Транзистор из чего состоит: Транзистор — полупроводниковый элемент, устройство. Как транзистор работает, из чего состоит, для чего нужен?

Содержание

Транзистор — полупроводниковый элемент, устройство. Как транзистор работает, из чего состоит, для чего нужен?

Транзистор (transistor) – полупроводниковый элемент с тремя выводами (обычно), на один из которых (коллектор) подаётся сильный ток, а на другой (база) подаётся слабый (управляющий ток). При определённой силе управляющего тока, как бы «открывается клапан» и ток с коллектора начинает течь на третий вывод (эмиттер).

То есть транзистор – это своеобразный клапан, который при определённой силе тока, резко уменьшает сопротивление и пускает ток дальше (с коллектора на эмиттер). Происходит это потому, что при определенных условиях, дырки имеющие электрон, теряют его принимая новый и так по кругу. Если к базе не прилагать электрический ток, то транзистор будет находиться в уравновешенном состоянии и не пропускать ток на эмиттер.

В современных электронных чипах, количество транзисторов исчисляется миллиардами. Используются они преимущественно для вычислений и состоят из сложных связей.

Полупроводниковые материалы, преимущественно применяемые в транзисторах это: кремний, арсенид галлия и германий. Также существуют транзисторы на углеродных нанотрубках, прозрачные для дисплеев LCD и полимерные (наиболее перспективные).

 

Разновидности транзисторов:

Биполярные – транзисторы в которых носителями зарядов могут быть как электроны, так и «дырки». Ток может течь, как

в сторону эмиттера, так и в сторону коллектора. Для управления потоком применяются определённые токи управления.

Полевые транзисторы – распротранёные устройства в которых управление электрическим потоком происходит посредством электрического поля. То есть когда образуется большее поле – больше электронов захватываются им и не могут передать заряды дальше. То есть это своеобразный вентиль, который может менять количество передаваемого заряда (если полевой транзистор с управляемым p—nпереходом). Отличительной особенностью данных транзисторов являются высокое входное напряжение и высокий коэффи­циент усиления по напряжению.

Комбинированные – транзисторы с совмещёнными резисторами, либо другими транзисторами в одном корпусе. Служат для различных целей, но в основном для повышения коэффициента усиления по току.

 

Подтипы:

Био-транзисторы – основаны на биологических полимерах, которые можно использовать в медицине, биотехнике без вреда для живых организмов. Проводились исследования на основе металлопротеинов, хлорофилла А (полученного из шпината), вируса табачной мозаики.

Одноэлектронные транзисторы – впервые были созданы российскими учёными в 1996 году. Могли работать при комнатной температуре в отличии от предшественников. Принцип работы схож с полевым транзистором, но более тонкий. Передатчиком сигнала является один или несколько электронов. Данный транзистор также называют нано- и квантовый транзистор. С помощью данной технологии, в будущем рассчитывают создавать транзисторы с размером

меньше 10 нм, на основе графена.

 

Для чего используются транзисторы?

Используются транзисторы в усилительных схемах, лампах, электродвигателях и других приборах где необходимо быстрое изменение силы тока или положение вклвыкл. Транзистор умеет ограничивать силу тока либо плавно

, либо методом импульспауза. Второй чаще используется для ШИМ-управления. Используя мощный источник питания, он проводит его через себя, регулируя слабым током.

Если силы тока недостаточно для включения цепи транзистора, то используются несколько транзисторов с большей чувствительностью, соединённые каскадным способом.

Мощные транзисторы соединённые в один или несколько корпусов, используются в полностью цифровых усилителях на основе ЦАП. Часто им требуется дополнительное охлаждение. В большинстве схем, они работают в режиме ключа (в режиме переключателя).

Применяются транзисторы также

в системах питания, как цифровых, так и аналоговых (материнские платы, видеокарты, блоки питания & etc).

Центральные процессоры, микроконтроллёры и SOC тоже состоят из миллионов и миллиардов транзисторов, соединённых в определённом порядке для специализированных вычислений.

Каждая группа транзисторов, определённым образом кодирует сигнал и передаёт его дальше на обработку. Все виды ОЗУ и ПЗУ памяти, тоже состоят из транзисторов.

Все достижения микроэлектроники были бы практически невозможны без изобретения и использования транзисторов. Трудно представить хоть один электронный прибор без хотя бы одного транзистора.

ТРАНЗИСТОР — это… Что такое ТРАНЗИСТОР?

  • ТРАНЗИСТОР — (от англ. transfer перенос и resistor сопротивление) трёхэлектродный полупроводниковый прибор, способный усиливать электрич. сигналы. Изобретён Дж. Бардином (J. Bardeen), У. Браттейном (W. Brattain) и У. Шокли (W. Shockley) в 1948 (Нобелевская… …   Физическая энциклопедия

  • ТРАНЗИСТОР — (от англ. transfеr переносить и резистор) полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (преимущественно Si или Ge), содержащего не менее… …   Большой Энциклопедический словарь

  • ТРАНЗИСТОР — ТРАНЗИСТОР, ПОЛУПРОВОДНИКОВОЕ электронное устройство, способное усиливать электрические сигналы. В основное вещество КРЕМНИЙ или ГЕРМАНИЙ добавляется очень малое количество присадки МЫШЬЯКА или СУРЬМЫ, чтобы образовался материал типа п, в котором …   Научно-технический энциклопедический словарь

  • транзистор — филдистор, радиоприемник Словарь русских синонимов. транзистор сущ., кол во синонимов: 8 • микротранзистор (1) • …   Словарь синонимов

  • ТРАНЗИСТОР — ТРАНЗИСТОР, а, муж. 1. Полупроводниковый прибор, усиливающий, генерирующий и преобразующий электрические колебания. 2. Портативный радиоприёмник с такими приборами. | прил. транзисторный, ая, ое (к 1 знач.). Т. приёмник. Толковый словарь Ожегова …   Толковый словарь Ожегова

  • транзистор — транзистор, мн. транзисторы, род. транзисторов (неправильно транзистора, транзисторов) …   Словарь трудностей произношения и ударения в современном русском языке

  • транзистор — Электронный прибор на основе полупроводникового кристалла, имеющий три или более вывода, предназначенный для генерирования и преобразования электрических колебаний. [РД 01.120.00 КТН 228 06] Тематики магистральный нефтепроводный транспорт EN… …   Справочник технического переводчика

  • ТРАНЗИСТОР — (1) полупроводниковый (см.), предназначенный для усиления, генерирования, коммутации и преобразования электрических колебаний различных частот. Представляет собой монокристалл германия, кремния, арсенида галлия, фосфида галлия или др.… …   Большая политехническая энциклопедия

  • Транзистор — Дискретные транзисторы в различном конструктивном оформлении …   Википедия

  • Транзистор — (от англ. transfer переносить и resistor сопротивление)         электронный прибор на основе полупроводникового кристалла, имеющий три (или более) вывода, предназначенный для генерирования и преобразования электрических колебаний. Изобретён в… …   Большая советская энциклопедия

  • Биполярный транзистор

    Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный, поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки. Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

    Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока — основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.

    Устройство биполярного транзистора.

    Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей. Это похоже на два диода, соединенных лицом к лицу или наоборот.

    У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector и emitter). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.

    Работа биполярного транзистора.

    Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

    Как уже говорилось в статье о типах проводимости в полупроводниках, в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

    Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.

    Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE (для кремниевых транзисторов минимальное необходимое VBE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

    В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.

    В итоге мы получаем два тока: маленький — от базы к эмиттеру IBE, и большой — от коллектора к эмиттеру ICE.

    Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы IB, сильно меняется ток коллектора IС. Так и происходит усиление сигнала в биполярном транзисторе. Cоотношение тока коллектора IС к току базы IB называется коэффициентом усиления по току. Обозначается β, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзистором.

    β = IC / IB

    Простейший усилитель на биполярном транзисторе

    Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.

    1.Описание основных элементов цепи

    Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.

    2. Расчет входного тока базы I

    b

    Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно — Ibmax и Ibmin.

    Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V).

    Посчитаем Ibmax и Ibmin с помощью закона Ома:

    2. Расчет выходного тока коллектора I

    С

    Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора ( Icmax и Icmin).

    3. Расчет выходного напряжения V

    out

    Осталось посчитать напряжение на выходе нашего усилителя Vout. В данной цепи — это напряжение на коллекторе VC.

    Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

    4. Анализ результатов

    Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.

    Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

    Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

    Режимы работы биполярного транзистора

    В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

    • Режим отсечки (cut off mode).
    • Активный режим (active mode).
    • Режим насыщения (saturation mode).
    • Инверсный ражим (reverse mode ).

    Режим отсечки

    Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.

    Активный режим

    В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

    Режим насыщения

    Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

    В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

    Инверсный режим

    В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

    Основные параметры биполярного транзистора.

    Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB. Обозначается β, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзисторов.

    β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

    Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

    Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

    Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

    Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление Rout = 0 (Rвых = 0)).

    Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала. С повышением частоты, способность транзистора усиливать сигнал постепенно падает. Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах. На изменения входного сигнала в базе транзистор реагирует не мгновенно, а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей. Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.

    Транзистор — принцип работы.Основные параметры.

    Как устроен транзистор.

    Вне зависимости от принципа работы, полупроводниковый транзистор содержит в себе монокристалл из основного полупроводникового материала, чаще всего это — кремний, германий, арсенид галлия. В основной материал добавлены, легирующие добавки для формирования p-n перехода(переходов), металлические выводы.


    Кристалл помещается в металлический, пластиковый или керамический корпус, для защиты от внешних воздействий. Однако, существуют также и бескорпусные транзисторы.

    Принцип работы биполярного транзистора.

    Биполярный транзистор может быть либо p-n-p, либо n-p-n в зависимости от чередования слоев полупроводника в кристалле. В любом случае выводы называются — база, коллектор и эмиттер. Слой полупроводника, соответствующий базе заключен между слоями эмиттера и коллектора. Он имеет принципиально очень малую ширину. Носители заряда движутся от эмиттера через базу — к коллектору. Условием возникновения тока между коллектором и эмиттером является наличие свободных носителей в области базы. Эти носители проникают туда при возникновении тока эмиттер-база. причиной которого может являться разность напряжения между этими электродами.

    Т.е. — для нормальной работы биполярного транзистора в качестве усилителя сигнала всегда необходимо присутствие напряжения некого минимального уровня, для смещения перехода эмиттер-база в прямом направлении. Прямое смещение перехода база-эмиттер приоткрывая транзистор, задает так называемую — рабочую точку режима. Для гармоничного усиления сигнала по напряжению и току используют режим — А. В этом режиме напряжение между коллектором и нагрузкой, примерно равно половине питающего напряжения — т. е выходное сопротивление транзистора и нагрузки примерно равны . Если подавать теперь на переход база — эмиттер сигнал переменного тока, СОПРОТИВЛЕНИЕ эмиттер — коллектор будет изменяться, графически повторяя форму входного сигнала. Соответственно, то же будет происходить и с током через эмиттер к коллектору протекающим. Причем амплитуда тока будет большей, нежели амплитуда входного сигнала — будет происходить усиление сигнала.

    Если увеличивать напряжение смещения база — эмиттер дальше, это приведет к росту тока в этой цепи, и как результат — еще большему росту тока эмиттер — коллектор. В конце, концов ток перестает расти — транзистор переходит в полностью открытое состояние(насыщения). Если затем убрать напряжение смещения — транзистор закроется, ток эмиттер — коллектор уменьшится, почти исчезнет. Так транзистор может работать в качестве электронного ключа. Этот режим наиболее эффективен в отношении управления мощностями, при протекании тока через полностью открытый транзистор величина падения напряжения минимальна. Соответственно малы потери тока и нагрев переходов транзистора.

    Существует три вида подключения биполярного транзистора. С общим эмиттером (ОЭ) — осуществляется усиление как по току, так и по напряжению — наиболее часто применяемая схема.
    Усилительные каскады построенные подобным образом, легче согласуются между собой, так как значения их входного и выходного сопротивления относительно близки, если сравнивать с двумя остальными видами включения (хотя иногда и отличаются в десятки раз).

    С общим коллектором (ОК) осуществляется усиление только по току — применяется для согласования источников сигнала с высоким внутренним сопротивлением(импендансом) и низкоомными сопротивлениями нагрузок. Например, в выходных каскадах усилителей и контроллеров.

    С общей базой (ОБ) осуществляется усиление только по напряжению. Имеет низкое входное и высокое выходное сопротивление и более широкий частотный диапазон. Это позволяет использовать подобное включение для согласования источников сигнала с низким внутренним сопротивлением(импендансом) с последующим каскадом усиления. Например — в входных цепях радиоприемных устройств.

    Принцип работы полевого транзистора.

    Полевой транзистор, как и биполярный имеет три электрода. Они носят названия — сток, исток и затвор. Если на затворе отсутствует напряжение, а на сток подано положительное напряжение относительно истока, то между истоком и стоком через канал течет максимальный ток.

    Т. е. — транзистор полностью открыт. Для того, что бы его изменить, на затвор подают отрицательное напряжение, относительно истока. Под действием электрического поля (отсюда и название транзистора) канал сужается, его сопротивление растет, а ток через него уменьшается. При определенном значении напряжения канал сужается до такой степени, что ток практически исчезает — транзистор закрывается.

    На рисунке изображено устройство полевого транзистора с изолированным затвором(МДП).

    Если на затвор этого прибора не подано положительное напряжение, то канал между истоком и стоком отсутствует и ток равен нулю. Транзистор полностью закрыт. Канал возникает при некотором минимальном напряжении на затворе(напряжение порога). Затем сопротивление канала уменьшается, до полного открывания транзистора.

    Полевые транзисторы, как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения: с общим истоком (ОИ) — аналог ОЭ биполярного транзистора; с общим стоком (ОС) — аналог ОК биполярного транзистора; с общим затвором (ОЗ) — аналог ОБ биполярного транзистора.

    По рассеиваемой в виде тепла мощности различают:
    маломощные транзисторы — до 100 мВт ;
    транзисторы средней мощности — от 0,1 до 1 Вт;
    мощные транзисторы — больше 1 Вт.

    Важные параметры биполярных транзисторов.

    1. Коэффициент передачи тока(коэффициент усиления) — от 1 до 1000 при постоянном токе. С увеличением частоты постепенно снижается.
    2. Максимальное напряжение между коллектором и эмиттером(при разомкнутой базе) У специальных высоковольтных транзисторов, достигает десятков тысяч вольт.
    3.Предельная частота, до которой коэффициент передачи тока выше 1. До 100000 гц. у низкочастотных транзисторов, свыше 100000 гц. — у высокочастотных.
    4.Напряжение насыщения эмиттер-коллектор — величина падения напряжения между этими электродами у полностью открытого транзистора.

    Важные параметры полевых транзисторов.

    Усилительные свойства полевого транзистора определяются отношением приращения тока стока к вызвавшему его приращению напряжения затвор — исток, т. е.

    ΔId /ΔUGS

    Это отношение принято называть крутизной прибора, а по сути дела оно является передаточной проводимостью и измеряется в миллиамперах на вольт(мА /В).

    Другие важнейшие параметры полевых транзисторов приведены ниже:
    1. IDmax — максимальный ток стока.

    2.UDSmax — максимальное напряжение сток-исток.

    3.UGSmax — максимальное напряжение затвор-исток.

    4.РDmax — максимальна мощность, которая может выделяться на приборе.

    5.ton — типовое время нарастания тока стока при идеально прямоугольной форме входного сигнала.

    6.toff — типовое время спада тока стока при идеально прямоугольной форме входного сигнала.

    7.RDS(on)max — максимальное значение сопротивления исток — сток в включенном(открытом) состоянии.

    На главную страницу

    Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».

    Принцип работы биполярного транзистора

    В свое время транзисторы пришли на смену электронным лампах. Это произошло благодаря тому, что они имеют меньшие габариты, высокую надежность и менее затратную стоимость производства. Сейчас, биполярные транзисторы являются основными элементами во всех усилительных схемах.

    Биполярный транзистор представляет собой полупроводниковый элемент, имеющий трехслойную структуру, которая образует два электронно-дырочных перехода. Поэтому транзистор можно представить в виде двух встречно включенных диода. В зависимости от того, что будет являться основными носителями заряда, различают p-n-p и n-p-n транзисторы.  

     

    База – слой полупроводника, который является основой конструкции транзистора.

    Эмиттером называется слой полупроводника, функция которого инжектирование носителей заряда в слой базы.

    Коллектором называется слой полупроводника, функция которого собирать носители заряда прошедшие через базовый слой.

    Как правило, эмиттер содержит намного большее количество основных зарядов, чем база. Это основное условие работы транзистора, потому что в этом случае, при прямом смещении эмиттерного перехода, ток будет обуславливаться основными носителями эмиттера. Эмиттер сможет осуществлять свою главную функцию – впрыск носителей в слой базы. Обратный ток эмиттера обычно стараются сделать как можно меньше. Увеличение основных носителей эмиттера достигается с помощью высокой концентрации примеси.

    Базу делают как можно более тонкой. Это связано с временем жизни зарядов. Носители зарядов должны пересекать базу и как можно меньше рекомбинировать с основными носителями базы, для того чтобы достигнуть коллектора.

    Для того чтобы коллектор мог наиболее полнее собирать носители прошедшие через базу его стараются сделать шире.

     

    Принцип работы транзистора

    Рассмотрим на примере p-n-p транзистора.

     

    В отсутствие внешних напряжений, между слоями устанавливается разность потенциалов. На переходах устанавливаются потенциальные барьеры. Причем, если количество дырок в эмиттере и коллекторе одинаковое, тогда и потенциальные барьеры будут одинаковой ширины.

    Для того чтобы транзистор работал правильно, эмиттерный переход должен быть смещен в прямом направлении, а коллекторный в обратном. Это будет соответствовать активному режиму работы транзистора. Для того чтобы осуществить такое подключение, необходимы два источника. Источник с напряжением Uэ подключается положительным полюсом  к эмиттеру, а отрицательным к базе. Источник с напряжением Uк подключается отрицательным полюсом к коллектору, а положительным к базе. Причем Uэ < Uк. 

    Под действием напряжения Uэ, эмиттерный переход смещается в прямом направлении. Как известно, при прямом смещении электронно-дырочного перехода, внешнее поле направлено противоположно полю перехода и поэтому уменьшает его.  Через переход начинают проходить основные носители, в эмиттере это дырки 1-5, а в базе электроны 7-8. А так как количество дырок в эмиттере больше, чем электронов в базе, то эмиттерный ток обусловлен в основном ими.

    Эмиттерный ток представляет собой сумму дырочной составляющей эмиттерного тока и электронной составляющей базы. 

    Так как полезной является только дырочная составляющая, то электронную стараются сделать как можно меньше. Качественной характеристикой эмиттерного перехода является коэффициент инжекции

    Коэффициент инжекции стараются приблизить к 1.

    Дырки 1-5 перешедшие в базу скапливаются на границе эмиттерного перехода. Таким образом, создается высокая концентрация дырок возле эмиттерного и низкая концентрация возле коллекторного перехода, в следствии чего начинается диффузионное движение дырок от эмиттерного к коллекторному переходу. Но вблизи коллекторного перехода концентрация дырок остается равной нулю, потому что как только дырки достигают перехода, они ускоряются его внутренним полем и экстрагируются (втягиваются) в коллектор. Электроны же, отталкиваются этим полем.

    Пока дырки пересекают базовый слой они рекомбинируют с электронами находящимися там, например, как дырка 5 и электрон 6. А так как дырки  поступают постоянно, они создают избыточный положительный заряд, поэтому, должны поступать и электроны, которые втягиваются через вывод базы и образуют базовый ток Iбр. Это важное условие работы транзистора – концентрация дырок в базе должна быть приблизительно равна концентрации электронов. Другими словами должна обеспечиваться электронейтральность базы.

    Количество дырок дошедших до коллектора, меньше количество дырок вышедших из эмиттера на величину рекомбинировавших дырок в базе. То есть, ток коллектора отличается от тока эмиттера на величину тока базы. 

    Отсюда появляется коэффициент переноса носителей, который также стараются приблизить к 1. 

    Коллекторный ток транзистора состоит из дырочной составляющей Iкр и обратного тока коллектора. 

    Обратный ток коллектора возникает в результате  обратного смещения коллекторного перехода, поэтому он состоит из неосновных носителей дырки 9 и электрона 10. Именно потому, что обратный ток образован неосновными носителями, он зависит только от процесса термогенерации, то есть от температуры. Поэтому его часто называют тепловым током.

    От величины теплового тока зависит качество транзистора, чем он меньше, тем транзистор качественнее.

    Коллекторный ток связан с эмиттерным коэффициентом передачи тока

    Токи в транзисторе можно представить следующим образом

     

    Основное соотношение для токов транзистора 

    Ток коллектора можно выразить как 

    Из вышесказанного можно сделать вывод, что изменяя ток в цепи база – эмиттер, мы можем управлять выходным током коллектора. Причем незначительное изменение тока базы, вызывает значительное изменение тока коллектора.

     

  • Просмотров:
  • принцип работы, схемы и т.д.

    Полевые транзисторы — специальный класс транзисторов, которые могут использоваться в качестве выключателей, регуляторов тока или усилителей. Полевой транзистор, отличается от обычного транзистора тем, что ток в нем двигается не пересекая P-N перехода. Величиной тока можно управлять путем регулировки затворного потенциала, подаваемого через этот переход. Существует две основные разновидности полевых транзисторов: полевые транзисторы с затвором на основе перехода и полевые транзисторы с изолированным затвором.

    Полевой транзистор
    Обратите внимание на основы электричества и на приборы электроники.

    Полевой транзистор с затвором на основе перехода

    Полевой транзистор с затвором на основе перехода состоит из канальной области (канала) и затвора. Когда он работает, то ток протекает через канал от клеммы истока к клемме стока.

    Канал изготовлен из материала n-типа, а затвор — из материала p-типа. Полевые транзисторы с затвором на основе перехода подобного типа называются полевыми транзисторами с затвором на основе перехода с каналом n-типа. На блок-схеме, показанной на рисунке ниже материал p-типа присоединен с обеих сторон к каналу. Однако во многих транзисторах с каналом n-типа этот материал p-типа бывает обернут вокруг канала сплошным кольцом, образуя, тем самым единый, неразрывный p-n переход. Принципы работы данного прибора в основном те же самые, несмотря на методы, использованные в его конструкции.

    Схема полевого транзистора с затвором на основе перехода

    Потенциал на затворе определяет проводимость на пути от истока до стока указанного транзистора. Затворный потенциал полевого транзистор с затвором на основе перехода, всегда имеет обратное смещение, чтобы снижать до минимума ток, протекающий через переход. Когда переход имеет обратное смещение, то током, протекающим по каналу, можно управлять с помощью изменения размеров обедненной области. Большие значения потенциала обратного смещения вызывают расширение обедненной области, что ограничивает ток, протекающий по каналу. И наоборот, с помощью уменьшения потенциала обратного смещения, и, тем самым, сокращения размеров обеденной области, создается возможность для протекания большего тока от истока к стоку. Состояние обратного смещения гарантирует, что никакой ток не течет самостоятельно через p-n переход.

    Полевой транзистор с изолированным затвором

    Полевые транзисторы с изолированным затвором отличаются от полевых транзисторов с затвором на основе перехода как по своей конструкции, так и по принципу работы. Обычно в полевых транзисторах с изолированным затвором, как это видно из их названия, затвор изолируется от основного корпуса транзистора тонким слоем окиси металла или каким-нибудь другим изолирующим материалом. Транзисторы этого типа, в которых в качестве изолятора использована окись металла, часто называют полевыми транзисторами со структурой металл-оксид-полупроводник.

    Изоляция затвора в этих транзисторах от их основной части обеспечивает им двойное преимущество по сравнению с полевыми транзисторами с затвором на основе перехода. Одно из этих преимуществ заключается в том, что подобная изоляция предотвращает движение тока через затвор независимо от полярности, подаваемого на затвор потенциала. А это, в свою очередь, создает второе преимущество, которое состоит в том, что эти транзисторы могут действовать постоянно, независимо от того подается ли на затвор положительный или отрицательный потенциал.

    Схема полевого транзистора с изолированным затвором

    Транзисторы. Часть 3. Из чего делают транзисторы

    Ранее были рассмотрены история транзисторов, назначение, устройство и принцип работы транзисторов. Сейчас же постараемся осветить вопрос производства транзисторов.

    В основе производства транзисторов, как и других полупроводниковых приборов (диодов, тиристоров), лежит применение полупроводников n и р типов. У полупроводников n-типа основным носителем заряда являются электроны (электронная проводимость), у полупроводников р-типа – дырки (дырочная проводимость). Для получения полупроводников n и р типа используются чистые полупроводники с добавлением различных примесей (легирование). Для производства транзисторов в основном применяются трех и пятивалентные примеси. В качестве трехвалентной примеси (на внешней оболочке находятся три свободных электрона) применяют индий, галлий, алюминий. Основное назначение этих элементов – организация полупроводника с дырочной проводимостью. Такие элементы называются акцепторами. В качестве пятивалентной примеси применяют сурьму и мышьяк. Такие примеси (доноры) создают полупроводник с электронной проводимостью благодаря наличию «свободного» пятого электрона.

    Рисунок 1.

    Рассмотрим процесс образования полупроводника с электронной проводимостью. В качестве чистого полупроводника будем рассматривать германий, в кристалл которого введем пятивалентный атом сурьмы или мышьяка (рисунок 2).

    Рисунок 2

    Соседние атомы полупроводника соединяются собой ковалентными связями (связь между двумя электронами каждого из атомов). Атом донора (пятивалентный) внедряется в кристаллическую решетку, при этом четырьмя своими валентными электронами он создает ковалентные связи, а пятый электрон остается свободным. Эти свободные электроны и являются основными носителями заряда в полупроводнике. для получения полупроводника n-типа достаточно лишь одного атома примеси на десять млн. атомов чистого полупроводника.

    Если к полупроводнику n-типа подключить гальванический элемент (рисунок 3), то свободные электроны под действием внешнего электрического поля начнут двигаться от отрицательного заряда к положительному, т.е. через полупроводник потечет электрический ток.

    Рисунок 3

    Рассмотрим случай, когда к чистому полупроводнику добавляют трехвалентную примесь (рисунок 4).

    Рисунок 4

    При подключении источника напряжения к такому кристаллу будет наблюдаться упорядоченное перемещение дырок (рисунок 5), благодаря поэтапному заполнению дырок электронами от соседних атомов. Таким образом создается перемещение положительно заряженных дырок от плюса к минусу. При подходе дырки к отрицательному полюсу источника питания происходит ее заполнение от батареи, в то время как у положительного полюса образуется новая дырка.

    Рисунок 5

    Для производства полупроводников необходимы чистые полупроводниковые материалы (германий). Для получения полупроводника с правильной кристаллической решеткой его предварительно очищают от примесей, а затем расплавляют и в полученный расплав добавляют затравку (кристалл с правильной решеткой). Расплав обволакивает затравку и, остывая, образует правильную кристаллическую решетку полупроводника.

    Рисунок 6

    Требуемая проводимость кристалла получается добавлением соответствующих примесей. После полного остывания кристалл разрезается на маленькие пластины, которые в последствии становятся базой транзистора. Для производства коллектора и эмиттера на противоположные стороны пластины подкладывается индий, который приваривался к пластине. Такие участки приобретали дырочную проводимость. Конструкция такого транзистора представлена на рисунке 7.

    Рисунок 7.

    В середине 20 века был изобретен диффузионный транзистор. Для производства коллектора и эмиттера пластинку полупроводника нагревали в газовой атмосфере с парами необходимой примеси, атомы которой проникали в кристаллическую решетку.

    Производство кремниевых транзисторов основано на планарной технологи, т.е. все переходы выходят на одну поверхность.



    Всего комментариев: 0


    Биполярный переходной транзистор

    — Engineering LibreTexts

    Биполярный переходной транзистор — это полупроводниковое устройство, состоящее из двух P-N-переходов, соединяющих три клеммы, называемые клеммами базы, эмиттера и коллектора. Расположение трех выводов влияет на ток и усиление транзистора. Поведение транзисторов с биполярным переходом также сильно различается для каждой конфигурации схемы. Три разные конфигурации схемы дают разные характеристики схемы в отношении входного сопротивления, выходного сопротивления и усиления.Эти характеристики влияют на то, демонстрирует ли транзистор усиление по напряжению, усиление по току или усиление по мощности. Одна из основных операций транзистора с биполярным переходом — усиление сигнала тока. Транзисторы с биполярным переходом могут регулировать ток так, чтобы величина тока была пропорциональна напряжению смещения, приложенному к клемме базы транзистора. Применение биполярных переходных транзисторов можно найти в устройствах, использующих аналоговые схемы, таких как компьютеры, мобильные телефоны и радиопередатчики.

    ВВЕДЕНИЕ

    Биполярные транзисторы

    имеют три полупроводниковые области. Эти три области — это область эмиттера (E), область базы (B) и область коллектора (c), и эти области по-разному легированы в зависимости от типа биполярного транзистора. Два типа биполярных транзисторов — это PNP-транзистор, три области которого относятся к p-типу, n-типу и p-типу соответственно, и NPN-транзистор, чьи области относятся к n-типу, p-типу и n-типу соответственно. Оба типа транзисторов имеют один P-N-переход между коллекторной областью и базой и другой P-N-переход между базовой и эмиттерной областями.Базовая область всегда является центральным соединением структуры с областями эмиттера и коллектора, соединенными с обеих сторон. Оба типа транзисторов также имеют одинаковый принцип работы с единственной разницей в полярности питания и смещении для каждого типа.

    Способность биполярных транзисторов

    усиливать сигнал посредством регулирования тока позволяет передавать входной сигнал от одной цепи к другой, независимо от разного уровня сопротивления в каждой цепи.Величина тока, протекающего через транзистор, пропорциональна величине напряжения смещения, приложенного к клемме базы. Это позволяет транзистору действовать как переключатель, управляемый током. В зависимости от того, является ли биполярный транзистор PNP или NPN, управляемый ток будет течь от коллектора к эмиттеру или от эмиттера к коллектору, в то время как меньший управляющий ток будет течь от базы к эмиттеру или от эмиттера к базе соответственно.

    Транзистор содержит максимально допустимый ток, который может ограничивать величину тока, проходящего от клеммы к клемме.В зависимости от порядка контактов в транзисторе, транзистор будет действовать как проводник или как изолятор при наличии контролируемого тока. Эта способность переключаться между этими двумя состояниями, изолятором или проводником, позволяет транзистору действовать как переключатель или как усилитель сигналов малой амплитуды, подаваемых на базу, в зависимости от структуры и порядка трех полупроводниковых областей.

    СТРУКТУРА

    Биполярные транзисторы

    содержат три легированных примесных полупроводниковых области, каждая из которых подключена к цепи.Транзистор не является симметричным из-за разной степени легирования областей эмиттера, коллектора и базы. Базовая область состоит из легированных материалов, обладающих высоким удельным сопротивлением. База расположена между областью сильнолегированного эмиттера и областью слаболегированного коллектора. Коллектор охватывает эмиттерную область, что исключает возможность электронов, инжектированных в базовую область, покидать базовую область, не собираясь. Область эмиттера сильно легирована, чтобы увеличить коэффициент усиления транзистора по току.

    Для высокого коэффициента усиления по току необходимо высокое соотношение носителей, вводимых эмиттером, и несущих, вводимых базой. Повышение эффективности инжекции эмиттера приводит к тому, что большая часть носителей, инжектируемых в переход эмиттер-база, поступает из области эмиттера. Высокая степень легирования областей эмиттера и коллектора также означает, что переход коллектор-база имеет обратное смещение. Следовательно, к переходу коллектор-база может быть приложено высокое напряжение обратного смещения до того, как переход сломается.Для транзистора в целом фундаментальное различие между NPN-транзистором и PNP-транзистором заключается в направлениях тока и полярности напряжения на переходах транзистора. Убедившись, что эти два элемента всегда находятся напротив друг друга, обеспечивает правильное смещение транзисторов.

    Биполярный переходной транзистор NPN

    NPN-транзистор с биполярным переходом имеет полупроводниковую базу, легированную P, между эмиттером, легированным азотом, и областью коллектора, легированным азотом. Биполярные транзисторы NPN являются наиболее часто используемыми биполярными транзисторами из-за легкости подвижности электронов над подвижностью электронов-дырок.

    Для этого типа транзисторов коллекторный и эмиттерный токи большой величины возникают за счет усиления небольшого тока, который проходит через базу. Этот небольшой ток усиливается только тогда, когда транзистор становится активным. В этом активном состоянии положительная разность потенциалов обнаруживается как между областью базы к области коллектора, так и областью эмиттера к области базы, что приводит к току, который переносится электронами между областями коллектора и эмиттера.Конструкция и напряжение на клеммах NPN-транзистора показаны на Рисунке 1 ниже.

    Рисунок \ (\ PageIndex {1} \): Схема NPN транзистора.

    Для биполярного NPN-транзистора, проводящего коллектор, всегда более положительно по отношению как к базе, так и к эмиттеру. Напряжение между базой и эмиттером (V BE ) положительное на базе и отрицательное на эмиттере. Клемма базы всегда положительна по отношению к эмиттеру. Другой способ отображения NPN-транзистора показан на рисунке 2 ниже.

    Рисунок 2 Схема биполярного транзистора NPN.

    Ток, вытекающий из транзистора, должен быть равен токам, текущим в транзистор, поскольку ток эмиттера задается как

    .

    Ie = Ic + Ib. (1)

    Примечание: «Ic» — это ток, протекающий на выводе коллектора, «Ib» — это ток, протекающий на выводе базы, а «Ie» — ток, протекающий через вывод эмиттера.

    Поскольку физическая конструкция транзистора определяет электрическую взаимосвязь между этими тремя токами (Ib), (Ic) и (Ie), любое небольшое изменение тока базы (Ib) приведет к гораздо большему изменению в коллекторе. ток (Ic).Отношение тока коллектора к току эмиттера называется Alpha (α).

    Альфа (α) = Ic / Ie (2)

    Коэффициент усиления транзистора по току от вывода коллектора до вывода эмиттера, Ic / Ie, является функцией электронов, диффундирующих через переход. Текущее усиление транзистора от клеммы коллектора до клеммы базы обозначено Beta, (β).

    Бета (β) = Ic / Ib (3)

    Транзисторы

    NPN являются хорошими усилителями при большом бета-значении.Бета-значения обычно находятся в диапазоне от 20 до 200 для большинства транзисторов общего назначения. Следовательно, если бета-значение транзистора равно 50, то на каждые 50 электронов, проходящих между выводами эмиттер-коллектор, один электрон будет вытекать из вывода базы.

    Комбинируя выражения для Alpha, α и Beta, β, коэффициент усиления транзистора по току может быть задан как:

    Бета = (α) / (1-α) (4)

    Как видно из приведенных выше уравнений, подвижность электронов между цепями коллектора и эмиттера является единственным связующим звеном между этими двумя цепями.Это звено является главной особенностью действия транзистора. Поскольку действие транзистора определяется начальным движением электронов через область базы, усилительные свойства транзистора возникают из-за последующего управления базой током между коллектором и эмиттером. Пока поток тока смещения в базовый вывод является устойчивым, базовую область можно рассматривать как вход управления током.

    Биполярный переходной транзистор PNP

    PNP-транзистор с биполярным переходом имеет полупроводниковую базу с примесью азота между эмиттером с примесью фосфора и областью коллектора с примесью фосфора.PNP-транзистор имеет очень похожие характеристики с NPN-транзистором, с той разницей, что смещение направления тока и напряжения меняются местами. Для транзисторов PNP ток входит в транзистор через вывод эмиттера. Небольшой ток, выходящий из базы, усиливается на выходе коллектора. Область эмиттера-база смещена в прямом направлении, поэтому будут генерироваться электрическое поле и носители. Источники напряжения подключены к транзистору PNP, как показано на рисунках 3 и 4 ниже.

    Рисунок 4 Схема транзистора PNP

    Напряжение между базой и эмиттером (V BE ) теперь отрицательное на базе и положительное на эмиттере. Клемма базы всегда смещена отрицательно по отношению к эмиттеру while. Эмиттер положительный по отношению к коллектору (V CE ). В основной части коллектора с обратным смещением образовались отверстия. Из-за электрического поля носители или электроны притягиваются дырками. Для того чтобы транзистор PNP проводил, эмиттер всегда более положительный по отношению как к базе, так и к коллектору.

    РЕГИОНЫ ДЕЯТЕЛЬНОСТИ

    Биполярные транзисторы работают в четырех различных областях. Эти области определяются смещениями на переходе биполярного переходного транзистора.

    1. Отсечка : Область отсечки — это когда транзистор неактивен из-за минимального тока, проходящего через транзистор, из-за чего транзистор выглядит как разомкнутая цепь. И VBE, и VBC имеют обратное смещение, поэтому все края обедненной области имеют небольшую плотность неосновных носителей.Эта область имеет условия смещения, противоположные насыщению.
    1. Прямая активность : Прямая активная область возникает, когда транзистор находится в активном состоянии, что позволяет транзистору усиливать колебания напряжения, присутствующие на базе. Когда переход база-эмиттер смещен в прямом направлении, а переход база-коллектор имеет обратное смещение, транзистор может усиливать напряжение, потому что напряжение между коллектором и эмиттером больше, чем напряжение между базой и эмиттером, а также находится между состояниями отсечки и насыщения.Выходной ток пропорционален базовому току и может быть извлечен на коллекторе.
    1. Обратно-активный : Обратно-активная область возникает, когда транзистор находится в активном состоянии, но максимальный коэффициент усиления по току в обратном активном режиме намного меньше, чем в прямом активном режиме. Условия смещения меняются на противоположные, так что коллекторный переход базы смещен в прямом направлении, а переходы с базовым эмиттером смещены в обратном направлении, что переключает роли коллекторной и эмиттерной областей.База содержит гораздо более низкое обратное напряжение смещения, чем в прямой активной области.
    1. Насыщение : Область насыщения позволяет транзистору проводить ток от эмиттера к коллектору. При прямом смещении как базового коллекторного перехода, так и базового эмиттерного перехода, базовый ток настолько велик, что превышает величину, при которой он может увеличить ток коллектора. В результате в цепи между выводами коллектора и эмиттера возникает короткое замыкание из-за перенасыщения тока.

    КОНФИГУРАЦИИ

    Существует три метода подключения биполярного переходного транзистора к электронной схеме. Конфигурация с общей базой, конфигурация с общим эмиттером и конфигурация с общим коллектором по-разному реагируют на входной сигнал схемы, таким образом изменяя характеристики каждой конфигурации.

    Общая базовая конфигурация

    Общая базовая конфигурация имеет сильную высокочастотную характеристику, которая хороша для схем с одноступенчатым усилителем.Однако это не очень распространено из-за низких характеристик усиления по току и низкого входного сопротивления. Входной сигнал подается между выводами базы и эмиттера, а выходной сигнал берется между выводами базы и коллектора. Для этого необходимо заземлить клемму базы, чтобы опорное напряжение было фиксированной величиной. Общая базовая конфигурация показана ниже.

    Рисунок 5 Схема

    транзистора с общей базой Этот тип конфигурации усилителя представляет собой схему неинвертирующего усилителя напряжения.Конфигурация имеет усиление сопротивления за счет соотношения между сопротивлением нагрузки (Rload) последовательно с коллектором и резистором Rin. Входной ток, протекающий в эмиттер, представляет собой сумму как базового тока, так и тока коллектора соответственно, поэтому выходной ток коллектора меньше входного тока эмиттера, что приводит к усилению тока. Его входные характеристики соответствуют характеристикам диода с прямым смещением

    .

    Конфигурация общего эмиттера

    Конфигурация усилителя с общим эмиттером обеспечивает самый высокий коэффициент усиления по току и мощности из всех трех конфигураций биполярных транзисторов, поэтому этот тип конфигурации является наиболее часто используемой схемой для усилителей на основе транзисторов.Входной сигнал, подаваемый между базой и эмиттером, невелик из-за прямого смещения PN-перехода, а выходной сигнал между коллектором и эмиттером велик из-за обратного смещения PN-перехода.

    Это происходит главным образом потому, что входной импеданс невелик, поскольку он подключен к PN-переходу с прямым смещением, а выходное сопротивление велико, поскольку оно снимается с PN-переходом с обратным смещением. Однако его коэффициент усиления по напряжению намного ниже. Конфигурация общего эмиттера показана ниже.

    Рисунок 6 Схема усилителя с общим эмиттером

    Конфигурация с общим эмиттером представляет собой схему инвертирующего усилителя. Следовательно, выходной сигнал не совпадает по фазе с сигналом входного напряжения.

    Конфигурация общего коллектора

    Конфигурация с общим коллектором очень полезна для приложений согласования импеданса из-за очень большого отношения входного импеданса к выходному. Конфигурация имеет входной сигнал, напрямую подключенный к базе. Когда эмиттерная область соединена последовательно с нагрузочным резистором, ток, протекающий через сопротивление нагрузки, имеет то же значение, что и ток эмиттера.Вот почему выходной сигнал берется из нагрузки эмиттера, а коэффициент усиления по току конфигурации приблизительно равен значению β транзистора.

    Рис. 7. Схема

    транзистора с общим коллектором Этот тип конфигурации биполярного транзистора является неинвертирующей схемой, в которой напряжения сигналов Vin и Vout «синфазны». Сопротивление нагрузки принимает как базовый, так и коллекторный токи, что приводит к большому усилению тока, а также обеспечивает хорошее усиление тока с очень небольшим усилением напряжения.

    вопросов

    1. Если ток коллектора (Ic) составляет 50 А, а базовый ток (Ib) равен 2 А, то каково значение бета?

    2. В чем разница между биполярным транзистором PNP и биполярным транзистором NPN?

    3. Каков коэффициент усиления транзистора по току, если заданная альфа (α) равна 0,5?

    ответов

    1. Бета-отношение (β) = Ic / Ib. Значение бета равно 50 амперам, разделенным на 2 ампера, что составляет 25.

    2. PNP-транзистор и NPN-транзистор имеют очень похожие характеристики, разница между ними заключается в смещении направлений тока и напряжения.

    3. Коэффициент усиления транзистора по току — это бета-коэффициент (β), который равен (α) / (1-α). Значение Beta равно 0,5 / (1-0,5), что равно 0,5

    .

    Список литературы

    1. Kasap, S. (2006). Принципы электронных материалов и устройств (3-е изд.). Бостон: Макгроу-Хилл.

    2. «Учебное пособие по NPN-транзисторам — Биполярный NPN-транзистор». Учебники по основам электроники . 1 сентября 2013 г. Интернет. 8 декабря 2015 г.

    3. «Переходный транзистор». Переходный транзистор . Интернет. 8 декабря 2015 г.

    4. Все изображения были созданы с использованием программного обеспечения digikey.com

    Авторы

    1. К. Битти, MSE (Калифорнийский университет в Дэвисе).

    Введение в биполярные переходные транзисторы (BJT) | Биполярные переходные транзисторы

    Изобретение биполярного транзистора в 1948 году произвело революцию в электронике.Технические достижения, ранее требовавшие относительно больших, механически хрупких, энергоемких вакуумных ламп, внезапно стали возможны с помощью крошечных, механически прочных, энергоэффективных частичек кристаллического кремния. Эта революция сделала возможным разработку и производство легких и недорогих электронных устройств, которые мы сейчас принимаем как должное. Понимание того, как работают транзисторы, имеет первостепенное значение для всех, кто интересуется современной электроникой.

    Функции и применение биполярных переходных транзисторов

    Я намерен здесь сосредоточиться как можно более исключительно на практических функциях и применении биполярных транзисторов, а не на исследовании квантового мира теории полупроводников.На мой взгляд, обсуждение дырок и электронов лучше оставить в отдельной главе. Здесь я хочу изучить, как использовать эти компоненты, а не анализировать их внутренние детали. Я не хочу преуменьшать важность понимания физики полупроводников, но иногда пристальное внимание к физике твердого тела отвлекает от понимания функций этих устройств на уровне компонентов. Однако, принимая этот подход, я предполагаю, что читатель обладает определенным минимальным знанием полупроводников: разница между полупроводниками, легированными «P» и «N», функциональные характеристики PN (диодного) перехода и значения терминов «Смещенный назад» и «смещенный вперед».Если вам непонятны эти концепции, лучше всего обратиться к предыдущим главам этой книги, прежде чем переходить к этой.

    Слои BJT

    Биполярный транзистор состоит из трехслойного «сэндвича» из легированных (внешних) полупроводниковых материалов (a и c) либо P-N-P, либо N-P-N (b и c). Каждый слой, образующий транзистор, имеет определенное имя, и каждый слой снабжен проводным контактом для подключения к цепи. Условные обозначения показаны на рисунках (а) и (с).

    BJT-транзистор: (a) схематическое обозначение PNP, (b) расположение (c) схематическое обозначение NPN, (d) расположение.

    Функциональное различие между транзистором PNP и транзистором NPN заключается в правильном смещении (полярности) переходов во время работы.

    Биполярные транзисторы работают как регуляторы тока с регулируемым током . Другими словами, транзисторы ограничивают количество проходящего тока в соответствии с меньшим управляющим током.Основной ток, которым управляет , идет от коллектора к эмиттеру или от эмиттера к коллектору, в зависимости от типа транзистора (NPN или PNP, соответственно). Небольшой ток, которым управляет, основной ток идет от базы к эмиттеру или от эмиттера к базе, опять же, в зависимости от типа транзистора (NPN или PNP, соответственно). Согласно стандартам полупроводниковой символики, стрелка всегда указывает направление тока.

    Направление малого управляющего тока и большого управляемого тока для (a) PNP и (b) NPN-транзистора.

    Биполярные транзисторы

    содержат два типа полупроводниковых материалов

    Биполярные транзисторы

    называются bi, полярными, потому что основной ток через них происходит в двух типах полупроводниковых материалов : P и N, поскольку основной ток идет от эмиттера к коллектору (или наоборот). Другими словами, два типа носителей заряда — электроны и дырки — составляют этот основной ток через транзистор.

    Как вы можете видеть, ток , управляющий током , и ток , управляемый , всегда сцепляются вместе через эмиттерный провод, и их токи текут в направлении стрелки транзистора.Это первое и главное правило при использовании транзисторов: все токи должны течь в правильном направлении, чтобы устройство могло работать как регулятор тока. Небольшой управляющий ток обычно называют просто базовым током , потому что это единственный ток, который проходит через базовый провод транзистора. И наоборот, большой контролируемый ток называется коллекторным током , потому что это единственный ток, который проходит через коллекторный провод.Ток эмиттера — это сумма токов базы и коллектора в соответствии с законом Кирхгофа о токах.

    Отсутствие тока через базу транзистора отключает транзистор, как разомкнутый переключатель, и предотвращает прохождение тока через коллектор. Базовый ток включает транзистор, как замкнутый переключатель, и пропускает пропорциональную величину тока через коллектор. Ток коллектора в первую очередь ограничивается базовым током, независимо от величины напряжения, доступного для его толкания.В следующем разделе более подробно рассматривается использование биполярных транзисторов в качестве переключающих элементов.

    ОБЗОР:

    • Биполярные транзисторы названы так потому, что контролируемый ток должен проходить через два типа полупроводников: P и N. Ток состоит из потока электронов и дырок в разных частях транзистора.
    • Биполярные транзисторы состоят из полупроводниковой «сэндвич-структуры» типа P-N-P или N-P-N.
    • Три вывода биполярного транзистора называются эмиттером , базой и коллектором .
    • Транзисторы
    • функционируют как регуляторы тока, позволяя небольшому току управлять большим током. Величина допустимого тока между коллектором и эмиттером в первую очередь определяется величиной тока, проходящего между базой и эмиттером.
    • Для того, чтобы транзистор мог должным образом функционировать в качестве регулятора тока, управляющий (базовый) ток и контролируемый (коллекторный) токи должны идти в правильных направлениях: аддитивно сцепляться на эмиттере и двигаться в направлении, указанном стрелкой на эмиттере. .

    СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

    Что такое транзистор NPN? — Определение, конструкция, работа и применение

    Определение: NPN-транзистор — это цепь , управляемая током , которая состоит из трех выводов: эмиттера, базы и коллектора. Он формируется путем размещения слоя материала N-типа между двумя слоями материала P-типа. Он действует как источник тока , потому что он обеспечивает ток через базовый терминал.Транзистор NPN прямо противоположен транзистору PNP.

    Транзистор

    NPN можно понимать как отрицательно-положительно-отрицательный транзистор . Это связано с тем, что слой полупроводника N-типа состоит из электронов в качестве основного носителя. Поскольку NPN-транзистор состоит из эмиттера N-типа, основными носителями заряда в NPN-транзисторе являются электроны.

    Эти электроны при переходе от перехода с низким сопротивлением, то есть перехода эмиттер-база, к переходу, который состоит из области с высоким сопротивлением, т.е.е. коллектор-база, он генерирует ток.

    Транзистор NPN предпочтительнее транзистора PNP, потому что подвижность электронов больше, чем подвижность дырок. В транзисторах NPN основными носителями являются электроны, а в PNP — дырки. Таким образом, подвижность носителей заряда в NPN будет больше, чем у PNP.

    Символ, который используется для обозначения транзистора NPN в электронных схемах, приведен на схеме ниже.

    Строительство

    NPN-транзистор состоит из трех слоев, два из которых выполнены из полупроводника N-типа, а другой — из полупроводника P-типа.Часто говорят, что транзистор образован путем соединения двух диодов друг за другом. Но это не так, это просто для представления конструкции.

    Если он сформирован путем соединения двух диодов друг за другом, то результирующая структура будет иметь четыре легированных области, потому что каждый из диодов имеет 2 легированных области. В этом состоянии основание, сформированное путем соединения его спиной к спине, не будет иметь однородного легирования, которое является предварительным условием для транзистора.

    Таким образом, он всегда состоит из трех слоев, один из которых слегка легирован, т.е.е. база, вторая сильно легирована, т.е. эмиттер, а последняя — умеренно легированный коллектор. База P-типа зажата между эмиттером и коллектором N-типа. Это приводит к образованию полупроводника N-типа.

    Взаимозаменяемы ли эмиттер и коллектор?

    Область эмиттера и коллектора не взаимозаменяемы, потому что размер эмиттера меньше по сравнению с размером коллектора. Коллектор выполнен большего размера по сравнению с эмиттером, потому что, если размер коллектора большой, он будет собирать все больше и больше носителей заряда, а тепло также может легко рассеиваться через переход большей площади.

    рабочая

    Переход база-эмиттер должен иметь прямое смещение, а переход коллектор-база — обратное. Следовательно, N-вывод соединения эмиттер-база подключен к отрицательному выводу V BE, , а P-вывод батареи подсоединен к положительному выводу V BE .

    Для обратного смещения перехода коллектор-база, клемма N подключается к положительной клемме V CB , а клемма P подключается к отрицательной клемме батареи V CE .Это создаст широкий обедненный слой на переходе коллектор-база и узкий обедненный слой на переходе эмиттер-база.

    Когда прямое смещение применяется к переходу эмиттер-база, электроны в N-области будут отталкиваться от отрицательной клеммы батареи и будут двигаться к области базы. Базовая область очень мала по сравнению с эмиттерной и коллекторной областями. К тому же интенсивность легирования основания самая низкая. Таким образом, он состоит из меньшего количества отверстий.

    Из-за небольшого количества дырок в основной области только несколько электронов рекомбинируют с дырками.Остальные электроны, которые еще не рекомбинировали, будут двигаться в сторону коллектора. Это будет составлять ток в цепи. Размер коллектора большой, поэтому он может собирать больше носителей заряда и рассеивать тепло.

    Ток в транзисторе NPN возникает из-за электронов, потому что электроны являются основными носителями заряда в транзисторе NPN.

    Ток эмиттера в NPN-транзисторе равен сумме тока базы и коллектора. Математически это можно записать как: —

    Приложения

    Транзистор

    NPN может использоваться как усилитель, переключатель, логарифмические преобразователи, датчики температуры и т. Д.

    Транзистор также известен как BJT, что является аббревиатурой от биполярного переходного транзистора. Он назван так, потому что проводимость в BJT обусловлена ​​биполярными элементами, то есть отрицательными, а также положительными. Транзистор NPN составляет ток из-за частиц отрицательного заряда, а транзистор PNP составляет ток из-за дырок в качестве основного носителя заряда, который несет положительный заряд.

    что такое транзисторы? зачем это нужно в электротехнических конструкциях.

    Что такое транзисторы?

    Транзистор — это электронный компонент, который используется для переключения и для усиления электрических сигналов.Транзисторы коренным образом изменили мир до того, как стали использоваться транзисторные электронные лампы. Эти лампы были не только громоздкими, но и потребляли много энергии, что приводило к снижению эффективности всей системы.

    С другой стороны, транзисторы очень компактны по размеру , и потребляют на меньше энергии, чем , чем электронная лампа. Современные транзисторы имеют размер в нанометрах, а на сигнальном чипе их миллиарды. Транзисторы могут действовать как переключатель без движущихся частей; также они могут усиливать слабый сигнал.Давайте теперь обсудим основы транзисторов.

    Легирование транзисторов

    Современные транзисторы состоят из полупроводников, таких как кремний. В случае кремния каждый из атомов связан с четырьмя соседними атомами кремния. Во внешней оболочке для проводимости электричества нет свободных атомов. Таким образом, атом фосфора вводится между этими атомами кремния, который создает свободный электрон в системе, и этот процесс известен как N-тип легирование .Другой тип легирования — это легирование P-типа , в котором создается / вводится свободная дырка для движения электронов. Легирование увеличивает проводимость полупроводника.

    Есть три вывода транзистора

    • База: База транзистора расположена в середине транзистора. Основание очень тонкое и всегда слегка легированное . Он образует две диодные цепи с эмиттером и коллектором. Контролируя величину тока в базе-эмиттере, вы можете управлять током на конце коллектора.Это основной принцип использования транзисторов в качестве переключателя.
    • Эмиттер: Эмиттер действует как отрицательный конец транзистора. Это высоколегированная секция с средней шириной . Этот раздел всегда настроен как прямое смещение.
    • Коллектор: Коллектор служит положительным концом транзистора. Эта секция состоит из умеренно легированных и имеет наибольшую ширину среди всех трех секций. Большая длина этой секции позволяет собирать большую часть носителя заряда, который подается эмиттером транзистора.

    Типы транзисторов

    В принципе, существует два типа транзисторов

    • Биполярный транзистор (BJT)
    • Полевой транзистор (FET)

    Оба из них имеют свои собственные функции с определенными плюсами и минусами. В BJT небольшая величина base current отвечает за управление большим током на конце коллектора. В полевых транзисторах также есть три терминала: затвор, исток и сток. Для этих типов транзисторов напряжение затвора управляет потоком тока через исток и сток.

    Теперь давайте подробно обсудим работу обоих этих транзисторов.

    • Биполярный переходный транзистор: Биполярные транзисторы являются наиболее распространенным типом транзисторов и присутствуют почти в каждом электронном устройстве. Он состоит из трех легированных областей , названных базой, эмиттером и коллектором. Эти транзисторы далее делятся на две части.
    • Транзисторы N-P-N
    • Транзисторы P-N-P

    В транзисторе N-P-N легированный полупроводник P-типа помещается между двумя легированными полупроводниками N-типа и наоборот.В транзисторах N-P-N электронов составляют большинство носителей заряда , тогда как еще в транзисторах P-N-P отверстий составляют большинство носителей заряда . В транзисторах PNP направление тока от эмиттера к коллектору и противоположно для транзистора NPN. Биполярные транзисторы — это транзисторов управления током с низким входным сопротивлением , которые позволяют протекать через транзистор массивным током. Эти транзисторы работают в трех режимах / областях

    • Область отсечки
    • Активная область
    • Область насыщения

    Для области отсечки транзистор остается в состоянии «ВЫКЛ».Чтобы использовать транзистор в качестве усилителя , мы задействуем его в активной области. А в области насыщения транзистор работает как переключатель .

    На рисунке выше представлены транзисторы NPN и PNP. Стрелка показывает направление обычного тока через транзистор.

    Смещение в BJT

    Одним из наиболее распространенных применений BJT является его использование в качестве усилителя. Если вы применяете изменяющийся во времени сигнал в качестве входа, то он производит усиленный сигнал на выходе.Это усиление осуществляется за счет энергии, поступающей от источника постоянного тока. Этот процесс применения источника напряжения постоянного тока , , который помогает транзистору функционировать, известен как смещение .

    Это обычно используемые методы смещения в BJT

    • Смещение базового резистора или смещение тока
    • Смещение обратной связи
    • Смещение делителя напряжения
    • Двойное базовое смещение

    Полевой транзистор

    Полевые транзисторы также имеют три основных терминала, называемых затвором , , стоком , и истоком , .В отличие от BJT, эти транзисторы представляют собой управляемых напряжением устройств с очень высоким входным сопротивлением . Полное сопротивление колеблется от нескольких мегаом до гораздо больших значений, что позволяет минимальному количеству тока проходить через них. Эти транзисторы используют электрическое поле для управления потоком тока через исток в сток.

    На рисунке выше представлен полевой транзистор N-типа. Если стрелка направлена ​​наружу, она представляет полевой транзистор P-типа.Напряжение , подаваемое на вывод затвора , управляет потоком тока от источника на сток . Из-за высокого значения импеданса эти транзисторы потребляют очень небольшую величину тока из схемы, что идеально, поскольку не нарушает мощность схемы. Далее полевые транзисторы делятся на две основные категории, а именно JFET и IG-FET. MOSFET, также известный как Metal Oxide Semiconductor FET, является наиболее распространенным типом IG-FET.

    Полевые транзисторы

    идеально подходят для таких приложений, как ограничители тока для ограничения чрезмерного тока от достижения нагрузочного устройства. Помимо этого, полевые транзисторы также используются в качестве мультиплексоров , прерывателей, и фаз осцилляторов сдвига . Для усиления больше подходят специальные BJT, но для малошумящих усилителей более желательны полевые транзисторы . Вдобавок ко всему, полевые транзисторы занимают на меньше места на , чем биполярные транзисторы, поэтому большинство электрических компонентов используют полевые транзисторы в интегральных схемах.Еще одно важное различие между BJT и FET заключается в том, что BJT — это биполярных, и FET — это униполярных устройств . Это означает, что полевые транзисторы в своей работе полагаются либо на дырки, либо на электроны, в то время как BJT полагаются на оба.

    Токи транзисторов

    Транзистор Токи


    ср знаю, что в транзисторах и диоды, электрический ток проводится как по свободным электроны и дырки.Свободные электроны и дырки движутся в противоположных направлениях. Для Например, если свободные электроны текут слева направо, то отверстия будут течь справа налево.

    Однако направление отверстий принимается таким же, как и направление электрический ток.

    Когда Бенджамин Франклин начал проводить эксперименты с электричеством, как он считал. что что-то движется по электрическим проводам.Он назвал эти движения вещи как заряд. В то время люди не знали о электроны и протоны.

    Франклин предполагается что был только один тип обвинения, и это обвинение будет всегда течет из области более высокой концентрации (избыточный заряд носителей) в область более низкой концентрации (меньше заряда перевозчики). Он назвал область более высокой концентрации как положительным, а область более низкой концентрации — отрицательным.

    Так согласно Франклину, заряд всегда течет от положительного к отрицательному. Мы знаем, что электрический ток означает поток плата. Таким образом, направление электрического тока от положительного до отрицательный.

    Однако после открытие электронов и протонов, ученые осознали что обычное направление тока неверно.Электрический ток фактически переносится свободными электронами, которые текут от отрицательного к положительному. Таким образом, актуальное направление тока от отрицательного к положительному. Однако в честь Франклина открытие, мы по-прежнему следуем его общепринятому направление тока (т.е. от положительного к отрицательному).

    обычное направление тока транзисторов npn и pnp показано на рисунке ниже.

    Обычный направление тока в pnp транзисторе

    Рассмотреть транзистор pnp как показано на рисунке ниже. Переход эмиттер-база (p-n переход) или эмиттерный переход смещен в прямом направлении, а переход база-коллектор (n-p переход) или коллекторный переход имеет обратное смещение.

    эмиттер тока (I E ) направление, которое представлено стрелкой показывает, что ток эмиттера течет в транзистор.С другой стороны, базовый ток (I B ) и ток коллектора (I C ) текут наружу транзистор.

    Обычный направление тока в npn транзисторе

    Рассмотреть транзистор npn как показано на рисунке ниже. Переход эмиттер-база (n-p переход) имеет прямое смещение, а переход база-коллектор (p-n переход) имеет обратное смещение.

    ток эмиттера I E направление, которое представлено стрелкой показывает, что ток эмиттера течет наружу транзистор. С другой стороны, базовый ток I B и ток коллектора I C протекают в транзистор.

    Транзистор текущие компоненты

    различные компоненты тока в pnp-транзисторе, которые протекают через смещенный вперед эмиттерный переход J E и Коллекторный переход с обратным смещением J C показан на рисунке ниже.

    ток эмиттера I E состоит из дырочного тока I p E (дыры большинства носителей переходят от эмиттера к базе) и ток электронов I n E (основные носители электронов переход от базы к эмиттеру).

    Следовательно в полный ток эмиттера I E складывается из дырочного тока I p E и ток электронов I n E

    I E = I p E + I n E

    отношение дырочного тока к электронному, I p E / I n E, пересечение эмиттерного перехода пропорционально отношению проводимость материала p относительно проводимости материала n.Мы знаем, что проводимость прямо пропорциональна уровень допинга. Если уровень легирования больше, проводимость больше. аналогично, если уровень легирования меньше, проводимость меньше.

    В коммерческий транзистор, легирование эмиттера сделано намного больше, чем легирование базы. Следовательно, в pnp транзисторный ток эмиттера почти полностью состоит из дыры.

    отверстия, пересекающие эмиттерный переход J E и достигающие коллекторный переход J C составляет дырочный ток Я p C в коллекторе.

    Нет все отверстия пересекают эмиттерный переход J E достигает коллекторного перехода J C, , потому что некоторые из они соединяются с электронами в базе n-типа.

    ср знайте, что основание очень тонкое и слегка легированное. Так что только небольшой количество дырок в сочетании с электронами в базе n-типа, составляющий базовый ток I P E — I P C. Оставшееся большое количество отверстий пересекает базовую область и входит в коллекторную область, образуя отверстие ток I p C дюйм коллекторский регион.

    Рассмотрим, для момент, эмиттер разомкнутый, а коллектор соединение остается обратным смещением. Когда эмиттер открыт В цепи эмиттерный ток равен нулю I E = 0 и поэтому дырочный ток в коллекторе также равен нулю I p C = 0,

    В В таком состоянии коллектор-база J C действует как диод с обратным смещением и ток коллектора I C равен равен обратному току насыщения или обратному насыщению ток коллектора I CO .

    Сейчас вернемся к ситуации, когда эмиттер идет вперед пристрастный.

    Когда эмиттерный переход J E смещен вперед и коллекторный переход J C имеет обратное смещение, общая ток коллектора I C будет суммой отверстий ток в коллекторе I p C и обратное насыщение ток коллектора I CO .

    Я С = I p C + I CO


    Биполярный переходной транзистор (BJT) — базовая структура…

    Транзистор — это электронное устройство, которое может использоваться как усилитель или как электронный переключатель.Его способность усиливать сигнал или переключать нагрузки большой мощности с помощью слабого сигнала делает его очень полезным в области электроники. Существует два основных типа транзисторов: биполярный переходной транзистор, или BJT, и полевой транзистор, или FET. В этом руководстве мы сосредоточимся только на биполярном переходном транзисторе и обсудим его основную структуру и работу.

    Термин биполярный относится к использованию дырок и электронов в качестве носителей тока в структуре транзистора.

    Структура биполярного переходного транзистора (BJT)

    Биполярный переходный транзистор (BJT) изготавливается с тремя полупроводниковыми областями, которые имеют различное легирование. Если мы уже потеряли вас с этим последним предложением, пожалуйста, ознакомьтесь с некоторыми из наших других руководств по основам полупроводников, так как они сделают это намного проще для понимания. Эти три области, которые легированы по-разному, известны как база, коллектор и эмиттер. Базовая область слегка легирована и очень тонкая по сравнению с областями коллектора и эмиттера.Коллекторная область умеренно легирована, а эмиттерная — сильно легирована.

    NPN и PNP BJT Физическое представление

    Транзисторы с биполярным переходом могут быть типа npn или pnp. Тип npn состоит из двух n областей, разделенных p областью. Базовая область представляет собой материал p-типа, а области коллектора и эмиттера — материалы n-типа. В pnp-типе транзистор состоит из двух областей p-типа, коллектора и эмиттера, разделенных базовой областью n-типа. Независимо от типа, BJT имеет два pn перехода, которые для правильной работы должны быть правильно смещены внешним напряжением постоянного тока.Один из этих переходов называется переходом база-эмиттер, соединяющим области базы и эмиттера, а другой — переходом база-коллектор, соединяющим области базы и коллектора.

    Базовая работа BJT

    Чтобы биполярный переходный транзистор работал в качестве усилителя, его переход база-эмиттер должен быть смещен в прямом направлении, а переход база-коллектор — в обратном направлении — обратите внимание, что это означает, что npn-транзистор и pnp-транзистор расположены наоборот.И, как упоминалось ранее, эмиттерная область сильно легирована. Таким образом, в транзисторе npn эмиттерная область n-типа имеет очень высокую плотность свободных электронов, в то время как в транзисторе pnp эмиттерная область p-типа имеет очень высокую плотность дырок.

    NPN BJT Bias Arrangement

    Здесь я хотел бы напомнить вам, что ток и поток электронов идут в обратном направлении, что может вызвать путаницу. Поскольку переход база-эмиттер смещен в прямом направлении, свободные электроны из области эмиттера легко пересекают переход база-эмиттер и попадают в очень тонкую и слегка легированную область базы p-типа.Базовая область p-типа слегка легирована, что означает, что в ней не так много дырок. В этом случае только небольшой процент свободных электронов из эмиттерной области может рекомбинировать с дырками в базовой области.

    Небольшое количество свободных электронов из области эмиттера, которые рекомбинируются с дырками в базовой области, перемещаются через базовую область как валентные электроны. Но когда они покидают базовую область и движутся через металлический базовый вывод, они становятся свободными электронами и производят внешний базовый ток, который затем выходит через металлический вывод во внешнюю цепь, а затем, в конечном итоге, возвращается в эмиттерную область. .

    NPN BJT Electron Flow Operation

    Свободные электроны, которые вошли в базовую область, но не рекомбинировали с дырками, движутся к переходу база-коллектор с обратным смещением. Поскольку область коллектора подключена к положительной стороне внешнего напряжения смещения, свободные электроны притягиваются к положительной стороне и перемещаются в область коллектора. Они выходят из области коллектора, а также проходят через металлический вывод коллектора в цепь и возвращаются в область эмиттера.Итак, в этом случае мы знаем, что ток эмиттера — это сумма токов базы и коллектора. Следовательно, ток эмиттера немного больше, чем ток коллектора.

    Работа внутри pnp-транзистора очень похожа на работу npn-транзистора. Но роли электронов и дырок поменялись местами. Напряжения внешнего смещения и направления тока меняются местами.

    PNP BJT Bias Arrangement

    Если вы попытаетесь понять это, реверсирование внешних напряжений смещения приведет к прямому смещению перехода база-эмиттер PNP-транзистора и обратному смещению перехода база-коллектор.Поскольку переход база-эмиттер смещен в прямом направлении, отверстия в области эмиттера могут перемещаться через переход база-эмиттер и входить в базовую область. В то же время электроны в базовой области также могут перемещаться в эмиттерную область. Внутри PNP-транзистора ток эмиттера возникает из-за перемещения отверстий от эмиттера к области базы. Но внешне эмиттерный ток возникает из-за движения электронов из области эмиттера к положительной клемме внешнего напряжения смещения. Базовый ток, создаваемый в транзисторе PNP, возникает из-за движения электронов от внешнего напряжения смещения в базовую область.

    Поскольку базовая область слегка легирована, только небольшое количество электронов в базовой области рекомбинирует с дырками из эмиттерной области, а остальные дырки перемещаются в коллекторную область. Внутри это движение отверстий в область коллектора создает ток коллектора, но снаружи ток коллектора — это поток электронов от внешнего напряжения смещения в область коллектора.

    Направление токов в транзисторе NPN

    Если мы сравним направление токов транзистора npn и pnp с использованием обычного потока тока, мы увидим, что течение токов в транзисторе pnp прямо противоположно потоку токи в npn-транзисторе.

    Направления токов в транзисторе PNP

    Резюме

    В этом руководстве мы обсудили базовую структуру и основные операции транзистора с биполярным переходом. Мы узнали, что транзистор с биполярным переходом состоит из трех легированных полупроводниковых областей, имеет два основных типа — npn и pnp, и оба типа имеют два pn перехода. Мы также узнали, как смещать биполярный переходной транзистор, чтобы он работал как усилитель, и обсудили, что происходит внутри npn-транзистора.Если у вас есть какие-либо вопросы, оставьте их в комментариях ниже, и если вы нашли это интересным или полезным, поставьте лайк и подпишитесь на наш канал!

    Биполярный транзистор — www.EESemi.com

    Биполярный Транзистор

    В изобретение биполярный переходный транзистор в 1948 году Бардина, Браттейн и Шокли подготовили почву для последующего прибытия интегральная схема, которая произвела революцию в полупроводниковой промышленности. Биполярный транзистор представляет собой трехконечный устройство, состоящее из 3 слои чередующиеся материалы n- и p-типа, называемые эмиттер база и коллекционер. Его структура в основном состоит из двух встречных диодов, один между эмиттером и базой, а другой между базой и коллекционер.



    Там Биполярные транзисторы бывают двух типов: в NPN и ПНП. В транзисторе NPN база состоит из материала p-типа. и зажат между эмиттером n-типа и коллектором n-типа. В PNP база n-типа, а эмиттер и коллектор относятся к р-типу.

    Рисунок 1. Структура плоского вертикального биполярного NPN транзистор

    Биполярный транзистор работает, давая высокий ток коллектора, когда относительно небольшой ток вынужден в его база. Поскольку Ib относительно намного меньше, чем Ic, небольшое изменение Ib приводит к гораздо большему изменению Ic. По сути, это Текущий усиление с текущим усилением, известным как бета транзистора. Входящие и выходящие токи эмиттер, база и коллектор подчиняются действующему закону Кирхгофа: Ib = Ie-Ic. Поскольку Ic намного больше, чем Ib, Ie очень близко по значению к Ic. Короче говоря, от эмиттера к коллектору течет большой ток. транзистора всякий раз, когда база получает некоторый входной ток. Таким образом, транзистор очень полезен в качестве переключателя или усилитель звука.



    Как транзистор работает (и, следовательно, используется) во многом зависит от того, как он электрически стимулируется, или пристрастный. Транзистор может работать в трех разных регионах: насыщенность, отсечка, и активный.

    Транзистор называется насыщенный, если как его база-сборщик, так и переходы база-эмиттер смещен в прямом направлении. В этом режиме транзистор уже полностью включен, т.е.е., ток коллектора уже очень высок и больше не увеличивается заметно, даже если в базу подается больший ток. Транзистор находится в отрезать регион, если оба его узлов обратный смещенный. В этом режиме транзистор выключен, т. Е. Коллектор Текущий очень низкий. Транзистор, используемый в качестве переключателя, работает попеременно между областями насыщения и отсечения. У транзистора в активной области наблюдается изменение коллектора. ток, который есть пропорционально изменению базового тока. Поэтому транзистор, используемый в качестве усилителя, работает в этот регион. Переход база-эмиттер транзистора в активной области имеет вид с прямым смещением, в то время как соединение база-коллектор смещено в обратном направлении.

    См. Также: Что такое полупроводник ?; p-n переход; Диод;

    МОП-транзистор; JFET; Производство ИС



    ГЛАВНАЯ

    авторское право 2001-2006 гг.

    Оставить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *