на 166 витке, он будет соответствовать напряжению на вторичке 33 вольт и т.д. согласно выше приведенному расчету.

Заканчиваем намотку первичной обмотки на 275 витке, он будет соответствовать напряжению на вторичке 20 вольт.

В итоге у нас получился трансформатор габаритной мощностью в 6840 ватт, первичной обмоткой с 16 ступенями регулирования.

Сечение обмоток такие же, как в первом варианте расчета.

На данном этапе мы заканчиваем расчет трансформатора.

Как сделать трансформатор смотрите здесь Делаем тороидальный сварочный трансформатор

Таким образом было рассчитано много трансформаторов и они прекрасно работают в сварочных полуавтоматах и сварочных аппаратах.

Не нужно бояться форсированного режима работы трансформатора (это такой режим, когда к обмотке трансформатора рассчитанного например на 190 вольт приложено напряжение 220 вольт), трансформатор прекрасно работает в таком режиме. Имея маломощный трансформатор, можно вытянуть из него все возможности используя форсированный режим для комфортного процесса сварки с помощью сварочного полуавтомата.

Ссылка для статьи на сайте Расчет трансформатора для сварочного полуавтомата, сварочного аппарата.


Ответ на комментарий.

Как наматывать на П-образный сердечник:

Первичная обмотка.

Вариант 1. Мотаем две одинаковые обмотки (клоны) в одну сторону и соединяем их начала. Концы этих обмоток используем для подключения к сети 220 вольт.

Вариант 2. Мотаем две одинаковые обмотки (клоны) в одну сторону, делаем отводы. Замыкая эти отводы, регулируем сварочный ток. Начало этих обмоток используем для подключения к сети 220 вольт.

Вторичная обмотка.

Мотаем две одинаковые обмотки в одну сторону и соединяем их концы. Начала этих обмоток используем для сварки.

Расчет площади сердечника и площади окна сердечника Sc и So.

По этим формулам, можно рассчитать требуемые величины.

Если возникнут вопросы, задавайте их в комментариях.

Автор замысловатых расчетов: Admin Svapka.Ru

Понравилась ли вам статья? Если не трудно, то проголосуйте пожалуйста:

Как сделать сварочный полуавтомат?.. нет ни чего проще

Многие задаются вопросом, как же сделать сварочный полуавтомат своими руками и что бы он обладал хорошими характеристиками, имел достаточно функционала и работал надёжно долгие годы.

На в самом деле всё просто. Для этого нужно знать немного о принципе работы сварочного полуавтомата и немного терпения.

Многие задаются вопросом, как же сделать сварочный полуавтомат своими руками и что бы он обладал хорошими характеристиками, имел достаточно функционала и работал надёжно долгие годы.

На в самом деле всё просто. Для этого нужно знать немного о принципе работы сварочного полуавтомата и немного терпения.

Итак начнем.

Для начала определимся с типом и мощностью сварочного трансформатора применяемого в сварочных полуавтоматах.

Как нам известно при использовании сварочной проволокой диаметром 0,8 мм сварочный ток достигает ~160 ампер. Отсюда следует, что трансформатор должен быть мощностью от 3000 вт.

Далее определяемся с типом трансформатора. Самыми лучшими характеристика обладают сварочные трансформаторы намотанные на тороидальном сердечнике (кольцо, бублик, тор)

Выбираем этот тип сварочного трансформатора, в отличии от П и Ш образных трансформаторов при одинаковой мощности они имеют меньший вес, что важно для такой конструкции, как сварочный полуавтомат.

Далее определяемся с регулированием сварочного тока. Есть два способа регулирования, по первичной и вторичной обмотке сварочного трансформатора.

Регулирование сварочного тока по первичной обмотке трансформатора с использованием тиристорной схемы регулирования имеет ряд недостатков, такие как повышенная пульсация сварочного напряжения в момент перехода фаз через тиристоры в первичной обмотке. (лечится установкой дросселя и конденсатора большой емкости в цепь сварочного тока)

Регулирование тока по первичной обмотке с использованием коммутирующих элементов (реле, галетные переключатели) не имеет таких недостатков, как тиристорная схема управления, и предпочтительней для использования в подобных схемах сварочных аппаратов.

Регулирование тока по вторичной обмотке сварочного трансформатора имеет также повышенную пульсацию сварочного напряжения в схемах с применением тиристоров. Применение коммутирующих схем (переключатели, мощные реле) ведет к дороговизне элементов и утяжелении конструкции сварочного аппарата в целом.

Отсюда следует, что регулировку тока нужно реализовывать по первичной обмотке (какую именно, решать вам)

В цепи питания сварочной дуги (вторичная обмотка) нужно обязательно устанавливать сглаживающий сварочный дроссель и конденсатор повышенной емкости от 50000 Мкф. для сглаживания пульсаций сварочного тока, не зависимо от применяемой схемы регулирования сварочного напряжения.

Дальше определяемся с регулятором подачи сварочной проволоки. Для сварочного полуавтомата рекомендуется использовать ШИМ регулятор с обратной связью.

Для чего нужен ШИМ? Во первых он стабилизирует скорость проволоки(на заданном уровне) в зависимости от нагрузки оказываемой трением проволоки в рукаве и реагирует на просадку (уменьшение) сетевого напряжения во время сварки.

Откуда запитать ШИМ регулятор, от отдельного трансформатора или намотать дополнительную обмотку на сварочный трансформатор? Тут разницы особой нет, если запитывать от отдельного трансформатора, то это увеличит вес аппарата. А если намотать дополнительную обмотку на сварочный трансформатор, то вы выиграете в весе и немного с экономите.

Возьмем к примеру такую ситуацию, вы варите на самом маленьком токе, значит и скорость проволоки тоже маленькая и напряжение нужное для регулирования двигателя подачи проволоки тоже незначительное, если варите на максимальном токе, то и напряжение нужное для двигателя максимальное, тем самым намотав обмотку запитывающую цепь регулятора подачи проволоки на сварочном трансформаторе, мы обеспечим нужный режим работы для регулятора. И отсюда следует, что потребности в дополнительном трансформаторе для двигателя подачи сварочной проволоки нет.

Какой выбрать редуктор для подачи сварочной проволоки? Вариантов много, самый распространенный это редуктор стеклоочистителя от автомобилей семейства ВАЗ.

Расчет диаметра ведущего колеса механизма подачи сварочной проволоки. Как нам известно, что скорость подачи сварочной проволоки в сварочном аппарате должна быть в пределах 0,7. ..11 метров в минуту при сварке проволокой 0.8 мм.

Так как передаточное отношение выбранного редуктора и скорость вращения якоря двигателя нам не известна, нужно рассчитать диаметр ведущего колеса механизма подачи проволоки, что бы он обеспечивал необходимую скорость подачи проволоки.

Делается это опытным путем.  На вал редуктора с помощью пластилина прикрепляется спичка. Потом на двигатель редуктора подается максимальное напряжение, которое выдает ШИМ регулятор, например 20 вольт. . Подсчитываем количество оборотов, которые сделал двигатель за 1 минуту.

Например двигатель сделал 100 оборотов, подставив в формулу, мы рассчитаем нужный размер (радиус) ведомого колеса механизма подачи проволоки:

100 — количество оборотов двигателя, сделанных за 1 минуту.

1100 — 11 метров переведенные в см.

Или упрощенная формула для скорости 11 м/мин:

где N количество оборотов двигателя, сделанных за 1 минуту.

Таким образом у нас получилось, что радиус ведомого колеса равен 1. 75 см или диаметр равен 3,5 см, при котором обеспечивается нужная максимальная скорость подачи проволоки (11 метров в минуту) при данном напряжении (20 вольт).

В качестве клапана газа для нашего сварочного аппарата, рекомендуем использовать клапан подачи воды на омыватель заднего стекла ВАЗ2108, так как он зарекомендовал себя очень надежным.

Каким должен быть функционал сварочного полуавтомата? Сварочный полуавтомат должен обязательно иметь самый минимум функций, а именно:

  • при нажатии кнопки управления сначала должен податься углекислый газ, это делается для того, что бы горелка наполнилась газом.
  • после задержки 1..3 секунды автоматически включается ток сварки и  подача проволоки.
  • после отпускания кнопки управления отключается подача проволоки и сварочный ток (одновременно).
  • затем через 1…3 сек отключается подача углекислого газа, это нужно для того, что бы расславленный метал не окислился при остывании.

Как видите, из выше изложенного видно, что сварочный полуавтомат — это просто, было бы желание и возможность реализовать все это в домашних условиях.

P.S. На нашем сайте опубликовано много схем сварочных полуавтоматов. Все они разные и различаются по принципу регулирования сварочного тока, функциональности, простоте (сложности) повторения.

В связи с этим хотелось бы добавить, что каждый сам для себя может выбрать, что ему действительно нужно, и сделать, что то свое на основе приведенных здесь схем сварочных аппаратов.


Ответ на комментарий:

Регулятор подачи сварочной проволоки на TL494

Схема из журнала «Радиоаматор-Электрик» №3 2006 г. стр 28-29

Схема похоже не рабочая!!!

Схема торможения двигателя.

Реле К1 подключаем в цепь коммутации подачи проволоки.


Еще одна схема регулятора подачи проволоки на TL494 (доработанный вариант схемы из журнала «Радиоаматор-Электрик»)

Повторил эту схему.. не работает!!!! © Admin

У кого работает,  пишите в комментарии.

Нажмите на изображение, чтобы увеличить.

Если возникнут вопросы, задавайте их в комментариях.

Автор статьи: Admin Svapka.Ru

Понравилась ли вам статья? Если не трудно, то проголосуйте пожалуйста:
Похожие записи

Сварочный полуавтомат 30А — 160А своими руками » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)


Технические данные нашего сварочного аппарата — полуавтомата:
Напряжение питающей сети: 220 В
Потребляемая мощность: не более 3 кВа
Режим работы: повторно-кратковременный
Регулирование рабочего напряжения: ступенчатое от 19 В до 26 В
Скорость подачи сварочной проволоки: 0-7 м/мин
Диаметр проволоки: 0.8 мм
Величина сварочного тока: ПВ 40% — 160 А, ПВ 100% — 80 А
Предел регулирования сварочного тока: 30 А — 160 А

Всего с 2003 года было сделано шесть подобных аппаратов. Аппарат, представленный далее на фото, работает с 2003 года в автосервисе и ни разу не подвергался ремонту.

Содержание / Contents


Вообще


Вид спереди


Вид сзади


Вид слева


В качестве сварочной проволоки используется стандартная
5кг катушка проволоки диаметром 0,8мм
Сварочная горелка 180 А вместе с евроразъемом
была куплена в магазине сварочного оборудования.Ввиду того что схема полуавтомата анализировалась с таких аппаратов как ПДГ-125, ПДГ-160, ПДГ-201 и MIG-180, принципиальная схема отличается от монтажной платы, т. к. схема вырисовывалась на лету в процессе сборки. Поэтому лучше придерживаться монтажной схемы. На печатной плате все точки и детали промаркированы (откройте в Спринте и наведите мышку).

Печатка, см. чертеж в архиве
Вид на монтаж

Плата управления

В качестве выключателя питания и защиты применен однофазный автомат типа АЕ на 16А. SA1 — переключатель режимов сварки типа ПКУ-3-12-2037 на 5 положений.

Резисторы R3, R4 — ПЭВ-25, но их можно не ставить (у меня не стоят). Они предназначены для быстрой разрядки конденсаторов дросселя.

Теперь по конденсатору С7. В паре с дросселем он обеспечивает стабилизацию горения и поддержания дуги. Минимальная емкость его должна быть не менее 20000 мкф, оптимальная 30000 мкф. Были испробованы несколько типов конденсаторов с меньшими габаритами и большей емкостью, например CapXon, Misuda, но они себя проявили не надежно, выгорали.


В итоге были применены советские конденсаторы, которые работают по сей день, К50-18 на 10000 мкф х 50В в количестве трёх штук в параллель.

Силовые тиристоры на 200А взяты с хорошим запасом. Можно поставить и на 160 А, но они будут работать на пределе, потребуется применение хороших радиаторов и вентиляторов. Примененные В200 стоят на не большой алюминиевой пластине.

Реле К1 типа РП21 на 24В, переменный резистор R10 проволочный типа ППБ.

При нажатии на горелке кнопки SB1 подается напряжение на схему управления. Срабатывает реле К1, тем самым через контакты К1-1 подается напряжение на электромагнитный клапан ЭМ1 подачи кислоты, и К1-2 — на схему питания двигателя протяжки проволоки, и К1-3 — на открытие силовых тиристоров.

Переключателем SA1 выставляют рабочее напряжение в диапазоне от 19 до 26 Вольт (с учетом добавки 3 витков на плечо до 30 Вольт). Резистором R10 регулируют подачу сварочной проволоки, меняют ток сварки от 30А до 160 А.

При настройке резистор R12 подбирают таким образом, чтобы при выкрученном R10 на минимум скорости двигатель все же продолжал вращаться, а не стоял.

При отпускании кнопки SB1 на горелке — реле отпускает, останавливается мотор и закрываются тиристоры, электромагнитный клапан за счет заряда конденсатора С2 еще продолжает оставаться открытым подавая кислоту в зону сварки.

При закрытии тиристоров исчезает напряжение дуги, но за счет дросселя и конденсаторов С7 напряжение снимается плавно, не давая сварочной проволоке прилипнуть в зоне сварки.


Берем трансформатор ОСМ-1 (1кВт), разбираем его, железо откладываем в сторону, предварительно пометив его. Делаем новый каркас катушки из текстолита толщиной 2 мм, (родной каркас слишком слабый). Размер щеки 147×106мм. Размер остальных частей: 2 шт. 130×70мм и 2 шт. 87×89мм. В щеках вырезаем окно размером 87×51,5 мм.
Каркас катушки готов.
Ищем обмоточный провод диаметром 1,8 мм, желательно в усиленной, стекловолоконной изоляции. Я взял такой провод со статорных катушек дизель-генератора). Можно применить и обычный эмальпровод типа ПЭТВ, ПЭВ и т. п.

Стеклоткань — на мой взгляд, самая лучшая изоляция получается
Начинаем намотку — первичка. Первичка содержит 164 + 15 + 15 + 15 + 15 витков. Между слоями делаем изоляцию из тонкой стеклоткани. Провод укладывать как можно плотнее, иначе не влезет, но у меня обычно с этим проблем не было. Я брал стеклоткань с останков всё того же дизель-генератора. Все, первичка готова.

Продолжаем мотать — вторичка. Берем алюминиевую шину в стеклянной изоляции размером 2,8×4,75 мм, (можно купить у обмотчиков). Нужно примерно 8 м, но лучше иметь небольшой запас. Начинаем мотать, укладывая как можно плотнее, мотаем 19 витков, далее делаем петлю под болт М6, и снова 19 витков, Начала и концы делаем по 30 см, для дальнейшего монтажа.
Тут небольшое отступление, лично мне для сварки крупных деталей при таком напряжении было маловато току, в процессе эксплуатации я перемотал вторичную обмотку, прибавив по 3 витка на плечо, итого у меня получилось 22+22.
Обмотка влезает впритык, поэтому если мотать аккуратно, все должно получиться.
Если на первичку брать эмальпровод, то потом обязательно пропитка лаком, я держал катушку в лаке 6 часов.

Собираем трансформатор, включаем в розетку и замеряем ток холостого хода около 0,5 А, напряжение на вторичке от 19 до 26 Вольт. Если все так, то трансформатор можно отложить в сторону, он пока нам больше не нужен.

Вместо ОСМ-1 для силового трансформатора можно взять 4шт ТС-270, правда там немного другие размеры, и я делал на нем только 1 сварочный аппарат, то данные для намотки уже не помню, но это можно посчитать.

Берем трансформатор ОСМ-0,4 (400Вт), берем эмальпровод диаметром не менее 1,5 мм (у меня 1,8). Мотаем 2 слоя с изоляцией между слоями, укладываем плотненько. Дальше берем алюминиевую шину 2,8×4,75 мм. и мотаем 24 витка, свободные концы шины делаем по 30 см. Собираем сердечник с зазором 1 мм (проложить кусочки текстолита).
Дроссель также можно намотать на железе от цветного лампового телевизора типа ТС-270. На него ставится только одна катушка.

У нас остался еще один трансформатор для питания схемы управления (я брал готовый). Он должен выдавать 24 вольта при токе около 6А.

С трансами разобрались, приступаем к корпусу. На чертежах не показаны отбортовки по 20 мм. Углы свариваем, все железо 1,5 мм. Основание механизма сделано из нержавейки.

Подробные чертежи корпуса см. в приложении.



Мотор М применен от стеклоочистителя ВАЗ-2101.
Убран концевик возврата в крайнее положение.

В подкатушечнике для создания тормозного усилия применена пружина, первая попавшаяся под руку. Тормозной эффект увеличивается сжиманием пружины (т. е. закручиванием гайки).

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Андрей (bedjamen)

Вологда

Логин bedjamen — это был мой пёс, эрдельтерьер, по кличке Беджамен Моден Тайп Хауэлл. Дата его рождения 7 апреля 2002 года.

Мои поделки за последние несколько лет:
https://yadi.sk/d/4_KITmRVcARCX

 

Расчет тороидального трансформатора для сварочного полуавтомата

Подбор правильных параметров техники при сварке является очень важным делом. Расчет трансформатора для сварочного полуавтомата имеет ярко выраженную специфику. Здесь могут использоваться как типовые схемы, так и другие варианты, которые подходят по параметрам. Для промышленных трансформаторов можно применять стандартные методики расчета, так как серийно выпускающиеся модели имеют одинаковые параметры, такие как напряжение сварочного трансформатора, тогда как для самодельных изделий такие методы не будут являться действительными. Это касается не только параметров изделия, но и материалов, которые применяются при создании трансформатора. Во втором случае получается намного больше погрешностей, что также следует учитывать. Стандартные методы расчета основаны на методике, которая может определить самое оптимальное значение геометрических и обмоточных параметров трансформатора. Но у данных методик имеются свои недостатки, так как если имеется какой-либо выход за стандартные параметры, то все расчеты могут оказаться недействительными из-за особенностей конструкции и используемых материалов. С учетом современного разнообразия техники, которую можно встретить на рынке для промышленного и частного использования, расчет сварочного трансформатора может оказаться весьма затруднительным.

Трансформатор для сварочного полуавтомата

Ведь не зря, одним из первых дел при расчете является определение количества и вид используемого железа. Таким образом, нужно определить значение наружного и внутреннего диаметра сердечника. Как правило, минимальное значение внутреннего диаметра составляет от 12 см. В некоторых случаях это значение может быть меньше, если обмотка выйдет очень плотной. Проблема здесь может возникнуть при размещении вторичной обмотки, так как в ином случае она может и не поместиться, если диаметр будет меньше предложенного значения. Минимальные рекомендуемые значения имеются и при выборе площади сердечника.

Сварочный трансформатор для сварки полуавтоматом

Стоит отметить, что подавляющее большинство бытовых сварочных аппаратов, куда можно отнести и некоторые модели полуавтоматов, имеют достаточно простую структуру. Они состоят в большинстве случаев из источников переменного тока, что делает их боле дешевыми. Также становится легче ремонт и обслуживание сварочных трансформаторов, если с ними что-то случится. Сама система полуавтомата практически не влияет на принцип действия трансформатора, так как относится к удобству подачи электрода или проволоки. В самых простых моделях используется однофазный трансформатор, который разработан специально для сварки.

На чем базируется расчет сварочного трансформатора

Основными положениями, на которых состоит расчет трансформатора для сварочного полуавтомата сварочного аппарата, являются те, на которых основан принцип его действия. Главным элементом системы является понижающий трансформатор. Этот элемент позволяет изменить стандартное сетевое напряжение 220 В, на пониженное, которое требует холостой ход сварочного трансформатора – 60 В. Ток может регулироваться исходя из вольтамперных характеристик самой системы. Средние характеристики тока для электрода в 3 мм составляет 120 А. Именно в этом случае и оказывается важным расчет сварочного аппарата, ведь когда стержень начинает плавиться при определенном значении силы тока, то он еще и нагревает проволоку обмотки и сердечник трансформатора при определенных значениях. Таким образом, для вычисления оптимальной мощности трансформатора следует узнать рабочее значение, которое можно определить по рабочей силе тока. Для этого применяют формулу U2 = 20+0,04*I2. Здесь:

  • U2 – напряжение, которое имеется на вторичной обмотке;
  • I2максимальный сварочный ток, который может выдать аппарат.

После этого можно перейти к сердечнику. Это центральная часть как простого сварочного аппарата, так и полуавтоматического. Состоит он из металлических пластин. Эти пластины в совокупности могут выдержать определенную нагрузку параметров тока. Данный параметр называется «габаритная мощность». Здесь имеется прямая зависимость от того, какие размеры занимает сердечник. Вычислить габаритную мощность можно зная такие параметры как напряжение холостого хода сварочного трансформатора. Рассчитать все это можно при помощи формулы Uхх = U2S. В данном случае S является площадью сечения вторичной обмотки. Чтобы узнать зависимость площади от диаметра используемого проводника, то следует использовать формулу S = πd2/4.

Также можно просто воспользоваться уже имеющимися готовыми таблицами:

Допустимые нагрузки по току для медных проводов

Площадь сечения медной жилы, мм2

Общий диаметр провода с обмоткой, мм

Максимальный ток, А

Площадь сечения медной жилы, мм2

Общий диаметр провода с обмоткой,мм

Максимальный ток, А

0. 5

0.78

11

35

6,7

170

1,0

1,13

17

70

9.5

270

2,5

1,8

30

120

12,4

385

6.0

2,8

50

185

15,4

510

16

4,5

100

300

19,5

695

 

Допустимые нагрузки по току для алюминиевых проводов

Площадь сечения алюминиевой жилы, мм2

Общий диаметр провода с обмоткой, мм

Максимальный ток, А

Площадь сечения алюминиевой жилы, мм2

Общий диаметр провода с обмоткой, мм

Максимальный ток, А

2

1,6

21

35

6,7

130

3

1,95

27

70

9. 5

210

5

2,52

36

120

12,4

295

8

3,19

46

185

15,4

390

Далее следует определение такого параметра ка габаритная мощность сердечника. Pгаб = UххI2cos*(φ)/η.Чтобы знать, как рассчитать сварочный трансформатор, требуется использовать ряд формул.Методика расчета с использованием формул

  • Здесь φ– является углом смещения фаз между током и напряжением;
  • η – коэффициентом полезного действия системы.

При этом следует найти допустимую мощность, с которой бы смог справиться аппарат во время длительной эксплуатации (значение ПР). Данный расчет происходит по следующей формуле Pдл = U2I2 (ПР/100)0.5 * 0.001. В общем, продолжительность беспрерывной эксплуатации и сила тока не связаны между собой. Большее значение на данный параметр оказывает продолжительность дугового режима. Силу одного витка, которая исчисляется в вольтах, можно определить по формуле E=Pдл0.095+0.55.

После этого можно рассчитать наиболее подходящее количество витков для одной обмотки, отдельно для обмоток. Для обоих случаев используются две формулы:

  • Для первой обмотки N1= U1/E, здесь U1 – входящее напряжение сети;
  • Для второй обмотки N2= U2/E. здесь U2 – входящее напряжение сети.

Исходя из этого, сила тока регулируется изменением расстояния между обмотками, так как с его увеличением теряется и мощность на выходе.

Расчет тороидального трансформатора

Тор является замкнутой поверхностью, в виде которой и выполнен трансформатор тороид. Преимуществом такой формы является высокий коэффициент полезного действия в нем имеется прокладка меж обмоточной изоляции, а меж слоевая отсутствует, так как это невозможно сделать из-за особенностей конструкции. Это делает сборку сердечника более сложной. Чтобы определить габаритную мощность, следует узнать площадь сечения и площадь окна.

Самодельный тороидальный сварочный трансформатор

Площадь окна определяется по формуле Sокна = 3.14*(d2/4). Здесь d является внутренним диаметром тора.

Площадь сечения определяется по формуле Sсеч=h*((D-d)/2). Здесь D является внешним диаметром тора.

Для расчета габаритной мощности применяется самый простой способ умножения полученных результатов, используя формулу Pгаб[Вт] = Sокна[кв.см] * Sсеч[кв.см]. Это предоставляет самые основные параметры расчета, на которых будут основывать все дальнейшие действия. Таким образом, это лишь начало, так как дальше придется использовать дополнительные значения. В дальнейшем, при вычислениях можно ориентироваться на таблицу.

Pгаб

ω1

ω2

∆ (А/мм2)

Η-10

менее 10

41

38

4.5

8

10…30

36

32

4

9

30…50

33.3

29

3.5

9,2

50…120

32

28

3

9,5

Какой сварочный полуавтомат лучше инверторный или трансформаторный | Сварочные аппараты | Блог

На вопрос: «Какой сварочный полуавтомат лучше инверторный или трансформаторный?» можно ответить по-разному. Можно коротко: «Исходи из потребности!», а можно аргументированно разобраться в плюсах и минусах каждой технологии сварки, и на основе этого анализа принять взвешенное решение.

При всей кажущейся простоте, сварить несколько металлических элементов — целое искусство. Как в каждом другом деле, для его освоения нужно заручиться теоретическими знаниями, практическими навыками и подходящим инструментарием.

Как работает сварочный трансформатор

Первые трансформаторы появились в конце XIX века, когда электричество стало обычным явлением. В начале XX века было обнаружено, что при помощи трансформатора можно управлять процессом дуговой сварки, что и дало импульс к развитию трансформаторных сварочных аппаратов.

Самый простой, если можно так выразиться, прапрадед сварочных трансформаторов представляет собой две обмотки, заключенные в набранный из изолированных металлических пластин сердечник.

При приложении напряжения на первичную обмотку, по ней начинает протекать ток. Под действием электромагнитной индукции, возникающей в сердечнике трансформатора, электрический ток начинает течь и по виткам вторичной обмотки.

В сварочном трансформаторе число витков вторичной обмотки значительно меньше, чем первичной, а сама обмотка выполнена из проводника большого сечения. В итоге ток, протекающий по вторичной обмотке, имеет значительную величину, достаточную для того, чтобы зажечь и поддерживать горение электрической дуги.

К слову сказать, в 20–30 годы прошлого столетия трансформаторные сварочные аппараты стали обычным явлением на производстве, а к концу Второй мировой войны их использование переживало настоящий бум. С 30-х по 80-е годы XX века в основе всех сварочных аппаратов лежал трансформатор.

Технологии сварки с помощью трансформатора более 100 лет. Она довольно проста, но за это время отточена практически до совершенства.

Регулирование силы сварочного тока осуществляется по-разному:

  • введением в цепь реостата;
  • механическим изменением расстояния между первичной и вторичной обмотками;
  • изменением зазора в магнитопроводе трансформатора.

Как работает сварочный инвертор

Развитие полупроводниковой техники, ее бурный рост и повсеместное использование открыли новую эру в технологии сварки. Свет увидели инверторные сварочные аппараты.

Принцип действия такого аппарата довольно прост. Питающее напряжение, пройдя через выпрямитель, преобразуется в постоянное. В инверторе обратно трансформируется в переменное, но уже высокой частоты (60–80 кГц). После чего происходит процесс повторного выпрямления напряжения, поскольку сварка постоянным током имеет ряд преимуществ.

Использование сварочных токов высокой частоты позволяет избавиться от «лишнего» трансформаторного железа, позволяя тем самым снизить массу и габариты сварочного аппарата.

Именно частота — основополагающий фактор функционирования инверторного сварочного аппарата. С ее помощью производится регулирование сварочного тока — чем ниже частота, тем меньше выходная мощность, а соответственно и сварочный ток.

На заре становления технологии инверторной сварки не обошлось и без разочарований. Первые серийные образцы были крайне капризны к условиям сварки и не очень надежны. Но со временем улучшение схем и элементной базы позволило устранить большинство слабых мест инверторной технологии.

Трансформатор VS инвертор. Плюсы и минусы

Каждая из технологий сварки имеет свои преимущества и недостатки. Рассмотрим подробно самые значимые.

Надежность

Тема, об которую до сих пор ломаются копья и которая разделила сварщиков на два противоборствующих лагеря. Аргументы «трансформаторщиков» — сварочные трансформаторы совершенствуются вот уже более ста лет. Схемотехника аппарата проста, но, тем не менее, доведена до совершенства. Чтобы «убить» такой аппарат — нужно сильно постараться. А вот инверторные модели этим похвастаться пока не могут. Они еще относительно молоды, им есть куда «расти».

Современные реалии таковы, что последний аргумент разбивается в пух и прах появляющейся новой, более надежной элементной базой и постоянным совершенствованием схем инверторных полуавтоматов.

Многофункциональность

В этом аспекте инвертор на голову переигрывает трансформатор. В инверторном полуавтомате благодаря контроллеру можно настроить любую электрическую переменную. Причем ее значение будет отслеживаться и регулироваться постоянно в течение проведения сварочных работ. А это открывает широкое поле деятельности не только при сваривании черных, но и цветных металлов.

Габариты, вес

Из-за массивного железа, принимающего непосредственное участие в трансформации энергии, идущей на сварку, трансформаторные модели тяжелы и громоздки. Даже самый простой аппарат имеет вес, приближающийся к 20 кг.

На их фоне инверторные модели выгодно выделяются. При сопоставимой мощности — они легки и компактны.

Качество дуги и сварных швов

Качество сварного шва — визитная карточка каждого уважающего себя мастера. Чтобы получить хороший шов, помимо твердой руки, нужно иметь аппарат, который будет удерживать параметры тока на заданной величине. Не секрет, что самые простые трансформаторные модели сильно зависимы от изменения величин питающего напряжения. При его просадках — снижается сварочный ток, и мастеру приходится уменьшать зазор между деталями и электродом, чтобы «удержать» дугу. При резких скачках реакции может и не хватить — при резком возрастании тока зачастую можно получить прожиг заготовок насквозь, особенно при сваривании тонкостенного металла.

К тому же к сварочным трансформаторам, не оборудованным выпрямителем, нужно приноровиться. Дело в том, что сварка переменным током более сложна физически. Она приводит к так называемой «жесткой» дуге, шипению электрода и разбрызгиванию металла по заготовке.

На рисунке: слева — шов, выполненный трансформаторным аппаратом, справа — инвертором.

Работать на трансформаторном сварочном аппарате несколько сложнее. Зато освоив технику сварки, без труда можно «творить чудеса» на инверторе. Обратный переход без привыкания, наработки навыка и определенного «доучивания» невозможен!

Всепогодность

По этому признаку — однозначный фаворит трансформаторный полуавтомат. Дело в том, что напичканные электроникой инверторы боятся влаги и пыли, которые способны вывести из строя плату аппарата.

Сварка в запыленных помещениях, особенно с содержащейся в воздухе металлизированной пылью, не для инвертора!

Еще одно ограничение, накладываемое производителями на инверторные аппараты — использование оборудования для работы в мороз. Виной тому — возможный конденсат, который может образоваться на платах устройства.

Трансформаторным аппаратам все вышеперечисленное нипочем. Они будут работать и в жару и в холод, и даже при повышенной влажности. Единственное чего не стоит делать, так это проводить сварочные работы под дождем! Это опасно!

Продолжительность включения

Как известно, этот параметр характеризует соотношение времени работы аппарата к необходимым для его остывания простоям при максимальных нагрузках. Чем интенсивнее сварочные работы, тем более продолжительные потребуются паузы.

При работе в нагруженных условиях, больше шансов побороться за симпатии потребителей у трансформаторных решений. Если нужно делать много сварных швов не самого лучшего качества, а то и вовсе, просто резать металл, то альтернативы трансформатору нет. Ведь делать то же самое на инверторном аппарате даже звучит кощунственно.

Работа в режиме повышенных нагрузок с большой долей вероятности приведет к выходу из строя электронных компонентов инверторного аппарата.

Сегодня при выборе сварочного полуавтомата большая часть пользователей наверняка отдаст предпочтение инверторному решению. И это не удивительно, ведь де-факто именно инверторные модели являются стандартом в области сварки.

Но сбрасывать со счетов трансформаторные модели все же преждевременно, поскольку для них еще есть определенные ниши, в которых им нет равных. В конце концов, все сводится к конкретным условиям работы и собственному взвешенному решению.

The Illustrated Transformer — Джей Аламмар — Визуализация машинного обучения по одной концепции за раз.

Обсуждения: Hacker News (65 баллов, 4 комментария), Reddit r / MachineLearning (29 баллов, 3 комментария)
Переводы: Испанский, Корейский, Русский, Китайский (упрощенный), Японский
Смотреть: лекция MIT по теме «Глубокое обучение», ссылка на которую имеется в этой публикации

В предыдущем посте мы рассмотрели «Внимание» — повсеместный метод в современных моделях глубокого обучения. Внимание — это концепция, которая помогла повысить производительность приложений нейронного машинного перевода.В этом посте мы рассмотрим The Transformer — модель, которая привлекает внимание, чтобы повысить скорость обучения этих моделей. Transformers превосходит модель нейронного машинного перевода Google в определенных задачах. Однако самое большое преимущество заключается в том, что The Transformer поддается распараллеливанию. Фактически, Google Cloud рекомендует использовать The Transformer в качестве эталонной модели для использования своего предложения Cloud TPU. Итак, давайте попробуем разбить модель на части и посмотреть, как она работает.

Трансформатор был предложен в статье «Внимание — это все, что вам нужно». Его реализация в TensorFlow доступна как часть пакета Tensor2Tensor. Группа НЛП из Гарварда создала руководство с комментариями к статье с использованием PyTorch. В этом посте мы попытаемся немного упростить вещи и представить концепции одну за другой, чтобы, надеюсь, облегчить понимание людям без глубоких знаний предмета.

Взгляд высокого уровня

Давайте начнем с рассмотрения модели как единого черного ящика.В приложении машинного перевода оно берет предложение на одном языке и выводит его перевод на другом.

Раскрывая эту доброту Оптимуса Прайма, мы видим компонент кодирования, компонент декодирования и связи между ними.

Компонент кодирования представляет собой стек кодировщиков (на бумаге шесть из них складываются друг на друга — в цифре шесть нет ничего волшебного, можно определенно экспериментировать с другим расположением). Компонент декодирования представляет собой стек декодеров с одинаковым числом.

Все кодировщики идентичны по структуре (но не имеют общих весов). Каждый из них разбит на два подслоя:

Установка — трансформаторы 3.5.0 документация

🤗 Transformers протестирован на Python 3.6+, PyTorch 1.1.0+ или TensorFlow 2.0+.

Вам необходимо установить 🤗 Transformers в виртуальной среде. Если ты не знаком с виртуальными средами Python, ознакомьтесь с руководством пользователя. Создайте виртуальную среду с той версией Python, которую вы собираетесь использовать. использовать и активировать его.

Теперь, если вы хотите использовать 🤗 Transformers, вы можете установить его с помощью pip. Если вы хотите поиграть с примерами, вы необходимо установить его из исходного кода.

Установка с трубкой

Сначала вам нужно установить один или оба TensorFlow 2.0 и PyTorch. См. Страницу установки TensorFlow. и / или страницу установки PyTorch относительно конкретных установить команду для вашей платформы.

После установки TensorFlow 2.0 и / или PyTorch 🤗 Трансформаторы можно установить с помощью pip следующим образом:

В качестве альтернативы, только для поддержки ЦП, вы можете установить 🤗 Transformers и PyTorch в одной строке с:

Трансформаторы для установки трубопровода
 [фонарик]
 

или 🤗 Трансформаторы и TensorFlow 2.0 в одной строке с:

Трансформаторы для установки трубопровода
 [tf-cpu]
 

Чтобы проверить, правильно ли установлены трансформаторы, выполните следующую команду:

 python -c "из конвейера импорта трансформаторов; print (pipeline ('sentiment-analysis') ('we love you'))"
 

Он должен загрузить предварительно обученную модель, а затем распечатать что-то вроде

 [{'label': 'POSITIVE', 'score': 0,9998704791069031}]
 

(обратите внимание, что TensorFlow будет печатать дополнительные данные перед этим последним оператором.)

Установка из исходников

Для установки из исходного кода клонируйте репозиторий и установите его с помощью следующих команд:

 git clone https://github.com/huggingface/transformers.git
cd трансформаторы
pip install -e.
 

Опять же, можно запустить

 python -c "из конвейера импорта трансформаторов; print (pipeline ('sentiment-analysis') ('I hate you'))"
 

для проверки 🤗 Трансформаторы установлены правильно.

Кэширующие модели

Эта библиотека предоставляет предварительно обученные модели, которые будут загружены и кэшированы локально.Если вы не укажете местоположение с cache_dir = ... , когда вы используете такие методы, как from_pretrained , эти модели будут автоматически загружены в папка, заданная переменной среды оболочки TRANSFORMERS_CACHE . Значение по умолчанию для него будет PyTorch cache home, за которым следует / transformers / (даже если у вас не установлен PyTorch). Это (в порядке приоритета):

Итак, если у вас не задана какая-либо конкретная переменная среды, каталог кеша будет по адресу ~ /.Кэш / Факел / Трансформеры / .

Примечание: Если вы установили переменную среды оболочки для одного из предшественников этой библиотеки ( PYTORCH_TRANSFORMERS_CACHE или PYTORCH_PRETRAINED_BERT_CACHE ), они будут использоваться, если нет оболочки переменная среды для TRANSFORMERS_CACHE .

Примечание по загрузке модели (непрерывная интеграция или крупномасштабное развертывание)

Если вы планируете загружать большие объемы моделей (более 1000) из нашей размещенной корзины (например, через настройку CI или крупномасштабное производственное развертывание), пожалуйста, кешируйте файлы модели на своей стороне.Это будет путь быстрее и дешевле. Не стесняйтесь обращаться к нам в частном порядке, если вам понадобится помощь.

Хотите запустить модель Transformer на мобильном устройстве?

Вам стоит заглянуть в наш репозиторий swift-coreml-transformers.

Он содержит набор инструментов для преобразования обученных моделей преобразователей PyTorch или TensorFlow 2.0 (в настоящее время содержит GPT-2 , DistilGPT-2 , BERT и DistilBERT ) в модели CoreML, которые работают на устройствах iOS.

В какой-то момент в будущем вы сможете беспрепятственно перейти от предварительных тренировок или тонкой настройки моделей в PyTorch или TensorFlow 2.0, чтобы создать их в CoreML, или создать прототип модели или приложения в CoreML, а затем изучить его гиперпараметры или архитектура из PyTorch или TensorFlow 2.0. Супер интересно!

Все, что вы хотели знать о полуавтоматической трансмиссии

Большинство автомобилей в наши дни работают с механической или автоматической коробкой передач, или с усовершенствованной версией любой из этих двух.Есть и третья вариация, которая называется полуавтоматической трансмиссией . Что означает полуавтоматический ? Что ж, в нем есть функции обоих типов передачи; следовательно, имя было дано. Как работает эта трансмиссия? Чем он отличается от механической и автоматической коробки передач? Давайте узнаем ответы в этом кратком руководстве.

Что такое полуавтоматическая коробка передач?

Полуавтомобили в наши дни редко можно встретить в автомобилях — благодаря популярности системы двойного сцепления.Однако многие модели в наши дни поставляются с автоматической коробкой передач с двойным сцеплением, которой водитель может управлять в полуавтоматическом режиме.

Что означает полуавтоматический ? Это не то, что вы думаете по названию! Он не является автоматическим ни в каком смысле, но напоминает механическую коробку передач без педали сцепления. Если вы рассматриваете полуавтоматический и ручной , единственная разница между ними заключается в том, что полуавтоматическая версия использует приводы и компьютеры вместо кабелей и трубок для переключения передач.

Полуавтоматический предлагает ощущение переключения ручки в автоматическом механизме.

ПОДРОБНЕЕ

Основные преимущества полуавтоматической коробки передач заключаются в том, что она способствует более высокой топливной экономичности (как механическая коробка передач), а также проста в использовании, как автоматическая коробка передач.

Как работает полуавтоматическая коробка передач?

Полуавтоматический агрегат следует принципу работы всех других типов трансмиссии — используя кинетическую энергию двигателя для поворота колес за счет вращения входного вала и различных шестерен.Между двигателем и коробкой передач есть муфта, которая позволяет последней включаться (когда двигатель управляет ею), отключаться (когда она может вращаться или нет без вмешательства двигателя) и частично включаться.

В механической коробке передач используется педаль для включения и выключения сцепления и рычаг для переключения передач. С полуавтоматической коробкой передач дела обстоят немного иначе, в которой вместо рычага переключения передач и педали сцепления используется набор приводов и гидравлический двигатель.Существует также блок управления (он же компьютер), который отвечает за различные действия, включая крутящий момент двигателя, скорость автомобиля, положение педали акселератора и некоторые другие. В основном он работает для определения времени и направления переключения передач.

Когда блок управления определяет ситуацию, когда требуется переключение передач, он включает сцепление, чтобы отключить полуавтоматическую коробку передач от двигателя. Затем исполнительные механизмы переключения активируют переключение передач и выключают сцепление, чтобы восстановить соединение между двигателем и трансмиссией.

Различия между автоматическими и полуавтоматическими коробками передач

Хотя их названия звучат почти одинаково, эти два типа передачи несколько отличаются друг от друга.

Схема рычага переключения передач — Если автомат имеет рычаг переключения передач, это будет типичная схема «PRND» (обозначающая «Парковка», «Задний ход», «Нейтраль» и «Привод»). У полуавтомата могло быть как кнопочное, так и рычажное управление. На рычаге переключения передач не будет режима «Парковка», а вместо режима «Движение» будет вариант «Автоматический».Большинство современных автомобилей имеют кнопки +/- для ручного переключения передач. Таким образом, раскладка, скорее всего, будет нейтральной, реверсивной, автоматической и кнопками +/-.

Автоматические трансмиссии отличаются от полуавтоматики.

Функции — Автоматическая коробка передач переключает передачи без участия водителя. Все, что вам нужно сделать, это перевести его в режим движения, и он будет переключать передачи в соответствии со скоростью автомобиля. С другой стороны, полуавтоматическая трансмиссия не переключает передачи сама по себе, но помогает водителю переключаться между передачами.Водитель должен дать команду автомобилю перейти на более высокую или пониженную передачу.

Какие автомобили имеют полуавтоматическую коробку передач?

Полуавтоматическая трансмиссия выпускается с начала 1930-х годов. Так что нет необходимости говорить, что этот механизм вы найдете в автомобилях практически всех автопроизводителей. Давайте обсудим некоторые современные модели автомобилей, в которых используется эта трансмиссия:

Ferrari — Автопроизводитель впервые использовал автоматическую коробку передач в своем Ferrari Mondial в 1993 году.Последнюю версию можно найти в Ferrari 599 GTO. Затем компания решила использовать коробку передач с двойным сцеплением и продолжила экспериментировать с ней во всех своих новых моделях.

Opel — Компания использует трансмиссию Easytronic в нескольких моделях. Вы найдете это в их небольших автомобилях, таких как Corsa.

Opel Corsa использует полуавтоматическую трансмиссию.

Ford — Впервые полуавтомат был представлен на Maverick 1970 года. Это была обычная полуавтоматическая машина без функции автоматического переключения передач.Однако позже они разработали SelectShift, а затем использовали трансмиссию Easytronic в некоторых своих небольших автомобилях, таких как Fusion и Fiesta.

Honda — Собственная версия полуавтоматического автомобиля Honda Hondamatic появилась на рынке в 1970-х годах. Позже было разработано множество вариаций, включая MultiMatic, S-matic, iShift и SportShift.

Alpha Romeo — Очень похожая на Opel Easytronic, трансмиссия Alpha Romeo Selespeed встречается в нескольких моделях, включая 156 GTA, Spider, Fiat Punto, Fiat Idea и другие.

Надеюсь, после прочтения этой статьи вы получите четкое представление о , что такое полуавтоматическая трансмиссия и разница между автоматической коробкой передач и полуавтоматической трансмиссией . Если у вас есть какие-либо вопросы по этой теме или советы по вождению, не стесняйтесь оставлять нам комментарии в поле ниже, наши автомобильные эксперты ответят на них за вас.

Как работают трансформаторы. Трансформаторы — это разновидность нейронной… | Джулиано Джакалья

Нейронная сеть, используемая Open AI и DeepMind

Трансформаторы — это тип архитектуры нейронных сетей, который набирает популярность.Трансформеры недавно использовались OpenAI в своих языковых моделях, а также недавно использовались DeepMind для AlphaStar — их программы, чтобы победить лучшего профессионального игрока в Starcraft. Преобразователи

были разработаны для решения задачи преобразования последовательности , или нейронного машинного перевода. Это означает любую задачу, которая преобразует входную последовательность в выходную последовательность. Сюда входит распознавание речи, преобразование текста в речь и т. Д.

Преобразование последовательности.Входные данные представлены зеленым цветом, модель — синим, а выход — фиолетовым. GIF от 3

Для моделей, выполняющих преобразование последовательности , необходимо иметь какую-то память. Например, предположим, что мы переводим следующее предложение на другой язык (французский):

«Трансформеры» — японская [[хардкор-панк]] группа. Группа была образована в 1968 году, в разгар истории японской музыки »

В этом примере слово« группа »во втором предложении относится к группе« Трансформеры », представленной в первом предложении.Когда вы читаете о группе во втором предложении, вы знаете, что это относится к группе «Трансформеры». Это может быть важно для перевода. Есть много примеров, когда слова в некоторых предложениях относятся к словам в предыдущих предложениях.

Для перевода подобных предложений модель должна определять такого рода зависимости и связи. Рекуррентные нейронные сети (RNN) и сверточные нейронные сети (CNN) были использованы для решения этой проблемы из-за их свойств.Давайте рассмотрим эти две архитектуры и их недостатки.

Рекуррентные нейронные сети имеют в себе петли, позволяющие информации сохраняться.

Вход представлен как x_t

На рисунке выше мы видим часть нейронной сети, A, , обрабатывающую некоторый вход x_t и выводящую h_t. Цикл позволяет передавать информацию от одного шага к другому.

Петли можно мыслить иначе. Рекуррентную нейронную сеть можно представить как несколько копий одной и той же сети, A , каждая из которых передает сообщение своему преемнику.Подумайте, что произойдет, если мы развернем цикл:

Развернутая рекуррентная нейронная сеть

Эта цепочечная природа показывает, что рекуррентные нейронные сети явно связаны с последовательностями и списками. Таким образом, если мы хотим перевести какой-то текст, мы можем установить каждый ввод как слово в этом тексте. Рекуррентная нейронная сеть передает информацию из предыдущих слов в следующую сеть, которая может использовать и обрабатывать эту информацию.

На следующем рисунке показано, как обычно работает модель от последовательности к последовательности с использованием рекуррентных нейронных сетей.Каждое слово обрабатывается отдельно, и результирующее предложение генерируется путем передачи скрытого состояния на этап декодирования, который затем генерирует выходные данные.

GIF от 3

Проблема долгосрочных зависимостей

Рассмотрим языковую модель, которая пытается предсказать следующее слово на основе предыдущих. Если мы пытаемся предсказать следующее слово предложения «облака в небе» , нам не нужен дальнейший контекст. Совершенно очевидно, что следующим словом будет небо.

В этом случае, когда разница между релевантной информацией и местом, которое требуется, невелика, RNN могут научиться использовать прошлую информацию и выяснить, какое слово будет следующим в этом предложении.

Изображение из 6

Но есть случаи, когда нам нужно больше контекста. Например, предположим, что вы пытаетесь угадать последнее слово текста: «Я вырос во Франции… Я говорю свободно…». Недавняя информация предполагает, что следующим словом, вероятно, является язык, но если мы хотим сузить, какой язык, нам нужен контекст Франции, который находится дальше по тексту.

Изображение от 6

RNN становится очень неэффективным, когда разрыв между релевантной информацией и точкой, где она необходима, становится очень большим. Это связано с тем, что информация передается на каждом шаге, и чем длиннее цепочка, тем более вероятно, что информация будет потеряна по цепочке.

Теоретически RNN могут изучить эту долговременную зависимость. На практике они, кажется, не изучают их. LSTM, особый тип RNN, пытается решить эту проблему.

При составлении календаря на день мы расставляем приоритеты в наших встречах.Если есть что-то важное, мы можем отменить некоторые встречи и согласовать то, что важно.

RNN этого не делают. Всякий раз, когда он добавляет новую информацию, он полностью преобразует существующую информацию, применяя функцию. Изменяется вся информация, и не учитывается, что важно, а что нет.

LSTM вносят небольшие изменения в информацию путем умножения и сложения. С LSTM информация проходит через механизм, известный как состояния ячеек.Таким образом, LSTM могут выборочно запоминать или забывать важные и не очень важные вещи.

Внутри LSTM выглядит следующим образом:

Пластиковая полуавтоматическая обвязочная машина MOD-710 SIGNODE