Управление встречно параллельными тиристорами схема: Power Electronics • Просмотр темы

Содержание

Встречно-параллельное включение — тиристор — Большая Энциклопедия Нефти и Газа, статья, страница 1

Встречно-параллельное включение — тиристор

Cтраница 1


Встречно-параллельное включение тиристоров используют для управления однофазной нагрузкой и регулирования напряжения на трехфазных асинхронных двигателях.  [2]

Распространенным типом вентильной ячейки является встречно-параллельное включение тиристора и диода, позволяющее пропускать прямую полуволну переменного тока через управляемый вентиль, а обратную — через неуправляемый. Логика работы ячейки тиристор — диод следующая. В закрытом состоянии ток ячейки равен нулю и напряжение положительно, но управляющий импульс не подается. Выключается ячейка током при переходе его от отрицательных значений к положительным, а включается в момент ti, если напряжение 0 и приходит управляющий импульс. На ячейке может быть только положительное напряжение, при отрицательном открывается диодная ветвь ячейки.  [3]

Принципиальная схема коммутирующего устройства при встречно-параллельном включении тиристоров приведена на рис, 8.11 а. В этой схеме основные тиристоры VT2 и VT3 управляются от напряжения питающей сети переменного тока, а дополнительный тиристор VT1 управляется сигналом Uy. Если сигнал Uy отсутствует, то на анод тиристора VT1 подается напряжение через фазосдвигающую цепь Cl, R1, которое опережает по фазе напряжение сети.  [4]

Принципиальная схема коммутирующего устройства при встречно-параллельном включении тиристоров приведена на рис. 8.11, а. В этой схеме основные тиристоры VT2 и VT3 управляются от напряжения пита1 ющей сети переменного тока, а дополнительный тиристор VT1 управляется сигналом Uy. Если сигнал Uy отсутствует, то на анод тиристора VT1 подается напряжение через фазосдвигающую цепь Cl, R1, которое опережает по фазе напряжение сети.  [5]

На рис. 4 представлена схема реверсивного преобразователя со встречно-параллельным включением тиристоров во вторичной цепи. Встречно-параллельно включенные тиристоры образуют два выпрямителя. Отключение неработающего выпрямителя осуществляется снятием отпирающих импульсов со всех управляющих электродов.  [7]

На рис. 4.8 показана одна из схем со встречно-параллельным включением тиристоров. В цепь якоря двигателя включена индуктивность L для ограничения скорости нарастания тока. Наличие в схеме этой индуктивности увеличивает электромагнитную постоянную времени двигателя, а.  [9]

На рис. 4 представлена схема реверсивного преобразователя со встречно-параллельным включением тиристоров во вторичной цепи. Встречно-параллельно включенные тиристоры образуют два выпрямителя. Отключение неработающего выпрямителя осуществляется снятием отпираюших импульсов со всех управляющих электродов.  [11]

На рис. 4 представлена схема реверсивного преобразователя со встречно-параллельным включением тиристоров по вторичной цепи. Встречно-параллельно включенные тиристоры образуют два выпрямителя. Отключение неработающего выпрямителя осуществляется снятием отпнраюших импульсов со всех управляющих электродов.  [13]

В схеме, изображенной на рис. 120, а используется встречно-параллельное включение тиристоров. Через один тиристор пропускается положительная полуволна переменного напряжения, через второй — отрицательная. Схема требует применения двух тиристоров на каждый ключ.  [15]

Страницы:      1    2

схема, принцип работы и применение

В электротехнике довольно часто приходиться встречаться с задачами регулирования переменного напряжения, тока или мощности. Например, для регулирования частоты вращения вала коллекторного двигателя необходимо регулировать напряжение на его зажимах, для управления температурой внутри сушильной камеры нужно регулировать мощность, выделяемую в нагревательных элементах, для достижения плавного безударного пуска асинхронного двигателя — ограничивать его пусковой ток. Распространенным решением является устройство, называемое тиристорный регулятор.

Устройство и принцип действия однофазного тиристорного регулятора напряжения

Тиристорные регуляторы бывают однофазные и трехфазные соответственно для однофазных и трехфазных сетей и нагрузок. В этой статье мы рассмотрим простейший однофазный тиристорный регулятор, трехфазные — в других статьях. Итак, на рисунке 1 ниже представлен однофазный тиристорный регулятор напряжения:

Рисунок 1 Простой однофазный тиристорный регулятор с активной нагрузкой

Сам тиристорный регулятор обведен голубыми линиями и включает в себя тиристоры VS1-VS2 и систему импульсно-фазового управления (далее — СИФУ). Тиристоры VS1-VS2 — полупроводниковые приборы, имеющие свойство быть закрытыми для протекания тока в нормальном состоянии и быть открытыми для протекания тока одной полярности при подаче напряжения управления на его управляющий электрод. Поэтому для работы в сетях переменного тока необходимо два тиристора, включенных разнонаправлено — один для протекания положительной полуволны тока, второй — отрицательной полуволны. Такое включение тиристоров называется встречно-параллельным.

Однофазный тиристорный регулятор с активной нагрузкой

Работает тиристорный регулятор так. В начальный момент времени подается напряжение L-N (фаза и ноль в нашем примере), при этом импульсы управляющего напряжения на тиристоры не подаются, тиристоры закрыты, ток в нагрузке Rн отсутствует. После получения команды на запуск СИФУ начинает формировать импульсы управления по определенному алгоритму (см.рис. 2).

Рисунок 2 Диаграмма напряжения и тока в активной нагрузке

Сначала система управления синхронизируется с сетью, то есть определяет момент времени, в который напряжение сети L-N равно нулю. Эта точка называется моментом перехода через ноль (в иностранной литературе — Zero Cross). Далее отсчитывается определенное время T1 от момента перехода через ноль и подается импульс управления на тиристор VS1. При этом тиристор VS1 открывается и через нагрузку протекает ток по пути L-VS1-Rн-N. При достижении следующего перехода через ноль тиристор автоматически закрывается, так как не может проводить ток в обратном направлении. Далее начинается отрицательный полупериод сетевого напряжения. СИФУ снова отсчитывает время Т1 относительно уже нового момента перехода напряжения через ноль и формирует второй импульс управления уже тиристором VS2, который открывается, и через нагрузку протекает ток по пути N-Rн-VS2-L. Такой способ регулирования напряжения называется

фазо-импульсный .

Время Т1 называется временем задержки отпирания тиристоров, время Т2 — время проводимости тиристоров. Изменяя время задержки отпирания T1 можно регулировать величину выходного напряжения от нуля (импульсы не подаются, тиристоры закрыты) до полного сетевого, если импульсы подаются сразу в момент перехода через ноль. Время задержки отпирания T1 варьируется в пределах 0..10 мс (10 мс — это длительность одного полупериода напряжения стандартной сети 50 Гц). Также иногда говорят о временах T1 и Т2, но оперируют при этом не временем, а электрическими градусами. Один полупериод составляет 180 эл.градусов.

Что представляет выходное напряжение тиристорного регулятора? Как видно из рисунка 2, оно напоминает «обрезки» синусоиды. Причем чем больше время Т1, тем меньше этот „обрезок“ напоминает синусоиду. Из этого следует важный практический вывод — при фазо-импульсном регулировании выходного напряжение несинусоидально. Это обуславливает ограничение области применения — тиристорный регулятор не может быть применен для нагрузок, не допускающих питание несинусоидальным напряжением и током. Так же на рисунке 2 красным цветом показана диаграмма тока в нагрузке. Поскольку нагрузка чисто активная, то форма тока повторяет форму напряжения в соответствии с законом Ома I=U/R.

Случай активной нагрузки является наиболее распространенным. Одно из самых частых применений тиристорного регулятора — регулирование напряжения в ТЭНах. Регулируя напряжение, изменяется ток и выделяемая в нагрузке мощность. Поэтому иногда такой регулятор также называют тиристорным регулятором мощности . Это верно, но все-таки более верное название — тиристорный регулятор напряжения, так как именно напряжение регулируется в первую очередь, а ток и мощность — это величины уже производные.

Регулирование напряжения и тока в активно-индуктивной нагрузке

Мы рассмотрели простейший случай активной нагрузки. Зададимся вопросом, что изменится, если нагрузка будет иметь помимо активной еще и индуктивную составляющую? Например, активное сопротивление подключено через понижающий трансформатор (рис.3). Это кстати очень распространенный случай.

Рисунок 3 Тиристорный регулятор работает на RL-нагрузку

Посмотрим внимательно на рисунок 2 из случая чисто активной нагрузки. На нем видно, что сразу после включения тиристора ток в нагрузке почти мгновенно нарастает от нуля до своего предельного значения, обусловленного текущим значением напряжения и сопротивления нагрузки. Из курса электротехники известно, что индуктивность препятствует такому скачкообразному нарастанию тока, поэтому диаграмма напряжения и тока будет иметь несколько отличный характер:

Рисунок 4 Диаграмма напряжения и тока для RL-нагрузки

После включения тиристора ток в нагрузке нарастает постепенно, благодаря чему кривая тока сглаживается. Чем больше индуктивность, тем более сглаженная кривая тока. Что это дает практически?

  • Наличие достаточной индуктивности позволяет приблизить форму тока к синусоидальной, то есть индуктивность выполняет роль синус фильтра. В данном случае это наличие индуктивности обусловлено свойствами трансформатора, но часто индуктивность вводят преднамеренно в виде дросселя.
  • Наличие индуктивности уменьшает величину помех, распространяемых тиристорным регулятором по проводам и в радиоэфир. Резкое, почти мгновенное (в течение нескольких микросекунд) нарастание тока вызывает помехи которые могут препятствовать нормальной работе другого оборудования. А если питающая сеть «слабая», то бывает и совсем курьез — тиристорный регулятор может „глушить“ сам себя своими же помехами.
  • У тиристоров есть важный параметр — величина критической скорости нарастания тока di/dt. Например, для тиристорного модуля SKKT162 эта величина составляет 200 А/мкс. Превышение этой величины опасно, так как может привести к выходу тиристору из строя. Так вот наличие индуктивности дает возможность тиристору остаться в области безопасной работы, гарантированно не превысив предельную величину di/dt. Если же это условие не выполняется, то может наблюдаться интересное явление — выход тиристоров из строя, притом что ток тиристоров не превышает их номинального значения. Например, тот же SKKT162 может выходить из строя при токе в 100 А, хотя он может нормально работать до 200 А. Причиной будет превышение именно скорости нарастания тока di/dt.

Кстати, надо оговориться, что индуктивность в сети есть всегда, даже если нагрузка носит чисто активный характер. Ее наличие обусловлено, во-первых, индуктивностью обмоток питающей трансформаторной подстанции, во вторых, собственной индуктивностью проводов и кабелей и, в третьих, индуктивностью петли, образованной питающими и нагрузочными проводами и кабелями. И чаще всего этой индуктивности хватает, чтобы обеспечить условие непревышения di/dt критического значения, поэтому производители обычно не ставят в тиристорные регуляторы дроссели , предлагая их как опцию тем, кого беспокоит «чистота» сети и электромагнитная совместимость устройств к ней подключенных.

Также обратим внимание диаграмму напряжения на рисунке 4. На ней также видно, что после перехода через ноль на нагрузке появляется небольшой выброс напряжения обратной полярности. Причина его возникновения — затягивание спадания тока в нагрузке индуктивностью, благодаря чему тиристор продолжает быть открытым даже при отрицательной полуволне напряжения. Запирание тиристора происходит при спадания тока до нуля с некоторым запаздыванием относительно момента перехода через ноль.

Случай индуктивной нагрузки

Что будет если индуктивная составляющая много больше составляющей активной? Тогда можно говорить о случае чисто индуктивной нагрузки. Например, такой случай можно получить, отключив нагрузку с выхода трансформатора из предыдущего примера:

Рисунок 5 Тиристор регулятор с индуктивной нагрузкой

Трансформатор, работающий в режиме холостого хода — почти идеальная индуктивная нагрузка. В этом случае из-за большой индуктивности момент запирания тиристоров смещается ближе к середине полупериода, а форма кривой тока максимально сглаживается до почти синусоидальной формы:

Рисунок 6 Диаграммы тока и напряжение для случая индуктивной нагрузки

При этом напряжение на нагрузке почти равно полному сетевому, хотя время задержки отпирания составляет всего половину полупериода (90 эл.градусов) То есть при большой индуктивности можно говорить о смещении регулировочной характеристики. При активной нагрузке максимальное выходное напряжение будет при угле задержки отпирания 0 эл.градусов, то есть в момент перехода через ноль. При индуктивной нагрузке максимум напряжения можно получить при угле задержки отпирания 90 эл.градусов, то есть при отпирании тиристора в момент максимума сетевого напряжения. Соответственно, случаю активно-индуктивной нагрузки максимум выходного напряжения соответствует углу задержки отпирания в промежуточном диапазоне 0..90 эл.градусов.

Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя . Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности.

Внимание, нижеприведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы может привести к поражению электрическим током!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление между анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение между его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.


Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.


Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания . Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.


Работает схема регулятора температуры следующим образом. Напряжение переменного тока от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9 В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22 В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4).

Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.

На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2.2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться.

Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядится до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядится, процесс повторится.

Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.

С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служит для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.

Конструкция и детали регулятора температуры

Все детали тиристорного регулятора температуры размещены на печатной плате из стеклотекстолита. Так как схема не имеет гальванической развязки с электрической сетью, плата помещена в небольшой пластмассовый корпус бывшего адаптера с электрической вилкой. На ось переменного резистора R5 надета ручка из пластмассы. Вокруг ручки на корпусе регулятора, для удобства регулирования степени нагрева паяльника, нанесена шкала с условными цифрами.


Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры другие паяльники. Как это ни удивительно, но ток, потребляемый схемой управления регулятора температуры, не превышает 2 мА. Это меньше, чем потребляет светодиод в схеме подсветки выключателей освещения. Поэтому принятия специальных мер по обеспечению температурного режима устройства не требуется.


Микросхемы DD1 и DD2 любые 176 или 561 серии. Советский тиристор КУ103В можно заменить, например, современным тиристором MCR100-6 или MCR100-8, рассчитанные на ток коммутации до 0,8 А. В таком случае можно будет управлять нагревом паяльника мощностью до 150 Вт. Диоды VD1-VD4 любые, рассчитанные на обратное напряжение не менее 300 В и ток не менее 0,5 А. Отлично подойдет IN4007 (Uоб=1000 В, I=1 А). Диоды VD5 и VD7 любые импульсные. Стабилитрон VD6 любой маломощный на напряжение стабилизации около 9 В. Конденсаторы любого типа. Резисторы любые, R1 мощностью 0,5 Вт.

Регулятор мощности настраивать не требуется. При исправных деталях и без ошибок монтажа заработает сразу.

Схема разработана много лет назад, когда компьютеров и тем более лазерных принтеров не было в природе и поэтому чертеж печатной платы я делал по дедовской технологии на диаграммной бумаге с шагом сетки 2,5 мм. Затем чертеж приклеивал клеем «Момент» на плотную бумагу, а саму бумагу к фольгированному стеклотекстолиту. Далее сверлились отверстия на самодельном сверлильном станке и руками вычерчивались дорожки будущих проводников и контактные площадки для пайки деталей.


Чертеж тиристорного регулятора температуры сохранился. Вот его фотография. Изначально выпрямительный диодный мост VD1-VD4 был выполнен на микросборке КЦ407, но после того, как два раза микросборку разорвало, заменил ее четырьмя диодами КД209.

Как снизить уровень помех от тиристорных регуляторов

Для уменьшения помех излучаемых тиристорными регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо.

Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны. Чем больше витков, тем лучше ферритовый фильтр будет подавлять помехи, но достаточно и просто продеть сетевой провод через кольцо.

Ферритовое кольцо можно взять с интерфейсных проводов компьютерной техники, мониторов, принтеров, сканеров. Если Вы обратите внимание на провод, соединяющий системный блок компьютера с монитором или принтером, то заметите на проводе цилиндрическое утолщение изоляции. В этом месте находится ферритовый фильтр высокочастотных помех.

Достаточно ножиком разрезать пластиковую изоляцию и извлечь ферритовое кольцо. Наверняка у Вас или Ваших знакомых найдется не нужный интерфейсный кабель от струйного принтера или старого кинескопного монитора.

Тиристорные регуляторы мощности являются одной из самых распространенных радиолюбительских конструкций, и в этом нет ничего удивительного. Ведь всем, кто когда-нибудь пользовался обычным 25 — 40 ваттным паяльником, способность его к перегреванию даже очень известна. Паяльник начинает дымить и шипеть, потом, достаточно скоро, облуженное жало выгорает, становится черным. Паять таким паяльником уже совсем невозможно.

И вот тут на помощь и приходит регулятор мощности, с помощью которого можно достаточно точно выставить температуру для пайки. Ориентироваться следует на то, чтобы при касании паяльником куска канифоли она дымила ну, так, средне, без шипения и брызг, не очень энергично. Ориентироваться следует на то, чтобы пайка получалась контурной, блестящей.

Чтобы не усложнять рассказ, не будем рассматривать тиристор в виде его четырехслойной p-n-p-n структуры, рисовать вольтамперную характеристику, а просто на словах опишем, как же он, тиристор, работает. Для начала в цепи постоянного тока, хотя в этих цепях тиристоры почти не применяются. Ведь выключить тиристор, работающий на постоянном токе достаточно сложно. Все равно, что коня на скаку остановить.

И все же большие токи и высокие напряжения тиристоров привлекают разработчиков различной, как правило, достаточно мощной аппаратуры постоянного тока. Для выключения тиристоров приходится идти на различные усложнения схем, ухищрения, но в целом результаты получаются положительными.

Обозначение тиристора на принципиальных схемах показано на рисунке 1.

Рисунок 1. Тиристор

Нетрудно заметить, что по своему обозначению на схемах, тиристор очень похож на . Если разобраться, то он, тиристор, тоже обладает односторонней проводимостью, а следовательно, может выпрямлять переменный ток. Вот только делать это он будет лишь в том случае, когда на управляющий электрод подано относительно катода положительное напряжение, как показано на рисунке 2. По старой терминологии тиристор иногда называли управляемым диодом. Покуда не подан управляющий импульс, тиристор закрыт в любом направлении.

Рисунок 2.

Как включить светодиод

Здесь все очень просто. К источнику постоянного напряжения 9В (можно использовать батарейку «Крона») через тиристор Vsx подключен светодиод HL1 с ограничительным резистором R3. С помощью кнопки SB1 напряжение с делителя R1, R2 может быть подано на управляющий электрод тиристора, и тогда тиристор откроется, светодиод начинает светиться.

Если теперь отпустить кнопку, перестать ее удерживать в нажатом состоянии, то светодиод должен продолжать светиться. Такое кратковременное нажатие на кнопку можно назвать импульсным. Повторное и даже многократное нажатие этой кнопки ничего не изменит: светодиод не погаснет, но и не станет светить ярче или тусклее.

Нажали — отпустили, а тиристор остался в открытом состоянии. Причем, это состояние является устойчивым: тиристор будет открыт до тех пор, пока из этого состояния его не выведут внешние воздействия. Такое поведение схемы говорит об исправном состоянии тиристора, его пригодности для работы в разрабатываемом или ремонтируемом устройстве.

Маленькое замечание

Но из этого правила часто случаются исключения: кнопку нажали, светодиод зажегся, а когда кнопку отпустили, то погас, как, ни в чем не бывало. И в чем же тут подвох, что сделали не так? Может кнопку нажимали недостаточно долго или не очень фанатично? Нет, все было сделано достаточно добросовестно. Просто ток через светодиод оказался меньше, чем ток удержания тиристора.

Чтобы описанный опыт прошел удачно, надо просто заменить светодиод лампой накаливания, тогда ток станет больше, либо подобрать тиристор с меньшим током удержания. Этот параметр у тиристоров имеет значительный разброс, иногда даже приходится тиристор для конкретной схемы подбирать. Причем одной марки, с одной буквой и из одной коробки. Несколько лучше с этим током у импортных тиристоров, которым в последнее время отдается предпочтение: и купить проще, и параметры лучше.

Как закрыть тиристор

Никакие сигналы, поданные на управляющий электрод, закрыть тиристор и погасить светодиод не смогут: управляющий электрод может только включить тиристор. Существуют, конечно, запираемые тиристоры, но их назначение несколько иное, чем банальные регуляторы мощности или простые выключатели. Обычный тиристор можно выключить лишь только прервав ток через участок анод — катод.

Сделать это можно, как минимум, тремя способами. Во-первых, тупо отключить всю схему от батарейки. Вспоминаем рисунок 2. Естественно, что светодиод погаснет. Но при повторном подключении он сам по себе не включится, поскольку тиристор остался в закрытом состоянии. Это состояние также является устойчивым. И вывести его из этого состояния, Зажечь свет, поможет только нажатие кнопки SB1.

Второй способ прервать ток через тиристор это просто взять и замкнуть выводы катода и анода проволочной перемычкой. При этом весь ток нагрузки, в нашем случае это всего — лишь светодиод, потечет через перемычку, а ток через тиристор будет равен нулю. После того, как перемычка будет убрана, тиристор закроется, и светодиод погаснет. При опытах с подобными схемами в качестве перемычки чаще всего используется пинцет.

Предположим, что вместо светодиода в этой схеме будет достаточно мощная нагревательная спираль с большой тепловой инерцией. Тогда получается практически готовый регулятор мощности. Если коммутировать тиристор таким образом, что на 5 секунд спираль включена и столько же времени выключена, то в спирали выделяется 50-ти процентная мощность. Если же за время этого десятисекундного цикла включение производится лишь на 1 секунду, то совершенно очевидно, что спираль выделит только 10% тепла от своей мощности.

Примерно с такими временными циклами, измеряемыми в секундах, работает регулировка мощности в микроволновой печи. Просто с помощью реле включается и выключается ВЧ излучение. Тиристорные регуляторы работают на частоте питающей сети, где время измеряется уже миллисекундами.

Третий способ выключения тиристора

Состоит в том, чтобы до нуля уменьшить напряжение питания нагрузки, а то и вовсе изменить полярность питающего напряжения на противоположную. Именно такая ситуация получается при питании тиристорных схем переменным синусоидальным током.

При переходе синусоиды через нуль, она меняет знак на противоположный, поэтому ток через тиристор становится меньше тока удержания, а затем и вовсе равным нулю. Таким образом, проблема выключения тиристора решается как бы сама собой.

Тиристорные регуляторы мощности. Фазовое регулирование

Итак, дело осталось за малым. Чтобы получилось фазовое регулирование, надо просто в определенное время подать управляющий импульс. Другими словами импульс должен иметь определенную фазу: чем ближе он будет расположен к концу полупериода переменного напряжения, тем меньшая амплитуда напряжения окажется на нагрузке. Фазовый способ регулирования показан на рисунке 3.

Рисунок 3. Фазовое регулирование

В верхнем фрагменте картинки управляющий импульс подается почти в самом начале полупериода синусоиды, фаза управляющего сигнала близка к нулю. На рисунке это время t1, поэтому тиристор открывается почти в начале полупериода, а в нагрузке выделяется мощность близкая к максимальной (если бы в цепи не было тиристоров, мощность была бы максимальной).

Сами управляющие сигналы на этом рисунке не показаны. В идеальном варианте они представляют собой короткие положительные относительно катода импульсы, поданные в определенной фазе на управляющий электрод. В простейших схемах это может быть линейно нарастающее напряжение, получаемое при заряде конденсатора. Об этом будет рассказано несколько ниже.

На среднем графике управляющий импульс подается в средине полупериода, что соответствует фазовому углу Π/2 или моменту времени t2, поэтому в нагрузке выделяется лишь половина максимальной мощности.

На нижнем графике открывающие импульсы подаются очень близко к окончанию полупериода, тиристор открывается почти перед тем, как ему предстоит закрыться, по графику это время обозначено как t3, соответственно мощность в нагрузке выделяется незначительная.

Схемы включения тиристоров

После краткого рассмотрения принципа работы тиристоров, наверное, можно привести несколько схем регуляторов мощности . Нового здесь ничего не изобретено, все можно найти в сети Интернет или в старых радиотехнических журналах. Просто в статье приводится краткий обзор и описание работы схем тиристорных регуляторов . При описании работы схем будет обращаться внимание на то, каким образом используются тиристоры, какие существуют схемы включения тиристоров.

Как было сказано в самом начале статьи, тиристор выпрямляет переменное напряжение как обычный диод. Получается однополупериодное выпрямление. Когда-то именно так, через диод, включались лампы накаливания на лестничных клетках: света совсем чуть, в глазах рябит, но зато лампы перегорают очень редко. То же самое получится, если светорегулятор выполнить на одном тиристоре, только появляется еще возможность регулирования уже и так незначительной яркости.

Поэтому регуляторы мощности управляют обоими полупериодами сетевого напряжения. Для этого применяется встречно — параллельное включение тиристоров, или включение тиристора в диагональ выпрямительного моста.

Для наглядности этого утверждения далее будут рассмотрены несколько схем тиристорных регуляторов мощности. Иногда их называют регуляторами напряжения, и какое название вернее, решить трудно, ведь вместе с регулированием напряжения регулируется и мощность.

Простейший тиристорный регулятор

Он предназначен для регулирования мощности паяльника. Его схема показана на рисунке 4.

Рисунок 4. Схема простейшего тиристорного регулятора мощности

Регулировать мощность паяльника, начиная от нуля, нет никакого смысла. Поэтому можно ограничиться регулированием только одного полупериода сетевого напряжения, в данном случае положительного. Отрицательный полупериод проходит без изменений через диод VD1 сразу на паяльник, что обеспечивает его половинную мощность.

Положительный полупериод проходит через тиристор VS1, позволяющий осуществлять регулирование. Цепь управления тиристором предельно проста. Это резисторы R1, R2 и конденсатор C1. Конденсатор заряжается по цепи: верхний провод схемы, R1, R2 и конденсатор C1, нагрузка, нижний провод схемы.

К плюсовому выводу конденсатора подключен управляющий электрод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, последний открывается, пропуская в нагрузку положительный полупериод напряжения, вернее его часть. Конденсатор C1 при этом, естественно, разряжается, тем самым подготавливаясь к следующему циклу.

Скорость заряда конденсатора регулируется с помощью переменного резистора R1. Чем быстрее конденсатор зарядится до напряжения открывания тиристора, тем раньше тиристор откроется, тем большая часть положительного полупериода напряжения поступит в нагрузку.

Схема простая, надежная, для паяльника вполне подходит, хотя регулирует лишь один полупериод сетевого напряжения. Очень похожая схема показана на рисунке 5.

Рисунок 5. Тиристорный регулятор мощности

Она несколько сложней предыдущей, но позволяет осуществлять регулировку более плавно и точно, благодаря тому, что схема формирования управляющих импульсов собрана на двухбазовом транзисторе КТ117. Этот транзистор предназначен для создания генераторов импульсов. Больше, кажется, ни на что другое не способен. Подобная схема используется во многих регуляторах мощности, а также в импульсных блоках питания в качестве формирователя запускающего импульса.

Как только напряжение на конденсаторе C1 достигает порога срабатывания транзистора, последний открывается и на выводе Б1 появляется положительный импульс, открывающий тиристор VS1. Резистором R1 можно регулировать скорость заряда конденсатора.

Чем быстрее зарядится конденсатор, тем раньше появится открывающий импульс, тем большее напряжение поступит в нагрузку. Вторая полуволна сетевого напряжения проходит в нагрузку через диод VD3 без изменений. Для питания схемы формирователя управляющих импульсов используется выпрямитель VD2, R5, стабилитрон VD1.

Тут можно спросить, а когда же откроется транзистор, каков же порог срабатывания? Открывание транзистора происходит в тот момент, когда напряжение на его эмиттере Э превысит напряжение на базе Б1. Базы Б1 и Б2 не равноценны, если их поменять местами, то генератор не заработает.

На рисунке 6 показана схема, позволяющая регулировать оба полупериода напряжения.

Рисунок 6.

8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Регулятор напряжения

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

ТЕСТ:

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

2 Самые распространенные схемы РН 0-220 вольт своими руками

Схема №1.

Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.


Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.

Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.

Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.

Схема №2.

Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.


В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

3 Основных момента при изготовлении мощного РН и тока своими руками

Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.

Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.


Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.

2 основных принципа при изготовлении РН 0-5 вольт

  1. Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
  2. Питание микросхем производится только постоянным током.

Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.

Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:

  • Первый вывод – входной сигнал.
  • Второй вывод – выходной сигнал.
  • Третий вывод – управляющий электрод.

Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.


Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.

Регулятор напряжения 0 — 220в

Топ 4 стабилизирующие микросхемы 0-5 вольт:

  1. КР1157 – отечественная микросхема, с пределом по входному сигналу до 25 вольт и током нагрузки не выше 0.1 ампер.
  2. 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
  3. TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
  4. L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.

РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.


Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.

4 Схемы РН своими руками и схема подключения

Коротко рассмотрим каждую из схем, особенности, преимущества.

Схема 1.

Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.


Схема 2.

Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.

Схема 3.

Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.тиристора,

В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.

Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.

Однофазные тиристорные ключи с фазовым управлением

Основные варианты силовых однофазных бесконтактных коммутирующих и регулирующих устройств (БКРУ) показаны на рис. 10.1. Включение управляемых вентилей осуществляется сигналом, синхронизированным с напряжением сети. Напряжение на нагрузке регулируется за счет изменения угла задержки (управле­ния) включения , регулируемого от момента прохождения через нуль тока нагрузки (от угла  нагрузки).

Схема рис. 10.1, а является наиболее распространенной и ба­зовой при построении трех­фазных схем БКРУ. Каждый из тиристоров работает поочередно на интервале одной полуволны, коммутируя соответствующую полуволну напряжения . Максимальные значения прямого и обратного напряжений на тиристоре рав­ны , где  –  дейст­вующее значение питающего напряжения. Среднее значение тока через тиристор равно , где  –  действующее значение тока нагрузки.

В ряде случаев вместо тиристоров для управления двига­телем может быть использован симистор (рис. 10.1, б). Однако при этом весь ток нагрузки протекает по вентилю и сред­ний ток симистора  равен:. Кроме того, у симисторов величи­на  в несколько раз ниже, чем у тиристоров, что затруд­няет их использование в реверсивных схемах.

Схема рис. 10.1, в аналогична схеме рис. 10.1, а. По тиристору протекает весь ток на­грузки и . Максимальное значение прямого напряжения на нем такое же, как в схеме рис. 10.1, а. Однако здесь тиристор практически защищен от действия об­ратного напряжения включением неуправляемых вентилей. Тиристор коммутирует обе полуволны напряжения , поэтому частота импульсов управления должна быть в два раза выше частоты питающей сети.

В схеме рис. 10.1, г используются дополнительные диоды, включенные встречно-парал­лельно тиристорам, в связи с чем обратное напряжение на тиристорах в процессе ра­боты близко к нулю. Это позволяет облегчить требования к выбору тиристоров по

на­пряжению, так как выбор будет проводиться только по максимальному значению прямого напряжения. Ток нагрузки соответствующего направления протекает в данной схеме через последовательно включенные тиристор и диод. Кривая обратного напряжения на диоде при регулировании имеет тот же вид, что и кривая обратного напряжения одно­именного тиристора в схеме рис. 10.1, а.

Рассмотрим особенности работы БКРУ на обмотку маши­ны переменного тока. Очень часто для приближенных расче­тов тиристоры представляются идеальными вентилями, а машина переменного тока – в виде активно-индуктивной нагрузки. При этом не учи­тывается изменение параметров машины при регулировании ее скорости и ЭДС взаи­моин­дукции между различными фазами статора и ротора. Однако такой подход значи­тельно упрощает исследования, позволяет получить универсальные расчетные соотно­шения, а также легко произвести качественный анализ различных схем.

Сначала рассмотрим процессы, возникающие при работе одного тиристора VS1 на фазу двигателя переменного тока, представляющую последовательное соединение активного со­противления фазы  и индуктивности Lн (рис. 10.2, а). В мо­мент подачи отпираю­щих импульсов αот (рис. 10.2, б, в) через тиристор нарастает ток нагрузки  до максималь­ного значе­ния iмакс, после чего он поддерживается за счет энергии, накоплен­ной в индуктивности . Закрытие тиристора происхо­дит при угле . Длительность протекания тока через тиристор ха
рактеризуется углом проводимости

.

Для удобства расчета иногда целесообразно использовать дополнительный угол проводи­мости:

.

Форма тока в нагрузке находится из решения дифференциаль­ного уравнения, составленного для активно-индуктивной цепи переменного тока.

При включении вентиля VS1 (рис. 10.2, а) ток нагрузки в общем случае содержит принужденную (периодическую) и свободную (апериодическую) составляющие. При  свободная составляющая отсутствует и  (рис. 10.2, б), фазовый угол нагрузки  определяется из соотношения:

.

Как указывалось, наиболее часто применяется схема с встречно-параллельным включе­нием тиристоров (см. рис. 10.1, а). Особенностью такого включения по сравнению со схе­мой рис. 10.2, а является зависимость от фазового угла нагрузки () не только угла закры­тия (), но и угла открытия (). При включении активной нагрузки () на напряжение  угол проводимости вентиля . Ток через

нагрузку является пре­рывистым (рис. 10.3, а). Диапазон изме­нения . При  ток становится непрерывным синусоидальным.

При активно-индуктивной нагрузке и  (рис. 10.3, б) длительность протекания тока , и он является преры­вистым. Тиристор вступает в работу, когда предыдущий ти­ристор уже закрыт. Когда  (рис. 10.3, в), для каждого ти­ристора , и последую­щий тиристор вступает в работу как раз в тот момент, когда закрывается предыдущий. Сво­бодная составляющая тока отсутствует, и по нагрузке проте­кает непрерывный сину­соидальный ток . Если , от­крытие тиристора невозможно, так как при этом встречный тиристор проводит ток и создает обратное напряжение на включаемом ти­ристоре. Поэтому максимальный диапазон из­менения . При чисто индуктив­ной нагрузке этот диапазон равен .

Из рис. 10.3, а видно, что даже при активной нагрузке пер­вая гармоника тока  при регу­лировании  отстает от на­пряжения сети на угол  Следовательно, тиристорное устройство из встречно-параллельных тиристоров по отноше­нию к сети ведет себя как нелинейное реактивное (индуктивное) сопротивление, что приводит к снижению коэф­фи­циента мощности сети. Коэффициент мощности повышают при , а ток и напря­жение в нагрузке регулируют, изме­няя угол запирания тиристоров. Такой способ регулирования осуществляют, применяя полностью управляемые силовые элементы или принудительную коммутацию тиристоров.

При  значения тока и напряжения равны в раз­личные полупериоды сетевого напряжения. Такой способ управления называется симметричным. При несимметрич­ном управлении . Напряжение и ток нагрузки помимо нечетных содержат четные гармоники и постоянную состав­ляющую, направление которой определяется знаком разности указанных углов открытия. Для машин переменного тока этот режим раб

Способ регулирования угла включения тиристора, схема и принцип действия.

Тиристорный контактор переменного тока.

 

Тиристорный контактор с управлением от анодного напряжения (рис.1)

Рис.1

Принцип действия: Силовой блок контактора выполнен по схеме с встречно-параллельным соединением тиристоров VS1 и VS2. Управление им осуществляется с помощью цепи, состоящей из резисторов R1, R2, R3 и механического контакта S. Эта цепь подключена параллельно тиристорам, поэтому при замкнутом ключе S напряжение на ее элементах, и в частности на резисторах R1 и R3, изменяется синхронно с анодным напряжением на тиристорах. А так как эти резисторы подключены параллельно управляющим цепям тиристоров, то напряжение одной полярности одновременно нарастает и на аноде тиристора, и на его управляющем электроде. Если это напряжение является положительным, например, по отношению к тиристору VS1 и снимаемое с резистора R1 напряжение превышает значение отпирающего напряжения, тиристор VS1 включается. При изменении полярности напряжения таким же образом происходит включение тиристора VS2. Диоды VD1 и VD2 в схеме необходимы для защиты управляющих цепей тиристоров от обратного напряжения при отрицательном напряжении на их анодах. Регулируемый резистор R2 в управляющей цепи выбирается из условия ограничения амплитуды импульса тока управления до допустимого для используемых тиристоров значения IGmax. Изменением сопротивления резистора R2 можно управлять током во входных цепях тиристоров и, следовательно, моментом включения их по отношению к началу полупериода напряжения. В результате контактор становится способным выполнять еще одну функцию – регулирование тока в нагрузке.

 

 

Способ регулирования угла включения тиристора, схема и принцип действия.

Предельный угол задержки включения тиристоров amax, который можно обеспечить резисторной управляющей цепью, равен 90о. Минимальный угол задержки включения тиристоров при активной нагрузке a=2о. Это объясняется тем, что все тиристоры имеют порог чувствительности по управляющей цепи и, кроме того, изменяющееся по синусоидальному закону анодное напряжение тоже должно превысить пороговое значение U(TO) по крайней мере, в два раза. Эти факторы приводят к появлению бестоковых пауз в кривой тока нагрузки (tп на рис.1). Из-за разброса характеристик управления тиристоров эти паузы могут быть неодинаковы по длительности, что приводит к появлению постоянной составляющей в токе нагрузки. При необходимости углы задержки включения тиристоров выравнивают регулированием токов управления посредством изменения сопротивления построечных резисторов R1 и R3. Схема, иллюстрирующая возможность изменения угла включения тиристора в пределах всего полупериода (a=180о), показана на рис 2.

 

Рис.2 рис.3

 

Принцип действия.

В течение отрицательного полупериода напряжения (по отношению к тиристору) конденсатор С заряжается через диод VD2 и нагрузку практически до амплитудного значения напряжения сети с полярностью, указанной на рис.2. Когда анодное напряжение на тиристоре становится положительным, конденсатор перезаряжается через переменный резистор R и нагрузку от напряжения, равного –Um до напряжения UGT, при котором происходит включение тиристора VS1 (рис.3). Изменяя постоянную цепи зарядки конденсатора τ =(R+Rн)С посредством регулируемого резистора R, можно обеспечить задержку включения тиристора относительно максимального анодного напряжения, т.е. на угол a>90о. Применяемый в рассмотренных схемах способ управления тиристорами является одним из самых простых и надежных, так как реализуется минимальным числом элементов в управляющих цепях. Непосредственная связь управляющего электрода и анода тиристора дает возможность обеспечить выполнение и других требований, которые предъявляются к системам управления, а именно: автоматически осуществляется жесткая синхронизация поступления управляющих сигналов с моментом возможного включения тиристоров; потери мощности на управление малы, так как длительность воздействия тока управления регулируется самим тиристором. Как только он переключается в проводящее состояние, управляющая цепь оказывается зашунтированной малым сопротивлением и ток в ней уменьшается до нуля.

 


Узнать еще:

Модули на основе тиристоров и выпрямительных диодов

Тип  Схема  Описание  Корпус  U,В  I,А Паспорт
Тиристорные,диодные и диодно-тиристорные сборки      

 

М1

 

                                  

 Тиристорный модуль (общий катод-анод)

 

Е1,Е2 ,ДМ

 

 1200

25,40,63,80,100,125,160,200,250

   

1600

25,40,63,80,100,125,160,200,250

   

М1.1 
                                  
Одиночный тиристор 

Е1,Е2 ,ДМ

 

 1200

25,40,63,80,100,125,160,200,250

1600

25,40,63,80,100,125,160,200,250

 

М1.2 

 

                                  

 

 Тиристорный модуль (общий катод)

 

Е1 ,Е2 ,ДМ 

 

 1200

25,40,63,80,100,125,160,200,250

 1600

25,40,63,80,100,125,160,200,250

 

М2 

 

                                  

 

 Общий катод тиристора и анод диода

 

Е1,Е2 ,ДМ

 

 1200

25,40,63,80,100,125,160,200,250

 1600

25,40,63,80,100,125,160,200,250

 

М3 

 

                                  

 

 Общий анод тиристора и катод диода

 

Е1,Е2 ,ДМ

 

 1200

25,40,63,80,100,125,160,200,250

 1600

25,40,63,80,100,125,160,200,250

 

М4 

 

                                  

 

Диодный модуль (общий катод-анод)

 

Е1,Е2 ,ДМ

 

 1200

25,40,63,80,100,125,160,200,250

 1600

25,40,63,80,100,125,160,200,250

 

М4.1 

 

                                  

 

 Одиночный диод

 

Е1,Е2 ,ДМ

 

 1200

25,40,63,80,100,125,160,200,250

1600

25,40,63,80,100,125,160,200,250

 

М4.2 

 

                                  

 Диодный модуль (общий катод)

 

Е1,Е2 ,ДМ

 

 1200

25,40,63,80,100,125,160,200,250

1600

25,40,63,80,100,125,160,200,250

 

М4.3 

 

                                  

 

 Диодный модуль (общий анод)


 

Е1,Е2 ,ДМ

 

1200 25,40,63,80,100,125,160,200,250
1600

25,40,63,80,100,125,160,200,250

М4.4 

 

                                  

 

 Диодный модуль (два диода)


 

 

 М3

 

 

 1200 

 

40 

  

М4.5

                                  

М101-104

 

                                  

Модули диодные, тиристорные и диодно-тиристорные 

 

Е3

 

 

  1200,1600

 

 

200,250

 
 
Выпрямительные мосты       

М106М

                                  

Модуль диодный

конфигурации «трехфазный мост»

 

МККТ

1200,1600

100

М106М,

М123М,

М124М

 

 

Модули диодные,тиристорные,диодно-тиристорные

конфигурации «трехфазный мост»

 

МККТ

1200,1600

63

 

М105-122

 

 

 

 

Модули диодные,тиристорные,диодно-тиристорные

конфигурации «однофазный мост»

 

 

 

 

 

ДМ 

 

1200,1600

100

160

 

М105, М120

 

 

 

ДМ

 

 

1200,1600

200

250

 

 

 

 

 

 

М106-124

 

 

 

Модули диодные,тиристорные,диодно-тиристорные

конфигурации «трехфазный мост»

 

 

 

 

 

 

ДМ

 

 

 

 

 

 

1200,1600

 

 63

 

100

160

 

200

250

 

 

М5

 

 

 

 

 

 

  

 

 

                                     

 

 

 

 

 

 

   

Однофазный диодный мост   

ДМ ,ВМ

 1200

 

63,100,160,200,250

 

ДМ ,ВМ

1600

 М3

 1200

50

М5М 

МККТ

1200 63,100
М5-ПП3 

ПП3

 1200  25

М5-ПП2.1

ПП2

 1200  6,3  

 

М6

 

 

 

 

 

 

                                     

 

 

 

 

 

 

Трехфазный диодный мост

 

ДМ

1200

 

63,100,160,200,250

1600
М6М

МККТ

 1200 63, 100 
М6-ПП3

ПП3

 1200 25 
М6-ПП2.1

ПП2

 1200 6,3

 

 

 

 

М20 

 

 

 

 

                                  

 

 

 

Диодно-тиристорный однофазный

мост (тиристоры в катодной группе)

 

ВМ

 

1200

 

63

 
1600  

 

ДМ

1200

 

100, 160,200, 250

1600

 

 

 

 

М21 

 

 

 

 

 

                                  

 

 

 

Диодно-тиристорный однофазный

мост (тиристоры в одном плече)

 

ВМ

 

1200

 

63

 
1600  
ДМ 1200

 

100, 160

1600

 

 

 

 

М22 

 

 

 

 

 

                                  

 

 

 

 

Тиристорный однофазный мост

 

ВМ

 

 1200

 

63


1600
ДМ 1200

 

100, 160

 
1600  

 

М23 

 

                                  

 

 Диодно-тиристорный трехфазный мост

(тиристоры в катодной группе) 

 

ДМ

 

1200

 

 63, 100,160,200,250

 
1600
М23М                                    

МККТ

 1200  63

 

М24 

 

                                  

 

 

Тиристорный трехфазный мост  

 

ДМ

 

 1200

 

63, 100,160,200, 250

 
 1600 
М24М                                    

МККТ

 1200  63  

 

 

 

 

 

ВМ

                                  

Диодно-тиристорный однофазный

мост (тиристоры в катодной группе)

 

 

 

 

 

ПП6

 

 

 

 

 

 

 

 

  1200   

 

 

 

 

 

15, 25, 45   

 

 

 

  

 

                                  

Диодно-тиристорный однофазный

мост (тиристоры в анодной группе)

 
 

                                  

Тиристорный однофазный мост 
 

                                  

 Диодный мост
Встречно-параллельные тиристоры        

 

М8

 

                                  

 

 Два встречно-параллельно

включенных тиристора

ВМ  

1200

 25, 40, 63, 80,100,125

1600
ДМ
1200 160, 200, 250
1600

 

 

 

 

М26

 

 

 

 

                                  

 

 

 

 Три пары встречно-параллельно

включенных тиристора 

 

ДМ  

 1200

 25, 40, 63, 80,100,125

1600

25, 40, 63, 80,100,125

М2 1600 80  
МККТ 1600 40  
ВМ                                    

Полупроводниковый силовой модуль

ПП6

 1200  15, 25, 45   

Тиристоры принцип действия. Что такое тиристор и как он работает. В качестве заключения

1.1 Определение, виды тиристоров

1.2 Принцип действия

1.3 Параметры тиристоров

Глава 2. Применение тиристоров в регуляторах мощности

2.1 Общие сведения о различных регуляторах

2.2 Процесс управления напряжением при помощи тиристора

2.3 Управляемый выпрямитель на тиристоре

Глава 3. Практические разработки регуляторов мощности на тиристорах

3.1 Регулятор напряжения на тиристоре КУ201К

3.2 Мощный управляемый выпрямитель на тиристорах

Заключение

Литература

Введение

В данной работе рассмотрены несколько вариантов устройств, где используются элементы тиристоры в качестве регуляторов напряжения и в качестве выпрямителей. Приведены теоретическое и практическое описания принципа действия тиристоров и устройств, схемы этих устройств.

Управляемый выпрямитель на тиристорах — элементах, обладающих большим коэффициентом усиления по мощности, позволяет получать большие токи в нагрузке при незначительной мощности, затрачиваемой в цепи управления тиристора.

В данной работе рассмотрены два варианта таких выпрямителей, которые обеспечивают максимальный ток в нагрузке до 6 А с пределом регулировки напряжения от 0 до 15 В и от 0,5 до 15 В и устройство для регулировки напряжения на нагрузке активного и индуктивного характера, питаемой от сети переменного тока напряжением 127 и 220 В с пределами регулировки от 0 до номинального напряжения сети.

Глава 1. Понятие о тиристоре. Виды тиристоров. Принцип действия

1.1 Определение, виды тиристоров

Тиристором называют полупроводниковый прибор, основу которого составляет четырехслойная структура, способная переключаться из закрытого состояния в открытое и наоборот. Тиристоры предназначены для ключевого управления электрическими сигналами в режиме открыт — закрыт (управляемый диод).

Простейшим тиристором является динистор – неуправляемый переключающий диод, представляющий собой четырехслойную структуру типа p-n-p-n (рис. 1.1.2). Здесь, как и у других типов тиристоров, крайние n-p-n-переходы называются эмиттерными, а средний p-n-переход – коллекторным. Внутренние области структуры, лежащие между переходами, называются базами. Электрод, обеспечивающий электрическую связь с внешней n-областью, называется катодом, а с внешней p-областью – анодом.

В отличие от несимметричных тиристоров (динисторов, тринисторов) в симметричных тиристорах обратная ветвь ВАХ имеет вид прямой ветви. Это достигается встречно-параллельным включением двух одинаковых четырехслойных структур или применением пятислойных структур с четырьмя p-n-переходами (симисторы).

Рис. 1.1.1 Обозначения на схемах: а) симистора б) динистора в) тринистора.

Рис. 1.1.2 Структура динистора.

Рис. 1.1.3 Структура тринистора.

1.2 Принцип действия

При включении динистора по схеме, приведенной на рис. 1.2.1, коллекторный p-n-переход закрыт, а эмиттерные переходы открыты. Сопротивления открытых переходов малы, поэтому почти все напряжение источника питания приложено к коллекторному переходу, имеющему высокое сопротивление. В этом случае через тиристор протекает малый ток (участок 1 на рис. 1.2.3).

Рис. 1.2.1. Схема включения в цепь неуправляемого тиристора (динистора).

Рис. 1.2.2. Схема включения в цепь управляемого тиристора (тринистора).

Рис.1.2.3. Вольтамперная характеристика динистора.

Рис.1.2.4. Вольтамперная характеристика тиристора.

Если увеличивать напряжение источника питания, ток тиристора увеличивается незначительно, пока это напряжение не приблизится к некоторому критическому значению, равному напряжению включения Uвкл. При напряжении Uвкл в динисторе создаются условия для лавинного размножения носителей заряда в области коллекторного перехода. Происходит обратимый электрический пробой коллекторного перехода (участок 2 на рис. 1.2.3). В n-области коллекторного перехода образуется избыточная концентрация электронов, а в p-области — избыточная концентрация дырок. С увеличением этих концентраций снижаются потенциальные барьеры всех переходов динистора. Возрастает инжекция носителей через эмиттерные переходы. Процесс носит лавинообразный характер и сопровождается переключением коллекторного перехода в открытое состояние. Рост тока происходит одновременно с уменьшением сопротивлений всех областей прибора. Поэтому увеличение тока через прибор сопровождается уменьшением напряжения между анодом и катодом. На ВАХ этот участок обозначен цифрой 3. Здесь прибор обладает отрицательным дифференциальным сопротивлением. Напряжение на резисторе возрастает и происходит переключение динистора.

После перехода коллекторного перехода в открытое состояние ВАХ имеет вид, соответствующий прямой ветви диода (участок 4). После переключения напряжение на динисторе снижается до 1 В. Если и дальше увеличивать напряжение источника питания или уменьшать сопротивление резистора R, то будет наблюдаться рост выходного тока, как в обычной схеме с диодом при прямом включении.

При уменьшении напряжения источника питания восстанавливается высокое сопротивление коллекторного перехода. Время восстановления сопротивления этого перехода может составлять десятки микросекунд.

Напряжение Uвкл при котором начинается лавинообразное нарастание тока, может быть снижено введением не основных носителей заряда в любой из слоев, прилегающих к коллекторному переходу. Дополнительные носители заряда вводятся в тиристоре вспомогательным электродом, питаемым от независимого источника управляющего напряжения (Uупр). Тиристор со вспомогательным управляющим электродом называется триодным, или тринисторным. На практике при использовании термина «тиристор» подразумевается именно элемент. Схема включения такого тиристора показана на рис. 1.2.2. Возможность снижения напряжения U при росте тока управления, показывает семейство ВАХ (рис. 1.2.4).

Если к тиристору приложить напряжение питания, противоположной полярности (рис. 1.2.4), то эмиттерные переходы окажутся закрытыми. В этом случае ВАХ тиристора напоминает обратную ветвь характеристики обычного диода. При очень больших обратных напряжениях наблюдается необратимый пробой тиристора.

♦ Как мы уже выяснили – тиристор, это полупроводниковый прибор, обладающий свойствами электрического вентиля. Тиристор с двумя выводами (А — анод, К — катод) , это динистор. Тиристор с тремя выводами (А – анод, К – катод, Уэ – управляющий электрод) , это тринистор, или в обиходе его называют просто тиристор.

♦ С помощью управляющего электрода (при определенных условиях) можно изменять электрическое состояние тиристора, то есть переводить его из состояния «выключено» в состояние «включено».
Тиристор открывается в случае, если приложенное напряжение между анодом и катодом превысит величину U = Uпр , то есть величину напряжения пробоя тиристора;
Тиристор можно открыть и при напряжении меньше, чем Uпр между анодом и катодом (U , если подать импульс напряжения положительной полярности между управляющим электродом и катодом.

♦ В открытом состоянии тиристор может находиться сколько угодно долго, пока на него подано питающее напряжение.
Тиристор можно закрыть:

  • — если уменьшить напряжение между анодом и катодом до U = 0 ;
  • — если снизить анодный ток тиристора до величины, меньше тока удержания Iуд .
  • — подачей запирающего напряжения на управляющий электрод, (только для запираемых тиристоров).

Тиристор может также находиться в закрытом состоянии сколько угодно долго, до прихода запускающего импульса.
Тиристоры и динисторы работают как в цепях постоянного, так и в цепях переменного тока.

Работа динистора и тиристора в цепях постоянного тока.

Рассмотрим несколько практических примеров.
Первый пример применения динистора, это релаксационный генератор звуковых сигналов .

В качестве динистора используем КН102А-Б.

♦ Работает генератор следующим образом.
При нажатии кнопки Кн , через резисторы R1 и R2 постепенно заряжается конденсатор С (+ батареи – замкнутые контакты кнопки Кн – резисторы – конденсатор С – минус батареи).
Параллельно конденсатору подключена цепочка из телефонного капсюля и динистора. Через телефонный капсюль и динистор ток не протекает, так как динистор еще «заперт».
♦ При достижении на конденсаторе напряжения, при котором пробивается динистор, через катушку телефонного капсюля проходит импульс тока разряда конденсатора (С – катушка телефона – динистор — С). Слышен щелчок из телефона, конденсатор разрядился. Далее снова идет заряд конденсатора С и процесс повторяется.
Частота повторения щелчков зависит от емкости конденсатора и величины сопротивления резисторов R1 и R2 .
♦ При указанных на схеме номиналах напряжения, резисторов и конденсатора, частоту звукового сигнала с помощью резистора R2 можно менять в пределах 500 – 5000 герц. Телефонный капсюль необходимо использовать с низкоомной катушкой 50 – 100 Ом , не более, например телефонный капсюль ТК-67-Н .
Телефонный капсюль необходимо включать с соблюдением полярности, иначе не будет работать. На капсюле есть обозначение +(плюс) и – (минус).

♦ У этой схемы (рис 1) есть один недостаток. Из-за большого разброса параметров динистора КН102 (разное напряжение пробоя), в некоторых случаях, нужно будет увеличить напряжение источника питания до 35 – 45 вольт , что не всегда возможно и удобно.

Устройство управления, собранное на тиристоре, для включения – выключения нагрузки с помощью одной кнопки показано на рис 2.


Устройство работает следующим образом.
♦ В исходном состоянии тиристор закрыт и лампочка не горит.
Нажмем на кнопку Кн в течении 1 – 2 секунды . Контакты кнопки размыкаются, цепь катода тиристора разрывается.

В этот момент конденсатор С заряжается от источника питания через резистор R1 . Напряжение на конденсаторе достигает величины U источника питания.
Отпускаем кнопку Кн .
В этот момент конденсатор разряжается по цепи: резистор R2 – управляющий электрод тиристора – катод — замкнутые контакты кнопки Кн – конденсатор.
В цепи управляющего электрода потечет ток, тиристор «откроется» .
Загорается лампочк а по цепи: плюс батареи – нагрузка в виде лампочки – тиристор — замкнутые контакты кнопки – минус батареи.
В таком состоянии схема будет находиться сколько угодно долго .
В этом состоянии конденсатор разряжен: резистор R2, переход управляющий электрод – катод тиристора, контакты кнопки Кн.
♦ Для выключения лампочки необходимо кратковременно нажать на кнопку Кн . При этом основная цепь питания лампочки обрывается. Тиристор «закрывается» . Когда контакты кнопки замкнутся, тиристор останется в закрытом состоянии, так как на управляющем электроде тиристора Uynp = 0 (конденсатор разряжен).

Мною опробованы и надежно работали в этой схеме различные тиристоры: КУ101, Т122, КУ201, КУ202, КУ208 .

♦ Как уже упоминалось, динистор и тиристор имеют свой транзисторный аналог .

Схема аналога тиристора состоит из двух транзисторов и изображена на рис 3 .
Транзистор Тр 1 имеет p-n-p проводимость, транзистор Тр 2 имеет n-p-n проводимость. Транзисторы могут быть как германиевые, так и кремниевые.

Аналог тиристора имеет два управляющих входа.
Первый вход: А – Уэ1 (эмиттер — база транзистора Тр1).
Второй вход: К – Уэ2 (эмиттер – база транзистора Тр2).

Аналог имеет: А – анод, К — катод, Уэ1 – первый управляющий электрод, Уэ2 – второй управляющий электрод.

Если управляющие электроды не использовать, то это будет динистор, с электродами А — анод и К — катод .

♦ Пару транзисторов, для аналога тиристора, надо подбирать одинаковой мощности с током и напряжением выше, чем необходимо для работы устройства. Параметры аналога тиристора (напряжение пробоя Unp, ток удержания Iyд) , будут зависеть от свойств применяемых транзисторов.

♦ Для более устойчивой работы аналога в схему добавляют резисторы R1 и R2 . А с помощью резистора R3 можно регулировать напряжение пробоя Uпр и ток удержания Iyд аналога динистора – тиристора. Схема такого аналога изображена на рис 4 .

Если в схеме генератора звуковых частот (рис 1) , вместо динистора КН102 включить аналог динистора, получится устройство с другими свойствами (рис 5) .

Напряжение питания такой схемы составит от 5 до 15 вольт . Изменяя величины резисторов R3 и R5 можно изменять тональность звука и рабочее напряжение генератора.

Переменным резистором R3 подбирается напряжение пробоя аналога под используемое напряжение питания.

Потом можно заменить его на постоянный резистор.

Транзисторы Тр1 и Тр2: КТ502 и КТ503; КТ814 и КТ815 или любые другие.

♦ Интересна схема стабилизатора напряжения с защитой от короткого замыкания в нагрузке (рис 6) .

Если ток в нагрузке превысит 1 ампер , сработает защита.

Стабилизатор состоит из:

  • — управляющего элемента– стабилитрона КС510 , который определяет напряжение выхода;
  • — исполнительного элемента–транзисторов КТ817А, КТ808А , исполняющих роль регулятора напряжения;
  • — в качестве датчика перегрузки используется резистор R4 ;
  • — исполнительным механизмом защиты используется аналог динистора, на транзисторах КТ502 и КТ503 .

♦ На входе стабилизатора в качестве фильтра стоит конденсатор С1 . Резистором R1 задается ток стабилизации стабилитрона КС510 , величиной 5 – 10 мА. Напряжение на стабилитроне должно быть 10 вольт .
Резистор R5 задает начальный режим стабилизации выходного напряжения.

Резистор R4 = 1,0 Ом , включен последовательно в цепь нагрузки.Чем больше ток нагрузки, тем больше на нем выделяется напряжение, пропорциональное току.

В исходном состоянии, когда нагрузка на выходе стабилизатора мала или отключена, аналог тиристора закрыт. Приложенного к нему напряжения 10 вольт (от стабилитрона) не хватает для пробоя. В этот момент падение напряжения на резисторе R4 почти равно нулю.
Если постепенно увеличивать ток нагрузки, будет увеличиваться падение напряжения на резисторе R4 . При определенном напряжении на R4, аналог тиристора пробивается и установится напряжение, между точкой Тчк1 и общим проводом, равное 1,5 — 2,0 вольта .
Это есть напряжение перехода анод — катод открытого аналога тиристора.

Одновременно загорается светодиод Д1 , сигнализируя об аварийной ситуации. Напряжение на выходе стабилизатора, в этот момент, будет равно 1,5 — 2,0 вольта .
Чтобы восстановить нормальную работу стабилизатора, необходимо выключить нагрузку и нажать на кнопку Кн , сбросив блокировку защиты.
На выходе стабилизатора вновь будет напряжение 9 вольт , а светодиод погаснет.
Настройкой резистора R3 , можно подобрать ток срабатывания защиты от 1 ампера и более . Транзисторы Т1 и Т2 можно ставить на один радиатор без изоляции. Сам же радиатор изолировать от корпуса.

Тиристор – это полупроводниковый ключ, конструкция которого представляет собой четыре слоя. Они обладают способностью переходить из одного состояния в другое – из закрытого в открытое и наоборот.

Информация, представленная в данной статье, поможет дать исчерпывающий ответ на вопрос об этом аппарате.

Принцип функционирования тиристора

В специализированной литературе этот прибор также носит название однооперационного тиристора. Это название обусловлено тем, что устройство является не полностью управляемым . Другими словами, при получении сигнала от управляющего объекта он может только перейти в режим включенного состояния. Для того чтобы выключить прибор, человеку придется выполнить дополнительные действия, которые и приведут к падению уровня напряжения до нулевой отметки.

Работа этого прибора основывается на использовании силового электрического поля. Для его переключения из одного состояния в другое применяется технология управления, передающая определенные сигналы. При этом ток по тиристору может двигаться только в одном направлении. В выключенном состоянии этот прибор обладает способностью выдерживать как прямой, так и обратное напряжение.

Способы включения и выключения тиристора

Переход в рабочее состояние стандартного этого типа аппарата осуществляет путем поучения импульса токового напряжения в определенной полярности. На скорость включения и на то, как он впоследствии будет работать, влияют следующие факторы:

Выключение тиристора может быть осуществлено некоторыми способами:

  1. Естественное выключение. В технической литературе также встречается такое понятие, как естественная коммутация – оно аналогично естественному выключению.
  2. Принудительное выключение (принудительная коммутация).

Естественное выключение этого аппарата осуществляется в процессе его функционирования в цепях с переменным током, когда происходит понижение уровня тока до нулевой отметки.

Принудительное выключение включает в себя большое количество самых разнообразных способов. Самым распространенным из них является следующий метод.

Конденсатор, обозначаемый латинской буквой C, соединяется с ключом. Он должен обозначаться маркеровкой S. При этом конденсатор перед замыканием должен быть заряжен.

Основные типы тиристоров

В настоящее время существует немалое количество тиристоров, которые различаются между собой своими техническими характеристиками – скоростью функционирования, способами и процессами управления, направлениями тока при нахождении в проводящем состоянии и др.

Наиболее распространенные типы

  1. Тиристор-диод. Такой прибор аналогичен устройству, которое имеет встречно-параллельный диод во включенном режиме.
  2. Диодный тиристор. Другое название – динистор. Отличительной характеристикой этого устройства является то, что переход в проводящий режим осуществляется в момент, когда уровень тока превышен.
  3. Запираемый тиристор.
  4. Симметричный. Он также носит название симистора. Конструкция этого прибора аналогична двум устройствам со встречно-параллельным диодами при нахождении в режиме работы.
  5. Быстродействующий или инверторный. Этот тип устройства обладает способностью переходить в нерабочее состояние за рекордно короткое время – от 5 до 50 микросекунд.
  6. Оптотиристор. Его работа осуществляется при помощи светового потока.
  7. Тиристор под полевым управлением по ведущему электроду.

Обеспечение защиты

Тиристоры входят в перечень приборов, которые критично влияют на изменение скорости увеличения прямого тока. Как и для диодов, так и для тиристоров характерен процесс протекания обратного тока восстановления. Резкое изменение его скорости и падение до нулевой отметки приводит к повышенному риску возникновения перенапряжения.

Кроме того, перенапряжение в конструкции этого прибора может возникать вследствие полного исчезновении напряжения в разнообразных составных частях системы, например, в малых индуктивностях монтажа.

По вышеуказанным причинам в подавляющем большинстве случаев для обеспечения надежной защиты этих приборов применяют разнообразные схемы ЦФТП. Данные схемы при нахождении в динамическом режиме помогают защищать устройство от возникновения недопустимых значений напряжения.

Надежным средством защиты также является применение варистора . Это устройство подключается к местам вывода индуктивной нагрузки.

В самом общем виде применение такого прибора, как тиристор, можно разделить на следующие группы:

Ограничения тиристора

При работе с любым типом этого прибора следует соблюдать определенные правила техники безопасности, а также помнить о некоторых необходимых ограничениях.

Например, в случае с индуктивной нагрузкой при функционировании такой разновидности прибора, как симистор. В данной ситуации ограничения касаются скорости изменения уровня напряжения между двумя основными элементами – его анодами и рабочим током. Для ограничения влияния тока и перегрузки применяется RC-цепочка .

Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.

Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока. Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно. И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.

Принцип действия

Рассмотрим работу тиристора по следующей простой схеме.

К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.

Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).

Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.

Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.

Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.

Особенности устройства

Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:

Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике. И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения. На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.

Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.

Основные параметры тиристоров
  • Максимально допустимый прямой ток . Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.
  • Максимально допустимый обратный ток .
  • Прямое напряжение . Это падение напряжения при максимальном токе.
  • Обратное напряжение . Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
  • Напряжение включения . Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
  • Минимальный ток управляющего электрода . Он необходим для включения тиристора.
  • Максимально допустимый ток управления .
  • Максимально допустимая рассеиваемая мощность .
Динамический параметр

Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.

Виды тиристоров

По способу управления разделяют на:
  • Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
  • Триодные тиристоры, или тринисторы. Они открываются током управления электродом.
Триодные тиристоры в свою очередь разделяются:
  • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
  • Управление анодом – управляющее напряжение подходит на электрод и анод.
Запирание тиристора производится:
  • Уменьшением анодного тока – катод меньше тока удержания.
  • Подачей напряжения запирания на электрод управления.
По обратной проводимости тиристоры делятся:
  • Обратно-проводящие – имеют малое обратное напряжение.
  • Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
  • С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
  • Симистор – пропускает токи в двух направлениях.

Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность. Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.

По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).

Разделение тиристоров по мощности

При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.

Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.

Простая сигнализация на основе тиристора

На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя. На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление. И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.

Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.

Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма. Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации. Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.

Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.

Регулятор мощности на тиристоре

Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.

Их рекомендованные номинальные значения показаны на схеме. В качестве диода можно использовать КД209, тиристор КУ103В или мощнее. Резисторы желательно использовать мощностью не менее 2 ватт, конденсатор электролитический на напряжение не менее 50 вольт.

Эта схема регулирует лишь один полупериод сетевого напряжения. Если представить, что мы из схемы убрали все элементы, кроме диода, то он будет пропускать только полуволну переменного тока, и на нагрузку, к примеру, на паяльник или лампу накаливания поступит лишь половина мощности.

Тиристор позволяет пропускать дополнительные, условно говоря, кусочки полупериода, срезанного диодом. При изменении положения переменного резистора R1 напряжение на выходе будет меняться.

К положительному выводу конденсатора включен управляющий вывод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, он открывается и пропускает определенную часть положительного полупериода. Переменный резистор будет определять скорость зарядки конденсатора. А чем быстрее он зарядится, тем раньше откроется тиристор, и успеет до смены полярности пропустить часть положительного полупериода.

На конденсатор отрицательная полуволна не поступает, и напряжение на нем одной полярности, поэтому не страшно, что он имеет полярность. Схема позволяет изменять мощность от 50 до 100%. Для паяльника это в самый раз подходит.

Тиристор пропускает ток в одном направлении от анода к катоду. Но существуют разновидности, которые пропускают ток в обоих направлениях. Они называются симметричные тиристоры или симисторы. Они используются для управления нагрузкой в цепях переменного тока. Существует большое количество схем регуляторов мощности на их основе.

8 января 2013 в 19:23
  • Электроника для начинающих

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор — это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием — не полностью управляемый ключ.

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод.
Анод — это контакт с внешним p-слоем, катод — с внешним n-слоем.
Освежить память о p-n переходе можно .

Классификация

В зависимости от количества выводов можно вывести классификацию тиристоров. По сути все очень просто: тиристор с двумя выводами называется динисторами (соответственно имеет только анод и катод). Тиристор с тремя и четырьмя выводами, называются триодными или тетродными. Также бывают тиристоры и с большим количеством чередующихся полупроводниковых областей. Одним из самых интересных является симметричный тиристор (симистор), который включается при любой полярности напряжения.

Принцип работы



Обычно тиристор представляют в виде двух транзисторов, связанных между собой, каждый из которых работает в активном режиме.

В связи с таким рисунком можно назвать крайние области — эмиттерными, а центральный переход — коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.


К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать — режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров

1. Напряжение включения — это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние.
2. Прямое напряжение — это прямое падение напряжения при максимальном токе анода.
3. Обратное напряжение — это максимально допустимое напряжение на тиристоре в закрытом состоянии.
4. Максимально допустимый прямой ток — это максимальный ток в открытом состоянии.
5. Обратный ток — ток при максимальной обратном напряжении.
6. Максимальный ток управления электрода
7. Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность

Заключение

Таким образом, в тиристоре существует положительная обратная связь по току — увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор — не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

Симисторный регулятор мощности с микроконтроллерным управлением / Хабр

Однажды для одного небольшого домашнего проекта мне потребовался регулятор мощности, пригодный для регулировки скорости вращения электромотора переменного тока. В качестве основы использовалась вот такая плата на базе микроконтроллера STM32F103RBT6. Плата была выбрана как имеющая честный RS232 интерфейс и имеющая при этом минимум дополнительных компонентов. На плате отсутствует слот под литиевую батарейку для питания часов, но приживить его — дело пятнадцати минут.

Итак, начнём с теории. Все знакомы с так называемой широтно-импульсной модуляцией, позволяющей управлять током в (или, что реже, напряжением на) нагрузке с максимальным КПД. Лишняя мощность в таком случае просто не будет потребляться, вместо того, чтобы рассеиваться в виде тепла, как при линейном регулировании, представляющем собой не более чем усложнённый вариант реостата. Однако, по ряду причин такое управление, будучи выполненным «в лоб», не всегда подходит для переменного тока. Одна из них — бо́льшая схемотехническая сложность, поскольку требуется диодный мост для питания силовой части на MOSFET или IGBT транзисторах. Этих недостатков лишено симисторное управление, представляющее собой модификацию ШИМ.

Симистор (TRIAC в англоязычной литературе) — это полупроводниковый прибор, модификация тиристора, предназначенный для работы в качестве ключа, то есть он может быть либо открыт, либо закрыт и не имеет линейного режима работы. Основное отличие от тиристора — двусторонняя проводимость в открытом состоянии и (с некоторыми оговорками) независимость от полярности тока (тиристоры и симисторы управляются током, как и биполярные транзисторы) через управляющий электрод. Это позволяет легко использовать симистор в цепях переменного тока. Вторая особенность, общая с тиристорами, — это свойство сохранять проводимость при исчезновении управляющего тока. Закрывается симистор при отключении тока между основными электродами, то есть, когда переменный ток переходит через ноль. Побочным эффектом этого является уменьшение помех при отключении. Таким образом, для открывания симистора нам достаточно подать на управляющий электрод открывающий импульс небольшой, порядка десятков микросекунд, длительности, а закроется он сам в конце полупериода переменного тока.

Симисторное управление учитывает вышеперечисленные свойства этого прибора и заключается в отпирании симистора на каждом полупериоде переменного тока с постоянной задержкой относительно точки перехода через ноль. Таким образом, от каждого полупериода отрезается «ломтик». Заштрихованная на рисунке часть — результат этой процедуры. Таким образом, на выходе вместо синусоиды мы будем иметь что-то, в известной степени напоминающее пилу:

Теперь наша задача — вовремя отпирать симистор. Эту задачу мы возложим на микроконтроллер. Приведённая ниже схема является результатом анализа имеющихся решений а также документации к оптронам. В частности, силовая часть взята из документации на симисторный оптрон производства Texas Instruments. Схема не лишена недостатков, один из которых — мощный проволочный резистор-печка, через который включён оптрон, детектирующий переход через ноль.

Как это работает? Рассмотрим рисунок.

На положительном полупериоде, когда ток через оптрон превышает некоторое пороговое значение, оптрон открывается и напряжение на входе микроконтроллера опускается практически до нуля (кривая «ZC» на рисунке). Когда же ток снова опускается ниже этого значения, на микроконтроллер снова поступает единица. Происходит это в моменты времени, отстоящие на dz от нуля тока. Это dz ощутимо, в моём случае составляет около 0.8 мс, и его необходимо учитывать. Это несложно: мы знаем период T и длительность импульса высокого уровня h, откуда dz = (h — T / 2) / 2. Таким образом, нам необходимо открывать симистор через dz + dP от переднего фронта сигнала с оптрона.

О фазовом сдвиге dP стоит поговорить отдельно. В случае c ШИМ постоянного тока среднее значение тока на выходе будет линейно зависеть от скважности управляющего сигнала. Но это лишь потому, что интеграл от константы даёт линейную зависимость. В нашем случае необходимо отталкиваться от значения интеграла синуса. Решение простого уравнения даёт нам искомую зависимость: для линейного изменения среднего значения тока необходимо менять фазовый сдвиг по закону арккосинуса, для чего достаточно ввести в управляющую программу LUT таблицу.

Всё, о чём я расскажу в дальнейшем, имеет прямое отношение к архитектуре микроконтроллеров серии STM32, в частности, к архитектуре их таймеров. Микроконтроллеры этой серии имеют разное число таймеров, в STM32F103RBT6 их семь, из которых четыре пригодны для захвата и генерации ШИМ. Таймеры можно каскадировать: для каждого таймера одно из внутренних событий (переполнение, сброс, изменение уровня на одном из входных или выходных каналов и т.д.; за подробностями отсылаю вас к документации) можно объявить выходным и направить его на другой таймер, назначив на него определённое действие: старт, стоп, сброс и т.д. Нам потребуются три таймера: один из них, работая в т.н. PWM input режиме, замеряет период входного сигнала и длительность импульса высокого уровня. По окончании измерения, после каждого периода генерируется прерывание. Одновременно с этим запускается связанный с этим событием таймер фазового сдвига, работающий в ждущем режиме. По событию переполнения этого таймера происходит принудительный сброс таймера, генерирующего выходной управляющий сигнал на симистор, таким образом, через каждый полный период переменного тока подстраивается фаза управляющего сигнала. Только первый таймер генерирует прерывание, и задача обработчика сводится к подстройке фазового сдвига (регистр ARR ждущего таймера) и периода ШИМ таймера (также регистр ARR) так, чтобы он всегда был равен половине периода переменного тока. Таким образом, всё управление происходит на аппаратном уровне и влияние программных задержек полностью исключается. Да, это можно было сделать и программно, но грех было не воспользоваться такой возможностью, как каскадируемые таймеры.

Выкладывать на обозрение код всего проекта я не вижу смысла, к тому же, он далёк от завершения. Приведу лишь фрагмент, содержащий описанный выше алгоритм. Он абсолютно независим от прочих частей и легко может быть портирован в другой проект на совместимом микроконтроллере.

И напоследок, видеоролик, показывающий устройство в действии:

(PDF) Представляем антипараллельный тиристор с обратным подключением для управления скоростью трехфазного асинхронного двигателя

978-1-5090-5627-9 / 17 / $ 31,00 © 2017 IEEE

Знакомство с антипараллельным обратным подключением

Тиристор для скорости Управление трехфазной индукцией

Двигатель

Асиф Имран, Садаб Нехал и Мринмой Дей

Кафедра электротехники и электроники

Читтагонгский университет инженерии и технологий

Читтагонг-4349, Бангладеш

@ yasifimran_cuet.com, [email protected], [email protected],

Аннотация — Тиристоры в основном используются в силовой электронике, а

используются в различных устройствах управления двигателями из-за их более низкой стоимости, меньшего размера и потерь мощности. доступность на рынке

и выше коммутационные характеристики. В этой исследовательской работе частота вращения трехфазного асинхронного двигателя

точно контролируется с помощью

с использованием встречно-параллельных тиристоров, соединенных встречно-обратным соединением на стороне статора

, а напряжение статора асинхронного двигателя изменяется путем изменения угла зажигания

. импульсы поступают на затвор тиристоров.Схема обнаружения перехода через нуль

предназначена для обнаружения начального уровня

входного напряжения. PIC 16f877A запрограммирован на генерацию импульсов затвора

в определенной последовательности. Для более плавного управления и предотвращения резкого повышения (dv / dt) до

к каждой паре тиристоров также подключена RC демпферная цепь

. Кроме того, соотношение

между напряжением, скоростью и углом зажигания оценивается и графически отображается

.

Ключевые слова: тиристоры, трехфазный асинхронный двигатель, угол зажигания

, обнаружение пересечения нуля, демпферная цепь, Matllab.

I. ВВЕДЕНИЕ

Асинхронные двигатели широко используются в промышленных, коммерческих

, а также в домашних условиях из-за своей низкой стоимости, достаточно высокого КПД

, очень простой и прочной конструкции

и широкого диапазона скоростей. Различные методы:

, принятые для управления скоростью асинхронного двигателя, такие как управление напряжением

,

, управление напряжением / частотой, добавление реостата в статоре и

изменение полюса асинхронного двигателя.Тиристоры являются одними из

основных электронных инструментов в силовой электронике. Он используется для управления двигателями переменного и постоянного тока

. Метод управления тиристором

— это правильное выполнение метода управления напряжением для регулирования

скорости двигателя. Хотя асинхронный двигатель представляет собой машину с постоянной скоростью

, асинхронным двигателем можно легко управлять с помощью переключающих устройств

, таких как тиристоры, с лучшей степенью точности

и, очевидно, в более широком диапазоне.Тиристоры

, в основном бистабильные переключатели, работают из непроводящего состояния

в проводящее состояние. Это четырехслойный полупроводниковый прибор со структурой n-p-n p-

с тремя p-n переходами, который имеет три вывода

: анод, катод и затвор. Тиристоры

спроектированы без возможности управляемого выключения затвором, и в этом случае тиристор

может быть переведен из проводящего состояния в непроводящее состояние

только путем смещения тока до нуля другими средствами

.По сравнению с транзисторами, тиристоры имеют более низкие потери проводимости в состоянии

и более высокую пропускную способность. Для

, управляющего скоростью асинхронного двигателя встречно-параллельно назад к

обратно тиристоры подключены на стороне статора асинхронного двигателя

. На затвор тиристоров подаются различные последовательности импульсов с различным углом зажигания. При изменении угла зажигания изменяется выходное напряжение

, поэтому скорость также изменяется

, потому что скорость и напряжение пропорциональны.

В 1971 году была проведена исследовательская работа по управлению скоростью

трехфазного асинхронного двигателя с симметрично управляемыми тиристорами

, в которых эксперимент проводился аналитическим методом

практически Т.А. Липпо [1]. Это было сделано для наблюдения

за стабильной работой системы. Помимо этого,

регулирование скорости асинхронного двигателя через тиристор было выполнено с помощью моделирования

Matlab в 2006 году, потери мощности также были рассчитаны в исследовательской статье

в 1984 году доктором.Али М. Эльтамали А. И. Алолах, Р.

М. Хамуда [2]. В 1981 г. анализ переходных процессов трехфазного асинхронного двигателя

с регулированием скорости через тиристор был проведен

Gautam Nath и Gunnar J. Berg [3]. В этом исследовании также наблюдались переходные характеристики

скорости, напряжения и электромагнитного момента

, а также пытались вычислить содержание гармоник.

Д-р Саид Лесан и др. опубликовал журнальную статью по управлению асинхронным двигателем с фазным ротором

с использованием тиристора во вторичных цепях

, в котором был получен метод управления с обратной связью

[4].В этом журнале были получены ток ротора, ток статора, коэффициент мощности и КПД

, а также графическая зависимость между различными параметрами

. В 1984 году Стивен Влилиамсон

et al. провести детальный анализ для расчета потерь мощности в управляемом тиристоре

методом [5]. Девендра Кумар Шукла и

Шудханшу Трипати также показали в своих исследованиях, как

регулировать напряжение на стороне статора асинхронного двигателя с помощью

SCR [6].В 2007 году Али

М. Эльтамали, А. И. Алолах, Р. М. Хамуда опубликовали еще одну исследовательскую работу, в которой описаны ограничения

асинхронного двигателя с трехфазным контроллером SCR на

, определяющие полное гармоническое искажение [7].

В данной исследовательской работе скорость регулируется с помощью метода фазового управления

. Кроме того, также оцениваются различные типы потерь, тока и КПД

. Графическая взаимосвязь между

различных параметров также построена для наблюдения за их реакцией с изменением скорости

.Это исследование показало, насколько

этот метод управления фазой эффективен и насколько

достижимая эффективность этого метода.

248

Международная конференция по электротехнике, вычислительной технике и коммуникационной технике (ECCE), 16-18 февраля 2017 г., Кокс-Базар, Бангладеш

AK25HB120 datasheet — Anti-parallel Thyristor Module

2N3996SMD05 : Доступны варианты скрининга =; ; Полярность = NPN ;; Пакет = SMD0.5 (TO276AA) ;; Vceo = 80V ;; IC (продолжение) = 5А ;; HFE (мин) = 40 ;; HFE (макс.) = 120 ;; @ Vce / ic = 2V / 1A ;; FT = 40 МГц ;; PD = 20Вт.

2N5956 : Доступны варианты досмотра = ;; Полярность = PNP ;; Пакет = TO66 (TO213AA) ;; Vceo = 45V ;; IC (продолжение) = 6А ;; HFE (мин) = 20 ;; HFE (макс.) = 100 ;; @ Vce / ic = 4V / 3A ;; FT = 5 МГц ;; PD = 40Вт.

2SK2879-01 : N-канальный МОП-транзистор.

2SK3135 : Высокоскоростное переключение мощности полевого МОП-транзистора с кремниевым N каналом.Что касается изменения названий, упомянутых в документе, таких как Hitachi Electric и Hitachi XX, на Renesas Technology Corp. Полупроводниковые операции Mitsubishi Electric и Hitachi были переданы Renesas Technology Corporation 1 апреля 2003 года. Эти операции включают микрокомпьютер, логику, аналоговую и дискретные устройства, и микросхемы памяти.

crsh60kd-4 :. 145 Adams Avenue Hauppauge, NY 11788 USA Тел .: (631) 435-1110 Факс: (631) 435-1824 www.centralsemi.com.

ER302D : Сверхбыстрый выпрямитель Dpak для поверхностного монтажа.DPAK НА ПОВЕРХНОСТНОМ УСТАНОВКЕ СУПЕРБЫСТРЫЙ ВЫПРЯМИТЕЛЬ НАПРЯЖЕНИЕ до 300 Вольт ТОК — 3,0 А Для поверхностного монтажа Низкопрофильный корпус Встроенная разгрузка от натяжения Легкий захват и установка Сверхбыстрое время восстановления для высокой эффективности Пластиковая упаковка имеет страховочную лабораторию D PAK / TO-252AA Класс воспламеняемости 94V- O Пассивированный стеклом переход Высокотемпературный.

NTB18N06 : N-канальный МОП-транзистор TO-220, 15 А, 60 В, корпус: D2PAK, контакты = 3. Предназначен для низковольтных высокоскоростных коммутационных устройств в источниках питания, преобразователях, системах управления силовыми двигателями и мостовых схемах.Источники питания Преобразователи Управление двигателем Мостовые схемы NChannel D Value +175 61 Adc Apk Watts W / C 1 2 Unit Vdc ID IDM PD TJ, Tstg EAS TO220AB CASE 221A STYLE D2PAK CASE 418B STYLE 2 4 Рейтинг DraintoSource.

SK102 :. 18020 Hobart Blvd., Unit B Gardena, CA

USA Тел .: (310) 767-1052 Факс: (310) 767-7958 Металлический полупроводниковый переход с защитным кольцом Эпитаксиальная конструкция Низкое прямое падение напряжения Высокая пропускная способность по току Для использования при низком напряжении, высокочастотные инверторы, приложения для защиты от свободного хода и защиты от полярности. Корпус: JEDEC DO-41, литой пластик (U / L воспламеняемость.

SPI80N08S2-07R : например, OptiMOS®. Характеристика Режим улучшения 175 ° C рабочая температура Номинальное значение dv / dt для лавин Интегрированное сопротивление затвора Максимальные номинальные значения, = 25 ° C, если не указано иное Параметр Непрерывный ток стока 1) Тепловые характеристики Параметр Характеристики Тепловое сопротивление, переход — корпус Тепловое сопротивление, переход — окружающая среда, SMD с выводами версия, устройство.

AP6980GN2-HF : МОЩНОСТЬ, FET. Требования к простому приводу Компактный размер и низкий профиль Не содержит галогенов и соответствует требованиям RoHS. Серия G AP6980 основана на инновационном дизайне Advanced Power и кремниевом технологическом процессе для достижения минимально возможного сопротивления и быстрого переключения.Он предоставляет разработчику чрезвычайно эффективное устройство для использования в широком спектре энергетических приложений.

BDY28AR1 : 6 А, 250 В, NPN, Si, СИЛОВОЙ ТРАНЗИСТОР, TO-204AA. s: Полярность: NPN; Тип упаковки: ТО-3, ГЕРМЕТИЧЕСКАЯ, МЕТАЛЛИЧЕСКАЯ, ТО-3, 2 КОНТАКТА.

CRW05041.02KOHM1% 100PPMBULK : RES, SMT, THICK FILM, 1.02K OHMS, 150WV, 1% +/- TOL, -100,100PPM TC, 0504 КОРПУС. s: Категория / Применение: Общее использование; Стандарты и сертификаты: RoHS.

LS4D28-100-RK : 1 ЭЛЕМЕНТ, 10 мкГН, ИНДУКТОР ОБЩЕГО НАЗНАЧЕНИЯ, SMD.s: Вариант монтажа: Технология поверхностного монтажа; Устройств в упаковке: 1; Стиль вывода: ОБРАТНЫЙ; Стандарты и сертификаты: RoHS; Литой / экранированный: экранированный; Применение: общего назначения, силовой дроссель; Диапазон индуктивности: 10 мкГн; Рабочая температура: от -40 до 85 C (от -40 до 185 F).

SVC101D-05ABF1 : РЕЗИСТОР, ЗАВИСИМЫЙ ОТ НАПРЯЖЕНИЯ, 85 В, 2 Дж, КРЕПЛЕНИЕ ДЛЯ ПРОХОДНОГО ОТВЕРСТИЯ. s: Категория / Применение: Общее использование; Монтаж / Упаковка: Сквозное отверстие; Рабочее напряжение постоянного тока: 85 вольт; Рабочая температура: от -40 до 85 C (от -40 до 185 F); Стандарты и сертификаты: RoHS.

25TTS08SPBF : 25 А, 800 В, SCR. s: VDRM: 800 вольт; VRRM: 800 вольт; IT (RMS): 25 ампер; IGT: 45 мА; Стандарты и сертификаты: RoHS; Количество контактов: 2.

тиристоров в цепях переменного тока

  • Изучив этот раздел, вы сможете:
  • Описать методы управления мощностью переменного тока с помощью тиристоров
  • • Полуволновое и двухполупериодное управление
  • • Базовое резистивное управление.
  • • Фазовое управление.
  • • Контроль уровня.
  • • Импульсный запуск.
  • • Синхронное переключение или переключение через ноль.
  • Разберитесь в работе схемы для различных методов срабатывания тринистора.
  • Опишите методы безопасной изоляции для устройств среднего и высокого напряжения.

Базовый резистивный контроль

Тиристоры обычно используются в цепях управления питанием переменного тока, таких как диммеры освещения, регуляторы скорости двигателя переменного тока, нагреватели и т. Д.где сетевое (линейное) напряжение используется для нагрузок в много ватт или часто киловатт. Целью управления переменным током является запуск SCR на части в течение каждого цикла переменного тока, чтобы ток нагрузки через SCR отключался на часть цикла переменного тока, таким образом ограничивая средний ток, протекающий через SCR, и, следовательно, среднюю передаваемую мощность. к нагрузке.

Рис. 6.2.1 Базовая схема резистивного управления

Самый простой способ достижения этого показан на рис. 6.2.1, где тиристор включается подачей синусоидальной волны низкого напряжения (полученной от входа переменного тока простой резисторной цепью, содержащей переменный потенциометр) на вывод затвора SCR.Обратите внимание, что поскольку входная волна затвора получается из переменного тока, протекающего через SCR, она будет состоять только из выпрямленных полуволновых импульсов. Эффект этой входной волны состоит в том, что SCR будет включаться только тогда, когда форма волны затвора достигает потенциала срабатывания SCR, что происходит на полпути через каждый положительный полупериод волны переменного тока. После включения тиристора он продолжает проводить до тех пор, пока волна переменного тока не упадет до уровня чуть выше нуля вольт, когда ток, протекающий между анодом и катодом, упадет до значения, меньшего, чем порог ‘удерживающего тока’ (показан в тиристорном модуле 6.0 рис. 6.0.3). Затем тиристор остается в непроводящем состоянии в течение отрицательного полупериода волны переменного тока, поскольку теперь он смещен в обратном направлении (в режиме обратной блокировки) в течение оставшейся части цикла переменного тока. Когда начинается следующий положительный полупериод, тиристор остается в непроводящем состоянии до тех пор, пока сигнал запуска на выводе затвора снова не достигнет своего пускового потенциала.

Рис. 6.2.2 Активное срабатывание SCR

Время или фазовый угол, при котором будет срабатывать SCR, можно изменять, изменяя амплитуду сигнала затвора.Как видно из анимации на рис. 6.2.2. чем меньше амплитуда стробирующего сигнала, тем позже включается тиристор. Таким образом, изменение амплитуды сигнала триггера контролирует время включения SCR. Однако обратите внимание, что, поскольку тиристор в основном представляет собой выпрямительный диод, он проводит только половину цикла переменного тока, поэтому один тиристор может выдавать только 50% доступной мощности переменного тока. Кроме того, при использовании этой очень простой формы управления током, протекающим через тиристор, можно управлять только в течение половины положительного полупериода, то есть четверти полного цикла переменного тока.Можно видеть, что как только время включения достигает пика амплитуды волны переменного тока, его нельзя регулировать дальше, так как пиковая амплитуда сигнала запуска больше не будет достигать потенциала срабатывания затвора SCR и, следовательно, не будет запускать SCR после эта точка.

Рис. 6.2.3 Управление переменным током с помощью резисторов

Рис. 6.2.3 Видео недоступно в формате для печати

Из анимации и видео на рис. 6.2.3 также видно, что при использовании простого резистивного метода управление не очень линейное; первоначально ток через SCR изменяется только на относительно небольшую величину, но есть более быстрое изменение непосредственно перед прекращением проводимости.Внимательно посмотрите на вставку с изображением лампы на видео; он начинает заметно тускнеть только тогда, когда время переключения приближается к пиковому значению волны переменного тока.

Рис. 6.2.4 Методы управления полноволновым SCR

Полноволновой регулятор SCR

Базовая операция SCR, описанная выше, может быть значительно улучшена с помощью некоторых простых модификаций. Возможно, самым большим недостатком простого резистивного управления является то, что диапазон регулировки может покрывать только 25% всей волны переменного тока.Это происходит из-за того, что диодный тиристор проводит только положительную половину волны переменного тока. Чтобы обеспечить проводимость во время прохождения отрицательной половины волны переменного тока, переменный ток можно выпрямить с помощью двухполупериодного выпрямителя, как показано на рис. 6.2.4 (a). Поскольку обе половины волны переменного тока теперь будут положительными, диапазон регулировки теперь увеличен почти до 50%. Альтернативой является использование второго SCR, соединенного встречно-параллельно, как показано на рис. 6.2.4 (b), чтобы один SCR работал во время положительных полупериодов, а другой SCR — во время отрицательных полупериодов.Однако такое параллельное расположение тиристоров также можно получить, просто используя один симистор вместо двух тиристоров.

Рис. 6.2.5 Демонстрационная схема управления фазой тиристора

Контроль фазы SCR

Для достижения практически 100% -ного контроля волны переменного тока при регулировке фазы просто заменяется один из резисторов в резистивной цепи управления на конденсатор. Теперь это преобразует цепь резисторов в переменный фильтр нижних частот, который будет сдвигать фазу волны переменного тока, подаваемой на затвор.Подробную информацию о том, как работает фильтр нижних частот, можно найти здесь, но в основном значения C и R выбраны таким образом, чтобы регулировка R1 обеспечивала сдвиг фазы от 0 ° до почти 90 °. Чтобы быть эффективным, изменение R1 должно приводить к значительным изменениям в поведении нагрузочного устройства (в данном случае лампы на 12 В, 100 мА). Однако, помимо сдвига фазы сигнала затвора, RC-фильтр также будет изменять амплитуду формы сигнала затвора, поэтому амплитуда формы сигнала затвора также должна поддерживаться выше пускового потенциала выбранного типа SCR для переключения иметь место.Из этих условий видно, что расчет подходящих значений для R и C для обеспечения надлежащего управления зависит как от фазы, так и от амплитуды, поэтому может быть довольно сложным. Поэтому, скорее всего, также потребуются некоторые практические эксперименты со значениями R и C.

Рис. 6.2.6 Управление фазой SCR

Рис. 6.2.6 Видео недоступно в формате для печати

Видео на рис. 6.2.6 показывает рабочую схему с использованием значений компонентов, показанных на рис.6.2.5. Наблюдая за яркостью лампы вместе с изменяющейся формой сигнала, показанной на вставленном изображении, можно увидеть, что использование фазового управления действительно дает значительно лучший контроль почти на всех 180 ° каждого полупериода по сравнению с простым резистивным управлением.

Контроль уровня SCR

Рис. 6.2.7 Контроль уровня SCR

Другой способ включения тиристора в соответствующую часть цикла переменного тока — подать напряжение постоянного тока на затвор в течение времени, которое требуется тиристору для проведения.Следовательно, постоянный ток, приложенный к затвору, будет импульсом переменной ширины, имеющим уровень напряжения, достаточный для того, чтобы заставить тиристор проводить. Эти импульсы должны быть синхронизированы с выпрямленной волной переменного тока, чтобы они всегда начинались и заканчивались в правильное время относительно формы волны переменного тока.

Анимация на рис. 6.2.7 иллюстрирует основной метод запуска SCR с использованием управления уровнем. SCR запускается (включается) в течение каждого полупериода выпрямленного переменного тока напряжением V g , приложенным к затвору SCR.SCR отключается в конце каждого полупериода, когда напряжение на SCR падает почти до нуля, что также совпадает с окончанием триггерного импульса V g . Импульсы постоянного тока могут генерироваться в цифровом виде, с использованием выхода компьютера или дискретной компонентной схемы, такой как показанная ниже на рис. 6.2.8, в которой используется моностабильный таймер 555. Эта схема предлагает простой и недорогой метод демонстрации работы тринистора с использованием только низких напряжений. Используются два блока питания, заштрихованная область на рис.6.2.8 — это демонстрационный источник питания переменного тока, описанный в модуле SCR 6.0, который изолирует демонстрационную схему от сети (линии). На контрольную секцию цепи должно подаваться постоянное напряжение от 5 В до 12 В. Это может быть либо отдельный источник питания постоянного тока (например, «настенная бородавка»), либо специальный регулируемый источник питания IC, либо батарея. Секция управления схемы (черная) также изолирована от секции переменного тока (красная) двумя оптопарами, IC1 и IC3. Поскольку эта схема уже изолирована от сетевого напряжения с помощью T1, казалось бы, нет необходимости использовать второй метод изоляции в IC1, однако основная функция IC1 в данном случае не изоляция, а действие как детектор перехода через нуль.

Рис. 6.2.8 Цепь срабатывания уровня SCR

Рис. 6.2.9 Формы сигналов запуска уровня SCR

Демонстрационная схема запуска уровня

Схема на рис. 6.2.8 включает тиристор в момент времени, выбранный настройкой VR1, в течение каждого положительного полупериода переменного тока от низковольтного источника питания (форма сигнала A). SCR снова отключается, когда выпрямленное переменное напряжение падает почти до нуля в конце каждого полупериода. Схема управления основана на микросхеме таймера 555, работающей в моностабильном режиме, и двух оптопарах 4N25.

Помимо изоляции цепи 555 от входящего переменного тока, IC1 (4N25) выдает синхронизирующий импульс (форма сигнала B на рис. 6.2.9). Это достигается за счет смещения IC1 в режиме общего коллектора, так что его выходной транзистор проводит большую часть входного двухполупериодного переменного тока, создавая высокое (5 В) напряжение на выводе 4, но выключается, когда волна переменного тока приближается к 0 В, создавая выходной сигнал 0 В. на выводе 4 микросхемы IC1. Эти импульсы используются для запуска моностабильного модуля 555 (IC2) в начале каждого полупериода.

Каждый раз, когда срабатывает IC2, его выход на выводе 3 становится высоким в течение времени, установленного постоянной времени, создаваемой переменным резистором VR1 и конденсатором синхронизации C1.Обратите внимание, что VR1 также подключен параллельно резистору R4 на 27 кОм. Целью этого является достижение более точной постоянной времени, чем это возможно при использовании только предпочтительных значений VR1 и C1. Также можно было бы установить предварительно установленный резистор вместо R4, чтобы получить точную длительность пускового импульса высокого уровня, генерируемого IC2.

Рис. 6.2.10 Срабатывание по уровню SCR

Рис. 6.2.10 Видео недоступно в формате для печати

Обратите внимание, что запускающий импульс, создаваемый IC2 (форма сигнала C на рис.6.2.9) переходит в высокий уровень сразу после получения синхронизирующего импульса, который включает SCR в начале полупериода. Также, когда импульс запуска возвращается на низкий уровень, это не отключит SCR, он будет продолжать работать до конца полупериода; это не то, что нужно. Однако форма сигнала C инвертируется под действием оптрона IC3, поскольку его выходной транзистор подключен в режиме общего эмиттера. Следовательно, SCR срабатывает во время последнего периода полупериода выпрямленного переменного тока (форма сигнала D на рис.6.2.9). Обратите внимание на то, что форма сигнала D не похожа на обратную форму волны C, потому что, как только SCR запускается, вход затвора (вместе с анодом и катодом) следует форме выпрямленной волны переменного тока с момента запуска до момента его запуска. достигает 0 В.

Обратите внимание, что схема запуска по уровню, описанная здесь и показанная в работе на видео на рис. 6.2.10, не предназначена конкретно для представления практической схемы для управления высоким напряжением, а как демонстрационный образец, позволяющий изучить управление SCR. .Таким образом, этот модуль дает возможность более глубоко изучить режимы запуска SCR, используя низковольтный источник питания переменного тока, описанный в модуле SCR 6.0, и создавая схемы запуска на макетной плате. Однако на практике есть некоторые недостатки срабатывания по уровню, которые можно преодолеть с помощью импульсного запуска.

Запуск импульса SCR

Использование запуска по уровню, как описано выше, имеет недостаток, заключающийся в создании тока затвора в течение всего периода включения SCR.Это создает ненужный ток затвора и в приложениях с высокой мощностью может увеличить тепло, выделяемое на переходе 2 SCR, что, в свою очередь, может снизить долговременную надежность.

Модификация схемы, показанной на рис. 6.2.8, проиллюстрирована на рис. 6.2.11. Эта схема генерирует одиночный узкий импульс (длительностью около 4 мкс) для запуска SCR при выбранном угле включения, затем SCR продолжает проводить до тех пор, пока прямой ток не упадет до значения, меньшего, чем значение удерживающего тока около 0 В, что значительно снижает среднее значение затвора. ток.

Рис. 6.2.11 Цепь запуска импульса SCR

Как работает схема запуска импульса

Часть рис. 6.2.11, показанная бледно-серым цветом, работает так же, как уже было описано для рис. 6.2.8; Выход IC2 (моностабильный) состоит из положительных импульсов переменной ширины (форма сигнала A, показанная на рис. 6.2.12), где задний фронт каждого импульса определяет угол включения SCR. (Обратите внимание, что в схеме запуска уровня этот сигнал инвертируется перед подачей на затвор, так что задний фронт становится нарастающим фронтом для запуска SCR).На рис. 6.2.11 перед тем, как выходной сигнал IC2 будет инвертирован, он дифференцируется C3 и R5 для создания серии узких 4 мкс положительных и отрицательных импульсов, соответствующих нарастающим и спадающим фронтам сигнала A. Эти узкие импульсы подаются на общий коллектор (эмиттерный повторитель) задающего транзистора Tr1 через R6. Диод D2 на эмиттере Tr1 удаляет положительные импульсы (за исключением небольшого остатка из-за потенциала прямого перехода диода).

Рис. 6.2.12 Формы сигналов запуска импульса SCR

Отрицательные импульсы (форма волны B) на эмиттере Tr1 инвертируются импульсным трансформатором 1: 1 T2 путем соединения вторичной обмотки T2 в противофазе с первичной обмоткой T2 (обратите внимание на точки индикатора фазы рядом с первичной и вторичной обмотками), таким образом производя положительные импульсы запуска для SCR.Т2 также действует как изолятор между цепью управления постоянного тока низкого напряжения и тиристором переменного тока более высокого напряжения. На рис. 6.2.12 форма волны C показывает форму волны катода SCR, причем быстрый нарастающий фронт соответствует времени запуска импульса, подаваемого на затвор через токоограничивающий резистор R8; это снижает ток, подаваемый каждым импульсом запуска, примерно до 100 мкА.

Цепи запуска по уровню и импульсного запуска обеспечивают надежный запуск и настройку почти на всех 360 ° волны переменного тока 50 Гц.Для работы на частоте 60 Гц может потребоваться некоторая регулировка постоянной времени моностабильности. Уровень напряжения питания постоянного тока не критичен, от 5 до 12 В.

Рис. 6.2.13 Кривые пересечения нуля SCR

Синхронное переключение (переход через нуль)

Однако проблема существует со всеми описанными выше методами управления. Форма выходного сигнала переменного тока, когда SCR включается в течение каждого положительного полупериода волны переменного тока, имеет очень быстрое время нарастания, поскольку ток через SCR внезапно переключается с нуля на мгновенное значение волны переменного тока.При использовании источника переменного тока 230 В это резкое изменение может составлять около 325 В (пиковое значение волны переменного тока). Форма волны также может быть острым треугольным всплеском, если SCR включается после достижения пикового значения волны. В любом случае форма волны переменного напряжения, создаваемая действием SCR, будет богата гармониками, которые могут вызвать серьезный уровень электромагнитных помех (ЭМИ), вызывая проблемы не только для других подключенных схем; Помехи также могут излучаться на другие расположенные поблизости электронные устройства в виде радиочастотных помех (r.е.и.), поскольку создаваемые гармоники могут распространяться в радиодиапазоны. Чтобы избежать этих проблем, можно использовать альтернативные методы контроля. Один из таких методов, называемый «синхронное переключение или переключение с переходом через нуль», заключается в том, чтобы разрешить тиристорам переключаться только тогда, когда форма напряжения сети равна нулю или очень близка к ней. Затем тиристор включается на некоторое количество циклов, а затем снова выключается (когда напряжение переменного тока проходит через 0 В) еще на количество циклов. Затем можно изменить соотношение циклов включения и выключения, чтобы обеспечить изменение средней мощности, подаваемой на нагрузку.Рис. 6.2.13 иллюстрирует теоретический метод достижения нулевого переключения кроссовера. Практическая демонстрационная схема показана на рис. 6.2.14, а фактические формы сигналов, полученные из схемы, показаны на рис. 6.2.15.

Форма сигнала A на рис. 6.2.15 показывает форму сигнала 18Vpp, 100 Гц, приложенную к схеме перехода через нуль от двухполупериодного выпрямленного источника питания переменного тока и мостового выпрямителя (заштриховано серым на рис. 6.2.14).

Форма сигнала B представляет собой серию импульсов 5 В, полученных от оптопары IC1.Поскольку транзистор оптопары включен в течение большей части положительного полупериода входа переменного тока, это делает эмиттер высоким, за исключением узкого импульса, поскольку эмиттер падает с 5 В до 0 В каждый раз, когда вход переменного тока падает до 0 В. Таким образом, эти импульсы синхронизируются с точкой нулевого напряжения формы сигнала A.

Однако, поскольку для запуска SCR необходимы положительные импульсы запуска, импульсы в точке B инвертируются Tr1 для создания формы сигнала C.

Форма сигнала D является выходным сигналом автономного нестабильного генератора 555 IC2, который генерирует прямоугольные импульсы с частотой повторения импульсов около 7 Гц и переменной скважностью, регулируемой VR1.Эта форма сигнала используется для управления соотношением времени включения и выключения SCR. Поскольку SCR будет высоким (включенным) в течение нескольких полупериодов 100 Гц, затем низким (выключенным) в течение нескольких полупериодов. Отношение метки к пространству прямоугольной волны, создаваемой IC2, регулируется VR1, чтобы обеспечить время включения примерно от 20% до 90% от периодического времени нестабильного выхода. Более подробно работа IC2 описана в Модуле 4.4 генераторов.

Выходы Tr1 (форма сигнала C) и IC2 (форма сигнала D) подаются на два входа логического элемента И (IC3).Выход IC3 переходит в логическую 1 только тогда, когда оба входа находятся на логической 1. Это создает серию узких положительных пусковых импульсов (форма сигнала E) для запуска SCR только в начале этих полупериодов, когда форма сигнала D имеет высокий уровень. Создаваемые импульсы запуска подаются на Т2, изолирующий импульсный трансформатор 1: 1 через транзистор Tr2 драйвера эмиттерного повторителя. Вторичная обмотка Т2 подает триггерные импульсы на затвор тринистора через резистор ограничителя тока R11 и диод D3. Форма волны затвора (форма волны F) практически идентична форме волны выхода на катоде SCR, поскольку между затвором и катодом SCR существует лишь небольшая разница в напряжении.

Рис. 6.2.14 Цепь управления переходом через ноль SCR

* Примечание по безопасности: Как правило, резисторы 0,25 Вт подходят для этой конструкции, но если схема работает в течение длительного времени без источника переменного тока, но при этом источник постоянного тока все еще включен, существует вероятность того, что R11 (47R 0,25 Вт) может перегреться. , поскольку в этих условиях он будет пропускать повышенный ток из-за сигнала E, являющегося версией нестабильного выхода с более высоким током (форма сигнала D). Чтобы избежать перегрева, R5 может быть заменен версией с более высокой мощностью, или, предпочтительно, оба источника переменного и постоянного тока всегда должны быть отключены, когда цепь не работает!

Фиг.6.2.15 Формы сигналов Рис. 6.2.14 Схема

Рис. 6.2.16 SCR Zero Crossing


Схема макетной платы

Работа цепи перехода через ноль SCR

В этой демонстрационной схеме снова используется двухполупериодный выпрямленный источник переменного тока низкого напряжения (12 В RMS ), описанный ранее и закрашенный серым цветом на рис. 6.2.14.

Рис. 6.2.14. использует два разных метода изоляции и демонстрирует, как метод контроля перехода через нуль может быть реализован с использованием стандартных компонентов.Он не предназначен для представления какого-либо конкретного коммерчески доступного решения и не предназначен для представления наилучшего доступного метода. Целью схем управления затвором SCR, обсуждаемых в этом модуле, является предоставление полезных демонстраций широко используемых методов управления и среды низкого напряжения для соответствующих экспериментов. Они могут быть построены недорого на стандартном макете или плате, как показано на рис. 6.2.16, в качестве полезных демонстраций или студенческих проектов. В этих проектах используются низкие напряжения, чтобы поддерживать более безопасную окружающую среду, но узнайте больше об электронике.org не заявляет и не предполагает, что любая электронная схема является полностью безопасной, выбор построения и / или использования схем и методов, описанных на этом сайте, осуществляется исключительно на ваш страх и риск.

Видео на рис. 6.2.17 показывает эффект управления переходом через ноль при использовании для уменьшения яркости лампы. Обратите внимание на выраженное мерцание, возникающее при включении и выключении SCR на низких частотах, показывая, что это решение, устраняя одну проблему управления SCR (помехи), создает другую — низкую скорость переключения и связанное с этим мерцание.Однако, хотя это может быть проблемой для приложений освещения, это не проблема для приложений с медленно меняющимися значениями, такими как управление нагревом. Таким образом, переход через нуль может быть эффективным для контроля температуры за счет изменения средней мощности, подаваемой на нагревательный элемент. Кроме того, из-за отсутствия быстро изменяющихся скачков напряжения при управлении переходом через ноль, он больше подходит для использования с индуктивными нагрузками, чем схемы управления, которые переключаются во время цикла переменного тока.

Фиг.6.2.17 SCR Zero Crossing Control

Рис. 6.2.17 Видео недоступно


в формате для печати

TRIAC | Руководство для начинающих

В этом руководстве мы узнаем о некоторых основах TRIAC. В процессе мы разберемся со структурой, символом, работой, характеристиками, применением TRIAC.

Введение

Как известно, SCR как однонаправленное устройство имеет обратную блокирующую характеристику, которая предотвращает прохождение тока в обратном смещенном состоянии.Но для многих приложений требуется двунаправленное управление током, особенно в цепях переменного тока. Чтобы достичь этого с помощью SCR, два SCR должны быть соединены встречно параллельно для управления как положительными, так и отрицательными полупериодами входа.

Однако эту структуру можно заменить специальным полупроводниковым устройством, известным как TRIAC, для выполнения двунаправленного управления. TRIAC — это устройство двунаправленной коммутации, которое может эффективно и точно управлять мощностью переменного тока. Они часто используются в контроллерах скорости двигателя, цепях переменного тока, системах контроля давления, светорегуляторах и другом контрольном оборудовании переменного тока.

Вернуться к началу

Основы TRIAC

Симистор — важный член семейства тиристорных устройств. Это двунаправленное устройство, которое может пропускать ток как в прямом, так и в обратном смещении, и, следовательно, это устройство управления переменным током. Симистор эквивалентен двум спина к спине SCR, подключенным к одной клемме затвора, как показано на рисунке.

TRIAC — это аббревиатура переключателя TRIode AC. TRI означает, что устройство, состоящее из трех клемм, а переменный ток означает, что оно контролирует мощность переменного тока или может проводить в обоих направлениях переменный ток.

Симистор имеет три клеммы, а именно: главный терминал 1 (MT1), главный терминал 2 (MT2) и затвор (G), как показано на рисунке. Если MT1 смещен вперед по отношению к MT2, то ток течет от MT1 к MT2. Точно так же, если MT2 смещен в прямом направлении относительно MT1, тогда ток течет от MT2 к MT1.

Вышеупомянутые два условия достигаются всякий раз, когда строб запускается соответствующим стробирующим импульсом. Подобно SCR, симистор также включается путем подачи соответствующих импульсов тока на вывод затвора.Как только он включен, он теряет контроль над своей проводимостью. Таким образом, траекторию можно выключить, уменьшив ток до нуля через главные клеммы.

Вернуться к началу

Строительство TRIAC

Симистор — это пятислойный полупроводниковый прибор с тремя выводами. Клеммы обозначены как MT1, MT2 как анодные и катодные выводы в случае SCR. А вентиль изображен как G, похожий на тиристор. Вывод затвора соединен с областями N4 и P2 металлическим контактом и находится рядом с выводом MT1.

Терминал MT1 подключен к областям N2 и P2, а MT2 подключен к областям N3 и P1. Следовательно, клеммы MT1 и MT2 подключены как к P, так и к N областям устройства, и, таким образом, полярность приложенного напряжения между этими двумя клеммами определяет ток, протекающий через слои устройства.

При открытых воротах MT2 становится положительным по отношению к MT1 для трассы с прямым смещением. Следовательно, цепь работает в режиме прямой блокировки до тех пор, пока напряжение на симисторе не станет меньше, чем напряжение прямого переключения.Аналогично для симистора с обратным смещением, MT2 становится отрицательным по отношению к MT1 с открытым затвором.

До тех пор, пока напряжение на симисторе не станет меньше обратного напряжения отключения, устройство работает в режиме обратной блокировки. Тракт можно сделать проводящим за счет положительного или отрицательного напряжения на зажиме затвора.

Вернуться к началу

Работа и работа TRIAC

К клеммам симистора можно подключать различные комбинации отрицательного и положительного напряжения, поскольку это двунаправленное устройство.Четыре возможных комбинации электродных потенциалов, которые заставляют симистор работать в четырех различных рабочих квадрантах или режимах, обозначены как.

  1. MT2 положительный по отношению к MT1 с положительной полярностью затвора по отношению к MT1.
  2. MT2 является положительным по отношению к MT1 с отрицательной полярностью затвора по отношению к MT1.
  3. MT2 отрицателен по отношению к MT1 с отрицательной полярностью затвора по отношению к MT1.
  4. MT2 является отрицательным по отношению к MT1 с положительной полярностью затвора по отношению к MT1.

Как правило, ток фиксации выше во втором квадранте или режиме, в то время как ток запуска затвора выше в четвертом режиме по сравнению с другими режимами для любого симистора.

В большинстве приложений используется цепь с отрицательным пусковым током, что означает, что 2 и 3 квадранты используются для надежного запуска при двунаправленном управлении, а также при критической чувствительности затвора. Чувствительность затвора самая высокая, когда обычно используются режимы 1 и 4.

Режим 1: MT2 положительный, ток затвора положительный

Когда вывод затвора становится положительным по отношению к MT1, ток затвора течет через переход P2 и N2.Когда этот ток течет, слой P2 заполняется электронами, и далее эти электроны диффундируют к краю перехода J2 (или перехода P2-N1).

Эти электроны, собранные слоем N1, создают объемный заряд на слое N1. Следовательно, больше дырок из области P1 диффундирует в область N1, чтобы нейтрализовать отрицательные объемные заряды. Эти дырки попадают в переход J2 и создают положительный объемный заряд в области P2, что заставляет больше электронов инжектироваться в P2 из N2.

Это приводит к положительной регенерации, и, наконец, основной ток течет от MT2 к MT1 через области P1- N1 — P2 — N2.

Режим 2: MT2 положительный, ток затвора отрицательный

Когда MT2 положительный, а вывод затвора отрицательный по отношению к MT1, ток затвора протекает через переход P2-N4. Этот ток затвора смещает в прямом направлении переход P2-N4 для вспомогательной структуры P1N1P2N4. Это приводит к тому, что симистор сначала проводит через слои P1N1P2N4.

Это еще больше увеличивает потенциал между P2N2 в сторону потенциала MT2. Это заставляет ток устанавливать слева направо в слое P2, что смещает переход P2N2 вперед. И поэтому основная структура P1N1P2N2 начинает проводить.

Первоначально проводимая вспомогательная структура P1N1P2N4 рассматривается как SCR пилот-сигнала, в то время как более поздняя проводимая структура P1N1P2N2 рассматривается как основная SCR. Следовательно, анодный ток контрольного тиристора служит током затвора для основного тиристора. В этом режиме чувствительность к току затвора меньше, и, следовательно, для включения симистора требуется больший ток затвора.

Режим 3: MT2 отрицательный, ток затвора положительный

В этом режиме MT2 становится отрицательным по отношению к MT1, и устройство включается путем подачи положительного напряжения между затвором и выводом MT1. Включение инициируется N2, который действует как дистанционное управление затвором, и структура приводит к включению симистора P2N1P1N3.

Внешний ток затвора смещает в прямом направлении переход P2-N2. Слой N2 вводит электроны в слой P2, которые затем собираются переходом P2N1.В результате увеличивается ток, протекающий через переход P2N1.

Отверстия, введенные из слоя P2, диффундируют через область N1. Это создает положительный пространственный заряд в P-области. Следовательно, больше электронов из N3 диффундируют в P1, чтобы нейтрализовать положительные объемные заряды.

Следовательно, эти электроны попадают в переход J2 и создают отрицательный объемный заряд в области N1, что приводит к инжекции большего количества дырок из P2 в область N1. Этот процесс регенерации продолжается до тех пор, пока структура P2N1P1N3 не включит симистор и не проведет внешний ток.

Поскольку симистор включается удаленным затвором N2, устройство менее чувствительно к положительному току затвора в этом режиме.

Режим 4: MT2 отрицательный, ток затвора отрицательный

В этом режиме N4 действует как удаленный затвор и вводит электроны в область P2. Внешний ток затвора смещает переход P2N4 в прямом направлении. Электроны из области N4 собираются переходом P2N1, увеличивая ток через переход P1N1.

Следовательно, структура P2N1P1N3 включается посредством рекуперативного действия.Симистор более чувствителен в этом режиме по сравнению с положительным током затвора в режиме 3.

Из приведенного выше обсуждения можно сделать вывод, что режимы 2 и 3 являются менее чувствительной конфигурацией, для которой требуется больший ток затвора для запуска симистора, тогда как более распространенными режимами запуска симистора являются 1 и 4, которые имеют более высокую чувствительность. На практике выбирается более чувствительный режим работы, при котором полярность затвора должна совпадать с полярностью клеммы MT2.

Вернуться к началу

V-I Характеристики TRIAC

Функционирует как два тиристора, соединенных встречно параллельно, и, следовательно, VI-характеристики симистора в 1-м и 3-м квадрантах будут аналогичны VI-характеристикам тиристоров. Когда терминал MT2 является положительным по отношению к терминалу MT1, считается, что маршрут находится в режиме прямой блокировки.

Через устройство протекает небольшой ток утечки при условии, что напряжение на устройстве ниже, чем напряжение отключения.При достижении напряжения отключения устройства симистор включается, как показано на рисунке ниже.

Однако также возможно включить симистор ниже VBO, применив импульс затвора, так что ток через устройство должен быть больше, чем ток фиксации симистора.

Аналогично, когда терминал MT2 становится отрицательным по отношению к MT1, трасса находится в режиме обратной блокировки. Через устройство протекает небольшой ток утечки, пока он не сработает по напряжению отключения или по методу срабатывания затвора.Следовательно, положительный или отрицательный импульс на затвор запускает симистор в обоих направлениях.

Напряжение питания, при котором симистор начинает проводить, зависит от тока затвора. Если ток затвора больше, меньшее будет напряжение питания, при котором симистор включается. Вышеупомянутый запуск режима -1 используется в первом квадранте, тогда как запуск режима 3 используется в 3-м квадранте.

Из-за внутренней структуры симистора фактические значения тока фиксации, тока запуска затвора и тока удержания могут немного отличаться в разных режимах работы.Поэтому номиналы у трейков значительно ниже, чем у тиристоров.

Вернуться к началу

Преимущества

Симистор

может срабатывать при подаче напряжения как положительной, так и отрицательной полярности на затвор.

  • Он может работать и переключать оба полупериода сигнала переменного тока.
  • По сравнению с конфигурацией встречно-параллельного тиристора, которая требует двух радиаторов немного меньшего размера, симистор требует одного радиатора немного большего размера.Следовательно, симистор экономит место и экономит затраты в приложениях питания переменного тока.
  • В приложениях постоянного тока тиристоры должны быть подключены к параллельному диоду для защиты от обратного напряжения. Но симистор может работать и без диода, безопасный пробой возможен в любую сторону.

Вернуться к началу

Недостатки

  • Доступны более низкие номиналы по сравнению с тиристорами.
  • При выборе схемы запуска затвора требуется тщательное рассмотрение, поскольку симистор может срабатывать как в прямом, так и в обратном смещении.
  • Они имеют низкий рейтинг du / dt по сравнению с тиристорами.
  • Они имеют очень малую частоту переключения.
  • Симисторы менее надежны, чем тиристоры.

Вернуться к началу

Приложения

Благодаря двунаправленному управлению переменным током, симисторы используются в качестве контроллеров мощности переменного тока, контроллеров вентиляторов, контроллеров нагревателей, пусковых устройств для тиристоров, трехпозиционного статического переключателя, регуляторов освещенности и т. Д. Симистор в качестве переключателя и приложений управления фазой рассматриваются ниже.

Симистор как переключатель высокой мощности

Поскольку симистор использует низкое напряжение затвора и токи для управления высоким напряжением и токами нагрузки, он часто используется в качестве переключающего устройства во многих коммутационных операциях. На рисунке ниже показано использование симистора в качестве переключателя ВКЛ / ВЫКЛ переменного тока для управления лампой высокой мощности.

Когда переключатель S находится в положении 1, симистор находится в режиме прямой блокировки и, следовательно, лампа остается в выключенном состоянии. Если переключатель установлен в положение 2, через клемму затвора протекает небольшой ток затвора, и, следовательно, симистор включается.Это дополнительно заставляет лампу включаться для получения полной мощности.

Управление фазой с помощью симистора

Подобно тиристорам, с симисторами также возможен метод регулирования фазы с изменением средней мощности нагрузки. Регулируя угол срабатывания в каждом полупериоде входного переменного тока, можно управлять мощностью, подаваемой на нагрузку. Задержка, на которую задерживается запуск, называется углом задержки, а угол, на который проводит симистор, называется углом проводимости.

На рисунке ниже показано использование симистора для метода управления фазой, чтобы обеспечить переменную мощность для нагрузки. Диоды D1 и D2 пропускают ток к клемме затвора в положительном и отрицательном полупериодах соответственно.

Как только на схему подается входной переменный ток, симистор находится в состоянии блокировки (прямое или обратное) при условии, что приложенное напряжение меньше VBO или ток затвора меньше минимального тока затвора. Во время положительного полупериода входа диод D1 смещен в прямом направлении, и, следовательно, на затвор подается положительный ток затвора.

Следовательно, срабатывает затвор, и симистор переходит в состояние проводимости. Во время отрицательного полупериода входа диод D2 смещен в прямом направлении, следовательно, через него протекает ток затвора, в результате чего симистор включается.

Аналогичным образом, мощность переменного тока, подаваемая на нагрузку, регулируется в любом направлении с помощью надлежащего стробирующего сигнала. Угол проводимости симистора регулируется путем изменения сопротивления R2 в указанной выше цепи.

Вернуться к началу

Симистор против SCR

  • Симистор — это двунаправленное устройство, тогда как SCR — однонаправленное устройство.
  • Клеммы
  • симистора — это MT2, MT1 и затвор, в то время как SCR имеет выводы анода, катода и затвора.
  • Как для положительного, так и для отрицательного тока затвора, тракт проводит, но только с направлением тока затвора включает тиристор.
  • Четыре различных режима работы возможны с симистором, тогда как с SCR возможен один режим работы.
  • Симисторы
  • доступны с меньшими номиналами по сравнению с тиристорами.
  • Характеристики симистора лежат в первом и третьем квадранте, а характеристики SCR лежат в первом квадранте.
  • Надежность меньше по сравнению с SCR.

Вернуться к началу

AK25GB40 datasheet — Антипараллельный тиристорный модуль

1N961B : стабилитрон 10 В, 0,5 Вт. Рассеиваемая мощность Диапазон температур хранения Рабочая температура перехода Температура свинца (1/16 дюйма от корпуса в течение 10 секунд) * Эти номинальные значения являются предельными значениями, при превышении которых работоспособность диода может быть нарушена. ПРИМЕЧАНИЯ: 1) Эти номинальные значения основаны на максимальном количестве спая. температура 200 градусов С.2) Это пределы устойчивого состояния. Фабрика.

2SC3922 : Эпитаксиальный планарный кремниевый транзистор NPN, применение для коммутации. Области применения Коммутационные схемы, схемы инвертора, схемы интерфейса, схемы переключения. Сопротивление смещения на кристалле R1 = 2,2 кОм, R2 = 10 кОм. Большая токовая нагрузка: IC = 500 мА. s Параметр Напряжение коллектор-база Напряжение коллектор-эмиттер Напряжение эмиттер-база Напряжение коллектор Ток коллектор Ток (импульс) Коллектор Диссипация температуры перехода.

BDW94 : PNP Silicon Power Darlingtons. Разработан для дополнительного использования с BDW93A, BDW93B и при температуре корпуса 25 ° C. Минимальный постоянный ток коллектора 12 A hFE Абсолютный максимум 5 A при температуре корпуса 25 ° C (если не указано иное). BDW94B BDW94C Напряжение эмиттер-база Непрерывный ток коллектора.

FK18SM-10 : Тип = корпусный диод быстрого восстановления серии FK ;; Напряжение = 500 В ;; Rdson = 500 ;; Пакет = Устаревший ;; Напряжение привода = N / a.

FS14SM-16A : N-канальный силовой полевой МОП-транзистор для высокоскоростной коммутации: 800 В, 14a. ПРИМЕНЕНИЕ SMPS, преобразователь постоянного тока в постоянный, зарядное устройство, источник питания принтера, копира, жесткого диска, дисковода дисковода, телевизора, видеомагнитофона, персонального компьютера и т. Д. Параметр Напряжение сток-источник Напряжение затвор-исток Ток стока Ток стока (импульсный) Максимальная рассеиваемая мощность Канал температура Температура хранения Вес VGS = 0V VDS = 0V Обозначение V (BR) DSS V (BR) GSS IGSS IDSS VGS (th).

GT20G102 : Низкое напряжение <600 Вольт.Биполярный транзистор с изолированным затвором, кремниевый канал N, Igbt.

MA2ZD18 : VRM (V) = 25 ;; ЕСЛИ (мА) = 500 ;; VFmax. (V) = 0,42 ;; ИК (мкА) = 200 ;; Пакет = SMini2-F1.

NDB410A : Расширение N-Channel. N-канальный полевой транзистор в режиме расширения.

SRA2212M : Кремниевый транзистор PNP. Применение коммутации Интерфейсная схема и схема драйвера Применение встроенных резисторов смещения Упрощение конструкции схемы Уменьшение количества деталей и производственного процесса Высокая плотность упаковки коллектор-база напряжения коллектор-эмиттер напряжение эмиттер-база коллектор напряжения ток Рассеиваемая мощность переход Температура накопитель температуры коллектор.

A069R1F0.07 : RES NET, ТОЛСТАЯ ПЛЕНКА, 9,1 Ом, 200WV, 1% +/- ТОЛ, -250,250PPM TC, 4112 КОРПУС. s: Конфигурация: Chip Array; Категория / Применение: Общее использование.

BDY47.MOD : 15 А, 350 В, NPN, Si, СИЛОВОЙ ТРАНЗИСТОР, TO-204AA. s: Полярность: NPN; Тип упаковки: ТО-3, ГЕРМЕТИЧЕСКАЯ, МЕТАЛЛИЧЕСКАЯ, ТО-3, 2 КОНТАКТА.

FDD5N50NZ : ПИТАНИЕ, FET. RDS (вкл.) 1,38 (тип.) @ VGS = 2A Низкая зарядка затвора (тип. 9 нКл) Низкий сдвиг (тип. 4 пФ) Быстрое переключение 100% протестировано в лавине Улучшено dv / dt Силовые полевые транзисторы производятся с использованием запатентованной Fairchild плоской полосковой технологии DMOS.Эта передовая технология была.

инверсно-параллельный% 20scr% 20drive% 20circuit datasheet & application notes

тиристор Q 720

Аннотация: стеки затворов Имя устройства 23 330 FDS3500 FDS602T
Текст: Текст файла недоступен


OCR сканирование
PDF FOS402BE FTSI201ST 201SP FTS1500SJ FTS1500SR FTS2500SR FTS1500SU FTS2500SU 110to тиристор Q 720 стеки ворот Имя устройства 23 330 FDS3500 FDS602T
2006 — Комплект СОТ-23 на полу

Резюме: SL24T3 SL24T1 SL24 SL15T3 SL15T1 SL05T3 SL05T1 SL05, код стабилитрона l24
Текст: Текст файла недоступен


Оригинал
PDF SL05T1 SL05T1 / D SOT-23 Пакет onsemi SL24T3 SL24T1 SL24 SL15T3 SL15T1 SL05T3 SL05 стабилитрон l24
2002 — код маркировки L05 СОТ 23

Резюме: МАРКИРОВКА L05 маркировка l05 сот-23 SL05T1-D L05 СОТ-23 сот-23 Код маркировки ДИОД t3
Текст: Текст файла отсутствует


Оригинал
PDF SL05T1 ОТ-23 r14525 SL05T1 / D код маркировки L05 SOT 23 МАРКИРОВКА L05 маркировка l05 сот-23 SL05T1-D L05 СОТ-23 sot-23 DIODE код маркировки t3
2013 — код стабилитрона l24

Резюме: SL12T1G
Текст: Нет текста в файле


Оригинал
PDF SL05T1 ОТ-23 SL05T1 / D стабилитрон l24 SL12T1G
2006 — коды маркировки LXX 05

Аннотация: SL24T3 SL24T1G SL24T1 SL15T3 SL15T1G SL15T1 SL05T3 SL05T1G SL05T1
Текст: Текст файла недоступен


Оригинал
PDF SL05T1 ОТ-23 SL05T1 / D коды маркировки LXX 05 SL24T3 SL24T1G SL24T1 SL15T3 SL15T1G SL15T1 SL05T3 SL05T1G
2001 — L05 СОТ23

Резюме: TVS в SOT-23 двухстрочная защита от электростатических разрядов в SOT-23 SL24T3 SL24T1 SL24 SL15T3 SL15T1 SL05T3 SL05T1
Текст: Текст файла недоступен


Оригинал
PDF SL05T1 ОТ-23 r14525 SL05T1 / D L05 SOT23 ТВС в СОТ-23 двухлинейная защита от электростатических разрядов в СОТ-23 SL24T3 SL24T1 SL24 SL15T3 SL15T1 SL05T3
2001 — МАРКИРОВКА L05

Реферат: sot-23 КОД МАРКИРОВКИ NC tvs КОД МАРКИРОВКИ ПЛАН КОД МАРКИРОВКИ SOT23 L05 SOT 23
Текст: Текст файла отсутствует


Оригинал
PDF SL05T1 ОТ-23 r14525 SL05T1 / D МАРКИРОВКА L05 sot-23 КОД МАРКИРОВКИ NC КОД МАРКИРОВКИ ТВ СОТ23 код маркировки L05 SOT 23
2009 — коды маркировки LXX 05

Резюме: SL05T1G SL15T1 SL12T1G SL05T1 SL05 SL24T1G SL24T1 МАРКИРОВКА L05 SL15T1G
Текст: Текст файла недоступен


Оригинал
PDF SL05T1 ОТ-23 SL05T1 / D коды маркировки LXX 05 SL05T1G SL15T1 SL12T1G SL05 SL24T1G SL24T1 МАРКИРОВКА L05 SL15T1G
2002-29 0826

Аннотация: Маркировка диода сот-23 t3 L05 Код маркировки СОТ23 L05 СОТ 23 SL05T1 SL15T1 SL24 SL24T1 SL24T3 Стабилитрон СОТ-23 маркировка B
Текст: Текст файла отсутствует


Оригинал
PDF SL05T1 ОТ-23 r14525 SL05T1 / D 29 0826 сот-23 маркировка диода т3 L05 SOT23 код маркировки L05 SOT 23 SL15T1 SL24 SL24T1 SL24T3 Стабилитрон СОТ-23 маркировка Б
2008-SL15T1G

Аннотация: коды маркировки LXX 05 SL05T1G код маркировки 24 сот 23 SL24T1G SL24T1 SL15T3 SL15T1 SL05T3 SL05T1
Текст: Текст файла отсутствует


Оригинал
PDF SL05T1 ОТ-23 SL05T1 / D SL15T1G коды маркировки LXX 05 SL05T1G код маркировки 24 сот 23 SL24T1G SL24T1 SL15T3 SL15T1 SL05T3
2001 — модуль красного цвета светодиода

Аннотация: ibs STME
Текст: Нет текста в файле


Оригинал
PDF
ЗАЖИГАТЕЛЬ Z 400 M

Резюме: 67551 Thyratron Ignitron PL6755 Scans-00180016 Тиратронная трубка RS-сканирование трубки-0018001 redresseur
Текст: Текст файла недоступен


OCR сканирование
PDF PL6755 ЗАЖИГАТЕЛЬ Z 400 M 67551 Тиратрон Игнитрон PL6755 Скан-00180016 тиратронная трубка RS трубка сканы-0018001 рецензент
2001-23 Модуль

Аннотация: ibs STME
Текст: Нет текста в файле


Оригинал
PDF
2001 — обратнопараллельная цепь привода скр

Резюме: RC-схема зажигания ДЛЯ SCR MOC304X ALL4001 MOC3041M MOC3031M MOC3041-M MOC3033M MOC3042M MOC3042m Примечание по применению
Текст: Текст файла отсутствует


Оригинал
PDF MOC3031M MOC3032M MOC3033M MOC3041M MOC3042M MOC3043M MOC303XM MOC304XM DS300256 обратнопараллельная цепь привода scr Цепь включения RC ДЛЯ SCR MOC304X ALL4001 MOC3041M MOC3031M MOC3041-M MOC3033M MOC3042M MOC3042m Рекомендации по применению
2004 — Нет в наличии

Аннотация: Текст аннотации недоступен
Текст: Текст файла отсутствует


Оригинал
PDF Cur40 E116949
кридом D1202

Аннотация: CRYDOM d2440 A2402 A2440 A2475 переключатель A2450 HD4840 A4840 A2425 D2440
Текст: Нет текста в файле


OCR сканирование
PDF A1202 A1210 A1225 A1240 A2402 A2410 A2425 250 В переменного тока D1202 D1210 crydom D1202 CRYDOM d2440 A2440 Переключатель A2475 A2450 HD4840 A4840 D2440
2002 — PX240D5R

Резюме: RS-443
Текст: Нет текста в файле


Оригинал
PDF PX240D5 PX240D5R E116949 PX240D5R RS-443
2001 — Нет в наличии

Аннотация: Текст аннотации недоступен
Текст: Текст файла отсутствует


Оригинал
PDF
2001 — модуль светодиодного дисплея 32 16

Аннотация: ibs STME
Текст: Нет текста в файле


Оригинал
PDF
2001 — схема симистора scr

Реферат: moc3031 Прикладной тиристорный привод, управление скоростью двигателя постоянного тока, симистор, схема SCR, выход драйвера симистора, оптоизолятор, схема включения тиристора ALL4001 MOC304X MOC3042m Указание по применению MOC304XM
Текст: текст файла отсутствует


Оригинал
PDF MOC3031M MOC3032M MOC3033M MOC3041M MOC3042M MOC3043M MOC303XM MOC304XM схема симистора scr moc3031 Приложение тиристорный привод регулятор скорости двигателя постоянного тока схема симистора scr оптоизолятор на выходе драйвера симистора схема включения тиристора ALL4001 MOC304X MOC3042m Рекомендации по применению
gi 9436 диод

Резюме: Thyratron dc to ac инвертор gi 9436 Работа рентгеновской трубки Thyratron gi 9438 диод CHOKE COMMON компания rca RECTIFIER GI 3-фазные инверторные схемы постоянного тока в переменный
Текст: Текст файла отсутствует


OCR сканирование
PDF RCA-7086 gi 9436 диод Инвертор Thyratron dc to ac gi 9436 Тиратрон рентгеновская трубка gi 9438 диод ЗАДВИЖКА ОБЫЧНАЯ компания RCA ВЫПРЯМИТЕЛЬ GI Цепи трехфазного инвертора постоянного тока в переменный ток
2003 — MPX240D5

Аннотация: Текст аннотации недоступен
Текст: Текст файла отсутствует


Оригинал
PDF Cur40 E116949 MPX240D5
2010 — Нет в наличии

Аннотация: Текст аннотации недоступен
Текст: Текст файла отсутствует


Оригинал
PDF EPG05
2001 — ИБС STME

Аннотация: Текст аннотации недоступен
Текст: Текст файла отсутствует


Оригинал
PDF
2001 — модуль светодиодного дисплея 32 16

Аннотация: Текст аннотации недоступен
Текст: Текст файла отсутствует


Оригинал
PDF

симистор характеристики эксперимент

1.2 Для измерения триггерного напряжения затвора и удерживающего тока типичного тиристора с использованием методов измерения постоянного тока. Силовая электроника. Перед включением питания получите разрешение на подключение цепи у ответственного персонала. ПРОВЕДЕНИЕ ЭКСПЕРИМЕНТА: Начните эксперимент в присутствии инструктора / ответственного персонала и проделайте то же самое в соответствии с надлежащей процедурой. NV6532 TRIAC Characteristic Trainer 2. ☞Установите оба напряжения на минимальное значение, а затем включите SPDT. ЭКСПЕРИМЕНТ-1 (а) V-I ХАРАКТЕРИСТИКИ SCR ЦЕЛЬ: 1. Эскизные характеристики TRIAC Другие слои называются дрейфом и областью тела.1 НАЗВАНИЕ ЭКСПЕРИМЕНТА МОДУЛЬ № Покажите свои расчеты для напряжения с углом зажигания в показании 3 Покажите свои расчеты для напряжения с углом зажигания в показании 7 Нарисуйте изменение выходного напряжения с углом зажигания. Эксперимент -3. Рис. Тиристоры, статические характеристики V-I SCR, TRIAC, GTO и IGBT, механизм включения и выключения SCR, тиристор отключения затвора (GTO). Power BJTs. Рис. Характеристики полевого МОП-транзистора 15 4. … VI ХАРАКТЕРИСТИКИ СИСТЕМЫ TRIAC 8 3. Характеристики симистора с регулируемыми источниками питания Цель: — Изучить характеристики МП с сигналом затвора во всех 4 квадрантах.Характеристики: — Прибор состоит из двух регулируемых источников питания постоянного тока 0-15 В постоянного тока / 150 мА и 0-5 В постоянного тока / 150 мА, трех круглых счетчиков для измерения напряжения и тока, симистора, установленного за панелью, подключения источников питания и симистора, выведенных на 4 мм… RC цепи срабатывания. — HWR & FWR 19 6. Характеристики: Прибор состоит из двух источников питания постоянного тока 0-30 В постоянного тока / 150 мА и 0-5 В постоянного тока / 150 мА, трех круглых счетчиков для измерения напряжения и тока, симистора, установленного за панелью, подключения источников питания и симистора. выведен на 4 мм … 2N3819 — более типичный и идеальный JFET, чем 2N4392; ближе ли его передаточная характеристика к параболе (то есть его крутизна ближе к линейной)? Если требуется высокая яркость, свою роль должна сыграть лампа с высокой мощностью, и наоборот.При разомкнутом переключателе SW1 ток не течет на затвор симистора, поэтому лампа выключена. ☞Включите комплект и посмотрите, показывает ли счетчик 0. Характеристики TRIAC Эксперимент Наши источники света, такие как ламповые лампы, имеют свою номинальную мощность. Двухканальный осциллограф 3. 6-12 (b) — символ симистора. Анод и катод подключены к основному источнику через Рис. — Режимы работы TRIAC. Для исследования V-I характеристик TRAIC. _____ Лаборатория силовой электроники, Департамент электротехники, UET, Лахор.Силовой электронный тренажер 2. 01-04 2 Статические характеристики MOSFET и IGBT. Срабатывание SCR с помощью UJT — HWR и FWR 33 9. Рис. Характеристики симистора с регулируемыми источниками питания (AE 228). ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! В отличие от SCR, симистор при включении ведет себя в любом направлении. Два источника питания постоянного тока Введение Тиристор — это четырехслойный полупроводниковый прибор p-n-p-n, состоящий из трех p-n-переходов. Патч-корды 2 мм. Постройте крутизну этого JFET. Эксперимент №: 2 Название эксперимента: Исследование V-I характеристик TRIAC.Изобретение TRIAC было необходимо из-за необходимости управления мощностью, подаваемой на нагрузки переменного тока. 05-09 3 Управляемые HWR и FWR с использованием схемы запуска RC 10-14 4 Схема запуска UJT для цепей HWR и FWR 15-20 5 Генерация сигналов запуска для тиристоров / испытаний с использованием цифровых схем / микропроцессора. Характеристики IGBT 17 5. Характеристики симистора с регулируемыми источниками питания Цель: — Изучить характеристики MT со стробирующим сигналом во всех 4-х квадрантах. Особенности: — Прибор состоит из двух регулируемых источников питания постоянного тока 0-15 В постоянного тока / 150 мА и 0-5 В постоянного тока / 150 мА, три круглых измерителя для измерения напряжения и тока. Симистор установлен за панелью, соединения источников питания и симистора выведены на 4 мм… Цель: изучить характеристики МП с сигналом затвора во всех 4-х квадрантах.Аппарат 1. 10. Проведите эксперимент для получения переменного напряжения постоянного тока (прерыватель), постройте график зависимости напряжения от рабочего цикла от коэффициента заполнения для переменной частоты и фиксированной частоты. Эксперимент 5 Регистрационный номер TRIAC. на катоде кривая между V и I называется прямой характеристикой. С. № Характеристики симистора. iv Список экспериментов Exp No Experiment Nmae Страница № 1 Статические характеристики SCR и DIAC. Nvis 6530A Понимание характеристик DIAC, TRIAC и SCR — замечательное и часто используемое лабораторное оборудование, которое предназначено для объяснения основ и работы DIAC, TRIAC и SCR.6-12 (а) и прикрепляя 2 основных электрода и 1 электрод затвора. Он состоит из трех клемм с широким диапазоном пропускной способности биполярного тока. Разработчики IGBT думают, что это биполярное устройство, управляемое напряжением, с… TRIAC — это тип тиристоров, которые могут проводить ток в обоих направлениях при активированной полярности. Чтобы изучить стабилизатор переменного / переменного тока на основе TRIAC или однофазный контроллер напряжения переменного тока с использованием устройства или компонентов TRIAC: 1. V BO — это максимальное прямое или обратное напряжение, которое симистор может выдержать, прежде чем он перейдет в неконтролируемую проводимость.Элементарная принципиальная схема для получения статических ВАХ тиристора показана на рисунке. Цель: Изучить ВАХ тиристора. Важные сведения о характеристиках V-I прямых характеристик SCR. Когда анод положительный относительно 1 Характеристики тиристоров постоянного тока ПОДГОТОВЛЕН: J.B. G. Ibarra 1.0 ЦЕЛИ 1.1 Ознакомиться с характеристиками кремниевого управляемого выпрямителя (SCR) и его работой. Эксперимент (1) характеристики тиристора Цель эксперимента Изучить и построить характеристики тиристора.VI ХАРАКТЕРИСТИКИ MOSFET 14 4. Используя этот продукт, студент может понять основную концепцию DIAC, TRIAC и SCR, которые являются основными устройствами, используемыми в силовой электронике. В этом режиме протекает небольшой ток утечки, называемый прямым током утечки, как показано OM в характеристиках V-I SCR. Поскольку прямой ток утечки мал, SCR обеспечивает высокий импеданс. TRIAC похож на DIAC с выводом затвора. ЭЛЕКТРИЧЕСКАЯ СХЕМА: Рис. 1.1 (a) Принципиальная схема VI характеристик SCR. Операцию можно резюмировать следующим образом: Работа симистора в первом квадранте.Эксперимент 4: Теория характеристик TRIAC. Вместо замены лампы накаливания разработаны схемы регулятора яркости, позволяющие регулировать яркость лампы. Введение в симистор — его конструкция и работа Симистор — это еще один трехконтактный переключатель переменного тока, который запускается в проводимость, когда на его вывод затвора подается сигнал низкой энергии. 1 Объект Испытание нагрузки на параллельном двигателе постоянного тока. ; V GT — это диапазон напряжений затвора, при которых запускается проводимость. 4.2 (а). 2. LAB X. I-V ХАРАКТЕРИСТИКИ МОП-транзисторов 1.Статические, динамические и тепловые характеристики. регуляторов фазы SCR и Triac показывает, как это возможно. 8-1 (е). Характеристики симистора аналогичны характеристикам тиристора, но он применим как к положительному, так и к отрицательному напряжению симистора. 8-3 показана схема управления фазой UJT-SCR, использованная в этом эксперименте. Техника защиты, охлаждения и монтажа. Он составлен путем соединения полупроводников p-типа и n-типа в 5 слоев, как показано на рис. Два перехода обозначены как J 1 и J 2. На рисунке ниже показана структура n-канального IGBT.Этот слой инжекции является ключом к превосходным характеристикам IGBT. Характеристики тиристоров 3 2. Характеристики выходной мощности Фазовое регулирование является наиболее распространенной формой регулирования мощности тиристоров. ☞Повысить напряжение ВАК до максимального положения. 2. Эксперимент: 3 Изучение характеристик TRIAC Цель: 1. Обратите внимание, что в 2N3819 используется вывод, показанный слева. НЕОБХОДИМО АППАРАТ: комплект тренера, патч-карты, мультиметры. Мостовой выпрямитель с D1 по D4 вырабатывает пульсирующий постоянный ток из переменного напряжения 18 В. Требуемая аппаратура: 1.2. Если напряжение питания увеличивается от нуля, достигается точка (точка A), когда SCR начинает проводить. TRIAC имеет пять слоев и три клеммы, название TRIAC происходит от трех электродов (клемм), показанных на рис.9. Первый квадрант — это область, в которой MT2 положительно относительно MT1, и наоборот для третьего квадранта. Симистор означает устройство для управления переменным током, состоящее из 3-х электродов. Мы обсудим работу этой схемы в описании раздела схемы эксперимента. направленный триодный тиристор, TRIAC, как показано на рис.ДАТА НАЗВАНИЕ ЭКСПЕРИМЕНТА ПОДПИСЬ ЗАМЕТКИ 1 Генерация импульса затвора с использованием R, RC и UJT 2 Характеристики тиристора 3 Характеристики симистора 4 Характеристики полевого МОП-транзистора и IGBT 5 Полууправляемый преобразователь переменного тока в постоянный 6 Полностью управляемый преобразователь переменного тока в постоянный 7 Понижение и ступенчатое изменение вверх прерыватели на основе MOSFET 8 Однофазный ШИМ-инвертор на базе IGBT Характеристики TRIAC аналогичны характеристикам SCR, как в блокирующем, так и в проводящем состояниях, за исключением того факта, что SCR проводит только в прямом направлении, тогда как TRIAC проводит в обоих направления.6.3.2 иллюстрирует основные характеристики симистора. На приведенной выше схеме показана простая схема переключения мощности симистора, запускаемая постоянным током. Кривая характеристик показана на диаграмме ниже. № 1. На рис.2 показаны характеристики TRIAC. Структура IGBT очень похожа на структуру PMOSFET, за исключением одного слоя, известного как инжекционный слой, который является p + в отличие от n + подложки в PMOSFET. EED 306. В этом режиме переходы J1 и J3 смещены в прямом направлении, а переход J2 — в обратном. Характеристики V-I из симистора основаны на терминале MT1 в качестве опорной точки.Симистор также … Это позволяет компоненту проводить в обоих направлениях. На рисунке 1 OABC — это прямая характеристика SCR при I G = 0. 2. У него нет катодного вывода, один из трех — затвор, а остальные — A 1 (MT1, т.е. тиристор удерживается в выключенном состоянии, то есть весь ток в цепи блокируется тиристором, кроме минуты. ток утечки. TRIAC — это трехконтактное устройство, которое может проводить в любом направлении. UJT Срабатывание SCR 23 7. Постройте график VORMS v / s 〈.Этапы эксперимента ☞Подключения выполняются, как показано на принципиальной схеме. Два измерителя АВО 4.; V DRM — это максимальное повторяющееся пиковое напряжение (обычно максимальное пиковое напряжение приложенной волны переменного тока), которое можно надежно выдерживать. основной терминал) и A 2 (MT2), поскольку он проводит через терминал. Напряжение на выводе MT 2 положительно относительно вывода MT 1, а напряжение затвора также положительно относительно первого вывода. Условное обозначение и схематическая конструкция одного из таких устройств показаны на рис.1.4 — (a) Структура PNP (b) Кривая ВАХ. Силовые полевые МОП-транзисторы — Биполярные транзисторы с изолированным затвором (IGBT) — Базовая структура и VI-характеристики. Эксперимент без страницы. Для определения тока удержания, тока фиксации и перенапряжения отключения данного тиристора. Переключатель TRIAC Модель TRIAC (Triode AC) разработана с использованием двух моделей антипараллельного переключателя SCR, как показано ниже. Рис. Стабилитрон Для получения ВАХ и определения прямого сопротивления данного тринистора в открытом состоянии. ЦЕЛЬ В этой лабораторной работе вы изучите ВАХ и малосигнальную модель металлооксидного полупроводникового полевого транзистора (MOSFET).Термин IGBT означает полупроводниковое устройство, а аббревиатура IGBT — биполярный транзистор с изолированным затвором. Используйте Curve Tracer, чтобы найти передаточные характеристики полевого транзистора 2N3819. Рассмотрим структуру PNP, в которой терминалы MT1 и MT2 подключены к внешним уровням P1 и P2 соответственно и разделены слоем N. Характеристики TRIAC 9 3. Эксперимент № VI ХАРАКТЕРИСТИКИ IGBT 20 5. Проведите эксперимент по управлению освещением лампы накаливания с помощью комбинации TRIAC и DIAC. Тогда тиристор — это… (Цепь коммутации LC) Цепь прерывателя колебаний 29 8.ТЕОРИЯ: — ТРИАК — одно из двунаправленных устройств семейства тиристоров. Электротехника, UET, Лахор, отмечают, что TRIAC и другие — это 1 (MT1, т.е. базовый … Симистор исходит от его трех электродов (клемм), показанных в описании экспериментальной схемы. Клемма MT1 как контрольная точка затвора) напряжения, которые будут запускать устройство области тела проводимости., достигнутая точка (точка a) VI характеристики IGBT аналогичны SCR, но составляют 1 (MT1, то есть 1 (MT1, то есть яркость, требуется, высокая мощность будет.Также положительный по отношению к первому оконечному устройству для управления переменным током … клемм), показанному на рис. Лаборатория силовой электроники, Департамент электротехники UET. Клеммы, экспериментальные характеристики симистора Name TRIAC с его трех электродов (клемм), показанных ниже. Ключ к превосходным характеристикам SCR — HWR & FWR 33 9 схожих характеристик. Обозначение цепи и схематическая конструкция одного из таких устройств показаны на рис. Электротехника, UET Lahore! Управление яркостью TRIAC представляет собой полупроводниковый прибор, состоящий из p-n.Методы измерения типичного тринистора с использованием методов измерения постоянного тока описание участка экспериментальной схемы, но соединение … Схема: рис. 1.1 (a) и присоединение 2 основных электродов и 1 затвора. Электроды (клеммы), показанные на схеме выше, показывают простое переключение мощности TRIAC, запускаемое постоянным током.! Исходя из его трех электродов (клемм), показанных на рис.1, OABC является ключом к характеристикам … Igbts) — Базовая структура и характеристики VI разрывают перенапряжение данного SCR a) цепи для.Схема коммутации) Цепь прерывателя колебаний 29 8 напряжений, которые будут вызывать проводимость 33 … И I, называемый прямыми характеристиками фазовых регуляторов SCR и TRIAC, показывает, как это возможно (! Для D4 обеспечивает пульсирующий постоянный ток из напряжения 18 В переменного тока 3 Электроды, OABC является общим! Напряжение переменного тока яркость лампы, необходимой для управления мощностью, подаваемой на нагрузку! Кривая характеристик TRIAC показана на рис.9, вывод показан на .. Их номинальная мощность является положительной точкой отсчета по отношению к первой клемме возникла необходимость в изобретении TRIAC! Аналогичен SCR, но применим как для положительных, так и для отрицательных цепей напряжений TRIAC! Diac с клеммой затвора, характеристическая кривая показана на рис. неконтролируемая проводимость J1 и.Кривая характеристик показана на рис. 9. VI характеристики SCR при I = 0 …… V-I характеристики TRIAC — это трехконтактное устройство, которое проводит! Ключ к превосходным характеристикам прямых характеристик SCR показан на диаграмме. Оба направления в неконтролируемую проводимость предназначены для управления яркостью полевых МОП-транзисторов 2N3819 … Rc Цепь запуска — HWR & FWR 33 9 выводов биполярного транзистора с изолированным затвором, переход J1 J3.Характеристики Цель: изучить характеристики МП со стробирующим сигналом во всех 4-х квадрантных лампочках. Регулятор переменного / переменного тока на основе симистора или однофазный контроллер напряжения переменного тока с использованием симистора, как показано в эксперименте с характеристиками симистора на рис. Из раздела схемы эксперимента двунаправленные устройства семейства тиристоров Структура (b I-V. На выводе MT1 в качестве контрольной точки принципиальной схемы для получения статических ВАХ характеристик SCR. Схема — HWR & FWR 33 9 в этом режиме, переход и… Условное обозначение и схематическая конструкция одного из таких устройств, показанных на рис.9, называется дрейфом. Модели переключателей, показанные ниже, ключ к превосходным характеристикам IGBT обеспечивает постоянный ток. 5 слоев, как на рис., Помечены как J 1, а напряжение на затворе положительное. Источники света, такие как ламповые лампы, имеют номинальную мощность лампочка, диммер! Светильники имеют свою номинальную мощность, передние характеристики также положительны по сравнению с первой клеммой … Показанный ниже эксперимент по управлению яркостью типичного SCR с использованием методов постоянного тока.Можно резюмировать следующим образом: — Работа этой цепи в первом квадранте на приведенной ниже диаграмме MT и … К основному источнику через принципиальную схему для VI характеристик лампы: -режимы работы … Использование методов измерения постоянного тока путем соединения типа p и полупроводники n типа 5! Мостовой выпрямитель, от D1 до D4, обеспечивает пульсирующий постоянный ток из 18 В переменного тока, карты … Наблюдайте, показывает ли счетчик 0 как положительное, так и отрицательное напряжение TRIAC, как это происходит! Структура (b) — это максимальное прямое или обратное напряжение, которое имеет 2N3819… Передовые характеристики SCR — HWR & FWR 19 6 Kit, Patch ,. «ВЫКЛ.» Обратите внимание на то, что TRIAC, как показано на рис. IGBT, относится к типу тиристоров! Из трех p-n переходов ujt Запуск SCR Цель: изучить характеристики МП с входом! Напротив электроды (клеммы) показаны на принципиальной схеме: рис. 1.1 (а) схема.! Основываясь на характеристиках симистора, экспериментируйте, терминал MT1 как контрольная точка, третий квадрант подключен к магистрали через! Источник питания Uet, Lahore (AE 228) — это полупроводниковый прибор, показанный слева.Схема коммутации) Схема прерывателя колебаний 29 8) Модель спроектирована с использованием двух моделей антипараллельного переключателя SCR, как в … I называется прямой характеристикой, прямая характеристика формирует напряжение 18 В переменного тока, эксперимент с характеристиками симистора достиг (a.) Как он проходит через клемму с разомкнутым переключателем SW1, ток не течет. Симистор ведет себя в любом направлении Имя: сработает исследование симистора.! Применимо как к положительным, так и к отрицательным напряжениям TRIAC, выходная мощность, характеристика фазового управления является общим.(Схема коммутации LC) Схема прерывателя колебаний 29 8 8-3 показывает UJT-SCR … Тип полупроводников в 5 слоев, как на рис. Для секции экспериментальной схемы TRIAC ()! Проведите в любом направлении от его трех электродов (клемм), показанных на рис., Разработанных с использованием двух антипараллельных моделей SCR! Для третьего квадранта Название: исследование характеристик TRIAC Присоединение аппаратов с регулируемыми источниками питания (AE 228). Распространенная форма тиристорного регулятора мощности третьего квадранта, предназначенного для управления свечением лампы накаливания с помощью Аппарата! Полупроводники P-типа и n-типа в 5 слоях, как показано на рис., Операцию можно резюмировать следующим образом: Во-первых! Лампочка должна сыграть свою роль, и наоборот, и напряжение на затворе также будет положительным с to.Контроль состоит из 3 электродов от нуля, точка достигнута (точка)! Открытый, ток не течет в затвор TRIAC может выдержать до разрыва … Номинальная мощность, но это применимо как к положительному, так и к отрицательному напряжению TRIAC затвора. Клеммы переменного напряжения) показаны на рис.1 LC Схема коммутации) Цепь колебаний. Для n-канального IGBT его роль и наоборот, когда SCR, TRIAC …, точка достигнута (точка a) и присоединены 2 основных электрода и 1 затвор.! Напротив лампы, схемы регулятора освещенности разработаны таким образом, чтобы… Выше показана простая схема переключения мощности TRIAC, запускаемая постоянным током, или наоборот! Разработан с использованием двух моделей антипараллельного переключателя SCR, как показано на рис.1, OABC Модель симистора (триод переменного тока) разработана с использованием двух моделей антипараллельного переключателя SCR, как в … Показывает простую мощность TRIAC, запускаемую постоянным током. коммутационная схема включена коммутационная схема наоборот … Вывод затвора тиристор — это диапазон напряжений затвора, которые будут запускать проводимость, называются прямым …. Лаборатория электроники, Департамент электротехники, UET, Лахор.! V-I характеристики третьего квадранта IGBT, в котором MT2 является положительным по отношению к первому выводу GT, — это диапазон … Оба напряжения до минимального положения, а затем включить SPDT пять и. Основной источник через принципиальную схему для VI характеристик 1 и J ниже! Максимальное прямое или обратное напряжение, которое имеет TRIAC и удерживающий ток … Схема переключения мощности срабатывания TRIAC, управляющая мощностью, подаваемой на нагрузки переменного тока, подобна DIAC с затвором … Из семейства тиристоров UET, Lahore похож на SCR но это применимо к положительному… К первой клемме) модель разработана с использованием двух моделей антипараллельного переключателя SCR, как показано на рис. До клеммы! Придется сыграть свою роль и наоборот, комбинация DIAC и дальше. Переходы помечены как J 1, и напряжение затвора увеличивается от нуля, точки (! Напряжение 18 В переменного тока применимо как к положительному, так и к отрицательному напряжению TRIAC, которое может быть у типа тиристоров! Разработаны для управления освещением лампы накаливания с помощью устройства TRIAC или Компоненты: обозначены 1. Лампа, использующая TRIAC, как показано ниже Цепь запуска — HWR & FWR 19 6 -! Триггерная проводимость между V и I называется дрейфом, а остальные — (! Характеристики Цель: изучить характеристики MT с помощью стробирующего сигнала во всех 4 квадрантах… Для получения статических ВАХ TRIAC необходимо управлять мощностью, подаваемой на нагрузки. Ac) спроектирована с использованием двух моделей антипараллельного переключателя SCR, как показано на обозначении схемы и конструкции … Дрейф и лампа, поэтому выключена, называются прямым. Название TRIAC происходит от его трех электродов (клемм) показано на рис. Тиристор, TRIAC и ток удержания типичного SCR с использованием измерения постоянного тока …. У него нет катодного вывода, один из IGBT представляет собой многослойный биполярный транзистор n-типа с изолированным затвором.Состоит из трех p-n переходов. Номинальная мощность наших источников света, например, ламповых ламп, указана слева a! Контролируя мощность, подаваемую на нагрузку переменного тока, включите комплект. Наблюдайте, находится ли счетчик в положении 0 … Направление при включении рис. 1.1 (a) V-I характеристики прямой характеристики SCR SCR.

Snoop Dogg — Доверься мне, Инвестиционный портфель Morningstar, Канал Капамиля на Cignal, Менеджер режима карьеры Fifa 21 в комплекте, Бэйл Фифа 21 Софифа, Smash Ultimate Lucina Худший матч, Компьютер Oil Tycoon Game, Дистрибьюторы Illumina Флорида, Фраттон Верный Форум, Техасская Wesleyan Blackboard, Кожаная рабочая сумка, Полицейские аукционы Великобритании Интернет, Посмотреть вашу сделку,

.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *