Виды диоды: Страница не найдена

Содержание

виды, как работает и область применения

Диод представляет собой простой полупроводниковый прибор, который нашел широкое применение в технике. Не каждый человек знает, что такое диод, и еще меньшее количество людей точно представляет себе принцип работы изделия.

При этом существует большое количество разновидностей этого прибора, о которых стоит знать всем, кто интересуется радиоэлектроникой.

Устройство и принцип работы

Если понять, как работает диод, то разобраться в устройстве этого полупроводникового прибора будет довольно просто. Основу детали составляет токовый переход, соединенный с двумя контактами (положительным — анодом и отрицательным — катодом). При прямом включении напряжения открывается переход, сопротивление которого небольшое. В результате через изделие проходит ток, называемый прямым.

Если же при включении детали в схему изменить полярность, то сопротивление участка перехода резко возрастет, а показатель электротока будет стремиться к нулю. Такое напряжение принято называть обратным.

Современные диоды имеют принципиальное отличие от первых моделей, активно используемых во время радиоламп. В полупроводниковых радиодеталях токовый переход изготавливается из кремния или германия и носит название р-n-переход. Основное различие между этими материалами заключается в показателях прямого напряжения, при которых происходит открытие.

Так как полупроводниковый кристалл может эффективно работать в любых условиях, то необходимость создания особой среды исчезла.

В ламповых устройствах для этого в колбу закачивался специальный газ либо создавался вакуум. В результате современные изделия имеют небольшие габариты, а стоимость их производства значительно снизилась.

Основные виды

Диоды принято классифицировать по нескольким параметрам. В зависимости от рабочих частот, они могут быть низко-, высокочастотными, а также способными функционировать в условиях сверхвысоких частот. Также существует деление и в соответствии с конструктивными особенностями, где можно выделить следующие виды диодов:

  • Диод Шоттки — вместо привычного p-n-перехода используется металл. С одной стороны, это позволяет добиться минимальных потерь напряжения при прямом включении. Однако с другой при высоком обратном токе, изделие быстро выходит из строя.
  • Стабилитрон — позволяет стабилизировать напряжение.
  • Стабистор — отличается от стабилитрона меньшей зависимостью напряжения от тока.
  • Диод Гана — лишен p — n -перехода, вместо которого используется особый кристалл. Используется для работы в диапазоне сверхвысоких частот.
  • Варикап — представляет собой сочетание диода с конденсатором. Емкость изделия зависит от обратного напряжения в области p — n -перехода, а применяется он при создании колебательных контуров.
  • Фотодиод — попадание светового потока на токовый переход приводит к созданию в нем разности потенциалов. Если замкнуть в этот момент цепь, то в ней появится ток.
  • Светодиод — при достижении определенного показателя тока в p — n -переходе, устройство начинает излучать световой поток.

Область применения

Сфера использования этих деталей в современной радиотехнике высока. Сложно найти устройство, которое работает без этих деталей. Чтобы понять, для чего нужен диод, можно привести несколько примеров:

  • Диодные мосты — содержат от 4 до 12 полупроводниковых устройств, которые соединяются между собой. Основной задачей диодных мостов является выпрямление тока, и они активно используются, например, при создании генераторов для автомобилей.
  • Детекторы — создаются при сочетании диодов и конденсаторов. В результате появляется возможность выделить низкочастотную модуляцию из различных сигналов. Применяются при изготовлении радио- и телеприемников.
  • Защитные устройства — позволяют обезопасить электрическую схему от возможных перегрузок. Несколько изделий подключаются в обратном направлении. Когда схема работает нормально, то они остаются в закрытом положении. Как только входное напряжение достигает критических показателей, устройство активируются.
  • Переключатели — такие системы на основе этих изделий позволяют осуществлять коммутацию высокочастотных сигналов.
  • Системы искрозащиты — создание шунт-диодного барьера позволяет ограничить показатель напряжения в электроцепи. Для увеличения степени защиты вместе с полупроводниковыми деталями используются специальные токоограничивающие резисторы.

Это лишь несколько примеров использования диодов. Они являются достаточно надежными устройствами, с помощью которых можно решать большое количество задач. Чаще всего эти радиодетали выходят из строя по причине естественного старения либо из-за перегрева.

Если произошел электрический пробой изделия, то его последствия редко являются необратимыми, так как кристалл не разрушается.

Полупроводники (Диоды). Виды и особенности. Неисправности

Существуют полупроводники в зависимости от их применения и назначения. Рассмотрим основные виды диодов.

Диоды Шоттки

Эти полупроводниковые диоды имеют незначительное падение напряжения, имеют высокую скорость работы, в отличие от обычных диодов, которые не смогут заменить в действии диод Шоттки и выйдут из строя. Свое название диод имеет по изобретателю из Германии. В конструкции в качестве потенциального барьера используется переход «металл-полупроводник» вместо р-n перехода. Его допустимое напряжение при обратном подключении 1200 В. Практически они применяются в цепях низкого напряжения.

Стабилитроны

Они предотвращают увеличение напряжения свыше допустимого значения на участке схемы, могут защищать и ограничивать схему от повышенных значений тока. Стабилитроны могут работать только на постоянном токе, поэтому при включении их в цепь соблюдение полярности является обязательным. Стабилитроны одного типа можно соединять по последовательной схеме для увеличения напряжения, либо создания делителя напряжения.

Основным свойством таких полупроводников является стабилизирующее напряжение.

Варикапы

Этот полупроводник еще называют емкостным диодом. Он изменяет значение сопротивления при изменении напряжения питания. Используется в качестве управляемого конденсатора с изменяемой емкостью. Может применяться для настраивания контуров колебаний высокой частоты.

Тиристоры
Полупроводники могут находиться в двух устойчивых положениях:
  1. Закрытое (низкая проводимость).
  2. Открытое (высокая проводимость).

То есть, он может переходить под воздействием сигнала из одного состояния в другое.

У тиристора имеется три электрода. Кроме обычных катода и анода, есть еще и электрод управления, который служит для подачи сигнала управления для перевода полупроводника в состояние включения. Современные тиристоры иностранного производства производятся в различных корпусах.

Такие полупроводники включают в схемы для регулирования мощности, плавного запуска электромоторов, подключения освещения. Тиристоры дают возможность включать большие токи, достигающие наибольшего тока 5 кА, напряжением до 5 киловольт в закрытом виде. Мощные силовые приборы на основе тиристоров используются в управляющих панелях электромоторами и других устройствах.

Симисторы

Эти полупроводники применяются в схемах, подключенных к переменному напряжению. Прибор условно состоит из двух тиристоров, подключенных встречно-параллельно, и пропускающих ток в любую сторону.

Светодиоды

Они испускают световой поток при подключении к ним напряжения, используются для создания индикации параметров, в электронных схемах, различных электронных гаджетах, дисплеях, в качестве источников света, при этом бывают многоцветными и одного цвета.

Инфракрасные диоды

Это светодиоды, выдающие световой поток в инфракрасном спектре. Они используются для измерительных и контрольных приборов оптического вида, в пультах управления, коммутационных устройствах, линиях связи без проводов и т.д. Обозначаются на схемах как обычные светодиоды. Инфракрасные лучи не видны человеку. Их можно увидеть с помощью смартфона в камеру.

Фотодиоды

Они работают при попадании на их чувствительный элемент света, преобразуя его в электрический ток. Используются для преобразования потока света в сигнал электрического тока.

Фотодиоды обычно сравнивают по принципу работы с батареями на солнечных элементах.

Неисправности диодов
Полупроводники иногда могут выходить из строя вследствие естественного старения и амортизации внутренних материалов, либо по другим причинам:
  • Пробивание перехода кристалла. Его следствием является то, что по сути полупроводник приобретает свойства обычного проводника, так как он лишен основных качеств полупроводимости и уже пропускает ток практически в любую сторону. Такая неисправность быстро обнаруживается с помощью обычного мультитестера. Измерительный прибор выдает сигнал звука и на дисплее видно значение очень малого сопротивления диода.
  • Обрыв. В этом случае действует обратный процесс – полупроводник не пропускает ток ни в каком направлении, так как внутри кристалла нарушена проводимость, вследствие полного обрыва проводника, то есть, диод, по сути, стал диэлектриком. Чтобы точно выяснить обрыв, нужно применять мультиметры с исправными щупами. Иначе можно получить ложную диагностику этой неисправности. У диодов на основе сплавов эта неисправность является редкой.
  • Утечка. Эта поломка возникает из-за повреждения корпуса полупроводника, вследствие чего нарушается герметичность корпуса диода, и его нормальное функционирование становится невозможным.
Пробой перехода

При чрезмерном повышении обратного напряжения может возникнуть пробой электронного прибора. Существуют специальные полупроводники, в которых используется это свойство, которые называются стабилитронами.

Такие неисправности возникают в случаях, когда величина обратного тока резко возрастает из-за достижения обратного напряжения чрезмерных значений, выше допустимых.

Существует несколько типов пробоя переходов:
  • Тепловые пробои. Они вызываются внезапным возрастанием температуры с дальнейшим перегревом.
  • Электрические пробои. Появляются от действия большого электрического тока на полупроводниковый переход.
Электрический пробой

Такой вид пробоя не является фатальным, и является обратимым процессом, так как при этом не произошло разрушения кристалла полупроводника. Поэтому при медленном снижении напряжения возможно восстановление характеристик диода и его рабочего состояния.

Такие пробои разделяют на два подвида:
  • Туннельные пробои. Они возникают при протекании повышенного напряжения по узким проходам кристалла полупроводника. Это позволяет отдельным электронам проскакивать через него. Чаще всего туннельные пробои образуются в случае наличия в полупроводнике большого числа различных недопустимых примесей. При таком пробое обратный ток внезапно стремится к возрастанию, а напряжение продолжает оставаться на прежнем уровне.
  • Лавинные пробои. Они могут возникнуть вследствие действия повышенных значений электрических полей, которые разгоняют электроны выше допустимой границы скорости. Поэтому они выбивают из атомов некоторое количество валентных электронов, вылетающих в область проводимости. Такой процесс происходит с лавинообразной скоростью, поэтому и получил такое название.
Тепловой пробой

Образование теплового пробоя может происходить из-за возникновения различных причин. Это может быть недостаточный отвод тепла от корпуса полупроводника, а также перегрева перехода кристалла, возникающего по причине прохождения электрического тока повышенной величины, выше допустимого.

Вследствие увеличения режима температуры в переходе полупроводника и областях, находящихся рядом, появляются такие отрицательные последствия:
  • Возрастание колебания атомов, которые входят в состав материала кристалла диода.
  • Залетание электронов в зону проводимости.
  • Чрезмерное внезапное возрастание температуры.
  • Повреждение и деформация кристаллической решетки полупроводника.
  • Неисправность и выход из строя диода.
Похожие темы:

Типы полупроводниковых диодов

Полупроводниковый прибор с одним электрическим переходом, работа которого заключается в преобразования одних электрических значений в другие, называют диодом. В конструкции данного изделия предусматривается два вывода для монтажа.

Диоды полупроводниковые

На принципиальных электрических схемах полупроводниковые диоды изображаются в виде треугольника и отрезка, расположенного на одной из его вершин и находящегося параллельно противолежащей стороне.

В зависимости от разработки диода его обозначение может включать дополнительные символы. В любом случае вершина треугольника, примыкающая к осевой линии диода, указывает на направление протекания тока.

 

В той части обозначения, где располагается треугольник, находится p-область, которую ещё называют анодом или эмиттером, а со стороны, где к треугольнику примыкает отрезок, находится n-область, которую соответственно называют катодом, или базой.

Полупроводниковые диоды, назначение которых заключается в преобразовании переменного тока в постоянный ток, называются выпрямительными. Выпрямление переменного тока с использованием полупроводникового диода построено на основе его односторонней электропроводности, которая заключается в том, что диод создаёт очень малое сопротивление току, текущему в прямом направлении, и достаточно большое сопротивление обратному току.

Для того чтобы выпрямить ток большой силы не опасаясь теплового пробоя, конструкция диодов должна предусматривать значительную площадь pn-перехода. В связи, с чем в выпрямительных полупроводниковых диодах задействуют специальные pn-переходы соответствующие последнему слову науки и техники.

Технология создания pn-перехода получается, за счёт ввода в полупроводник p-или n-типа примеси, которая создаёт в нем область с противоположным значением электропроводности. Примеси можно добавлять методом сплавления или диффузии.

Диоды, получаемые методом сплавления, называют «сплавными», а изготавливаемые методом диффузии «диффузионными».

Простейший выпрямитель

 

 

В ходе положительного полупериода входного напряжения U1 диод V работает в прямом направлении, его сопротивление маленькое и на нагрузке RH напряжение U2 практически равно входящему напряжению.

График напряжения на входе и выходе простейшего однополупериодного выпрямителя

При отрицательном полупериоде данного входного напряжения диод включен в направлении обратно, где его сопротивление формируется значительно больше, чем сопротивление на нагрузке, и почти все входящее напряжение падает на диоде, а напряжение на нагрузке приближается к нулю. В такой схеме для получения выпрямленного напряжения используется всего лишь один полупериод входящего напряжения, поэтому такой тип выпрямителей называется однополупериодным.

Полупроводниковые диоды, которые используются для стабилизации постоянного напряжения на нагрузке, называют стабилитронами. В стабилитронах задействован участок обратной участка вольтамперной характеристики в поле электрического пробоя.

Схема простейшего стабилизатора напряжения

 

 

В данном случае при изменении тока, проходящего через стабилитрон, от

Iст. мин. до Iст. макс. напряжение на нем практически не изменяется. Если нагрузка RH включена параллельно стабилитрону, уровень напряжения на ней также будет оставаться неизменным в указанных пределах изменения тока, проходящего через стабилитрон.

График стабилитрона

 

 

Такими диодами стабилизируют уровень напряжения примерно от 3,5 В и выше. Для стабилизации постоянного напряжения до 1 вольта применяют стабисторы. У стабисторов работает не обратная, а прямая часть вольтамперной характеристики. Поэтому их подсоединяют не в обратном, как делают со стабилитронами, а в прямом направлении. Электронные компоненты, такие как стабисторы и стабилитроны, как правило, изготовляются, из кремния.

Вольтамперная характеристика стабистора

 

Плоскостные диоды обладают с высокими ёмкостными характеристиками. С увеличением частоты емкостное сопротивление понижается, что приводит к нарастанию его обратного тока. На больших частотах вследствие того в диоде есть ёмкость, величина его обратного тока может достичь значения прямого тока, и этот диод, таким образом, утратит свое основное свойство односторонней электропроводности. Для сохранения своих функциональных качеств необходимо снизить емкость диода. Это достигается с помощью всевозможных технологических и конструктивных методов, направленных на сокращения площади pn-перехода.

В диодах, используемых в схемах, работающих с высокочастотным током, применяют изделия с точечными и микросплавными pn-переходами. Нужный точечный pn-переход, получается в месте контакта заостренного окончания специальной металлической иглы с полупроводником. При этом применяют способ электроформования, заключающемся в том, что через соединение проволоки и кристалла полупроводники протекают импульсы электрического тока, формирующие в месте их контакта pn-переход. Микросплавными называются такие диоды, у которых pn-переход создаётся при электроформовании контакта между пластинкой полупроводника и металлическим предметом с плоским торцом.

6 основных типов диодов и принцип их работы | ASUTPP

Без преувеличения можно утверждать, что бурное развитие радиоэлектроники началось с момента изобретения диода. Первыми на свет появились вакуумные диодные лампы.

Но их очень быстро вытеснили полупроводниковые диоды, которые оказались экономичнее, а главное – они открыли путь к миниатюризации электронных устройств. Учитывая популярность этих полупроводников, рассмотрим 6 основных типов диодов и принцип их работы.

Строение полупроводникового диода и принцип действия

Диод состоит из двух разных полупроводников: n-типа и p-типа, к которым подсоединены электроды – анод и катод. Вся эта конструкция заключена в металлический, стеклянный или в пластиковый корпус.

Благодаря тому, что полупроводники обладают разными типами проводимостей (электронная и дырочная) они при контакте образуют зону p-n перехода (Рис. 1). С одной стороны скапливаются положительный ионы, а с другой – электроны.

Рисунок 1. Распределение зарядов в n-p переходе

Рисунок 1. Распределение зарядов в n-p переходе

Если катод подсоединить к негативному полюсу источника питания, а анод к позитивному, то под действием ЭДС произойдёт рекомбинация дырок в зоне с n-проводимостью и нейтрализация электронов в зоне с p-проводимостью.

Барьер, между двумя полупроводниками разрушится и цепь замкнётся. То есть, устройство пропустит ток от катода к аноду (на самом деле электроны устремятся к плюсовой клемме). Схема процесса изображена на рисунке 2 а.

При обратном напряжении (рис. 2 б) зона p-n перехода только усилится. Ток не потечёт. Диод при таком подключении будет находиться в закрытом состоянии. На этом принципе построена работа всех выпрямительных (силовых) радиодеталей.

Рисунок 2

Рисунок 2

Выпрямительные диоды

Данный тип электронных вентилей чаще всего встречается в блоках питания различных устройств. Диодные мостики на их основе служат для преобразования синусоидального тока в постоянный.

Рисунок 3. Выпрямительный диод большой мощности

Рисунок 3. Выпрямительный диод большой мощности

В зависимости от типов применяемых полупроводниковых материалов, степени насыщения их различными донорами и акцепторами, полупроводники могут менять свои свойства. Это позволило создавать различные типы полупроводниковых изделий с необходимыми параметрами.

Стабилитроны

Диод, который обладает высокой проводимостью при заданном напряжении, называется стабилитроном. При достижении уровня напряжения стабилитрона, он открывается и пропускает ток почти без сопротивления. Как только разница потенциалов упадёт до заданного минимума, стабилитрон закроется и отсечёт поток электронов.

Данное свойство используется для стабилизации напряжения в электронных устройствах. Отсюда и название – стабилитрон. Один из наиболее часто встречающихся стабилитронов изображён на рис. 4.

Рисунок 4. Стабилитрон

Рисунок 4. Стабилитрон

Туннельные диоды

Благодаря множеству присадок образуется узкий p-n переход, способствующий пропускать ток в обе стороны. Это свойство отличает его от других типов вентилей. На схемах радиодетали данного типа изображаются так, как показано на рис. 5.

Рисунок 5. Туннельный диод

Рисунок 5. Туннельный диод

Варикапы

Разновидность диодов с переменной ёмкостью называют варикапами. Барьерная ёмкость этих радиодеталей зависит от обратного напряжения.

Их применяют для настройки частот генераторов, управляемых напряжением. Обозначение на схемах показано на рис. 6.

Рисунок 6. Обозначения варикапов на схемах

Рисунок 6. Обозначения варикапов на схемах

Светодиоды

Их ещё называют СИД или LED. (рис. 7). Эти диоды, при подаче на электроды прямого напряжения, излучают холодный свет в разных спектрах. Сегодня LED-освещение активно вытесняет традиционные источники света.

Рисунок 7. Светодиод

Рисунок 7. Светодиод

Фотодиод

Проводимость проводников данного типа управляется световым потоком. В темноте свойства фотодиода такие же, как в обычного вентиля. Обратный ток прямо пропорционален уровню освещения, в т. ч. инфракрасного. Применяется в качестве датчика, принимающего сигналы от пульта дистанционного управления.

Рисунок 8. Фотодиод

Рисунок 8. Фотодиод

Диод [База знаний]

Что такое диод? Виды диодов

Теория

КОМПОНЕНТЫ
ARDUINO
RASPBERRY
ИНТЕРФЕЙСЫ ПЕРЕДАЧИ ДАННЫХ

Диод — электронный элемент, обладающий различной проводимостью в зависимости от направления электрического тока. У него есть 2 полюса: анод и катод. Ток пропускается только от анода (+) к катоду (-).

Электроды диода носят названия анод и катод. Если к диоду приложено прямое напряжение (то есть анод имеет положительный потенциал относительно катода), то диод открыт (через диод течёт прямой ток, диод имеет малое сопротивление). Напротив, если к диоду приложено обратное напряжение (катод имеет положительный потенциал относительно анода), то диод закрыт (сопротивление диода велико, обратный ток мал, и может считаться равным нулю во многих случаях).

Диоды бывают электровакуумные, газоразрядные и самые распространённые – полупроводниковые. Свойства диодов, чаще всего в связках между собой, используются для преобразования переменного тока электросети в постоянный ток, для нужд полупроводниковых и других приборов.

 


Конструкция диодов

Конструктивно, полупроводниковый диод состоит из небольшой пластинки полупроводниковых материалов (кремния/германия), одна сторона (часть пластинки) которой обладает электропроводимостью p-типа, то есть принимающей электроны (содержащей искусственно созданный недостаток электронов, «дырочная»), другая обладает электропроводимостью n-типа, то есть отдающей электроны (содержащей избыток электронов, «электронной»).

Слой между ними называется p-n переходом. Здесь буквы p и n — первые в латинских словах negative — «отрицательный», и positive — «положительный». Сторона p-типа, у полупроводникового прибора является анодом (положительным электродом), а область n-типакатодом (отрицательным электродом) диода.


Основные характеристики

Падение напряжения VF Вольт
Максимальное сдерживаемое обратное напряжение VDC Вольт
Максимальный прямой ток IF Ампер

Вольт-амперная характеристика

После того, как напряжение в прямом направлении превысит небольшой порог VF диод открывается и начинает практически беспрепятственно пропускать ток, который создаётся оставшимся напряжением.

Если напряжение подаётся в обратном направлении, диод сдерживает ток вплоть до некоторго большого напряжения VDC после чего пробивается и работает также, как в прямом направлении.


Основные виды диодов

Выпрямительный диод

Также известен как защитный, кремниевый

  • VF = 0,7 В
  • VDC — сотни или тысячи вольт
  • Открывается медленно
  • Восстанавливается после пробоя обратным током

 

Диод Шоттки

Шоттки — фамилия его изобретателя. Также известен как сигнальный, германиевый.

  • VF = 0,3 В
  • VDC — десятки вольт
  • Открывается быстро
  • Сгорает после пробоя обратным током

 

Диод Зеннера (Стабилитрон)

Зеннер — фамилия его изобретателя. Также известен как стабилитрон

  • VF = 1 В
  • VDC — фиксированное значение на выбор
  • Умышленно используется в обратном направлении как источник фиксированного напряжения

 


Светодиоды: принципы работы, виды, характеристики, области применения | LIGHT-RU.RU

Светодиоды различных цветов

Сегодняшний мир невозможно себе вообразить без электрического освещения. Огромные мегаполисы и самые отдаленные уголки земного шара освещаются всевозможными электрическими источниками искусственного света. Однако, непрерывное развитие технологий приводит к тому, что мастодонт электрического освещения — «лампочка Ильича» — уверенно уступает лидирующие позиции современным высокотехнологичным и высокоэкономичным источникам электрического света, среди которых, безусловно, безоговорочно лидируют светодиоды.

Содержание статьи

Что такое светодиод и история его изобретения

Принцип действия светодиода

Светодиод — это полупроводниковый прибор, излучающий фотоны определенной частоты при пропускании через него электрического тока.

Часто термин «светодиод» заменяется англоязычной аббревиатурой LED от «led emitting diod» — светоизлучающий диод. Русскоязычный аналог данного словосочетания — СИД — используется значительно реже.

Эффект испускания фотонов достигается благодаря наличию в этих приборах электронно-дырочного перехода, рекомбинация электронов и дырок в котором сопровождается переходом электронов с одного энергетического уровня на другой, в результате чего избыток энергии высвобождается в виде свободного фотонного излучения.

Олег Лосев, советский ученый, изобретатель, один из праотцов светодиода

Впервые подобное явление было обнаружено в далеком 1907 году английским исследователем Генри Раундом. Позднее независимо от него советский ученый Олег Лосев в 1923 году также зафиксировал электролюминесценцию в точке контакта карбида кремния и стали под воздействием электрического тока и даже смог запатентовать своё изобретение под названием «Световое реле» в 1927 году. Но, как часто бывает, открытие не было должным образом оценено современниками и до победного шествия светодиодов оставались долгие десятилетия.

Технология создания инфракрасных светодиодов была освоена в США лишь в 1961 году, а первый реально применимый светодиод в видимом диапазоне спектра (красный) был создан в 1962 году Ником Холоньяком. Позднейшие исследования привели к созданию в 1971 году синего светодиода, а в 1972 году был создан первый жёлтый светодиод и были разработаны способы десятикратного увеличения яркости красных светодиодов.

Тем не менее, несмотря на очевидный прогресс в развитии светодиодной техники, светодиоды оставались чрезмерно дорогими вплоть до конца 60-х годов ХХ века. Их широкое промышленное производство и применение начинается лишь в 70-х годах ХХ века, а производство дешевых синих светодиодов началось лишь после 1990 года, когда японским ученым, получившим позднее за это Нобелевскую премию, удалось критически усовершенствовать технологию их создания.

Виды светодиодов в зависимости от химического состава полупроводников

Поскольку светодиоды являются полупроводниковыми приборами, то и материалы, используемые для их создания, являются традиционными для полупроводниковой техники. Самый распространенный, безусловно, галлий в химических соединениях с другими элементами. Широко применяются также индий, алюминий, кремний.

Использование разнообразных соединений дает возможность получать светодиоды, испускающие свет в диапазоне от инфракрасного до ультрафиолетового. А использование дополнительно нанесенных люминофоров и цветных пластиков еще больше расширяет цветовую палитру получаемого света.

Виды полупроводниковых материалов, используемых в светодиодах для получения излучения различного спектра
Цвет Длина волны, нм Падение напряжения, В Полупроводниковые материалы
Инфракрасный λ > 760 ΔU Арсенид галлия (GaAs)
Алюминия галлия арсенид
(Aluminium gallium arsenide AlGaAs)
Красный 610 1,63 Алюминия-галлия арсенид (AlGaAs)
(Aluminium gallium arsenide AlGaAs)
Галлия арсенид-фосфид (GaAsP)
Алюминия-галлия-индия фосфид (AlGaInP)
Галлия(III) фосфид (GaP)
Оранжевый 590 2,03 Галлия фосфид-арсенид (GaAsP)
Алюминия-галлия-индия фосфид (AlGaInP)
Галлия(III) фосфид (GaP)
Жёлтый 570 2,10 Галлия арсенид-фосфид (GaAsP)
Алюминия-галлия-индия фосфид (AlGaInP)
Галлия(III) фосфид (GaP)
Зеленый 500 1,9 Индия-галлия нитрид (InGaN) / Галлия(III) нитрид (GaN)
Галлия(III) фосфид (GaP)
Алюминия-галлия-индия фосфид (AlGaInP)
Алюминия-галлия фосфид (AlGaP)
Синий 450 2,48 Селенид цинка (ZnSe)
Индия-галлия нитрид (InGaN)
Карбид кремния (SiC) в качестве субстрата
Кремний (Si) в качестве субстрата — (в разработке)
Фиолетовый 400 2,76 Индия-галлия нитрид (InGaN)
Пурпурный Смесь нескольких спектров 2,48 Двойной: синий/красный диод,
синий с красным люминофором,
или белый с пурпурным пластиком
Ультрафиолетовый λ 3,1 Алмаз (235 нм)
Нитрид бора (215 нм)
Нитрид алюминия (AlN) (210 нм)
Нитрид алюминия-галлия (AlGaN)
Нитрид алюминия-галлия-индия (AlGaInN) — (менее 210 нм)
Белый Широкий спектр ΔU ≈ 3,5 Синий/фиолетовый диод с люминофором

Типоразмеры SMD светодиодов

SMD — Surface Mount Device — электронные детали или устройства, монтируемые на поверхность (как правильно, на поверхность платы). Именно такой тип монтажа стал самым распространенным в мире электроники и, соответственно, самыми распространенным являются и SMD светодиоды, т.е. светодиоды, предназначенные для поверхностного монтажа. Иногда их называют чип-светодиодами, но такое название скорее редкость.

Существует несколько самых распространенных размеров SMD светодиодов. Как правило, разные производители придерживаются общепринятых стандартов, хотя, например, световой поток светодиодов одного типоразмера у разных изготовителей может отличаться.

SMD 3528

Светодиод SMD 3528

Светодиоды для поверхностного монтажа типоразмера 3528 являются, пожалуй, одним из наиболее распространенных вариантов. Они имеют прямоугольную форму со сторонами 3,5 и 2,8 миллиметра. Толщина составляет 1,4 мм. Для облегчения монтажа на корпусе светодиода со стороны катода делается срез угла, позволяющий однозначно определить правильное расположение элемента. Светоизлучающая поверхность сформирована в виде круга и, как правило, покрыта люминофором, отличающимся в зависимости от целей использования светодиода. Существенной особенностью данных светодиодных элементов является сильная зависимость их яркости от температуры. Так, при нагревании светодиода до 80 °C его яркость может упасть на 25% и более.

SMD 5050

Светодиод SMD 5050

Светодиоды SMD 5050 обладают квадратным корпусом размером 5,0 на 5,0 мм, внутри которого расположены три кристалла по своим характеристикам идентичных тем, которые устанавливаются в SMD 3528. Фактически SMD 5050 можно считать более совершенной версией светодиодов 3528. Возможность установки трёх кристаллов в один корпус позволяет создавать более мощные и яркие светодиоды, а наличие возможности независимого управления каждым кристаллом позволяет создавать многоцветные RGB светодиоды, способные излучать практически весь видимый человеческим глазом световой спектр.

SMD 5630

Светодиод SMD 5630

Появление нового типа светодиодов с габаритами корпуса 5,6 на 3,0 мм засвидетельствовало не только внешние изменения привычных размеров SMD, но и ознаменовало внесение в их конструкцию заметных улучшений, влияющих на существенные показатели их работы. Применение новых материалов и инженерных решений позволило увеличить мощность и светоотдачу светодиодов 5630 по сравнению с их более ранними собратьями.

Несмотря на наличие в SMD 5630 четырёх выводов используется всего два из них. Второй является отрицательным катодом, а четвертый положительным анодом. При этом ключ катода расположен возле первого вывода. Размещение чипов SMD 5630 на металлической подложке является хорошим тоном, так как способствует значительному улучшению отвода тепла из рабочей зоны и, соответственно, продлению срока службы высокотехнологичного устройства.

На следующем рисунке наглядно представлена разница между направлением светового потока и углами обзора у светодиодов 3528, 5050 и 5630. Невооруженным глазом заметен рост данных показателей с увеличением форм-фактора чип-светодиода.

Сравнительная характеристика направления и угла излучения светодиодов 3528, 5050 и 5630

SMD 5730

Светодиод SMD 5730

Братья-близнецы светодиодов 5630 — светодиоды SMD 5730 — появились на рынке практически одновременно со своими младшими соплеменниками и во многом являются их аналогами. Среди конструктивных отличий необходимо отметить, что светоизлучающие диоды 5,7 на 3,0 мм имею лишь два контакта, в отличие от светодиодов 5630. При этом они несколько выше (приблизительно на 0,5 мм). Также светодиоды 5730 подразделяются по потребляемой мощности на два класса: 0,5 Вт и 1 Вт, и часто обозначаются соответственно SMD 5730-05 и SMD 5730-1. Устройства обоих этих классов являются высокоэффективными светоизлучающими устройствами с низким тепловым сопротивлением кристалл/подложка около 4 °C, что значительно повышает энергоэффективность и долговечность оборудования на их базе.

Сравнительные характеристики чип-светодиодов SMD5730-05 и SMD5730-1
Параметр SMD Максимально допустимое значение Единица измерения
SMD5730-05 SMD5730-1
Прямой ток 180 350 mA
Импульсный прямой ток 400 800 mA
Рассеиваемая мощность 0.5 1.1 W
Температура перехода 130 130 °C
Рабочая температура — 40 / + 65 — 40 / + 65 °C
Температура хранения — 55 / + 100 — 55 / + 100 °C
Температура пайки 300°C в течении 2 сек. 300°C в течении 2 сек.

Как видно из приведенных данных, светодиоды 5730-1, имея вдвое большую рассеиваемую мощность, функционируют и при больших токах. Таким образом, при выборе между светодиодами 5730-05 и 5730-1 необходимо учитывать как условия отвода тепла в готовом изделии, так и электротехнические параметры работы светоизлучающего диода.

Сравнительная характеристика светодиодов различных типоразмеров
Параметр 3528 5050 5630 5730 (0,5 Вт) 5730 (1 Вт)
Световая отдача (Лм/Вт) 5 15 40 40 100
Мощность, Вт 0,06 0,2 0,5 0,5 1,0
Температура, °C +65 +65 +80 +80 +80
Ток, А 0,02 0,06 0,15 0,15 0,30
Напряжение, В 3,3 3,3 3,3 3,4 3,4
Размеры, мм 3,5 х 2,8 5,0 х 5,0 5,6 х 3,0 5,7 х 3,0 5,7 х 3,0

SMD 3014

Светодиод SMD 3014

Сравнительно недавно появившиеся светоизлучающие диоды форм-фактора 3,0 на 1,4 мм не только имеют существенно меньшие внешние размеры, чем более ранние SMD, но и обладают значительно более высокой энергетической эффективностью.

Данные светодиоды работают при максимальном токе 30 мА, что позволяет отнести их к слаботочным устройствам. Также при их монтаже необходимо учитывать, что контакты анода и катода не только выведены на боковые поверхности, но и уходят под нижнюю часть изделия. Целью данного изменения было увеличение теплоотвода от меньшего по размеру, но более мощного потребителя.

SMD 2835

Светодиод SMD 2835

Светодиоды SMD 2835 вобрали в себя, пожалуй, самые лучшие черты других LED SMD. Несмотря на то, что размеры светодиодов 2835 совпадают с размерами светодиодов 3528 (3,5 х 2,8 мм), SMD2835 имеют иную конструкцию светоизлучающей поверхности, выполненной в форме прямоугольника, что снижает неэффективные потери энергии и повышает оптические показатели, в частности, угол обзора.

Конструктивные особенности светодиодов 2835 (использование контактов анода и катода в качестве теплоотводящей подложки) сближает эти устройства с SMD3014, в которых реализован такой же принцип. По электротехническим же характеристикам наиболее близкими к SMD2835 являются SMD5730-05

Энергетическая эффективность различных светодиодов

Развитие LED технологий направлено в первую очередь на увеличение их энергоэффективности. Средние показатели световой отдачи для различных типов чип-светодиодов составляют следующие значения:

  • SMD 3528 — 70 лм/Вт
  • SMD 5050 — 80 лм/Вт
  • SMD 5630 — 80 лм/Вт
  • SMD 5730-05 — 80 лм/Вт
  • SMD 5730-1 — 100 лм/Вт

Из приведенных данных видно, что со сменой поколений светодиодов кардинального роста световой отдачи не произошло. В тоже время, если сравнить светодиоды SMD3528 и светодиоды SMD5730-1, то можно обнаружить, что световой поток вырос почти в 22 раза, в то время как потребление энергии возросло всего в 15 раз.

Подключение светодиодов в электрическую цепь

Обозначение светодиода на электрической схеме

Штатное функционирование светоизлучающих диодов возможно только при подаче на анод положительного потенциала, а на катод — отрицательного, т.е. при прохождении через него тока только в прямом направлении.

Поскольку p-n переход имеет резко возрастающую вольт-амперную характеристику, светодиод должен подключаться к источнику тока. При подключении светодиода к источнику напряжения должна предусматриваться установка ограничивающих ток элементов (например, резисторов). Роль таких элементов может выполнять сама электрическая цепь. Модели светодиодов некоторых производителей поставляются с уже встроенными токолимитирующими элементами. В таких случаях в техническом описании к светодиодам указываются максимальные и минимальные допустимые значения подаваемого на светоизлучающий диод напряжения.

Вольт-амперная характеристика p-n перехода в светодиодах

Выход из строя светодиода может быть связан с подачей на его контакты напряжения, превышающего заявленные производителем пределы. В этом случае на светодиоде выделяется количество тепла, которое не может быть отведено теплоотводящими элементами, что приводит к перегреву SMD светодиода и его необратимому выходу из строя.

Токолимитирующая цепь для маломощных светодиодов (простейший вариант) может представлять собой элементарный резистор, включенный последовательно со светодиодом. В более сложных случаях, когда существует необходимость защиты мощных светодиодов, применяются схемы с широтно-импульсной модуляцией. Такой вариант позволяет решить сразу две задачи: во-первых, поддерживает среднее значение тока, идущего через светодиод на безопасном уровне и, во-вторых, позволяет диммировать светодиод, т.е. регулировать яркость его свечения.

Необходимо помнить, что при использовании источников питания с низким внутренним сопротивлением, не допускается подача на светодиод напряжения обратной полярности, т. к. у большинства светодиодов обратное пробивное напряжение составляет всего несколько вольт. В том случае, если светодиод используется в схеме, где есть вероятность появления обратного напряжения, светодиод следует защищать путём установки параллельно с ним обычного диода в обратной полярности.

Варианты защиты светодиодов от обратного напряжение (на примере подключения к сети переменного тока 220В)
Защита светодиодов от обратного напряжения диодом Встречно-параллельное подключение светодиода и диода Встречно-параллельное подключение двух светодиодов

Преимущества светодиодов по сравнению с другими источниками света

Являясь качественно новыми источниками электромагнитного излучения, светодиоды обладают рядом существенных преимуществ перед своими предшественниками, что способствует их широкому перманентному внедрению в различных областях народно-хозяйственного комплекса.

Среди преимуществ светодиодов необходимо выделить следующие их качества и характеристики:

  • Отсутствие в LED светодиодах чувствительных к механическим воздействиям конструктивных элементов (таких, например, как нить накаливания) определяет их повышенную вибро- и механическую стойкость к неблагоприятным воздействиям во время изготовления, транспортировки, монтажа и эксплуатации.
  • Крайне эффективное преобразование светодиодами электрической энергии в световую определяет крайне высокий коэффициент их световой отдачи. Натриевые газоразрядные и металлогалогенные лампы, бывшие многие десятилетия бесспорными лидерами на рынке по показателю световой отдачи, в настоящее время утратили свои лидирующие позиции из-за появления не менее эффективных светоизлучающих диодов. Так, если показатель световой отдачи у натриевых газоразрядных ламп составляет около 150 лм на Вт потребляемой мощности, то у самых современных светодиодов он достиг 146 лм/Вт и продолжает повышаться вместе с развитием технологий и применением новых конструкторских решений.
  • Срок эксплуатации светодиодов составляет от 30 тыс. до 100 тыс. часов, что значительно превышает показатели источников света, изготовленных по другим технологиями. Недостатком светоизлучающих диодов является то, что при длительной эксплуатации и/или неэффективном отводе тепла их кристаллы подвержены так называемой деградации, приводящей к плавному снижению яркости излучения.
  • Существенным плюсом светодиодов является независимость длительности их службы от количества итераций включения-выключения. Этим они выгодно отличаются от других светоизлучающих устройств (например, газоразрядных ламп и ламп накаливания), чувствительных к количеству циклов включения-выключения.
  • Излучению светодиодов имманентно присуща спектральная чистота, в то время как в других устройствах она достигается за счет использование различных светофильтров. Спектрографический анализ излучения красного светодиода
  • Экологическая безопасность LED обусловлена тем, что в их производстве не используются опасные элементы и соединения (ртуть, фосфор, галогениды металлов). Также в спектре их излучения отсутствует ультрафиолет, что приводит к отсутствию необходимости создания защиты от него.
  • Светодиоды безопасны в эксплуатации, т.к. обычно они питаются относительно низкими напряжениями и, благодаря высокой светоотдаче, редко нагреваются выше 50-60 °C
  • Немаловажным фактором, способствующим широкому применению светодиодов, является отсутствие инерционности их включения: максимальная яркость излучения достигается сразу после включения, в то время как у энергосберегающих люминесцентных ламп время включения колеблется от 1 секунды до 1 минуты, а выход на стопроцентную яркость происходит в течение 3-10 минут после начала работы (в зависимости от температуры окружающей среды и особенностей лампы).
  • Практически нулевая чувствительность светодиодов к низким и ультранизким температурам позволяет использовать их вне помещений в странах с суровым климатом. В тоже время, как уже отмечалось, светодиоды (как и любые другие полупроводниковые приборы) чувствительны к высоким температурам. В связи с этим при монтаже LED устройств всегда необходимо уделять особое внимание наличию достаточного уровня отвода тепла.
  • Широкое варьирование угла излучения у различных видов светодиодов (от 15° до 180°) позволяет решать различные конструкторские и технологические задачи при создании устройств с их использованием.
  • Наличие широкого спектра белых светодиодов (белый теплый, белый дневной, белый холодный) дает возможность использовать различные их типы для решения различных задач в зависимости от конкретной ситуации и необходимости получения того или иного эффекта от освещения.
  • Относительно низкая стоимость светодиодов (особенно индикаторных).
  • Высокие показатели коэффициента цветопередачи CRI.

Применение светодиодов

Благодаря широкому спектру преимуществ, светодиодные источники излучения нашли применения в разнообразных областях. Основными направлениями использования LED являются:

  • Исторически первой областью применения светодиодов было приборостроение. Именно здесь светодиоды стали массово применяться в качестве устройств индикации. Индикаторами могут быть как одиночные LED (например, индикатор включения в сеть), так и собранные в различные табло (цифровые, цифро-буквенные).
  • В последние десятилетия стали широко использоваться так называемые светодиодные кластеры. По сути это массив светодиодов, находящихся под общим цифровым (как правило) управлением. Обывателю такие кластеры знакомы в виде бегущих строк, больших экранов, размещаемых на улицах городов.
  • Также светодиоды обеспечивают подсветку жидкокристаллических экранов мобильных устройств, телевизоров и мониторов персональных компьютеров и ноутбуков.
  • Мощные и сверхмощные светодиоды нашли своё применение в фонарях уличного освещения, а также в современных светофорах. Применение LED излучателей в светофорах крупных городов не только способствует оптимизации потребления электроэнергии, но и за счет высокой светоотдачи и цветопередачи способствует снижению аварийности на дорогах.
  • Повышению безопасности на дорогах способствует и внедрение принципиально новых элементов дорожной обстановки: дорожных знаков на основе светодиодов. Такие знаки прекрасно видны в любое время суток и практически в любую погоду.
  • В последние годы светодиоды получили широкое распространение в качестве основных источников промышленного и бытового освещения. Светильники на основе LED, а также светодиодные ленты уверенно вытесняют с рынка другие виды источников света. В первую очередь это происходит за счет лавинообразного снижения цен на светодиоды в последнее время, а также благодаря появлению множества локальных производителей достаточно качественной светодиодной продукции.
  • Использование LED технологий в растениеводстве позволяет создавать узкоспециализированные источники освещения (фитолампы) с особым спектром излучения, обеспечивающим максимальную эффективность процесса фотосинтеза в листьях сельскохозяйственных растений. Применение подобных приборов особенно перспективно на территориях с северным климатом.
  • Стремительное развитие информационных технологий также обуславливает значительный спрос на светодиодную продукцию. Использование LED в качестве легкодоступных источников модулированного электромагнитного излучения широко распространено при создании систем передачи информации по оптическим волокнам.
  • Заняли свою нишу светодиоды и в сфере дизайна в виде цветных светодиодных лент, гибких шнуров дюралайт, светодиодных гирлянд. С их помощью оформляются как интерьеры жилых помещений, так и архитектурные и арт-объекты, а также концертные и выставочные залы, бары, дискотеки, ночные клубы.
  • Дешевизна и чарующая привлекательность LED привела к их повсеместному использованию в игрушках, детских играх, различных USB-устройствах.
  • Менее известно, но от того не менее широко распространено использование светодиодов в оптронах, позволяющих создавать разнообразные детекторы наличия, дискретные спидометры, детекторы начала и конца, а также устройства передачи сигнала без передачи электрического напряжения. Устройство и обозначение оптрона (оптопары)

LIGHT-ru.RU — С НАМИ СВЕТЛЕЕ!

Применение диодов

Диоды являются одними из самых распространенных электронных компонентов. Они присутствуют практически во всех электронных приборах, которые мы ежедневно используем – от мобильного телефона до его зарядного устройства. В этой статье рассмотрим основные типы электронных схем, в которых диоды нашли свое применение.

1. Нелинейная обработка аналоговых сигналов

В связи с тем, что диоды относятся к элементам нелинейного типа, они применяются в детекторах, логарифматорах, экстрематорах, преобразователях частоты и в других устройствах, в которых предполагается нелинейная обработка аналоговых сигналов. В таких случаях диоды используют или как основные рабочие приборы – для обеспечения прохождения главного сигнала, или же в качестве косвенных элементов, например в цепях обратной связи. Указанные выше устройства значительно отличаются между собой и используются для разных целей, но применяемые диоды в каждом из них занимают очень важное место.

2. Выпрямители

Устройства, которые используются для получения постоянного тока из переменного называются выпрямителями. В большинстве случаев они включают в себя три главных элемента – это силовой трансформатор, непосредственно выпрямитель (вентиль) и фильтр для сглаживания. Диоды применяют в качестве вентилей, так как по своим свойствам они отлично подходят для этих целей.

3. Стабилизаторы

Устройства, которые служат для реализации стабильности напряжения на выходе источников питания, называются стабилизаторами. Они бывают разных видов, но каждый из них предполагает применение диодов. Эти элементы могут использоваться либо в цепях, отвечающих за опорные напряжения, либо в цепях, которые служат для коммутации накопительной индуктивности.

4. Ограничители

Ограничители – это специальные устройства, используемые для того, чтобы ограничивать возможный диапазон колебания различных сигналов. В цепях такого типа широко применяются диоды, которые имеют прекрасные ограничительные свойства. В сложных устройствах могут использоваться и другие элементы, но большинство ограничителей базируются на самых обычных диодных узлах стандартного типа.

5. Устройства коммутации

Диоды нашли применение и в устройствах коммутации, которые используются для того, чтобы переключать токи или напряжения. Диодные мосты дают возможность размыкать или замыкать цепь, которая служит для передачи сигнала. В работе применяется некоторое управляющее напряжение, под воздействием которого и происходит замыкание или размыкание. Иногда управляющим может быть сам входной сигнал, такое бывает в самых простых устройствах.

6.Логические цепи

В логических цепях диоды применяются для того, чтобы обеспечить прохождение тока в нужном направлении (элементы «И», «ИЛИ»). Подобные цепи используются в схемах аналогового и аналогово-цифрового типа. Здесь перечислены только основные устройства, в которых применяются диоды, но существует и много других, менее распространенных.

Светодиоды

Светодиоды представляют собой полупроводниковые диоды, которые излучают свет при прохождении через них электрического тока. Они могут излучать разные цвета и делятся на такие типы — 3 мм, 5мм, 8мм, SMD 0603, Top type, мигающий диод, диод с резистором, Star PCB, Emitter. В сравнении с традиционными лампами светодиоды обладают многими преимуществами – это экономичность, прочность, яркость света, долговечность, низкий нагрев в процессе работы. Что касается недостатков, то главным из них является цена, так как подобные приборы стоят достаточно дорого. Рассмотрим различные виды светодиодных устройств, которые чаще всего применяются на практике.

1. Одиночные светодиоды

Подобные устройства широко используются в самой разной аппаратуре в качестве лампочек индикации, которые чаще всего свидетельствуют о том, включен или выключен прибор. Кроме того, они применяются для освещения различных небольших пространств, например в автомобилях.

2. 7’Segment

Технология Seven-Segment Display с использованием светодиодов применяется в электронных часах, в различных измерительных приборах и в других технических средствах, которые предполагают отображение цифровой информации на дисплее. В таких целях светодиоды используются еще с 1910 года, но они не потеряли своей актуальности и сейчас. 7’Segment позволяет отображать простейшие данные на дисплее самым простым способом и с низкими энергозатратами.

3. Матрица светодиодов

Светодиодная матрица представляет собой определенное количество светодиодов, которые размещаются на одной площадке. Главные характеристики таких устройств это яркость и размеры. Большое количество применяемых диодов позволяет добиться высоких показателей освещения. Устанавливаются подобные матрицы чаще всего в специальных плафонах, которые могут использоваться в различных местах, например в салоне автомобиля, в его бардачке или в багажнике.

4. LED телевизоры

LED телевизоры – это телевизоры, принцип работы которых основывается на использовании светодиодов. Они дают возможность добиться хорошего качества изображения и позволяют экономить на электроэнергии. Благодаря небольшим размерам таких диодов, телевизионные экраны имеют значительно меньшую толщину, чем у традиционных моделей. Кроме того, подобные устройства характеризуются надежностью и достаточно большим сроком службы. Все телевизоры, изготовленные по этой технологии, имеют боковую подсветку экрана и подсветку за матрицей.

Как видим, несмотря на свою простоту, диоды нашли применение в самых разнообразных технических областях, и без их использования работа многих устройств весьма проблематична. Следует заметить, что диоды находят и новые сферы применения.

Типы диодов и их применение

Различные типы диодов с их характеристиками и применением

Диод является наиболее часто используемым полупроводниковым устройством в электронных схемах. Это двухконтактный электрический обратный клапан, который позволяет протекать току в одном направлении. . В основном они состоят из кремния, но также используется германий. Обычно их используют для ректификации. Но есть разные свойства и характеристики диодов, которые можно использовать для разных целей.Эти характеристики изменены для формирования различных типов диодов. В настоящее время доступно несколько различных типов диодов с разными свойствами.

Некоторые из различных типов диодов с их свойствами и областями применения обсуждаются ниже:

Диод с P-N переходом

Диод с P-N переходом изготовлен из полупроводникового материала. Он состоит из двух слоев полупроводников. Один слой легирован материалом P-типа, а другой слой — материалом N-типа.Комбинация этих слоев P- и N-типа образует соединение, известное как соединение P-N. Отсюда и название P-N диод .

Позволяет току течь в прямом направлении и блокирует его в обратном направлении. Они также известны как выпрямительные диоды, используемые для выпрямления.

Существуют различные типы диодов, в которых используется P-N переход с изменением концентрации легирования. Они обсуждаются ниже.

Малый сигнальный диод

Это тип диода с P-N переходом, который работает с сигналами низкого напряжения.Площадь стыка очень мала. Благодаря этому переход имеет меньшую емкость и низкую емкость накопления заряда. Это позволяет малому сигнальному диоду иметь высокую скорость переключения с очень коротким временем восстановления. Однако его ограничениями являются низкого напряжения и токовых параметров.

Из-за высокой скорости переключения эти типы диодов используются в цепях с высокими частотами.

Выпрямительный диод

Выпрямительный диод — это тип диода с P-N переходом, у которого площадь P-N перехода очень велика.Это приводит к высокой емкости в обратном направлении. Имеет низкую скорость переключения.

Это самый распространенный и наиболее часто используемый тип диодов. Эти типы диодов могут выдерживать большие токи и используются для преобразования переменного тока в постоянный ( Rectification ).

Диод Шоттки

Диод Шоттки, названный в честь немецкого физика Вальтера Х. Шоттки, — это тип диода, который состоит из небольшого перехода между полупроводником N-типа и металлом.Он имеет без перекрестка P-N.

Плюс диода Шоттки в том, что он имеет очень низкое прямое падение напряжения и быстрое переключение . Поскольку нет емкостного перехода (P-N переход), скорость переключения диода Шоттки очень высока.

Ограничение диода Шоттки заключается в том, что он имеет низкое обратное напряжение пробоя и высокий обратный ток утечки.

Супербарьерные диоды

Супербарьерные диоды (SBR) также являются выпрямительными диодами, но у них низкое прямое падение напряжения , как и у диодов Шоттки.У них низкий ток обратной утечки , как и у нормального диода с P-N переходом.

SBR использует полевой МОП-транзистор путем короткого контакта между его затвором и истоком.

SBR имеет низкое прямое падение напряжения, меньший обратный ток утечки и возможность быстрого переключения.

Светоизлучающий диод (LED)

Светоизлучающий диод также относится к типу диода с P-N переходом, который излучает свет в конфигурации прямого смещения.

Светодиод состоит из полупроводника с прямой полосой пропускания. Когда носители заряда (электроны) пересекают барьер и рекомбинируют с электронными дырками на другой стороне, они испускают фотонные частицы (свет). В то время как цвет света зависит от запрещенной зоны полупроводника.

Светодиод преобразует электрическую энергию в световую.

Фотодиод

Фотодиод — это тип диода с P-N переходом, который преобразует световую энергию в электрический ток.Его работа противоположна таковой у LED .

На каждый полупроводниковый диод влияют оптические носители заряда. Вот почему они упакованы в легкий блокирующий материал.

В фотодиоде есть специальное отверстие, через которое свет проникает в его чувствительную часть.

Когда свет (частицы фотона) попадает на PN-переход, он создает пару электрон-дырка. Эти электрон и дырка вытекают как электрический ток. Для повышения его эффективности используется диод PIN junction .

Фотодиод используется в обратном смещении, и они могут использоваться в солнечных элементах.

Лазерный диод

Лазерный диод похож на светодиод, поскольку он преобразует электрическую энергию в энергию света. Но в отличие от светодиода, лазерный диод излучает когерентный свет.

Лазерный диод состоит из ПИН-перехода, , где электрон и дырки объединяются во внутренней (I) области. когда они объединяются, он генерирует лазерный луч.

Лазерные диоды используются в оптической связи, лазерных указателях, приводах компакт-дисков, лазерных принтерах и т. Д.

Туннельный диод

Туннельный диод изобрел Лео Эсаки в 1958 году , за что он получил Нобелевскую премию в 1973 году, поэтому он также известен как диод Эсаки .

Туннельный диод — это сильно легированный диод с P-N переходом . Он работает по принципу туннельного эффекта . Из-за высокой концентрации легирования переходной барьер становится очень тонким. Это позволяет электрону легко уходить через барьер.Это явление известно как туннельный эффект .

Туннельный диод имеет область на кривой VI , где ток уменьшается с увеличением напряжения. Эта область известна как область отрицательного сопротивления . Туннельный диод работает в этой области в различных приложениях, таких как генератор и микроволновый усилитель .

Символ с VI характеристикой кривой туннельного диода приведен ниже:

Туннельный диод также проводит ток в обратном направлении и является устройством быстрого переключения.

Стабилитрон

Стабилитрон назван в честь Кларенса Малвина Зенера , открывшего эффект стабилитрона .

Это тип диода, который пропускает ток не только в прямом, но и в обратном направлении. когда обратное напряжение достигает напряжения пробоя, известного как напряжение стабилитрона , оно позволяет протекать току.

Стабилитрон имеет более высокую концентрацию легирования, чем обычный диод с P-N переходом.Следовательно, он имеет очень тонкую область истощения.

При прямом смещении он работает как простой диод с P-N переходом (выпрямитель).

При обратном смещении он блокируется, пока обратное напряжение не достигнет пробоя. После этого он позволяет току течь с постоянным падением напряжения.

Обратный пробой стабилитрона вызван двумя причинами: квантовое туннелирование электронов и Лавинный пробой .

Стабилитрон в основном используется в конфигурации с обратным смещением.Он обеспечивает стабилизированное напряжение для защиты цепей от перенапряжения.

Обратный диод

Обратный диод или задний диод представляет собой диод с P-N переходом, который работает аналогично туннельному диоду и стабилитрону . Но рабочие напряжения намного ниже.

Обратный диод — это, по сути, туннельный диод, у которого одна сторона перехода имеет относительно меньшую концентрацию легирования по сравнению с другой стороной.

В прямом смещении он работает как туннельный диод , но его туннельный эффект значительно снижен по сравнению с туннельным диодом.В противном случае он работает как обычный диод с фазовым переходом.

В с обратным смещением он работает как стабилитрон , но напряжения пробоя намного ниже.

Широко не используется, но может использоваться для выпрямления слабого сигнала напряжения (от 0,1 до 0,6 В). Благодаря высокой скорости переключения его можно использовать в качестве переключателя в ВЧ-смесителе и умножителе.

Лавинный диод

Лавинный диод представляет собой диод с P-N переходом, который специально разработан для работы в области лавинного пробоя .

Лавинный пробой — это явление, при котором на переход P-N подается достаточное обратное напряжение. За счет этого неосновной носитель ионизируется и запускает сильный ток в обратном направлении.

Лавинный диод электрически аналогичен стабилитрону. Однако концентрация легирования стабилитрона относительно выше по сравнению с лавинным диодом.

Сильное легирование внутри стабилитрона создает небольшой переход, и низкие напряжения могут легко его сломать.Однако лавинный диод имеет широкий переход из-за концентрации легкого легирования. Таким образом, для его пробоя требуется высокое напряжение. Этот широкий переход делает его лучшим устройством защиты от перенапряжения по сравнению с простым стабилитроном.

Диод подавления переходного напряжения (TVS)

Диод подавления переходного напряжения или TVS-диод — это тип лавинного диода, который защищает цепь от скачков напряжения.

TVS-диод способен выдерживать высокие напряжения по сравнению с лавинным диодом.

Однонаправленный TVS-диод работает аналогично лавинному диоду. он действует как выпрямитель при прямом смещении и как устройство защиты от перенапряжения при обратном смещении.

Двунаправленный TVS-диод действует как два лавинных диода, последовательно противостоящих друг другу. Он изготавливается как однокомпонентный. Он работает в обоих направлениях и обеспечивает защиту от перенапряжения при использовании параллельно с цепью.

Диод, легированный золотом

В диоде такого типа в качестве легирующей примеси (легирующего материала) используется золото или платина.Это позволяет диоду работать с высокой скоростью переключения, но за счет увеличения прямого падения напряжения. Кроме того, его обратный ток утечки выше, чем у обычного диода с P-N переходом.

Диод постоянного тока

Диод постоянного тока AKA токоограничивающий диод (CLD) представляет собой двухконтактный диод, сделанный из JFET. Он регулирует ток через него до фиксированного уровня.

CLD создается путем короткого контакта между затвором и истоком JFET.Он ограничивает ток так же, как стабилитрон ограничивает напряжение.

Диод восстановления шага

Диод восстановления шага или импульсный диод представляет собой диод с фазовым переходом, который резко прекращает прохождение тока при изменении его направления.

SRD (ступенчатый восстанавливающий диод) состоит из P-N перехода с очень низкой концентрацией легирования рядом с переходом. За счет этого уменьшается количество носителей заряда (электронов и дырок) вблизи перехода. Следовательно, емкость накопления заряда вблизи перехода становится незначительной.Это позволяет SRD очень быстро переключаться с ВКЛ на ВЫКЛ.

В нормальном диоде, когда он переключается с прямой проводимости на обратную отсечку, ток кратковременно течет из-за накопленного заряда. Из-за чего нормальному диоду требуется некоторое время на переключение. SRD не накапливает заряд, поэтому может мгновенно прекратить прохождение тока.

Пельтье или термодиоды

Пельтье или термодиоды — это тип диодов, тепловое сопротивление которых в одном направлении отличается от другого.Таким образом, выделяемое тепло течет в одном направлении в одну сторону (терминал) и оставляет другую сторону более холодной.

Этот диод используется для контроля температуры в микропроцессоре и в холодильниках для эффекта охлаждения.

Вакуумный диод

Это простейшая форма диода, состоящая из вакуумной трубки и двух электродов (катода и анода). Анод и катод заключены внутри вакуумной трубки (пустой стакан).

Когда катод нагревается, он испускает электроны, анод улавливает электроны, и поток продолжается.

Катод может нагреваться прямо или косвенно.

При прямом смещении свободный электрон на катоде выделяется в вакуум после нагрева. Анод собирает эти электроны, и ток течет.

При обратном смещении свободный электрон в вакууме отталкивается анодом, поскольку он подключен к отрицательной клемме, поэтому ток не течет.

Таким образом, ток течет только в одном направлении.

Варакторный диод

Варакторный диод, также известный как диод Верикапа, представляет собой конденсаторы с регулируемым напряжением.У них есть переход P-N с переменной емкостью перехода.

Варакторный диод работает в условиях обратного смещения. Слой обеднения между материалами P- и N-типа варьируется путем изменения обратного напряжения.

Емкость перехода всех диодов зависит от обратного напряжения, но варакторный диод может использовать этот эффект с большим диапазоном емкости.

Диоды Varactor применяются в качестве генератора , управляемого напряжением, в контуре фазовой синхронизации, в фильтрах настройки RF и умножителях частоты .

Связанный пост: Типы микросхем. Классификация интегральных схем и их ограничения

Диод Ганна

Диод Ганна AKA « Transferred Electron Device » (TED) — это тип диода, имеющего отрицательное сопротивление, как туннельный диод. Он назван в честь британского физика Дж. Б. Ганна , открывшего « Эффект Ганна » в 1962 году.

Диод Ганна не имеет P-N перехода. Фактически, он состоит только из материала типа N, поэтому он не выпрямляет переменный ток и не работает как обычный диод.Это также причина того, что многие люди называют его «устройством с переносом электронов» (TED) вместо диода.

Состоит из трех слоев N-типа; два из них, которые находятся на стороне вывода, имеют более высокую концентрацию легирования, тогда как средний тонкий слой имеет меньшую концентрацию легирования.

Когда напряжение подается на диод Ганна, сначала его ток увеличивается с увеличением напряжения.

При более высоком напряжении сопротивление среднего слоя начинает увеличиваться с увеличением напряжения.Это приводит к падению тока. Это область отрицательного сопротивления . В этой области работает и диод Ганна.

Диод Ганна используется в генераторе для генерации микроволн высокой частоты .

PIN-диод

PIN-диод — это трехслойный диод, то есть P-слой, I-слой и N-слой. Собственный полупроводниковый слой « I » расположен между сильно легированным P и полупроводником N-типа.

Электрон и дырки из области N- и P-типа соответственно текут во внутреннюю область (I).Как только область «I» полностью заполняется электронными дырками, диод начинает проводить.

При обратном смещении широкий внутренний слой диода может блокировать и выдерживать высокие обратные напряжения.

При более высокой частоте PIN-диод действует как линейный резистор. Это из-за того, что PIN-диод имеет плохое время обратного восстановления . Причина в том, что сильно заряженная область «I» не успевает разрядиться во время быстрых циклов.

На низкой частоте действует как выпрямительный диод.Потому что у него достаточно времени, чтобы разрядиться и выключиться во время цикла.

Если фотон попадает в область «I» PIN-диода с обратным смещением, он создает пару электрон-дырка. Эта электронно-дырочная пара течет как ток. Таким образом, он также используется в фотодетекторах и фотоэлектрических элементах .

PIN диоды используются в выпрямлении высокого напряжения, в ВЧ приложениях в качестве аттенюатора и переключающего элемента.

Кремниевый управляемый выпрямитель (SCR)

SCR — это четырехслойное полупроводниковое переключающее устройство типа P-N-P-N.Он имеет три терминала: анод, катод и затвор.

SCR — это, по сути, диод с входом внешнего управления, известным как вход затвора. Это позволяет току течь в одном направлении.

Когда SCR подключен в прямом смещении, он еще не позволяет протекать току. Это известно как режим блокировки пересылки .

Для того, чтобы тиристор работал в прямом режиме, ему необходимо либо необходимое напряжение, чтобы пересечь его предел отключения, либо подать положительный импульс на вход затвора.

Чтобы выключить SCR, либо уменьшите ток ниже точки удерживающего тока, либо выключите вход затвора и на мгновение закоротите анод-катод.

При обратном смещении тиристор не пропускает ток даже после подачи затвора. Но если обратное напряжение достигает обратного напряжения пробоя, тиристор начинает проводить из-за лавинного явления.

SCR используется для управления цепями большой мощности, выпрямления переменного тока большой мощности.

Диод Шокли

Диод Шокли представляет собой четырехслойный диод PNPN.Он похож на SCR, но у него нет входа управления или затвора.

Диод Шокли имеет тенденцию оставаться «ВКЛЮЧЕННЫМ», когда он включен «ВКЛЮЧЕННЫМ», и имеет тенденцию оставаться «ВЫКЛЮЧЕННЫМ», когда он «ВЫКЛЮЧЕН».

Как мы знаем, диод Шокли не имеет входа затвора, поэтому единственный способ включить его — подать прямое напряжение, превышающее его напряжение пробоя.

После подачи напряжения, превышающего его напряжение пробоя, он пропускает ток.

В состоянии проводимости он не выключится, даже если напряжение снизится от напряжения пробоя.Чтобы он отключился, напряжение должно быть достаточно ниже, чем его напряжение пробоя.

Диод с точечным контактом

Он также известен как диод Cat Whisker или кристаллический диод .

Это тип диода, в котором между металлической проволокой и полупроводниковым кристаллом N-типа образован небольшой точечный переход.

« кошачий ус » представляет собой тонкую пружинящую проволоку из фосфорной бронзы или вольфрама. Он создает точечный переход с полупроводником N-типа, отсюда и название точечный диод .

Поскольку образующийся переход очень мал, емкость перехода точечного диода очень мала. Таким образом, емкость накопителя для заряда очень мала, что делает его устройством быстрого переключения.

Во время производства пропускание относительно большого тока через провод кошачьих усов приводит к образованию небольшой P-области на полупроводнике N-типа . Этот небольшой переход действует как переход P-N.

Диоды с точечным контактом используются для сигналов низкого напряжения, а также в микроволновых смесителях и детекторах.

Это одни из наиболее распространенных типов диодов, используемых при проектировании и эксплуатации электронных схем. Если вы хотите добавить другие типы диодов, сообщите нам об этом в поле для комментариев ниже.

Различные типы диодов и принцип их работы

Стабилитрон, Шоттки, выпрямители, тиристоры, кремний и симисторы

Автор: Меган Тунг

Диод — это электрическое устройство с двумя выводами. Диоды изготавливаются из полупроводника, чаще всего кремния, но иногда и германия. Существуют различные типы диодов, но здесь обсуждаются стабилитрон, выпрямитель, шоттки, ограничитель переходного напряжения, тиристор, кремниевый выпрямитель и симистор.На затвор выбора транзистора подается импульс «включено», вызывая большой ток стока. Высокое напряжение на соединении затвора притягивает электроны, которые проникают через тонкий оксид затвора и накапливаются на плавающем затворе. EPROM можно стереть, подвергнув его воздействию сильного ультрафиолетового источника света, что означает, что они могут быть перезаписаны много раз (в отличие от PROM). EPROM не подходят для хранения информации, которая будет часто меняться, потому что для перепрограммирования чип нужно будет удалить из устройства, в котором он находится.

Стабилитроны

Стабилитроны

— это кремниевые полупроводниковые устройства, которые позволяют току течь либо в прямом (от анода к катоду), либо в обратном направлении. Сильнолегированный p-n переход позволяет устройству проводить в обратном направлении при достижении напряжения пробоя. Обратный пробой Зенера происходит из-за квантового туннелирования электронов, вызванного сильным электрическим полем. В режиме прямого смещения стабилитроны работают как обычные диоды. При подключении в обратном режиме может протекать небольшой ток утечки.Когда обратное напряжение увеличивается ближе к напряжению пробоя, через диод начинает течь ток. Максимальный ток определяется последовательным резистором. По достижении максимума ток стабилизируется и остается постоянным в широком диапазоне приложенных напряжений.

Выпрямители

Выпрямители — это двухпроводные полупроводники, которые пропускают ток только в одном направлении. Выпрямитель состоит из одного или нескольких диодов, которые преобразуют переменный ток (AC) в постоянный (DC).Полупериодный выпрямитель — это когда на вход подается питание переменного тока, только положительный полупериод становится видимым через нагрузку, в то время как отрицательный полупериод покрывается (блокируется или теряется). В однополупериодном выпрямителе используется только один диод. Двухполупериодные выпрямители преобразуют полный входной сигнал переменного тока (положительный полупериод и отрицательный полупериод) в пульсирующий выходной сигнал постоянного тока. Для двухполупериодного выпрямителя используются два или четыре диода. КПД полуволнового выпрямителя ниже, потому что видна только положительная часть входной формы волны.Выпрямители используются в различных устройствах, включая источники питания постоянного тока, радиосигналы или детекторы, системы передачи электроэнергии постоянного тока высокого напряжения и некоторые бытовые приборы (ноутбуки, игровые системы и телевизоры).

Диоды Шоттки

Диоды Шоттки — это полупроводниковые устройства, образованные соединением кремниевого полупроводника (n-типа) с металлическим электродом. Диоды Шоттки известны своим быстрым переключением и низким прямым падением. Прямое падение напряжения существенно меньше, чем у обычного кремниевого диода с p-n переходом.Падение напряжения в диодах Шоттки обычно находится в пределах 0,15-0,45 В. При прямом смещении электроны перемещаются от материала n-типа к металлическому электроду, позволяя течь току. Диоды Шоттки не имеют обедненного слоя, что означает, что они униполярны.

Ограничитель переходного напряжения

Диоды ограничителя переходного напряжения (TVS) используются для защиты электроники от скачков напряжения. Переходные процессы — это временные скачки напряжения или тока, которые могут отрицательно повлиять на цепи.TVS-диоды шунтируют избыточный ток, когда индуцированное напряжение превышает потенциал лавинного пробоя. Благодаря своей способности подавлять все перенапряжения, превышающие его напряжение пробоя, TVS является фиксирующим устройством. TVS может быть однонаправленным или двунаправленным. Однонаправленный допускает только напряжение выше или ниже земли (положительное или отрицательное напряжение). Двунаправленный выбирается, когда ожидается, что защищенный сигнал будет колебаться над или под землей, например, при переменном напряжении или сигнале постоянного тока предназначен для работы как с положительным, так и с отрицательным напряжением.Некоторые из приложений включают линии передачи данных и сигналов, микропроцессоры и MOS-память, линии электропередач переменного тока, телекоммуникационное оборудование и переключение / ограничение в цепях / системах с низким энергопотреблением.

Тиристорные диоды

Тиристорные диоды — это три оконечных устройства. Три терминала — затвор, анод и катод. Затвор управляет током, протекающим между анодом и катодом. В тиристорном диоде небольшой ток на затворе вызывает гораздо больший ток между анодом и катодом.Даже если ток затвора убран, больший ток продолжает течь от анода к катоду. Диод остается в этом состоянии до сброса цепи. В семействе тиристоров есть несколько типов диодов, в том числе тиристоры и симисторы.

Выпрямители с кремниевым управлением

Выпрямители с кремниевым управлением (SCR)

— это тип диодов из семейства тиристоров. SCR — это четырехслойные твердотельные устройства управления током. Четыре слоя полупроводника — это P-N-P-N. Есть три вывода: анод, катод и затвор.Устройство состоит из кремниевого материала, который контролирует высокую мощность и преобразует сильный переменный ток в постоянный ток (выпрямление). SCR однонаправленные, электрический ток допускается только в одном направлении. SCR используются в приложениях управления мощностью, таких как мощность, подаваемая на электродвигатели, управление системой освещения, реле управления или индукционные нагревательные элементы.

ТРИАК

TRIAC — это три оконечных устройства, также принадлежащих к семейству тиристоров. Первый вывод — это вентиль, который действует как триггер для включения устройства.Два других вывода называются анодом 1 и анодом 2 (также называются основным выводом 1 и основным выводом 2). Эти две клеммы не взаимозаменяемы, ток затвора должен поступать со стороны анода 2 схемы. Схема аналогична двум SCR, соединенным встык параллельно; тем не менее, TRIAC фактически построены из цельного куска полупроводникового материала, который соответствующим образом легирован и имеет слои. TRIAC переключают высокое напряжение и большой ток. Это двунаправленные переключатели, поэтому ток может проходить в обоих направлениях после срабатывания затвора.Некоторые из приложений включают управление мощностью переменного тока, регуляторы освещенности, управление двигателем и другие простые схемы с низким энергопотреблением, где требуется переключение мощности.


Меган Тунг проходит летнюю стажировку в Jameco Electronics , посещает Калифорнийский университет в Санта-Барбаре (UCSB). Ее интересы включают фотографию, музыку, бизнес и инженерное дело.

Обзор, символы, работа и применение

Диод — это электрическое устройство с двумя выводами, которое позволяет передавать ток только в одном направлении.Диод также известен своим свойством однонаправленного тока, когда электрический ток может течь в одном направлении. В основном диод используется для выпрямления сигналов в радиодетекторах или в источниках питания. Они также могут использоваться в различных электрических и электронных схемах, где требуется «односторонний» результат диода. Большинство диодов изготовлено из полупроводников, таких как Si (кремний), но в некоторых случаях также используется Ge (германий). Иногда полезно резюмировать существующие типы диодов.Некоторые из типов могут перекрываться, но различные определения могут быть полезны для сужения области и предложения обзора различных типов диодов.


Какие бывают типы диодов?

Существует несколько типов диодов, и они доступны для использования в электронике, а именно: обратный диод, диод БАРРИТТ, диод Ганна, лазерный диод, светоизлучающие диоды, легированные золотом диоды , кристаллический диод , PN переход, диод Шокли , ступенчатый восстанавливающий диод, туннельный диод, варакторный диод и стабилитрон .

Типы диодов

Подробное описание диодов

Расскажем подробнее о принципе работы диода .

Обратный диод

Этот тип диода также называют обратным диодом, и он не очень распространен. Обратный диод представляет собой диод с PN-переходом, который работает аналогично туннельному диоду. Сценарий квантового туннелирования несет важную ответственность за проведение тока в основном в обратном направлении. С помощью изображения энергетической зоны можно узнать точную работу диода.

Работа обратного диода

Полоса, которая лежит на самом верхнем уровне, называется зоной проводимости, тогда как полоса нижнего уровня называется валентной зоной. Когда к электронам прикладывается энергия, они стремятся набрать энергию и двигаться к зоне проводимости. Когда электроны переходят из валентной зоны в зону проводимости, их место в валентной зоне остается с дырками.

В состоянии нулевого смещения занятая валентная зона противоположна занятой зоне проводимости.Тогда как в состоянии обратного смещения P-область имеет движение вверх, соответствующее N-области. Теперь занятая полоса в P-секции контрастирует с пустой полосой в N-секции. Таким образом, электроны начинают туннелировать из занятой зоны в P-секции в свободную зону в N-секции.

Таким образом, это означает, что ток протекает также и при обратном смещении. В состоянии прямого смещения N-область имеет движение вверх, соответствующее P-области. Теперь занятая полоса в N-секции контрастирует с вакантной полосой в P-секции.Таким образом, электроны начинают туннелировать из занятой зоны в N-секции в свободную зону в P-секции.

В этом типе диода формируется область отрицательного сопротивления, которая используется в основном для работы диода.

Обратный диод
Диод BARITT

Расширенный член этого диода — это диод с временным переходом через барьер, который является диодом BARITT. Он применим в микроволновых приложениях и позволяет проводить много сравнений с более широко используемым диодом IMPATT.Эта ссылка показывает четкое описание того, что такое диод BARRITT, его работа и реализации.

Диод Ганна

Диод Ганна — это диод с PN переходом, этот тип диода представляет собой полупроводниковое устройство с двумя выводами. Обычно он используется для создания микроволновых сигналов. Пожалуйста, обратитесь к приведенной ниже ссылке, чтобы узнать о работе, характеристиках и применении диода Ганна.

Ганна Диоды
Лазерный диод

Лазерный диод не имеет аналогичного процесса, как у обычного светодиода (светоизлучающего диода), потому что он излучает когерентный свет.Эти диоды широко используются для различных целей, таких как DVD, CD-приводы и лазерные указатели для PPT. Хотя эти диоды недорогие, чем другие типы лазерных генераторов, они намного дороже светодиодов. У них тоже неполная жизнь.

Лазерный диод
Светоизлучающий диод

Термин LED означает светоизлучающий диод, это один из самых стандартных типов диодов. Когда диод подключен с прямым смещением, ток течет через переход и генерирует свет.Есть также много новых светодиодных разработок, которые меняются, они представляют собой светодиоды и OLED. Одна из основных концепций светодиода — это его ВАХ. Разберемся подробнее с характеристиками светодиодов.

Характеристики светоизлучающих диодов

Прежде чем светодиод излучает свет, он требует прохождения тока через диод, потому что это диод, основанный на токе. Здесь интенсивность света прямо пропорциональна прямому направлению тока, протекающего через диод.

Когда диод проводит ток в прямом смещении, тогда должен быть установлен резистор, ограничивающий ток, чтобы защитить диод от дополнительного протекания тока. Следует отметить, что не должно быть прямого соединения между источником питания и светодиодом, когда это вызывает мгновенное повреждение, потому что это соединение позволяет протекать чрезмерно сильному току и сжигать устройство.

Работа светодиода

Каждый тип светодиодного устройства имеет свои собственные потери прямого напряжения через PN-переход, и это ограничение определяется типом используемого полупроводника.Это определяет величину падения напряжения для соответствующей величины передаваемого тока, как правило, для значения тока 20 мА.

В большинстве сценариев светодиоды работают от минимальных уровней напряжения при последовательном включении резистора, Rs используется для ограничения прямого тока до защищенного уровня, который обычно составляет от 5 мА до 30 мА, когда требуется усиление. яркость.

Различные светодиоды излучают свет в соответствующих областях УФ-спектра, поэтому они генерируют разные уровни интенсивности света.О конкретном выборе полупроводника можно узнать по всей длине волны излучения фотонов и, следовательно, по произведенному соответствующему свету. Цвета светодиода следующие:

Тип полупроводника

Длина волны Расстояние Цвет

прямое напряжение при 20 мА

GaAS 850-940 нм Инфракрасный 1.2в
GaAsP 630-660 нм Красный 1,8 В
GaAsP 605-620 нм Янтарь 2,0 В
GaAsP: N 585-595 нм Желтый 2,2 В
AIGaP 550-570 нм Зеленый 3,5 В
SiC 430-505 нм Синий 3,6 В
GalnN 450 нм Белый 4.0v

Таким образом, точный цвет светодиода определяется расстоянием излучаемой длины волны. А длина волны известна по определенному составу полупроводника, который используется в PN-переходе во время его производственного процесса. Таким образом, стало ясно, что цвет свечения светодиода не связан с используемым мутным пластиком. Но также они увеличивают яркость света, когда они не освещены током. С помощью комбинации различных полупроводниковых, газообразных и металлических веществ можно получить следующие светодиоды:

  • Арсенид галлия (GaAs) инфракрасный
  • Фосфид арсенида галлия (GaAsP) варьируется от красного до инфракрасного и оранжевого
  • Фосфид арсенида галлия алюминия (AlGaAsP), который имеет ярко-красный, оранжевый тип красного, оранжевого и желтого цветов.
  • Фосфид галлия (GaP) существует в красном, желтом и зеленом цветах
  • Фосфид алюминия-галлия (AlGaP) — в основном зеленого цвета
  • Нитрид галлия (GaN), доступный в зеленом и изумрудно-зеленом цветах
  • Нитрид галлия-индия (GaInN), близкий к ультрафиолетовому, смешанный цвет синего, зеленого и синего
  • Карбид кремния (SiC) доступен в синем цвете в качестве подложки
  • Селенид цинка (ZnSe) существует в синем цвете
  • Нитрид алюминия-галлия (AlGaN), ультрафиолетовый
Фотодиод

Фотодиод используется для обнаружения света.Обнаружено, что когда свет попадает на PN-переход, он может создавать электроны и дырки. Как правило, фотодиоды работают в условиях обратного смещения, когда даже небольшое количество тока, проистекающего из света, можно просто заметить. Эти диоды также можно использовать для выработки электроэнергии.

Фото диод
PIN диод

Этот тип диодов отличается своей конструкцией. Он имеет стандартные области P-типа и N-типа, но область между двумя областями, а именно собственный полупроводник, не имеет легирования.Область собственного полупроводника имеет эффект увеличения площади обедненной области, что может быть полезно для переключения приложений.

PIN-диод

Отрицательные и положительные носители заряда из областей N- и P-типа, соответственно, перемещаются во внутреннюю область. Когда эта область полностью заполнена электронными дырками, диод начинает проводить. В состоянии обратного смещения широкий внутренний слой диода может предотвращать и выдерживать высокие уровни напряжения.

При повышенных уровнях частоты PIN-диод будет работать как линейный резистор. Он работает как линейный резистор, потому что у этого диода недостаточное время обратного восстановления . Это причина того, что сильно заряженная электрическая область «I» не успевает разрядиться во время быстрых циклов. А на минимальных уровнях частоты диод работает как выпрямительный диод, где у него достаточно времени для разрядки и выключения.

PN Соединительный диод

Стандартный PN переход можно рассматривать как обычный или стандартный тип диодов, используемых сегодня.Это самый известный из различных типов диодов, используемых в электрической сфере. Но эти диоды могут применяться как малосигнальные для использования в ВЧ (радиочастоты) или других слаботочных приложениях, которые можно назвать сигнальными диодами. Другие типы могут быть спроектированы для приложений высокого напряжения и высокого тока и обычно называются выпрямительными диодами. В диоде с PN-переходом необходимо избегать условий смещения. В основном есть три условия смещения, и это зависит от приложенного уровня напряжения.

  • Прямое смещение — здесь положительная и отрицательная клеммы подключены к типам P и N.
  • Обратное смещение — здесь положительная и отрицательная клеммы подключены к типам N и P диода.
  • Нулевое смещение — это называется смещением «0», потому что на диод не подается внешнее напряжение.
Прямое смещение PN переходного диода

В состоянии прямого смещения PN-переход возникает, когда положительный и отрицательный края батареи подключены к типам P и N.Когда диод работает в режиме прямого смещения, тогда внутренние и приложенные электрические поля на переходе имеют противоположные пути. Когда эти электрические поля суммируются, то уровень величины последующей выходной мощности меньше, чем у приложенного электрического поля.

Прямое смещение в типах PN-переходов диодов

Это соединение приводит к минимальному резистивному пути и меньшей площади истощения. Сопротивление области истощения становится более незначительным, когда значение приложенного напряжения больше.Например, в кремниевом полупроводнике, когда значение приложенного напряжения составляет 0,6 В, значение сопротивления обедненного слоя становится совершенно незначительным, и через него будет проходить беспрепятственный ток.

Обратное смещение PN переходного диода

Здесь соединение состоит в том, что положительный и отрицательный края батареи подключены к областям N-типа и P-типа. Это формирует PN-переход с обратным смещением. В этой ситуации приложенные и внутренние электрические поля имеют одинаковое направление.Когда оба электрических поля суммируются, тогда результирующая траектория электрического поля аналогична траектории внутреннего электрического поля. Это приводит к образованию более толстой и увеличенной резистивной области истощения. Область истощения становится более чувствительной и толстой, когда прикладываемый уровень напряжения становится все больше и больше.

Обратное смещение в PN-переходном диоде
Характеристики V-I PN-переходного диода

Кроме того, еще более важно знать характеристики V-I диода с PN переходом.

Когда диод работает в состоянии смещения «0», что означает, что на диод не подается внешнее напряжение. Это означает, что потенциальный барьер ограничивает прохождение тока.

Принимая во внимание, что когда диод работает в условиях прямого смещения, будет более тонкий потенциальный барьер. В диодах силиконового типа, когда значение напряжения составляет 0,7 В, и в диодах германиевого типа, когда значение напряжения составляет 0,3 В, ширина потенциального барьера уменьшается, и это позволяет току течь через диод.

Характеристики VI в PN-диоде

В этом случае будет постепенное увеличение значения тока, и результирующая кривая будет нелинейной, поскольку уровень приложенного напряжения преодолевает потенциальный барьер. Когда диод преодолевает этот потенциальный барьер, диод функционирует в нормальном состоянии, и форма кривой постепенно становится резкой (приобретает линейную форму) с увеличением значения напряжения.

Когда диод работает в режиме обратного смещения, будет повышенный потенциальный барьер.Поскольку в переходе будут присутствовать неосновные носители заряда, это позволяет протекать обратному току насыщения. Когда есть повышенный уровень приложенного напряжения, неосновные носители заряда обладают повышенной кинетической энергией, которая оказывает влияние на основные носители заряда. На этом этапе происходит пробой диода, что может привести к его повреждению.

Диод Шоттки

Диод Шоттки имеет меньшее прямое падение напряжения, чем обычные кремниевые диоды с PN переходом.При малых токах падение напряжения может составлять от 0,15 до 0,4 вольт, в отличие от 0,6 вольт для диода a-Si. Для достижения этих характеристик они разработаны иначе, чем обычные диоды, имеющие контакт металл-полупроводник. Эти диоды широко используются в выпрямителях, ограничивающих диодах, а также в ВЧ приложениях.

Диод Шоттки
Ступенчатый восстанавливающий диод

Ступенчатый восстанавливающий диод — это разновидность микроволнового диода, используемого для генерации импульсов на очень ВЧ (высоких частотах).Эти диоды зависят от диода, который имеет очень быструю характеристику выключения для их работы.

Пошаговые восстанавливающие диоды
Tunnel Diode

Туннельный диод используется в микроволновых устройствах, где его характеристики превосходят характеристики других устройств того времени.

Туннельный диод

В электрической области туннелирование означает прямое движение электронов через минимальную ширину обедненной области от зоны проводимости к валентной зоне. В диоде с PN-переходом обедненная область создается как электронами, так и дырками.Из-за этих положительных и отрицательных носителей заряда в обедненной области создается внутреннее электрическое поле. Это создает силу на пути, противоположном внешнему напряжению.

При туннельном эффекте, когда есть минимальное значение прямого напряжения, значение прямого тока будет больше. Он может работать как в прямом, так и в обратном режиме смещения. Из-за высокого уровня легирования он также может работать в режиме обратного смещения. С уменьшением барьерного потенциала напряжение пробоя в обратном направлении также уменьшается и приближается к нулю.При таком минимальном обратном напряжении диод может дойти до пробоя. Из-за этого образуется область отрицательного сопротивления.

Варакторный диод или варикап-диод

Варакторный диод — это один из видов полупроводникового твердотельного устройства СВЧ-диапазона, который используется там, где выбирается переменная емкость, которая может быть достигнута путем управления напряжением. Эти диоды еще называют варикозными диодами. Даже при том, что o / p переменной емкости может быть продемонстрировано обычными диодами с PN-переходом.Но этот диод выбран для получения предпочтительных изменений емкости, поскольку это разные типы диодов. Эти диоды сконструированы и усовершенствованы таким образом, чтобы допускать широкий диапазон изменений емкости.

Варакторный диод
Стабилитрон

Стабилитрон используется для обеспечения стабильного опорного напряжения. В результате он используется в огромных количествах. Он работает в условиях обратного смещения и обнаружил, что при достижении определенного напряжения он выходит из строя. Если ток ограничен резистором, он активирует стабильное напряжение, которое будет генерироваться.Этот тип диодов широко используется в качестве опорного напряжения в источниках питания.

Стабилитрон

В составе стабилитрона существуют различные методы. Некоторые из них используются для увеличения рассеиваемой мощности, тогда как другие используются для монтажа на краю. Обычно стабилитрон состоит из минимального стеклянного покрытия. У этого диода есть полоса на одном крае, которая обозначает его как катод.

Стабилитрон

работает так же, как диод, когда он работает в режиме прямого смещения.В то время как при обратном смещении будет возникновение минимального тока утечки. Когда происходит увеличение обратного напряжения до напряжения пробоя, это создает ток, протекающий через диод. Текущее значение будет достигнуто до максимума, и это будет зафиксировано последовательным резистором.

Применение стабилитрона

Стабилитроны находят широкое применение, и лишь немногие из них:

  • Используется как ограничитель напряжения для регулирования уровней напряжения при минимальном значении нагрузки
  • Применяется в приложениях, требующих защиты от перенапряжения
  • Используется в схемах отсечения

Ниже перечислены некоторые другие типы диодов, которые используются в различных приложениях.

  • Лазерный диод
  • Лавинный диод
  • Диод подавления переходных процессов напряжения
  • Золото легированный диод
  • Тип диода постоянного тока
  • Диод Пельтье
  • Выпрямительный диод с кремниевым управлением

Каждый диод имеет свои преимущества и применение.Немногие из них широко используются в различных приложениях в нескольких областях, тогда как некоторые из них используются только в нескольких приложениях. Таким образом, речь идет о различных типах диодов и их использовании. Мы надеемся, что вы лучше понимаете эту концепцию или для реализации электрических проектов, пожалуйста, дайте свои ценные предложения, комментируя в разделе комментариев ниже. Вот вам вопрос, Какая функция диода?

Поставщики и ресурсы беспроводной связи RF

О компании RF Wireless World

Веб-сайт RF Wireless World является домом для поставщиков и ресурсов радиочастотной и беспроводной связи.На сайте представлены статьи, руководства, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тестирование и измерения, калькуляторы, новости, книги, загрузки и многое другое.

Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, оптоволокно, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, Bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. Д. Эти ресурсы основаны на стандартах IEEE и 3GPP.Он также имеет академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и MBA.

Статьи о системах на основе Интернета вещей

Система обнаружения падений для пожилых людей на основе Интернета вещей : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей. В нем упоминаются преимущества или преимущества системы обнаружения падений Интернета вещей. Читать дальше➤
Также ссылайтесь на другие статьи о системах на основе IoT следующим образом:
• Система очистки туалетов самолета. • Система измерения столкновений • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной торговли • Система мониторинга качества воды. • Система Smart Grid • Система умного освещения на базе Zigbee • Интеллектуальная система парковки на базе Zigbee. • Система умной парковки на основе LoRaWAN


RF Статьи о беспроводной связи

В этом разделе статей представлены статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE / 3GPP и т. Д. .стандарты. Он также охватывает статьи, относящиеся к испытаниям и измерениям, по тестированию на соответствие, используемым для испытаний устройств на соответствие RF / PHY. УКАЗАТЕЛЬ СТАТЬИ ДЛЯ ССЫЛКИ >>.


Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Читать дальше➤


Основы повторителей и типы повторителей : В нем объясняются функции различных типов ретрансляторов, используемых в беспроводных технологиях.Читать дальше➤


Основы и типы замирания : В этой статье рассматриваются мелкомасштабные замирания, крупномасштабные замирания, медленные, быстрые и т. Д., Используемые в беспроводной связи. Читать дальше➤


Архитектура сотового телефона 5G : В этой статье рассматривается структурная схема сотового телефона 5G с внутренними модулями 5G Архитектура сотового телефона. Читать дальше➤


Основы помех и типы помех: В этой статье рассматриваются помехи в соседнем канале, помехи в совмещенном канале, Электромагнитные помехи, ICI, ISI, световые помехи, звуковые помехи и т. Д.Читать дальше➤


5G NR Раздел

В этом разделе рассматриваются функции 5G NR (New Radio), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. Д. 5G NR Краткий указатель ссылок >>
• Мини-слот 5G NR • Часть полосы пропускания 5G NR • 5G NR CORESET • Форматы DCI 5G NR • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Эталонные сигналы 5G NR • 5G NR m-последовательность • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • Уровень MAC 5G NR • Уровень 5G NR RLC • Уровень 5G NR PDCP


Учебные пособия по беспроводным технологиям

В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводной связи.Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, WLAN, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. Д. См. УКАЗАТЕЛЬ >>


Учебное пособие по 5G — В этом учебном пособии по 5G также рассматриваются следующие подтемы по технологии 5G:
Учебное пособие по основам 5G Частотные диапазоны руководство по миллиметровым волнам Волновая рама 5G мм Зондирование волнового канала 5G мм 4G против 5G Испытательное оборудование 5G Сетевая архитектура 5G Сетевые интерфейсы 5G NR канальное зондирование Типы каналов 5G FDD против TDD Разделение сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G TF


В этом руководстве GSM рассматриваются основы GSM, сетевая архитектура, сетевые элементы, системные спецификации, приложения, Типы пакетов GSM, структура или иерархия кадров GSM, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM, установка вызова или процедура включения питания, MO-вызов, MT-вызов, VAMOS, AMR, MSK, модуляция GMSK, физический уровень, стек протоколов, основы работы с мобильным телефоном, Планирование RF, нисходящая линия связи PS-вызовов и восходящая линия связи PS-вызовов.
➤Подробнее.

LTE Tutorial , охватывающий архитектуру системы LTE, охватывающий основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он обеспечивает связь с обзором системы LTE, радиоинтерфейсом LTE, терминологией LTE, категориями LTE UE, структурой кадра LTE, физическим уровнем LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, передача голоса по LTE, расширенный LTE, Поставщики LTE и LTE vs LTE продвинутые.➤Подробнее.


RF Technology Stuff

Эта страница мира беспроводной радиосвязи описывает пошаговое проектирование преобразователя частоты RF на примере преобразователя RF UP от 70 МГц до диапазона C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO, колодки аттенюатора. ➤Подробнее.
➤Проектирование и разработка радиочастотного трансивера ➤Конструкция RF-фильтра ➤Система VSAT ➤Типы и основы микрополосковой печати ➤ОсновыWaveguide


Секция испытаний и измерений

В этом разделе рассматриваются контрольно-измерительные ресурсы, испытательное и измерительное оборудование для тестирования DUT на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.ИНДЕКС испытаний и измерений >>
➤Система PXI для T&M. ➤ Генерация и анализ сигналов ➤Измерения слоя PHY ➤Тест на соответствие устройства WiMAX ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤Тест на соответствие TD-SCDMA


Волоконно-оптическая технология

Основы волоконно-оптического компонента , включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в оптоволоконной связи. Оптические компоненты INDEX >>
➤Учебное пособие по оптоволоконной связи ➤APS в SDH ➤SONET основы ➤SDH Каркасная конструкция ➤SONET против SDH


Поставщики и производители радиочастотной беспроводной связи

Сайт RF Wireless World охватывает производителей и поставщиков различных радиочастотных компонентов, систем и подсистем для ярких приложений, см. ИНДЕКС поставщиков >>.

Поставщики радиочастотных компонентов, включая радиочастотный изолятор, радиочастотный циркулятор, радиочастотный смеситель, радиочастотный усилитель, радиочастотный адаптер, радиочастотный разъем, радиочастотный модулятор, радиочастотный трансивер, PLL, VCO, синтезатор, антенну, генератор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексор, дуплексер, микросхема резистора, микросхема конденсатора, индуктор микросхемы, ответвитель, оборудование ЭМС, программное обеспечение для проектирования радиочастот, диэлектрический материал, диод и т. д.Производители RF компонентов >>
➤Базовая станция LTE ➤RF Циркулятор ➤RF Изолятор ➤Кристаллический осциллятор


MATLAB, Labview, встроенные исходные коды

Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. ИНДЕКС ИСХОДНОГО КОДА >>
➤3-8 декодер кода VHDL ➤Код MATLAB для дескремблера ➤32-битный код ALU Verilog ➤T, D, JK, SR триггеры labview коды


* Общая информация о здравоохранении *

Выполните эти пять простых действий, чтобы остановить коронавирус (COVID-19).
СДЕЛАЙТЕ ПЯТЬ
1. РУКИ: часто мойте их
2. КОЛЕНО: Откашляйтесь
3. ЛИЦО: Не трогай его
4. НОГИ: держитесь на расстоянии более 3 футов (1 м) друг от друга
5. ЧУВСТВОВАТЬ: Болен? Оставайся дома

Используйте технологию отслеживания контактов >>, соблюдайте >> рекомендации по социальному дистанцированию и установить систему видеонаблюдения >> чтобы спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таким странам, как США и Китай, остановить распространение COVID-19, поскольку это заразное заболевание.


RF Калькуляторы и преобразователи беспроводной связи

Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц измерения. Сюда входят такие беспроводные технологии, как GSM, UMTS, LTE, 5G NR и т. Д. СПРАВОЧНЫЕ КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR ➤5G NR ARFCN против преобразования частоты ➤Калькулятор скорости передачи данных LoRa ➤LTE EARFCN для преобразования частоты ➤Калькулятор антенн Яги ➤ Калькулятор времени выборки 5G NR


IoT-Интернет вещей Беспроводные технологии

Раздел IoT охватывает беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth Low Power (BLE), NFC, RFID, INSTEON, X10, KNX, ANT +, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики Интернета вещей, компоненты Интернета вещей и компании Интернета вещей.
См. Главную страницу IoT >> и следующие ссылки.
➤ НИТЬ ➤EnOcean ➤Учебник по LoRa ➤Учебник по SIGFOX ➤WHDI ➤6LoWPAN ➤Zigbee RF4CE ➤NFC ➤Lonworks ➤CEBus ➤UPB



СВЯЗАННЫЕ ЗАПИСИ


RF Wireless Учебники



Различные типы датчиков


Поделиться страницей

Перевести страницу

Основы, типы, символы, характеристики, применения и комплектации

Хотя резисторы, конденсаторы и индукторы образуют основные элементы схемы, именно полупроводниковое устройство фактически хранит магию внутри.В каждой электронной схеме есть десятки полупроводниковых устройств, таких как диоды, транзисторы, регуляторы, операционные усилители, переключатели питания и т. Д. Внутри них. У каждого из них есть свои свойства и применение. В этой статье давайте рассмотрим самый простой полупроводниковый прибор — диоды .

Возможно, вы уже слышали болтовню о том, что «Диоды — это полупроводниковые устройства с двумя выводами, которые проводят только в одном определенном направлении, позволяя току проходить через них…», но почему это так? И какое это имеет отношение к нам при разработке схемы? Какие существуют различных типов диодов и в каком приложении мы должны их использовать? Держитесь крепче, потому что вам ответят на все эти вопросы, когда вы прочитаете эту статью.

Что такое диод?

Давайте начнем с ответа на самый простой вопрос. Что такое диод ?

A Диод, как я уже говорил ранее, представляет собой полупроводниковый цилиндрический компонент с двумя выводами. Существует много типов диодов , но наиболее часто используемый из них показан ниже.

Две клеммы называются Анод и Катод , мы рассмотрим символ и способы идентификации клемм позже, но пока просто помните, что любой диод будет иметь только две клеммы (по крайней мере, большинство из них) и они анод и катод.Еще одно золотое правило диодов заключается в том, что они позволяют току проходить через них только в одном направлении, а именно от анода к катоду. Это свойство диода делает его полезным во многих приложениях.

Чтобы понять, почему они действуют только в одном направлении, мы должны посмотреть, как они устроены. Диод изготавливается путем соединения двух одинаково легированных полупроводников P-типа и полупроводникового материала N-типа. Когда эти два материала соединяются вместе, происходит что-то интересное, они образуют еще один небольшой промежуточный слой, называемый слоем истощения.Это связано с тем, что слой P-типа имеет избыточное отверстие, а слой N-типа имеет избыточные электроны, и они оба пытаются диффундировать друг в друга, образуя блокировку с высоким сопротивлением между обоими материалами, как на изображении, показанном ниже. Этот слой блокировки называется слоем истощения.

Этот слой истощения (блокировка) должен быть разрушен, если ток должен протекать через диод. Когда на анод подается положительное напряжение, а на катод — отрицательное напряжение, говорят, что диод находится в прямом смещенном состоянии.В этом состоянии положительное напряжение закачивает больше дырок в область P-типа, а отрицательное напряжение накачивает больше электронов в область N-типа, что вызывает пробой обедненного слоя, заставляя ток течь от анода к катоду. Это минимальное напряжение, необходимое для того, чтобы диод проводил в прямом направлении, называется напряжением прямого пробоя.

В качестве альтернативы, если отрицательное напряжение приложено к аноду, а положительное напряжение приложено к катоду, диод считается находящимся в обратном смещенном состоянии.Во время этого состояния отрицательное напряжение будет накачивать больше электронов в материал P-типа, а материал N-типа получит больше дырок от положительного напряжения, что сделает слой обеднения еще более прочным и, таким образом, не позволит току течь через него. Имейте в виду, что эти характеристики применимы только к идеальному диоду (теоретическому), практически, даже в режиме обратного смещения будет течь небольшой ток. Об этом мы поговорим позже.

Приведенная выше анимация иллюстрирует работу диода в схеме , есть две схемы, в каждой из которых мы пытаемся зажечь светодиод от батареи.В одной цепи диод смещен в прямом направлении, а в другой — в обратном. Во время моделирования вы можете заметить, что только диод с прямым смещением позволяет току течь, хотя он, таким образом, светит светодиод, диод с обратным смещением не позволяет току проходить через него.

Типы диодов, расположение выводов и символы

Теперь, когда мы разобрались с основами диодов, важно знать, что существуют разные типы диодов, каждый из которых имеет свои особые свойства и применение.В этой статье мы рассмотрим только три основных типа диодов: выпрямительный диод, стабилитрон и диод Шоттки. Изображение, клеммы и символы всех диодов приведены в таблице ниже

.

Тип диода

Распиновка

Символ

Выпрямительный диод

Стабилитрон

Диод Шоттки

Как показано в таблице, выпрямительный диод и диод Шоттки похожи по внешнему виду, но диод Шоттки обычно больше по размеру, чем обычные диоды.С другой стороны, стабилитрон можно легко идентифицировать по его характерному оранжевому цвету и серой линии на нем, как показано в таблице выше.

Выводы анода и катода можно определить по серой линии на диоде, контакт рядом с серой линией будет катодом. Точно так же с символами нижняя часть треугольника всегда будет анодом, а другая — катодом. Это очень важно помнить, поскольку при интерпретации схемы подключения диода всегда считалось самооценкой.

Терминология и характеристики диодов

Когда вы выбираете диод для своей схемы или пытаетесь понять работу диода в цепи, вы должны учитывать спецификации диода, которые можно найти в его техническом описании. Чтобы понять, что на самом деле означают значения, давайте рассмотрим несколько часто используемых терминов.

Падение напряжения в прямом направлении (Vf): Когда диод работает в режиме прямого смещения, он позволяет току течь через них.В этом состоянии на диоде будет некоторое падение напряжения, это падение напряжения называется прямым падением напряжения. Для идеального диода он должен быть как можно ниже.

Максимальный ток в прямом направлении (если): мы уже знаем, что диод позволяет току течь через него, когда он находится в прямом смещении, то какой максимальный ток может быть разрешен, соответствует максимальному прямому току. Обычно следует убедиться, что этот ток больше, чем ток нагрузки вашей цепи.

Обратный ток пробоя (Vr): Хорошо, вот уловка, о которой я вам говорил: диод не пропускает ток через себя, когда он смещен в обратном направлении. Это верно, но не для всех значений напряжения. Таким образом, максимальное напряжение, до которого диод может выдержать пробой, называется обратным напряжением пробоя. Обычно значения такого напряжения будут очень высокими, например, если обратное напряжение пробоя составляет 500 В, диод не позволит току проходить через него в обратном смещенном состоянии до тех пор, пока напряжение не превысит эти 500 В.

Обратный ток смещения (Ir): Хотя это правда, что диод не позволяет току течь, хотя в режиме обратного смещения значение тока не будет в идеале равным нулю. Через диод по-прежнему будет протекать очень небольшой и незначительный (в зависимости от схемы) ток. Этот ток называется током с обратным смещением. Значение этого тока будет в диапазоне мА или даже в мкА. Для идеального диода значение этого тока должно быть как можно меньше.Ток называется обратным током утечки.

Время обратного восстановления: предположим, что вы работаете с диодом в режиме прямого смещения, а затем переключаете его в режим обратного смещения, изменяя полярность напряжения. Теперь диод не будет внезапно останавливаться, ему потребуется некоторое время, чтобы заблокировать прохождение тока через него. Это время называется временем обратного восстановления.

Характеристики клемм (I-V) переходного диода: есть еще другие параметры, такие как рассеиваемая мощность, тепловое сопротивление и т. Д.связанный с диодом. Эти значения также можно найти в паспорте диода. Чтобы узнать больше о диоде, давайте посмотрим на важный график диода, который представляет собой кривую зависимости тока от напряжения. Кривая I-V идеального диода будет выглядеть примерно так.

Здесь в первом квадранте вы можете увидеть диод, работающий в режиме прямого смещения, а в третьем квадранте диод работает в области обратного смещения и пробоя. Ось X графика показывает напряжение на диоде, а ось Y показывает ток через диод.В режиме прямого смещения вы можете заметить, что диод начинает проводить (пропускать ток) только тогда, когда напряжение на диоде (V D ) больше 0,5 В, это значение прямого напряжения диода для кремния. На диоде это прямое напряжение может быть до 0,7 В, как показано на графике выше.

Во время обратного смещения напряжение на диоде имеет отрицательный потенциал, поэтому ток также отображается в отрицательном направлении. Здесь, как вы можете видеть, диод не пропускает ток (за исключением небольшого значения), пока не будет достигнуто напряжение пробоя (V BD ).

Цепи приложений

Диоды

имеют широкий спектр применения в зависимости от их свойств и типа. Давайте попробуем охватить наиболее важные применения выпрямителя, стабилитрона и диода Шоттки с их принципиальными схемами.

Выпрямительный диод

Выпрямительный диод или общий диод — это наиболее часто встречающийся диод в любой цепи питания, будь то простой линейный источник питания или цепь SMPS. Как следует из названия, эти диоды используются для выпрямления в таких схемах, как двухполупериодный и полуволновой выпрямитель.Кроме того, они также используются в качестве диодов свободного хода в коммутационных устройствах и схемах преобразователей.

Схема выпрямителя

Выпрямительные диоды используются как в полуволновых, так и в полнополупериодных выпрямительных диодах. Давайте посмотрим на схему полуволнового выпрямителя для простоты. Принципиальная схема и график для однополупериодного выпрямителя показаны ниже

.

Источник входного напряжения Vs представляет собой синусоидальную волну переменного тока со среднеквадратичным напряжением 220 В.Эта волна переменного тока может быть выпрямлена с помощью одного диода. Как показано на графике, во время положительного полупериода диод смещен в прямом направлении, и, следовательно, выходное напряжение присутствует на нагрузке, а ток течет в положительном направлении. Но во время отрицательного полупериода диод смещен в обратном направлении, и, следовательно, ток не достигает нагрузки, а выходное напряжение остается на уровне 0 В, как показано на графике выше. Таким образом, ток всегда может течь только в одном направлении и, таким образом, преобразовывать переменный ток в постоянный.

Конечно, у этой схемы много недостатков, например, выходное напряжение неравномерно и практически не используется. Но теперь, когда у вас есть идея, вы можете изучить полные мостовые выпрямители с четырьмя диодами, которые обычно используются в схемах линейных регуляторов. Также схема выпрямителя будет иметь конденсатор на конце для фильтрации пульсаций, если вы хотите узнать больше о конденсаторах, прочитайте введение в статью о конденсаторах.

Стабилитрон

Стабилитрон широко используется в двух схемах, одна — как грубый стабилизатор напряжения, а другая — как схема защиты от перенапряжения.У стабилитрона есть два важных параметра, на которые следует обратить внимание: напряжение стабилитрона и мощность. Обычно доступные значения диодов: 3,9 В, 4,7 В, 5,1 В, 6,8 В, 7,5 В и 15 В

В приведенной ниже схеме входное напряжение может варьироваться от 0 В до 12 В, но выходное напряжение никогда не будет превышать 5,1 В, поскольку обратное напряжение пробоя (напряжение стабилитрона) стабилитрона составляет 5,1 В. Когда входное напряжение меньше 5,1 В, выходное напряжение будет равно входному напряжению, но когда оно превысит 5.1 В выходное напряжение будет регулироваться до 5,1 В.

Это свойство схемы можно использовать для защиты выводов АЦП (схема защиты от перенапряжения), которые имеют напряжение 5 В, поскольку вывод может считывать напряжение от 0 до 5 В, но если оно превышает 5 В, стабилитрон не допускает превышения напряжения. Точно так же ту же схему можно использовать для регулирования 5,1 В для нагрузки при высоком входном напряжении. Но ограничение по току для такой схемы намного меньше.

При разработке схемы с использованием стабилитрона следует учитывать одну важную вещь — резистор стабилитрона.Этот резистор используется для ограничения тока через стабилитрон, защищая его от нагрева и повреждения. Величина стабилитрона зависит от напряжения стабилитрона и номинальной мощности стабилитрона. Формула для расчета последовательного резистора стабилитрона Rs показана ниже

.

Для стабилитрона 1N4734A значение Vz составляет 5,9 В, а Pz — 500 мВт, теперь при напряжении питания (Vs) 12 В значение Rs будет

.

Rs = (12-5.9) / Iz

Iz = Pz / Vz = 500 мВт / 5.9 В = ~ 85 мА

Следовательно, Rs = (12-5,9) / 85 = 71 Ом

Rs = 71 Ом (приблизительно)

Диод Шоттки

Диод Шоттки также используется в схемах защиты, таких как схема защиты от обратной полярности, из-за низкого падения напряжения в прямом направлении. Давайте посмотрим на общую схему защиты от обратной полярности

Когда Vcc и земля подключены с правильной полярностью, диод проводит в прямом направлении, и НАГРУЗКА получает питание.Преимущество здесь в том, что прямое падение напряжения на диоде очень меньше, скажем, около 0,04 В по сравнению с 0,7 В на выпрямительном диоде. Таким образом, на диоде не будет больших потерь мощности, также диод Шоттки может пропускать больший ток, чем обычный диод, и он также имеет более высокую скорость переключения, поэтому может использоваться в высокочастотной цепи. Теперь, когда я это сказал, у вас может возникнуть вопрос.

В чем разница между диодом Шоттки и общим диодом?

Ну да, диод Шоттки имеет более высокую скорость переключения, низкие потери проводимости и более высокий прямой ток, чем обычный диод.Это может звучать лучше, чем обычный диод, но у него есть один существенный недостаток. То есть он имеет низкое обратное напряжение пробоя, из-за этой особенности он не может использоваться в схемах выпрямителя, так как схемы выпрямителя всегда будут иметь высокое обратное напряжение, появляющееся на нем во время переключения.

Специальные диоды

Помимо широко используемых диодов типа Rectifier, Zener и Schottky существуют и другие специальные диоды, которые имеют специальное применение, позволяющее быстро пробежать через них.

LED: Да, светоизлучающий диод (LED), как следует из названия, является диодом. Вы должны быть уже знакомы с этими вещами, поскольку они обычно встречаются и используются. Опять же, существует много типов светодиодов, но круглый светодиод диаметром 5 мм является наиболее часто встречающимся.

Мостовой выпрямитель: как мы знаем, выпрямительный диод используется в схеме выпрямителя, а для полной мостовой схемы выпрямителя нам потребуются четыре диода, подключенные упорядоченным образом. Сама эта установка доступна в корпусе, называемом выпрямительным диодом.RB156 — один из таких примеров.

Фотодиод: Фотодиод — это диод, который позволяет току проходить через него в зависимости от падающего на него света. Он используется в качестве датчика для обнаружения света, его обычно можно найти в следящих за линией роботах, роботах, избегающих препятствий, и даже в качестве счетчика объектов или устройства датчика скорости. Вы можете узнать больше о фотодиоде по этой ссылке.

Лазерный диод: Лазерный свет также является разновидностью диода, подобного светодиоду. Они имеют те же свойства, что и диоды, но в режиме прямого смещения они излучают свет с падением напряжения на них, действуя как нагрузка.Лазерный диод 650 нм — это наиболее распространенный лазерный диод.

TVS-диод: Еще одним важным специальным типом диодов является TVS-диод, который означает подавитель переходного напряжения. Это особый тип диода, который обычно используется в цепях питания для защиты от скачков напряжения и защиты цепи. Эти диоды также называются переходными диодами или тиректорами.

Варакторные диоды: Варакторные диоды используются как переменные конденсаторы.Когда этот диод работает в режиме обратного смещения, шириной обедненной области можно управлять, что заставляет его действовать как конденсатор. Эти диоды также называются варикаповыми диодами и обычно используются в радиочастотных схемах.

Различные типы комплектов диодов

Теперь, когда мы изучили все основы работы с диодами, я считаю, что теперь вы можете выбрать диод, который требуется для вашей схемы. Но до сих пор мы видели один диод со сквозным отверстием, который обычно доступен и хорош для прототипов, но в большинстве продуктов вы не найдете их в корпусах с отверстиями.Сейчас мы обсудим множество различных типов диодных пакетов.

Комплект для сквозных отверстий

Это наиболее часто используемые макетные и перфорированные платы. Эти пакеты называются DO-7, DO-35, DO-41, DO-204 и т. Д., Из которых DO-41 является наиболее распространенным. Эти пакеты также называются осевыми свинцовыми диодами .

Стили поверхностного монтажа

В большинстве готовых к производству конечных продуктов используются компоненты SMD .Они дешевле, чем дырочные, и имеют небольшой форм-фактор. SOD-323, SOD-523, SOD-123 SOD-80C — одни из самых популярных диодных SMD-корпусов. В большинстве конструкторов силовых цепей по-прежнему используются сквозные отверстия, поскольку они имеют высокую допустимую нагрузку по току и меньше проблем с электромагнитными помехами, поэтому SMD обычно предпочтительнее в цифровых схемах.

Крепление на 3-контактном болте

Также существует несколько специальных диодов с тремя выводами, которые используются в продвинутых приложениях, таких как космическая промышленность.Они обладают высоким током и коммутационной способностью. Их можно найти в пакетах TO-64, TO-208, TO-254. Между банками имеется паз, позволяющий прикрепить их болтами к корпусу раковины, они также называются диодами с болтовым креплением.

Типы диодов

Существует несколько различных типов диодов, которые используются в разработке электроники. Различные типы диодов позволяют удовлетворить различные требования к применению. В результате свойств этих разных типов диодов, разные типы полупроводниковых диодов могут использоваться для выполнения разных функций.Некоторые символы диодов показаны на изображении ниже.

Обозначения диодов

Лавинный диод

Этот тип диода проводит в обратном направлении, когда напряжение обратного смещения превышает напряжение пробоя. Эффект лавины возникает, когда обратное электрическое поле через P-N-переход вызывает волну ионизации, напоминающую лавину, приводящую к сильному току. Лавинные диоды предназначены для пробоя при четко определенном обратном напряжении без разрушения.

Лавинный диод

Светоизлучающий диод (LED)

Светодиод — один из самых популярных типов диодов, который излучает свет, когда диод позволяет передавать электрический ток между электродами. Энергия выделяется в виде света, когда диод включен или смещен в прямом направлении, а электроны соединяются с дырками. Цвет света зависит от ширины запрещенной зоны полупроводника и создает волны с длиной волны от инфракрасного до ближнего ультрафиолета, в зависимости от материала.

Сопутствующие товары: Диоды, транзисторы и тиристоры | Мостовой выпрямитель |

Светоизлучающий диод (LED)

Лазерный диод

Этот тип диода излучает когерентный свет, что отличает его от обычного светодиода. Лазер образуется, когда структура, подобная светодиоду, содержится в резонансной полости, образованной полировкой параллельных торцевых поверхностей. Они обычно используются в оптических запоминающих устройствах и высокоскоростной оптической связи.

Лазерный диод

Фотодиод

Фотодиод используется для обнаружения света и имеет широкие прозрачные переходы, поскольку он работает в режиме обратного смещения, где протекает небольшой ток.Фотодиоды могут использоваться в солнечных элементах, в фотометрии, в оптической связи или для выработки электроэнергии.

Фотодиод

Диод Шоттки

Диод Шоттки состоит из контакта металл-полупроводник и имеет меньшее прямое падение напряжения, чем обычные диоды с P-N переходом. Его можно использовать в качестве выпрямителя с низкими потерями, хотя его обратный ток утечки обычно выше, чем у других диодов.

Диод Шоттки

Туннельный диод

Туннельный диод похож на стандартный P-N переход, за исключением того, что уровни легирования высоки, а область обеднения узкая.Туннелирование — это эффект, который вызывается квантово-механическими эффектами, когда электроны проходят через потенциальный барьер. Его можно найти во многих микроволновых устройствах.

Туннельный диод

Варикап или варакторный диод

Они используются в качестве конденсаторов с регулируемым напряжением, которые имеют обратное смещение, которое изменяет ширину истощения в соответствии с напряжением на диодах. Эти диоды действуют как конденсаторы, а обкладки конденсатора образованы протяженностью областей проводимости и областью обеднения как изолирующим диэлектриком.

Варикаповые диоды

Стабилитрон

Диод этого типа обеспечивает стабильное опорное напряжение и может проводить обратное направление. Стабилитроны и переключающие диоды включены последовательно и в противоположных направлениях, чтобы сбалансировать температурный коэффициент почти до нуля. Они широко используются для обеспечения опорного напряжения в источниках питания.

Стабилитрон

Какие бывают типы диодов

Мы знаем из предыдущего поста, что такое диод? Эта статья про разные типы диодов.Когда дело доходит до понимания схемы питания в ваших электронных элементах, диод является ключевым компонентом, который нужно изучить в первую очередь. Существует несколько типов диодов с разной функциональностью, номинальным напряжением и током. Давай обсудим их.

Сигнальные диоды: —

Сигнальные или стандартные диоды — это простейшие диоды с P-N переходом. По допустимой нагрузке по току и номинальной мощности стандартные диоды бывают двух типов; малый сигнал и большой диод сигнала. Эти диоды используются в устройствах ограничения и переключения напряжения.Например, 1N4148 имеет В F = 1 В и I F = 200 мА, а также 1N914 имеет В F = 1 В и I F = 300 мА.

Обозначение схемы и примеры стандартного диода

Большие сигнальные диоды также известны как выпрямительные или силовые диоды. Они имеют более высокое номинальное напряжение и ток для использования в источниках питания. Например, 1N4007 имеет В, F , = 1,1 В и I F = 1 А.

Стабилитроны: — Стабилитрон

отличается от других типов диодов, поскольку он обычно проводит с обратным током . При прямом смещении работает как обычный диод. При обратном смещении, когда обратный ток через стабилитрон увеличивается до номинального значения, падение напряжения на диоде становится постоянным. Это падение напряжения известно как напряжение стабилитрона (напряжение обратного пробоя). Ток может течь в обратном направлении, когда увеличение напряжения пересекает напряжение стабилитрона.Стабилитрон создает известное опорное напряжение для регулирования напряжения, ограничения формы сигнала в регулируемом источнике питания.

Условные обозначения стабилитрона

Давайте разберемся с работой стабилитрона с помощью схемотехнического моделирования. Рассмотрим следующий пример регулятора напряжения с источником 30 В переменного тока и стабилитроном (с В Z = 15 В, В F = 0,7 В).

Пример регулирования напряжения с помощью стабилитрона

В приведенной выше схеме стабилитрон имеет обратное смещение в течение положительного полупериода.Напряжение более 15В включит диод. Повышение входного напряжения выше 15 В будет просто появляться на последовательном резисторе. Поскольку источником является переменный ток, выходное напряжение ( В, Z ) остается постоянным в течение определенного времени, пока положительное напряжение не начнет уменьшаться.

Выходные характеристики стабилизации напряжения с помощью стабилитрона

В отрицательном полупериоде стабилитрон имеет прямое смещение. Увеличение отрицательного напряжения до прямого порогового напряжения ( В, F ) включает стабилитрон.Отрицательная сторона выходного напряжения находится при пороговом напряжении, равном 0,7 В.

Примеры стабилитронов: 1N746, 1N4728A и т. Д. Важными факторами при выборе стабилитрона являются напряжение источника, напряжение нагрузки, ток нагрузки схемы. Стабилитрон доступен в различных номиналах напряжения и мощности.

Светоизлучающие диоды: — Символ и полярность светодиода

Светодиод представляет собой диод с P-N переходом, который излучает свет при включении. Как и стандартные диодные светодиоды являются однонаправленными и имеют номинальное прямое напряжение (напряжение, необходимое для включения).Номинальное прямое напряжение ( В, F ) светодиода выше, чем у стандартного диода. V F зависит от цвета излучаемого светодиода, а цвет светодиода зависит от его материала. Прямой ток ( I F ) — второй важный параметр для светодиода. Это количество тока, проходящего через светодиод, и оно прямо пропорционально яркости светодиода. Значение I F указано в миллиамперах; но превышение указанного значения I F приводит к повреждению светодиода.Это причина того, что резистор всегда используется последовательно со светодиодом.

Светодиоды разных размеров

Полярность светодиода важна при проектировании схемы. Полярность светодиодов можно определить, внимательно наблюдая за ней. Длинный вывод или закругленная сторона является анодом, а короткий вывод или плоская сторона — катодом. Светодиоды бывают разных размеров, и согласно размеру светодиоды различаются по диаметру (выраженному в миллиметрах-мм). Светодиоды 3 мм, 5 мм и 10 мм предназначены для использования в целях индикации, освещения и индикации / освещения соответственно.

Основными факторами при выборе светодиода являются размер, цвет и назначение. В таблице данных светодиодов содержится информация о длине волны (точно указывается, какой цвет будет излучать светодиод), прямом напряжении — В F (напряжение, требуемое для включения светодиода при некоторых I F ), номинальных значениях обратного тока / напряжения и физических характеристиках. размеры и т. д.

Диоды Шоттки: — Обозначение схемы и пример диода Шоттки

Диод Шоттки — уникальный полупроводниковый диод, образованный переходом металл-полупроводник .Эта особая конструкция обеспечивает более низкое прямое падение напряжения (в пределах 0,15–0,40 В), что обеспечивает высокую скорость переключения. Диоды Шоттки имеют низкого обратного напряжения номиналов (обычно 50 В или меньше), относительно высокий обратный ток утечки и высокую стоимость. Диоды Шоттки с высоким обратным напряжением всегда имеют большее прямое падение напряжения, чем другие типы диодов. Дидо Шоттки подходят для низковольтных устройств из-за меньшего рассеивания мощности. Некоторые другие применения диодов Шоттки — фотоэлектрические (PV) системы, схемы ограничения напряжения, RF-схемы.

Сравним диод Шоттки MBD101 со стандартным P-N диодом 1N4148 со следующей схемой.

Схема с диодом MBD101 и 1N4148

В технических характеристиках MBD101 и 1N4148 указано типичное прямое напряжение 0,5 В и 1 В соответственно. Мы можем сравнить эти параметры с помощью программного моделирования, как показано ниже.

Графическое сравнение прямого напряжения диода MBD101 и 1N4148
Варакторные диоды: — Условное обозначение варакторного диода

Варакторный диод — это уникальный тип диода.Емкость перехода P-N может быть изменена с помощью приложенного обратного напряжения . Варакторный диод известен как варикап / настроечный диод / диод переменной емкости. Области типа P и N в диоде действуют как заряженные пластины, а область обеднения — как диэлектрик или изолятор. Изменение напряжения обратного смещения изменяет емкость диода. Этот эффект аналогичен изменению расстояния между пластинами конденсатора. Варакторный диод специально используется для обратного смещения.Следующее математическое соотношение объясняет работу варакторного диода.

Принцип работы варакторного диода Работа сигнала, варактора и стабилитрона

При прямом смещении варакторный диод не очень полезен и предлагает очень низкое сопротивление. Важными техническими параметрами для выбора варакторного диода являются межконтактная емкость или емкость диода, обратное напряжение пробоя, коэффициент емкости и т. Д. Варакторный диод имеет малошумящие характеристики, низкую стоимость, высокую надежность и небольшие размеры.Варакторный диод присутствует в цепи настройки генератора, как РЧ-фазовращатель, в LC-цепи переменного резонанса и т. Д. Примером варакторного диода является NTE618.

Емкость диода относительно обратного напряжения Vericap

Это все для этого поста. Думаю, теперь вы знакомы с различными типами диодов и их значением. В следующем посте мы узнаем о защите от обратного тока с помощью диодов. Спасибо за чтение.

.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *